

1 Crop-specific Management History of Phosphorus Fertilizer Input (CMH-P) in the 2 Croplands of United States: Reconciliation of Top-down and Bottom-up data Sources

3 Peiyu Cao^{1, 2, 3, †}, Bo Yi^{1, †}, Franco Bilotto^{2, 3}, Carlos Gonzalez Fischer^{2, 3}, Mario Herrero^{2, 3}, Chaoqun Lu¹

⁴ ¹Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa 50111,
⁵ USA

⁸ ³ Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, New York, USA

⁹ † These authors contributed equally to this work

10

11 *Correspondence to:* Chaoqun Lu (clu@iastate.edu)

12

13 Abstract

14 Understanding and assessing the spatiotemporal patterns in crop-specific phosphorus (P) fertilizer
15 management is crucial for promoting crop yield and mitigating environmental problems. The existing P
16 fertilizer dataset, derived from sales data, depicts an average application rate on total cropland at the
17 county level but overlooks cross-crop variations. Conversely, the survey-based dataset offers crop-
18 specific application details at the state level yet lacks inter-state variability. By reconciling these two
19 datasets, we developed long-term gridded maps to characterize crop-specific P fertilizer application rates,
20 timing, and methods across the contiguous US at a resolution of 4 km × 4 km from 1850 to 2022. We
21 found that P fertilizer application rate on fertilized area in the US increased from 0.9 g P m⁻² yr⁻¹ in 1940
22 to 1.9 g P m⁻² yr⁻¹ in 2022, with substantial variations among crops. However, approximately 40% of
23 cropland nationwide has remained unfertilized in the recent decade. The hotspots for P fertilizer use have
24 shifted from the southeastern and eastern US to the Midwest and the Great Plains over the past century,
25 reflecting changes in cropland area, crop choices, and P fertilizer use across different crops. Pre-planting
26 (fall and spring) and broadcast application are prevalent among corn, soybean, and cotton in the Midwest
27 and the Southeast, indicating a high P loss risk in these regions. In contrast, wheat and barley in the Great
28 Plains receive the most intensive P fertilizer at planting and via non-broadcast application. The P fertilizer
29 management dataset developed in this study can advance our comprehension in agricultural P budget and

30 facilitate the refinement in P fertilizer best management practices to optimize crop yield and reduce P loss.
31 Datasets are available at <https://doi.org/10.5281/zenodo.10700822> (Cao et al., 2024).

32 1 Introduction

33 Phosphorus (P) is fundamental for life on Earth, serving as a crucial component of genetic material,
34 cellular membranes, and adenosine triphosphate for energy storage. The application of P has facilitated
35 unprecedented increases in food, feed, fiber, and fuel production, and is one of the cornerstones of
36 modern agriculture (Tilman et al., 2002). Before the 19th century, the major P sources for agricultural
37 land were animal and human excreta, along with slaughterhouse by-products (Cordell et al., 2009;
38 Bouwman et al., 2013). Starting around the mid-to-late 19th century, the production of mineral P
39 fertilizers from phosphate rock grew rapidly after the mid-20th century (Lu and Tian, 2017). The
40 application of mineral P fertilizer increased from 1.0 Tg P yr⁻¹ to 1.7 Tg P yr⁻¹ from 1960 to 2017 in the
41 US (Samreen, 2019), rectifying the P deficiency of soils. However, P application was found to exceed the
42 crops needs by up to 50% in many regions across the US (Glibert, 2020; Sabo et al., 2021). A substantial
43 part of surplus P, defined as the difference between input and removal by crops, can be lost through
44 soluble P in runoff and subsurface flow, and particulate P in soil erosion. These losses can accumulate
45 along transport pathways such as soils, riparian areas, streams, and wetlands, leading to long-term impacts
46 on P loading (Sharpley et al., 2013; Stackpoole et al., 2019). Increased P loading has contributed to the
47 harmful algal blooms and large hypoxia zones, which degrade aquatic ecosystems and harm coastal
48 economies by destroying habitats, disrupting the food web, and damaging tourism and fisheries. To
49 improve P use efficiency in agriculture and mitigate the environmental impacts of excessive P, it is
50 essential to understand the spatial distribution and temporal dynamics of P fertilizer use.

51 Developing a contemporary P fertilizer dataset is challenging due to incomplete data from multiple
52 sources and the lack of information on crop-specific applications. Previous studies have developed
53 historical county-level P fertilizer consumption in the US from 1945 to 2017, following a top-down
54 approach that relies on state-level fertilizer sales data and county-level fertilizer expenditure data
55 (Alexander and Smith, 1990; Falcone, 2021; Brakebill and Gronberg, 2017). In these studies, the average
56 P fertilizer application was estimated by dividing the consumption by the total cropland area within each
57 county. These top-down P fertilizer databases utilize a single value for average P fertilizer use,
58 overlooking cross-crop variations. Additionally, the percentage of fertilized area relative to the total
59 planting area varies significantly among different crops (USDA-ERS, 2019). As not all planting areas are
60 fertilized, distributing total P fertilizer application on the total planting area has underestimated the actual
61 application rate in the fertilized fields. Characterizing the spatial and temporal heterogeneity of crop-

62 specific P fertilizer application rate due to different P demands across crop types can offer deeper insights
63 into P use efficiency, budget trajectories, and P loading analysis (Sabo et al., 2021; Stackpoole et al., 2019;
64 Swaney and Howarth, 2019). P fertilizer management practices, such as application timing and method,
65 also differ among crop types and are crucial for optimal nutrient management. For example, over 30% of
66 rice fields in the US received injected P fertilizer, whereas around 40% of corn fields received
67 broadcasting P fertilizer (USDA-ERS, 2024), implying high potential P loss by runoff and erosion from
68 corn fields. A bottom-up approach, based on crop-specific P fertilizer application rates and management
69 practices on the treated areas, can help to improve the performance of models and develop P fertilizer
70 conserving strategies. However, to the best of our knowledge, there is a lack of comprehensive bottom-up
71 databases that provide long-term, spatially explicit, crop-specific P fertilizer management data across the
72 US.

73 By combining the top-down (total P consumption and average P application rate) and bottom-up (crop-
74 specific P application rate) data sets, we developed a spatially explicit time-series database to characterize
75 agricultural P fertilizer application rate, timing, and method in the contiguous US (CONUS) at 4 km
76 resolution from 1850 to 2022. The main objectives of this study are 1) to characterize the spatiotemporal
77 patterns of P fertilizer application rates across the US over the last 170 years by considering P fertilizer
78 management differences among crops; 2) to investigate the spatial patterns of P fertilizer application
79 timing and method.

80 2 Methods

81 We reconstructed the annual state-level crop-specific P fertilizer (hereafter referred to as P) application
82 rate from 1850 to 2022 using the same methodology in Cao et al. (2018) by integrating and gap-filling
83 multiple sources. Subsequently, the crop-specific P fertilizer application rate was adjusted to match the
84 state-level total P consumption. Using the same approach in Zhang et al. (2021), we further downscaled
85 the application rate to county-level during 1930-2022 based on county-level P consumption and cropland
86 acreage of each crop type (Ye et al., 2024). We split the annual P application rate generated above into
87 four application timings and three application methods according to the statewide crop-specific survey
88 data during the study period. The datasets of crop-specific P fertilizer management (application rate,
89 timing, and method) generated above were then spatialized into gridded maps based on annual time-series
90 maps of crop area and type at the spatial resolution of 1 km × 1 km across the CONUS (Ye et al., 2024)
91 (Fig. 1).

92 2.1 Historical P fertilizer use rate reconstruction

93 2.1.1 P fertilizer consumption

94 We obtained the historical P consumption from 1850 to 2022 for the CONUS by harmonizing the national
95 P consumption data from Mehring et al. (1957) for 1850-1951, USDA (1971) for 1952-1959, USDA-ERS
96 (2019) for 1960-2015, and FAO (2021) for 2016-2022.

97 We integrated the annual state-level P consumption from multiple sources that cover different periods
98 during 1930-2016 (Table S1). We gap-filled the unavailable state-level P consumption data for the
99 periods pre-1930 and 2017-2022 by one-way interpolation (Eq. 1) using the national P consumption
100 generated above as a reference. Whereas the periods 1970-1975 and 1978-1987 were gap-filled by
101 distance-weighted interpolation (Eq. 2). The state-level P consumption generated above includes all crops,
102 cropland pasture, permanent pasture, and non-farm land (Table S2). By harmonizing and linearly
103 interpolating the ratio of P consumption of these lands to total consumption from multi-sources, we
104 calculated the P consumption of croplands, cropland pasture, permanent pasture, and non-farm from 1850
105 to 2022 in each state respectively (See supplementary material for details). We calculated the state-level P
106 application rate of cropland by dividing the P fertilizer consumption of cropland by the total cropland area
107 of each state.

108 Based on state fertilizer sales data provided by AAPFCO (2022) and county-level fertilizer expenditure
109 data from the USDA Census, the county-level P consumption was estimated every 5 years from 1969 to
110 2017 with 1987-2016 annually interpolated (Falcone, 2021; NuGIS, 2022). The missing years were
111 interpolated by Equation (2) during the periods of 1970-1986 and 2013-2016, and by Equation (1) after
112 2017 using the state-level P consumption generated above as reference. The state shares of different lands
113 were applied to estimate the P consumption of these lands in each county.

114 Interpolated $data_{i+k} = \frac{Referenced\ trend_{i+k}}{Referenced\ trend_i} \times Raw\ data_i$, (1)

115 Interpolated $data_{i+k} = \frac{Referenced\ trend_{i+k} \times Raw\ data_i}{Referenced\ trend_i} \times \frac{k-i}{j-i} + \frac{Referenced\ trend_{i+k} \times Raw\ data_j}{Referenced\ trend_j} \times \frac{j-k}{j-i}$, (2)

116 Where *Raw data* is the raw data that contains missing values, *Referenced trend* is the complete data
117 from which the inter-annual variations that raw data can refer to, *i* and *j* are the beginning and ending
118 year of the gap, *i + k* is the *k*th missing year. Equation 1 was used when the beginning or ending year is
119 unavailable, whereas Equation 2 was used when both years are available.

120 2.1.2 Referenced state-level crop-specific P application rate
121 The national P application rates of 9 major crop types, including corn, soybean, winter wheat, spring
122 wheat, cotton, sorghum, rice, barley, and durum wheat, from 1927 to 2022 were obtained by integrating
123 multiple data sources (Table S4). In contrast to the state-level P application rate generated in section 2.1.1,
124 reflecting the inter-annual variation of each state, the national crop-specific P application rate
125 characterizes the variation of each crop at the national scale. We gap-filled the national crop-specific P
126 application rate for the period of 1850-2022 by using state-level P application rates as a reference. For the
127 period before 1927, when national crop-specific P application rates were unavailable, Equation (1) was
128 used to retrieve the P application rate of each crop. For the period from 1927 to 2022, the cubic spline
129 interpolation method was used to gap-fill P application rates when raw data were missing in less than 3
130 consecutive years. While Equation (2) was applied in gap-filling when missing data were found in more
131 than 3 consecutive years.
132 Four regression models, quadratic, cubic, exponential, and logarithmic functions, were built between the
133 interpolated national crop-specific P application rates and raw state-level crop-specific P application rates
134 of 9 crops from 1954 to 2022. The best-fit model was used to adjust the national crop-specific P
135 application rates (Cao et al., 2018). Finally, the interpolated national crop-specific P application rates
136 from 1850 to 1953 with no adjustment and from 1954 to 2022 with adjustment jointly served as the
137 referenced state-level crop-specific P application rate trend.
138 2.1.3 State- and county-level crop-specific P application rates
139 We obtained the state-level crop-specific P application rates of 9 crops from 1954 to 2022 from the same
140 data sources as national crop-specific P application rates (Table S4). This includes the information of P
141 application rates in the fertilized croplands and percentage of fertilized croplands. Due to the lack of
142 information to identify the fertilized cropland spatially, the P application rates were adjusted by
143 multiplying use rates with fertilized cropland percentage. For winter wheat, spring wheat, and durum
144 wheat, only the total P consumption of these three wheat types was available at the state level for the
145 period of 1954-1989. The wheat types planted in each state were determined based on the Agricultural
146 Chemical Use Survey (USDA-NASS, 2021). We calculated the fractions of P consumption for each
147 wheat type to the total P consumption of all wheat types in each state in 1990. This fraction was used to
148 estimate the P consumption of each wheat type for the period of 1954-1989. The P application rate of
149 each wheat type was then calculated as P consumption divided by the planting area of the corresponding
150 wheat type.
151 For the period from 1850 to 1953, the state-level P application rates of 9 crops were gap-filled by Eq. (1)
152 using the referenced P application rate generated in section 2.1.2. Whereas Eq. (2) and the cubic spline

153 method were used to gap-fill the missing years between 1954 and 2022 for missing years over or less 3
 154 consecutive years, respectively. The P consumption of cropland pasture calculated in section 2.1.1 was
 155 divided by the area in each state to generate the cropland pasture P application rate. The P consumption of
 156 all other crops in each state was calculated by subtracting the P consumption of 9 crops, cropland pasture,
 157 permanent pasture, and non-farm from state total P consumption. The P use rate of “Other Crops” was
 158 generated by dividing the P consumption by the area of Other Crops. Due to the mismatch between state
 159 total P consumption from top-down sales data and crop-specific P consumption from the bottom-up
 160 survey, the summed P consumption of 9 major crops exceeds the state total P amount in some states (Fig.
 161 S1), resulting in a negative rate of Other Crops. We adjusted the crop-specific application rates of major
 162 crops to match the state total P consumption by assuming that total P consumption data from top-down
 163 source is more reliable. First, we reconstructed the positive application rates of Other Crops in each state.
 164 If the 10-year moving average of the positive application rates of the Other Crops was available, we used
 165 it to replace the negative rates of the Other Crops. Otherwise, if the moving average was unavailable, we
 166 interpolated the gaps using the area-weighted mean of Other Crops across all states within the
 167 corresponding region as the reference trend. The selection of Eq. (1) and Eq. (2) for interpolation depends
 168 on the availability of the beginning and ending year of the gap. After excluding the P fertilizer
 169 consumption of cropland pasture, Other Crops, permanent pasture, and non-farm uses from the state total
 170 P consumption, we used the remaining total consumption to scale the crop-specific P fertilizer application
 171 rates for major crops. Specifically, for certain crops that exhibit abnormal change trends in some states
 172 due to inadequate survey data (e.g., corn in Illinois), we manually adjusted the rates for these crops to
 173 align with the differences (Fig. S2).

174 By assuming the relative ratio of P application rate among crop types in counties follow their state-level
 175 patterns in the same year, the crop-specific P application rate generated above was downscaled from state
 176 level to county level using Eq. (3) from 1970 to 2022. The P consumption of each crop within a given
 177 county was calculated by multiplying the state-level P application rate by the planting acreage. A scaler
 178 was then calculated by dividing the county total P consumption by the summation of P consumption of all
 179 crop types to adjust the state-level P use rates for each crop within this county.

$$180 \quad P \ rate_i^{ct} = \frac{P \ cons_{ct}}{\sum_{j=1}^{11} P \ rate_j^{st} \times Area_j^{ct}} \times P \ rate_i^{st} \quad (3)$$

181 where $P \ rate_i^{ct}$ is the P application rate of crop type i in a given county, $P \ cons_{ct}$ is annual county P
 182 consumption, $P \ rate_j^{st}$ is the P application rate of crop type j in state st , $Area_j^{ct}$ is county-level planting
 183 area of crop type j , crops include 9 crops aforementioned, cropland pasture, and Other Crops.

184 2.2 P fertilizer application timing

185 By using the same approach as Cao et al. (2018), we estimated the P use at four application timings: fall
186 (previous year), spring (before planting), at planting, and after planting of 9 major crops in each state
187 from 1996 to 2013 from a statewide survey by USDA-ERS (2021) (Table S5). The raw data includes
188 crop-specific P fertilizer application rates and percentages of the fertilized cropland for each of the 4
189 timings in each state. We calculated the P fertilizer consumption at each timing by multiplying the
190 application rate with the area percentage and total cropland area. The fraction of the P fertilizer
191 consumption at each timing was used to split the annual P fertilizer application rate generated in Sect. 2.1
192 into 4 application timings. The years before 1996 and after 2013 were assumed to adopt the same
193 application timing strategy of years 1996 and 2013, respectively. We linearly interpolated the fractions of
194 missing years between 1996 and 2013. The average application timing fraction based on the fraction of
195 the abovementioned 8 major crops (excluding winter wheat), peanuts, and oats was used for cropland
196 pasture and Other Crops.

197 2.3 P fertilizer application method

198 USDA-ERS (2021) reported the percentages of fertilized cropland by 5 P application methods for each
199 crop during 1996-2013 based on a statewide survey (Table S5). For the years before 1996 and after 2013,
200 we assume farmers adopt the same application method strategy of years 1996 and 2013, respectively. Due
201 to the low adoption rate of the two mixed methods (Mixed method with incorporation and Mixed method
202 without incorporation, < 5%), we regrouped all 5 methods into 3 types: No Broadcast (e.g., chisel, knifed
203 in, and banded in), Incorporation (Broadcast with incorporation and Mixed method with incorporation),
204 and No Incorporation (Broadcast without incorporation and Mixed method without incorporation). We
205 calculated the fraction of fertilized cropland by each method to total fertilized cropland to split the annual
206 P application rate into 3 application methods. The average application method fraction of 8 major crops
207 (excluding winter wheat), peanuts, and oats was used for cropland pasture and other crops.

208 2.4 Developing gridded maps for characterizing P fertilizer management history

209 To characterize the variation in spatial P fertilizer management information, we assigned the state-level
210 (1850-1929) and county-level (1930-2021) crop-specific P fertilizer management data generated above to
211 1 km × 1 km gridded maps based on historical crop type distribution maps of the CONUS from 1850 to
212 2022 developed by Ye et al. (2024). It is worth noting that the P fertilizer management information
213 remains consistent for the same crop within a given county but varies across crops, while 1-km annual
214 crop type and area maps help add spatial heterogeneity of P fertilizer input within a county. The crop type

215 distribution maps were developed using satellite images and imputed county-level planting area of each
216 crop type from the USDA-National Agricultural Statistics Service (2022). We timed the gridded P
217 application rate with crop density maps to convert the unit of P use rate from g P per cropland area to g P
218 per land area. The crop density maps were reconstructed by integrating various sources of inventory and
219 satellite data, representing the percentage of cropland within each pixel. More details about the land cover
220 maps can be found in Ye et al. (2024). We then resampled the P fertilizer management maps a 4 km \times 4
221 km resolution for display purposes. To examine the regional discrepancy of P fertilizer management in
222 the study area, we partitioned the CONUS into 7 regions according to the US-FNCA (2022), including
223 the Northwest (NW), the Southwest (SW), the Northern Great Plains (NGP), the Southern Great Plains
224 (SGP), the Midwest (MW), the Northeast (NE), and the Southeast (SE).

225 3 Results

226 3.1 Magnitude and spatiotemporal patterns of P fertilizer uses

227 The amount of total P consumption in the US kept a moderate increase trend from 0.002 Tg P yr⁻¹ in 1850
228 to 0.3 Tg P yr⁻¹ in 1930, followed by a rapid rise to 2.2 Tg P yr⁻¹ by 1980. After a swift fall to 1.6 Tg P yr⁻¹
229 in 1987, P consumption experienced large inter-annual fluctuations, reaching 1.7 Tg P yr⁻¹ in 2022 (Fig. 2a).
230 In 1980, corn was the primary consumer of P fertilizer use (43% of national consumption), followed by
231 Other Crops (17%), soybean (11%), and winter wheat (10%). Conversely, other crop types accounted for
232 less than 10% of total use. In 2022, corn remained the dominant P fertilizer consumer (37%). However,
233 the shares of Other Crops and soybean increased to 23% and 19% in 2022, respectively, while the shares
234 of other crops diminished or remained stagnant (Fig. 2b & Fig S3). The P application rate on fertilized
235 areas rapidly increased from 0.9 g P m⁻² yr⁻¹ in 1940 to 2.5 g P m⁻² yr⁻¹ in 1979, then declined to 1.9 g P
236 m⁻² yr⁻¹ in 2022. In contrast, the P application rate on all cropland gradually increased from a low level of
237 0.3 g P m⁻² yr⁻¹ in 1940, reaching its peak at 1.2 g P m⁻² yr⁻¹ in 1979 and leveling off to 1.1 g P m⁻² yr⁻¹ in
238 2022. It exhibited a smaller range of fluctuations over time. Correspondingly, a dramatic elevation in P
239 application rate was found among various crops from 1940 to 1980, with increments ranging from 0.5 g P
240 m⁻² yr⁻¹ in durum wheat to 2.4 g P m⁻² yr⁻¹ in corn (Fig. 2c). From 1980 to 2020, large decreases in
241 application rates were found in corn, winter wheat, sorghum, and cropland pasture, while large increases
242 were found in spring wheat, rice, and durum wheat. As an increasing proportion of total cropland received
243 P fertilizer from 1940 to 2022, the gap between P fertilizer use rate that on all cropland and on fertilized
244 area has been narrowing for most crops except for soybean and cropland pasture.

245 Geospatially, as the P fertilizer consumption declined in the southeastern and eastern US and increased in
246 the Midwest and the Northern Great Plains since 1900, the hotspot of P use has shifted correspondingly
247 (Fig. 3-4). Low application rates ($< 0.4 \text{ g P m}^{-2} \text{ yr}^{-1}$) were common in the eastern US before 1940. The
248 application rates in the Midwest and west coast showed remarkable increases to above $1.0 \text{ g P m}^{-2} \text{ yr}^{-1}$ by
249 1980. After 2000, the east of the Northern Great Plains and the Midwest became the US hotspots,
250 displaying the most intensive P fertilizer use.

251 The P use in the Midwest and the Northern Great Plains is dominated by the nine major crops, whereas in
252 other regions, like the Northwest, Southwest, and Northeast, Other Crops account for a considerable share
253 of P use (Fig. 4). Owing to their wide cultivation, corn and soybean are the primary recipients of P
254 nationwide in the most recent decade (the 2020s). The intense P fertilizer use is concentrated in the
255 Midwest and the Northern Great Plains for corn ($> 0.8 \text{ g P m}^{-2} \text{ yr}^{-1}$) and for soybean ($0.5-1.2 \text{ g P m}^{-2} \text{ yr}^{-1}$)
256 (Fig. 5). In comparison, the P uses of the rest seven major crops are mainly distributed in different regions.
257 Low-level of application rate ($< 0.5 \text{ g P m}^{-2} \text{ yr}^{-1}$) is applied to cotton in the Southeast and the Southern
258 Great Plains. Sorghum is planted mainly in the Southern Great Plains with application rate $< 0.2 \text{ g P m}^{-2}$
259 yr^{-1} . Rice is highly concentrated along the rice-belt and part of California with a relatively high
260 application rate ($0.5-0.8 \text{ g P m}^{-2} \text{ yr}^{-1}$). P fertilizer applied to barley, spring wheat, and durum wheat is
261 distributed in the Northern Great Plains at a moderate rate ($0.3-0.8 \text{ g P m}^{-2} \text{ yr}^{-1}$). Winter wheat has a wider
262 spatial distribution with a low application rate, except for some regions in Kansas, Oklahoma, and
263 Montana ($0.3-0.5 \text{ g P m}^{-2} \text{ yr}^{-1}$).

264 3.2 Patterns of P fertilizer application timings

265 Nationwide, corn, soybean, and cotton producers favor fall and spring applications before planting.
266 Conversely, producers of all three wheats and barley apply a large portion of annual P fertilizer at
267 planting (Fig. 6). The timing of P application varies significantly across the CONUS (Fig. S4). Fall
268 application prevails in the Midwest and the Southern Great Plains ($> 40\%$), especially in Iowa ($> 60\%$)
269 and Illinois ($> 50\%$) (Fig. S4a). Relatively high portions of P fertilizer, up to 20%, are also applied in fall
270 in the Southeast, the eastern Northern Great Plains, and the Northwest. In comparison, P applied in spring
271 before planting dominates across the nation, especially in the east of the US (Fig. S4b). Intense P
272 application ($> 50\%$) at planting is prevalent in the Northeast, the Northwest, and both the north part of the
273 Northern Great Plains and the Southern Great Plains (Fig. S4c). Application after planting is the least
274 popular application timing ($< 20\%$) in the nation, which mainly occurs in the Southern Great Plains, the
275 Southeast, and some other states (e.g., Michigan, Nebraska, and Washington) (Fig. S4d). In contrast to the
276 wider distribution of different timing ratios, the hotspots of P application rate for 4 timings were found in
277 the Midwest, the Great Plains, and the rice-belt due to generally low application rate in other regions (Fig.

278 7). Intense P fertilizer was applied in the fall in the Midwest ($> 0.6 \text{ g P m}^{-2}$) (Fig. 7a), particularly in Iowa
279 and Illinois. Spring application was concentrated in the corn-belt and rice belt with rates greater than 0.5 g
280 P m^{-2} (Fig. 7b). Farmers in the Northern Great Plains, Kansas, Indiana, and Wisconsin favored application
281 at planting (Fig. 7c). After planting applications were minimal ($< 0.2 \text{ g P m}^{-2}$) in the rice-belt and
282 Nebraska (Fig. 7d).

283 3.3 Patterns of P fertilizer application methods

284 Nationally, broadcast application is popular among corn, soybean, cotton, and rice. In contrast, the non-
285 broadcast method (e.g., injection and side-dress) dominates among three wheat types, sorghum, and
286 barley (Fig. 6). The adoption of the P application method differs substantially among regions (Fig. S5).
287 Non-broadcast is predominantly used in Wisconsin, Michigan, the Great Plains, and the Northwest (Fig.
288 S5a). Broadcast with incorporation is widespread in the CONUS. However, the adoption rate is relatively
289 low ($< 40 \%$) in most of the region (Fig. S5b). In comparison, high P application by broadcast without
290 incorporation ($> 50\%$) is mainly distributed in the Midwest and the Southeast (Fig. S5c). Due to the
291 intense use of P fertilizer in the corn-belt and rice-belt, the hotspots of P application rate ($> 0.6 \text{ g P m}^{-2}$)
292 for 3 methods were found in various regions within these two belts (Fig. 8). Non-broadcast application is
293 prevalent in the Northern Great Plains, Kansas, and Minnesota (Fig. 8a). Intense application of P fertilizer
294 via broadcast with incorporation was observed in Minnesota and Illinois (Fig. 8b). The corn-belt and rice-
295 belt received most of their P fertilizer through broadcast without incorporation (Fig. 8c).

296 4 Discussion

297 4.1 Adjustments and improvements in state-level crop-specific P application rate

298 The national total P consumption obtained from the gap-filled bottom-up data in this study, summed from
299 all major crops, cropland pasture, permanent pasture, and non-farm use, aligns well with diverse top-
300 down data sources both in magnitude and inter-annual variations (Fig. S6). However, the bottom-up
301 source displays a larger P consumption of certain crops in certain states (e.g., corn in Illinois),
302 contributing to the divergences between these two approaches, notably after 2010 (Fig. S1&S2). These
303 overestimations may be caused by distorted crop-specific P application rate and/or fertilized area
304 percentage, derived from an inadequate survey pool. By modifying the surveyed crop-specific P
305 application rate at the state level, we matched the state total P consumption between bottom-up and top-
306 down approaches (Fig. 4). Despite the bottom-up source offering insights into cross-crop variations of P
307 application rate, it overlooks the inter-state variability. Based on the total P consumption and crop-
308 specific planting area in each county, we scaled the P application rate of each crop from state level to

309 county level, which portrays greater variability across counties. Particularly, the ranges are wider for corn,
310 soybean, winter wheat, sorghum, and barley ($0\text{--}6 \text{ g P m}^{-2} \text{ yr}^{-1}$) than those for spring wheat, cotton, rice,
311 durum, cropland pasture, and Other Crops (Fig. 9). In addition, downscaling state-level P application rate
312 to the county level augments the clarity of the geospatial pattern (Fig. 10). Top-down sources calculated
313 average P use rate in each county by dividing the total P consumption by all cropland areas, yielding in a
314 uniform value within each county but contrasting patterns across counties (Fig. 10a, d, g). Conversely,
315 our map based on bottom-up sources at the state level detailed spatial heterogeneity in intensive
316 agricultural regions, highlighting the cross-crop differences in P fertilizer use (Fig. 10b, e, h). By
317 combining these two sources, our map characterizes spatial variability across counties and crop types (Fig.
318 10c, f, j). It highlights the region with intense P use, indicated by the top-down source, but also
319 differentiates P application rates among crops within each county, indicated by the bottom-up source.
320 This is particularly evident in the southern part of Missouri and the boundary between Minnesota and
321 Dakotas (Fig. 10c&j). Accurate information on fertilizer management is essential for improving
322 agricultural sustainability (Dhillon et al., 2017). Different crops have distinct P needs, and tailoring P use
323 based on these needs can enhance the efficiency of P fertilizer utilization, maximizing crop yield while
324 mitigating environmental impacts (Sabo et al., 2021). Moreover, detailed information on crop-specific P
325 fertilizer management is important for assessing P losses attributed to runoff, erosion, and leaching,
326 contributing to the development of agricultural policies (Daloğlu et al., 2012). Given the significance of
327 crop-specific information, we advocate for the incorporation of cross-crop variations into the
328 development of P fertilizer datasets.

329 4.2 Temporal and spatial dynamics of P fertilizer management

330 Concurrent with the historical changes in US cropland since 1850, P use has experienced different stages
331 of change similar to nitrogen fertilizer use (Cao et al., 2018), influenced by various factors. From 1850 to
332 1940, the primary crops, corn, cotton, and winter wheat, were mainly concentrated in the eastern US. The
333 constrained production of phosphate rock and low demand by limited crop productivity contributed to the
334 low level of P consumption and application rate. As cropland expanded to the Midwest and the Great
335 Plains from 1940 to 1980, the consumption of P fertilizer peaked after a sharp increase, driven by the
336 rising application rate and percentage of fertilized area across various crops (Fig. 2-5). The major
337 contributors to P consumption during this period were corn in the Midwest and spring wheat and winter
338 wheat in the Great Plains. Following a brief decline in the 1980s due to improved fertilizer use efficiency,
339 increased use of animal manure, and farm crisis (Scholz et al., 2013; Bouwman et al., 2017; Zhang et al.,
340 2018), P consumption has stabilized with annual fluctuations primarily caused by changes in grain
341 demand and fertilizer prices (US-EPA, 2024). Throughout this period, P consumption continued to

342 decline in the eastern US while increasing or leveling off in other regions, driven by the continued
343 expansion of corn and soybean at the expense of other crops (Fig. 2-5). Another possible contributing
344 factor to the decline in P consumption is that the generous high-rate P application over a half-century has
345 raised soil P level so much that it made it possible to have lower application and still meet crop demands
346 (Sabo et al., 2021; Bian et al., 2022).

347 In the past decade, the average percentage of P fertilized area in the US was around 60% (including
348 cropland and pasture), notably lower than that for nitrogen fertilizer. (Fig. S7). The percentage of
349 fertilized area varies among crops, ranging from 42% for soybean to 89% for spring wheat. Estimating P
350 use efficiency and P losses in agricultural systems highly relies on the precise application rate of P
351 fertilizer (Solangi et al., 2023). It is noteworthy that, when we develop the environmental assessments that
352 are sensitive to P fertilizer application rates, the results might be biased without considering the fertilized
353 area percentage, especially for the crops with lower fertilized area percentages, such as soybean, cotton,
354 and sorghum.

355 Despite the application of P fertilizer after planting is strongly recommended for improving P fertilizer
356 use efficiency and minimizing P losses to the environment, this application timing remains the least
357 popular choice for major crops in the US. Notably, rice in the US rice belt, sorghum in the Southern Great
358 Plains, and cotton along the southwest coast were major contributors to post-planting applications. In
359 contrast, both fall and spring applications before planting, leaving P susceptible to loss (King et al., 2018),
360 have been widely adopted across multiple crops in the CONUS due to lower fertilizer prices, the
361 availability of labor, and the ease of operating equipment (Carver et al., 2022). Winter wheat in the
362 Southern Great Plain and the Northwest received over 40% of its annual P fertilizer in the fall, potentially
363 contributing to boosting yield. However, corn and soybean farmers in the Midwest, cotton farmers in the
364 Southwest and north of Texas, and sorghum farmers in the Southern Great Plains favor fall application,
365 implying a high potential risk for P loss (Nelson et al., 2023; Yuan et al., 2013). Except for winter wheat,
366 spring wheat, and durum wheat, all other crops receive more than a quarter of their annual P fertilizer in
367 spring before application. Despite being closer to the planting date, the P fertilizer applied during early
368 spring may be prone to loss via runoff, erosion, and leaching during intense rainfall (Williams and King,
369 2020; Algoazany et al., 2007). Application at planting is more prevalent among winter wheat and spring
370 wheat in the Southern Great Plains and the Northern Great Plains, respectively.

371 Non-broadcast application is commonly found for winter wheat, durum wheat, and barley in the
372 Northwest and Northern Great Plains, and for spring wheat, cotton, and sorghum in the Southern Great
373 Plains. In addition, corn farmers in Wisconsin, Michigan, and the Northeast apply most of their annual P
374 fertilizer using the non-broadcast method. The non-broadcast has been considered as a more conservative

375 management to prevent P loss (Carver et al., 2022; Smith et al., 2016). However, broadcasting, including
376 post-incorporation and non-incorporation, remains widespread across the US, particularly in the Midwest
377 (hotspot for P fertilizer use) and the Southeast.

378 4.3 Uncertainty

379 The uncertainties of this database are mainly from several aspects: (1) The reconstructed P fertilizer
380 management data extends back to 1850. However, compared to the national P use information, finer scale
381 sources at the state- and county-level are only available from the 1930s onwards. Due to absence of
382 earlier data, we interpolated the state-level P fertilizer consumption use back to 1850 by assuming they
383 have the consistent interannual variations with the national data. This approach to addressing the
384 temporal gaps may introduce larger uncertainties in the state-level temporal trajectories before
385 the 1930s; (2) Limited information on P use in cropland pasture and permanent pasture at finer temporal
386 and spatial resolution, contributing to uncertain estimates for Other Crops; (3) Adjustments were made on
387 crop-specific P fertilizer use rates at the state level to reconcile top-down and bottom-up data sources.
388 However, the paucity of detailed crop-specific information may introduce biases in our adjustments made
389 for certain crops; (4) The composition of the Other Crops differs across states. All crop types under Other
390 Crops within each state receive equal P application rate, which may bias the application rate for some
391 crop types; (5) Due to the lack of finer spatial resolution information, we assumed the crop-specific P
392 application timing and method are identical within each state. However, the spatial heterogeneity of
393 application timing and method may be overlooked. Therefore, a finer resolution of spatial and temporal
394 survey capturing crop-specific P application rate, timing, and method will be invaluable for enhancing our
395 understanding of the spatiotemporal patterns of P fertilizer management information in the US; (6) Due to
396 the lack of information on where croplands are fertilized, we assumed all the croplands in each state were
397 fertilized but at a lower rate by multiplying the rates in the fertilized cropland with the percentage of
398 fertilized cropland. This could lead to underestimation of P fertilizer use rate in fertilized areas and
399 overestimation in non-fertilized area, especially when the state-level fertilized cropland percentage is low.

400 5 Data availability

401 The P fertilizer management dataset is publicly available via ZENODO at
402 <https://doi.org/10.5281/zenodo.10700822> (Cao et al., 2024).

403 **6 Conclusion**

404 By harmonizing various data sources, we reconstructed a long-term spatially explicit P fertilizer
405 management dataset at 4 km \times 4 km resolution from 1850 to 2022 in the CONUS. We discussed the
406 divergence between top-down (total P consumption) and bottom-up (crop-specific P fertilizer use) data
407 sources, underscoring the necessity to improve crop-specific management information in future surveys.
408 The newly developed dataset, leveraging the strengths of both data sources, highlights cross-crop
409 variabilities in the long-term use of P fertilizer among counties. The results reveal a substantial increase in
410 P fertilizer consumption and application rate from 1850 to 2022, notably during 1940-1980. However, the
411 magnitude and long-term changing trend differed significantly across crop types. It is worth noting that
412 approximately 40% of cropland in the US does not receive P fertilizer inputs. Since 1850, the hotspots of
413 P fertilizer use have shifted from the southeastern and eastern US to the Midwest and the Great Plains,
414 driven by changes in cropland distribution and P fertilizer application rate across different crop types.
415 Additionally, P fertilizer application timing and method vary substantially across crop types and regions.
416 Corn, soybean, and cotton in the Midwest and the Southeast receive over 60% of their annual P fertilizer
417 at pre-planting and through broadcasting. Conversely, winter wheat, spring wheat, durum wheat, and
418 barley in the Great Plains and the Northwest predominantly receive their annual P fertilizer at- and post-
419 planting, and via non-broadcasting. Promoting efficient P fertilizer management, encompassing the proper
420 application rate, timing, and method, is essential for enhancing P use efficiency and thus contributes to
421 economic, social, and environmental sustainability and profitability.

422 **Author contributions**

423 CL, PC, and BY conceptualized the paper and developed the methodology. PC and BY reconstructed the
424 dataset. PC and BY prepared the manuscript with contributions from all the co-authors.

425 **Competing interests**

426 At least one of the (co-)authors is a member of the editorial board of Earth System Science Data.

427 **Acknowledgments**

428 This work is supported by the Iowa Nutrient Research Center, the ISU College of Liberal Arts and
429 Sciences Dean's Faculty Fellowship, and the NSF CAREER grant (1945036).

430 **References**

431 Alexander, R. B. and Smith, R. A.: County-level estimates of nitrogen and phosphorus fertilizer use in the
432 United States, 1945 to 1985, US Department of the Interior, US Geological Survey, 1990.

433 Algoazany, A. S., Kalita, P. K., Czapar, G. F., and Mitchell, J. K.: Phosphorus Transport through
434 Subsurface Drainage and Surface Runoff from a Flat Watershed in East Central Illinois, USA, *J Environ*
435 *Qual*, 36, 681–693, [https://doi.org/https://doi.org/10.2134/jeq2006.0161](https://doi.org/10.2134/jeq2006.0161), 2007.

436 Association of American Plant Food Control Officials (AAPFCO): Commercial Fertilizers, available at:
437 <http://www.aapfco.org/publications.html>, last access: 20 December 2021, 2022.

438 Bian, Z., Pan, S., Wang, Z., Yao, Y., Xu, R., Shi, H., Kalin, L., Anderson, C., Justic, D., Lohrenz, S., and
439 Tian, H.: A Century-Long Trajectory of Phosphorus Loading and Export From Mississippi River Basin to
440 the Gulf of Mexico: Contributions of Multiple Environmental Changes, *Global Biogeochem Cycles*, 36,
441 e2022GB007347, [https://doi.org/https://doi.org/10.1029/2022GB007347](https://doi.org/10.1029/2022GB007347), 2022.

442 Bouwman, A. F., Beusen, A. H. W., Lassaletta, L., Van Apeldoorn, D. F., Van Grinsven, H. J. M., Zhang,
443 J., & Ittersum Van, M. K.: Lessons from temporal and spatial patterns in global use of N and P fertilizer
444 on cropland, *Sci Rep* 7, 40366, <https://doi.org/10.1038/srep40366>, 2017.

445 Bouwman, L., Goldewijk, K. K., Van Der Hoek, K. W., Beusen, A. H. W., Van Vuuren, D. P., Willems,
446 J., Rufino, M. C., and Stehfest, E.: Exploring global changes in nitrogen and phosphorus cycles in
447 agriculture induced by livestock production over the 1900-2050 period, *Proc Natl Acad Sci U S A*, 110,
448 20882–7, <https://doi.org/10.1073/pnas.1012878108>, 2013.

449 Brakebill, J. W. and Gronberg, J. M.: County-level estimates of nitrogen and phosphorus from
450 commercial fertilizer for the conterminous United States, 1987-2012, US Geological Survey Data release,
451 2017.

452 Cao, P., Lu, C., and Yu, Z.: Historical nitrogen fertilizer use in agricultural ecosystems of the contiguous
453 United States during 1850–2015: application rate, timing, and fertilizer types, *Earth Syst Sci Data*, 10,
454 969–984, <https://doi.org/10.5194/essd-10-969-2018>, 2018.

455 Cao, P., Yi, B., Bilotto, F., Gonzalez Fischer, C., Herrero, M., and Lu, C.: Annual crop-specific
456 management history of phosphorus fertilizer input (CMH-P) in the croplands of United States from 1850
457 to 2022: Application rate, timing, and method, *Zenodo*, <https://doi.org/10.5281/zenodo.10700822>, 2024.

458 Carver, R. E., Nelson, N. O., Roozeboom, K. L., Kluitenberg, G. J., Tomlinson, P. J., Kang, Q., and Abel,
459 D. S.: Cover crop and phosphorus fertilizer management impacts on surface water quality from a no-till
460 corn-soybean rotation, *J Environ Manage*, 301, 113818,
461 <https://doi.org/https://doi.org/10.1016/j.jenvman.2021.113818>, 2022.

462 Cordell, D., Drangert, J. O., and White, S.: The story of phosphorus: Global food security and food for
463 thought, *Global Environmental Change*, 19, 292–305, <https://doi.org/10.1016/j.gloenvcha.2008.10.009>,
464 2009.

465 Daloğlu, I., Cho, K. H., and Scavia, D.: Evaluating Causes of Trends in Long-Term Dissolved Reactive
466 Phosphorus Loads to Lake Erie, *Environ Sci Technol*, 46, 10660–10666,
467 <https://doi.org/10.1021/es302315d>, 2012.

468 Dhillon, J., Torres, G., Driver, E., Figueiredo, B., and Raun, W. R.: World Phosphorus Use Efficiency in
469 Cereal Crops, *Agron J*, 109, 1670–1677, <https://doi.org/https://doi.org/10.2134/agronj2016.08.0483>, 2017.

470 Falcone, J. A.: Estimates of county-level nitrogen and phosphorus from fertilizer and manure from 1950
471 through 2017 in the conterminous United States, Open-File Report, Reston, VA, 20 pp.,
472 <https://doi.org/10.3133/ofr20201153>, 2021.

473 FAO (Food and Agriculture Organization of the United Nations): FAO online database, available at:
474 <http://www.fao.org/faostat/en/#data/RF>, last access: 10 August 2021, 2021.

475 Glibert, P. M.: From hogs to HABs: impacts of industrial farming in the US on nitrogen and phosphorus
476 and greenhouse gas pollution, Springer International Publishing, 139–180 pp.,
477 <https://doi.org/10.1007/s10533-020-00691-6>, 2020.

478 King, K. W., Williams, M. R., LaBarge, G. A., Smith, D. R., Reutter, J. M., Duncan, E. W., and Pease, L.
479 A.: Addressing agricultural phosphorus loss in artificially drained landscapes with 4R nutrient
480 management practices, *J Soil Water Conserv*, 73, 35, <https://doi.org/10.2489/jswc.73.1.35>, 2018.

481 Lu, C. and Tian, H.: Global nitrogen and phosphorus fertilizer use for agriculture production in the past
482 half century: Shifted hot spots and nutrient imbalance, *Earth Syst Sci Data*, 9, 181–192,
483 <https://doi.org/10.5194/essd-9-181-2017>, 2017.

484 Mehring, A. L., Adams, J. R., and Jacob, K. D.: Statistics on Fertilizers and Liming Materials in the
485 United States, USDA-Agricultural Research Service, Statistical Bulletin No. 191, Washington, D.C.,
486 USA, 1957.

487 Nelson, N. O., Roozeboom, K. L., Yeager, E. A., Williams, J. R., Zerger, S. E., Kluitenberg, G. J.,
488 Tomlinson, P. J., Abel, D. S., and Carver, R. E.: Agronomic and economic implications of cover crop and
489 phosphorus fertilizer management practices for water quality improvement, *J Environ Qual*, 52, 113–125,
490 <https://doi.org/https://doi.org/10.1002/jeq2.20427>, 2023.

491 Nutrient Use Geographic Information System (NuGIS): No Title, available at: <https://nugis.tfi.org/>, last
492 access: 20 December 2022, 2022.

493 Sabo, R. D., Clark, C. M., Gibbs, D. A., Metson, G., Todd, M. J., LeDuc, S. D., Greiner, D., Fry, M. M.,
494 Polinsky, R., Yang, Q., Tian, H., and Compton, J. E.: Phosphorus Inventory for the Conterminous United
495 States (2002-2012), *J Geophys Res Biogeosci*, n/a, e2020JG005684,
496 <https://doi.org/https://doi.org/10.1029/2020JG005684>, 2021.

497 Samreen, S.: Phosphorus Fertilizer: The Original and Commercial Sources, edited by: Zhang, S. K. E.-T.,
498 IntechOpen, Rijeka, Ch. 6, <https://doi.org/10.5772/intechopen.82240>, 2019.

499 Scholz, R. W., Ulrich, A. E., Eilittä, M., & Roy, A.: Sustainable use of phosphorus: a finite resource, *Sci.*
500 *Total Environ.*, 461, 799-803, 2013.

501 Sharpley, A., Jarvie, H. P., Buda, A., May, L., Spears, B., and Kleinman, P.: Phosphorus Legacy:
502 Overcoming the Effects of Past Management Practices to Mitigate Future Water Quality Impairment, *J*
503 *Environ Qual*, 42, 1308–1326, <https://doi.org/https://doi.org/10.2134/jeq2013.03.0098>, 2013.

504 Smith, D. R., Harmel, R. D., Williams, M., Haney, R., and King, K. W.: Managing Acute Phosphorus
505 Loss with Fertilizer Source and Placement: Proof of Concept, *Agricultural & Environmental Letters*, 1,
506 150015, <https://doi.org/https://doi.org/10.2134/ael2015.12.0015>, 2016.

507 Solangi, F., Zhu, X., Khan, S., Rais, N., Majeed, A., Sabir, M. A., Iqbal, R., Ali, S., Hafeez, A., Ali, B.,
508 Ercisli, S., and Kayabasi, E. T.: The Global Dilemma of Soil Legacy Phosphorus and Its Improvement
509 Strategies under Recent Changes in Agro-Ecosystem Sustainability, *ACS Omega*, 8, 23271–23282,
510 <https://doi.org/10.1021/acsomega.3c00823>, 2023.

511 Stackpoole, S. M., Stets, E. G., and Sprague, L. A.: Variable impacts of contemporary versus legacy
512 agricultural phosphorus on US river water quality, *Proc Natl Acad Sci U S A*, 116, 20562–20567,
513 <https://doi.org/10.1073/pnas.1903226116>, 2019.

514 Swaney, D. P. and Howarth, R. W.: Phosphorus use efficiency and crop production: Patterns of regional
515 variation in the United States, 1987–2012, *Science of the Total Environment*, 685, 174–188,
516 <https://doi.org/10.1016/j.scitotenv.2019.05.228>, 2019.

517 Tilman, D., Cassman, K., Matson, P., Naylor, R., and Polasky, S.: Agricultural sustainability and
518 intensive production practices, *Nature* 418, 671–677, <https://doi.org/10.1038/nature01014>, 2002.

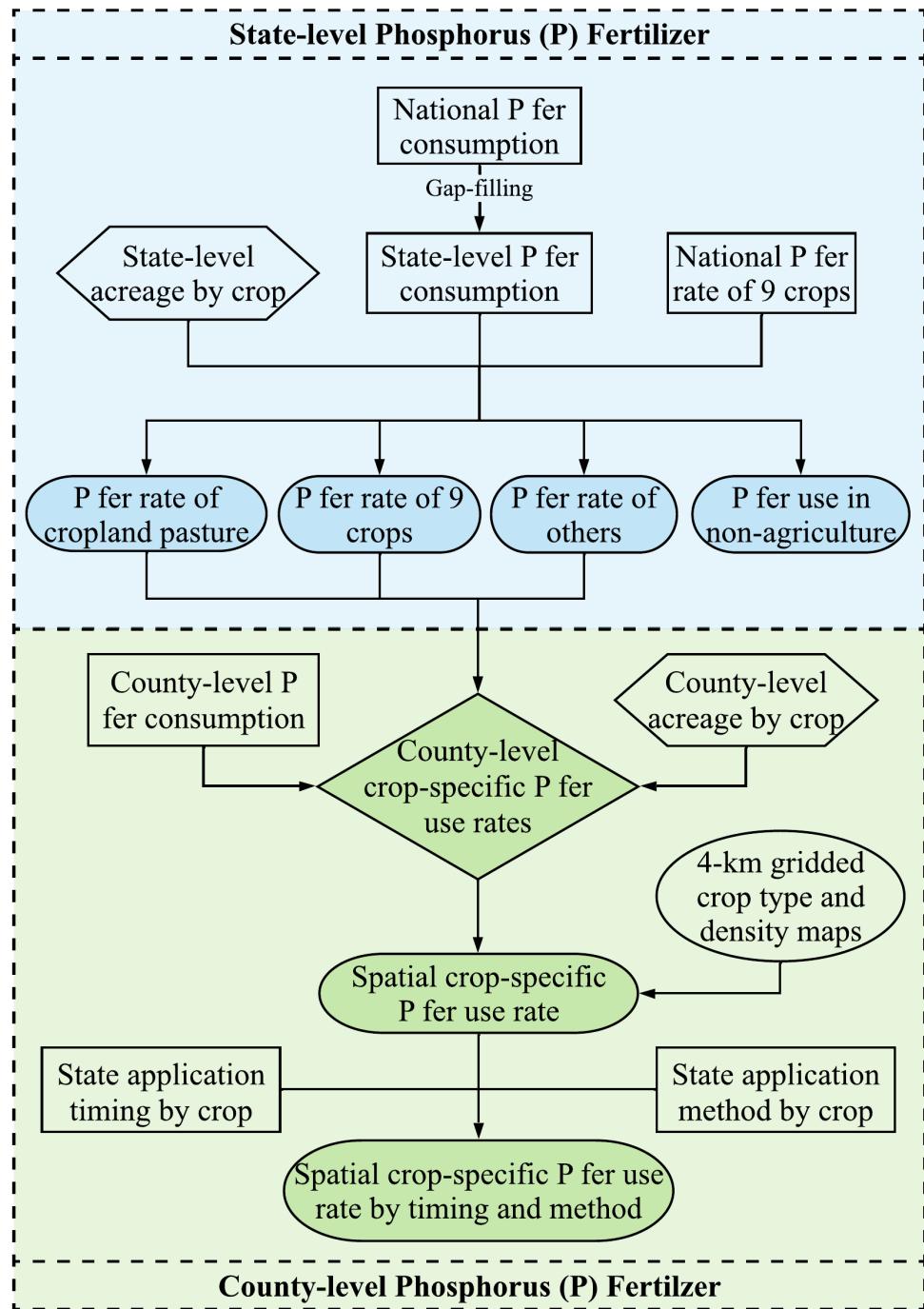
519 U.S. Fourth National Climate Assessment: No Title, available at: <http://www.globalchange.gov/nca4>, last
520 access: 20 December 2022, 2022.

521 USDA (U.S. Department of Agriculture): Consumption of Commercial Fertilizers, Primary Plant
522 Nutrients, and Micronutrients, 1850–1969, USDA-Statistical Reporting Service, Crop Reporting Board,
523 Statistical Bulletin No. 472, Washington, D.C., USA, 1971.

524 Tailored Reports: Crop Production Practices: <https://data.ers.usda.gov/reports.aspx?ID=17883>.

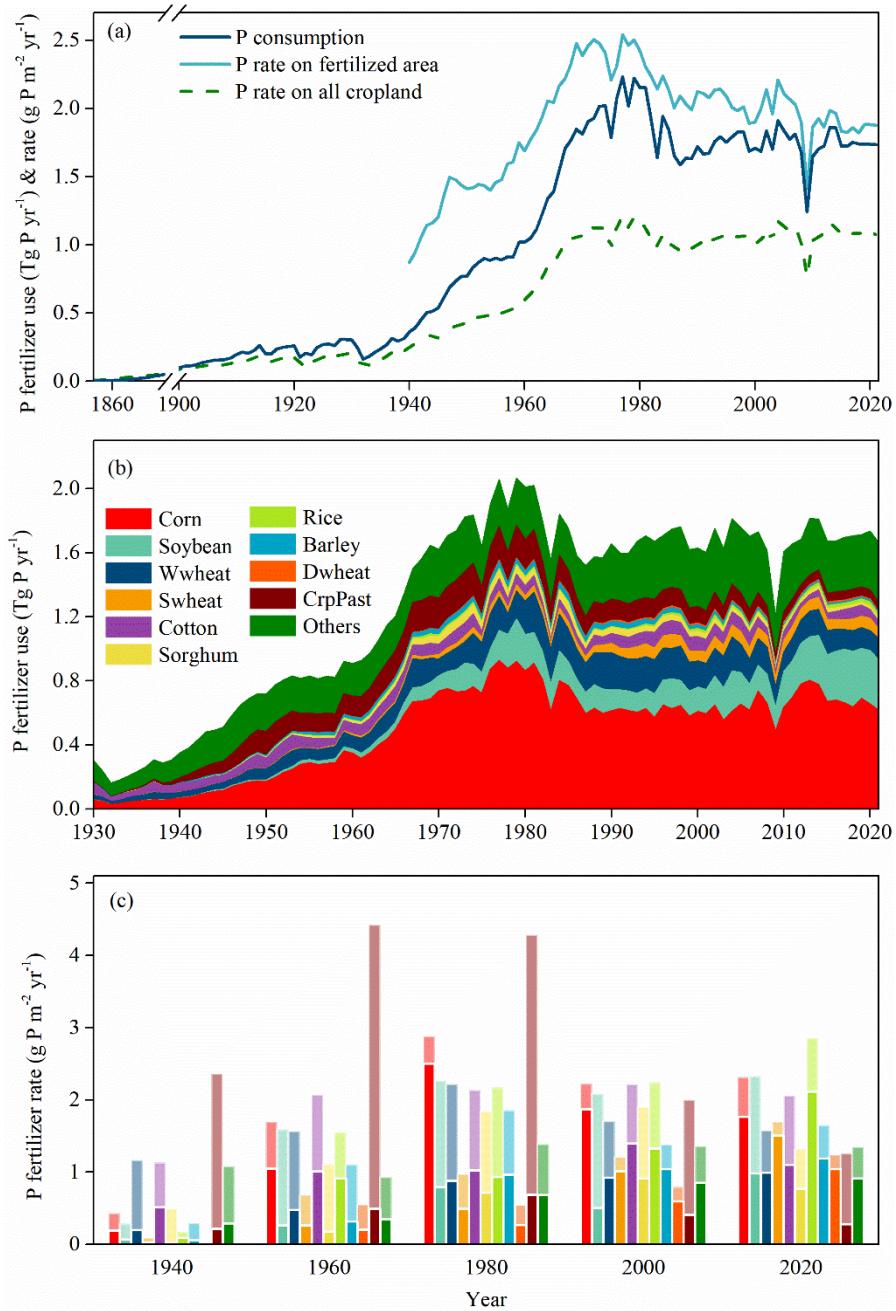
525 USDA-ERS (U.S. Department of Agriculture-Economic Research Service): Fertilizer Use and Price,
526 available at: <https://www.ers.usda.gov/data-products/arms-farm-financial-and-cropproduction-practices/>
527 (last access: 10 August 2021), 2019.

528 USDA-NASS (U.S. Department of Agriculture-National Agricultural Service), S.: Agricultural Chemical
529 Use Program, available at: https://www.nass.usda.gov/Surveys/Guide_to_NASS_Surveys/Chemical_Use/index.php, last access: 17 August 2021, 2021.

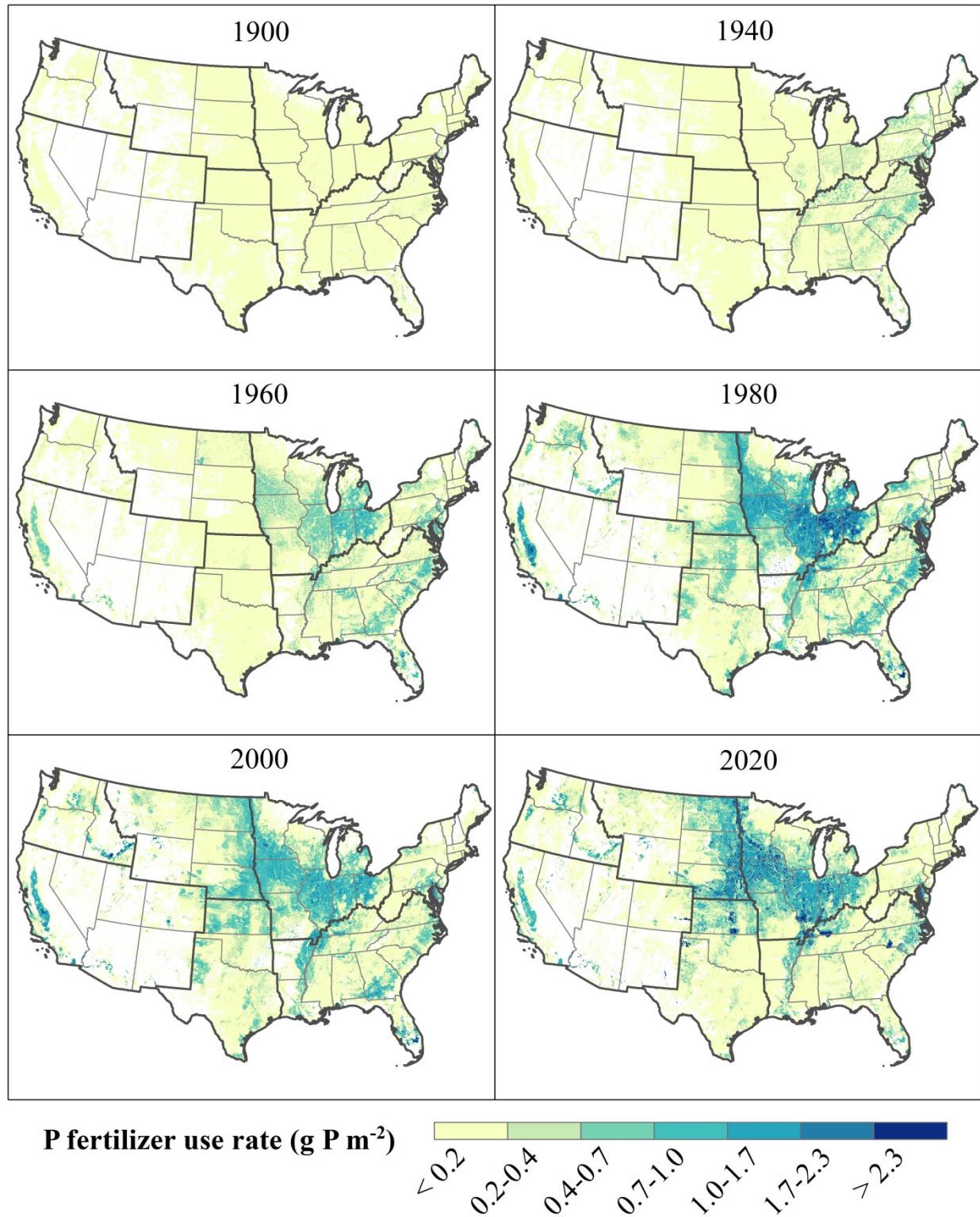

531 Williams, M. R. and King, K. W.: Changing Rainfall Patterns Over the Western Lake Erie Basin (1975–
532 2017): Effects on Tributary Discharge and Phosphorus Load, *Water Resour Res*, 56, e2019WR025985,
533 <https://doi.org/https://doi.org/10.1029/2019WR025985>, 2020.

534 Yuan, Y., Locke, M. A., Bingner, R. L., and Rebich, R. A.: Phosphorus losses from agricultural
535 watersheds in the Mississippi Delta, *J Environ Manage*, 115, 14–20,
536 <https://doi.org/https://doi.org/10.1016/j.jenvman.2012.10.028>, 2013.

537 Zhang, J., Gilbert, D., Gooday, A. J., Levin, L., Naqvi, S. W. A., Middelburg, J. J., Scranton, M., Ekau,
538 W., Peña, A., Dewitte, B., Oguz, T., Monteiro, P. M. S., Urban, E., Rabalais, N. N., Ittekkot, V., Kemp,
539 W. M., Ulloa, O., Elmgren, R., Escobar-Briones, E., and Van der Plas, A. K.: Natural and human-induced
540 hypoxia and consequences for coastal areas: synthesis and future development, *Biogeosciences*, 7, 1443–
541 1467, <https://doi.org/10.5194/bg-7-1443-2010>, 2010.


542 Zhang, J., Cao, P., and Lu, C.: Half-Century History of Crop Nitrogen Budget in the Conterminous
543 United States: Variations Over Time, Space and Crop Types, *Global Biogeochem Cycles*, 35,
544 e2020GB006876, <https://doi.org/https://doi.org/10.1029/2020GB006876>, 2021.

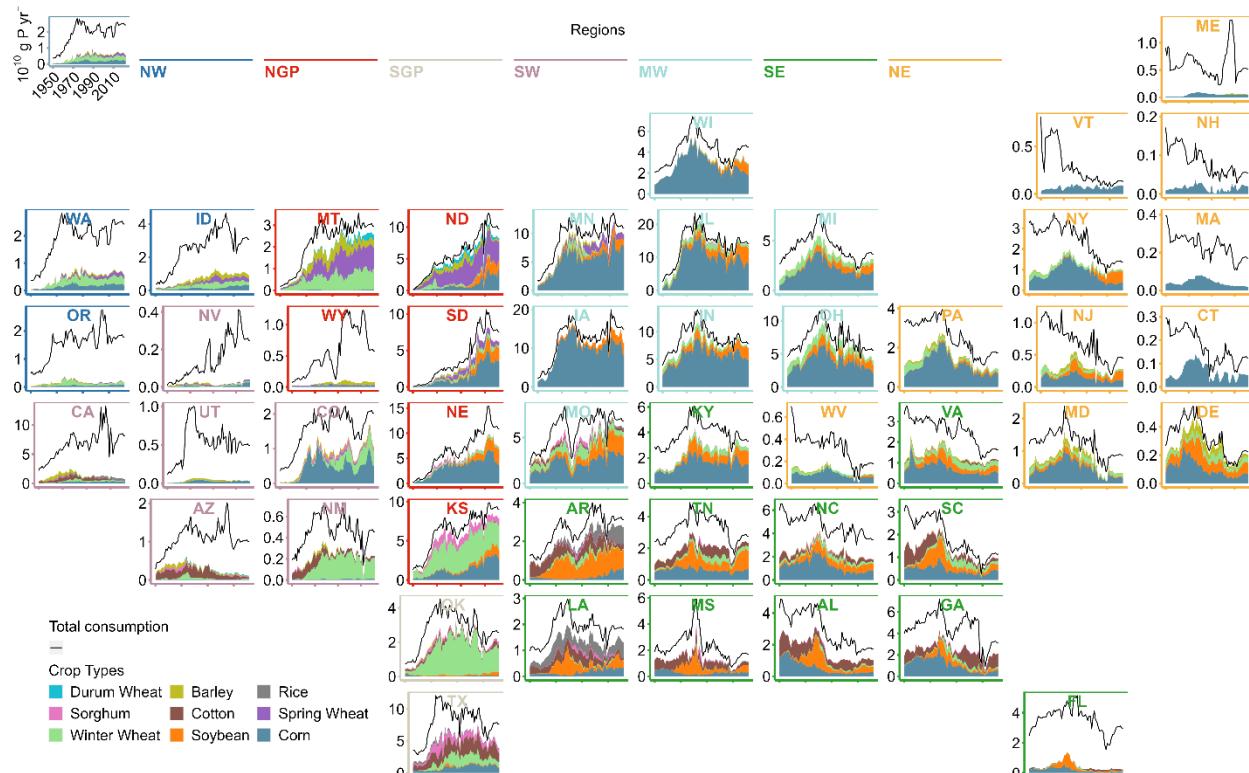
545 Zhang, W., & Tidgren, K.: The current farm downturn vs the 1920s and 1980s farm crises: An economic
546 and regulatory comparison, *Agric. Econ. Rev.*, 78(4), 396-411, 2018.


547

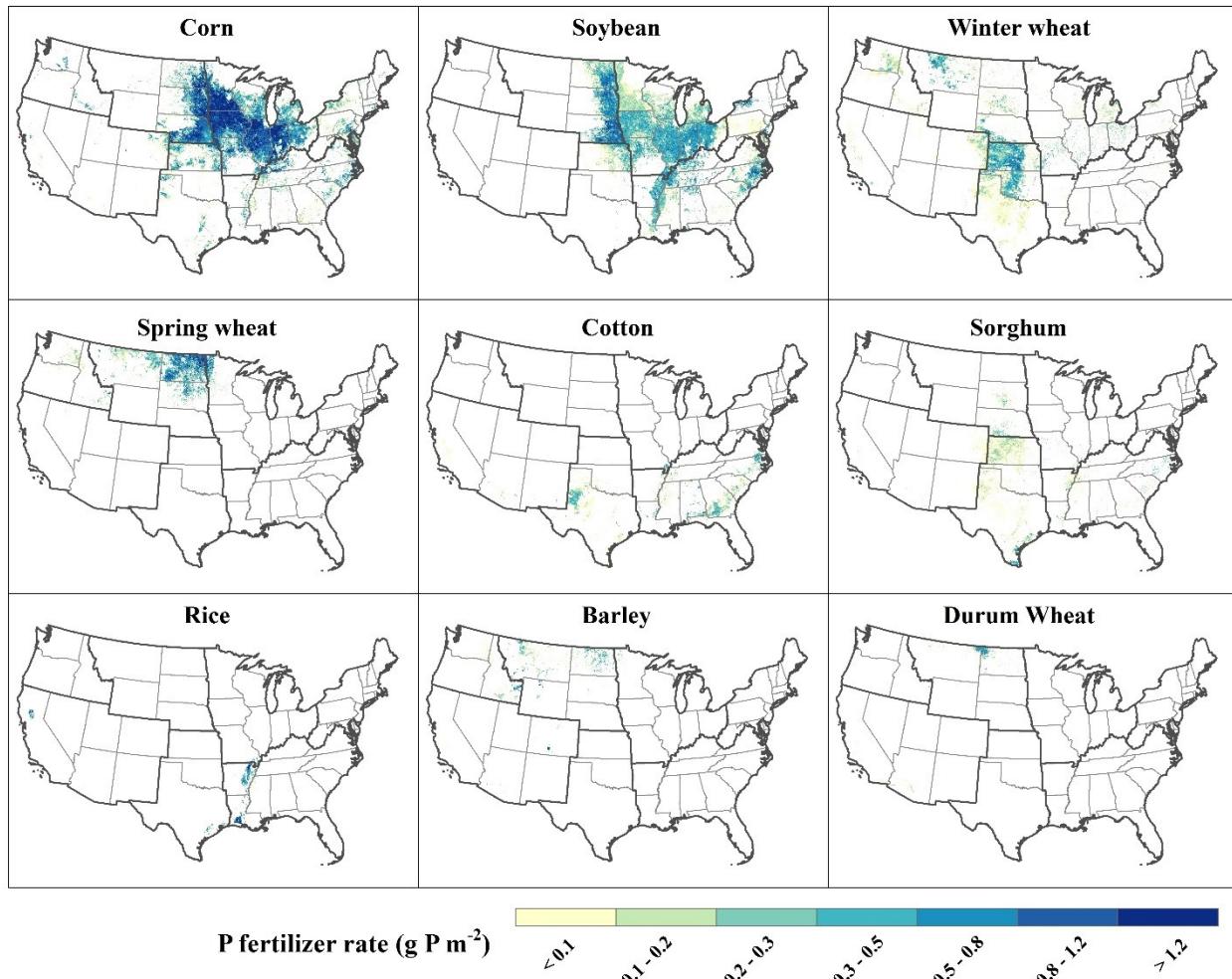
548 Figure 1. Diagram for P fertilizer management dataset development. The upper blue box represents the
 549 development of state-level crop-specific P fertilizer application rate based on the bottom-up dataset. The
 550 lower green box represents the development of county-level P fertilizer application rate development by
 551 reconciling the top-down and bottom-up dataset.

552

553 Figure 2. Time-series of P fertilizer consumption and average application rates for all crops (a), and P
 554 fertilizer consumption (b) and application rates (c) for 11 specific crops in the contiguous US. All
 555 cropland is the total planting area, while the fertilized area is the proportion of the cropland that receives
 556 P fertilizer. In panel (c), light-colored bars denote the application rate on fertilized area and dark-colored
 557 bars show the modified application rate with the assumption that the county-level P fertilizer consumption
 558 was distributed on all the croplands. Both start from zero on the y-axis.

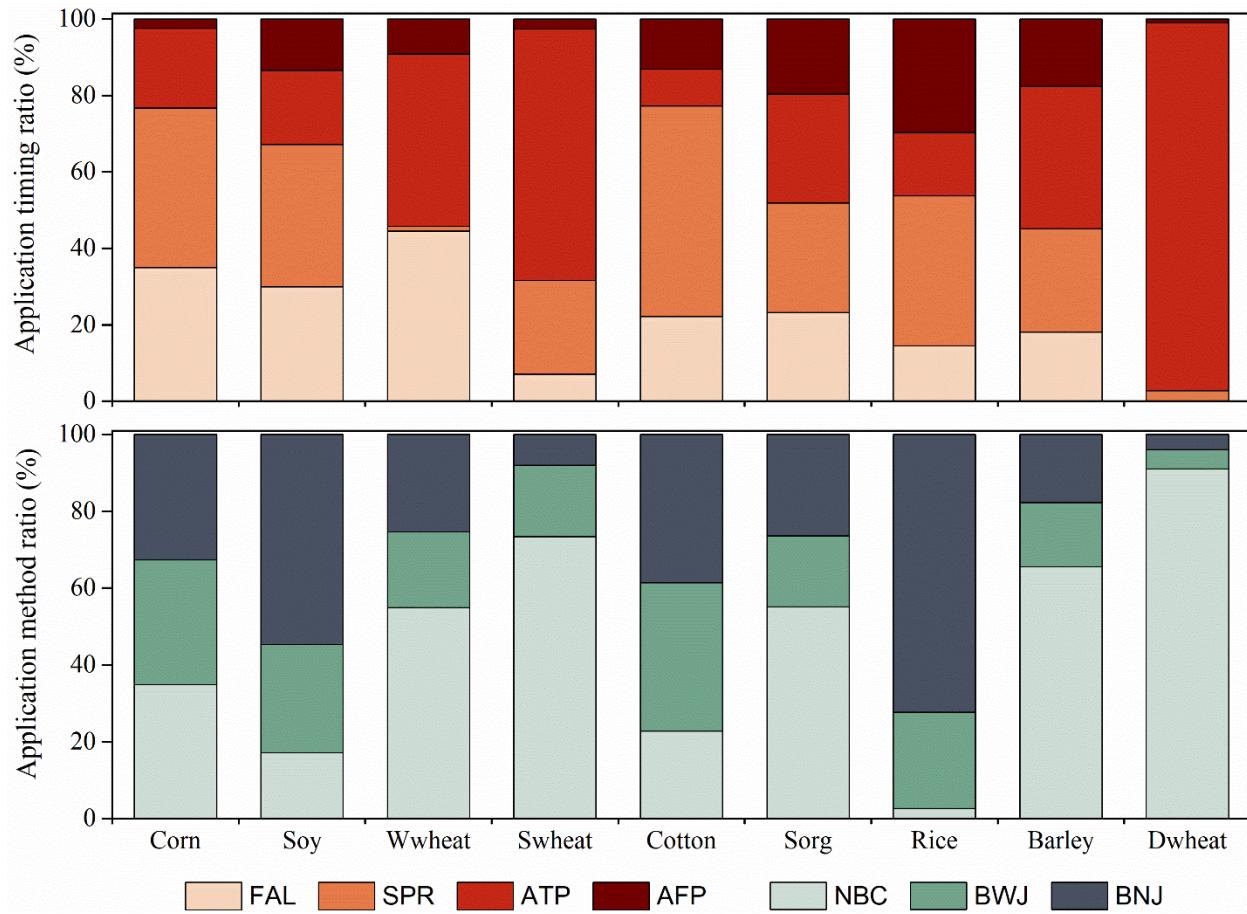


559

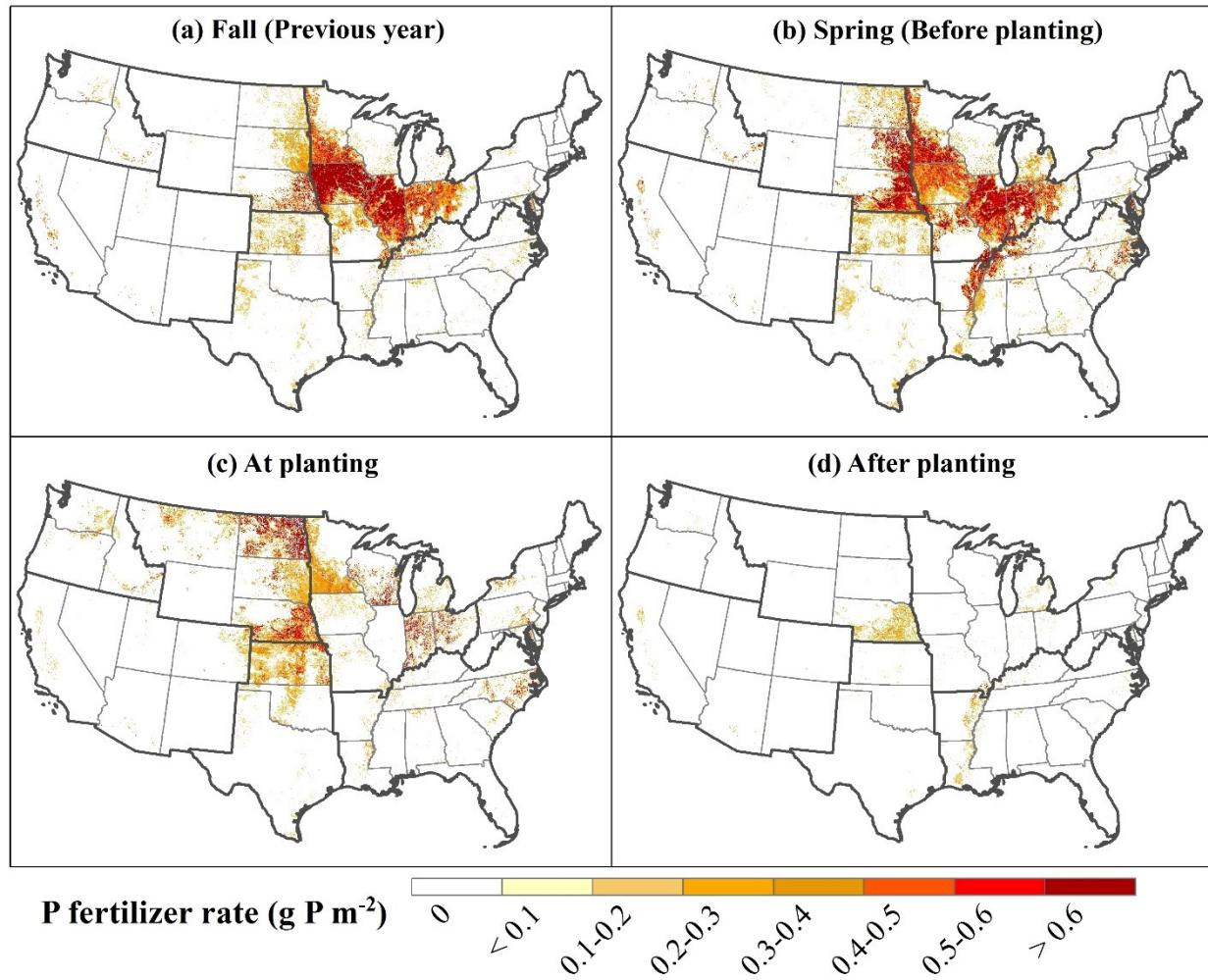

560 Figure 3. Spatial distribution of P fertilizer application rates in the 1990s, 1940s, 1960s, 1980s, 2000s,
 561 and 2020s in the contiguous US at a resolution of 4-km x 4-km, with regions framed as NW (Northwest),
 562 NGP (Northern Great Plains), SGP (Southern Great Plains), SW (Southwest), MW (Midwest), SE

563 (Southeast), and NE (Northeast). The maps generated for 1900, 1940, and 1960 relied on state-level crop-
 564 specific data. Subsequent maps, post-1960, utilized county-level crop-specific data. The values on the
 565 map represent the P fertilizer use rate on all land areas and can be converted to P fertilizer use rate on per
 566 unit cropland area by lining up with our crop type and area database (Ye et al., 2024)

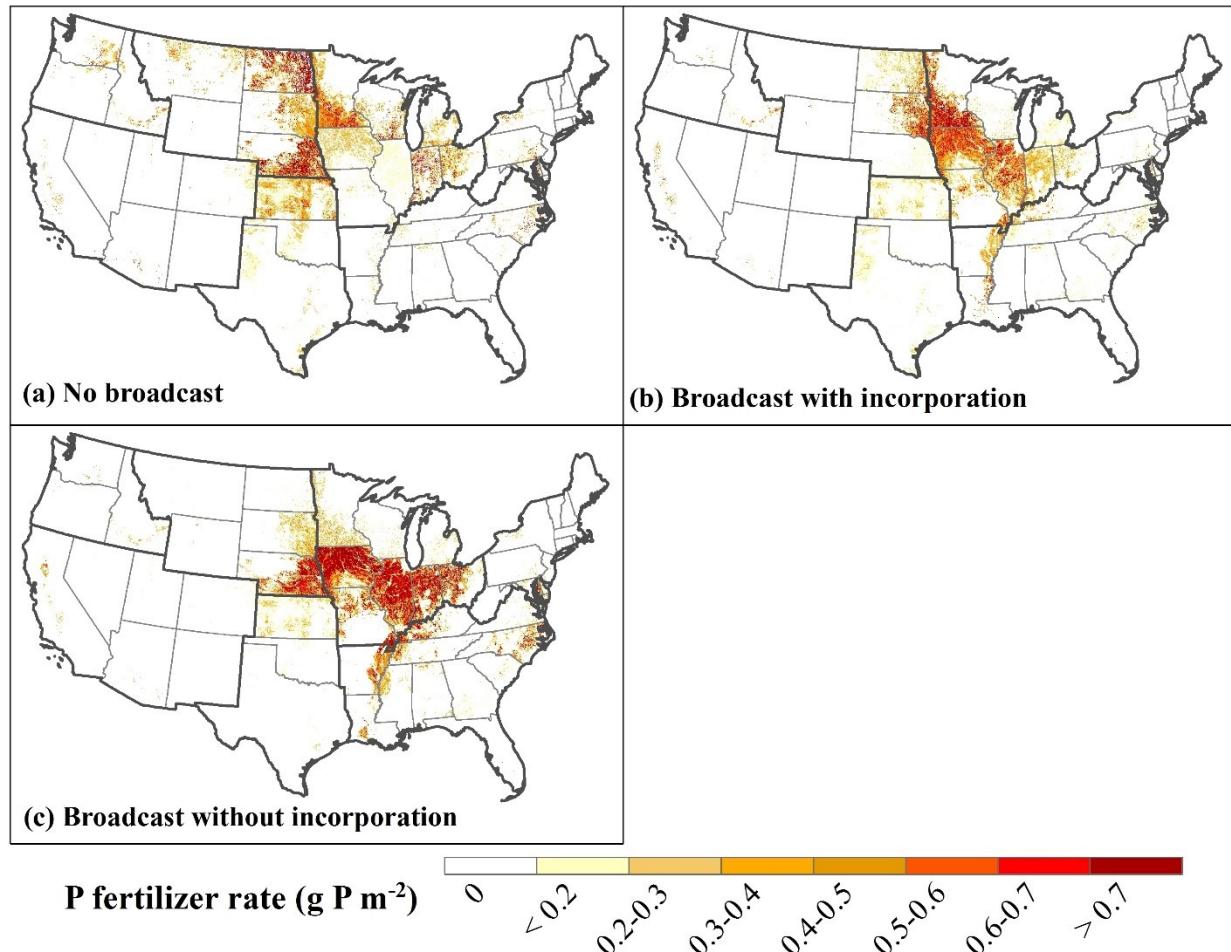
567



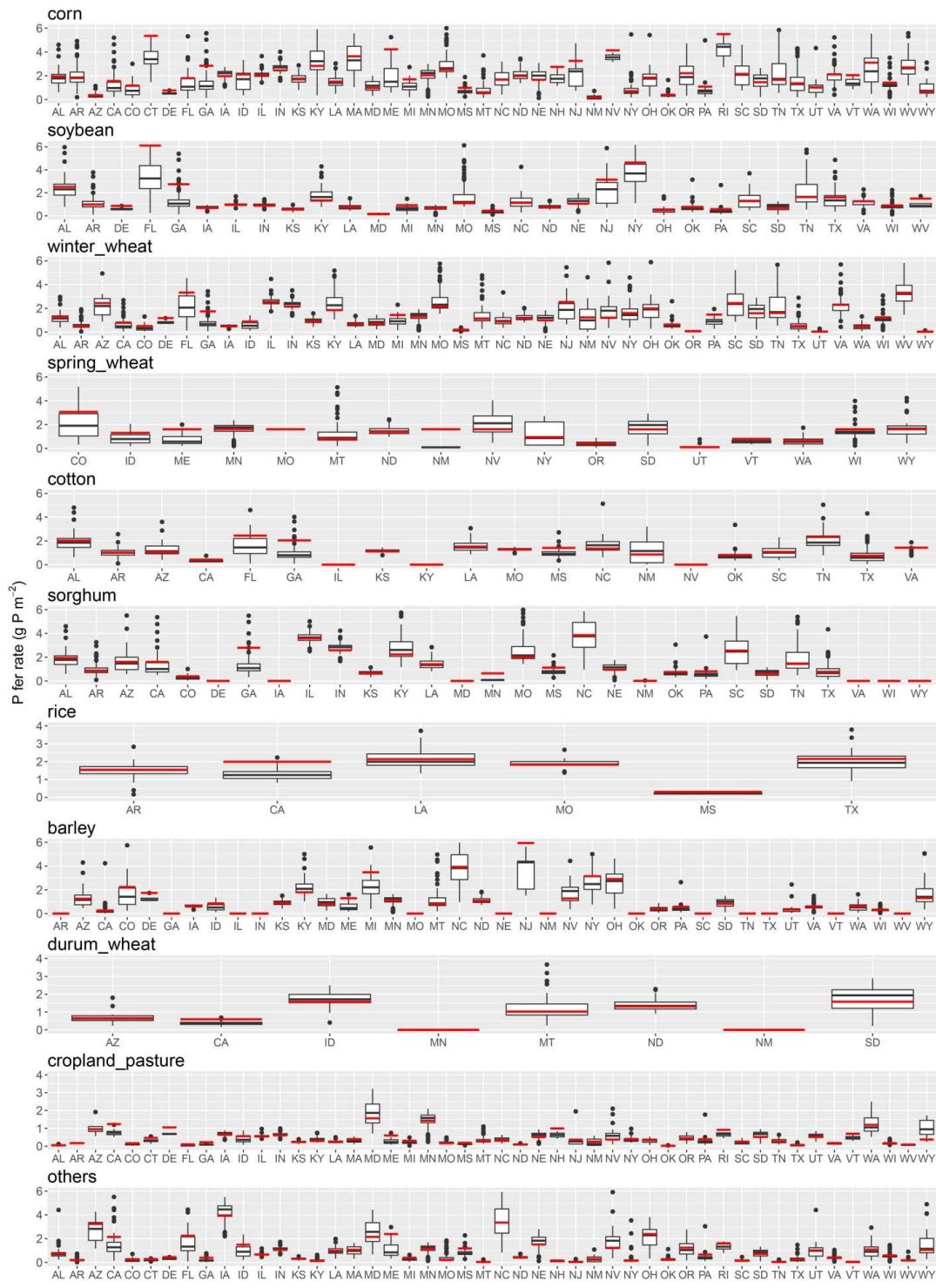
568 Figure 4. Time-series of P fertilizer consumption by each state and 9 major crops from 1950 to 2022 in
 569 the contiguous US. The top-left figure illustrates the scales of x-axis and y-axis. The solid black line in
 570 each subplot represents total P fertilizer consumption, and the stacked area represents P fertilizer
 571 consumption by different crops. NW is the Northwest, NGP is the Northern Great Plains, SGP is the
 572 Southeast, SW is the Southwest, MW is the Midwest, SE is the Northeast, NE is the
 573 Northeast.


574

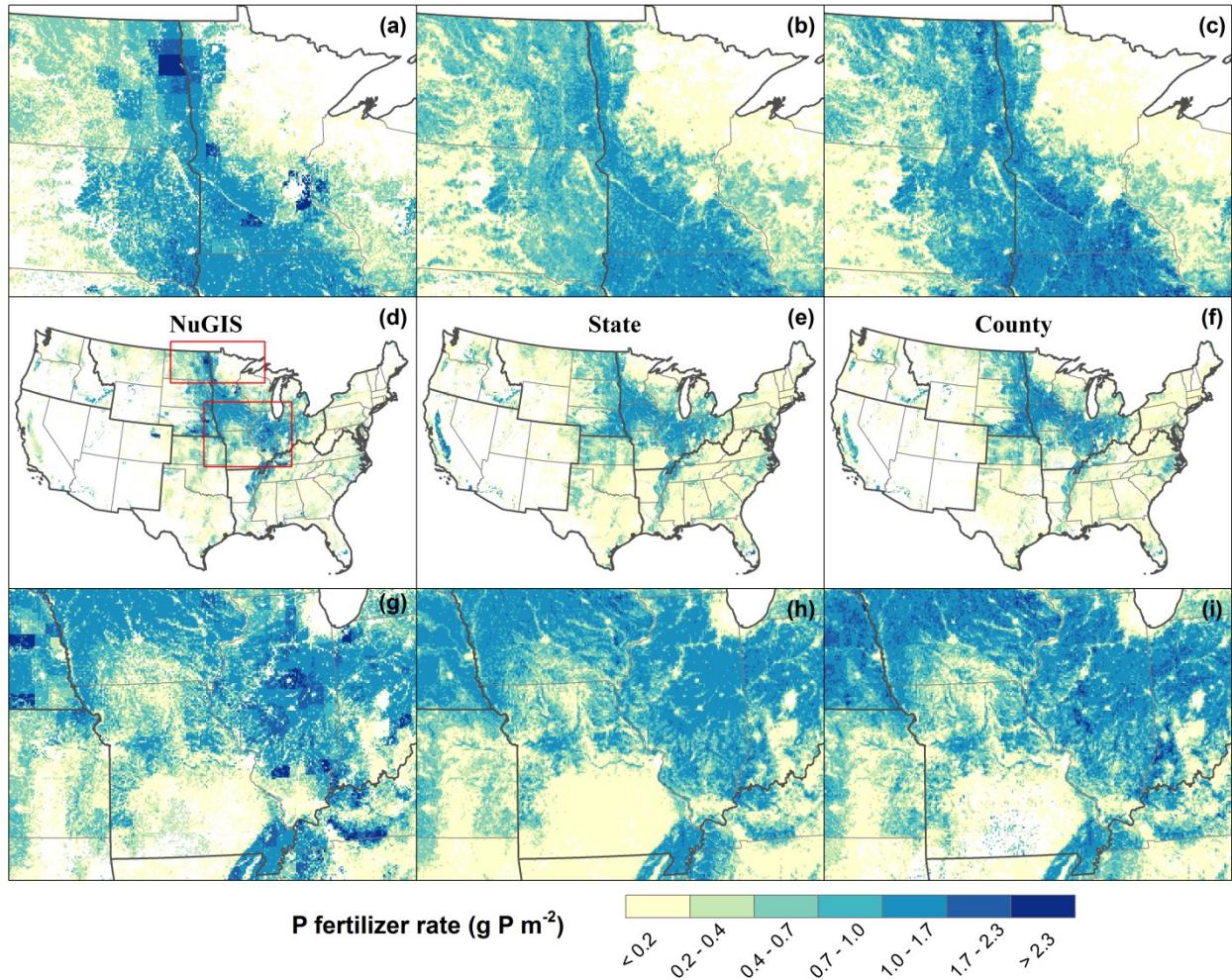
575 Figure 5. Spatial distribution of P fertilizer application rates for 9 major crops in 2020 at 4-km x 4-km
 576 resolution, with regions framed as NW (Northwest), NGP (Northern Great Plains), SGP (Southern Great
 577 Plains), SW (Southwest), MW (Midwest), SE (Southeast), and NE (Northeast). The values on the map
 578 represent the P fertilizer use rate on all land areas and can be converted to P fertilizer use rate on per unit
 579 cropland area by lining up with our crop type and area database (Ye et al., 2024)


580

581 Figure 6. The share of each application timing and method for 9 major crops in the US. FAL is fall
 582 application in previous year. SPR is spring application before planting. ATP is application at planting.
 583 AFP is application after planting. NBC is non-broadcast. BWJ is broadcast with injection, which is mix or
 584 inject after broadcast. BNJ is broadcast with no injection.


585

586 Figure 7. Spatial distribution of P fertilizer application rates at four application timings across the
 587 contiguous US in 2020.


588

589 Figure 8. Spatial distribution of P fertilizer application rates in three application methods across the
 590 contiguous US in 2020.

591

592 Figure 9. Comparison between state-level (red line) and county-level average (black boxplot) crop-
 593 specific P fertilizer application rate in primary crop-planting states in 2015. The red line indicates the
 594 state-level P fertilizer application rate. The box plot shows the distribution of county-level P fertilizer
 595 application rate (dots are outliers).

596

597 Figure 10. Comparison of spatial distribution of P fertilizer application rate in the contiguous US in 2016.
 598 NuGIS (a, d, g) represents the average application rate derived from county-level sales data. State (b, d, h)
 599 and county (c, f, i) data used for plotting represent the crop-specific P fertilizer application rate at state-
 600 and county-level developed in this study, respectively. To make it comparable, the same cropland map
 601 was used to mask out the cropland extent for NuGIS. Two red boxes in Fig d were zoomed in to
 602 demonstrate more details in the top and bottom panels.