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PURPOSE. To use neural network machine learning (ML) models to identify the most rele-
vant ocular biomarkers for the diagnosis of primary open-angle glaucoma (POAG).

METHODS. Neural network models, also known as multi-layer perceptrons (MLPs),
were trained on a prospectively collected observational dataset comprised of 93 glau-
coma patients confirmed by a glaucoma specialist and 113 control subjects. The
base model used only intraocular pressure, blood pressure, heart rate, and visual
field (VF) parameters to diagnose glaucoma. The following models were given the
base parameters in addition to one of the following biomarkers: structural features
(optic nerve parameters, retinal nerve fiber layer [RNFL], ganglion cell complex [GCC]
and macular thickness), choroidal thickness, and RNFL and GCC thickness only, by
optical coherence tomography (OCT); and vascular features by OCT angiography
(OCTA).

RESULTS. MLPs of three different structures were evaluated with tenfold cross validation.
The testing area under the receiver operating characteristic curve (AUC) of the models
were compared with independent samples t-tests. The vascular and structural models
both had significantly higher accuracies than the base model, with the hemodynamic
AUC (0.819) insignificantly outperforming the structural set AUC (0.816). The GCC +
RNFL model and the model containing all structural and vascular features were also
significantly more accurate than the base model.

CONCLUSIONS. Neural network models indicate that OCTA optic nerve head vascular
biomarkers are equally useful for ML diagnosis of POAG when compared to OCT struc-
tural biomarker features alone.
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The mechanisms and specific risk factors causing primary
open-angle glaucoma (POAG) remain largely uniden-

tified despite the disease being one of the leading causes
of irreversible blindness worldwide.1,2 Historically, intraoc-
ular pressure (IOP) has been characterized as a leading
risk factor and therapeutic target, yet up to half of the
glaucomatous patients in the United States show disease
progression despite well-maintained IOP.3 Research has also
implicated advancing age, ocular vascular abnormalities,4–6

and genetics7 with the onset and progression of POAG.Glau-

coma affects individuals differently, suggesting subgroups of
patients exist where certain risk factors combine or are more
relevant than in others, and vice versa.8

State of the art glaucoma diagnosis is done through
assessment of structural damage to the retina and optic
nerve head (ONH) and visual field (VF) defects. Although
the definition of POAG often lacks consensus, damage to
the ONH, reduced retinal nerve fiber layer (RNFL) thick-
ness, and a decrease in the thickness of the macular ganglion
cell complex (GCC) are indicative of POAG. Diagnostically,
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assessment of RNFL thickness and visual inspection of the
ONH (i.e., for cupping measured by the cup-to-disk ratio)
accompanied by VF defects are considered the standard of
care for POAG.9 Because of the heterogeneity of POAG and
high variability in individual susceptibility, the biomarkers
that best predict glaucoma onset and progression for a given
individual or group have not been established. This complex
data challenge represents a significant barrier to providing
precision care for POAG patients.

Alongside elevated IOP, a variety of reported vascular
abnormalities have been associated with both the onset
and progression of POAG.4–6,10 Multiple imaging techniques
have identified microvascular defects in the retina, slower
choroidal flow, and vasospasm in the retrobulbar blood
vessels in POAG patients.5 Optical coherence tomography
angiography (OCTA) is a more widely available noninva-
sive imaging modality that has been used over the past
decade to characterize blood vessel densities (VD) and circu-
lation in the retina and ONH in patients with POAG.6,11

Yarmohammadi et al.12 compared POAG diagnosis using
OCT-derived RNFL thickness and OCTA-derived VD finding
that glaucomatous patients, glaucoma suspect, and controls
had significantly different VD and RNFL thickness with
both values decreased for glaucoma patients compared to
controls. Although OCTA-assessed VD loss has been linked
to both POAG disease and functional vision loss,6,12 they are
not included in most diagnostics or the current standard of
care. The complexity of incorporating OCTA VD and other
hemodynamic biomarkers together with IOP, and ONH and
RNFL structure in a statistical model limits their translation
and potential impact to inform on POAG.

In the last decade there have been numerous attempts
to augment glaucoma diagnosis using artificial intelligence
(AI).13 AI techniques have compared multiple kinds of
machine learning (ML) algorithms,14 and either feed reti-
nal images directly15–20 or as a set of features based on
algorithmic feature extraction.21–23 Often these techniques
compare diagnostic accuracy between different ML algo-
rithms13 or against human doctors.24 Medeiros et al.19 and
Burgansky-Eliash et al.20 both used OCT images for ML-
aided glaucoma investigation. Medeiros et al.19 used convo-
lutional deep learning (DL) algorithms to quantify glauco-
matous damage on OCT images and compared with human
graders. Burgansky-Eliash et al.20 found that support vector
machines (SVMs) reached the highest diagnostic area under
the receiver operator characteristic curve (AUC) with OCT-
derived parameters and reported an AUC of 0.981. This
literature provides support that computer-aided diagnosis
(CAD) for glaucoma diagnosis using OCT images provides
promising results.20 Another recent study by Mariottoni et
al.21 used DL to assess more than 14,000 spectral-domain
(SD) OCT-derived RNFL thickness measurements to develop
a model that can determine the probability of structural
progression in 816 glaucomatous eyes of 462 individuals.
After analysis their DL model boasted an AUC of 0.938
(95% confidence interval [CI], 0.921-0.955), not only outper-
forming conventional trend-based analyses of progression
but also indicating the most likely areas of the ONH to
experience progression. These results indicate that DL in
conjunction with OCT may prove to be a useful tool for clin-
icians when assessing the probability and location of POAG
progression.

Based on the literature results neural network-based algo-
rithms (e.g., deep learning, convolutional neural networks,
multilayer perceptrons (MLPs) and SVMs have been empir-

ically determined to be the most successful to date for
glaucoma diagnostics.13,14,20,21 MLPs allow for the ability to
change the model complexity easily, in an effort to avoid
overfitting when using feature vectors of various sizes. SVMs
also require a choice of kernel function for transforming
the data, and choice of kernel function can greatly change
the results of the model. MLPs do not use a kernel, instead
MLP parameters include their structure, initialization strat-
egy, and activation function. Thus, multiple structures of
MLPs were used in this study to compare performance across
feature sets with inputs of different dimensionality. Further,
the accuracy of these models is similar if not slightly better
than the performance of human graders on the same task.23

Despite these results, the decision-making process used
by neural networks are not interpretable, a problem often
referred to as “black box models” and can vary across stud-
ies, which currently limits the clinical application of these
systems.

Diagnosis of POAG is complex and lacks a gold standard,
especially in the earliest stages of the disease. To identify the
clinical biomarkers that may be the most salient, a series of
ML models should be trained to assess AI or CAD accuracy.
The reasoning behind this approach is that a model that
diagnoses glaucoma with only one feature (i.e., IOP) is very
likely to do worse than a model that includes IOP along-
side average RNFL thickness. RNFL thickness is commonly
used for glaucoma diagnosis in practice, providing more
glaucoma-related information than the feature of IOP alone.
Thus the feature set that produces the highest diagnostic
accuracy likely contains the most clinically relevant infor-
mation that can be exploited by a CAD system. This method
reflects that in Burgansky-Eliash et al.20 where the top eight
training features that correlated with the ML model accuracy
were identified, and a CAD system was trained using only
these. Conversely, our approach segments the biomarkers
by the kind of information (e.g., structural or hemodynamic,
etc.), and both methods aim to identify the top-performing
biomarkers for AI diagnosis.

The purpose of the present study was to compare the
diagnostic accuracy of MLP algorithms for diagnosing POAG
given different features calculated from clinical ophthalmic
data and OCTA biomarkers. We compare different feature
sets on the same type of ML model to examine how useful a
given feature set may be for diagnosis, relative to the other
feature sets. The results provide information on the useful-
ness of OCTA vascular features for AI-assisted diagnosis, as
well as a comparison of sets of features that best inform for
POAG diagnosis.

MATERIAL AND METHODS

Participants and Examination

This study considers a prospectively collected observational
dataset comprised of 144 POAG patient eyes and 149 non-
glaucomatous controls without eye disease. Enrolled partic-
ipants were required to be at least 21 years of age, signed
an informed consent, and all methods adhered to the tenets
of the Declaration of Helsinki and the policies and regula-
tions of the Institutional Review Board at the Icahn School
of Medicine at Mount Sinai. A certified glaucoma special-
ist determined POAG status considering the presence of an
open angle and classical glaucomatous structural damage at
the level of the ONH and RNFL thickness, and functional VF
defects, regardless the level of IOP. The non-glaucomatous
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control eyes consisted of participants with both eyes being
free of any eye diseases including POAG. Exclusion crite-
ria included the following: refractive error >9 Diopters and
<−9 D in spherical equivalent; evidence of exfoliation or
pigment dispersion; eye disease other than glaucoma; use
of ocular medications (other than IOP-lowering medications
for glaucoma or eye lubricants for dry eye); neurological
disease; psychosis or other diseases that could prevent reli-
able eye examinations; severe, as well as unstable or uncon-
trolled cardiovascular, renal, or pulmonary disease.

All study subjects underwent a complete eye examination
by a glaucoma specialist including history, visual acuity test-
ing, refraction, slit-lamp biomicroscopy, gonioscopy, ultra-
sonic pachymetry, and dilated ophthalmoscopy. Heart rate
(HR), systolic blood pressure (SBP), and diastolic blood pres-
sure (DBP) were assessed with automated ambulatory cuff
after five minutes rest. IOP was assessed with Goldmann
applanation tonometry. All study subjects also had stereo
disc photography (Visucam Pro NM; Carl Zeiss Meditec, Inc.,
Jena, Germany) and VF testing (Swedish Interactive Thresh-
old Algorithm 24–2 test of the Humphrey VF analyzer 750i;
Carl Zeiss Meditec, Inc.).

OCTA imaging was assessed in all study eyes (RTVue XR,
Version 2018.1.1.63; Optovue Inc, Fremont, CA, USA) provid-
ing three-dimensional visualization of the retinal microvas-
culature and OCT-derived structural parameters at the level
of the ONH. AngioAnalytics licensed upgrade was used to
provide separate VD analysis computed as percentage of
area occupied by OCTA detected vasculature at the level of
the macula and ONH. VD was assessed for the small vessels
(SV, i.e., with large vessel masking: large vessel mask had a
threshold of ≥3 pixels [approximately ≥33 μm]) and for all
vessels with the 4.5 mm HD Angio Disc scan in the radial
peripapillary capillary slab ranging from the internal limiting
membrane to the nerve fiber layer. Further details of OCTA
are available elsewhere.5,6

Dataset Processing

The dataset was filtered for missing responses and split
into training and testing sets individually for each training
instance, which was done 10 distinct times for each model
(part of tenfold cross-validation). The total had 193 eyes,
but subjects were filtered out for missing responses, less
than 33% VF fixation losses, less than 20% false-positive,
and less than 20% false-negative responses during the VF
examination, leading to 93 POAG and 113 non-glaucomatous
control eyes. The VF, structural, and hemodynamic parame-
ters included are listed in Table 1.

Feature Sets

In our analysis we divided the dataset into eight differ-
ent subsets termed “feature sets” because they were orga-
nized based on biometric features. The subsets include a
base feature set containing IOP, HR, SBP, DBP, and VF
parameters (Table 1).8 All of the following feature sets
include the base parameters: a choroidal thickness feature
set, an OCT-derived structural biomarker feature set, and an
OCTA-derived hemodynamic feature set. Additionally, there
were two other feature sets used for comparison: one that
combined OCT and OCTA features and a set that included
RNFL and GCC only, because these are the gold standard
for diagnosis in addition to VF information.5 The specific
features included in the base, structural, and hemodynamic

TABLE 1. The Features Included in Each Feature Set

VF parameters from SAP
VF index (%)
VF mean deviation
VF pattern standard deviation
Fixation loss (%)
False positives (%)
False negatives (%)

Optic nerve head hemodynamic parameters
RPC VD whole image SV
RPC VD inside disc SV
RPC VD peripapillary global SV
RPC VD peripapillary superior hemisphere SV
RPC VD peripapillary inferior hemisphere SV
RPC VD whole image ALL
RPC VD inside disc ALL
RPC VD peripapillary global ALL
RPC VD peripapillary superior hemisphere ALL
RPC VD peripapillary inferior hemisphere ALL
RPC VD peripapillary superior nasal sector SV
RPC VD peripapillary nasal superior sector SV
RPC VD peripapillary nasal inferior sector SV
RPC VD peripapillary inferior nasal sector SV
RPC VD peripapillary inferior temporal sector SV
RPC VD peripapillary temporal inferior sector SV
RPC VD peripapillary temporal superior sector SV
RPC VD peripapillary superior temporal sector SV

Macular and optic nerve head structural parameters
Fovea thickness
Parafovea thickness
Perifovea thickness
Average GCC thickness
Average RNFL thickness
Cup/Disc vertical ratio
Rim area
Disc area
Cup volume

ALL, all vessels; RPC, radial peripapillary capillary; SAP, standard
automated perimetry.

The features included in the VF column are part of the base
parameters and were included in each model along with intraocu-
lar pressure, systolic blood pressure, and diastolic blood pressure.
The vessel density (VD%) is the percentage of area occupied by
OCTA detected vasculature in the RPC slab in three regions: peri-
papillary region (defined by two rings of 2 mm and 4 mm centered
on disc center), inside the optic disc (“inside disc”), and entire region
(“whole image”).

OCTA-derived feature sets are listed in Table 1, and the
feature subsets are listed in Table 2.

Models

MLPs of three sizes were used on each feature set. This
allowed accurate comparison of each feature set despite
the different number of features, as larger models would be
more appropriate for larger feature sets but would be likely
to overfit smaller feature sets. Using three models of differ-
ent sizes offset overfitting and obtained an average AUC. The
three MLPs differed in the number of nodes located within
the hidden layers. All models had two hidden layers with
the following sizes: 5 nodes × 3 nodes, 10 nodes × 3 nodes,
and 20 nodes × 10 nodes (Figure), and all the hidden layers
used ReLU activation functions. The amount of input nodes
is equal to the amount of input features, and the output was
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TABLE 2. The Test AUC From Each Model, Obtained From Tenfold Cross-Validation (SD)

Feature Set 5 × 3 10 × 3 20 × 10
Number

Parameters
Mean
AUC

P Value
From Base

P Value From
Structural

Base 0.656 (0.064) 0.691 (0.054) 0.666 (0.094) 10 0.671 — 8.10E-06
Choroidal thickness 0.716 (0.048) 0.681 (0.082) 0.665 (0.0698) 11 0.687 0.311 3.48E-05
Structural* 0.797 (0.046) 0.815 (0.053) 0.835 (0.045) 19 0.816 8.10E-06 —
Hemodynamic* 0.801 (0.057) 0.832 (0.063) 0.823 (0.045) 28 0.819 7.82E-05 0.896
Average RNFL + Average GCC* 0.787 (0.058) 0.759 (0.069) 0.748 (0.049) 12 0.764 0.0021 0.0622
Structural + Hemodynamic* 0.801 (0.047) 0.794 (0.044) 0.830 (0.044) 37 0.808 1.81E-05 0.831

Significant differences between models were calculated with the size of model that had the highest testing AUC.
* Significantly more accurate than Base Model, P < 0.01.

FIGURE. Example of neural network models depicted visually: diagram demonstrating the difference between a 5 nodes × 3 nodes MLP
and a 10 nodes × 3 nodes MLP. All models were fully connected neural networks with one input layer, two hidden layers, and one output
layer. The number of nodes in the input layer varied with each feature set. The hidden layers included 10 nodes then three nodes, 20 nodes
then 10 nodes, and five nodes then three nodes. All models had a single output node that included a sigmoid activation to approximate
probability of POAG diagnosis. Images generated using NN-SVG.24

always the predicted probability of POAG diagnosis (prob-
ability over 0.5 indicated a positive diagnosis) and used a
sigmoid activation function. The loss function used for train-
ing was Mean Squared Error and the Adam Optimizer was
used.

AI Analysis

AI analysis was performed using python with Pytorch
version 2.1.0. The input data for each model was scaled
between 0 and 1 using the Scitkit-Learn standard scaler,
which transforms the data using z-score normalization to
have a 0 mean and unit variance. Each model was trained
and evaluated using tenfold cross validation, which includes
splitting the dataset into a training and testing set 10 distinct
times to avoid models that exploit statistical trends in the
dataset that may not be representative of the real world.
Model AUC was assessed by converting the model output
into a binary (yes or no) decision. If the model output was
equal to or above 0.5, the answer was converted into a 1
(glaucoma positive), and if it was less than 0.5 the diagnosis
was 0, or non-glaucomatous. P values were determined by
calculating an independent samples t-test using the distri-
bution of accuracies generated by evaluating each model 10
times as a part of tenfold cross-validation. Significance refers
to P values less than 0.01. AUC was calculated using the sci-
kit learn package.

RESULTS

After filtering for missing values, 206 eyes were used, 113
without glaucoma and 93 with. Individual measurements
were divided into corresponding feature sets (Table 1),
and each set of measurements were further divided into
a training and test set. Model accuracies were obtained
with tenfold cross validation. The following accuracies are
reported in Table 2 with standard deviation obtained over
the 10 different trials. The average AUC was assessed by
averaging across the different model sizes, which measured
the AUC obtained by a given feature set regardless of the
model size.

The base feature set reached an average AUC of 0.671.
This was the lowest AUC, with only slight improvements
achieved with the choroid thickness features which averaged
0.687. The structural set (OCT) reached an AUC of 0.816, the
RNFL + GCC only reached 0.764, the hemodynamic (OCTA)
set 0.819, the OCTA + OCT 0.809 (Table 2). The Hemody-
namic and Structural set had the most features (37); however,
the RNFL + GCC set (five features including the IOP, SBP,
and DBP) performed comparatively well, indicating that the
high diagnostic accuracy was not solely produced through
the large number of features.

Statistical significance calculations were also made
comparing the model performances with the structural
model. The models that performed insignificantly different
include the hemodynamic features, RNFL + GCC only, and
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the Hemodynamic + Structural. These results indicate that
these features worked equally well for training POAG diag-
nostic AI systems.

DISCUSSION

The multifactorial nature of POAG necessitates discovery
of novel biomarkers and enhanced analysis approaches to
improve disease diagnosis and allow tailored therapeutic
interventions. Among non-IOP factors, vascular biomarkers
have been long implicated; however, their translation into
the standard of care remains elusive due to complex inter-
pretation and lack of longitudinal data on predictive utility.

In this AI analysis MLPs assessed the usefulness of differ-
ent OCT and OCTA biomarkers for assisting CAD. MLPs of
three different sizes were used to account for using inputs
that varied in number of features. The smallest feature set
contained 10 measurements (IOP + BP + HR + VF) as input
whereas the largest set contained 37 measurements as input
(Hemodynamic + Structural). The models’ AUC was assessed
using a test segment of the dataset that was not used for
training. Each model was trained 10 times with 10 different
test sets as a part of a tenfold cross-validation. MLPs were
used for every model.

Feature sets in our analysis included IOP + SBP + DBP +
HR + VF parameters. The base features combined with the
following measurements: structural features including ONH
parameters, RNFL and choroidal thickness (OCT-derived),
vascular features (OCTA-derived), and RNFL and GCC only.
In this analysis, hemodynamic features including OCTA-
assessed VD were significantly more accurate for diagnosis
than the base model and scored an AUC of 0.819 across the
different model sizes and trials. The hemodynamic features
had the highest average AUC yet were insignificantly differ-
ent from the structural OCT measurements, RNFL+GCC, and
the Hemodynamic + Structural features. This result implies
that OCTA hemodynamic measurements are as useful for
computer aided diagnosis as OCT eye-structure measure-
ments. The nature of the statistical relationship exploited
by the ML model is unclear, yet this result provides motiva-
tion for future studies to explore the statistical relationships
between OCTAmeasurements and glaucoma to uncover how
the MLPs were able to reach such a high accuracy. This result
supports non-machine learning work by Yarmohammadi et
al.,12 which found that OCTA measurements of VD had a
similar diagnostic accuracy for POAG as did measurements
of RNFL thickness.

The RNFL + GCC feature set, which received the base
parameters (IOP, SBP, DBP, HR, and VF parameters) with
RNFL and GCC had a significantly better accuracy than the
base model. This result suggests that RNFL and GCC are
useful predictors for POAG diagnosis, which is expected as
these structural biomarkers have been well implicated with
clinical diagnosis and are commonly relied upon in prac-
tice.5 Comparing diagnostic accuracy between ML models
with different input data suggests that RNFL and GCC results
are empirical findings for POAG diagnosis.

The hemodynamic feature set, the structural feature set,
the RNFL + GCC feature set, and the OCTA + OCT feature
set all scored accuracies that were significantly better than
the base model, and very similar among themselves. This
provides evidence that the obtained accuracies did not
differ merely because of the number of parameters fed
into the model. Even in randomly generated data there
exist statistically identifiable trends that machine learning

models can exploit. This paradox, known as Simpson’s
paradox, was avoided in this case by using tenfold cross-
validation, as well as comparing to the RNFL + GCC set,
which was much smaller than the OCTA structural set (which
includes RNFL and GCC among other parameters, total list
in Table 1), which are both smaller than the Hemody-
namic + Structural set. Despite vastly different numbers of
input parameters, there is no significant increase in perfor-
mance between these models. Additionally, the hemody-
namic model also had a very similar accuracy to these
two, indicating that the success of this model was not due
only to the use of more input parameters than the base
model.

In this analysis VF data assessed via standard automated
perimetry did not lead to models with a high diagnostic
AUC of POAG. This was likely due to our patient population
being early-stage glaucoma that were diagnosed using struc-
tural glaucomatous changes often occurring before signifi-
cant VF loss. This is an important finding because it shows
the efficacy of our method for diagnosing early POAG before
significant functional loss. As such, however, these findings
may not be applicable to advanced-stage POAG patients who
have significant VF defects. These results also serve as a limi-
tation to a MLP approach, which has no way to structure
the data and includes no assumptions about the parameters
included. It is possible that other ML approaches and larger
datasets may be capable of training models based upon early
VF changes.

MLPs are black box models (i.e., they do not provide
information about how they use the data for making a
diagnosis). Comparing performance across feature sets,
however, may be useful for identifying the diagnostic-
capability of different features. In this analysis it was a
critical assumption that the higher-performing feature sets
contained more information about POAG status. This study
therefore provides strong evidence that OCTA hemodynamic
measurements may enhance AI-driven diagnosis of POAG
and motivation for exploring OCTA data for clinical applica-
tions.

In our analysis, the AI models trained with OCTA
measurements performed similarly to models that used
OCT structural markers for diagnosis,20 and both performed
significantly better than the base model. The similarity of
success of the structural markers and the hemodynamic
models allows for speculation on whether these measure-
ments reflect the same process reported with different units
or whether these features show unique aspects of the disease
that are distinct and separate. Larger AI studies accessing
more data and features inclusive of outcomes over time
may reveal further detail of OCTA-assessed VD and its
predictability of disease progression.

Our analysis has several limitations. First, these results
are limited by the relatively small size of the dataset
and the black-box nature of MLPs. This limits ability to
understand if the results are due to a genuine disease
biomarker contained in the measurements, or a simple
statistic exploit that is not representative of real disease
status. Another limitation is that the ML models for this
sort of study are only tasked with diagnosing glaucoma
from all the information provided, thus the models them-
selves are unable to provide information regarding the
disease process itself. An improvement on this approach
could come from physiologically-informed models like that
in Guidoboni et al.8 The patients examined in this analy-
sis were also early-stage POAG without significant VF loss,
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and model results may not apply equally across all disease
stages.

Enhancing glaucoma diagnosis and therapeutic avenues
before or at disease onset is highly challenging because
of individual variance and the multifactorial nature of the
disease. In this novel AI ML analysis of VD and POAG
status, early-stage glaucomatous disease was predicted by
OCTA VD with equal or greater AUC to RNFL and GCC
endpoints. Our data suggests that predictability of POAG
disease based on baseline structure or function may be
enhanced with OCTA assessed of VD. These results further
indicate that OCTA VD biomarkers may be highly infor-
mative to clinicians at the earliest stages of the disease
before significant VF loss. Improvements to POAG diagnosis
using AI before or at disease initiation may allow for earlier
interventions and more tailored therapeutic approaches
to patient care. This analysis suggests longitudinal data
combined with MLP approaches that are inclusive of vascu-
lar biomarkers alongside IOP and ocular structure may
better inform on POAG, providing clinicians a more compre-
hensive and translatable method to enhance the standard
of care.
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