

1 **Microscopic insights into thermal cycling effects in granular materials via X-ray microtomography**

2
3 Yize Pan¹, Dawa Seo¹, Mark Rivers², Xiaohui Gong¹, Giuseppe Buscarnera¹,
4 and Alessandro F. Rotta Loria^{1*}

5
6 ¹*Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road,*
7 *Evanston, Illinois 60208, USA*

8 ²*Center for Advanced Radiation Sources, University of Chicago, 9700 South Cass Avenue, Argonne, IL*
9 *60647*

10 *Corresponding author: af-rottaloria@northwestern.edu

11
12 **Abstract**

13 The mechanics of granular materials at the macroscopic scale inherently depends on the particle interactions
14 occurring at the microscopic scale. In recent decades, growing investigations have explored the mechanics
15 of granular materials subjected to thermal cycles, as they involve complex responses that bear significance
16 for science, engineering, and technology. However, the fundamental understanding of the mechanics of
17 granular materials subjected to thermal cycles remains hindered by the absence of empirical evidence into
18 the microscopic particle interactions that govern the macroscopic response of such materials. For the first
19 time, this study presents direct experimental evidence obtained via synchrotron X-ray microtomography to
20 reveal the behavior of the particles that constitute granular materials during thermal cycling. This work
21 experimentally confirms the existing theory by which thermally induced particle interactions drive a
22 macroscopic volumetric expansion and contraction of granular materials upon heating and cooling,
23 respectively, and the development of irreversible volumetric deformations upon the completion of thermal
24 cycles. The results uncover the evolution of particle non-uniform translations, rotations, and contact
25 variations during thermal cycling, which all inherently depend on particle shape.

26
27 **Keywords:** granular materials; mechanics; temperature variations; thermal cycling; tomography

29 **1. Introduction**

30 Granular materials, such as sands and beads, are widely encountered in both natural and engineered systems.
31 Despite being composed of particles with simple properties and behaviors, these materials exhibit a wide
32 range of distinct properties and behaviors that are significantly more complex compared to those of their
33 constituting particles [1–3]. The complexity of granular materials arises from intricate microscopic particle
34 interactions [4], which vary depending on variables such as particle shape [3, 5, 6] and gradation [7].

35 Over the past decades, the mechanics of granular materials subjected to temperature variations has
36 garnered substantial interest across fundamental and applied science, owing to its complexity and potential
37 impact on the performance of engineering and technological solutions [8–31]. Early experimental studies
38 primarily focused on the mechanics of sands under monotonic temperature variations exceeding 100°C [8–
39 10]. These studies aimed to evaluate the potential changes in sand properties due to extreme temperatures,
40 which could influence the extraction of deep geological resources [32]. Subsequent experimental and
41 computational investigations delved deeper into the response of sands to monotonic temperature variations
42 [19], exploring their response to a single cycle of heating and cooling [18, 26, 28, 29], as well as multiple
43 cycles of heating and cooling [23, 31]. The primary objective of these studies has been to gather
44 comprehensive insights into the mechanics of sands subjected to temperature variations. Multiple
45 investigations have explored the residual effects of cyclic temperature variations on the mechanics of
46 granular materials, particularly spherical beads [9, 11–17, 20–22, 24, 25, 27]. The focus on multiple thermal
47 cycles is driven by their relevance to packed-bed thermal energy storage systems, where granular materials
48 are subjected to repeated heating and cooling. These studies have shown that thermal cycling can result in
49 irreversible volumetric deformations, which can affect the performance of these applications [34, 35].
50 Generally, the irreversible deformations of granular materials due to thermal cycling have been shown to
51 be contractive [11–13, 16, 17, 20–22, 24, 27], but evidence has also presented expansive residual
52 deformations [17], depending on the initial state of the granular packing. The deformations caused by
53 thermal cycling have been noted to involve effects comparable to those of vibration [11, 13, 36], although
54 their origin is clearly different. Whether these deformations can be formally attributed to a ratcheting
55 behavior (i.e., the continued net accumulation of irreversible deformations with successive loading cycles
56 [37]) or a plastic shakedown behavior (i.e., the gradual reduction of cumulative irreversible deformations
57 due to cyclic loading, which stabilize as the number of applied cycles approaches infinity [38]) still
58 represents an open question. The reason for this uncertainty is that deformations caused by thermal cycling
59 do not always appear to stabilize over successive cycles [11–13, 16, 17, 20–22, 24, 27]. Computational
60 studies free from experimental artifacts that potentially lead to continued accumulation of irreversible

61 deformations due to successive cyclic loading [39] still observe the ratcheting phenomenon [22]. This
62 phenomenon is attributed to the creation of permanent convection cells, as observed in granular materials
63 subjected to cyclic mechanical loading [40]. In contrast, other numerical studies observe a stabilization of
64 the irreversible deformations caused by successive thermal cycles [27], indicating a thermal plastic
65 shakedown also recently observed in experimental studies on sands [31]. Notably, the application of cyclic
66 mechanical loads on sands has also been attributed to a plastic shakedown behavior, rather than a ratcheting
67 behavior [41].

68 As most studies explored the residual effects of thermal cycling after the application, rather than
69 focusing on the response of granular materials during monotonic heating or cooling, the knowledge of the
70 response of granular materials to heating or cooling remains limited. The available studies have primarily
71 focused on sands within the context of geothermal applications [8, 19, 26, 30, 32]. Although some
72 experimental observations have indicated macroscopic volumetric contractions of sands upon heating [8,
73 10, 18, 23, 28], such observations have been attributed to measurement inaccuracies [29, 30]. In alignment
74 with this assessment, experiments benefiting from accurate and controlled measurement conditions have
75 consistently indicated macroscopic volumetric expansions and contractions of sands upon heating and
76 cooling, respectively [19, 26, 30]. These latter observations appear to reflect the macroscopic constitutive
77 behavior of sands more rationally. However, more studies (e.g., experimental) are deemed essential to
78 develop a comprehensive set of evidence regarding the influence of temperature variations on sands and
79 other granular materials.

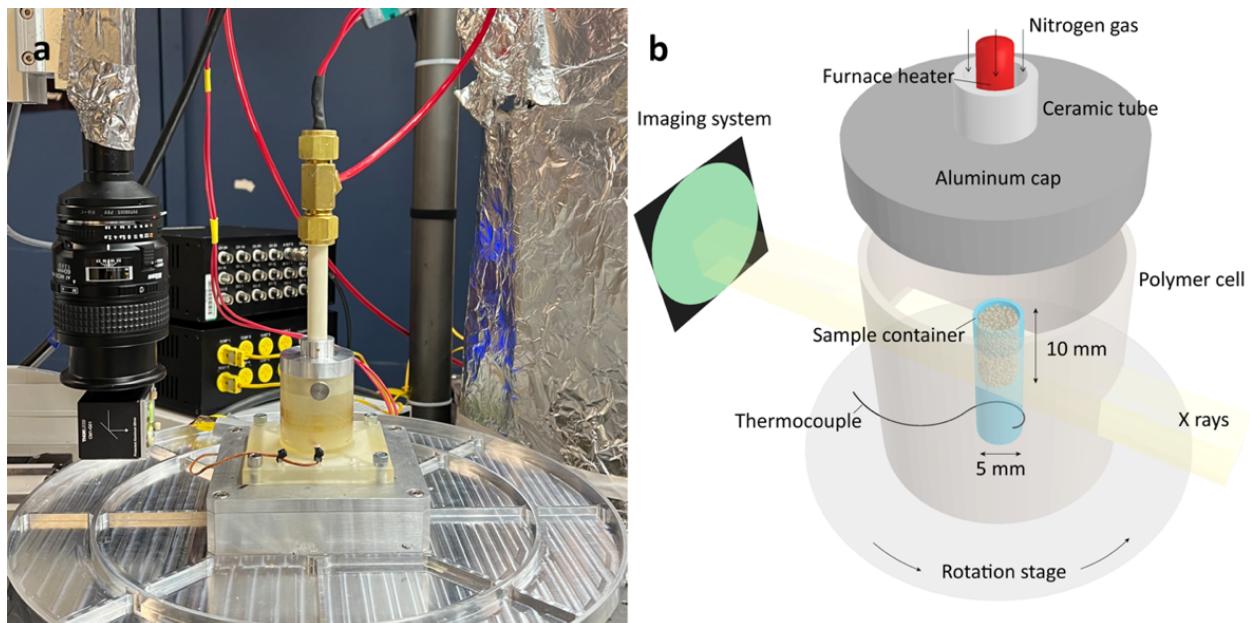
80 The existing state-of-the-art highlights the need for additional studies to develop a comprehensive
81 and consistent understanding on the mechanics of granular materials. Meanwhile, an analysis of the
82 available studies enables the identification of a critical gap in the literature: the lack of experimental
83 investigations providing microscopic insights into how fundamental particle interactions govern the
84 mechanics of granular materials subjected to temperature variations, particularly their interconnected
85 thermally induced deformations during and after the application of thermal cycles. In this context, the
86 following questions emerge: How do granular particles translate and rotate in space when subjected to
87 temperature variations? How uniform are these particle movements, and how do they influence the
88 coordination number in granular materials? What is the influence of particle shape on all these microscopic
89 phenomena? This paper addresses these questions by leveraging recent technological advancements in X-
90 ray computed tomography (CT) [42, 43], which have opened up new avenues for microstructural
91 investigations about the mechanics of granular materials.

92 Specifically, this study presents the first temperature-controlled tomography experiments and
93 image analyses aimed at visualizing and monitoring the microstructure of granular materials in response to
94 thermal cycles, focusing on the influence of both monotonic and cyclic temperature variations. This
95 endeavor is performed with a focus on sands, as they emerge for their particularly complex particle shapes.
96 With these premises, this study presents tomography experiments on two types of dry silica sands with
97 rounded and angular particle shapes. Using a custom-designed sample cell with temperature control, the
98 study explores the behavior of such materials under laterally restrained and free head conditions in a
99 cylindrical container. Each studied sample consists of over 1200 particles and is subjected to five thermal
100 cycles with a temperature variation of $\Delta\bar{T} = 100^{\circ}\text{C}$. Three-dimensional (3-D) CT images are captured at
101 each temperature step after achieving thermal stabilization. Subsequently, image analyses are performed to
102 quantify microstructural changes, including particle volumes changes, translations, rotations, and contacts.
103 This study crucially discusses the obtained results and advances toward a more comprehensive and
104 mechanistic understanding of the mechanics of granular materials under non-isothermal conditions.

105

106 **2. Materials and methods**

107 **2.1 Experimental apparatus**


108 The experiments presented in this study were conducted at the synchrotron microtomography facility of
109 Sector 13-BM-D GeoSoilEnviroCARS (GSECARS) located at the Advanced Photon Source, Argonne
110 National Laboratory. The pink beam tomography technique [43] was utilized to acquire high-resolution X-
111 ray CT images with a spatial resolution of $3.13 \mu\text{m}$ per voxel. These images enable precise quantitative
112 analyses of the microstructure at the level of individual particles. The temperature within the tomography
113 room was maintained constant at $23.5 \pm 1^{\circ}\text{C}$ throughout the experiments. Further details of the beamline
114 facility and experimental setup utilized in this study can be found elsewhere [44], and a brief summary is
115 presented here.

116 Each image set required the combination of three image sections collected at three different heights.
117 At each height, the sample needed to be rotated 180° at acquisition speed to collect the projections required
118 for 3-D reconstruction. In addition, the sample needed to be moved horizontally out of the view at each
119 height to collect the flat field for image correction. Very slow speeds and long acceleration times [44] were
120 used to minimize the disturbances during horizontal, vertical, and rotational movements. The parameters
121 of scanning movements adopted for image collection are comprehensively reported elsewhere [44].

122 Calibration tests where a rounded sand sample was scanned 13 times at room temperature showed minimal
123 disturbances (maximum particle translation $< 4 \mu\text{m}$) from scanning movements.

124 Temperature-controlled tomography experiments were performed under laterally restrained
125 conditions and zero applied vertical stress at the head of samples located in a cylindrical container (Figure
126 1). The sample container was made of fused quartz due to its low X-ray attenuation and very low thermal
127 expansion coefficient (linear thermal expansion coefficient of $5.5 \times 10^{-7} \text{ } 1/\text{ } ^\circ\text{C}$). This ensured minimal
128 variations in the lateral restraint provided to the sample under non-isothermal conditions. The container
129 with one flat closed end had an inside diameter of 5 mm, an outside diameter of 7 mm, and an inside height
130 of 10 mm. The open top prevented the build-up of excess air pressure due to thermal expansion that may
131 cause particle movements. To hold the container at the base, one single set screw was used. A high-
132 temperature polymer cell was built by 3-D printing to provide thermal insulation. A stream of nitrogen gas
133 was blown from the top ceramic tube, which contained an electric resistance heater to heat the gas stream.
134 The power output to the heater was regulated by a PID temperature controller, adjusting the control voltage
135 to achieve different heating rates and temperature setpoints. The feedback temperature was read from a
136 thermocouple attached to the sample cylinder at the base.

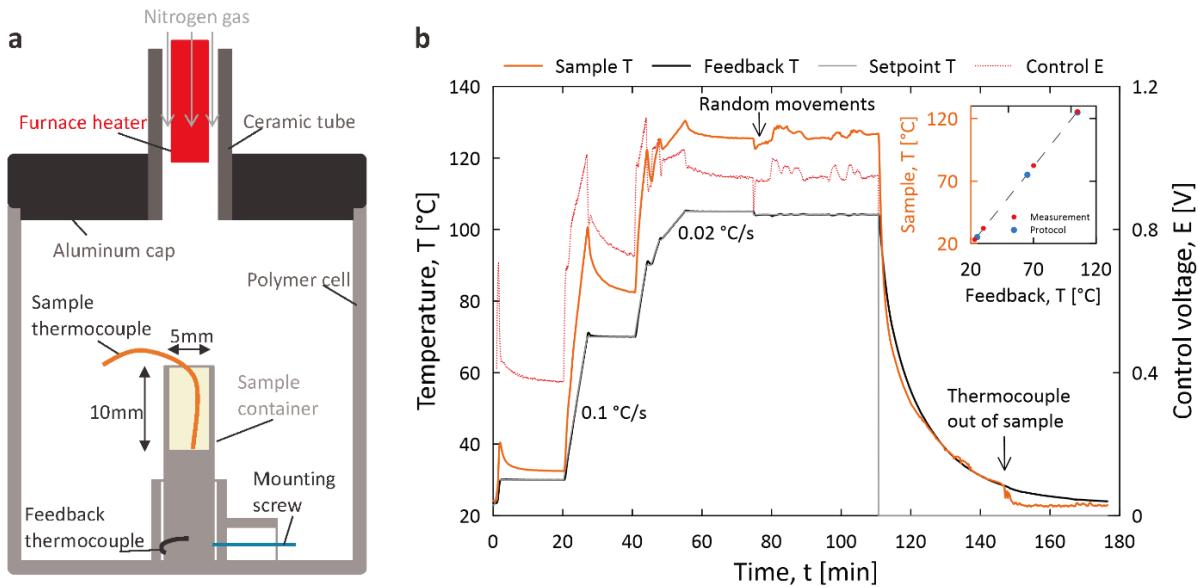
137

138

139 **Figure 1: Experimental setup.** The sample is scanned in a temperature-controlled cell. (a) Global view of
140 the setup. (b) Detailed schematic with descriptions.

141

142 **2.2 Test materials**


143 The materials used in this study were two types of dry silica sand: a rounded F-35 sand (Ottawa, IL) and
144 an angular 1 Q-ROK sand (Berkeley Springs, WV), both composed of over 99% quartz. Their original
145 particle size distributions are very similar and the particle shape characterizations are presented elsewhere
146 [31]. The two types of sand were artificially sieved to their mean sizes, both between No. 30 (600 μm) and
147 No. 40 (425 μm) sieves. Loose samples were prepared using the air-pluviation method [45] (i.e., by raining
148 uniformly the material into the container). The container was filled below the top, at a height of around 9
149 mm, to avoid potential overflow during thermal expansion. The experiments were performed using 1380
150 rounded particles with an initial average porosity of 0.43, and 1250 angular particles with an initial average
151 porosity of 0.54.

152

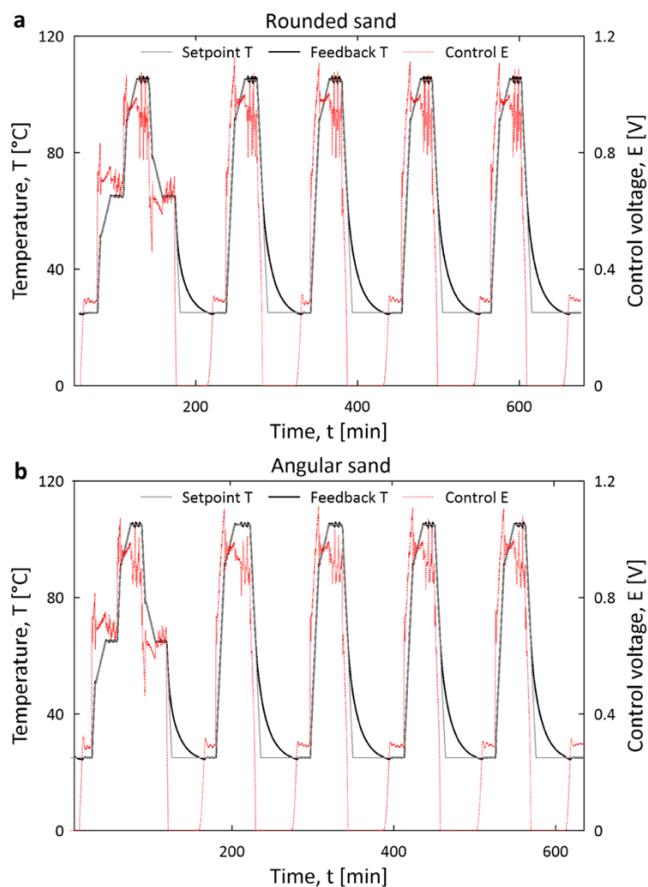
153 **2.3 Temperature calibration**

154 Temperature calibration test was performed to understand the correlation between the actual sample
155 temperature and feedback temperature. In addition to a feedback thermocouple used for measuring feedback
156 temperature in the setup shown in Figure 1, an additional thermocouple was inserted into the sand sample
157 (reaching the bottom of the cylinder) to measure the sample temperature (Figure 2(a)) during the
158 temperature calibration test. The results indicate that the sample temperature was highly responsive to the
159 change in control voltage regulated by the PID controller, since the sample was in closer proximity to the
160 heat source compared to the feedback thermocouple (Figure 2(b)). Despite the feedback temperature being
161 nearly synchronized with the setpoint upon heating, the sample temperature was raised much higher than
162 the feedback temperature. When the heating rate was set at 0.1°C/s, the sample temperature overshot
163 significantly beyond the feedback temperature followed by cooling down towards thermal stabilization.
164 Using a lower heating rate of 0.02°C/s allowed to significantly reduce the overshoot and was therefore
165 preferred for temperature uniformity and stabilization. A nearly linear correlation between the sample
166 temperature and feedback temperature at thermal stabilization was observed (see the inset in Figure 2(b)).
167 Cooling was achieved by turning off the heater and blowing gas at room temperature. The sample
168 temperature initially dropped rapidly and became almost synchronized with the feedback temperature
169 towards stabilization at room temperature.

170

171

172 **Figure 2: Temperature calibration.** (a) Cross-section schematic of the set-up for temperature calibration.
 173 The feedback thermocouple is attached to the cylinder base to measure the feedback temperature, which
 174 was used to provide feedback and control the PID controller regulating the control voltage to the heater. To
 175 calibrate the correlation between the actual sample temperature and the feedback temperature, an additional
 176 thermocouple was inserted into sand particles in the sample container to measure sample temperature. (b)
 177 Temperature and voltage readings during the temperature calibration test. Different heating rates were
 178 applied to the setpoint. The value of the control voltage indicates the level of power output to the heater.
 179 The term “random movement” refers to the movement of the stage, typical for CT scanning to collect 3-D
 180 images, which results in fluctuations in the readings of the thermocouples due to varying contact with the
 181 hot gas. The correlation between sample temperature and feedback temperature at thermal stabilization is
 182 shown in the upper right corner, where the red dots represent measurements from the calibration, and the
 183 blue dots represent the temperatures applied in the actual test protocol.


184

185 **2.4 Test protocol**

186 Based on the results of the temperature calibration, a refined temperature protocol was developed for the
 187 actual tests (Figure 3). Five thermal cycles with an average sample temperature amplitude of 100°C were
 188 applied to both sand samples, showing consistent results. The chosen temperature amplitude of 100°C
 189 characterizes granular materials such as sands in engineered systems used for high-temperature thermal
 190 energy storage or in natural systems including deserts on the Moon and Mars. The first thermal cycle
 191 consisted of two steps for both heating and cooling, while the subsequent four thermal cycles involved only
 192 one step for both heating and cooling. Images were collected after reaching thermal stabilization at each
 193 temperature step. One image set, consisting of three image sections, was collected in approximately 10
 194 minutes.

195 To compensate for the correlation between the sample and feedback temperatures, a feedback
 196 temperature step of 40 or 80°C was applied to achieve a sample temperature step of 50 or 100°C. The
 197 feedback temperature was initially set at 25°C and increased to 105°C to reach a sample temperature of
 198 125°C. To minimize overshoot, each heating step consisted of two phases: a fast-heating phase and a slow-
 199 stabilizing phase. The fast-heating phase, which accounts for 5/8 of the step, used a setpoint heating rate of
 200 0.1°C/s to accelerate the experiment within the limited beamtime. The slow-stabilizing phase, referring to
 201 the remaining 3/8 of the step, used a heating rate of 0.02°C/s to minimize temperature overshoot. Heating
 202 up by 100°C took approximately 40 minutes. Cooling was simpler and less concerned with overshoot,
 203 except for the first cycle which had two cooling steps. A 100°C drop in temperature took about 70 minutes.

204

205

206 **Figure 3: Test protocol for actual tests where five thermal cycles were applied on sand samples.** As
 207 shown in the upper right corner of Figure 2(b), a feedback temperature step of 40 or 80°C was applied to
 208 achieve a sample temperature step of 50 or 100°C. The feedback temperature was initially set at 25°C and
 209 increased to 105°C during heating to reach a sample temperature of 125°C. (a) Temperature and voltage
 210 readings during the test on rounded particles. (b) Temperature and voltage readings during the test on
 211 angular particles

212

213 **2.5 Image analyses**

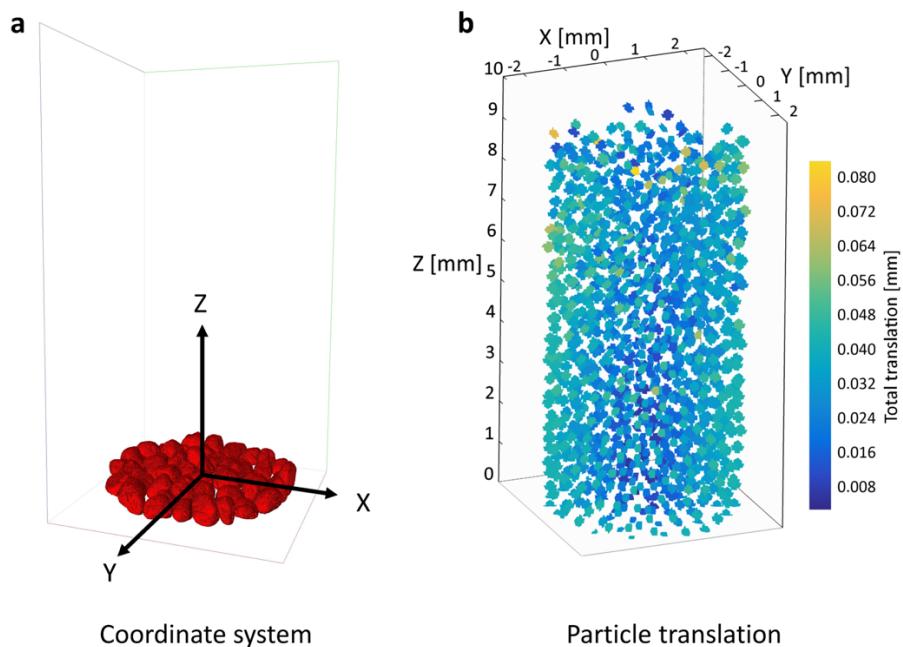
214 Image analyses were conducted on the image sets acquired from the tomography experiments. These
215 analyses are carried out in four phases: image reconstruction using IDL, image processing using Avizo,
216 particle tracking, and microstructural analyses using Matlab. The first three phases are discussed in detail
217 elsewhere [44], while the microstructural analyses focusing on particle volumes, translations, rotations, and
218 contacts are described hereafter.

219

220 **2.5.1 Particle volume changes and temperatures**

221 Temperature variations generate volume changes in granular particles due to their thermal expansion and
222 contraction. Specifically, thermally induced strains are inherently related to applied temperature variations.
223 In the experiments, the volume change of each individual particle was quantified. Accordingly, it was
224 possible to use the probed particle volume changes to approximately infer the temperature variations that
225 characterize the individual particles. This analysis is indeed approximate and can only provide qualitative
226 information about particle temperatures, mainly because individual particles undergoing temperature
227 variations in a packing are not able to deform freely (i.e., they are at least partly constrained). As a result,
228 the particle temperatures inferred in this manner are likely smaller than the actual particle temperatures that
229 develop in reality. Additionally, the image resolution was not sufficient to quantify the volume change of
230 each particle due to temperature variations at the order of 1°C (a resolution of nanometers is necessary).
231 However, analyses relying on the statistics of over 1200 particles tested in the various experiments provided
232 qualitative yet valuable information about the influence of a temperature variation of 100°C.

233


234 **2.5.2 Particle translations**

235 Particle translations were analyzed by referring to the X, Y, Z coordinates of the center of each particle
236 (Figure 4). To ensure a consistent reference for the origin and axis directions, the coordinate system was
237 set up and corrected for every calculation. This approach was necessary because the movement and tilt of
238 the sample cylinder are inevitable due to thermal expansion of the system. The origin centering and tilt
239 correction of the coordinate system were performed based on the positions and movements of the bottom
240 layer particles, as described in detail elsewhere [44]. The approach of centering the coordinate origin at the

241 center of over 50 particles in the bottom layer has proven effective in providing a reliable reference and
242 efficiently handling the computational demands of the analysis.

243 Centering the coordinate origin at the center of over 50 particles in the bottom layer has proven
244 effective in providing a reliable reference and efficiently handling the computational demands of the
245 analysis. Once a consistent coordinate system was established, particle translations were calculated by
246 subtracting their X, Y, Z coordinates between each two image sets. Upward particle translations and
247 expansive strains are considered positive in this study.

248

249 Coordinate system Particle translation

250 **Figure 4: Particle translation calculation.** (a) The origin of coordinate system is set at the center of the
251 bottom layer particles and corrected for cylinder tilt. (b) Visualized illustration of traced translations of
252 rounded sand particles induced by five thermal cycles. The detailed quantifications of particle vertical
253 translations are presented in subsequent sections.

254

255 Given the considered setup of image resolution and sample size, three image sections were stitched together
256 to generate a complete image of the entire sample. During this process, some voxels around the image
257 stitches may have been missed or duplicated, particularly if the stage position control encountered minor
258 deviations. When the temperature was significantly raised, the thermal expansion of the machinery below
259 not only caused the lifting of the sample within the field of view, but also had the potential to exacerbate
260 the stage positioning deviations. As a result, artifacts such as variations in particle volumes and centroid

261 locations of particles at the stitches may have been introduced, leading to possible shifts of the slopes of
262 the particle vertical translations. Fortunately, these artifacts were only noticeable when considering images
263 with a large temperature difference, whereas they were negligible when comparing images at a consistent
264 temperature (e.g., 25°C).

265

266 **2.5.3 Thermoelastic displacements**

267 To facilitate the analyses of particle translations upon monotonic heating and cooling, thermoelastic
268 displacements were derived from the measured particle volume statistics, as well as from the theoretical
269 volumetric and linear thermal expansion coefficients of the solid particles. The following complementary
270 methods were employed to compare with actual particle vertical translations.

271 First, thermoelastic displacements were calculated from the statistics of measured particle volume
272 changes in the CT images. These displacements were calculated assuming one-dimensional displacements
273 with no reorganizations as follows:

274
$$\Delta Z^{th} = H \sum_{h=0}^H \Delta V_s^m / \sum_{h=0}^H V_{s,i}^m \quad (1)$$

275 where $\sum_{h=0}^H \Delta V_s^m$ and $\sum_{h=0}^H V_{s,i}^m$ are the summations of volume changes and initial volumes of individual
276 particles located below a given initial height H (when comparing two image sets), respectively.

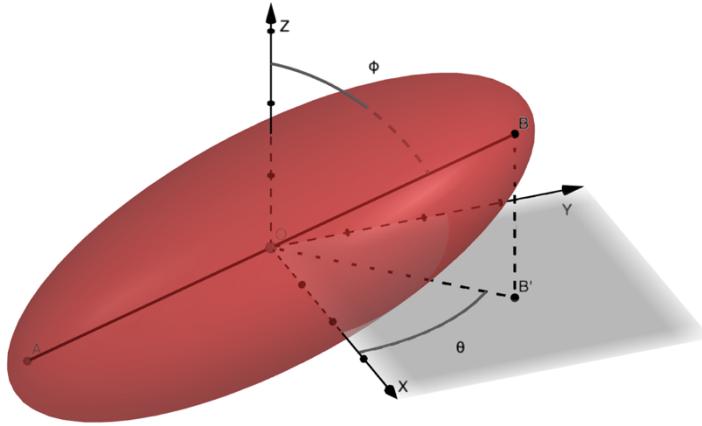
277 Second, thermoelastic displacements were calculated from the theoretical volumetric thermal
278 expansion of alpha quartz. The rate of volume change due to thermal expansion of sand particles can be
279 expressed as $dV_s = \beta(T)V_s dT$, where $\beta(T)$ is the theoretical volumetric thermal expansion coefficient.
280 Exact integration provides the theoretical volume change with reference to the initial volume $\Delta V_s^{th}/V_{s,i} =$
281 $\exp\left(\int_{T_i}^{T_f} \beta(T) dT\right) - 1$. Therefore, displacements were calculated from the volumetric thermal expansion
282 of the particles as follows:

283
$$\Delta Z_v^{th} = H \left[\exp\left(\int_{T_i}^{T_f} \beta(T) dT\right) - 1 \right] \quad (2)$$

284 Finally, thermoelastic displacements were calculated from the theoretical linear thermal expansion
285 of alpha quartz. A simplified average was considered in this study to account for the varying linear thermal
286 expansion coefficients along different axes of the crystal structure of alpha quartz. Therefore, displacements
287 associated with the linear thermal expansion of the particles were obtained as:

288
$$\Delta Z_l^{th} = \Delta Z_v^{th}/3 \quad (3)$$

Rather than assuming a constant value for the volumetric thermal expansion coefficient, which is used in the reference formulations of the displacements expressed in equations (2) and (3), the calculations accounted for a temperature-dependent thermal expansion coefficient to provide more accurate results [46]. Given the crystal structure of alpha quartz, the volumetric thermal expansion $\beta(T)$ was calculated as $\beta = 2\alpha_s^a + \alpha_s^c$. Here, α_s^a represents the linear thermal expansion coefficient along the a-axis and α_s^c represents the one along the c-axis. Their values were determined by the 5th order polynomial expression provided by Kosinski et al. [47] within the temperature range of -50 °C to 150 °C. The expression of $\beta(T)$ is given by:


$$\beta(T) = a_0 + a_1 T + a_2 T^2 + a_3 T^3 + a_4 T^4 + a_5 T^5 \quad (4)$$

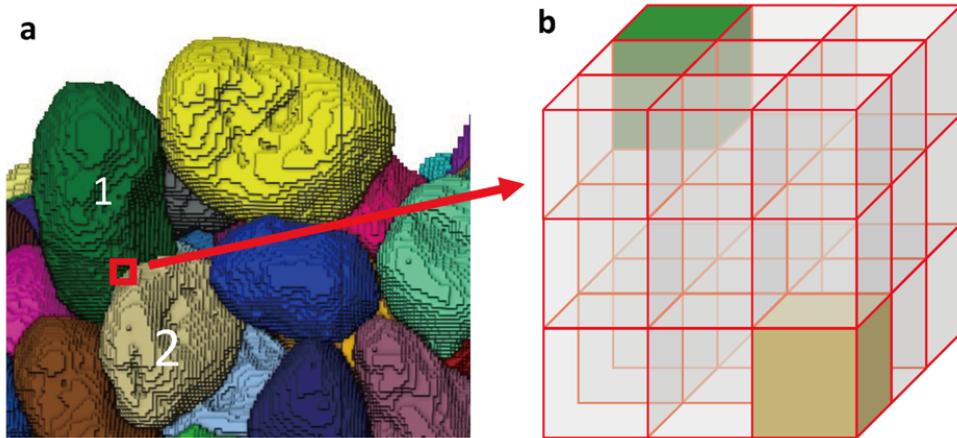
297 with $a_0 = 3.33 \cdot 10^{-5}$ $1/\text{^{\circ}C}$, $a_1 = 6.94 \cdot 10^{-8}$ $1/\text{^{\circ}C}^2$, $a_2 = -1.667 \cdot 10^{-10}$ $1/\text{^{\circ}C}^3$, $a_3 = -6.094 \cdot 10^{-13}$
 298 $1/\text{^{\circ}C}^4$, $a_4 = 6.473 \cdot 10^{-15}$ $1/\text{^{\circ}C}^5$, $a_5 = -1.304 \cdot 10^{-17}$ $1/\text{^{\circ}C}^6$.

During the heating process from an initial temperature $T_i = 25$ °C and a final temperature $T_f = 125$ °C, an equivalent $\beta^{eq} = \frac{\exp\left(\int_{T_i}^{T_f} \beta(T) dT\right) - 1}{T_f - T_i} = 3.74 \times 10^{-5}$ 1/°C is obtained. Therefore, an equivalent $\alpha^{eq} = \beta^{eq}/3 = 1.25 \times 10^{-5}$ 1/°C is obtained. These values are considered as reference for this study.

303 **2.5.4 Particle rotations**

304 To detect particle rotation, the orientation of each particle was analyzed based on four angles: azimuthal
305 angle, θ , and polar angle, φ , of both the particle length and width in a spherical coordinate system (Figure
306 5). Particle length and width correspond to the longest and shortest Feret diameters, respectively. In Avizo,
307 the definition of Feret diameter is extended to three dimensions (3D), representing the distance between
308 two parallel planes restricting the particle perpendicular to that direction. Avizo allows measurements of
309 Feret diameters at various angles in 3D to determine the length and width of particles, and extracts their
310 orientations. Analyzing the changes of the four angles enables the detection of particle rotation in all
311 directions in 3D.

312


313 **Figure 5: Illustration of spherical coordinates for rotation detection.** For each particle, azimuthal angle
 314 θ and polar angle φ for both particle length and width are extracted. Example is shown for particle length.
 315 The X, Y, Z axis directions refer to the original image axes since the influences of container tilt (< 0.1°)
 316 is negligible on rotation detection.

317

318 **2.5.5 Particle contacts**

319 Particle contact searching was performed on a labeled voxel field output from Avizo (Figure 6). In the
 320 labeled voxel field, each voxel was labeled with a particle label index (i.e., 1, 2, 3, ...) or a void label (i.e.,
 321 0). The labeled voxel field was divided into small search windows. If the label indexes of two different
 322 particles appeared within the same search window, the two particles were considered to be in contact. To
 323 account for potential errors from the images and processing, two different window cubic sizes, 3 and 6
 324 voxels, were used for contact searching. Contacts detected with the 3-voxel window were classified as close
 325 contacts, whereas additional contacts found using the 6-voxel window were classified as loose contacts.
 326 The coordination number was calculated by averaging the number of contacts for each individual particle.

327

328

329 **Figure 6: Contact detection by voxel window searching.** The labeled voxel field is divided into small
 330 windows with a cubic size of 3 or 6 for searching particle contacts. (a) Labeled voxel field with particle
 331 indexes or void. (b) Example of detected close contact in a window with a cubic size of 3.

332

333 **2.6 Reproducibility**

334 The experiments were repeated three times, leading to very similar results (e.g., with mean deviation of
 335 volumetric strain upon each thermal cycle $< 0.01\%$ and more scattered dots compared to the results of
 336 angular particles). This reproducibility highlights the consistency and reliability of the results.

337

338 **3. Results and discussion**

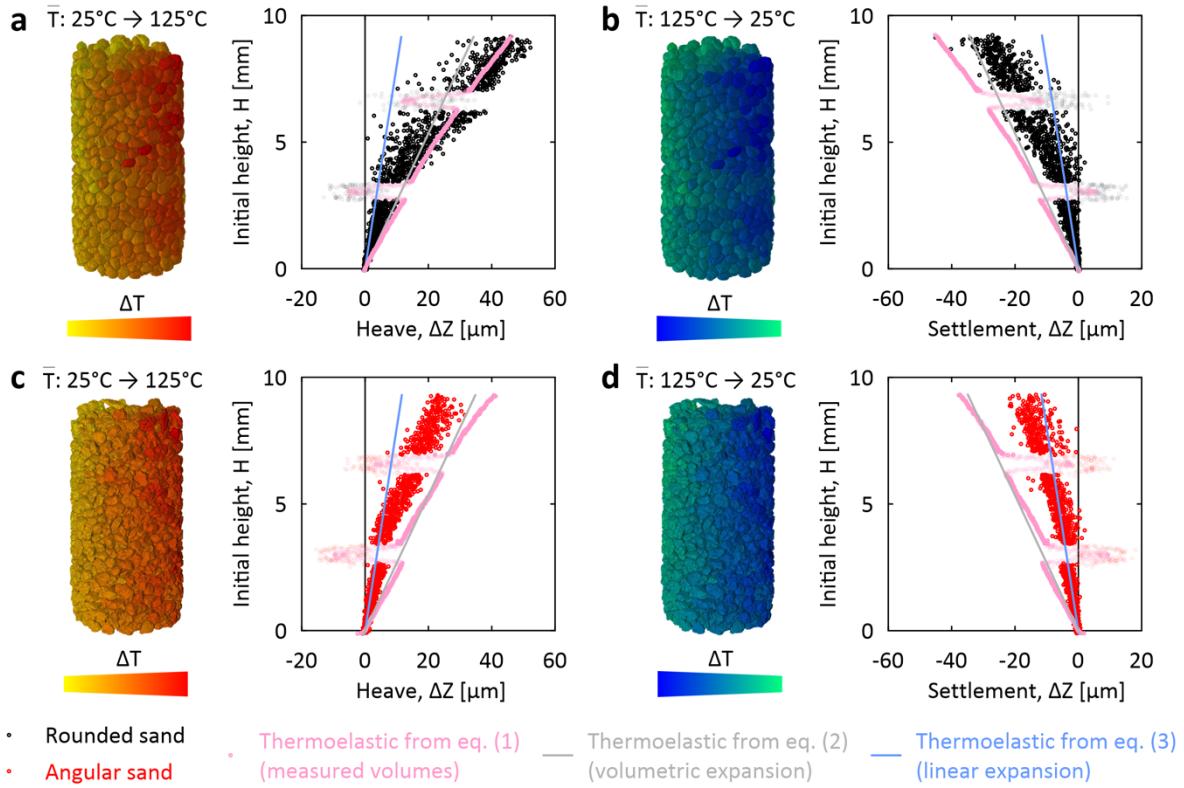
339 **3.1 Behavior upon the first cycle of heating and cooling**

340 Figure 7 presents qualitative representations of the particle temperatures and quantitative assessments of
 341 particle vertical translations upon the completion of the first heating ramp and cooling ramp (the data
 342 reported via semi-transparent dots are de-emphasized because they are considered artifacts associated with
 343 image stitching and stage position control). The qualitative representation of the temperature field derived
 344 from the volume statistics reveals non-uniform temperature variations in the tested samples upon heating
 345 and cooling, which are attributed to a non-uniform gas flow in the temperature-controlled polymer cell. The
 346 particle vertical translations further indicate that particles move upward upon heating and downward upon
 347 cooling, with particles located at shallower depths experiencing larger translations compared to particles
 348 located at deeper depths. Particle translations accumulate with distance from the origin of the coordinate

349 system, located at the bottom of the sample (e.g., upper particles are pushed further upwards by particles
350 below during heating).

351 Temperature variations induce non-uniform particle vertical translations within the sample
352 (depicted as scattered dots at certain heights), indicating the occurrence of relative sliding between particles.
353 Particles located at shallower depths exhibit more freedom in rearranging and show a larger range of vertical
354 translations due to the lower restraint compared to that at deeper locations. While the non-uniformity of the
355 particle temperatures may contribute to the observed non-uniformity particle translations, its impact is
356 expected to be secondary.

357 The shape of the particles strongly influences the magnitude of their translations. Firstly, this is
358 evident from the overall slopes of the particle vertical translations in relation to the sample height, reflecting
359 the magnitudes of the thermally induced volumetric strain. Secondly, the particle shape effect can be noted
360 by looking at the scatter in the particle vertical translations at any given sample height, indicating relative
361 sliding between the particles. Sands with rounded particles show larger magnitudes of particle translations
362 and more significant particle sliding compared to angular sands, consistent with previous experimental
363 evidence that showed larger macroscopic thermally induced strains in sands with rounded particles
364 compared to angular particles [30]. This result is attributed to the reduced friction and rolling resistance
365 characterizing rounded particles, which facilitate their mobility through less substantial restraints on particle
366 movements.


367 The dominant upward particle translations observed upon heating suggest that the sands expand
368 macroscopically. In other words, the results indicate no thermal collapse (i.e., volumetric contraction upon
369 heating), corroborating recent evidence [26, 30, 44] as opposed to some previous studies [18, 23, 32, 10, 8,
370 28]. Upon cooling, the dominant downward particle translations suggest macroscopic contraction, whose
371 magnitude is smaller than the expansion induced by heating.

372 The actual particle translations are generally bounded by the thermoelastic displacements derived
373 from the volume statistics as well as the linear and volumetric thermal expansion of the solid particles. On
374 the one hand, the magnitudes of particle vertical translations are smaller than the pink and gray dots,
375 representing the thermoelastic displacements inferred from the measured volumes and volumetric thermal
376 expansion coefficient of the particles, respectively. This result is attributed to constraints on particle
377 translations resulting from friction and rolling resistance. On the other hand, the magnitudes of particle
378 vertical translations generally surpass the blue dots, representing the thermoelastic displacements inferred
379 from the linear thermal expansion coefficient of alpha quartz. This response is attributed to a boundary

380 effect provided by the lateral restraint of the sample container. As the thermal expansion of the sample is
381 partly restrained by the boundaries along the horizontal direction, a portion of the volume changes caused
382 by the applied temperature variations is released in the vertical direction. This phenomenon leads to
383 increased particle vertical translations in response to temperature variations and thermally induced vertical
384 strains that are larger than those associated with the theoretical linear thermal expansion.

385 The thermoelastic displacements calculated through volume statistics by equation (1) show a
386 consistent pink slope across the height, as well as comparable pink slopes upon heating and cooling. The
387 trend of these thermoelastic displacements from equation (1) aligns closely with those derived from the
388 volumetric thermal expansion coefficient of the particles (equation (2)). These comparisons validate the
389 results obtained through particle volume statistics and the effectiveness of temperature control. However,
390 some discrepancies between these results are noticed, which is likely due to limitations in the stitching of
391 the images, as well as the spatial and temporal non-uniformity of the imposed temperature variations. For
392 example, in the upper section of the samples, the thermoelastic displacements deriving from the volume
393 statistics (pink) exhibit a slightly larger slope along the sample height compared to the lower sections. This
394 is likely because temperature variations in the upper particles exceed 100 °C. The calibrated sample
395 temperature primarily reflects the temperature of lower particles, whereas the temperature of upper particles
396 in closer proximity to the heater is expected to be slightly higher.

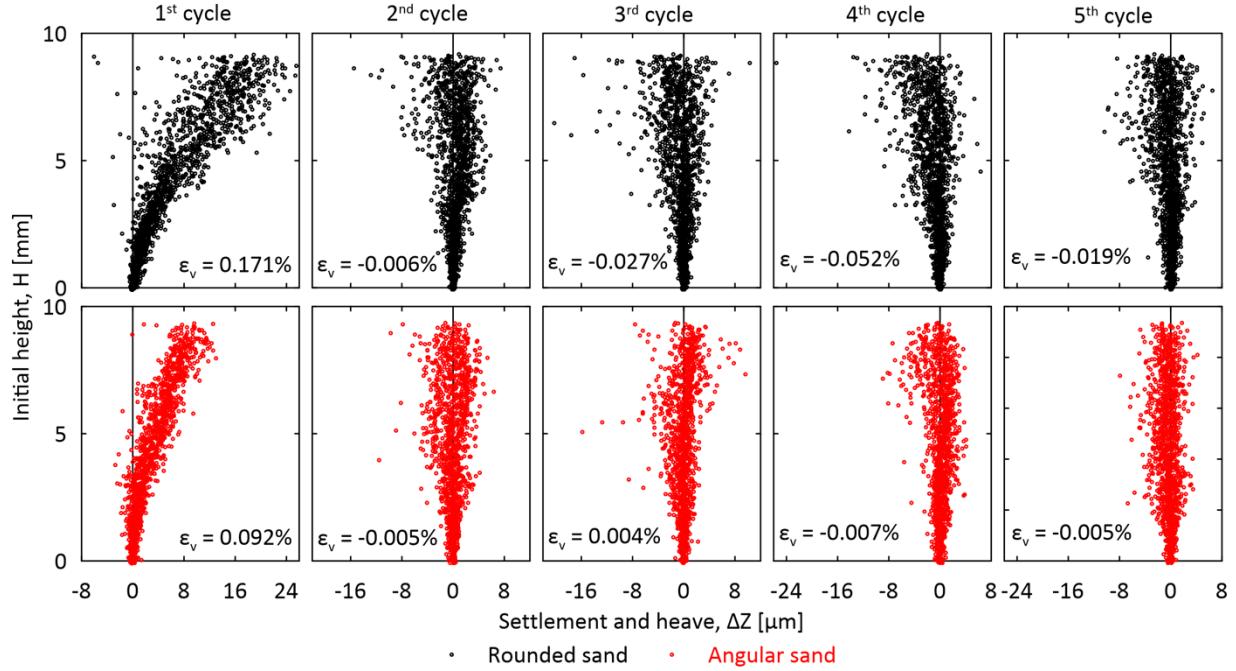
397

399 **Figure 7: Particle vertical translations against the initial height and temperature variation field upon**
400 **first cycle of heating and cooling.** Qualitative temperature variation fields based on measured thermal
401 expansion/contraction of individual particles (i.e., volume variation percentage $\Delta V_s^m / V_{s,i}^m$ where V_s^m
402 represents solid volume in CT images) are visualized by rendering with colormap. The colors of particles
403 around image stitches are corrected by averaging and rescaling colors of neighbor particles. Each black or
404 red dot represents the vertical translation ΔZ of one particle at its height H . Pink dots are related to the
405 displacement distribution inferred from the measured thermal expansion/contraction of the sum of particle
406 volumes below a given height. Gray lines represent the displacement distribution of the theoretical
407 volumetric thermal expansion/contraction ($\Delta T = \pm 100$ °C) of alpha quartz across the sample height H ,
408 considering zero lateral strains. Blue lines represent the displacement distribution of the theoretical linear
409 thermal expansion/contraction ($\Delta T = \pm 100$ °C) of alpha quartz across the sample height H . The shifts de-
410 emphasized by semi-transparent dots at $H \approx 3$ and 6 mm are associated with image stitching artifacts. (a)
411 Rounded sand upon heating. (b) Rounded sand upon cooling. (c) Angular sand upon heating. (d) Angular
412 sand upon cooling.

413

414 3.2 Behavior upon multiple cycles of heating and cooling

415 Figure 8 shows the particle translations upon the completion of each thermal cycle (no image stitching
416 artifacts are present because the images were consistently taken at the same temperature). In general, the
417 samples experience a net irreversible settlement of their particles upon the completion of each thermal cycle,
418 which corresponds to a bulk macroscopic volumetric contraction of the material. The observed non-

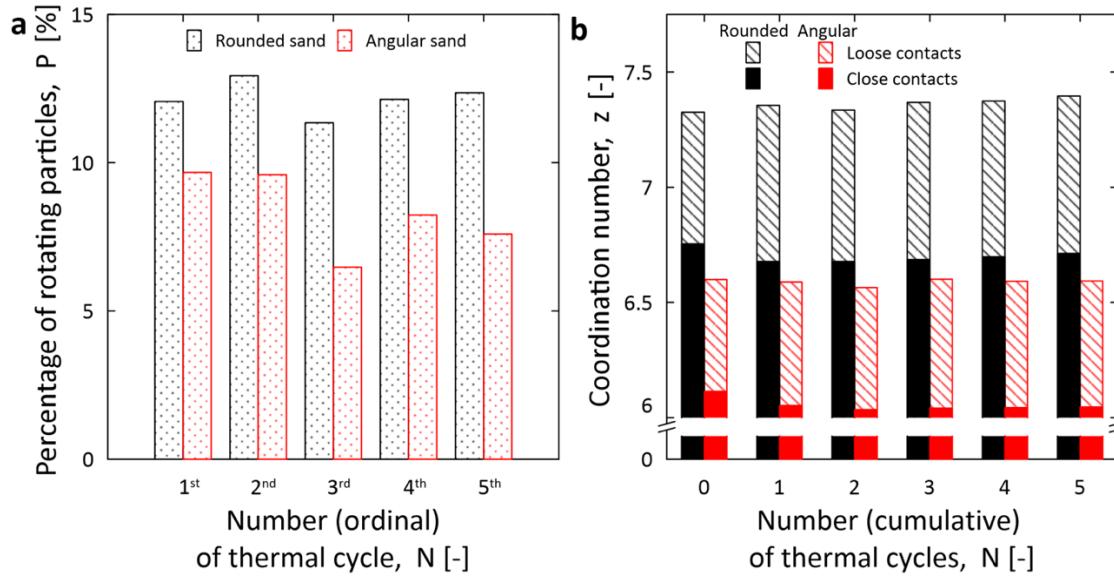

419 uniformity in particle vertical translations, suggesting an irreversible sliding between the particles, seems
420 to contribute to a generally negative translation slope across the sample height after each thermal cycle.
421 This negative translation slope corresponds to a volumetric contractive strain in the material.

422 This evidence is consistent with recent experimental observations reported for sands subjected to
423 thermal cycles in an oedometer apparatus [31], which report irreversible volumetric contractions due to
424 thermal cycling. However, in contrast to these observations, the results obtained in the present work
425 highlight an irreversible volumetric expansion of the samples after the first cycle. Notably, a similar
426 transitional behavior was also reported in previous numerical simulations [24], with granular materials
427 subjected to thermal cycling that initially exhibited residual macroscopic expansions followed by residual
428 volumetric contractions in subsequent cycles. The net residual heave of granular particles upon the
429 completion of the first thermal cycle in Figure 8 directly results from smaller downward particle translations
430 upon cooling compared to the upward translations observed upon heating during the first cycle (see Figure
431 7). This evidence is unlikely due to an incomplete cooling of the tested granular materials, because the
432 comparable pink slopes upon heating and cooling in Figure 7 indicate comparable thermal expansion and
433 contraction of the measured particle volumes, as well as a coherent temperature profile before and after the
434 first thermal cycle.

435 Overall, sands with rounded particles exhibit larger volumetric deformations compared to sands
436 with angular particles upon the successive application of thermal cycles, confirming that particle shape
437 strongly influence the constraints that characterize any granular packing. This response is in agreement with
438 recent experimental findings on sands subjected to thermal cycles in an oedometer apparatus, which also
439 noted that irreversible deformations caused by thermal cycling decrease with an higher applied stress level
440 and the initial relative density [31]. However, this behavior contrasts with the response of sands under
441 compressive stresses, where sands with more angular particles are known to be more porous and hence
442 deformable (at a given relative density) compared to sands with more rounded particles [48]. The different
443 role of particle shape in the deformation of granular materials subjected to temperature variations and
444 external stresses is attributed to the distinct mechanisms involved, resulting from imposed deformations
445 and forces, respectively.

446

447


448

449 **Figure 8: Particle vertical translations upon each thermal cycle.** Each black or red dot represents the
450 volumetric strains ε_v are calculated by dividing the
451 average vertical displacement of top layer particles by their average initial height.

452

453 Figure 9 illustrates the effects of thermal cycling on particle rotations and contact variations in granular
454 materials. Overall, particle rotations and contact variations are more pronounced in granular materials with
455 rounded particles compared to angular particles. The percentage of rounded particles that rotate upon each
456 thermal cycle ranges from 11% to 13% (Figure 9(a)), whereas the percentage of angular particles that rotate
457 upon each thermal cycle ranges from 6% to 10% ($\Delta\theta > 0.5^\circ$, $\Delta\varphi > 0.1^\circ$). When considering the variations
458 in coordination numbers along with the number of applied thermal cycles (Figure 9(b)), the results indicate
459 that, on average, each rounded particle is initially in contact with approximately 7.3 neighbor particles,
460 while each angular particle is in contact with approximately 6.6 neighbor particles. This finding is consistent
461 with the lower porosity and more regular surfaces of rounded particles. The results suggest that the total
462 particle contacts increase cycle after cycle in sand with rounded particles, whereas the contacts among
463 angular particles remain relatively constant over the considered number of cycles. The first thermal cycle
464 appears to yield a loss of some close contacts for both sands (as seen in the initial irreversible expansion in
465 Figure 8), followed by a gradual increase of close contacts in subsequent cycles.

466

467

468 **Figure 9: Particle rotations and contact variations induced by thermal cycling.** (a) Percentages of
469 rotations of each particle is detected by checking
470 4 angles in total including the polar angle θ and azimuthal angle φ of both particle length and width. Each
471 data represents the change during each cycle. (b) Coordination number z along with the number of applied
472 thermal cycles determined by voxel window searching. Close contacts are searched by a voxel window
473 with a cubic size of 3. Loose contacts are searched by a voxel window with a cubic size of 6. Each data
474 represents the current state in each image scan.

475

476 4. Closure

477 This paper provided unprecedented experimental evidence about the microscopic phenomena that govern
478 the macroscopic deformations of granular materials subjected to cyclic temperature variations. This study
479 specifically analyzed dry silica sands with different particle shapes, leveraging tomography experiments
480 with ultra-bright, high-energy X-ray beams, and image analyses.

481 The results substantiate that the macroscopic deformations of granular materials subjected to
482 temperature variations are driven by microscopic particle rearrangements, which originate from thermally
483 induced particle deformations. These particle rearrangements encompass non-uniform particle translations
484 (indicating relative sliding), rotations, and contact variations. They involve a volumetric expansion of
485 granular materials upon heating and a volumetric contraction upon cooling, leading to irreversible
486 macroscopic deformations upon successive thermal cycles.

487 The findings indicate that particle shape fundamentally influences the microscopic particle
488 interactions in granular materials upon thermal cycling. Granular materials with angular particles undergo

489 less significant particle translations, rotations, and contact variations for any applied temperature variations
490 compared to materials with rounded particles. Additionally, the particle vertical translations observed in
491 granular materials with angular particles tend to be more uniform compared to those in materials with
492 rounded particles. This is primarily due to the larger interlocking and inherent constraint characteristic of
493 angular particle materials compared to rounded particle materials. Specifically, this evidence arises from
494 the lesser friction and rolling resistance of rounded particles, which possess smoother surfaces, higher
495 sphericity, and greater roundness compared to angular particles.

496 Taken together, the results of this study offer previously unavailable experimental evidence
497 regarding the microscopic origins of thermally induced deformations in granular materials. Consequently,
498 this study represents an advancement in understanding the mechanics of granular materials under non-
499 isothermal conditions – a topic of central importance in the context of various problems in science,
500 engineering, and technology.

501

502 **Declarations**

503 **Competing interest**

504 The authors have no competing interests to declare that are relevant to the content of this article.

505

506 **Authors contributions**

507 YP performed and analyzed the experiments, created the figures, and wrote the manuscript. DS provided
508 technical support for the image analyses and revised the manuscript. MR built the experimental setup,
509 provided technical support at the beamline facility, and revised the manuscript. XG performed some of the
510 experiments. GB provided the tools to perform the image analyses, contributed to the interpretation of the
511 results, and revised the manuscript. AFRL conceptually developed and supported the research and wrote
512 and revised the manuscript.

513

514 **Data availability**

515 Correspondence and requests for materials should be addressed to AFRL. Processed data available on
516 request from AFRL.

517

518 **Acknowledgments**

519 This research was partly supported by the United States Army Research Office (project grant
520 W911NF2110059) and the United States National Science Foundation (project grant No. 2046586). This
521 research used resources of the Advanced Photon Source, a U.S. Department of Energy (DOE) Office of
522 Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under
523 Contract No. DE-AC02-06CH11357. We acknowledge the support of GeoSoilEnviroCARS (The
524 University of Chicago, Sector 13), Advanced Photon Source (APS), Argonne National Laboratory.
525 GeoSoilEnviroCARS is supported by the National Science Foundation – Earth Sciences (EAR – 1634415).

526

527 **References**

- 528 1. Corwin, E.I., Jaeger, H.M., Nagel, S.R.: Structural signature of jamming in granular media. *Nature*. 435, 529 1075–1078 (2005)
- 530 2. Kou, B., Cao, Y., Li, J., Xia, C., Li, Z., Dong, H., Zhang, A., Zhang, J., Kob, W., Wang, Y.: Granular 531 materials flow like complex fluids. *Nature*. 551, 360–363 (2017)
- 532 3. Deal, E., Venditti, J.G., Benavides, S.J., Bradley, R., Zhang, Q., Kamrin, K., Perron, J.T.: Grain shape 533 effects in bed load sediment transport. *Nature*. 613, 298–302 (2023). <https://doi.org/10.1038/s41586-022-05564-6>
- 535 4. Jaeger, H.M., Shinbrot, T., Umbanhowar, P.B.: Does the granular matter? *Proceedings of the National 536 Academy of Sciences*. 97, 12959–12960 (2000). <https://doi.org/10.1073/pnas.230395897>
- 537 5. Kawamoto, R., Andò, E., Viggiani, G., Andrade, J.E.: All you need is shape: Predicting shear banding 538 in sand with LS-DEM. *Journal of the Mechanics and Physics of Solids*. 111, 375–392 (2018). 539 <https://doi.org/10.1016/j.jmps.2017.10.003>
- 540 6. Seo, D., Sohn, C., Cil, M.B., Buscarnera, G.: Evolution of particle morphology and mode of fracture 541 during the oedometric compression of sand. *Géotechnique*. 71, 853–865 (2021). 542 <https://doi.org/10.1680/jgeot.18.P.300>
- 543 7. Yan, W.M., Dong, J.: Effect of Particle Grading on the Response of an Idealized Granular Assemblage. 544 *International Journal of Geomechanics*. 11, 276–285 (2011). 545 [https://doi.org/10.1061/\(ASCE\)GM.1943-5622.0000085](https://doi.org/10.1061/(ASCE)GM.1943-5622.0000085)
- 546 8. Kosar, K.M.: The effect of heated foundations on oil sand, (1983)
- 547 9. Manbeck, H.B.: Predicting thermally induced pressures in grain bins. *Transactions of the ASAE*. 27, 548 482–0486 (1984)
- 549 10. Agar, J.G., Morgenstern, N.R., Scott, J.D.: Thermal-expansion and pore pressure generation in oil 550 sands. *Can. Geotech. J.* 23, 327–333 (1986)
- 551 11. Chen, K., Cole, J., Conger, C., Draskovic, J., Lohr, M., Klein, K., Scheidemantel, T., Schiffer, P.: 552 Granular materials: Packing grains by thermal cycling. *Nature*. 442, 257 (2006)
- 553 12. Vargas, W.L., McCarthy, J.J.: Thermal expansion effects and heat conduction in granular materials. 554 *Physical Review E*. 76, 041301 (2007)
- 555 13. Divoux, T., Gayvallet, H., Géminard, J.-C.: Creep Motion of a Granular Pile Induced by Thermal 556 Cycling. *Phys. Rev. Lett.* 101, 148303 (2008). <https://doi.org/10.1103/PhysRevLett.101.148303>

557 14. Dreissigacker, V., Müller-Steinhagen, H., Zunft, S.: Thermo-mechanical analysis of packed beds for
558 large-scale storage of high temperature heat. *Heat and Mass Transfer*. 46, 1199–1207 (2010).
559 <https://doi.org/10.1007/s00231-010-0684-5>

560 15. Dreißigacker, V., Zunft, S., Müller-Steinhagen, H.: A thermo-mechanical model of packed-bed
561 storage and experimental validation. *Applied Energy*. 111, 1120–1125 (2013).
562 <https://doi.org/10.1016/j.apenergy.2013.03.067>

563 16. Percier, B., Divoux, T., Taberlet, N.: Insights on the local dynamics induced by thermal cycling in
564 granular matter. *EPL (Europhysics Letters)*. 104, 24001 (2013). <https://doi.org/10.1209/0295-5075/104/24001>

566 17. Zhao, S., Evans, T.M., Zhou, X., Zhou, S.: Discrete element method investigation on thermally-
567 induced shakedown of granular materials. *Granular Matter*. 19, (2016).
568 <https://doi.org/10.1007/s10035-016-0690-5>

569 18. Ng, C.W.W., Wang, S.H., Zhou, C.: Volume change behaviour of saturated sand under thermal cycles.
570 *Géotechnique Letters*. 6, 124–131 (2016)

571 19. McCartney, J.S., Xiao, Y., Liu, H., Liu, H.: Influence of temperature on the volume change behavior
572 of saturated sand. *Geotechnical Testing Journal*. 41, (2018)

573 20. Sassine, N., Donzé, F.-V., Harthong, B., Bruch, A.: Thermal stress numerical study in granular packed
574 bed storage tank. *Granular Matter*. 20, 1–15 (2018)

575 21. Knödler, P.: Thermo-Mechanical Investigations of Packed Beds for High Temperature Heat Storage:
576 Uniaxial Compression Test Experiments and Particle Discrete Simulations. *Applied Sciences*. 9,
577 (2019). <https://doi.org/10.3390/app9081600>

578 22. Iliev, P.S., Giacomazzi, E., Wittel, F.K., Mendoza, M., Haselbacher, A., Herrmann, H.J.: Behavior of
579 confined granular beds under cyclic thermal loading. *Granular Matter*. 21, 59 (2019).
580 <https://doi.org/10.1007/s10035-019-0914-6>

581 23. Sittidumrong, J., Jotisankasa, A., Chantawarangul, K.: Effect of thermal cycles on volumetric
582 behaviour of Bangkok sand. *Geomechanics for Energy and the Environment*. 100127 (2019).
583 <https://doi.org/10.1016/j.gete.2019.100127>

584 24. Zhao, S., Zhao, J., Lai, Y.: Multiscale modeling of thermo-mechanical responses of granular materials:
585 A hierarchical continuum–discrete coupling approach. *Computer Methods in Applied Mechanics and*
586 *Engineering*. 367, 113100 (2020). <https://doi.org/10.1016/j.cma.2020.113100>

587 25. Mitterlehner, T., Kartnig, G., Haider, M.: Analysis of the thermal ratcheting phenomenon in packed-
588 bed thermal energy storage using discrete element method. *FME Transactions*. 48, 427–431 (2020)

589 26. Pan, Y., Coulibaly, J.B., Rotta Loria, A.F.: Thermally induced deformation of coarse-grained soils
590 under nearly zero vertical stress. *Géotechnique Letters*. 10, 486–491 (2020).
591 <https://doi.org/10.1680/jgele.20.00013>

592 27. Coulibaly, J.B., Shah, M., Rotta Loria, A.F.: Thermal cycling effects on the structure and physical
593 properties of granular materials. *Granular Matter*. 22, 80 (2020). <https://doi.org/10.1007/s10035-020-01054-6>

595 28. He, S.-H., Shan, H.-F., Xia, T.-D., Liu, Z.-J., Ding, Z., Xia, F.: The effect of temperature on the
596 drained shear behavior of calcareous sand. *Acta Geotech.* 16, 613–633 (2021).
597 <https://doi.org/10.1007/s11440-020-01030-7>

598 29. Coulibaly, J.B., Rotta Loria, A.F.: Transient dynamics of the thermally induced deformation of sands.
599 *International Journal for Numerical and Analytical Methods in Geomechanics*. 46, 1972–1988 (2022)

600 30. Pan, Y., Coulibaly, J.B., Rotta Loria, A.F.: An experimental investigation challenging the thermal
601 collapse of sand. *Géotechnique*. 1–27 (2022)

602 31. Pan, Y., Gong, X., Rotta Loria, A.F.: Thermal shakedown in granular materials with irregular particle
603 shapes. *Scientific Reports*. 14, 6828 (2024). <https://doi.org/10.1038/s41598-024-57503-2>

604 32. Agar, J.G.: Geotechnical behaviour of oil sands at elevated temperatures and pressures, (1984)

605 33. Laloui, L., Rotta Loria, A.F.: Analysis and Design of Energy Geostructures: Theoretical Essentials
606 and Practical Application. Academic Press (2019)

607 34. Carson, J.W.: Silo failures: Case histories and lessons learned. *Handbook of Powder Technology*. 10,
608 153–166 (2001)

609 35. Dogangun, A., Karaca, Z., Durmus, A., Sezen, H.: Cause of Damage and Failures in Silo Structures.
610 *Journal of Performance of Constructed Facilities*. 23, 65–71 (2009).
611 [https://doi.org/10.1061/\(ASCE\)0887-3828\(2009\)23:2\(65\)](https://doi.org/10.1061/(ASCE)0887-3828(2009)23:2(65))

612 36. Slotterback, S., Toiya, M., Goff, L., Douglas, J.F., Losert, W.: Correlation between Particle Motion
613 and Voronoi-Cell-Shape Fluctuations during the Compaction of Granular Matter. *Phys. Rev. Lett.*
614 101, 258001 (2008). <https://doi.org/10.1103/PhysRevLett.101.258001>

615 37. Alonso-Marroquín, F., Herrmann, H.J.: Ratcheting of Granular Materials. *Phys. Rev. Lett.* 92, 054301
616 (2004). <https://doi.org/10.1103/PhysRevLett.92.054301>

617 38. García-Rojo, R., Herrmann, H.J.: Shakedown of unbound granular material. *Granular Matter*. 7, 109–
618 118 (2005). <https://doi.org/10.1007/s10035-004-0186-6>

619 39. McNamara, S., García-Rojo, R., Herrmann, H.J.: Microscopic origin of granular ratcheting. *Phys.*
620 *Rev. E*. 77, 031304 (2008). <https://doi.org/10.1103/PhysRevE.77.031304>

621 40. Cuéllar, P., Baeßler, M., Rücker, W.: Ratcheting convective cells of sand grains around offshore piles
622 under cyclic lateral loads. *Granular Matter*. 11, 379 (2009). <https://doi.org/10.1007/s10035-009-0153-3>

624 41. Park, J., Santamarina, J.C.: Sand response to a large number of loading cycles under zero-lateral-
625 strain conditions: evolution of void ratio and small-strain stiffness. *Géotechnique*. 69, 501–513 (2019)

626 42. Rivers, M.L.: tomoRecon: High-speed tomography reconstruction on workstations using multi-
627 threading. In: *Developments in X-Ray Tomography VIII*. p. 85060U. International Society for Optics
628 and Photonics (2012)

629 43. Rivers, M.L.: High-speed tomography using pink beam at GeoSoilEnviroCARS. Presented at the
630 *Proc.SPIE* (2016)

631 44. Pan, Y., Seo, D., Rivers, M., Buscarnera, G., Rotta Loria, A.F.: Computed Tomography of Sand
632 Subjected to Heating: Analysis of Particle Displacements. 435–444 (2023).
633 <https://doi.org/10.1061/9780784484678.044>

634 45. Vaid, Y.P., Negussey, D.: Preparation of Reconstituted Sand Specimens. *Advanced Triaxial Testing*
635 of Soil and Rock. (1988). <https://doi.org/10.1520/STP29090S>

636 46. Coulibaly, J.B., Rotta Loria, A.F.: Thermally induced deformation of soils: A critical revision and
637 update of experimental analyses. *Geotechnical Testing Journal*. under review, (2023)

638 47. Kosinski, J.A., Gualtieri, J.G., Ballato, A.: Thermal expansion of alpha quartz. In: *Proceedings of the*
639 *45th Annual Symposium on Frequency Control 1991*. pp. 22–28. IEEE, Los Angeles, CA, USA (1991)

640 48. Cho, G.-C., Dodds, J., Santamarina, J.C.: Particle Shape Effects on Packing Density, Stiffness, and
641 Strength: Natural and Crushed Sands. *Journal of Geotechnical and Geoenvironmental Engineering*.
642 132, 591–602 (2006). [https://doi.org/10.1061/\(ASCE\)1090-0241\(2006\)132:5\(591\)](https://doi.org/10.1061/(ASCE)1090-0241(2006)132:5(591)

643

644