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Abstract

Objectives: Studies suggest that living at high altitude decreases obesity risk,

but this research is limited to single-country analyses. We examine the rela-

tionship between altitude and body mass index (BMI) among women living in

a diverse sample of low- and middle-income countries.

Materials and Methods: Using Demographic and Health Survey data from

1 583 456 reproductive age women (20–49 years) in 54 countries, we fit regres-

sion models predicting BMI and obesity by altitude controlling for a range of

demographic factors—age, parity, breastfeeding status, wealth, and education.

Results: A mixed-effects model with country-level random intercepts and

slopes predicts an overall �0.162 kg/m2 (95% CI �0.220, �0.104) reduction in

BMI and lower odds of obesity (OR 0.90, 95% CI 0.87, 0.95) for every 200 m

increase in altitude. However, countries vary dramatically in whether they

exhibit a negative or positive association between altitude and BMI (34 coun-

tries negative, 20 positive). Mixed findings also arise when examining odds of

obesity.

Discussion: We show that past findings of declining obesity risk with altitude

are not universal. Increasing altitude predicts slightly lower BMIs at the global

level, but the relationship within individual countries varies in both strength

and direction.

1 | INTRODUCTION

Human biology follows several ecogeographic patterns
(Katzmarzyk & Leonard, 1998; Ruff, 2002); altitude is
one of the best researched of these geographic variables
(Beall, 2007; Bigham et al., 2009; Frisancho, 2013; Little
et al., 2013; Obert et al., 1994; Scheinfeldt et al., 2012;
Simonson et al., 2010; Stinson, 1982). A growing body of
research has found that altitude predicts differences in
body size (Table S1), with the most well-known paper
suggesting that obesity risk increases at lower elevations
in the United States (Voss et al., 2013). For this reason,
some researchers have proposed that exposure to hypoxic
conditions or extended stays at high altitude might repre-
sent novel therapeutic interventions to reduce obesity

(Kayser & Verges, 2013; Palmer & Clegg, 2014; Quintero
et al., 2010). Others suggest that altitude represents an
important, overlooked source of population-level varia-
tion in obesity (Díaz-Gutiérrez et al., 2016; Voss
et al., 2013; Woolcott et al., 2014) and associated chronic
diseases (Thiersch et al., 2017; Woolcott et al., 2014).
Multivariate tests of this relationship in adults derive
almost exclusively from research in upper-middle- and
high-income nations (Table S1). However, most of the
world's high-altitude population lives in low- and middle-
income countries (LMICs), and the socioeconomic mar-
ginalization of mountain communities in those contexts
is often acute (Romeo et al., 2020). A few studies from
LMICs, namely Peru and Ecuador, have shown an
inverse relationship between altitude and measures of
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body mass index (BMI), although the relationship
appears to vary by place and sex/gender (Woolcott
et al., 2016; Pérez-Galarza, et al., 2021). Finally, Yang
et al. (2015) studied the relationship between BMI and
altitude in Korea and found no significant association.
Collectively, these studies make it unclear whether, or to
what extent, the association between altitude and body
size exists globally.

In this study, we expand understanding of the rela-
tionship between altitude and body size by testing for an
association between BMI, obesity risk, and elevation in a
global sample of reproductive age women from 54 LMICs.
We also assess the relationship between BMI, obesity,
and altitude within each individual country. The wide
range of elevations included in this analysis and the vari-
ety of countries surveyed allow us to examine the associa-
tion between altitude and body size in a diverse set of
social and ecological environments.

2 | BACKGROUND

Explanations for the proposed relationship between
altitude and body size can be characterized as either eco-
geographic or socioeconomic. The most popular ecogeo-
graphic explanation centers around hypoxia. Increases in
elevation yield a logarithmic drop in atmospheric pres-
sure; consequently, oxygen partial pressure in the blood
decreases and hypoxia increases (Paralikar & Parali-
kar, 2010). Hypoxia could lead to population-level
differences in BMI via hypoxia-inducible factor-1 (HIF-1)
and its downstream effects on leptin signaling, basal
metabolic rate, and glucose metabolism (Ambrosini
et al., 2002; Palmer & Clegg, 2014; Quintero et al., 2010).

However, several other environmental factors are also
plausible contributors. Temperature is known to predict
BMI, and temperature drops with increasing altitude
(Hruschka, Hadley, et al., 2015; Katzmarzyk & Leon-
ard, 1998; Ruff, 2002). Higher elevations are also charac-
terized by greater ultraviolet radiation (Gorman
et al., 2017) and more challenging terrains and lower pro-
ductivity which could contribute to lower BMIs. Studies
have shown greater infectious disease burdens at lower
altitudes (Clegg et al., 1972; Gelaw et al., 2019), and infec-
tious disease is linked with weight loss.

Socioeconomic explanations are tied to the high rates
of poverty, food insecurity, and underinvestment in infra-
structure (e.g., healthcare, sanitation, supply lines)
observed in many mountain communities, particularly
those in rural areas (Romeo et al., 2020). In this vein, sea-
sonal food scarcity and low wage economy participation
have been linked with nutritional differences in high-
altitude areas (Leonard, 1989). And socioeconomic

measures appear to account for at least some of the differ-
ences in physical growth and size observed between high-
and low-altitude communities (Little et al., 2013; Obert
et al., 1994; Stinson, 1982).

The association between altitude and body size in dif-
ferent contexts could be further modified by sociocultural
factors that vary with elevation. This possibility is appar-
ent in the most widely cited paper on altitude and body
size, which used only a small number of Colorado resi-
dents as its high-altitude sample (≥3000 m) and drew a
substantial portion of its lowest altitude population from
the southern United States (Voss et al., 2013). It seems
likely that the average Colorado resident varies from
those living in southern US states on a number of socio-
cultural characteristics that might influence BMI (e.g.,
ideal body size, food preferences and dietary norms, or
physical activity patterns) in addition to socioeconomic
ones (e.g., wealth, education, food stamp reliance, food
deserts, transportation options).

Thus, a varied set of factors could contribute to the
proposed link between altitude and body size. However,
most large-scale population research on this topic comes
from high-income countries, making it unclear to what
extent those findings indicate something fundamental
about human biogeography. To address this idea, we
used mixed-effects regression to explore the relationship
between altitude and body size in a diverse sample
54 LMICs. If a negative association is found in most set-
tings, then this would lend support to previous sugges-
tions that elevation and body size are fundamentally
linked (Díaz-Gutiérrez et al., 2016; Voss et al., 2013;
Woolcott et al., 2014). However, if a negative relationship
is not observed—and that too despite the multiple factors
thought to yield lower BMIs at high altitude—this may
challenge the universality of the association.

3 | MATERIALS AND METHODS

3.1 | Data and variables

The data used here come from the Demographic and
Health Surveys (DHS) (www.measuredhs.com), nation-
ally representative surveys conducted in low- and mid-
dle-income countries about a range of health-related
topics. We included surveys from all countries and years
(1992–2020) for which standard DHS were available at
the time of download and for which altitude and the
other desired variables were recorded for adult, reproduc-
tive age women (20–49 years) (see Figure S1 for map).
The World Bank income classifications for each country
in a given survey year totaled 13 upper-middle-income
countries, 54 lower-middle-income countries, and
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122 low-income countries (Table S2). Most countries
included data from more than one survey year, and sev-
eral countries had different income classifications in dif-
ferent years.

Two variables were used to control for SES: education
and an absolute household wealth index. Educational
achievement was measured using a four-point scale: no
education, primary, secondary, or higher. The household
wealth index was calculated using a method that facili-
tates cross-national comparisons of household wealth in
purchasing parity dollars (Hruschka, Gerkey, & Had-
ley, 2015). This approach converts the DHS relative
wealth index into a measure of absolute wealth using
mean wealth per capita and the Gini coefficient in each
country during a given survey year. This measure was
validated against both World Bank poverty headcounts
(consumption expenditures) and anthropometric mea-
sures; it was found to be a better predictor of women's
BMI both between and within countries than the original
relative wealth indices from the DHS (Hruschka, Hadley,
et al., 2015).

Four additional variables known to be associated with
BMI in low- and middle-income countries were included:
urban or rural residence, breastfeeding status, parity, and
age. Urban or rural residence was included as a categori-
cal variable. The definitions of urban and rural may vary
slightly between countries because the DHS rely on local
administrative classifications. These classifications are
usually based on population size as determined during
local censuses. Breastfeeding status was included as a
dichotomous variable, but pregnant women were
excluded (Hruschka & Hagaman, 2015). Parity was
included as a categorical variable: 0 births, 1–2 births, 3–
4 births, and more than 4 births.

Three geographic and environmental variables were
included in the analysis: altitude, latitude, and tempera-
ture. Altitude measurements were taken directly from
the DHS Program, which reports cluster-level elevation
as either: (1) the altitude indicated by a digital
elevation model (DEM) for the larger commune to which
the cluster belongs and (2) the altitude indicated by a
GPS receiver during data collection. Where both DEM
and GPS altitudes were reported for a given cluster, the
DEM-based estimates were prioritized during analysis.
99.5% of the altitude data were DEM-based estimates. In
order to anonymize data, the DHS Program includes any-
where from 0 to 10 km of error in its reported GPS coor-
dinates. Fifteen countries recorded elevations that were
lower than possible based on the lowest altitudes
reported for the country by the CIA World Factbook
(2016). The mean discrepancy between the lowest
recorded and lowest possible altitudes for each of those
15 countries was 28.2 m (range 1 to 200 m). In each case,

the impossible elevation was changed to the lowest eleva-
tion (as applicable) reported for that country (The World
Factbook, 2016). These countries were not dropped
because the discrepancies were so small as to be unlikely
to yield physiologically meaningful differences in the
underlying socioeconomic (e.g., education, income, food
insecurity) and ecogeographic variables of interest (e.g.,
hypoxia, temperature, infectious disease). Only one coun-
try (Nigeria) had a single cluster with an elevation sub-
stantially higher than possible (>1400 m higher than
possible) (The World Factbook, 2016); the individuals in
that cluster were dropped because the discrepancy
between reported altitude and technically possible alti-
tude was large enough to conceivably yield physiological
differences.

Different high-altitude cut-offs are used across stud-
ies, from as low as 500 m to as high as 3500 m. In accli-
matized populations, declines in oxygen saturation tend
to begin around 1500 m with substantial drops closer to
2500 m (Rojas-Camayo et al., 2018). In this study, we use
≥1500 m as the minimum cut-off for high altitude but
also report results for additional cut-offs at ≥2500 and
≥3500 m.

To control for latitude and temperature, we included
the absolute value of the cluster-level latitude reported by
the DHS Program in regression analyses. Clusters with
coordinates recorded as (0,0) were removed from the
sample as this location is not plausible. Where the DHS
Program provided cluster-level monthly temperature, the
annual average was calculated and included in regression
models. Where the DHS Program provided cluster-level
GPS coordinates but not cluster-level temperature, the
closest weather station within 100 km listed by
the National Oceanic and Atmospheric Administration's
(NOAA) Global Historical Climatology Network (GHCN)
was identified in R using the meteo_nearby_stations()
function from the rnoaa package (Chamberlain, 2018).
For each station, we calculated the average annual tem-
perature of the most recent year that daily average
temperatures were recorded at least 75% of the time (tem-
peratures available from 1941 to 2020). These annual
means were then used for the applicable clusters. Where
no nearby weather stations were available, the mean
cluster-level temperature of the closest cluster within
100 km was used. We dropped any clusters without coor-
dinates, a nearby weather station, or a nearby cluster for
which temperature was known.

Trained DHS field staff collected the height and
weight measurements at the respondent's house; these
were used to calculate BMI. We created a dichotomous
variable for obesity, defined as a BMI ≥30 kg/m2. The
final sample consisted of 54 countries and 1 583 456
women. All statistical analyses were conducted in R.
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3.2 | Descriptive statistics

Descriptive statistics were calculated for the full sample in
addition to the subsamples living at <500, ≥1500, ≥2500,
and ≥ 3500 m. To visualize the unadjusted relationship
between altitude and body size, we plotted country aver-
age BMI by country average elevation (Figure 1A).

3.3 | Full-sample regression models

To determine whether a linear model was appropriate
for the global sample, we ran a mixed-effects regression
predicting BMI that specified altitude as a 20-level cate-
gorical variable. Elevations between 0 and 3600 m were
split into 200 m increments. Because altitudes <0 and
≥3600 m are uncommon, the lowest altitude interval
included all elevations <0 m and the highest altitude
interval included all elevations ≥3600 m. The lowest alti-
tude interval (<0 m) was used as the reference level for
the categorical altitude variable in this linear regression.
The model included country-level random intercepts for
altitude (i.e., the intercept for altitude was allowed to
vary by country) in addition to fixed effects for breast-
feeding status, parity, age, wealth, education, urban or
rural residence, absolute latitude, and temperature. The
effect sizes for each of the 20 altitude intervals from that
model were then plotted against altitude (Figure 1B). A
linear pattern between those effect sizes and altitude

(i.e., the altitude interval they each represent) would sug-
gest that the relationship between altitude and BMI is
linear when adjusting for variables known to predict
body size.

We then examined the relationship between altitude
and BMI in a mixed-effects model with altitude treated as
a continuous variable. Altitude was scaled such that the
reported coefficients and odds ratios each reflect
the result of a 200 m increase in altitude. Correlated ran-
dom intercepts and random slopes were included at the
country level—that is, the intercept for altitude and the
slope between altitude and BMI were allowed to vary by
country. We included breastfeeding status, parity, age,
wealth, education, urban or rural residence, absolute lati-
tude, and temperature as fixed effects. We calculated
Wald confidence intervals.

We modeled obesity risk using a mixed-effects logistic
regression with altitude treated as a continuous variable.
For ease of interpretation, altitude was scaled such that
the reported coefficients and odds ratios each reflect the
result of a 200 m increase in altitude. Correlated random
intercepts and random slopes were included at the coun-
try level—that is, the intercept for altitude and the associ-
ation between altitude and BMI were allowed to vary by
country. Breastfeeding status, parity, age, wealth, educa-
tion, urban or rural residence, absolute latitude, and tem-
perature were included as fixed effects. Odds ratios for
obesity risk were calculated using the formula: exp(coeffi-
cient). We used Wald confidence intervals.

FIGURE 1 (A) Average country-level BMI by average country-level elevation. The size of the point indicates the sample size from each

country (the largest point is India). The Pearson's correlation for the trend is .08 (p = .52). (B) Beta coefficients for each level of a categorical

altitude variable taken from a mixed-effects linear model predicting BMI. The categorical altitude variable was created by splitting altitude

into 200 m increments between 0 and 3600 m, with minimum category <0 m and maximum category ≥3600 m. The model included

country-level random intercepts in addition to fixed effects for breastfeeding status, parity, age, wealth, education, urban or rural residence,

absolute latitude, and temperature.
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3.4 | Country-specific regression models

To describe between-country differences in the relation-
ship between altitude and BMI, we fit simple linear
regressions for each of the 54 countries. These models
controlled for breastfeeding status, parity, age, wealth,
urban or rural residence, education level, absolute lati-
tude, and temperature. For each country, altitude was
scaled such that the reported effect sizes reflect predic-
tions for a 200 m increase in elevation. We calculated
Wald confidence intervals.

To understand differences in the relationship between
altitude and obesity between countries, we fit simple
logistic regressions for each of the 54 countries. These
models adjusted for breastfeeding status, parity, age,
wealth, urban or rural residence, education level, abso-
lute latitude, and temperature. For each country, we
scaled altitude so that reported effect sizes reflect a 200 m
increase in elevation. We used Wald confidence intervals.

3.5 | Ethics statement

All analyses were performed on de-identified responses,
and all respondents provided their informed consent to
trained members of the Demographic and Health Surveys
teams.

4 | RESULTS

4.1 | Descriptive statistics

The mean age was 32.7 (SD = 8.4), and the mean BMI
was 23.3 kg/m2 (SD = 4.9) (Table 1). Only 9.0% were
obese. Over half (64.0%) lived in rural areas. Less than
two-thirds had completed at least primary education,
with around a third (32.0%) completing secondary
education; a further 10.0% had completed higher educa-
tion. The average cluster temperature was 23.5�C
(SD = 4.7). The average cluster-level absolute latitude
was 18.4� (9.4).

4.2 | Full-sample regression models

There was no association between mean country BMI
and mean country elevation (Figure 1A). At the individ-
ual level, in an OLS regression with no covariates other
than elevation, BMI was positively associated with eleva-
tion (estimate: 0.034, p < .001) but this result was influ-
enced heavily by India; removing India from the model
reversed the elevation estimate to �0.002 (p < .001);
given the large variability in altitude within countries,

analyses at the country level are likely minimally
informative.

In contrast, in a linear mixed-effects model controlling
for breastfeeding status (b = �0.41), parity (b1–2 births

= 0.93, b3–4 births = 1.1, b5+ births = 0.80), age (b = 0.10),
wealth (b = 1.33), rural dwelling (b = �0.67), education
level (bprimary = 0.82, bsecondary = 0.97, bhigher = 0.52), abso-
lute latitude (b = �.03), and temperature (b = �0.13), the
coefficient size for each level of a 20-level categorical alti-
tude variable (200 m intervals) predicting BMI trends
downward when plotted against altitude (Figure 1B). In a
second linear mixed-effects model predicting BMI, a 200 m
increase in a continuous altitude variable was associated
with �0.162 kg/m2 decrease in BMI (95% CI �0.220,
�0.104) (Table 2). As a result, an individual living at
≥3600 m would be predicted to have a BMI at least
2.92 kg/m2 lower than an individual living at sea level.

In a logistic mixed-effects model with all covariates
and predicting obesity, each 200 m increase in a continu-
ous altitude variable was associated with lower odds of
obesity (OR 0.90, 95% CI 0.87, 0.94) (Table 3).

4.3 | Country-specific regression models

In simple linear models controlling for breastfeeding sta-
tus, parity, age, wealth, urban or rural, education level,
absolute latitude, and temperature and predicting BMI,
altitude was negatively associated with BMI in 34 coun-
tries and positively associated with BMI in 20 countries
(Table S2). The strongest associations between altitude
and BMI in each direction were Bangladesh (b = 4.265;
95% CI 3.588, 4.942) and Guyana (b = �1.499; 95% CI
�2.227, �0.77) (Table S2A). Both countries had limited
altitude ranges as their highest altitude observations were
less <100 m and <1000, respectively. Among countries
with altitudes ≥1500 m, altitude was negatively associ-
ated in 21 and positively associated in 13 (Figure 2A). For
these countries, the strongest positive association was in
Cameroon (b = 0.295; 95% CI 0.201, 0.389), while the
strongest negative association was in Honduras
(b = �0.245; 95% CI �0.334, �0.157). The predicted dif-
ference in BMI between the lowest and highest altitudes
recorded in Cameroon would be 3.43 kg/m2; in Hondu-
ras, the predicted difference would be �2.63 kg/m2.

India, Nepal, Ethiopia, Kenya, Peru, Bolivia, Guate-
mala, Colombia, Kyrgyzstan, Lesotho, and Tajikistan had
the highest overall elevations in this sample, with each
including observations around 3000 m. Controlling for
breastfeeding status, parity, age, wealth, urban or rural,
education level, absolute latitude, and temperature, the
relationship between altitude and BMI was negative in
Peru (b = �0.088; 95% CI �0.099, �0.077), Bolivia
(b = �0.154; CI �0.207, �0.102), Colombia (b = �0.080;
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CI �0.132, �0.028), Guatemala (b = �0.183; CI �0.250,
�0.117), Kenya (b = �0.206; CI �0.264, �0.147), Lesotho
(b = �0.192; CI �0.373, �0.011), and India (b = �0.201;

CI �0.212, �0.191). It was positive for those living in
Ethiopia (b = 0.074; CI 0.041, 0.107) and Nepal
(b = 0.102; CI 0.071, 0.133). In Kyrgyzstan (b = 0.071; CI

TABLE 1 Descriptive statistics for individual- and cluster-level variables used in regression analyses.

Total <1500 m ≥1500 m < 2500 m ≥2500 m < 3500 m ≥3500 m

(n = 1 583 456) (n = 1 091 543) (n = 116 758) (n = 26 937) (n = 15 381)

Age

Min 20 20 20 20 20

Max 49 49 49 49 49

Mean (SD) 32.7 (8.4) 32.8 (8.4) 32.4 (8.5) 33.3 (8.5) 33.6 (8.5)

Breastfeeding

Yes 424 828 (27%) 294 879 (27%) 32 335 (28%) 5787 (21%) 3462 (23%)

No 1 158 628 (73%) 795 870 (73%) 84 423 (72%) 21 150 (79%) 11 919 (77%)

Parity

0 births 220 990 (14%) 144 649 (13%) 22 384 (19%) 4573 (17%) 2385 (16%)

1–2 births 550 995 (35%) 382 289 (35%) 38 426 (33%) 9721 (36%) 5075 (33%)

3–4 births 445 156 (28%) 311 402 (29%) 29 605 (25%) 6639 (25%) 4064 (26%)

>4 births 366 315 (23%) 252 409 (23%) 26 343 (23%) 6004 (22%) 3857 (25%)

Location

Urban 569 241 (36%) 393 715 (36%) 37 110 (32%) 11 400 (42%) 6527 (42%)

Rural 1 014 215 (64%) 697 034 (64%) 79 648 (68%) 15 537 (58%) 8854 (58%)

Education Level

None 547 610 (35%) 432 166 (40%) 31 899 (27%) 5209 (19%) 1624 (11%)

Primary 367 598 (23%) 215 561 (20%) 38 335 (33%) 8975 (33%) 6218 (40%)

Secondary 505 202 (32%) 337 485 (31%) 33 875 (29%) 7399 (27%) 4543 (30%)

Higher 163 046 (10%) 105 537 (10%) 12 649 (11%) 5354 (20%) 2996 (19%)

BMI

Min 12.01 12.01 12.02 13.07 13.26

Max 59.98 59.98 59.61 58.99 50.70

Mean (SD) 23.3 (4.9) 23.2 (4.9) 23.3 (4.5) 24.5 (4.3) 25.2 (3.9)

Obesity

Normal 1 433 508 (91%) 986 913 (90%) 106 887 (92%) 24 190 (90%) 13 638 (89%)

Obese 149 948 (9%) 103 836 (10%) 9871 (8%) 2747 (10%) 1743 (11%)

Altitude

Min �377 �377 1500 2500 3501

Max 5951 499.9 2499 3499 5951

Mean (SD) 540.4 (705.9) 173.3 (143.5) 1856.1 (274.8) 2897.8 (295.9) 3909.7 (292.0)

Temperature

Min �9.8 8.0 �1.6 �4.8 �9.8

Max 31.1 31.1 29.3 20.8 20.5

Mean (SD) 23.5 (4.7) 25.5 (2.8) 16.4 (3.6) 11.7 (4.2) 7.7 (3.5)

Latitude

Min �30.6 �28.7 �30.6 �29.9 �21.9

Max 48.4 48.4 42.8 42.8 38.2

Mean (SD) 18.4 (9.4) 19.0 (8.7) 15.7 (12.6) 13.6 (8.8) 15.8 (5.8)
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�0.081, 0.223) and Tajikistan (b = �0.022; CI �0.110,
0.066), there were slight trends toward positive and nega-
tive associations, respectively. In logistic models control-
ling breastfeeding status, parity, age, wealth, urban or
rural, education level, absolute latitude, and temperature
and predicting obesity, increasing altitude was associated
with lower odds of obesity in 34 countries and increased
odds of obesity in 20 countries (Table S2B).

5 | DISCUSSION

This analysis found a negative linear trend between BMI
and altitude at the global level, after controlling for a
range of socioeconomic factors. Increases in altitude also
predicted reduced obesity risk when all countries were
examined together. However, in contrast to expectation,
there was substantial variability across countries: The

TABLE 2 Estimates (SE) from a mixed-effect linear regression

predicting BMI in a combined sample of 54 countries.

BMI

Intercept 16.086***

(0.234)

Altitudea �0.162***

(0.030)

Breastfeeding �0.415***

(0.009)

1–2 births 0.927***

(0.011)

2–3 births 1.080***

(0.013)

≥4 births 0.796***

(0.015)

Rural �0.668***

(0.008)

Age (centered) 0.104***

(0.001)

Latitudeb �0.030***

(0.001)

Temperature �0.127***

(0.003)

Primary education 0.816***

(0.010)

Secondary education 0.971***

(0.010)

Higher education 0.515***

(0.015)

Wealth index 1.328***

(0.006)

Observations 1 583 456

Note: Altitude is treated as a continuous variable but is scaled to 200 m for
ease of interpretation (i.e., the coefficient for altitude represents the change
in BMI for a 200 m increase in altitude). Country-level correlated random
intercepts and random slopes were included for altitude; thus, the altitude X
BMI relationship was allowed to vary by country.
aScaled to 200 m.
bAbsolute value.
*p < .05.**p < .01.***p < .001.

TABLE 3 Odds ratios (95% CI) from a mixed-effect logistic

regression predicting obesity in a combined sample of 54 countries.

Obesity

Intercept 0.001***

(0.001, 0.002)

Altitudea 0.90***

(0.87, 0.95)

Breastfeeding 0.71***

(0.70, 0.72)

1–2 births 1.56***

(1.52, 1.60)

2–3 births 1.84***

(1.80, 1.89)

≥4 births 1.79***

(1.74, 1.84)

Rural 0.70***

(0.69, 0.71)

Age (centered) 1.06***

(1.06, 1.06)

Latitudeb 0.99***

(0.99, 0.99)

Temperature 0.97***

(0.97, 0.98)

Primary education 1.62***

(1.59, 1.65)

Secondary education 1.64***

(1.61, 1.67)

Higher education 1.19***

(1.16, 1.22)

Wealth index 1.79***

(1.77, 1.81)

Observations 1 583 456

Note: Altitude is treated as a continuous variable but is scaled to 200 m for
ease of interpretation (i.e., the coefficient for altitude represents the change
in BMI for a 200 m increase in altitude). Country-level correlated random
intercepts and random slopes were included for altitude; thus, the altitude X
BMI relationship was allowed to vary by country.
aScaled to 200 m.
bAbsolute value.
*p < .05.**p < .01.***p < .001.
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effect sizes varied, and many countries exhibited positive
relationships between altitude and body size. Because
variation exists despite the multiple factors thought to
contribute to lower BMIs at high altitude (e.g., hypoxia,
temperature, economic marginalization), this complicates
suggestions that the proposed relationship represents
something fundamental about human biogeography
(Díaz-Gutiérrez et al., 2016; Voss et al., 2013; Woolcott
et al., 2014).

The degree of variation is made clear when the effect
sizes relating altitude to BMI are compared with those
relating altitude to wealth. The direction of the associa-
tion between wealth and BMI was nearly unanimous:
positive in 51 out of 54 countries. Only Moldova, Jordan,
and Kyrgyzstan exhibited (small) inverse associations
between wealth and BMI, and this fits with an analysis of
DHS data by Subramanian et al. (2011). They found the
size of the slopes between wealth and BMI in these three
countries to be among the smallest (1st, 6th, and 7th
smallest of 54 countries, respectively; and negative for
Moldova) (Subramanian et al., 2011). In contrast to
wealth, the association between altitude and BMI in this
study was negative in 34 countries and positive in 20.

In LMICs, higher SES has historically predicted larger
BMIs (Popkin et al., 2012; Templin et al., 2019). However,
this has begun to change as populations in LMICs transi-
tion to diets increasingly reflective of those in high-
income countries—more fat, sugar, animal products,

refined carbohydrates, and other highly processed foods
(Popkin et al., 2012; Templin et al., 2019). The DHS sam-
ple used here covers a nearly 30-year span (1992–2020)
and includes low-, lower-middle-, and upper-middle-
income countries. Yet despite the range of time periods,
income levels, and sociocultural and ecological environ-
ments considered, the direction of the relationship
between wealth and BMI in this sample was far more
consistent than for altitude and BMI.

On the other hand, the variable and sometimes negli-
gible relationship observed between BMI and altitude
could stem from the relative lack of resources available to
women in this sample. In contrast to the United States,
where obesity rates hover around 40% (Hales et al., 2017)
and where a negative association exists between altitude
and obesity (Voss et al., 2013), obesity is low in most
countries included here (9.5%).

Notably, no single country in this sample contained
the full range of possible altitudes. As such, cultural,
genetic, and socioeconomic factors characteristic of par-
ticular countries or regions and unrelated to high-altitude
living could underlie the negative relationship observed
globally (Beall, 2007). For example, most individuals in
the lowest altitude increment (<0 m) come from Jordan
and Egypt, which are both known for extremely high
obesity rates (WHO, 2014). And, indeed, Jordan and
Egypt had the two highest mean BMIs in this sample at
28.7 and 29.2 kg/m2, respectively.

FIGURE 2 (A) Beta coefficients predicting change in BMI per each 200 m increase in a continuous altitude variable; each coefficient

was taken from separate, country-specific simple linear regressions. Coefficients are plotted in ascending order by size. All models controlled

for breastfeeding status, parity, age, wealth, urban or rural residence, education level, absolute latitude, and temperature. Only countries

with high-altitude observations (≥1500 m) are shown (see Table S2A for all countries). (B) Odds ratios predicting obesity risk per each 200 m

increase in altitude; each odds ratio was taken from separate, country-specific logistic regressions. Odds ratios are plotted in ascending order

by size. All models controlled for breastfeeding status, parity, age, wealth, urban or rural residence, education level, absolute latitude, and

temperature. Only countries with high-altitude observations (≥1500 m) are shown (see Table S2B for all countries).
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5.1 | Limitations

This study faced a variety of sampling constraints,
including large absolute sample size differences
between countries and across the range of altitudes
examined. Though more geographically and ethnically
diverse than previous studies, our sample was biased
toward low-latitude populations. The majority of the
world's population falls within the range of latitudes
represented here (�30.6� to 48.4�), but our mean abso-
lute latitude (18.4�) falls within the two tropics. The
relationship between altitude and atmopsheric pressure
is not uniform across the globe; it varies with
latitude (West et al., 1983). This means that the severity
of hypoxia at high altitude could be modified by one's
proximity to the poles.

A number of countries with markedly high or low
average elevations were not represented in this study.
Several absent Asian countries, including Pakistan,
Mongolia, and China, have both high average elevations
(The World Factbook, 2016) and low- to mid-range
BMIs (WHO, 2014). In contrast, many smaller island
nations, such as Palau, Antigua and Barbuda, and the
Marshall Islands, have both low average elevations (The
World Factbook, 2016) and very high BMIs (WHO, 2014).
Unfortunately, these and similar countries were missing
from the final dataset such that the negative relationship
observed globally might be stronger were they included.

In addition, except for temperature and two general-
ized measures of SES (household wealth index and edu-
cation), we were unable to assess the relevance of more
proximate factors for the proposed relationship. This
includes ecological variables like oxygen partial pressure
and ultraviolet light radiation but also local measures of
SES like occupation, subsistence mode, or wage econ-
omy participation. In this vein, while the wide range of
cultural contexts analyzed is a strength of this study, it
also limits the depth of analysis possible. The diversity
of local foodways and dietary norms present in 54 differ-
ent countries make it similarly difficult to select or
develop a single measure for any of these factors. The
variables included in this analysis were ultimately cho-
sen because they are reasonably comparable across
contexts.

Finally, one potential explanation for positive associa-
tions between altitude and BMI is an increased risk of
stunting at higher altitudes. Specifically, if stunting is
more likely at higher altitudes, women at higher altitudes
will be shorter. Since BMI is calculated as weight divided
by height squared and then if weight is kept constant,
women at higher altitude would have a higher BMI. To
assess this possibility, we examined the association of

women's adult height with altitude in countries where
there was a positive association between altitude and
BMI. Contrary to the stunting explanation, the associa-
tion between altitude and height in those countries was
slightly positive.

6 | CONCLUSIONS

Overall, our results suggest that the relationship between
altitude and body size is not straightforward. Although
there is a negative trend between altitude and body size
at the global level, the direction and size of this associa-
tion varies within individual countries. Future research
should pursue more in-depth analyses in LMICs to better
understand why the association appears to exist in some
contexts but not others. More direct and context-specific
measures of the ecogeographic and social variables
thought to link altitude and body size are needed.
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