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Abstract—Less attention has been paid to the
deceptive mechanisms of malware on smart devices.
Smart device malware uses various techniques to conceal
itself, e.g., hiding activity, muting the phone, and deleting
call logs. In this work, we developed a novel approach to
semi-automatically detect malware hiding behaviors. To
more effectively and thoroughly detect malware hiding
behaviors, our prototype checks multiple mediums,
including vision, sound, vibration, phone calls, messages,
and system logs. Our experiments show that the
approach can detect malware hiding behaviors. The F-
measure is 87.7%, indicating that our approach is quite
effective.
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I. INTRODUCTION

While smart devices bring new functions and
possibilities to users, they also open up a Pandora’s
Box of potential problems, from eavesdropping
attacks to erasing all data on a storage device. Security
research on smart devices mostly focuses on malware
installation and activation, privilege escalation, remote
control, financial charges, personal information
stealing, and permission use. Less attention has been
paid to the deceptive mechanisms, which are critical
for the success of malware on smart devices.
Generally, malware first gets installed and then
continues operating on the device without attracting
suspicion from users. To do so, smart device malware
uses various techniques to conceal itself, e.g., hiding
activity, muting the phone, and deleting call logs.

We define the malware-hiding (MH) behavior
as an action by which smart device malware can hide
itself or its trail from being viewed (or heard!) by
users. According to our preliminary work [1], smart
device malware samples exhibited 1.5 MH behaviors
per sample on average, while benign samples
exhibited only 0.2 MH behaviors. This indicates that
apps with MH behaviors are most likely malware
rather than benign apps.

Existing studies on MH focus on static analysis
and are ad hoc [1]. In this paper, we develop a dynamic
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analysis  approach, 1ie., MH Testbot, to
comprehensively find MH behaviors in smart device
malware apps. The approach exploits multimedia to
automatically test apps in order to capture MH
behaviors in runtime.

To more effectively and thoroughly detect MH
behaviors, the MH Testbot checks multiple mediums,
including vision, sound, vibration, phone calls,
messages, and system logs. We have chosen to explore
multiple mediums for a number of reasons. First, a
malware may hide itself from being seen, heard, or
sensed using different means, and some MH behaviors
cannot be detected by analyzing only a single medium.
For example, detecting “mute phone” in the malware
FunkyBot requires monitoring both vision and audio;
detecting “delete system log” in the Trojan malware
SMSblocker requires monitoring both log and vision.
Second, monitoring multiple mediums can reduce
false positives. For example, concurrently monitoring
phone calls, vision, and sound can reduce false
positives when detecting malware fakeAV, which
blocks incoming calls. Third, monitoring multiple
mediums helps recognize the screen. For example,
monitoring both vision and audio can improve the
accuracy when recognizing alert or advertisement
windows. Fourth, in addition to MH behaviors,
monitoring multiple mediums helps locate bugs that
require information other than vision. For example, to
detect the recent Face Time bug [2], it is necessary to
recognize the audio of the remote person.

II. RELATED WORK

Smart device malware-hiding mechanisms are studied
much less than desktop/server malware. All studies on
MH focus on static analysis, but existing MH static
analysis schemes are not generic. Moreover, as far as
we know, there is no applicable dynamic analysis
technique for MH.

Existing static analysis approaches are ad hoc
and cannot detect unknown MH behaviors. Wei et al.



[3] mentioned four approaches used by malware to
hide evidence of malicious activity, but the approaches
were not studied. StateDroid [4] proposes a two-layer,
attack-action-driven finite state machine model to
reason about stealthy attacks in Android applications.
StateDroid uses a set of attacks and actions to detect
specified malicious behaviors in Android apps, but
this set may not be sufficiently comprehensive to
detect unknown attacks. AsDroid utilizes the
contradiction between the implemented app actions
and user’s expected behaviors to detect stealthy
behaviors. AsDroid relies on API-based detection of
six actions, such as starting a phone call, sending a
SMS message, and inserting data into a sensitive
database. Therefore, it might not be able to detect
behavior that does not use these six actions.
HSOMINER [5] is a program analysis technique to
detect a hidden sensitive operation (HSO). An HSO is
different from MH in that apps deliberately hide their
sensitive behaviors behind events triggered only in
their target situations. For example, a potentially
harmful app only pops up advertisements and collects
auser’s contacts when it runs on a physical device (not
an emulator) and interacts with a human. But MH
means hiding the app itself, regardless of the runtime
environments. VAHunt [9] conducts data flow
analysis to determine stealthy plugin loading
behaviors. We develop a self-hiding behavior (SHB)
detector [1] to identify a number of malicious
behaviors that conceal app activities, such as removing
traces of suspicious actions and hiding the presence of
the app. But the detection approach is still ad hoc.

Existing dynamic app analysis systems are not
applicable for testing MH behaviors. There are three
categories of existing dynamic app analysis
systems[ 1O][11][12][13][14][15][16][17]. First,
vision-based systems (e.g., Sikuli [12]) cannot scale to
a large number of app types required by MH testing
because they use pre-prepared images to identify
screen elements of an app. Second, instrumentation-
based dynamic analysis systems (e.g., A’E [10],
PUMA [13], Dynodroid [11]) cannot work on pre-
installed apps or native codes because they rely on
instrumenting OS libraries or apps. But testing MH
behavior must refer to system apps like Settings app.
Therefore, instrumentation-based systems are not
feasible for MH testing. Third, other dynamic analysis
systems (e.g., Monkey [14], DroidFuzzer [15],
IntentFuzzer [16]) use random exploration strategies
[17] and thus are not suitable for testing MH
behaviors.

III. MH TESTBOT
The development of our MH Testbot faces three
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Figure 1: MH Testbot

challenges. First, triggering most MH behaviors
contained in an app is not easy, because the behaviors
are often scattered over the codes and activities of the
app. Some MH behaviors even need very ad hoc
conditions to be triggered. Second, MH behaviors are
varied, ranging from hiding activities or dialogs to
blocking calls or messages. This requires the detection
algorithm to be versatile. Third, in addition to log
analysis, MH detection requires recognizing multiple
mediums, including image, audio, and vibration. We
will present our solutions to these problems.

As shown in Figure 1, our MH Testbot contains
a dynamic MH analysis engine that runs on a server
connected with a smart device. The engine imitates the
user operations to install, invoke, restart, and navigate
apps and activities by sending events to the smart
device. The engine detects MH behaviors by analyzing
multimedia information collected from the smart
device. An agent running on the smart device collects
and sends information to the engine. To implement the
engine, we need to address the following challenges:

Triggering MH Behaviors. Because there are various
types of MH behaviors that can hide at many different
sites in the Android OS, it is a challenge to trigger
them for detection. To invoke as many MH behaviors
as possible, we propose a systematic scheme involving
four levels, each triggered by commands or events
from the engine:

e Level 1—Application: According to our
observations, most MH behaviors can be
triggered by application-related operations, which
include app installation, invocation, and restart.
The engine automatically interacts with the smart



device to perform these operations.

e Level 2—Activity: The engine sends events to
drive an app to navigate all reachable activities
with the guidance of an activity transition graph
[10].

e Level 3—Callback Function: This is done by
sending messages and phone calls to the smart
device, monitoring outgoing messages and phone
calls, or clicking buttons or menu items on the
screen of the device. Most MH behaviors
triggered at this level are related to blocking calls
or erasing messages.

e Level 4—System: The operations that can invoke
MH behaviors include restarting the system,
sending system alerts, and turning on
alert/sound/vibration/notification.

Detecting MH Behaviors. MH behaviors can appear
in various multimedia sites with different formats. For
example, an app can conceal itself in the installed-apps
list or remove its messages from the sent-message list.
Multimedia sites (such as these two lists) that can hide
malware are defined as MH sites.

In order to comprehensively detect as many MH
behaviors as possible, we use two procedures. First,
we build a multimedia-based normal behavior matrix
M of dimension m X n to indicate whether an app
should occur at an MH site when triggering an event.
A row corresponds to an event triggered, and a column
represents an MH site. The matrix is binary, with an
entry m;; value set to 1 to indicate that a normal app
should appear at the MH site j when the event i is
triggered, and O otherwise. Second, based on the
matrix, our detection algorithm works as follows:
After triggering an event i for app a, the engine reads
the row M;. For each m;; € M;, it m;; = 1, the engine
checks whether app a appears at the MH site j, and an
MH behavior is detected if app a does not appear.

We find MH sites that can hide apps, such as lists
for running apps, installed apps, device administrators,
messages and notifications, home screens, call logs,
system alert windows, and system logs. These sites
can be categorized into three styles: app-list, message-
list, and pop-window. To be complete, we also
consider audio and vibration as MH sites, since muting

phone and turning off vibration are also MH behaviors.

Each time we send events to trigger MH behaviors, the
engine checks the MH sites to detect hiding apps with
our multimedia algorithms for image recognition,
audio recognition, and vibration recognition.

To determine whether a given app is hiding in an
app-list, the MH recognition algorithm first extracts
the icon and name of the app from the apk file, and
then capture the icons and names of all apps on the

screen through the image-recognition algorithm. Next,
it calculates the similarity values among icons of the
given app a and those on the app-list, as well as
similarity values among names. If all similarity values
are smaller than the threshold values 4., and 1,,41n¢,
as shown below, then the app a is not on the list but is
hiding.
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For MH sites that use message-list or pop-
window, the MH recognition algorithm analyzes not
only screen images but also audio and vibration. For
example, if the image recognition algorithm detects a
system alert window but the audio recognition
algorithm does not receive an alert sound, then this
means that the smart device is muted. If an app sends
out a message, then the message is considered by the
engine to be background if the audio recognition
algorithm does not detect a message sound and the
vibration recognition algorithm does not sense the
message vibration.

Recognizing Image. Recognizing each type of GUI
element on the screen of a smart device can help in
navigating activities, handling unexpected alert
windows, recognizing hidden apps, and entering text.
Typical types of GUI elements include button, link,
label, text box, check box, menu, drop-down list, and
icon. Existing vision-based dynamic analysis systems
search within a screen image for a pre-stored GUI
component image [12], in order to recognize a
component. Because the pre-stored images are pre-
extracted from known apps, these analysis systems are
not suitable for testing a large number of apps, which
mostly are unknown. Therefore, we design a novel
algorithm to recognize GUI elements from a screen
image.

e  First, rather than going through a conventional
segmentation algorithm, such as the Watershed
algorithm [18], we leverage some distinct
characteristics of the Android app GUI to simply
divide a screen image into multiple regions at low
overhead. A good example is that many Android
app screen images are separated by horizontal
rigid lines.

e Second, we use Belongie’s algorithm [19] to
recognize shapes, and an optical character
recognition algorithm [20] to recognize text in
each region. We also recognize colors and
coordinates of texts and shapes.

e  Third, we collect a large number of screen images
from apps, based on those in which we can
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Figure 2: Results of Recognizing Image

identify the types of GUI elements on each screen
image via static analysis of app binary files.

e Last, we develop a GUI element-recognition
algorithm based on machine learning with
decision trees [21] built from the list of possible
attributes and the set of training cases. The trees
are used to classify subsequent sets of test cases.
Classification attributes are obtained from the
second step, and training data sets are obtained
from the third step.

Recognizing Audio. As a part of the procedure to
detect malware, our MH Testbot recognizes the type
of sound playing from a smart device to remain aware
of the arrivals of phone calls, messages, system alerts,
screen locks, etc. Typical sound types to detect include
ringtones, notifications, alerts, media, touch sounds,
screen lock sounds, emergency tones, dialing keypad
tones, and keyboard sounds. Our audio recognition
scheme requires three steps: recording a short segment
of audio from the microphone of the smart device,
finding audio files and their types from the smart
device, and searching for the audio segment within the
audio files to determine the audio type.

An audio segment generally cannot exactly
match any section of the audio files, due to the
existence of noise from different methods of
digitization, environment, and thermal sources.
Instead of using an exact match, we use similarity as
the metric. We slide the audio segment across the
audio files to find the part that is similar. Whenever
similarity rises above a threshold value, it indicates
that the reference audio file is the one containing this
segment, and the file name and directory provide the
sound type. The similarity between the audio segment
Ag and audio file A can be computed using histogram

intersection [22]:

S(As, Ap) = X, min (47, AL)
where B is the number of histogram bins, and
min(A},Aé) represents the minimum histogram
intersection match value between bins Ay and As.

Recognizing Vibration. To detect whether the smart
device is vibrating, we install a vibration sensor near
the device. The sensor sends signals to the engine
when the device is vibrating. Then the engine can
detect the vibration.

IV. EVALUATION

The MH Testbot prototype was implemented upon
Appium [24], which is an open source automation tool
for running scripts and testing mobile applications. We
evaluated the MH Testbot on its effectiveness and
performance overhead. We analyzed 16 malware
samples from well-known sources, such as AndroZoo
[6], Virustotal [7], and AAGM [8].

Evaluating Effectiveness. As there is no existing
oracle to determine MH, we manually verified each
dynamic analysis results. The results are shown in
Table 1. Our tool has reported 29 MH behaviors in
total; of these 25 were true MH behaviors, while 4 MH
behaviors were over-reported (false positives) and 3
were false negatives, i.e., our tool missed those MH
behaviors. This yields an F-measure of 87.7%,
indicating that our tool is quite effective.

Our tool uses a computer vision library, OpenCV
[23]. It can take a snapshot of a smart device screen,
divide the image into multiple regions, recognize text
and its color, and compute the coordinates of each
region.



TABLE 1. EFFECTIVENESS RESULTS

True MH Over-reported Under-reported

behaviors MH behaviors MH behaviors
(FP) (FN)

25 4 3

Precision: 25 / (25+4) = 86.2%
Recall: 25/(25+3)=89.3%
F-measure: 2 * (86.2%¥89.3) / (86.2+89.3) = 87.7%

The testing results for 16 activities from 16 apps
are shown in Figure 2. Each activity shows the number
of image regions, text words, coordinates, and colors.
Most of these apps are popular in the Google Play
Store. We have manually verified the results, and they
are correct.

Analyzing Performance Overhead. Table 2 shows the
performance overhead of our prototypes for
recognizing image, audio, and vibration, respectively.
Our MH Testbot consisted of the following: an Intel
Xeon server (36 logical cores@4.3 GHz, 4
doublewidth GPUs, 128 GB RAM, Ubuntu 18.04)
where we ran the multimedia recognition algorithms,
and an Android phone (4 ARM cores@1.40 GHz, 2
GB RAM, 16 GB storage, OS version 6.0). We tested
16 activity images, 16 audio fragments, and 16
vibration signal segments (each has 1 second in
length). From Table 2 it can be seen that the average
times for image, audio, and vibration recognition are
75, 3.9, and 0.18 milliseconds, respectively. Therefore,
the performance overhead of multimedia recognition
is acceptable.

TABLE 2: PERFORMANCE EVALUATION

Algorithm Min Max | Average
Image recognition (msec per 32 193 75
activity)
Audio recognition (msec per 2.2 5.7 39

second length of audio)

Vibration recognition (msec 0.11 0.3 0.18
per second length of vibration)

V. SUMMARY

In this paper, we built a novel automated
dynamic analysis bot to detect MH. This bot exploits
multiple mediums (e.g., vision, audio, vibration) to
mimic a human user, in order to automatically drive
the test and recognize MH behaviors. Our testbot is
different from existing approaches because it relies on
vision/audio rather than specific app implementation
(e.g., code snippets and data flows). Anti-malware
companies and app markets can use it to analyze
suspicious apps.

The MH Testbot can potentially be extended and
applied to detect other malware behaviors, app errors,
or normal functionalities of Android apps. This
includes, for example, advertisement pop-up windows,
ransomware, undeletable apps, deathless
administrators, resume and restart errors, crashing
errors, account deletion buttons, and in-app purchases.
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