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AbstractÐThe research computing ecosystem is increasingly
heterogeneous and diverse. Democratizing access to these es-
sential resources is critical for accelerating research progress.
However, the gap between a high-level workload, such as Python
in a Jupyter notebook, and the resources and interfaces exposed
by HPC systems is significant. Users must securely authenticate,
manage network connections, deploy and manage software,
provision and configure nodes, and manage workload execution.
Globus Compute reduces these barriers by providing a managed,
fire-and-forget model that enables execution of Python functions
across any resource to which a user has access. However, while
Globus Compute has relieved users from many of the challenges
of remote computing, we have observed some inefficiencies that
remain in terms of use. For example, many users wrap external
applications, such as C/C++, Fortran, and even MPI applications,
in Python functions and users must deploy many endpoints
on a single computer to exploit different configurations. In
this paper we describe enhancements to Globus Compute to
address these barriers: an asynchronous, future-based executor
interface for submitting and monitoring tasks, shell and MPI-
based function types, and a multi-user endpoint that can be
deployed by administrators and used by authorized users.

I. INTRODUCTION

High-performance computing (HPC) systems are powerful

tools for tackling complex scientific and engineering prob-

lems. However, the expertise required to use HPC systems

places barriers to adoption. These challenges are magnified

when users need to deploy applications and workflows across

multiple HPC systems. For example, users must securely au-

thenticate with each resource, establish and maintain network

connections, deploy and manage workflow software, provision

nodes from heterogeneous resources, configure environments

for execution, transfer input data, and monitor and manage ex-

ecution of their tasks. Here we describe how Globus Compute,

previously known as funcX [1], and its recent advancements,

reduce these barriers and simplify use of advanced, distributed

computing resources.

Globus Compute is a federated Function-as-a-Service

(FaaS) platform that enables managed execution of Python

functions across distributed computing endpoints. It imple-

ments a hybrid model, much like other Globus services [2],

in which users or administrators first deploy Globus Compute

Agent software on their resources, effectively exposing these

resources to the Globus ecosystem, before they, or others,

can execute functions on those endpoints. Users interact via

a cloud service that provides a managed, fire-and-forget inter-

face, i.e., a single highly-available user interface, while also

buffering submission of tasks and retrieval of results.

Unlike other FaaS platforms, Globus Compute layers a

federated model across existing computing resources, from

laptops to supercomputers. Thus, it is distinct from other work

that federates only Cloud FaaS providers (e.g., AWS Lambda

and Google Cloud Functions) [3]. Globus Compute presents a

unique, highly usable and productive platform for researchers

to make use of distributed computing resources, significantly

lowering barriers to adoption. It removes the need to manage

and maintain network connections, embraces the web-standard

OAuth 2 protocol for authentication and authorization, caches

function submission and results in the cloud, and manages

execution of functions on remote resources, optionally using

containers. Building on the Parsl library [4], Globus Compute

supports dynamic provisioning of nodes from batch schedulers

(e.g., Slurm, PBS, and Flux) and Kubernetes.

Over the past several years, Globus Compute adoption has

grown rapidly. More than 1000 users have executed functions

and more than 4000 have accessed the web interface. Users

have deployed over 12,000 endpoints and used these endpoints

to run 44 million tasks. However, analysis of usage [5] and dis-

cussion with users highlighted several potential opportunities

to improve the platform to further reduce barriers to use. For

example, many users use Python functions to wrap execution

of external applications and codes, such as C/C++ or Fortran

codes, and in some cases to invoke MPI programs. While

not antithetical to the Globus Compute model per se, these

usages present opportunities for greater efficiency if Globus

Compute was aware of the resources and task constraints.

Second, users are deploying many endpoints on a single

computer to exploit different configurations (e.g., queues, node

types, number of nodes) and that for well-used resources, there

are many endpoints running concurrently on behalf of many

users. This presents challenges in terms of overheads and for

administrators managing the many users on their machines.

In this paper, we describe enhancements to Globus Compute

to support these use cases and further simplify adoption of



HPC resources. The Globus Compute SDK and Endpoint

software are available on GitHub [6] and PyPI [7], [8]. Our

contributions are:

• A future-based executor interface for asynchronous work-

load execution.

• A programmatic interface to run Shell commands and

MPI applications as functions in a FaaS platform.

• A new runtime engine that supports dynamic partitioning

of a batch job to run MPI applications concurrently.

• Multi-user endpoints that can be deployed by system

administrators and then accessed by authorized users.

• Discussion of use of the proxy pass-by-reference model

for out-of-band data transfer.

The remainder of the paper is as follows. Section II de-

scribes the Globus Compute model. Section III presents the

Python SDK and the executor interface, ShellFunctions, and

MPIFunctions. Section IV presents the multi-user endpoint.

Section V describes how Globus Transfer and ProxyStore can

be used to deal with large datasets. Section VI discusses use of

Globus Compute in applications. Finally, Section VII presents

related work and Section VIII summarizes our contributions.

II. BACKGROUND

Globus Compute exposes a FaaS interface to users. Users

define functions that they can then execute on remote end-

points. The cloud-hosted Globus Compute web service brokers

user-endpoint communications to transmit functions and input

arguments, and return results, reliably and securely.

Functions: Globus Compute decouples the two tasks of

defining and executing functions. Users write Python functions

that encapsulate the desired computation and can then be

invoked one or more times from different locations and on dif-

ferent resources. These functions can perform data processing,

simulations, or any other logic. While the functions themselves

are written in Python, they may act as an interface to call

programs written in other languages, applications, or scripts.

However, this requires using standard Python libraries to fork

processes, and leaves management of those processes to users.

Function execution is asynchronous. Functions are sent to

the Globus Compute service, which buffers them until the

requested endpoint is online. At that point, tasks are sent to

the endpoint for execution. When the task is complete, the

endpoint returns the results or exception back to the Globus

Compute service. Users can retrieve results asynchronously as

they are stored in the cloud for up to two weeks.

Endpoints: An endpoint is the logical representation of a re-

mote computing resource. Endpoints are created by deploying

the Globus Compute AgentÐa pip installable Python codeÐ

on a specific computational resource. When a user invokes

a function through Globus Compute, the system directs the

request to the specified endpoint. The Agent listens for incom-

ing tasks, executes the task on the local resource, monitors

execution, captures errors, and returns results or exceptions

back to the cloud service.

The Globus Compute Agent communicates with cloud-

hosted Globus Compute RabbitMQ message queues via the

AMQPS protocol (TLS/SSL encrypted Advanced Message

Queuing Protocol). The Agent uses Parsl [4] to provision

computing resources and to execute functions. Specifically, it

relies on two abstractions: the Provider to provision resources,

and the Engine to execute functions on those resource.

The Provider abstracts different computing resources, en-

abling Globus Compute endpoints to provision resources

from different resource managers. The abstraction exposes an

interface to obtain resources, check the status of requests,

and to release resources. Globus Compute includes Provider

implementations for many batch schedulers (e.g., Slurm, PBS,

Flux), Kubernetes, and for use of local processes.

The GlobusComputeEngine wraps Parsl’s

HighThroughputExecutor. It uses a pilot job model to

execute tasks on provisioned resources. Specifically, when

started it creates an interchange locally to manage execution

of functions, and deploys a manager on each provisioned

resource. For each manager, it will deploy a set of worker

processes, following the configuration supplied by the user

(e.g., one worker per node, one worker per GPU, or one

worker per core). When a task is ready to be executed, it is

sent by the interchange to an available manager (one that is

online and with available capacity). The workers then retrieve

these tasks, execute them on the provisioned resources, and

return results back to the interchange via the manager. All

communication is with ZeroMQ, optionally using ZMQ

Curve for authentication and encryption. Communication

with nodes is multiplexed via managers to reduce the number

of ports and connections.

Web service: The Globus Compute web service is operated

as a hosted service and provides a single, highly-available

interface for managing endpoints, functions, and tasks. The

service is responsible for buffering tasks and results, ensuring

they are not lost and are transmitted when the appropriate

resources become available. Deployed in Amazon’s Elas-

tic Container Service (ECS), and leveraging various AWS

services (e.g., Relational Database Service, Simple Storage

Service, and Amazon MQ) the architecture is both reliable

and highly scalable through automated scaling, replication, and

geographic distribution. The service is also monitored such

that administrators are notified when there are failures.

The web service is implemented as a FastAPI REST service.

The REST API is deployed in containers on ECS. A relational

database manages state (e.g., registered functions, endpoints,

and tasks). When an endpoint is connected, the web service

creates a pair of RabbitMQ queues for tasks and results.

When a task is submitted, the web service places the task

in the task queue for the specified endpoint. Large task inputs

are stored in S3. The endpoint retrieves tasks from the task

queue, executes them, and returns results to the result queue

for that endpoint. A result processor, a Python application

deployed in containers, monitors the queues and processes

results. Processed results are stored in S3 until they are

retrieved by the user.

Security model: The Globus Compute security model is de-

signed to ensure that all interactions between users, the Globus



Compute service, and endpoints are secure and controlled.

Central to this model is the use of the OAuth2-based Globus

Auth [9] for authentication and authorization, which provides

a secure and flexible way to manage user identities and access

rights. This allows resource owners to control access based

on user roles, ensuring that sensitive resources are protected

from unauthorized access. Additionally, all communications

between the Globus Compute service, users, and endpoints

are encrypted using industry-standard protocols. Furthermore,

Globus Compute employs robust auditing and logging mech-

anisms. Every action performed within the system, such as

function invocation or resource allocation, is logged with de-

tailed metadata. This provides traceability and accountability,

allowing administrators to monitor usage patterns and ensure

compliance with organizational policies.

III. PYTHON SDK

The Globus Compute Python SDK provides a programmatic

interface to Globus Compute. It wraps the Globus Compute

REST API with a Pythonic interface supporting function

registration, function execution, task management (e.g., result

retrieval), and endpoint management.

A. Executor Interface

To better integrate with the Python ecosystem, and provide

a simpler experience for users, we have developed a new

asynchronous, future-based interface. Specifically, we extend

Python’s concurrent.futures.Executor interface by

defining a subclass, GlobusComputeExecutor. The ex-

ecutor interface provides a submit method that takes a

user-defined python function and its arguments and returns

a future for subsequent monitoring and retrieval of results.

The benefits of this interface include the Pythonic program-

ming model for executing tasks and also efficiency when com-

pared with the traditional method requiring repeated polling

for task status and to retrieve results. The Globus Compute Ex-

ecutor abstracts interactions with the Globus Compute REST

API, including registering functions ªon-the-flyº and batching

of requests within a time period to avoid many individual

REST requests to run tasks. The executor also instantiates an

AMQPS connection with the Globus Compute web service

that streams results directly and immediately as they arrive

at the server back to the client. This is a far more efficient

paradigm in terms of bytes over the wire, time spent waiting

for results, and boilerplate code to check for results.

Listing 1 shows an example of using the executor to launch

a task and retrieve results.

1 from globus_compute_sdk import Executor

2

3 def some_task(*a, **k):

4 return 1

5

6 with Executor(endpoint_id="...") as ex:

7 fut = ex.submit(some_task)

8 print("Result:", fut.result())

Listing 1: Using the Globus Compute Executor interface to

execute a task.

B. Shell Functions

Many Globus Compute users employ Python functions as an

interface to execute applications, programs in other languages,

or other scripts and binaries. To better support these use

cases we implemented an abstraction for representing a new

type of function: ShellFunction. The ShellFunction allows

for the specification of a command line string, along with

runtime details such as run directory, per-task sandboxing,

and task walltime. A ShellFunction returns a ShellResult that

encapsulates the output from executing the command line

string, wrapping the return code and snippets from the standard

out and error streams.

Listing 2 presents an example ShellFunction that wraps

the Linux ªechoº command, accepts a message as input, and

writes output to stdout. The command line string is formatted

at invocation time with the message argument.

1 from globus_compute_sdk import ShellFunction,

Executor

2

3 # Command is formatted with kwargs when invoked

4 sf = ShellFunction("echo '{message}'")

5

6 with Executor(endpoint_id="...") as ex:

7 for msg in ["hello", "hola", "bonjour"]:

8 future = ex.submit(sf, message=msg)

9 shell_result = future.result()

10 print(shell_result.stdout)

Listing 2: ShellFunction used to execute the echo command.

1) Shell results: The output from a ShellFunction is encap-

sulated in a ShellResult with the following fields: the return

code from the execution of the command line supplied, the

last N lines of the stdout stream and stderr stream, and the

formatted command line string that was executed. Globus

Compute will monitor and record the stdout and stderr streams.

By default, it will capture the last 1000 lines of these streams;

however, the number of lines can be configured.

2) Working directory: ShellFunctions executed on a remote

system may operate on files local to the remote system. By

default, the working directory of a ShellFunction is the Globus

Compute endpoint path. Thus, there is potential for ShellFunc-

tions to interfere with one another, for example, by overwriting

files. To mitigate function contention, ShellFunctions can be

configured to execute in a sandbox. When sandbox is enabled

(i.e., specified in the endpoint configuration), Globus Compute

will create a unique directory for each ShellFunction to

execute using the task’s UUID.

3) Walltime: A common requirement when executing a

function remotely is to ensure that resources are not wasted

if a function fails during execution. Because a function may

run forever, oversight is required to potentially kill a process.

We define a walltime keyword argument to ShellFunction

that can be used to specify the maximum duration (in seconds)

after which execution should be terminated. If the execution

is terminated due to reaching the walltime, the return code

will be set to 124: the shell return code when a timeout is

exceeded.



Listing 3 shows an example ShellFunction in which the

walltime is set to one second. In this case, the ShellFunction

wraps the Linux ªsleepº command and passes an argument of

two seconds. Globus Compute will interrupt execution and the

return code will be 124.

1 bf = ShellFunction("sleep 2", walltime=1)

2 future = executor.submit(bf)

3 print(future.returncode)

Listing 3: ShellFunction calls sleep with specified walltime.

C. MPI Functions

To better support HPC users, we seek to combine the power

of MPI with the simple FaaS interface for remote computing.

To achieve this goal, we define a new function type: MPI-

Function. MPIFunction is an extension to ShellFunction. It

supports the same interface for specifying the command to

invoke on the endpoint and leverages the same monitoring

support to capture output streams. However, rather than run

a shell command, it executes an MPI application using a

specified MPI launcher.
Given that MPI functions can be configured to use multiple

cores across multiple nodes, we define a resource specification

to describe the particular resources in a machine agnostic man-

ner using the same representation as Parsl [4]. The resource

specification is represented as a Python dictionary and can

be configured with the number of nodes, number of ranks

per node, and number of ranks. The specification is set when

creating the Globus Compute Executor on the client-side. The

resource specification can be configured as shown in Listing 4.

This specification is translated to a machine-specific MPI

launch command by the MPIFunction at runtime, for better

portability across HPC systems.

1 executor.resource_specification = {

2 # Nodes required for the application instance

3 'num_nodes': <int>,

4 # Ranks / app elements to launch per node

5 'ranks_per_node': <int>,

6 # Number of ranks in total

7 'num_ranks': <int>,

8 }

Listing 4: Resource specification template for common MPI

parameters.

1) MPIEngine: MPIFunctions must be executed in an envi-

ronment that supports MPI execution. Unlike Python functions

that are expected to run on a single node with some subset

of the on-node compute resources (CPU/memory), MPI ap-

plications have more complex requirements. Generally, MPI

applications require multiple MPI ranks (processes) launched

across multiple nodes, along with complex affinity needs due

to GPUs and NUMA environments. In a many-task paradigm,

as is the case with Globus Compute, the runtime backend must

be capable of executing multiple MPI applications with varied

requirements concurrently within a single batch job.
To address these requirements we implement a new end-

point engine type: GlobusMPIEngine. GlobusMPIEngine im-

plements advanced functionality to partition a batch job dy-

namically based on user-defined function requirements. It can

automatically discover the resource available within a batch

job on the Slurm and PBSPro batch systems.

When executing an MPIFunction, Globus Compute

automatically prefixes the supplied command with

$PARSL MPI PREFIX which resolves to an appropriate

MPI launcher prefix (e.g., mpiexec -n 4 -host

<NODE1, NODE2>). Listing 5 shows a configuration for a

GlobusMPIEngine using Slurm. In this case, MPI tasks will

be run over four nodes.

1 # Configuration for a Slurm based HPC system

2 display_name: SlurmHPC

3 engine:

4 type: GlobusMPIEngine

5 mpi_launcher: srun

6

7 provider:

8 type: SlurmProvider

9

10 launcher:

11 type: SimpleLauncher

12

13 # Specify # of nodes per batch job that

14 # will be shared by multiple MPIFunctions

15 nodes_per_block: 4

Listing 5: Configuration of a Globus Compute Endpoint to

support MPIFunction execution.

2) Running an MPIFunction: Listing 6 shows an example

MPIFunction that calls the Linux ªhostnameº command on

every rank it runs on. We supply a resource specification

requesting 2 nodes with a variable number of ranks per node

(from 1 to 2). MPIFunctions return the same ShellResult

described above and capture output streams in the same way.

The output from this example is shown in Listing 7.

1 from globus_compute_sdk import MPIFunction

2

3 func = MPIFunction("hostname")

4 for n in range(1, 2):

5 print(f'n={n}')

6 executor.resource_specification = {

7 "num_nodes": 2,

8 "ranks_per_node": n,

9 }

10 future = executor.submit(func)

11 mpi_result = future.result()

12 print(mpi_result.stdout)

Listing 6: Executing several MPIFunctions with different

resource specifications.

1 n=1

2 exp-14-08

3 exp-14-20

4 n=2

5 exp-14-08

6 exp-14-20

7 exp-14-08

8 exp-14-20

Listing 7: Results from running the example code in Listing 6

IV. MULTI-USER ENDPOINTS

Globus Compute initially supported only single-user end-

points. Endpoints were installed in user space and could be



used exclusively by the user who installed them. Single-

user endpoints are statically configured, and must be restarted

to change their configuration, for example, to increase the

number of nodes allocated. As a result, it is common for

users to run several endpoints on an HPC resource. Further,

administrators have no visibility into the use of their resources

and are unable to easily help debug user problems (e.g.,

with configurations for their resources). To overcome these

challenges we have developed a new multi-user endpoint that

can be installed by administrators and that enables remote use

and dynamic endpoint configuration by users [10].

Fig. 1: Multi-user endpoint architecture. (1) Users specify a

user endpoint configuration when submitting a task to a multi-

user endpoint. (2) The Globus Compute service issues a Start

Endpoint request to the multi-user endpoint. The multi-user

endpoint determines whether an appropriate user endpoint is

currently operating; if not, it spawns a user endpoint on behalf

of the user to meet the task requirements. (3) The user endpoint

connects to the service and receives tasks to perform.

At its core, the multi-user endpoint is a process manager:

it starts user endpoint agents upon request from the Globus

Compute service. Importantly, a multi-user endpoint does not

run tasks for users. It starts child processes (fork()) on the host

(becoming the appropriate local user and dropping privileges),

and lets the user compute endpoint agent (exec()) process tasks

as normal.

We describe below the multi-user endpoint model from the

administrator and user perspective.

A. Administrator Perspective

Administrators can deploy a multi-user endpoint on a shared

resource. They can configure the endpoint with policies re-

garding how users are mapped to local accounts and define

templates controlling how endpoints are used by users.

1) Installation and configuration: Administrators can in-

stall the Globus Compute Agent for supported Linux Dis-

tributions from RPM and Deb repositories, or through pip.

Once installed, they can configure a multi-user endpoint con-

figuration using the same globus-compute-endpoint

configure subcommand as single user endpoints, with an

additional multi-user flag. The administrator must authen-

ticate using Globus Auth to register the multi-user endpoint

with Globus Compute. They can also define metadata used to

describe the endpoint for search and display on the Globus

web application.
2) Identity mapping: When the multi-user endpoint is asked

to start a local user endpoint, an important question is how to

map it to a valid local user and UID. To do so, we use the

identity mapping logic from Globus Connect Server, the agent

software used by Globus Transfer.

Every request from the Globus Compute service to start

a user endpoint includes the identity information of the user

who submitted the request. The multi-user endpoint retrieves

the identity information and compares it against the mapping

file to a) determine if the user is authorized to access the

endpoint; and b) determine the local user account in which to

spawn the user endpoint.

The identity mapping process supports several options: a

default mapping for cases where there is only one allowed

domain, pattern-based mappings, and callouts to external

programs for custom mapping algorithms. With expression-

based mapping, administrators can write rules that extract data

from fields in the Globus identity document to form local

usernames. This works well when there is a common rela-

tionship between user identity information and local account

names. Listing 8 shows a simple example where identities

from the ªuchicago.eduº domain are mapped to the same

local username. To simplify mapping, we support a simple

regular expression matching language and provide functions

for common transformations (e.g., ignoring case).

To support more complicated mapping scenarios, we allow

administrators to use external programs (e.g., a Python or Bash

script) to perform the mapping. This allows administrators to

implement more complex mapping logic or consult external

sources of information such as databases or LDAP servers for

mappings. The Globus Compute Agent will make a call to the

specified program for each request.

1 [

2 {

3 "DATA_TYPE": "expression_identity_mapping

#1.0.0",

4 "mappings": [

5 {

6 "source": "{username}",

7 "match": "(.*)@uchicago\\.edu",

8 "output": "{0}"

9 }

10 ]

11 }

12 ]

Listing 8: Identity mapping configuration that will convert any

user with an @uchicago.edu identity to the same username on

the local system

3) Template configuration: One goal of the multi-user end-

point is to simplify use. Many endpoint configuration options

remain static for a single resource (e.g., scheduler type) while

others must adhere to site or HPC resource policies (e.g., node

limits, walltimes). To address this need to simplify use, we use

a template-based approach via which administrators can define

a template for configurable options that are exposed to users.



Administrators can optionally also define a schema for the

template configuration properties to protect against injections

and also (in the future) to help guide users when specifying

their configuration.

We adopt Jinja2 templates as they are commonly used in

Python programs. In the multi-user endpoint configuration, the

administrator can specify a template to use for that endpoint.

Most administrator-installed multi-user endpoints will likely

need at least one templatable field (e.g., account id), but

beyond that, this file can be configurable as required. Listing 9

shows an example template for a resource using Slurm. In

this case, common configurations for the resource are speci-

fied, such as using GlobusComputeEngine, SlurmProvider, and

SrunLauncher. The administrator also restricts users of the

multi-user endpoint to use the ªcpuº partition. The configu-

ration defines three configurable properties: nodes per block,

account, and walltime. Each property is mapped to a Jinja

template option, denoted with double braces. Other Jinja

syntax is supported with the use of a default property.

1 engine:

2 type: GlobusComputeEngine

3 nodes_per_block: {{ NODES_PER_BLOCK }}

4

5 provider:

6 type: SlurmProvider

7 partition: cpu

8 account: {{ ACCOUNT_ID }}

9 walltime: {{ WALLTIME|default("00:30:00") }}

10

11 launcher:

12 type: SrunLauncher

Listing 9: Multi-user configuration template specifying fixed

provider type and partition, while enabling users to configure

account and walltime.

When a user passes a configuration to the multi-user

endpoint, the endpoint first validates that the configuration

document meets the specified schema. It then forks and drops

privileges, passing the user-provided configuration data to

the administrator-written template via a Jinja processor. This

configuration is then used to start the user endpoint.

Note that while we focus here on benefits to administrators,

non-administrators also benefit from this feature. Rather than

having to manage multiple endpoint configurations (for exam-

ple, charging different HPC accounts, changing provisioned

cluster size, or choosing different walltime limits), a user can

write a template to allow all of these items to be specified at

task submission time.

4) Allowed functions: Administrators may want to restrict

the functions that can be executed on the endpoint, for ex-

ample, when deploying portals or science gateways providing

compute capabilities for communities. The multi-user endpoint

can be configured with permitted functions by specifying a list

of function UUIDs. In early use of this feature, administrators

have implemented an out-of-band process in which they man-

ually review function code before adding the UUIDs to the

allowed function list. This feature relies on the fact that all

registered Globus Compute functions are immutable.

5) Authentication policies: The policies described above

are implemented at the compute endpoint. To provide more

flexible authentication and authorization policies, we also

support cloud-enforcement of particular policies. In these

cases, the Globus Compute service validates policies before

submitting a request to the endpoint. We support a small

set of policies, defined via Globus Auth and shareable with

other Globus services. These policies can express required

authentication domains or excluded domains, require that

users must have authenticated within the given session with

a particular identity provider, or have authenticated within a

particular period of time.

B. User Perspective

Users can submit tasks to a multi-user endpoint in the

same way as they currently do with single-user endpoints.

The general workflow is as follows. They first discover the

ID of a multi-user endpoint, for example via resource-specific

documentation or via search in the Globus Compute web

application or API. They then configure their client code to

submit tasks to that endpoint via the executor API. When

they submit the tasks, the multi-user endpoint spawns the user

endpoint, and subsequent communication is directly with the

single user endpoint. Note that users do not know that a user

endpoint process is spawned; nor do they need a new ID to

submit to the spawned endpoint. Once the submitted tasks are

completed, the user endpoint is destroyed.

One difference from a user’s perspective, in addition to

no longer needing to install or maintain their own endpoints,

is that users can now specify a resource configuration when

defining their executor. Listing 10 shows an example using

the executor interface with the resource configuration. The

resource configuration is defined as a Python dictionary and

passed to the executor before use. The user configuration must

specify all of the required attributes from the template file.

1 from globus_compute_sdk import Executor

2

3 uep_conf = {

4 "NODES_PER_BLOCK": 64

5 "ACCOUNT_ID": "314159265",

6 "WALLTIME": "00:20:00"

7 }

8

9 mep_ep_id = "..."

10

11 with Executor(endpoint_id=mep_ep_id) as gce:

12 gce.user_endpoint_config = uep_conf

13 fut = gce.submit(hello_world)

14 res = fut.result()

Listing 10: User configuration to make use of the multi-user

configuration template from Listing 9.

Listing 10 shows how users refer only to a single multi-

user endpoint ID when creating the executor and submitting

tasks. However, it is possible for users to define different

configurations that lead to creation of new user endpoints. To

handle this mapping, Globus Compute maintains a mapping

between a hash of the configuration and the user endpoint

that is spawned. Thus, creation of executors with the same



user configurations will direct tasks to the same user endpoint.

Users can therefore force use of different user endpoints by

modifying the configuration such that the hash is different.

C. Discussion

The multi-user endpoint provides a number of important

benefits to both users and administrators.

Lowering Barriers of Use: HPC systems often have unique

configurations and tools for running tasks. As a result, con-

figuration of a Globus Compute endpoint can be complicated

for end users. Shifting the burden of configuration to HPC

administrators (experts in their own systems) allows end users

to submit functions without managing unnecessary-to-their-

research boilerplate such as SSH configuration details, a spe-

cific cluster’s firewall policy, or how to specify the resource’s

scheduler, options, and so forth.

Improved Access Control: With multi-user endpoints, ad-

ministrators have granular control over user access permissions

and resource usage. User access is controlled by the identity

mappings to local user accounts, and can be augmented at

the web service layer through authentication policies. All

limits placed on users through scheduler controls as well as

standard Unix limits are respected by the multi-user endpoint.

Consequently, limited access can be granted to users without

the need for SSH access to the machine.

Efficient Resource Utilization: Multi-user compute end-

points allow administrators to optimize resource allocation and

utilization by creating predefined configurations for users or

groups of users. For example, an administrator may provide

full access to a select group, while providing only limited

access to a wider set of users.

Improved user experience: The multi-user model removes

the need for users to log in deploy and manage endpoints.

It also removes the need to maintain multiple endpoints for

different configurations. Instead, all configuration can be done

remotely via Globus Compute APIs.

V. DATA MOVEMENT

Globus Compute limits the amount of data that can be

passed to, or returned from a task to 10 MB. For data sizes

beyond 10 MB, such as large data frames, files, or machine

learning models, external transfer methods can be used, such

as Globus Transfer and ProxyStore.

A. Globus Transfer

A simple solution for data movement is to write data to a

local file system, replacing task arguments or results with file

paths to the corresponding objects. However, if applications

require access to that data, it must be then moved between

Globus Compute endpoints. Globus transfer, which offers

a secure, fire-and-forget model for reliable and performant

file transfer between Globus Connect endpoints [2], can be

used for this purpose. Globus Connect software is widely

deployed on research computing facilities (there are more than

60,000 active endpoints at the time of writing), and Globus

Connect Personal endpoints can be configured as needed when

leveraging personal or edge devices. As with Globus Compute,

authentication is provided through Globus Auth and thus

Globus Compute and Transfer can be easily used together.

B. ProxyStore

ProxyStore [11] streamlines data flow management in dis-

tributed Python applications. At its core is the transparent

object proxy, a reference-like object that refers to an object

in distributed storage. The proxy is ªtransparentº because it

automatically resolves its target object when first used and

then forwards all operations on itself to the target.

A proxy is initialized with a factory, a callable object that,

when invoked, retrieves the target from remote storage. Thus,

the complexity of interacting with low-level communication

protocols and storage mediums is encapsulated within the

factory. The proxy can be efficiently passed around without

the consumer of the proxy needing to be aware of the

communication mechanisms being used.

This approach effectively combines the advantages of pass-

by-reference and pass-by-value patterns and yields many bene-

fits for Globus Compute applications. Proxying task arguments

and results avoids transfer of large objects through the cloud

service which improves task latency and circumvents the

10 MB payload limit. Task code does not need to be modified

to work with proxies due to their transparent behavior. Objects

reused by many tasks can be cached in the worker process.

Proxies can leverage many communication channels and stor-

age systems to fit the specific deployment. For example, TCP,

RDMA, objects stores, and shared file systems can be used

when the client and workers are located within the same site,

and peer-to-peer methods (Globus Transfer and UDP hole

punching) are provided for wide-area deployments.

ProxyStore can be easily integrated into Globus Com-

pute applications. Initializing the Store interface and cre-

ating a proxy of an object requires only a few lines of

code. More sophisticated applications can use the Executor

wrapper provided by ProxyStore to wrap their Globus Com-

pute Executor. This wrapper automatically proxies task

arguments and results based on a user-defined policy (e.g.,

object size or type) and will clean up proxied objects based

on the lifetimes of the tasks with which the proxies are

associated [12].

VI. DISCUSSION

Since November 2022, almost 17 million tasks have been

executed with Globus Compute. We see in Fig. 2, which shows

tasks per day, increasing and more consistent use over time.

Multi-user endpoints were released in April, 2024. By

August 2024, 87 multi-user endpoints had been deployed and

used to spawn 1718 user endpoints: more than 13% of the

then total 12,418 Globus Compute endpoints. We outline in the

following some of the purposes to which multi-user endpoints

are being applied.

Resource scheduling: Delta [13] builds on Globus Com-

pute to provide a single interface for task submission to

many endpoints. Delta profiles the execution of functions on





designated resource and rely on SSH connections to remotely

act on resources. Globus Compute builds on the Parsl library

to both abstract different batch schedulers and orchestrate task

execution within an endpoint.

Open OnDemand [33] provides a web-based interface for

remote access to HPC systems, allowing users to log in

with their institutional credentials, manage data, and create

and manage computational jobs. Open OnDemand employs

templates for batch jobs that are then mapped to the underlying

scheduler’s batch submission files. Open OnDemand operates

as a web application and uses Apache-supported authentication

methods. Identity mapping is handled similarly to Globus

Compute, using static mappings, regex patterns, and custom

scripts. Globus Compute provides a higher-level interface

designed specifically for executing functions across multiple

connected endpoints.

VIII. SUMMARY

Globus Compute’s hybrid cloud-edge model can signifi-

cantly reduce barriers for adopting heterogeneous, specialized,

and high-performance remote computing infrastructure. Early

use of Globus Compute has shown its suitability for a range

of use cases, but also highlighted areas for enhancement

that could simplify use. In this paper, we presented new

features designed to better support these use cases: an executor

API for simple invocation, multi-user endpoints to separate

configuration and management responsibilities between users

and administrators, ShellFunctions and MPIFunctions to bet-

ter support HPC users, and pass-by-reference data transfer

methods that avoid moving data through the cloud service.

We described how these features have been designed and the

advantages they offer to different user communities.
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