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Abstract. Motivated by the importance of user engagement as a crucial element in cascad-
ing leaving of users from a social network, we study identifying a largest relaxed variant of 
a degree-based cohesive subgraph: the maximum anchored k-core problem. Given graph 
G → (V, E) and integers k and b, the maximum anchored k-core problem seeks to find a larg-
est subset of vertices S ↑ V that induces a subgraph with at least |S |  b vertices of degree 
at least k. We introduce a new integer programming (IP) formulation for the maximum 
anchored k-core problem and conduct a polyhedral study on the polytope of the problem. 
We show the linear programming relaxation of the proposed IP model is at least as strong 
as that of a naïve formulation. We also identify facet-defining inequalities of the IP formu-
lation. Furthermore, we develop inequalities and fixing procedures to improve the compu-
tational performance of our IP model. We use benchmark instances to compare the 
computational performance of the IP model with (i) the naïve IP formulation and (ii) two 
existing heuristic algorithms. Our proposed IP model can optimally solve half of the bench-
mark instances that cannot be solved to optimality either by the naïve model or the existing 
heuristic approaches.

Funding: This work is funded by the National Science Foundation (NSF) [Grant DMS-2318790] titled 
AMPS: Novel Combinatorial Optimization Techniques for Smartgrids and Power Networks. 

Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijoo.2022.0024. 
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1. Introduction
Friendster was an online social networking website that launched in 2002 and attracted more than one million users 
in a few months (Rivlin 2006). In 2009, they began to lose active users due to multiple reasons including technical 
issues with their website. In 2011, Friendster discontinued its social network service after cyclical leaving patterns of 
its users in the Unnited States (Seki and Nakamura 2016). The failure of Friendster is closely related to poor social resil-
ience—“the ability of a community to withstand external stresses and disturbances as a result of environmental 
changes” (Adger 2000). Garcia et al. (2013) note that the resilience of a network can be strengthened by “purchasing” 
some auxiliary members of the network within a limited budget. Similarly, Malliaros and Vazirgiannis (2013) and Wu 
et al. (2013) use engagement terminology to capture the interaction tendency of a user with other members of a commu-
nity.1 The problem of maximizing the engagement of a network with a limited budget can be mathematically mod-
eled by the maximum anchored k-core problem that was introduced by Bhawalkar et al. (2015). The maximum 
anchored k-core problem identifies the vertices that are most crucial to forming the largest cohesive groups with 
respect to k-core. Given graph G → (V, E) and integers k and b, an anchored k-core is a subset of vertices S ↑ V that 
induces a subgraph with at least |S |  b vertices of degree at least k. We note that k-core and anchored k-core are com-
binatorially equivalent when b → 0. Although the maximum k-core problem is easy to be solved for any k, the maxi-
mum anchored k-core problem is NP-hard when k ↓ 3 (Bhawalkar et al. 2015). 

The operations research community might be interested in the following application of the maximum anchored k- 
core problem. The INFORMS Annual Meeting 20222 hosted a new type of 75-minute “flash” sessions in which 9–10 
people present their research work. To encourage people to attend this new type of sessions, session/cluster chairs 
could invite a cohesive group of researchers who know at least a specific number of people, say three, in each session. 
Let Figure 1 be a social network of researchers who are working in a specific research area, say network optimization. 
Furthermore, we assume that each researcher agrees to give a talk in a flash session if they know at least three collea-
gues in the session. Then, gray vertices on the left side of Figure 1 represent the (maximum) three-core of the network 
that may be interested in presenting their works in a flash session. If the session/cluster chair convinces researcher 1 
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to present their work at the session, then researchers 2, 5, and 10 will also be convinced to present their research in the 
same session. The colored vertices on the right side of Figure 1 represent the maximum anchored three-core of the 
social network of researchers with budget b → 1.

Our Contributions
In this paper, we introduce an integer programming (IP) formulation along with valid and supervalid inequalities 
and fixing procedures for solving the maximum anchored k-core problem. In Section 2, we provide a literature review 
on the maximum k-core problem and its hard variants. Section 3 introduces notation and definitions that are used 
throughout the paper. Section 4 proposes an IP formulation for the problem and shows that the linear programming 
(LP) relaxation of the model is at least as strong as that of a naïve one. In Section 5, we conduct a polyhedral study on 
the polytope of the problem. Section 6 introduces valid and supervalid inequalities and fixing procedures to improve 
the computational performance of the IP formulation. Section 7 provides an extensive set of experiments on two sets 
of benchmark instances. We conclude the paper in Section 8.

2. Literature Review
Identifying cohesive clusters is an important task in network analysis with a wide range of applications in marketing (Al- 
garadi et al. 2017), social media (Pei et al. 2014), clustering and community detection (Giatsidis et al. 2011a), biology 
(Bader and Hogue 2002, Altaf-Ul-Amine et al. 2003), and economics (Burleson-Lesser et al. 2020). Cohesive clusters can 
be classified based on (i) the distance between the vertices inside clusters (Verma et al. 2015, Pajouh et al. 2016, Salemi 
and Buchanan 2020, Daemi et al. 2022) (e.g., cliques, k-clubs, and k-cliques); (ii) the degree of vertices in a cluster (Balasun-
daram et al. 2011, Ma et al. 2016, Ma and Balasundaram 2019) (e.g., k-core and k-plex); (iii) the number of edges in a clus-
ter (Gao et al. 2022) (e.g., k-defective clique); and (iv) density (Miao and Balasundaram 2020) (e.g., quasi-clique). 
Interested readers are encouraged to refer to Pattillo et al. (2013) for more details on the classification of cohesive clusters.

The notion of k-core is a well-studied topic with applications in disease spread (Qin et al. 2020); brain’s network (Hag-
mann et al. 2008, Daianu et al. 2013, Shanahan et al. 2013, Wood and Hicks 2015); and social media (Malliaros and Vazir-
giannis 2013). Seidman (1983) introduced the notion of k-core to serve as a way for social network researchers to measure 
network cohesion. Seidman (1983, p. 272) also clarifies the fact that “k-cores need not to be highly cohesive, but that all 
cohesive subsets are contained in k-cores.” Matula and Beck (1983) showed that the maximum k-core of a graph can be 
computed in polynomial time. The k-core can be extended to directed graphs (Giatsidis et al. 2011b), weighted graphs 
(Garas et al. 2012), uncertain graphs (Bonchi et al. 2014, Peng et al. 2018), and temporal graphs (Wu et al. 2015). There are 
also hard, minimization, variants of k-core problem that are studied in the literature. Mikesell and Hicks (2022) use a 
binary integer programming model along with valid inequalities and heuristics for solving the minimum k-core problem. 
Ma et al. (2016) introduced the minimum spanning k-core problem with bounded probabilistic edge failures.

Bhawalkar et al. (2015) introduced the anchored k-core problem and showed that it is NP-hard for any k ↓ 3. They 
propose a polynomial time algorithm to solve the anchored k-core problem when k → 2. Onion-layer based anchored 
k-core (OLAK) and residual core maximization (RCM) are two heuristic algorithms to find feasible solutions for the 
maximum anchored k-core problem that were proposed by Zhang et al. (2017) and Laishram et al. (2020), respectively. 
Tootoonchi et al. (2017) developed and implemented an efficient algorithm to solve the anchored two-core problem. 
Zhou et al. (2019) introduced a variant of the maximum anchored k-core problem in which a budget is spent on add-
ing edges to the graph instead of anchoring vertices. Dey et al. (2020) studied a variant of the problem in which the 
budget is spent on deleting vertices and the objective is to minimize the size of the initial k-core.

3. Preliminaries
Let G → (V, E) be a simple graph with vertex set V and edge set E. For every subset of vertices S ↑ V, let G[S] be the 
subgraph induced by vertex set S. For every vertex v ↔ V, we define degG(v) as the degree of vertex v in graph G. 

Figure 1. Social Network of Researchers 

Note. (Left) The maximum three-core; (right) the maximum anchored three-core with budget b → 1. 
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When G is not specified, we denote degG(v) by deg(v). For every vertex v ↔ V, we define NG(v) as the open neighbor-
hood of vertex v. We also define n :→ |V | and m :→ |E | as the number of vertices and edges of graph G → (V, E), 
respectively. Now we provide some formal definitions that are used throughout the paper. We first provide a defini-
tion of the k-core as follows.
Definition 1 (k-core; Seidman 1983). The k-core of a graph G → (V, E) is the maximal subset K ↑ V of vertices with 
degG[K](v) ↓ k for every vertex v ↔ K.

A definition of an anchored k-core is provided below.

Definition 2 (Anchored k-Core; Bhawalkar et al. 2015). Let (C, A) ↑ V ↗ V be an ordered set. (C, A) is an anchored 
k-core of graph G if and only if degG[C↘A](v) ↓ k for every vertex v ↔ C.

Now we formally define the maximum anchored k-core problem as follows. 
Problem: The maximum anchored k-core problem
Input: An undirected simple graph G → (V, E) and integers k and b
Output: (if any exist) An ordered set (C, A) ↑ V ↗ V with a largest size of C such that degG[C↘A](v) ↓ k for every 

vertex v ↔ C and |A | ≃ b
One can easily propose a “naïve” integer programming formulation for the maximum anchored k-core problem. 

For every vertex v ↔ V, binary decision variable xv is one if vertex v belongs to a k-core set C (i.e., degG[C↘A](v) ↓ k). 
Furthermore, binary decision variable yv is one if vertex v is selected as an anchor vertex (i.e., v ↔ A).

max
X

v↔V
xv (1a) 

X

u↔NG(v)
(xu + yu) ↓ kxv ∀v ↔ V, (1b) 

(Naïve) xv + yv ≃ 1 ∀v ↔ V, (1c) 
X

v↔V
yv ≃ b, (1d) 

x, y ↔ {0, 1}n: (1e) 

Here, Objective Function (1a) maximizes the size of the anchored k-core set C. Constraints (1b) imply that if a ver-
tex is selected in an anchored k-core set C, then at least k of its neighbors must belong to either k-core set C or 
anchor set A. Constraints (1c) imply that a vertex cannot belong to a k-core set C and an anchor set A simulta-
neously. Constraint (1d) implies that the size of an anchor set A cannot exceed budget b. Furthermore, we define 
the polytope of the LP relaxation of naïve Model (1) as follows:

PNaïve :→ {(x, y) ↔ R2n
+ |(x, y) satisfies Constraints (1b)–(1d)}:

Because we propose multiple supervalid inequalities throughout this paper, we provide a formal definition of it 
as follows.
Definition 3 (Supervalid Inequality; Israeli and Wood 2002). Given polyhedron P, decision vector x ↔ Rn, coefficient 
vectors a, c ↔ Rn, and τ ↔ R with arg maxx↔Rn{cTx |x ↔ P} ≠ ⇐, we say that inequality aTx ≃ τ�is supervalid for P 
with respect to c if

arg max
x↔Rn

{cTx |x ↔ P} ⇒ arg max
x↔Rn

{cTx |x ↔ P, aTx ≃ τ} ≠ ⇐:

4. Reduced IP Formulation
In this section, we propose a reduced model that is obtained by fixing a considerable number of decision variables in 
the naïve formulation (1). We first provide two fixing procedures before introducing the reduced model.
Remark 1 (Folklore). For every vertex v ↔ V with degG(v) < k, inequality xv ≃ 0 is valid.

Remark 1 follows by the fact that if a vertex has less than k neighbors, then the vertex cannot join any k-core set.

Proposition 1. Let K be the k-core of graph G. For any optimal solution (x⇑, y⇑) of the anchored k-core problem, we have 
x⇑v → 1 and y⇑v → 0 for every vertex v ↔ K.

Proof of Proposition 1. Let (x̂, ŷ) be an optimal solution of the anchored k-core problem. By the contradiction, 
suppose that there is a vertex v ↔ K with x̂v → 0. We define solution (x⇑, y⇑) as follows: (i) x⇑u :→ x̂u and y⇑u :→ ŷu for 
every vertex u ↔ V \ K, (ii) x⇑i :→ 1 for every vertex i ↔ K, and (iii) y⇑i :→ 0 for every vertex i ↔ K. By construction of 
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the solution (x⇑, y⇑), it is a feasible solution whose objective value is strictly greater than the objective value of 
solution (x̂, ŷ). This contradicts the optimality of (x̂, ŷ). w

By Remark 1 and Proposition 1, we propose a reduced IP formulation for solving the maximum anchored k-core 
problem. We recall that K denotes the k-core of graph G. We define the rest of vertices as R :→ V \ K. For every vertex 
v ↔ R, we define weight wv :→ |N(v) ⇒ K | . 

max |K | +
X

v↔R
xv (2a) 

X

u↔NG(v)⇒R
(xu + yu) ↓ (k wv)xv ∀v ↔ R with deg(v) ↓ k, (2b) 

xv + yv ≃ 1 ∀v ↔ R with deg(v) ↓ k, (2c) 
(Reduced)

X

v↔R
yv ≃ b, (2d) 

xv → 0 ∀v ↔ R with deg(v) < k, (2e) 
xv, yv ↔ {0, 1} ∀v ↔ R: (2f) 

Here, Constraints (2b) imply that if a vertex v ↔ R with wv neighbors in the k-core set K is selected, then at least k wv 
of its neighbors in R must be selected. Constraints (2c) imply that every vertex v ↔ R with deg(v) ↓ k cannot be 
included in both a k-core set and an anchor set simultaneously. Constraint (2d) imply that at most b vertices can be 
anchored. Constraints (2e) imply that by Remark 1, no vertex with a degree of less than k can be selected in a k-core set 
C. The reduced model cuts off some feasible solutions; however, there always exist at least one optimal solution that 
dominate the removed feasible ones (see Proposition 1). For analysis purposes, we rewrite the reduced IP model (2) 
with decision variables x, y ↔ {0, 1}n as follows:

max |K | +
X

v↔R
xv, (3a) 

X

u↔NG(v)⇒R
(xu + yu) ↓ (k wv)xv ∀v ↔ R with deg(v) ↓ k, (3b) 

X

u↔NG(v)
(xu + yu) ↓ kxv ∀v ↔ K, (3c) 

xv + yv ≃ 1 ∀v ↔ R with deg(v) ↓ k, (3d) 
X

v↔R
yv ≃ b, (3e) 

xv → 1 ∀v ↔ K, (3f) 
yv → 0 ∀v ↔ K, (3g) 
xv → 0 ∀v ↔ V with deg(v) < k, (3h) 
xv, yv ↔ {0, 1} ∀v ↔ V: (3i) 

Furthermore, we define the polytope of the LP relaxation of the reduced formulation (3) as follows:
PReduced :→ {(x, y) ↔ R2n

+ |(x, y) satisfies Constraints (3b)–(3h)}:
The following theorem shows that the LP relaxation of the reduced model (2) is at least as strong as that of the naïve 
formulation (1).
Theorem 1. For every instance of the maximum anchored k-core problem, we have PReduced ↑ PNaïve. There exist instances 
for which the inclusion holds strictly.

Proof of Theoroem 1. Consider a point (x̂, ŷ) ↔ PReduced. We are to show that (x̂, ŷ) ↔ PNaïve. It suffices to show 
that (x̂, ŷ) satisfies Constraints (1b). For every vertex v ↔ R with deg(v) ↓ k, we have

X

u↔NG(v)
(x̂u + ŷu) →

X

u↔NG(v)⇒K
(x̂u + ŷu) +

X

u↔NG(v)⇒R
(x̂u + ŷu) (4a) 

→
X

u↔NG(v)⇒K
(1 + 0) +

X

u↔NG(v)⇒R
(x̂u + ŷu) (4b) 
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→ wv +
X

u↔NG(v)⇒R
(x̂u + ŷu) (4c) 

↓ wvx̂v +
X

u↔NG(v)⇒R
(x̂u + ŷu) (4d) 

↓ wvx̂v + (k wv)x̂v (4e) 
→ kx̂v: (4f) 

Here, Equality (4b) holds by Constraints (3f) and (3g). Equality (4c) holds by the definition of w. Inequality (4d) 
holds because x̂ ↔ [0, 1]n. Finally, Inequality (4e) holds by Constraints (3b).

For every vertex v ↔ R with deg(v) < k, it is easy to see that (x̂, ŷ) satisfies Constraints (1b) as x̂v → 0 for every 
vertex v ↔ R with deg(v) < k by Constraints (3h). Furthermore, for every vertex v ↔ K, we have

X

u↔NG(v)
(x̂u + ŷu) ↓

X

u↔NG(v)⇒K
(x̂u + ŷu) ↓ k → kx̂v:

Here, the first inequality holds by nonnegativity bounds of x and y variables. The second inequality holds by the 
fact that v ↔ K and by Constraints (3f). The equality holds because x̂v → 1 by Constraints (3f). Finally, the follow-
ing example shows that the inclusion can be strict.
Example 1. Figure 2 provides a point (x̂, ŷ) ↔ PNaïve such that (x̂, ŷ) ∉ PReduced. w

5. Polyhedral Study
In this section, we conduct a polyhedral study on the polytope of the maximum anchored k-core problem in a reduced 
space. Without loss of generality, we assume that all vertices of G are labeled from 1 to n. We first define set R⇓ as follows:

R⇓ → {u ↔ R |deg(u) ↓ k}:
We recall that R → V \ K, where K is the set of the k-core of graph G. We set r :→ |R | and r⇓ :→ |R⇓ | and define the poly-
tope of the maximum anchored k-core problem as follows:

Pk, b(G) :→ conv {(xQ, yA) ↔ {0, 1}r⇓+r | (K ↘Q, A) forms an anchored k-core with |A | ≃ b}, 
where xQ and yA are the characteristic vectors of Q ↑ R⇓ and A ↑ R, respectively. Throughout this section, we use ei to 
denote the unit vector of appropriate size corresponding to vertex i ↔ V. We also introduce two points in Definitions 4
and 5 that are used in the proofs of this section.
Definition 4. Let b ↓ k. For any vertex u ↔ R⇓, we define qu ↔ {0, 1}r⇓+r as a binary vector that represents a solution 
in which 

i. Only vertex u ↔ R⇓ is selected in a k-core; and
ii. Exactly k neighbors of vertex u are anchored.

Definition 5. Suppose b ↓ 2k 2 and let vertex u ↔ R⇓. For every vertex j ↔NG(u) ⇒ R⇓, we define hu, j ↔ {0, 1}r⇓+r as 
a binary vector that represents a solution in which 

i. Vertices u and j are selected in a k-core;
ii. Exactly k 1 neighbors of vertex u, excluding vertex j, are anchored; and
iii. Exactly k 1 neighbors of vertex j, excluding vertex u, are anchored.

Figure 2. Instance of the Anchored k-Core Problem with k → 2, b → 1, K → {2, 3, 4}, and R → {1, 5, 6}

Note. Although (x̂, ŷ) ↔ PNaïve, it violates Constraints (3b) of Formulation (3) for vertex 5; that is, 0:20 → x̂6 + ŷ6 →
P

j↔NG(5)⇒R(x̂j + ŷj) =↓
(k w5)x̂5 → x̂5 → 0:25.
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The following proposition shows that polytope Pk, b(G) is full-dimensional under a reasonable condition 
(i.e., b ↓ k).3

Proposition 2. Polytope Pk, b(G) is full-dimensional if and only if b ↓ k.

Proof of Proposition 2. (⇔) By the contrapositive. Suppose that b ≃ k 1. Then, Example 2 shows that there is 
an instance of the maximum anchored k-core problem for which the Pk, b(G) polytope is not full-dimensional.
Example 2. Consider an instance of the maximum anchored k-core problem with k → 3 and b → 2 shown in 
Figure 3.

A minimal description of P3, 2(G) is provided below using PORTA (Christof and Loebel 2022).
+x2  x3 → 0

 x3 ≃ 0
 y2 ≃ 0

 y3 ≃ 0
+x3  y1 ≃ 0
+x3  y4 ≃ 0

+y4 ≃ 1
+y1 ≃ 1

+x3 +y3 ≃ 1
+x3 +y2 ≃ 1

+y1 +y2 +y3 +y4 ≃ 2 

By equality x2 x3 → 0, we do not have a unique description for P3, 2(G). Furthermore, the description is minimal. 
Hence, P3, 2(G) is not full-dimensional by corollary 3.31 of Conforti et al. (2014).

(↖) First, (0, 0)T ↔ Pk, b(G). We also have (0, eu)T ↔ Pk, b(G) for every vertex u ↔ R. We now introduce r⇓ points as 
follows. For every vertex u ↔ R⇓, we define point qu by Definition 4. Therefore, we have the following r⇓ + r line-
arly independent points: (0, e1)T  (0, 0)T, (0, e2)T  (0, 0)T, : : : , (0, er)T  (0, 0)T, and qu  0 for all u ↔ R⇓. Hence, we 
have r⇓ + r + 1 affinely independent vectors in polyhedron Pk, b(G). w

Now we show multiple inequalities of Formulation (2) are facet-defining under mild conditions. The following 
proposition shows that the nonnegativity bounds on x variables induce facets of Pk, b(G) if b ↓ k.
Proposition 3. If b ↓ k, then xu ↓ 0 is facet-defining for every vertex u ↔ R⇓.

Proof of Proposition 3. First, point (0, 0)T ↔ Pk, b(G) satisfies the inequality at equality. For every vertex u ↔ R, we 
define (0, eu)T ↔ Pk, b(G). By Definition 4, we define point qv for every vertex v ↔ R⇓ \ {u}. Therefore, we have r⇓ + r 
affinely independent points. This finishes the proof. w

The following proposition shows that conflict Constraints (2c) are facet-defining if b ↓ k + 1.
Proposition 4. The expression xu + yu ≃ 1 is facet-defining for every vertex u ↔ R⇓ if and only if b ↓ k + 1.
Proof of Proposition 4. (⇔) By the contrapositive. Suppose that b ≃ k. Then there is an instance of the maximum 
anchored k-core problem for which the inequality is not facet-defining. The instance is provided in Online 
Appendix A.

(↖) We start with defining r points that satisfy the inequality at equality; that is, (0, eu)T and (0, eu + ei)T for 
every vertex i ↔ R \ {u}. For every vertex v ↔ R⇓ \ {u}, we define qv such that element qi

v → qi
v for every index i ↔

Figure 3. Instance of the Maximum Anchored k-Core Problem with k → 3 and b → 2 
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{1, 2, : : : , r⇓ + r} \ {r⇓ + u} and qr⇓+u
v → 1. Along with qu, we have r⇓ more points. We summarize r⇓ + r affinely inde-

pendent points that satisfy the inequality at equality as follows. 
i. (0, eu + ei)T for every vertex i ↔ R \ {u},
ii. (0, eu)T,
iii. qv for every vertex v ↔ R⇓ \ {u}, and
iv. qu.
Figure 4 presents r⇓ + r affinely independent points that satisfy Constraints (2c) at equality. w

We now prove that inequality yu ≃ 1 is facet-defining for every vertex u ↔ R \ R⇓ when b ↓ k + 1.
Proposition 5. The expression yu ≃ 1 is facet-defining for every vertex u ↔ R \ R⇓ if and only if b ↓ k + 1.
Proof of Proposition 5. (⇔) By the contrapositive. Suppose that b ≃ k. Then there is an instance of the maximum 
anchored k-core problem for which the inequality is not facet-defining. The instance is provided in Online 
Appendix A.

(↖) We first define r points as follows: (0, eu) and (0, ei + eu) for every vertex i ↔ R \ {u}. Now we define r⇓
points. For every vertex v ↔ R⇓, consider point qv defined in Definition 4. For every v ↔ R⇓, we define point qv with 
elements qi

v → qi
v for every index i ↔ {1, 2, : : : , r⇓ + r} \ {r⇓ + u} and qr⇓+u

v → 1. Now, we have r⇓ + r affinely indepen-
dent points that are summarized as follows. 

i. (0, eu)T,
ii. (0, eu + ei)T for every vertex i ↔ R \ {u}, and
iii. qv for every vertex v ↔ R⇓.
Figure 5 shows r⇓ + r affinely independent points that satisfy inequality yu ≃ 1 at equality for every vertex 

u ↔ R \ R⇓. w

The following proposition shows that nonnegativity bounds on y variables of the vertex set R⇓ are facet-defining if 
b ↓ 2k 2.
Proposition 6. The expression yu ↓ 0 is facet-defining for every vertex u ↔ R⇓ if and only if b ↓ 2k 2.
Proof of Proposition 6. (⇔) By the contrapositive. We assume that b ≃ 2k 3. Then, there is an instance of the 
maximum anchored k-core problem for which the inequality is not facet-defining. The instance is provided in 
Online Appendix A.

(↖) First we consider point (0, 0). We also define r 1 points (0, ei) for every vertex i ↔ R \ {u}. Based on Defini-
tions 4 and 5, we construct r⇓ points as follows: (i) qj for every vertex j ↔ R⇓ \ NG(u), and (ii) hu, j for every vertex 
j ↔NG(u) ⇒ R⇓. Figure 6 presents r⇓ + r affinely independent points that satisfy the inequality at equality. We also 
define α :→ |R⇓ \ NG(u) | . Without loss of generality, we label (i) vertices of the set R⇓ \ NG(u) from 1 to α, and (ii) 
vertices of the set R⇓ ⇒NG(u) from α+ 1 to r⇓. w

Next proposition shows under what conditions the budget constraint (2d) is facet-defining.

Proposition 7. If k ≃ b ≃ r 1, then the budget constraint (2d) is facet-defining for Pk, b(G).

Figure 4. Collection of r⇓ + r Affinely Independent Points Satisfying Constraints (2c) at Equality 
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Proof of Proposition 7. Figure 7 shows r⇓ + r affinely independent points that satisfy Inequality (2d) at equality. 
The summation of the bottom part of each column of matrix W equals b (see caption of Figure 7 for a description 
of submatrix Qr↗r⇓ ). Now, we show that these points are affinely independent. Let c1, c2, : : : , cr⇓+r be the columns 
of matrix W in Figure 7. We are to show that

Xr⇓+r

i→1
λici → 0, and

Xr⇓+r

i→1
λi → 0, (5) 

imply λj → 0 for every j ↔ {r + 1, r + 2, : : : , r⇓ + r}. By the first equality of Line (5) for the top-right of matrix W, we 
have λr+1 → λr+2 →⋯→ λr⇓+r → 0 because columns of the identity submatrix Ir⇓ are linearly independent. Columns 
of the bottom-left submatrix of W are linearly independent because the submatrix is the transpose of the nonsin-
gular matrix M in the proof of corollary 4.4 in Nemhauser and Trotter (1974). We note that k and t of their paper 
are defined as k :→ b + 1 and t :→ r with b and r in our paper. w

Figure 5. Collection of r⇓ + r Affinely Independent Points Satisfying Inequality yu ≃ 1 at Equality 

Figure 6. Collection of r⇓ + r Affinely Independent Points Satisfying Constraints yu ↓ 0 at Equality for Every Vertex u ↔ R⇓

Kroger, Validi, and Hicks: Maximizing Engagement in Large-Scale Social Networks 
INFORMS Journal on Optimization, 2024, vol. 6, no. 3–4, pp. 196–213, © 2024 INFORMS 203 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[7

6.
14

3.
22

9.
10

3]
 o

n 
16

 M
ay

 2
02

5,
 a

t 0
9:

50
 . 

Fo
r p

er
so

na
l u

se
 o

nl
y,

 a
ll 

rig
ht

s r
es

er
ve

d.
 



6. More Inequalities and Fixings
In this section, we propose valid and supervalid inequalities and fixing procedures to strengthen our reduced model. 
In Section 7, we will test the efficiency of these inequalities and fixing procedures computationally. Proposition 8
proposes a new set of valid inequalities and the condition under which the inequalities are facet-defining.
Proposition 8. Let v ↔ R⇓ be a vertex with deg(v) → k. Then xv ≃ xu + yu is (i) valid and (ii) facet-defining for every vertex 
u ↔NG(v) ⇒ R⇓ if and only if b ↓ 2k 2.

Proof of Proposition 8. (⇔) By the contrapositive. Suppose that b ≃ 2k 3. Then, there is an instance of the max-
imum anchored k-core problem for which the inequality is not facet-defining. The instance is provided in Online 
Appendix A.

(↖) First, we show that the inequality is valid. Let (C, A) be an anchored k-core for graph G, and let v ↔ R⇓ be a 
vertex with deg(v) → k and vertex u ↔Nv(G). Furthermore, let (x̂, ŷ) be the point corresponding to (C, A). If v ∉ C, 
then the inequality holds trivially because x̂v → 0. Now, suppose that v ↔ C. Then all neighbors of vertex v must 
belong to C ↘ A. This means that (x̂, ŷ) satisfies the inequality for every vertex u ↔NG(v).

Now, we prove the second claim. Points (i) (0, 0)T and (ii) (0, ej)T for every vertex j ↔ R \ {u} satisfy the inequal-
ity at equality. Based on Definitions 4 and 5, we construct r⇓ points as follows: (i) qj for every vertex j ↔ R⇓ \ NG(v)
and (ii) hv, j for every vertex j ↔NG(v) ⇒ R⇓. We can see that the points are affinely independent by the linear inde-
pendence of all nonzero points subtracted by point (0, 0)T.

Figure 8 presents r⇓ + r affinely independent points that satisfy constraints xv ≃ xu + yu for vertex v ↔ R⇓ with 
deg(v) → k and a vertex u ↔NG(v) ⇒ R⇓. Without loss of generality, we assume that (i) u → v + 1 and (ii) v, u, u +
1, : : : , u + k 1 represent labels of all neighbors of vertex v. w

Proposition 9 proposes a set of supervalid inequalities (i.e., inequalities that might cut off some integer feasible solu-
tions, but at least one optimal solution remains (see Definition 3)).

Proposition 9. For any vertex v ↔ V and vertex u ↔ V, suppose that 
• deg(u) < k, and
• NG(u) \ {v} ↙NG(v) \ {u}.
Then xv + yv ↓ yu is a supervalid inequality with respect to Objective Function (1a).

Figure 7. r⇓ + r Affinely Independent Points That Satisfy Inequality (2d) at Equality 

Notes. Here, L is a matrix with r  (b + 1) columns of form (1, : : : , 1, 0, 0)T
b+1. Matrices 1 and 0 represent matrices with all one and all zero entities, 

respectively. Square matrix I represents the identity matrix. Further, Q represents vectors q1, q2, : : : , qr⇓ where qi ↔ {0, 1}r is the subvector 
of qi ↔ {0, 1}r⇓+r with qj

i :→ qr⇓+j
i for all i ↔ {1, 2, …, r⇓} and j ↔ {1, 2, …, r}.

Figure 8. Collection of r⇓ + r Affinely Independent Points Satisfying Constraint xv ≃ xu + yu at Equality 
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Proof of Proposition 9. Let (x̂, ŷ) be an optimal solution of the anchored k-core problem. Furthermore, suppose 
that deg(u) < k and NG(u) \ {v} ↙NG(v) \ {u} holds for arbitrary vertices v ↔ V and u ↔ V. If (i) ŷu → 0, or (ii) ŷu → 1 
and x̂v → 1, or (iii) ŷu → 1 and ŷv → 1, then x̂v + ŷv ↓ ŷu holds, and we are done. Now suppose that ŷu → 1 and x̂v →
0 and ŷv → 0. We define solution (x⇑, y⇑) as follows: (i) x⇑i → x̂i for all i ↔ V, (ii) y⇑i → ŷi for all i ↔ V \ {u, v}, and (iii) 
y⇑u → 0 and y⇑v → 1. As x⇑ → x̂, the objective values corresponding to points (x⇑, y⇑) and (x̂, ŷ) are equivalent. Thus, 
(x⇑, y⇑) is optimal. Now we show that point (x⇑, y⇑) is a feasible solution. The point satisfies degree Constraints 
(1b) as NG(u) \ {v} ↙NG(v) \ {u} and deg(u) < k. The conflict constraints (1c) are satisfied by construction. We 
finally show that it satisfies the budget constraint (1d) as follows:

X

i↔V
y⇑i → y⇑u + y⇑v +

X

i↔V\{u,v}
y⇑i → y⇑u + y⇑v +

X

i↔V\{u,v}
ŷi → ŷv + ŷu +

X

i↔V\{u,v}
ŷi →

X

i↔V
ŷi ≃ b:

This concludes the proof. w

Proposition 10 provides a fixing procedure for y variables.

Proposition 10. Let v ↔ V be a vertex with deg(u) < k for every vertex u ↔N(v). Then there exists an optimal solution 
(x⇑, y⇑) with y⇑v → 0.

Proof of Proposition 10. Let (x̂, ŷ) be an optimal solution of the anchored k-core problem. If ŷv → 0, then we 
define x⇑ :→ x̂ and y⇑ :→ ŷ, and we are done. Now suppose that ŷv → 1. We define solution (x⇑, y⇑) as follows: (i) 
x⇑ → x̂, (ii) y⇑i → ŷi for every vertex i ↔ V \ {v}, and (iii) y⇑v → 0. As x⇑ → x̂, the objective values corresponding to 
points (x⇑, y⇑) and (x̂, ŷ) are equivalent. Now we show that point (x⇑, y⇑) is also a feasible solution. The point satis-
fies the degree constraints (1b) and the conflict constraints (1c) by Remark 1. It suffices to show that the point 
satisfies the budget constraint (1d) as follows:

X

i↔V
y⇑i → y⇑v +

X

i↔V\{v}
y⇑i → y⇑v +

X

i↔V\{v}
ŷi < ŷv +

X

i↔V\{v}
ŷi →

X

i↔V
ŷi ≃ b:

This concludes the proof. w

Proposition 11 proposes a fixing procedure for fixing x variables to zero when b < k. This is a reasonable assump-
tion as we observe benchmark instances with b < k in Zhang et al. (2017). This fixing procedure finds a set of vertices 
U ↑ V with degree at least k such that any solution (C, A) to the anchored k-core problem satisfies U ⇒ C → ⇐. Figure 9
illustrates two instances of the anchored k-core problem where Proposition (11) yields fixings. On the left side of 
Figure 9, one can fix variable x1 to zero for vertex 1 because we do not have enough budget to anchor (or buy) both 2 
and 3 for activating vertex 1 as a vertex in a k-core. On the right side of Figure 9, we observe that the fixing can be 
applied iteratively to fix vertices 2, 3, and 1.
Proposition 11. Let v ↔ R⇓, and Sv →NG(v) ⇒Q, where Q is a set of vertices for which x variables are not fixed to zero. If 
|Sv | + b < k, then inequality xv ≃ 0 is valid.

Proof of Proposition 11. By the contradiction. Suppose that there exists a solution (x̂, ŷ) with x̂v → 1 for a vertex 
v ↔ V with |Sv | + b < k. By Constraints (1b), we have

X

u↔NG(v)
(x̂u + ŷu) ↓ kx̂v:

Figure 9. Fixing Procedure of Proposition 11

Notes. (Left) Variable x1 is fixed to zero for vertex 1 in an anchored k-core instance with k → 2 and b → 1. (Right) For an anchored k-core instance 
with k → 4 and b → 2, (i) we first fix variables x2 and x3 to zero for vertices 2 and 3, respectively, and then (ii) we fix variable x1 to zero because x2, 
x3, x10, and x11 are fixed to zero and budget b is less than k.
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By the definition of Sv, we have
X

u↔NG(v)
x̂u ≃ |Sv | : (6) 

Furthermore, we have
X

u↔NG(v)
ŷu ≃

X

u↔V
ŷu ≃ b: (7) 

Here, the first inequality holds because ŷ ↓ 0. The second inequality holds by budget Constraint (1d).
By Inequalities (6) and (7), we have

X

u↔NG(v)
(x̂u + ŷu) ≃ |Sv | + b: (8) 

This is a contradiction as

k → kx̂v ≃
X

u↔NG(v)
(x̂u + ŷu) ≃ |Sv | + b < k:

Here, the first equality holds because x̂v → 1. The first inequality holds by Constraints (1b). The second inequality 
holds by Inequality (8). The last inequality holds by the assumption. w

On the left side of Figure 9, we have Q → ⇐ and S1 → ⇐; thus, k → 2 > 0 + 1 → |S1 | + b and we can safely fix x1 to 
zero. On the right side of Figure 9, we first note that S2 → S3 → {1}. Because k → 4 > 1 + 2 → |S2 | + b and 
k → 4 > 1 + 2 → |S3 | + b, we can fix variables x2 and x3 to zero, respectively. Then we can fix x1 to zero as 
k → 4 > 0 + 2 → |S1 | + b.

7. Computational Experiments
In this section, we computationally compare the performance of the reduced model (2) with the naïve formulation (1) 
and two existing heuristic approaches: RCM and OLAK. We also test the computational performance of the inequal-
ities and fixing procedures proposed in Section 6. We run our experiments on two sets of benchmark instances 
whose details are provided in Table 1. All experiments are conducted on a machine running Red Hat Enterprise Linux 
Workstation x64 version 7.6 with an Intel(R) Core(TM) i7-9800X CPU (3.8 Ghz, 19.25 MB, 165 W) using one core with 
32 GB RAM.

We use Python to implement our algorithms and mathematical models. We use Gurobi 9.5 as the IP solver. Further-
more, we set a time limit (TL) of 3,600 seconds for all of our computational experiments. The k-core of the graph is 
computed by the k_core function of Networkx in Python.4 The implementation is borrowed from the O(m) algorithm 

Table 1. Benchmark Instances of RCM (Laishram et al. 2020) and OLAK (Zhang et al. 2017)

Instance Abbreviation src n m davg dmax kmax kmed

facebook-combined FC SNAP 4,039 88,234 25 1,045 115 17
CA-HepPh HP SNAP 12,006 118,489 5 491 238 4
socfb-Syracuse FS NR 13,653 543,982 62 1,340 75 46
socfb-Northeastern FN NR 13,882 381,934 42 968 43 33
CA-CondMat CM SNAP 23,133 93,439 5 279 25 4
Brightkite-edges BK SNAP 58,288 214,078 2 1,134 52 2
Flickr FL SNAP 105,938 2,316,948 7 5,425 573 5
soc-catster CA NR 149,684 5,448,197 22 80,634 419 21
Gowalla-edges GW SNAP 196,591 950,327 3 14,730 51 3
ca-citeseer CS NR 227,320 814,134 4 1,372 86 3
com-dblp DB SNAP 317,080 1,049,866 4 343 113 3
soc-Dogster DO NR 426,816 8,543,549 12 46,503 248 12
soc-TwitterHiggs TH NR 456,631 12,508,442 18 51,386 125 17
web-Google GO SNAP 875,713 4,322,051 5 6,332 44 4
com-Youtube YT SNAP 1,134,890 2,987,624 1 28,754 51 1
web-Hudong HU NR 1,974,655 14,428,382 5 61,440 266 5
web-BaiduBaike BB NR 2,140,198 17,014,946 4 97,848 78 3

Note. We report source of data sets (src), number of vertices (n), number of edges (m), average degree (davg), maximum degree (dmax), maximum 
possible k (kmax), and median k (kmed).
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of Batagelj and Zaversnik (2003). The k-core computation time is included in the run time of the Reduced model. Our 
codes, data, and results are available at https://github.com/samuel-kroger/Maximizing-engagement-in-large-scale- 
social-networks.

Table 1 provides information about two sets of benchmark instances from Laishram et al. (2020) and Zhang et al. 
(2017). These instances are available at the Stanford Large Network Data Set Collection (SNAP) (Leskovec and 
Krevl 2014) and the Network Repository (NR) (Rossi and Ahmed 2015). Columns abv and src represent abbreviations 
of the instances and their sources, respectively. The number of vertices and the number of edges are denoted in 
columns n and m, respectively. Columns davg and dmax indicate the average degree of vertices and the maximum 
degree of vertices, respectively. To explain the values in columns kmax and kmed, Algorithm 1 provides a k-core decom-
position that returns the coreness of each vertex (Seidman 1983). Function kcore(G⇓, k) in Algorithm 1 returns the 
k-core set of graph G⇓.
Algorithm 1 (k-Core Decomposition (G → (V, E))) 

1: coreness(v)∝ 0 for every vertex v ↔ V
2: k∝ 1
3: while True do
4: G⇓ → (V⇓, E⇓)∝ G → (V, E)
5: C∝ kcore(G⇓, k)
6: if C → ⇐: break
7: while C ≠ ⇐ do
8: for v ↔ C do
9: coreness(v)∝ k

10: G⇓ ∝ G⇓ v
11: C∝ kcore(G⇓, k)
12: k∝ k + 1
13: return coreness

Figure 10 provides the k-core decomposition of the researchers’ social network provided in the introduction. On the 
right side of the figure, white vertices and gray vertices have corenesses of two and three, respectively. Hence, kmed 
(i.e., the median of the coreness values) and kmax (i.e., the maximum of the coreness values) of the researchers’ social 
network are two and three, respectively.

Laishram et al. (2020) set the value of k to kmed in their experiments. In Tables 2–8, RCM instances of Laishram et al. 
(2020) are provided above the horizontal line, and OLAK instances of Zhang et al. (2017) are listed below the horizon-
tal line.

7.1. Reduced Model vs. Naïve Model
Table 2 compares the computational performance of the reduced model (2) with that of the naïve one (1). One can 
observe that the reduced model outperforms the naïve formulation in all but one of the instances by either time or 
optimality gap. Although the naïve model struggles or fails to solve the problem for CA, DO, TH, GO, HU, and BB in 
RCM benchmark instances (above the horizontal line), the reduced model solves all of them in the time limit. When 
time limit is reached for both models in FS and FN (from RCM instances) and GW and YT (from OLAK instances), 
the reduced model reports a smaller optimality gap. However, the naïve model reports a smaller gap for BK and FL 
from OLAK instances. In comparison with the naïve model, we observe that the number of variables in the reduced 
model is decreased by at least 69.31% and 47.69% for the RCM instances and the OLAK instances, respectively. Inter-
estingly, one can see that the number of variables is decreased by 99.74% for FL from RCM instances!

Figure 10. k-Core Decomposition 

Notes. (Left) A social network of researchers; (right) the k-core decomposition of the network: white vertices have a coreness of two and gray ver-
tices have a coreness of three. Therefore, kmed → 2 and kmax → 3.
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7.2. Reduced Model vs. Heuristic Approaches
Table 3 compares the computational performance of our reduced model against two existing heuristic approaches: 
OLAK (Zhang et al. 2017) and RCM (Laishram et al. 2020). We bold the best objective value and fastest time for each 
instance. For every instance, the reduced model has a strictly better (larger) objective value than OLAK and RCM. The 
reduced model is the superior approach even when the solver cannot prove optimality for FS and FN instances from 
the RCM instances (Laishram et al. 2020) and BK, FL, GW, DB, and YT instances from the OLAK instances (Zhang 
et al. 2017).

There are cases in which OLAK and RCM are terminated significantly faster than the reduced model, notably FS 
and FN from the RCM instances (Laishram et al. 2020) and FC from the OLAK instances (Zhang et al. 2017). However, 
we observe a considerable difference between the objective values of the reduced model and the heuristic approaches 
in the aforementioned instances. In a time limit of 3,600 seconds for the IP solver, we see the superiority of the reduced 
model over the heuristic approaches in (i) objective values for all instances; and (ii) both objective value and run time 
for 13 of 22 instances.

7.3. Experiments with Inequalities of Proposition 8
In this section, we test the practicality of the inequalities proposed in Proposition 8. Table 4 compares the performance 
of the reduced model without and with the inequalities. In our experiments, all of these inequalities are added 
upfront. Although we cannot conclude that the inequalities are helpful for RCM instances (above the horizontal line), 
we observe gap improvements for OLAK instances (below the horizontal line) when time-limit is reached (i.e., BK, 
FL, GW, DB, and YT). Furthermore, we see that the root LP relaxations are improved for most of the instances after 
adding these inequalities. We also observe a drastic decrease in number of the branch-and-bound nodes for CS, DB, 
DO and HU in the set of RCM instances.

7.4. Experiments with Supervalid Inequalities of Proposition 9
Table 5 summarizes the computational efficiency of the inequalities introduced in Proposition 9. In our computational 
experiments, all of these inequalities are added upfront. Although we observe gap improvements for FS and FN from 
the RCM instances and BK and GW from the OLAK instances, we see no remarkable time or gap improvement for 
other instances. Furthermore, we do not observe a significant improvement in the root LP relaxations. However, we 
see that adding the inequalities significantly decreases the number of branch-and-bound nodes for CS, DB, DO, and 

Table 2. Results for Reduced Model vs. Naïve Model Under a 3,600-Second Time Limit (TL)

Abbreviation k b

Naïve model Reduced model
Reduction in

#vars B&B Time (s) Gap (%) #vars B&B Time (s) Gap (%) #vars (%)

FC 17 250 8,078 1 7.37 0.00 2,479 1 0:86 0.00 69.31
HP 4 250 24,012 1 5.45 0.00 6,049 1 0:82 0.00 74.81
FS 46 250 27,306 1,333 TL 1.69 8,085 11,269 TL 1:22 70.39
FN 33 250 27,764 7,852 TL 0.47 8,120 35,586 TL 0:45 70.75
CM 4 250 46,266 1 8.21 0.00 10,848 1 1:25 0.00 76.55
BK 2 250 116,456 1 16.40 0.00 25,887 29 2:53 0.00 77.77
FL 4 250 211,876 1 50.94 0.00 554 0 33:77 0.00 99.74
CA 21 250 299,368 2,255 TL 0.07 72,742 1 1, 083:53 0.00 75.70
GW 3 250 393,182 1 108.17 0.00 100,437 1 17:74 0.00 74.46
CS 3 250 454,640 1 137.67 0.00 82,847 1,260 18:42 0.00 81.78
DB 3 250 634,160 1 203.94 0.00 124,059 1,950 21:33 0.00 80.44
DO 12 250 853,632 MEM MEM MEM 221,076 107 487:00 0.00 74.10
TH 17 250 913,262 MEM MEM MEM 234,446 3,879 1, 259:82 0.00 74.33
GO 4 250 1,751,426 MEM MEM MEM 429,949 2,474 288:57 0.00 75.45
HU 5 250 3,949,310 MEM MEM MEM 959,493 1,515 748:11 0.00 75.70
BB 3 250 4,280,396 MEM MEM MEM 895,053 1 967:96 0.00 79.10
FC 20 20 8,078 33,101 396.51 0.00 2,672 62,619 299:51 0.00 66.92
BK 20 20 116,456 1,835 TL 5:43 60,920 2,171 TL 24.13 47.69
FL 20 20 211,876 1 2,913.83 0:00 95,668 69 TL 0.03 54.85
GW 20 20 393,182 30 TL 5.43 200,539 2,171 TL 4:10 49.00
DB 20 20 634,160 MEM MEM MEM 329,837 1 TL 7:85 47.99
YT 20 20 2,269,780 1 TL 3.53 1,138,333 14 TL 1:35 49.85

Notes. We report the number of branch-and-bound nodes (B&B), the percentage of the optimality gap (gap (%)), and the run time in seconds 
(time) for both models. The last column shows the percentage of reduction in number of variables. MEM denotes a memory crash during the IP 
solve process. Bold numbers represent best computational performances.
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Table 3. Results for Reduced Model vs. OLAK and RCM Heuristics

Abbreviation k b

Reduced model OLAK RCM

Objective Time (s) Objective Time (s) Objective Time (s)

FC 17 250 2, 533 0.86 2,225 117.90 2,472 0:21
HP 4 250 6, 978 0.82 6,591 188.76 6,966 0:66
FS 46 250 7, 641 TL 7,149 975.03 7,006 16:92
FN 33 250 7, 586 TL 7,175 681.55 7,052 12:28
CM 4 250 13, 939 1:25 13,802 188.76 13,911 1.96
BK 2 250 35, 267 2:53 35,140 478.00 35,266 5.82
FL 4 250 105, 388 33.77 105,391 5,591.92 105,293 20:53
CA 21 250 79, 561 1,083.53 79,201 9,656.34 79,395 1, 071:30
GW 3 250 107, 299 17:74 107,082 1,984.72 107,260 114.44
CS 3 250 153, 765 18:42 153,477 2,135.08 153,677 97.49
DB 3 250 204, 857 21:33 204,529 2,865.69 204,775 169.02
DO 12 250 215, 343 487:00 214,806 16,824.92 215,197 551.24
TH 17 250 232, 329 1,259.82 231,569 26,830.27 232,025 1, 249:98
GO 4 250 494, 579 288:57 493,229 11,167.51 494,044 5,015.32
HU 5 250 1, 056, 519 748:11 1,055,814 36,594.14 1,056,330 3,827.08
BB 3 250 1, 278, 551 967:96 1,278,231 48,052.84 1,278,526 2,327.67
FC 20 20 1, 967 299.51 1,894 9.76 1,902 1:81
BK 20 20 1, 181 TL 998 20.46 957 1, 601:90
FL 20 20 15, 833 TL 15,822 405.87 MEM MEM
GW 20 20 8, 433 TL 8,161 103.62 MEM MEM
DB 20 20 3, 123 TL 3,066 116.67 MEM MEM
YT 20 20 19, 088 TL 18,939 320.71 MEM MEM

Notes. We report the best objective value (obj) and the run time in seconds (time). We set a time limit of 3,600 seconds for the reduced IP model. 
MEM denotes a memory crash during the heuristic process. Bold numbers represent best computational performances.

Table 4. Results for the Reduced Model (2) Without and with Inequalities of Proposition 8 Under a 3,600-Second Time 
Limit (TL)

Abbreviation k b

Reduced model w/o inequalities Reduced model w/ inequalities

Root B&B Time (s) Gap (%) #ineq Root B&B Time (s) Gap (%) Root

FC 17 250 2,551.96 1 0.86 0.00 683 2,549.43 1 0.01 0.75 0.00
HP 4 250 7,114.50 1 0.82 0.00 748 7,065.88 1 0.02 0.83 0.00
FS 46 250 8,317.44 11,269 TL 1.22 1,396 8,264.02 8,617 0.02 TL 1.10
FN 33 250 8,187.01 35,586 TL 0.45 1,136 8,125.08 36,452 0.02 TL 0.42
CM 4 250 14,343.84 1 1.25 0.00 1,400 14,141.32 1 0.03 1.27 0.00
BK 2 250 36,099.50 29 2.53 0.00 2,360 35,400.50 1 0.07 2.43 0.00
FL 4 250 105,388.00 0 33.77 0.00 3 105,388.00 0 0.12 33.28 0.00
CA 21 250 80,801.72 1 1,083.53 0.00 1,894 80,287.70 1 0.16 1,097.95 0.00
GW 3 250 113,017.29 1 17.7 0.00 11,230 108,957.15 1 0.28 18.88 0.00
CS 3 250 157,856.31 1,260 18.42 0.00 8,966 155,390.27 1 0.36 17.49 0.00
DB 3 250 210,415.12 1,950 21.33 0.00 11,353 206,937.42 1 0.47 19.44 0.00
DO 12 250 222,144.93 107 487.00 0.00 9,207 218,699.11 1 0.49 489.30 0.00
TH 17 250 239,766.52 3,879 1,259.82 0.00 9,664 236,349.85 2,604 0.51 1,199.50 0.00
GO 4 250 519,086.05 2,474 288.57 0.00 45,995 508,224.64 2,020 1.30 308.73 0.00
HU 5 250 1,086,242.55 1,515 748.11 0.00 42,459 1,064,290.07 1 2.44 759.97 0.00
BB 3 250 1,297,872.26 1 967.96 0.00 34,924 1,281,799.13 1 2.58 988.03 0.00
FC 20 20 2,275.17 62,619 299.51 0.00 745 2,228.08 55,105 0.01 273.12 0.00
BK 20 20 3,524.91 2,171 TL 24.13 4,005 3,368.78 4,055 0.05 TL 19.45
FL 20 20 16,305.32 69 TL 0.03 8,529 16,237.78 54 0.11 TL 0.01
GW 20 20 16,391.29 2,171 TL 4.10 16,694 15,663.16 1,327 0.18 TL 3.80
DB 20 20 7,285.80 1 TL 7.85 26,347 6,970.54 1 0.28 TL 5.71
YT 20 20 32,862.46 14 TL 1.35 25,026 31,579.82 15 0.40 TL 1.31

Notes. We report the root LP relaxation (root), number of variables (#vars), number of branch-and-bound nodes (B&B), preprocess time to find 
inequalities in seconds (ptime), time to solve the IP model in seconds (IP time), and the percentage of the optimality gap (gap (%)) for both 
models. The number of the added inequalities is shown by #ineq.
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Table 5. Experiments with the Supervalid Inequalities of Proposition 9 Under IP Time Limit of 3,600 Seconds (TL)

Abbreviation k b

Reduced model w/o inequalities Reduced model w/ inequalities

Root B&B IP time (s) Gap (%) #ineq Root B&B IP time (s) Gap (%) Root

FC 17 250 2,551.96 1 0.86 0.00 3,049 2,551.96 1 0.86 1.00 0.00
HP 4 250 7,114.50 1 0.82 0.00 2,062 7,114.50 1 0.12 0.88 0.00
FS 46 250 8,317.44 11,269 TL 1.22 8,188 8,317.44 9,111 26.16 TL 1.07
FN 33 250 8,187.01 35,586 TL 0.45 7,184 8,187.01 28,929 5.94 TL 0.39
CM 4 250 14,343.84 1 1.25 0.00 4,339 14,343.73 1 0.23 1.59 0.00
BK 2 250 36,099.50 29 2.53 0.00 1,587 36,099.50 33 0.20 2.64 0.00
FL 4 250 105,388.00 0 33.77 0.00 4 105,388.00 0 0.01 34.55 0.00
CA 21 250 80,801.72 1 1,083.53 0.00 18,587 80,801.72 12 2.36 1,112.24 0.00
GW 3 250 113,017.29 1 17.74 0.00 17,892 113,014.90 1 1.12 18.56 0.00
CS 3 250 157,856.31 1,260 18.42 0.00 22,010 157,856.05 1 1.3 17.6 0.00
DB 3 250 210,415.12 1,950 21.33 0.00 25,785 210,412.36 1 1.71 22.04 0.00
DO 12 250 222,144.94 107 487.00 0.00 56,461 222,144.91 1 4.93 494.11 0.00
TH 17 250 239,766.52 3,879 1,259.82 0.00 101,693 239,766.50 2,269 14.48 1,378.69 0.00
GO 4 250 519,086.05 2,474 288.57 0.00 512,588 519,085.75 1,721 37.76 979.75 0.00
HU 5 250 1,086,242.55 1,515 748.11 0.00 108,707 1,086,242.44 1 31.18 820.09 0.00
BB 3 250 1,297,872.26 1 967.96 0.00 40,722 1,297,871.65 1 9.00 1,047.43 0.00
FC 20 20 2,275.17 62,619 299.51 0.00 3,662 2,275.17 98,168 1.28 564.05 0.00
BK 20 20 3,524.91 2,171 TL 24.13 325,652 3,524.91 1,144 87.07 TL 18.51
FL 20 20 16,305.32 69 TL 0.03 413,293 16,305.32 1 2,717.32 2,620.42 0.00
GW 20 20 16,391.29 2,171 TL 4.10 559,498 16,391.29 30 132.68 TL 3.94
DB 20 20 7,285.80 1 TL 7.85 1,332,530 7,285.80 1 469.37 TL 83.75
YT 20 20 32,862.46 14 TL 1.35 12,136,498 24,721.94 1 861.10 TL 23.50

Notes. We report the LP root relaxation (root), number of branch-and-bound nodes (B&B), preprocess time to find inequalities in seconds 
(ptime), time to solve the IP model in seconds (IP time), and the percentage of the optimality gap (gap (%)). Column #ineq shows the number of 
supervalid inequalities added to the reduced model.

Table 6. Experiments with the Fixing Procedure of Proposition 10 Under IP Time Limit of 3,600 Seconds (TL)

Abbreviation k b

Reduced model w/o fixing Reduced model w/ fixing
Reduction in

#vars B&B IP time (s) Gap (%) #vars B&B ptime IP time (s) Gap (%) #vars (%)

FC 17 250 2,479 1 0.86 0.00 2,479 1 0.08 0.87 0.00 0.00
HP 4 250 6,049 1 0.82 0.00 5,301 1 0.12 0.83 0.00 12.37
FS 46 250 8,085 11,269 TL 1.22 7,880 8,699 0.56 TL 1.07 2.54
FN 33 250 8,120 35,586 TL 0.45 7,881 37,310 0.39 TL 0.43 2.94
CM 4 250 10,848 1 1.25 0.00 9,243 1 0.12 1.23 0.00 14.80
BK 2 250 25,887 29 2.53 0.00 25,057 29 0.27 2.53 0.00 3.21
FL 4 250 554 0 33.77 0.00 376 0 3.18 34.04 0.00 32.13
CA 21 250 72,742 1 1,083.53 0.00 69,460 1 5.65 1,062.47 0.00 4.51
GW 3 250 100,437 1 17.74 0.00 96,446 1 1.26 17.78 0.00 3.97
CS 3 250 82,847 1,260 18.42 0.00 81,277 1,716 1.23 19.95 0.00 1.90
DB 3 250 124,059 1,950 21.33 0.00 122,139 1,950 1.63 20.86 0.00 1.55
DO 12 250 221,076 107 487.00 0.00 213,831 107 10.49 476.43 0.00 3.28
TH 17 250 234,446 3,879 1,259.82 0.00 230,594 3,879 18.1 1,262.45 0.00 1.64
GO 4 250 429,949 2,474 288.57 0.00 410,349 2,747 6.35 295.82 0.00 4.56
HU 5 250 959,493 1,515 748.11 0.00 926,618 1,515 24.80 768.75 0.00 3.43
BB 3 250 895,053 1 967.96 0.00 847,462 1 30.57 995.88 0.00 5.32
FC 20 20 2,672 62,619 299.51 0.00 2,671 62,619 0.07 310.30 0.00 0.04
BK 20 20 60,920 2,171 TL 24.13 40,544 3,352 0.21 TL 19.15 33.45
FL 20 20 95,668 69 TL 0.03 88,994 69 2.88 TL 0.03 6.98
GW 20 20 200,539 2,171 TL 4.10 139,488 2,161 0.92 TL 3.94 30.44
DB 20 20 329,827 1 TL 7.85 215,787 1 0.98 TL 7.27 34.58
YT 20 20 1,138,333 14 TL 1.35 743,326 14 3.75 TL 1.33 34.70

Notes. We report number of variables (#vars), number of branch-and-bound nodes (B&B), preprocess time to find inequalities in seconds 
(ptime), time to solve the IP model in seconds (IP time), and the percentage of the optimality gap (gap (%)). Last column shows the percentage of 
reduction in number of variables.
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HU from the RCM instances. Interestingly, one can notice that FL from the OLAK instances can be solved to optimal-
ity at the root node of the branch-and-bound tree after 2,620.42 seconds; however, this requires 2,717.32 seconds of pre-
process for adding the inequalities.

Table 7. Experiments with Fixing Procedure in Proposition 11 for k → 20 and b ↔ {1, 5, 10, 15} Under IP Time Limit of 
3,600 Seconds (TL)

Abbreviation k b

Reduced model w/o fixing Reduced model w/ fixing
Reduction in

#vars B&B Time (s) Gap (%) #vars B&B ptime IP time (s) Gap (%) #vars (%)

FC 20 1 2,672 1 0.44 0.00 2,241 1 0.40 1.77 0.00 16.13
5 3,514 7.73 0.00 2,516 2,576 0.38 2.83 0.00 5.84
10 10,320 30.13 0.00 2,647 6,472 0.17 27.12 0.00 0.94
15 28,750 83.31 0.00 2,661 31,880 0.17 64.83 0.00 0.41

BK 20 1 60,920 1 7.14 0.00 57,498 1 0.76 2.97 0.00 5.62
5 19,304 TL 10.84 58,690 27,546 0.74 TL 11.70 3.66
10 4,670 TL 15.13 60,189 2,614 0.74 TL 14.79 1.20
15 5,376 TL 17.37 60,833 3,262 0.24 TL 18.95 0.14

GW 20 1 200,539 1 44.16 0.00 189,269 1 5.61 10.2 0.00 5.62
5 13,199 TL 1.17 193,384 29,673 5.37 TL 1.42 3.57
10 2,853 TL 3.43 197,822 2,559 5.34 TL 2.26 1.35
15 2,886 TL 3.62 200,138 2,232 2.22 TL 3.68 0.20

DB 20 1 329,837 1 188.82 0.00 314,034 0 2.13 8.57 0.00 4.79
5 699 TL 2.31 314,284 4,451 2.90 10.12 0.00 4.72
10 1 TL 3.75 316,945 1,985 4.51 TL 1.89 3.91
15 1 TL 5.52 326,178 25 2.96 TL 5.15 1.11

YT 20 1 1,138,333 1 177.97 0.00 1,117,600 1 14.24 47.31 0.00 1.82
5 1,580 TL 0.48 1,124,150 10,311 13.91 TL 0.20 1.25
10 34 TL 1.09 1,131,648 1,693 12.90 TL 1.05 0.59
15 21 TL 1.18 1,136,342 26 9.07 TL 1.18 0.17

Notes. We report number of variables (#vars), number of branch-and-bound nodes (B&B), preprocess time to fix x variables in seconds (ptime), 
time to solve the IP model in seconds (IP time), and the percentage of the optimality gap (gap (%)) for both models.

Table 8. Experiments with Best Computational Improvements Under IP Time Limit of 3,600 Seconds (TL)

Abbreviation k b

Reduced model w/o improvements Reduced model w/ improvements

Root B&B IP time (s) Gap (%) Root B&B ptime IP time (s) Gap (%)

FC 17 250 2,551.96 1 0.86 0.00 2,549.43 1 0.08 0.77 0.00
HP 4 250 7,114.50 1 0.82 0.00 7,065.88 1 0.14 0.81 0.00
FS 46 250 8,317.44 11,269 TL 1.22 8,264.02 9,180 0.57 TL 1.07
FN 33 250 8,187.01 35,586 TL 0.45 8,125.08 30,346 0.42 TL 0.39
CM 4 250 14,343.84 1 1.25 0.00 14,141.32 1 0.14 1.23 0.00
BK 2 250 36,099.50 29 2.53 0.00 35,400.50 1 0.35 2.39 0.00
FL 4 250 105,388.00 0 33.77 0.00 105,388 0 3.33 32.81 0.00
CA 21 250 80,801.72 1 1,083.53 0.00 80,287.70 1 5.88 1,067.39 0.00
GW 3 250 113,017.30 1 17.74 0.00 108,957.15 1 1.57 18.53 0.00
CS 3 250 157,856.31 1,260 18.42 0.00 155,390.27 1 1.61 13.68 0.00
DB 3 250 210,415.12 1,950 21.33 0.00 206,937.42 1 2.09 19.22 0.00
DO 12 250 222,144.93 107 487.00 0.00 218,799.11 1 10.85 471.50 0.00
TH 17 250 239,766.52 3,879 1,259.82 0.00 236,349.85 2,604 17.95 1,211.39 0.00
GO 4 250 519,086.05 2,474 288.57 0.00 508,224.64 2,020 7.30 318.20 0.00
HU 5 250 1,086,242.55 1,515 748.11 0.00 1,064,290.07 1 26.43 753.17 0.00
BB 3 250 1,297,872.26 1 967.96 0.00 1,281,799.13 1 32.70 994.65 0.00
FC 20 20 2,275.17 62,619 299.51 0.00 2,228.08 55,105 0.08 271.84 0.00
BK 20 20 3,524.91 2,171 TL 24.13 3,368.78 4,057 0.25 TL 19.45
FL 20 20 16,305.32 69 TL 0.03 16,237.78 54 2.92 TL 0.01
GW 20 20 16,391.29 2,171 TL 4.10 15,663.16 1,308 1.10 TL 3.80
DB 20 20 7,285.80 1 TL 7.85 6,970.54 1 1.27 TL 5.71
YT 20 20 32,862.46 14 TL 1.35 31,579.82 15 4.16 TL 1.31

Notes. We report number of variables (#vars), number of branch-and-bound nodes (B&B), preprocess time to find inequalities in seconds 
(ptime), time to solve the IP model in seconds (IP time), and the percentage of the optimality gap (gap (%)). Last column shows the percentage of 
reduction in number of variables.
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7.5. Experiments with Fixing Procedure of Proposition 10
Table 6 reports the fixing percentages and computational performance of the reduced model with the fixing procedure 
of Proposition 10. We observe that the fixing procedure fixes at most 32.13% and 34.70% of the y variables of the reduced 
model for the RCM and the OLAK instances, respectively. When time limit is reached, we see that the fixing procedure 
reduces the optimality gap for FS and FN from the RCM instances and BK, GW, DB, and YT from the OLAK instances. 
Nevertheless, we do not observe a significant change in run times when the problem is solved in time limit.

7.6. Experiments with Fixing Procedure in Proposition 11
In this section, we test the computational performance of the fixing procedure presented in Proposition 11. To respect 
the condition of the proposition, we consider instances with k → 5 and b ↔ {1, 5, 10, 15} that are also reported by Zhang 
et al. (2017). Although the percentage of fixing is not significant for DB and YT, we observe that the fixing procedure 
helps decrease either the solve time or the optimality gap. Interestingly, the fixing procedure makes DB with k → 20 
and b → 5 solvable in just 13.02seconds.

7.7. Experiments with Best Computational Improvements
Based on our computational experiments with inequalities and fixing procedures proposed in Section 6, we conduct a 
final set of experiments with “best” of them: (i) inequalities of Proposition 8 and (ii) fixing procedure of Proposition 10. 
Table 8 summarizes the computational performance of the reduced model with the aforementioned inequalities and 
fixing procedure. For each instance, a combination of these procedures does not work better than the best of them.

8. Conclusion and Future Work
In this paper, we propose an integer programming model for solving the anchored k-core problem that is known as a 
hard combinatorial optimization problem. The number of decision variables in the new IP formulation is at least half 
of the number of decision variable in a naïve model of the problem. Because of the small size of the proposed IP for-
mulation, we prove that the convex hull of all the feasible points of the problem form a full-dimensional polytope in 
the reduced space. Furthermore, we show that (i) the LP relaxation of the proposed model is at least as strong as that 
of the naïve formulation, and (ii) multiple inequalities of the reduced IP model are facet-defining under reasonable 
and mild conditions. Our numerical results show the computational superiority of our proposed IP formulation over 
the naïve one and two existing heuristics in the literature. To improve the computational performance of the reduced 
IP model, we develop further valid and supervalid inequalities as well as fixing procedures.

For future work, one can focus on developing novel integer programming techniques (e.g., decomposition methods 
and new valid inequalities and fixings) to solve the unsolved instances to optimality. Another direction can be study-
ing other variants of the anchored k-core problem (e.g., edge addition, edge deletion, and vertex deletion) from the 
lens of operations research.
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Endnotes
1 For clarity and consistency purposes, we prefer to use “engagement” terminology rather than “resilience” throughout the paper.
2 See https://meetings.informs.org/wordpress/indianapolis2022/.
3 In many real-world benchmark instances of the maximum anchored k-core problem, we observe that b ↓ k holds. For example, see instances 
of Zhang et al. (2017) and Laishram et al. (2020).
4 See https://networkx.org/documentation/stable/reference/algorithms/generated/networkx.algorithms.core.k_core.html.
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