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Abstract—Less attention has been paid to the 

deceptive mechanisms of malware on smart devices. 
Smart device malware uses various techniques to conceal 
itself, e.g., hiding activity, muting the phone, and deleting 
call logs. In this work, we developed a novel approach to 
semi-automatically detect malware hiding behaviors. To 
more effectively and thoroughly detect malware hiding 
behaviors, our prototype checks multiple mediums, 
including vision, sound, vibration, phone calls, messages, 
and system logs. Our experiments show that the 
approach can detect malware hiding behaviors. The F-
measure is 87.7%, indicating that our approach is quite 
effective. 
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I. INTRODUCTION 
While smart devices bring new functions and 

possibilities to users, they also open up a Pandora’s 
Box of potential problems, from eavesdropping 
attacks to erasing all data on a storage device. Security 
research on smart devices mostly focuses on malware 
installation and activation, privilege escalation, remote 
control, financial charges, personal information 
stealing, and permission use. Less attention has been 
paid to the deceptive mechanisms, which are critical 
for the success of malware on smart devices. 
Generally, malware first gets installed and then 
continues operating on the device without attracting 
suspicion from users. To do so, smart device malware 
uses various techniques to conceal itself, e.g., hiding 
activity, muting the phone, and deleting call logs. 

We define the malware-hiding (MH) behavior 
as an action by which smart device malware can hide 
itself or its trail from being viewed (or heard!) by 
users. According to our preliminary work [1], smart 
device malware samples exhibited 1.5 MH behaviors 
per sample on average, while benign samples 
exhibited only 0.2 MH behaviors. This indicates that 
apps with MH behaviors are most likely malware 
rather than benign apps. 

Existing studies on MH focus on static analysis 
and are ad hoc [1]. In this paper, we develop a dynamic 

analysis approach, i.e., MH Testbot, to 
comprehensively find MH behaviors in smart device 
malware apps. The approach exploits multimedia to 
automatically test apps in order to capture MH 
behaviors in runtime. 

To more effectively and thoroughly detect MH 
behaviors, the MH Testbot checks multiple mediums, 
including vision, sound, vibration, phone calls, 
messages, and system logs. We have chosen to explore 
multiple mediums for a number of reasons. First, a 
malware may hide itself from being seen, heard, or 
sensed using different means, and some MH behaviors 
cannot be detected by analyzing only a single medium. 
For example, detecting “mute phone” in the malware 
FunkyBot requires monitoring both vision and audio; 
detecting “delete system log” in the Trojan malware 
SMSblocker requires monitoring both log and vision. 
Second, monitoring multiple mediums can reduce 
false positives. For example, concurrently monitoring 
phone calls, vision, and sound can reduce false 
positives when detecting malware fakeAV, which 
blocks incoming calls. Third, monitoring multiple 
mediums helps recognize the screen. For example, 
monitoring both vision and audio can improve the 
accuracy when recognizing alert or advertisement 
windows. Fourth, in addition to MH behaviors, 
monitoring multiple mediums helps locate bugs that 
require information other than vision. For example, to 
detect the recent Face Time bug [2], it is necessary to 
recognize the audio of the remote person.  
 

II. RELATED WORK 
Smart device malware-hiding mechanisms are studied 
much less than desktop/server malware. All studies on 
MH focus on static analysis, but existing MH static 
analysis schemes are not generic. Moreover, as far as 
we know, there is no applicable dynamic analysis 
technique for MH. 

Existing static analysis approaches are ad hoc 
and cannot detect unknown MH behaviors. Wei et al. 
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[3] mentioned four approaches used by malware to 
hide evidence of malicious activity, but the approaches 
were not studied. StateDroid [4] proposes a two-layer, 
attack-action-driven finite state machine model to 
reason about stealthy attacks in Android applications. 
StateDroid uses a set of attacks and actions to detect 
specified malicious behaviors in Android apps, but 
this set may not be sufficiently comprehensive to 
detect unknown attacks. AsDroid utilizes the 
contradiction between the implemented app actions 
and user’s expected behaviors to detect stealthy 
behaviors. AsDroid relies on API-based detection of 
six actions, such as starting a phone call, sending a 
SMS message, and inserting data into a sensitive 
database. Therefore, it might not be able to detect 
behavior that does not use these six actions. 
HSOMINER [5] is a program analysis technique to 
detect a hidden sensitive operation (HSO). An HSO is 
different from MH in that apps deliberately hide their 
sensitive behaviors behind events triggered only in 
their target situations. For example, a potentially 
harmful app only pops up advertisements and collects 
a user’s contacts when it runs on a physical device (not 
an emulator) and interacts with a human. But MH 
means hiding the app itself, regardless of the runtime 
environments. VAHunt [9] conducts data flow 
analysis to determine stealthy plugin loading 
behaviors. We develop a self-hiding behavior (SHB) 
detector [1] to identify a number of malicious 
behaviors that conceal app activities, such as removing 
traces of suspicious actions and hiding the presence of 
the app. But the detection approach is still ad hoc. 

Existing dynamic app analysis systems are not 
applicable for testing MH behaviors. There are three 
categories of existing dynamic app analysis 
systems[10][11][12][13][14][15][16][17]. First, 
vision-based systems (e.g., Sikuli [12]) cannot scale to 
a large number of app types required by MH testing 
because they use pre-prepared images to identify 
screen elements of an app. Second, instrumentation-
based dynamic analysis systems (e.g., A3E [10], 
PUMA [13], Dynodroid [11]) cannot work on pre-
installed apps or native codes because they rely on 
instrumenting OS libraries or apps. But testing MH 
behavior must refer to system apps like Settings app. 
Therefore, instrumentation-based systems are not 
feasible for MH testing. Third, other dynamic analysis 
systems (e.g., Monkey [14], DroidFuzzer [15], 
IntentFuzzer [16]) use random exploration strategies 
[17] and thus are not suitable for testing MH 
behaviors. 
 

III. MH TESTBOT 
The development of our MH Testbot faces three 

challenges. First, triggering most MH behaviors 
contained in an app is not easy, because the behaviors 
are often scattered over the codes and activities of the 
app. Some MH behaviors even need very ad hoc 
conditions to be triggered. Second, MH behaviors are 
varied, ranging from hiding activities or dialogs to 
blocking calls or messages. This requires the detection 
algorithm to be versatile. Third, in addition to log 
analysis, MH detection requires recognizing multiple 
mediums, including image, audio, and vibration. We 
will present our solutions to these problems. 

As shown in Figure 1, our MH Testbot contains 
a dynamic MH analysis engine that runs on a server 
connected with a smart device. The engine imitates the 
user operations to install, invoke, restart, and navigate 
apps and activities by sending events to the smart 
device. The engine detects MH behaviors by analyzing 
multimedia information collected from the smart 
device. An agent running on the smart device collects 
and sends information to the engine. To implement the 
engine, we need to address the following challenges:  
Triggering MH Behaviors. Because there are various 
types of MH behaviors that can hide at many different 
sites in the Android OS, it is a challenge to trigger 
them for detection. To invoke as many MH behaviors 
as possible, we propose a systematic scheme involving 
four levels, each triggered by commands or events 
from the engine:  
• Level 1—Application: According to our 

observations, most MH behaviors can be 
triggered by application-related operations, which 
include app installation, invocation, and restart. 
The engine automatically interacts with the smart 

Figure 1: MH Testbot 
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device to perform these operations.  
• Level 2—Activity: The engine sends events to 

drive an app to navigate all reachable activities 
with the guidance of an activity transition graph 
[10].  

• Level 3—Callback Function: This is done by 
sending messages and phone calls to the smart 
device, monitoring outgoing messages and phone 
calls, or clicking buttons or menu items on the 
screen of the device. Most MH behaviors 
triggered at this level are related to blocking calls 
or erasing messages.  

• Level 4—System: The operations that can invoke 
MH behaviors include restarting the system, 
sending system alerts, and turning on 
alert/sound/vibration/notification.  

Detecting MH Behaviors. MH behaviors can appear 
in various multimedia sites with different formats. For 
example, an app can conceal itself in the installed-apps 
list or remove its messages from the sent-message list. 
Multimedia sites (such as these two lists) that can hide 
malware are defined as MH sites.  

In order to comprehensively detect as many MH 
behaviors as possible, we use two procedures. First, 
we build a multimedia-based normal behavior matrix 
M of dimension !× #  to indicate whether an app 
should occur at an MH site when triggering an event. 
A row corresponds to an event triggered, and a column 
represents an MH site. The matrix is binary, with an 
entry !!" value set to 1 to indicate that a normal app 
should appear at the MH site j when the event i is 
triggered, and 0 otherwise. Second, based on the 
matrix, our detection algorithm works as follows: 
After triggering an event i for app $, the engine reads 
the row %!. For each !!" ∈ %!, if !!" = 1, the engine 
checks whether app $ appears at the MH site j, and an 
MH behavior is detected if app $ does not appear. 

We find MH sites that can hide apps, such as lists 
for running apps, installed apps, device administrators, 
messages and notifications, home screens, call logs, 
system alert windows, and system logs. These sites 
can be categorized into three styles: app-list, message-
list, and pop-window. To be complete, we also 
consider audio and vibration as MH sites, since muting 
phone and turning off vibration are also MH behaviors. 
Each time we send events to trigger MH behaviors, the 
engine checks the MH sites to detect hiding apps with 
our multimedia algorithms for image recognition, 
audio recognition, and vibration recognition.  

To determine whether a given app is hiding in an 
app-list, the MH recognition algorithm first extracts 
the icon and name of the app from the apk file, and 
then capture the icons and names of all apps on the 

screen through the image-recognition algorithm. Next, 
it calculates the similarity values among icons of the 
given app $  and those on the app-list, as well as 
similarity values among names. If all similarity values 
are smaller than the threshold values )!#$% and )%&'(, 
as shown below, then the app $ is not on the list but is 
hiding.  

%*+
)*"*%

,-!-.$/-01(345#&, 345#")
< )!#$%	&	 %*+)*+*%

,-!-.$/-01(;$!<&, ;$!<+)
< )%&'( 

For MH sites that use message-list or pop-
window, the MH recognition algorithm analyzes not 
only screen images but also audio and vibration. For 
example, if the image recognition algorithm detects a 
system alert window but the audio recognition 
algorithm does not receive an alert sound, then this 
means that the smart device is muted. If an app sends 
out a message, then the message is considered by the 
engine to be background if the audio recognition 
algorithm does not detect a message sound and the 
vibration recognition algorithm does not sense the 
message vibration. 

Recognizing Image. Recognizing each type of GUI 
element on the screen of a smart device can help in 
navigating activities, handling unexpected alert 
windows, recognizing hidden apps, and entering text. 
Typical types of GUI elements include button, link, 
label, text box, check box, menu, drop-down list, and 
icon. Existing vision-based dynamic analysis systems 
search within a screen image for a pre-stored GUI 
component image [12], in order to recognize a 
component. Because the pre-stored images are pre-
extracted from known apps, these analysis systems are 
not suitable for testing a large number of apps, which 
mostly are unknown. Therefore, we design a novel 
algorithm to recognize GUI elements from a screen 
image. 
• First, rather than going through a conventional 

segmentation algorithm, such as the Watershed 
algorithm [18], we leverage some distinct 
characteristics of the Android app GUI to simply 
divide a screen image into multiple regions at low 
overhead. A good example is that many Android 
app screen images are separated by horizontal 
rigid lines. 

• Second, we use Belongie’s algorithm [19] to 
recognize shapes, and an optical character 
recognition algorithm [20] to recognize text in 
each region. We also recognize colors and 
coordinates of texts and shapes.  

• Third, we collect a large number of screen images 
from apps, based on those in which we can 
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identify the types of GUI elements on each screen 
image via static analysis of app binary files.  

• Last, we develop a GUI element-recognition 
algorithm based on machine learning with 
decision trees [21] built from the list of possible 
attributes and the set of training cases. The trees 
are used to classify subsequent sets of test cases. 
Classification attributes are obtained from the 
second step, and training data sets are obtained 
from the third step.  

Recognizing Audio. As a part of the procedure to 
detect malware, our MH Testbot recognizes the type 
of sound playing from a smart device to remain aware 
of the arrivals of phone calls, messages, system alerts, 
screen locks, etc. Typical sound types to detect include 
ringtones, notifications, alerts, media, touch sounds, 
screen lock sounds, emergency tones, dialing keypad 
tones, and keyboard sounds. Our audio recognition 
scheme requires three steps: recording a short segment 
of audio from the microphone of the smart device, 
finding audio files and their types from the smart 
device, and searching for the audio segment within the 
audio files to determine the audio type.  

An audio segment generally cannot exactly 
match any section of the audio files, due to the 
existence of noise from different methods of 
digitization, environment, and thermal sources. 
Instead of using an exact match, we use similarity as 
the metric. We slide the audio segment across the 
audio files to find the part that is similar. Whenever 
similarity rises above a threshold value, it indicates 
that the reference audio file is the one containing this 
segment, and the file name and directory provide the 
sound type. The similarity between the audio segment 
*, and audio file *- can be computed using histogram 

intersection [22]: 
,(*,, *-) = ∑ min	(*-!.

!/) , *,! ) 
where A  is the number of histogram bins, and 
!-#(*-! , *,! )	 represents the minimum histogram 
intersection match value between bins *-!  and *,! . 
Recognizing Vibration. To detect whether the smart 
device is vibrating, we install a vibration sensor near 
the device. The sensor sends signals to the engine 
when the device is vibrating. Then the engine can 
detect the vibration. 
 

IV. EVALUATION 
The MH Testbot prototype was implemented upon 
Appium [24], which is an open source automation tool 
for running scripts and testing mobile applications. We 
evaluated the MH Testbot on its effectiveness and 
performance overhead. We analyzed 16 malware 
samples from well-known sources, such as AndroZoo 
[6], Virustotal [7], and AAGM [8].  
Evaluating Effectiveness. As there is no existing 
oracle to determine MH, we manually verified each 
dynamic analysis results. The results are shown in 
Table 1. Our tool has reported 29 MH behaviors in 
total; of these 25 were true MH behaviors, while 4 MH 
behaviors were over-reported (false positives) and 3 
were false negatives, i.e., our tool missed those MH 
behaviors. This yields an F-measure of 87.7%, 
indicating that our tool is quite effective. 

Our tool uses a computer vision library, OpenCV 
[23]. It can take a snapshot of a smart device screen, 
divide the image into multiple regions, recognize text 
and its color, and compute the coordinates of each 
region. 

Figure 2: Results of Recognizing Image	
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TABLE 1. EFFECTIVENESS RESULTS 

 
The testing results for 16 activities from 16 apps 

are shown in Figure 2. Each activity shows the number 
of image regions, text words, coordinates, and colors. 
Most of these apps are popular in the Google Play 
Store. We have manually verified the results, and they 
are correct. 
Analyzing Performance Overhead. Table 2 shows the 
performance overhead of our prototypes for 
recognizing image, audio, and vibration, respectively. 
Our MH Testbot consisted of the following: an Intel 
Xeon server (36 logical cores@4.3 GHz, 4 
doublewidth GPUs, 128 GB RAM, Ubuntu 18.04) 
where we ran the multimedia recognition algorithms, 
and an Android phone (4 ARM cores@1.40 GHz, 2 
GB RAM, 16 GB storage, OS version 6.0). We tested 
16 activity images, 16 audio fragments, and 16 
vibration signal segments (each has 1 second in 
length). From Table 2 it can be seen that the average 
times for image, audio, and vibration recognition are 
75, 3.9, and 0.18 milliseconds, respectively. Therefore, 
the performance overhead of multimedia recognition 
is acceptable. 

TABLE 2: PERFORMANCE EVALUATION 

Algorithm Min Max Average 

Image recognition (msec per 
activity) 

32 193 75 

Audio recognition (msec per 
second length of audio) 

2.2 5.7 3.9 

Vibration recognition (msec 
per second length of vibration) 

0.11 0.3 0.18 

 

V. SUMMARY 
 

In this paper, we built a novel automated 
dynamic analysis bot to detect MH. This bot exploits 
multiple mediums (e.g., vision, audio, vibration) to 
mimic a human user, in order to automatically drive 
the test and recognize MH behaviors. Our testbot is 
different from existing approaches because it relies on 
vision/audio rather than specific app implementation 
(e.g., code snippets and data flows). Anti-malware 
companies and app markets can use it to analyze 
suspicious apps. 

 The MH Testbot can potentially be extended and 
applied to detect other malware behaviors, app errors, 
or normal functionalities of Android apps. This 
includes, for example, advertisement pop-up windows, 
ransomware, undeletable apps, deathless 
administrators, resume and restart errors, crashing 
errors, account deletion buttons, and in-app purchases. 
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