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Abstract—Serverless computing has revolutionized application
development and deployment by abstracting infrastructure man-
agement, allowing developers to focus on writing code. To do so,
serverless platforms dynamically create execution environments,
often using containers. The cost to create and deploy these
environments is known as ‘“cold start” latency, and this cost
can be particularly detrimental to scientific computing workloads
characterized by sporadic and dynamic demands. We investigate
methods to mitigate cold start issues in scientific computing appli-
cations by pre-installing Python packages in container images.
Using data from Globus Compute and Binder, we empirically
analyze cold start behavior and evaluate four strategies for
building containers, including fully pre-built environments and
dynamic, on-demand installations. OQur results show that pre-
installing all packages reduces initial cold start time but requires
significant storage. Conversely, dynamic installation offers lower
storage requirements but incurs repetitive delays. Additionally,
we implemented a simulator and assessed the impact of different
warm times, finding that moderate warm times significantly
reduce cold starts without the excessive overhead of maintaining
always-hot states.

Index Terms—Scientific Computing, Serverless, Cold Start,
Measurements, Simulation

I. INTRODUCTION

The emergence of serverless computing has reshaped how
applications are developed and deployed. By abstracting
infrastructure management, serverless platforms promise to
streamline development workflows and optimize resource uti-
lization. At the core of this paradigm shift lies the use
of Function-as-a-Service (FaaS), where users deploy small,
event-driven functions without worrying about the underlying
servers. FaaS platforms are elastic and can scale to zero. When
a function is invoked, it is deployed by the provider with all
necessary resources for execution. Environments are typically
constructed by installing all dependencies in a container.
Once the function completes its execution and no further
requests follow, all allocated resources are released. Although
this scaling has apparent benefits, such as reduced costs, it
introduces cold start overhead to restart the resources for
subsequent executions. For instance, AWS Lambda exhibits

a latency of up to a few seconds for cold start [1]. A recent
study even demonstrated that the cold start of a function can
take up to 166 times the actual function runtime [2].

In addition to its increasing adoption in industry, scientists
and engineers have begun embracing FaaS for more efficient
application execution [3]. Consequently, reducing cold start
times in scientific serverless applications is critical to enable
low-latency, time-sensitive workloads, such as experiment
steering [4], [5]. However, the highly diverse and specialized
nature of scientific computational tasks, both within and across
domains, makes it impractical to maintain custom environ-
ments for each task due to strict data quotas.

Traditional approaches to mitigating or minimizing cold
starts involve either shortening the time required for container
preparation or reducing the provisioning of function depen-
dencies [6]. However, these approaches may not fully address
the unique demands of scientific computing workloads, which
often comprise functions invoked infrequently, exacerbating
cold start delays [7].

In this context, we investigate the effectiveness of pre-
installing Python packages in container images to alleviate the
cold start problem, specifically in scientific computing appli-
cations. Leveraging insights from two prominent datasets—the
Globus Compute dataset [7] and the Binder dataset [§]—we
empirically analyze the cold start behavior of scientific com-
puting functions and investigate four distinct container build
strategies for mitigating cold start delays. These strategies
range from installing all required packages during container
build time to dynamically installing only missing packages
based on historical usage data. We then investigate the effect
of keeping containers “warm” for different periods of time to
avoid future cold starts.

In summary, our contributions in this paper are threefold:
(i) We explore the Globus Compute and Binder datasets,
shedding light on the unique challenges posed by scientific
computing workloads in serverless environments. (ii) We con-
duct an empirical study on the cold start characteristics of
scientific computing functions, with a specific focus on the
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impact of pre-installing Python packages in container images.
(iii) We evaluate the effectiveness of different warm times
in reducing cold starts for scientific computing functions,
providing insights into optimizing serverless deployments in
this domain.

Our findings indicate that the choice of container build strat-
egy significantly impacts cold start times. The naive strategy,
which has the longest cold start times, remains a viable option
when historical usage data is insufficient. The two strategies
based on historical information reduce the initial cold start but
introduce high storage requirements. Furthermore, our simu-
lation and analysis of warm times reveal that moderate warm
intervals effectively reduce cold starts without the excessive
costs associated with maintaining always-hot states.

The remainder of this paper is structured as follows: Sec-
tion II provides background information and introduces the
datasets used. Section III analyses the datasets utilized and
highlights the proposed strategies for reducing cold starts.
Section IV presents the experimental setup and discusses the
results of our empirical analysis. Section V investigates various
times for keeping function warm and simulates their impact
on cold start reduction. Section VI discusses related work.
Finally, Section VII concludes the paper.

II. BACKGROUND

In this section, we introduce containerization and cold start.
We also describe the Globus Compute and Binder datasets
used in this paper.

A. Containerization and Cold Start Times

In recent years, containers have become the dominant
deployment technology for serverless functions and microser-
vices. This is because containers are significantly lighter than
virtual machines, as OS and kernel functions can be shared
between containers while still providing the necessary isola-
tion and portability of environments. The lightweight nature of
containers also enables significantly faster start times, which
in turn enables increased application scalability. However, as
recent work [9] has shown, there are also significant variations
in start times between different container images.

]
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Fig. 1. Schematic overview of cold vs. warm starts.

In the context of serverless functions, a distinction is often
made between cold and warm starts. In general, the start
process of a function can be divided into four steps, as shown
in Figure 1. In the first step, the code is received, and its
metadata (e.g., environment settings and dependency versions)
are evaluated. In the second step, an environment (e.g., a

Python runtime with a specific version) is configured and
prepared based on these settings. Next, the environment is
instantiated and initialized. In the final step, the actual code is
executed. In a warm start, all static setup steps have already
been completed, and only the code needs to be executed.
Typically, the image is saved after the very first cold start,
eliminating the need to repeat the first two steps with each
subsequent cold start.

To achieve maximum performance and low execution times,
it would be optimal to avoid cold starts completely, i.e., always
provide a sufficient number of “warm” containers. However,
there is a tradeoff between response and resource utilization.
Further, resources are limited, and in practice, especially with
dynamic workloads, it is difficult to predict future function re-
quirements and to provide sufficient resources at all times [10].

B. Globus Compute Dataset

There are few publicly available serverless datasets, with
most coming from industry. The most notable are Azure’s
datasets [11], [12] and, although not directly related to FaaS,
Alibaba’s microservices dataset [13]. However, these datasets
do not include information about the functions that are run or
the packages that are used.

To this end, we utilize the Globus Compute dataset [7],
which offers insights into Python functions used in scientific
use cases. This dataset! spans a period between November
28th, 2022 and July 3rd, 2023 from the Globus Compute
platform. It details information on 2,121,472 tasks submitted
by 252 distinct users across 580 geographically distributed
endpoints. The dataset also includes details about 277,386
registered Python functions with 1,847 distinct function bodies
clustered into 29 clusters.

Globus Compute, formerly funcX [14], is a scientific FaaS
platform that implements a unique hybrid cloud-edge architec-
ture. It integrates a central cloud service with user-deployed
and managed endpoints that can be set up on any computing
resource, from edge devices to high-performance clusters.
Users can register Python functions and submit them for
execution on a chosen endpoint.

In contrast, hosted FaaS platforms like Amazon Lambda
support a wide range of applications in various languages and
are deeply integrated with their cloud ecosystems. Amazon
Lambda uses Firecracker [15], while Globus Compute sup-
ports containerized Python functions with Docker for local
and cloud use, and Singularity [16] and Shifter [17] for HPC
environments.

C. Binder Dataset

We use the Binder dataset [8] to analyze real-world usage of
Python packages in containerized applications. This dataset?
contains information from the repo2docker tool [18] about
deployed containers with Python environments from Novem-
ber, 2018 to June, 2021. During this period, 18,230,454 con-
tainers were deployed from 90,713 different Git repositories.

'Globus Compute dataset: https://doi.org/10.5281/zenodo.10044780
2Binder dataset: https://zenodo.org/records/4915858
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The dataset includes information about the Python packages
installed in 159,646 applications.

The Binder Project facilitates scientific reproducibility by
developing environments that are shareable, interactive, and
reproducible [19]. Through an online service, Binder en-
ables the execution of interactive notebooks sourced from
Git repositories. Users have the flexibility to define their
required environment, typically encompassing datasets, ap-
plication code, and documentation within a Git repository.
Leveraging repo2docker, Binder dynamically constructs
and deploys containers according to these specifications. These
containers are then hosted on public cloud computing plat-
forms, granting users browser-based interaction.

[II. METHODOLOGY

In this section we analyze the Globus Compute and Binder
datasets to gain insights into the required environments for
real-world applications. Moreover, we discuss how we use
these datasets in our subsequent experiments. Finally, we
introduce the four container build strategies.

A. Analysis and Usage of the Datasets

As our interest is in reducing the time needed to set up
the environment for the first cold start, we removed all func-
tions/applications from both datasets that do not import any
packages. In the Globus Compute dataset, we find 1441 unique
function bodies located in 24 clusters (see Section III-D) and
performed by 1,140,431 associated tasks. In the Binder dataset,
we find 86,086 unique applications. Table I shows the package
characteristics of the remaining functions/applications. For the
Globus Compute dataset, functions import 3.03 packages on
average. In total, this dataset has 130 unique packages and 246
combinations of these packages. Out of these 130 packages, 37
are from the Python standard library. For the Binder dataset,
applications required 10.93 packages on average. In total, this
dataset has 13,309 unique packages and 19,390 combinations
of these packages. Moreover, 6,394 out of 86,086 images
install more than 20 packages, with a maximum of 1043. When
considering only the images with 20 or fewer packages, the
average number of installed Python packages is 6.39. Please
note that the Binder dataset includes only packages that have
to be installed; that is, it does not list packages from the Python
standard library.

TABLE 1
PYTHON PACKAGE CHARACTERISTIC COMPARISON BETWEEN THE
GLOBUS COMPUTE AND BINDER DATASET.

Characteristic Globus  Binder
Average imported/installed packages 3.03 10.93
Unique packages 130 13,309
Unique standard library packages 37 —
Unique package combinations 246 19,390

B. Package Installation Time

We explore the installation time of each package in these
two datasets by timing the installation of each package
in a new Docker container on our reference system (see
Section IV-A). Each package was installed ten times, and
Table II shows the average installation time for the most
common packages and those with the longest installation time.
torchvision and torch both take more than 180 seconds
to be installed. torch is also the seventh most imported
package of the installed packages. On the right side, the most
imported packages are shown. numpy is the most imported
package in the dataset, and it takes 8.47 seconds to install
on average. So, if a container with numpy already installed
was provided, the cold start time could be reduced by 8.47
seconds. Except for torch and tensorflow, the top 10
imported installed packages require less than 22 seconds to
be installed. On average, a package from this dataset requires
9.16 seconds to be installed.

TABLE II
ToP 10 PACKAGES WITH THE LONGEST INSTALL TIME (LEFT) VS. TOP 10
INSTALLED PACKAGES FREQUENTLY IMPORTED (RIGHT) BASED ON THE
GLOBUS COMPUTE DATASET.

Package Install time [s] Package Install time [s]
torchvision 182.88 numpy 8.47
torch 180.47 pathlib 4.66
tensorflow 83.49 pandas 18.46
keras 77.23 torch 180.47
mlflow 64.65 tensorflow 83.49
mplsoccer 34.59 proxystore 9.61
statsmodels 29.18 sklearn 21.74
quickstats 26.98 datetime 5.80
imblearn 21.83 pyhf 19.12
sklearn 21.74 matplotlib 16.15

Table III reports the ten packages that took the longest time
to be installed (left) and the top 10 installed packages (right)
in the Binder dataset. Here, 1lux-api took the longest time
to be installed. The remaining nine packages require at least
245 seconds to be installed. On average, a package from this
dataset requires 30.11 seconds to be installed. bokeh is the
most imported package. Like the Globus Compute dataset, the
Binder dataset also includes matplotlib, numpy, pandas,
and sklearn packages among the top 10 packages used.
These four packages are also among the 20 most common
PyPI packages [20].

For the measurements presented in the following sections,
we only use the Globus Compute dataset, while the Binder
dataset is used as a reference point. The reasons for this
decision are (i) given the vast amount of Python packages and
images of the Binder dataset, the experiments as described in
Section IV-A would be infeasible; (ii) and the focus of this
paper is on scientific serverless computing as reassembled by
the Globus Compute dataset.

C. Container Building Strategies

The typical process (i.e., cold start) for invoking a function
for the very first time in a serverless setting is illustrated in
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TABLE III
TOP 10 PACKAGES WITH THE LONGEST INSTALL TIME (LEFT) VS. TOP 10
INSTALLED PACKAGES FREQUENTLY IMPORTED (RIGHT) BASED ON THE
BINDER DATASET.

Package Install time [s] Package Install time [s]
lux-api 248.64 bokeh 70.91
netallocation 247.76 bs4 13.16
i00s-tools 247.23 fuzzywuzzy 9.24
scikit-surprise 246.38 geopandas 69.55
andes 246.13 matplotlib 16.15
py-heat-magic 245.97 numpy 8.47
vasppy 245.83 pandas 18.46
fluxengine 245.70 pycountry 12.68
icepyx 245.62 seaborn 72.98
bionetgen 245.22 sklearn 21.74

Figure 1. To diminish the cold start duration, we focus on
reducing the setup time of the environment (purple box). To
do so, we investigate four different strategies in this paper:

Naive: As a baseline, this approach entails fetching a
standard Python container (amd64/python:3.11) and installing
all dependencies during container building.

All Top 10: For this strategy, a pre-installed Docker
image is fetched. Based on a standard Python container
(amd64/python:3.11), this image is pre-installed with the top
10 most frequently used packages across all historical func-
tions recorded in the environment. Each of these installations
was represented as a single line within the Dockerfile, resulting
in the creation of a separate layer for each dependency. This
way, Docker can apply layer optimization during the start.

Cluster Top 10: This strategy involves assigning functions
to one of 24 clusters. Each cluster has a unique Docker image
built on a standard Python container (amd64/python:3.11) with
the ten most commonly used packages from all historical
functions within the cluster pre-installed. Similar to All Top
10, each installation was represented as a single line within
the Dockerfile.

On-the-fly: As about 40% of the functions in the Globus
Compute dataset were only executed once, this strategy installs
all required dependencies from scratch every time the con-
tainer is started. In essence, while Naive installs the packages
during the building of the docker container, this strategy
installs the packages after the container is built and started.
The image used is the same as for Naive and also follows the
conventional approach.

The concept behind All Top 10 and Cluster Top 10 is to
have specific necessary dependencies pre-installed based on
the most used dependencies across all historical functions.
Consequently, only the missing dependencies have to be in-
stalled. For All Top 10, we choose ten packages (coincidently,
also 10% of all packages), as we can cover almost 60% of
all package combinations of the Globus Compute dataset as
depicted in Figure 2. For comparison, we also set Cluster Top
10 to ten packages. Indeed, any other number could be chosen,
but we wanted to keep the number of installed packages
relatively small.

Please note that we chose to use Docker for our experiments.
However, the approach is not limited to Docker; alternative
container technologies such as Singularity or Podman can be
used instead.
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Fig. 2. Coverage of package combinations using top x% of packages.

D. Clustering of Functions

As highlighted in Section III-A, the dataset we use has
230 unique package combinations. In general, the number of
package combinations can be numerous. Consequently, having
a pre-installed environment at hand for every combination
is infeasible. We cluster the functions to reduce the number
of pre-installed environments to a manageable set. Although
clustering based on only packages might seem intuitive, we
chose to cluster the functions based on their functionality.
This approach takes into account both dependencies and code,
allowing us to group functions with similar purposes, such as
data manipulation, together. This strategy aims to facilitate
potential performance enhancements in future research.

For the clustering approach, we tried different methods.
HDBSCAN (Hierarchical Density-Based Spatial Clustering
of Applications with Noise) clustering [21] exhibited the
best results based on the silhouette coefficient. To have a
typical representation of each function, we utilized an em-
bedding model from OpenAl [22], transforming each function
into a high-dimensional array with values v; € [—1;1].
Finally, we grouped these representations of the functions with
HDBSCAN into 24 clusters.

IV. EMPIRICAL STUDY OF CONTAINER BUILDING
STRATEGIES

In this section, we perform an empirical study on the four
container building strategies. We first introduce the experimen-
tal setup and discuss different aspects of the container building
strategies: (i) time for setting up the environment, (ii) cold start
time, and (iii) overhead in terms of storage requirements and
start time. Also, we discuss threats to validity and summarize
our results.
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A. Experimental Setup

To measure cold start times, we performed ten randomized
repetitions with randomized multiple interleaved trials [23].
That is, we randomized the time to start and the order of
the invoked functions for each repetition. Additionally, at the
beginning of each repetition, we deleted all images to ensure
an empty system, necessitating the build of all images. In
addition, after we invoked a function with a cold start, we ran
each function five times to have information on warm starts.

Although we had access to the function source code, we
did not have access to the data with which the functions
were called. To this end, for each function, we replaced the
function body with a dummy function; each function imports
the packages and then calls sleep (1).

We captured the execution time and other times of interest of
each function invocation in a fine-grained manner as follows:

Build time: This time includes fetching the container image,
performing all commands specified in the Dockerfile, and
creating a new container image. In other words, it is the time
to complete the step Setup Environment (see Figure 1).

Start time: The time Docker requires to provide a runnable
environment from a container image [9]. We consider this time
as overhead.

Completion time: The duration from invoking a function
until it finishes. In the case of a cold start, it includes all
steps within the red box illustrated in Figure 1. Otherwise, if
a container is warm, it is the time for executing the function
(green box).

All experiments were conducted in a self-hosted cloud
managed by Proxmox? (version 7.4). The cloud consists of 17
servers with identical hardware. The servers are HP ProLiant
DL360 Gen9 with Intel(R) Xeon(R) CPU E5-2640, 2x16 GiB
HP 752369-081 DDR4 RAM, and a 500 GB HDD disk of type
HP MBO500GCEHE. Dynamic frequency scaling is enabled as
default and also further CPU-oriented features are not changed.
The used Docker version is 25.0.3.

TABLE IV
COMPARISON OF THE NUMBER OF PACKAGES TO INSTALL.

Packages to instal Mean Median SD  Range
Naive 1.99 1 140 [1, 7]
All Top 10 0.79 1 096 [0, 5]
Cluster Top 10 0.07 0 030 [0, 2]
On-the-fly 1.99 1 140 [1, 7]

B. Environment Setup Analysis

To compare the four different strategies, we calculate the
number of packages to be installed and measure the container
build time. In this analysis, we consider only functions from
the Globus Compute dataset that imported at least one package
that has to be installed. Results are presented in Table IV.

As the Naive and On-the-fly images have only the Python
Standard Library packages installed, every other package must

3Proxmox: https:/www.proxmox.com/en/

be installed. Consequently, Naive and On-the-fly give us an
insight into how many packages have to be installed across
the considered functions. On average, 1.99 packages must be
installed with a median value of 1. In total, the number of
packages to be installed ranges from 1 to 7 packages. In
contrast, All Top 10 and Cluster Top 10 have to install, on
average, only 0.79 and 0.07 packages, respectively. Moreover,
in 50% of the considered functions, All Top 10 and Cluster
Top 10 have to install 1 and O packages. Zero indicated that
all needed packages were already installed. The maximum
amount of packages to be installed for All Top 10 and Cluster
Top 10 is 5 and 2, respectively. Although we were able to
reduce the number of packages to be installed with All Top
10, 94% of the considered functions have all required packages
installed in the more fine-grained approach of Cluster Top 10.
However, on average, 8.00 and 6.93 packages for All Top 10
and Cluster Top 10, respectively, are present in the image but
not utilized by the function.

Build Time
8
0 0

(o]
10"
10° R —

All Top 10 Cluster Top 10 On-the-fly

0
10? !

Time in seconds

Naive

Fig. 3. Comparison of the build time of the different approaches.

TABLE V
SPEED-UP OF BUILD TIME COMPARED TO Naive.

Speed-up Geometric mean Median  Geo. SD Range
All Top 10 2.12 1.24 2.82  [0.86, 56.66]
Cluster Top 10 2.53 1.67 3.04 [0.9, 71.63]
On-the-fly 7.28 6.95 6.41  [0.9, 296.95]

To quantify the reduction in packages to be installed, we
investigate the building time of the different strategies (see
Figure 3). Naive takes an average of 32.58 seconds to build
the entire environment. The median time is 6.07 seconds, with
values ranging from 0.87 seconds to 259.47 seconds. Installing
on average 1.2 packages less than Naive, All Top 10 requires,
on average, just 5.21 seconds to build the environment. Simi-
larly, Cluster Top 10 has a mean build time of 4.61 seconds.
As On-the-fly installs all dependencies during the runtime of
the container, it takes only an average of 0.89 seconds. In fact,
installing Python packages during the runtime of the container
(On-the-fly) is, on average, 24% faster than during the building
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of the container (Naive). We also evaluated the speed-up of the
strategies compared to Naive as shown in Table V. Please note
that we reported the geometric mean and standard deviation for
the speed-up. On average, using All Top 10 results in a speed-
up of 2.12, with a maximum of 56.66 compared to Naive.
Cluster Top 10 builds the environment on average 2.53 times
faster than Naive, with a maximum speed-up of 71.63. On-
the-fly builds the environment on average 7.28 times faster,
with a maximum speed-up of 296.95.

C. Cold Start Analysis

To investigate the cold start of the four strategies, we
compare the completion time for the very first cold start of
each function with each subsequent cold start, with the results
listed in Table VI.

For the very first cold start, the Naive strategy takes, on
average, 34.89 seconds and up to 266.13 seconds to com-
plete the function invocation. In contrast, with All Top 10
and Cluster Top 10, it takes an average of 7.53 and 6.88
seconds, respectively. As All Top 10 has already torch and
torchvision installed for all functions but a few functions
have to install these packages while using Cluster Top 10,
All Top 10 has a maximum of 86.77 and Cluster Top 10
227.00 seconds, respectively. On-the-fly has an average time of
27.11 seconds. Although Naive and On-the-fly have to install
all dependencies, On-the-fly is faster. Consequently, installing
dependencies in a running container is faster than installing
them during the docker build.

While investigating subsequent cold starts, Naive, All Top
10, and Cluster Top 10 require, on average, less than 1.5
seconds for a complete function invocation. This is because
the docker image for each function is only built once and
then stored and reused. In fact, the differences between these
three strategies are in the order of milliseconds. However, On-
the-fly installs for each cold start every dependency. Therefore,
on average, it takes 23.80 seconds for a function invocation,
while the median and maximum times are almost identical.

TABLE VI
COMPARISON OF COLD START COMPLETION TIMES.

Characteristic Mean Median SD Range

st cold start completion time [s]

Naive 34.89 753 6193 [2.18, 266.13]
All Top 10 7.53 5.41 8.04 [2.2, 86.77]
Cluster Top 10 6.88 476  12.81 [2.18, 227.0]
On-the-fly 27.11 6.72  46.92 [2.18, 219.0]
Subsequent cold start completion time [s]

Naive 1.48 1.20 0.68 [1.01, 4.57]
All Top 10 1.44 1.08 0.69 [1.02, 4.37]
Cluster Top 10 1.44 1.10 0.69 [1.01, 4.42]
On-the-fly 23.8 6.87  43.88 [1.02, 219.3]

D. Storage Requirement

Since All Top 10 provides a single image to build the envi-
ronment for each function and Cluster Top 10 24 images, we
investigate the storage requirements to store built containers.
The results of each strategy are provided in Table VII.

TABLE VII
COMPARISON OF STORAGE REQUIREMENTS.

Image size [GB] Mean Median SD Range

Naive 1.73 1.02 1.61 [1.01, 7.33] 249293
All Top 10 8.47 845 0.09 [845,9.56] 12205.27
Cluster Top 10 3.33 1.58 244 [1.01, 7.33] 4798.53
On-the-fly 1.01 1.01 0 [1.01, 1.01] 1445.41

On average, a function image with Naive has an average
image size of 1.74 GB. When no packages were installed,
the image size was just 1.01 GB. In contrast, the biggest
image is 7.33 GB. We see that All Top 10 requires significantly
more space, with every image larger than the biggest image
with Naive. With All Top 10 images range from 8.45 to
9.45 GB with an average of 8.47 GB. These high values
result from the “big” Python packages that were installed
beforehand. In contrast, Cluster Top 10 has a similar storage
range to Naive but has an average of 3.33 GB. As On-the-fly
installs all packages once the container has started, it has a
constant image size of 1.01 GB. Considering the number of
unique functions (1441) within the Globus Compute dataset,
the storage requirements to host all functions are 2,493 GB,
12,205 GB, 4,799 GB, and 1,445 GB for Naive, All Top
10, Cluster Top 10, and On-the-fly, respectively. This number
would be significantly larger for the Binder case with its
86,086 unique applications.

In addition to the traditional approach of saving a separate
image for each function, there are alternative strategies for
saving images. One such strategy, proposed by Kumari and
Sahoo [24], involves deploying multiple functions together
within a single image. If we consider this approach and deploy
functions sharing the same packages together, Naive and On-
the-fly would both require 427.31 GB, All Top 10 would need
728.42 GB, and Cluster Top 10 would require 106.56 GB.

TABLE VIII
COMPARISON OF THE START TIMES. START TIME REFERS TO THE TIME
DOCKER REQUIRES TO PROVIDE A RUNNABLE ENVIRONMENT [9].

Start time [ms] Mean Median SD Range
Naive 247.20 247.10  23.58 [172.61, 374.08]
All Top 10 246.74 246.27  22.54  [174.78, 369.92]
Cluster Top 10 248.15 24749  23.87 [163.28, 393.68]
On-the-fly 247.82 245.58 28.84 [167.49, 383.57]

E. Start Time Overhead

Besides the storage requirements, we asses the overhead
by the time taken to start the whole Docker image for the
function invocation. With start time, we refer to the time
Docker requires to provide a runnable environment [9]. The
results are visualized in Figure 4 and listed in Table VIII.

On average, Naive exhibits an average start time of 247.20
milliseconds with a median value of 247.01 milliseconds. A/l
Top 10 and Cluster Top 10 experienced a slower mean start
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time of 246.74 milliseconds and 248.15 milliseconds. On-the-
fly has an average start time of 247.82 ms. As all these values
are remarkably similar, we performed t-tests to investigate
whether there is a significant difference in the means of these
strategies. As we have 50 - 1441 measurements, the sampled
distribution approximated a normal distribution according to
the Central Limit Theorem. The resulting p-values for the tests
Naive vs. All Top 10, Naive vs. Cluster Top 10, and Naive vs.
On-the-fly are 0.44, 0.29, and 0.56, respectively. That is, there
is insufficient evidence to reject the null hypothesis. In other
words, there is no significant difference between the means
of the strategies. Also, the other combinations did not exhibit
any significance. Consequently, we can conclude that the start
time is not influenced by the choice of the strategy.

[e]

1
—

200

Time [ms]

il
.
TT

Naive All Top 10 Cluster Top 10  On-the-fly

Fig. 4. Comparison of the start time of the different approaches.

E. Threats to Validity

For the Globus Compute dataset, we do not have informa-
tion on which package version was required for the function
execution. To this end, we used the latest version of each
package in our experiments. In the case of the pre-installed
container images, if a function would require a different
version, it could be up- or downgraded during the building of
the container. That is, changing the version would increase the
building time but less than installing the whole package from
scratch. Although we run every experiment several times, we
run the experiments in one cloud environment. Consequently,
our results could change if run in a different environment. But
we would expect the order of results to stay the same.

G. Summary of the Results

The Naive strategy has the longest build time and thus
exhibits the slowest first cold start time. However, this strat-
egy can be used when insufficient historical information is
available to use strategies like All Top 10 or Cluster Top 10.
Also, this strategy requires less storage compared to Cluster
Top 10 and All Top 10. While comparing All Top 10 with
Cluster Top 10, the latter strategy has a shorter building time
and requires less storage. After the first cold start, these three
strategies exhibit similar cold starts. On-the-fly is for the very

first cold start faster than Naive and has the lowest storage
requirement. However, for every cold start, it has to install
every dependency again, and thus, it does not benefit from
saving an installed image as the other strategies. That is, On-
the-fly is only recommendable when functions are only run
once, and there is not enough historical information available
for All Top 10 or Cluster Top 10.

V. SIMULATION

To experiment with the effect of different warm times on a
FaaS service, it would be necessary to keep container images
alive on compute nodes for longer than usual. This would be
disruptive to users of that service. For this reason, we chose to
run simulations based on the timestamps of the Globus Com-
pute Dataset and the times gathered during our experimental
evaluation. This section describes first our simulator and the
warm selection. Then, we discuss the simulation based on (i)
completion time, (ii) saved time, and (iii) cold starts. Finally,
we summarize the simulation results.

A. Simulation & Warm Time Selection

To assess the impact of our approach at scale, we built an
event-based Python simulator based on our measurements (see
Section IV) and timestamps from the Globus Compute dataset.
For each task in the simulation, we use the associated function
(i.e., the Python package dependencies), the recorded submis-
sion time of the task, the measured build time for building the
associated container for the function, the measured start time,
and the recorded execution time of the task. We used the mean
values for the measured values over all experimental runs.

At the beginning of the simulation, the system is empty. This
means that the first time a function is called, the container must
be built, which is indicated by the build time. To investigate
the reduction of cold start times, we explore five different
warm strategies (each function has its own image as specified
in Section III-C):

Cold,.: After a function is terminated, the container is shut
down. That is, each function execution is a cold start. This
behavior reflects the worst-case scenario.

Warms: The container is kept alive for 5 minutes after the
completion of its function. If the same function is called again
in this time window, it uses the active container without the
need to start a new instance of the container. We set the
window to 5 minutes according to the previous analysis of
the Globus Compute dataset [7].

Warmio: The container is kept alive for 10 minutes. This
is a typical time window used by AWS and Azure [25], the
OpenWhisk serverless platform, used by IBM Cloud [26], and
other serverless providers [27].

Warmis: The container is kept alive for 15 minutes. This is
another standard duration used by AWS Lambda [26], [28].

Warmso: The container is kept alive forever. That is, each
subsequent invocation of the same function uses the same
container. This is the optimal scenario and allows us to
estimate the potential gain that is missed by the limited time
windows currently used.
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For each warm time and building strategy, we simulated 271
days with a total of 1,140,431 task invocations and reported the
build time, start time, and completion time. As we discussed
in Section IV the build and start time, we focus in this section
on the completion time.

B. Simulation Results

To investigate the different warm times, we compare the
completion time, the total saved time, and the number of cold
starts. The results are listed in Table IX.

For each building strategy, the most significant decrease in
both average and median completion times occurs when transi-
tioning from always cold (Cold,) to a 5-minute warm period
(Warms). This is primarily because 93% of the functions in
the Globus Compute dataset are invoked with a frequency
equal to or less than five minutes [7]. In our refined dataset
(refer to Section III-A), we observe a cold start occurrence of
4.04% with Warms. This percentage further improves to 2.24%
and 1.58% with warm periods of 10 minutes (Warmig) and
15 minutes (Warm,s), respectively. As Cold,, by definition
results in 100% cold starts. Warm., results in 0.1% cold starts
(i.e., just the st start of each function). Overall, the completion
time decreases correspondingly with increasing warm times.
However, the most significant reduction in cold starts happens
between Cold,, Warms. The improvements beyond this point
are only marginal and may not justify the associated resource
overhead. Nonetheless, these results demonstrate the unique
challenges that scientific computing faces, as Shahrad et al.
studied workload in industry, for example, and in their dataset,
there is a significant difference between 5, 10, and up to 60
minutes of warm time.

Similar to the results in Section IV, the ranking of the
building strategies remains consistent across all warm times.
On average, Cluster Top 10 has the shortest completion time
followed by All Top 10, Naive, and On-the-fly. For 50% of
the function invocations, those deployed with All Top 10
demonstrate a slightly quicker completion time (by a tenth
of a millisecond) compared to those deployed with Cluster
Top 10.

In our simulation, to explore warm times and building
strategies on a large scale, we quantified the time saved for
each scenario. We set Naive with Cold., as the baseline and
compared its total time against the other scenarios, calculating
the percentage of time saved. For instance, On-the-fly with
Cold,, took 9.56% longer compared to baseline. However,
introducing a warm time with On-the-fly resulted in a minimal
time saving of 0.52% of the total time. Similarly, incorporating
a warm time with Naive led to a minimum saving of 3.18%.
Both All Top 10 and Cluster Top 10 demonstrated savings of at
least 0.41% with Cold,, and at least 3.50% with a warm time.
Overall, across all scenarios, longer warm times translated to
greater time savings.

C. Effect on Individual Users

In the previous section, we were interested in how the differ-
ent building strategies and warm times affect the whole Globus

TABLE IX
COMPARISON OF THE DIFFERENT WARM TIMES.

Characteristic Cold Warms  Warmiy  Warms Warm
Average completion time [ms]

Naive 9158.33 8867.18  8861.79  8859.78  8855.05
All Top 10 9121.02 8837.74  8832.47  8830.51 8825.88
Cluster Top 10 9116.20 8837.07  8831.88  8829.94  8825.38
On-the-fly 10034.04 9110.86  9107.57 9105.54  9097.14
Median completion time [ms]

Naive 336.68 33.01 32.71 32.61 32.41
All Top 10 331.67 32.95 32.65 32.55 32.35
Cluster Top 10 321.93 33.05 32.75 32.65 3245
On-the-fly 337.05 335.35 335.35 335.35 335.35
Total saved time [%]

Naive 0.00 3.18 3.24 3.26 3.31
All Top 10 0.41 3.50 3.56 3.58 3.63
Cluster Top 10 0.46 351 3.56 3.59 3.64
On-the-fly -9.56 0.52 0.55 0.58 0.67
Cold starts [%] 100 4.04 2.24 1.58 0.01

Compute landscape. Now, we investigate how this affects
individual users. To this end, we choose three representative
users from the Globus Compute trace:

Power: This user invoked frequently six different functions.
Each function has at least one package to be installed and was
run over 10,000 times. On average, 9.00 Python packages per
function had to be installed.

Standard: This user ran a total of 18 different functions. The
top invoked function was run more than 1,000 times, while the
other functions were run between 10 to 100 times. Also, each
function has at least one Python package to be installed. On
average, 2.86 packages per function had to be installed.

Unique: This user just ran 48 different functions exactly
once. Each function has at least one Python package to be
installed, and on average, 3.40 packages had to be installed.

TABLE X
COMPARISON OF THE DIFFERENT BUILDING STRATEGIES WITH Warmio.

Characteristic =~ Power  Standard Unique
Average completion time [ms]

Naive 77.71 5961.38  24897.24
All Top 10 76.45 5833.33  20895.34
Cluster Top 10 75.65 5804.51 5333.18
On-the-fly 141.15 6019.45  17566.58
Median completion time [ms]

Naive 50.01 5069.91 5077.72
All Top 10 50.02 5069.15 4094.95
Cluster Top 10 50.00 5069.17 3397.01
On-the-fly 49.77 5070.60 4335.48

Table X lists the average and median completion time for
all three users. For this investigation, we set a warm time of
10 minutes, as this is the standard for most industry providers.
The fastest average completion time for Power is maintained
with Cluster Top 10. However, Naive and All Top 10 are just
1 ms slower. For 50% of its function invocations, On-the-
fly exhibits the shortest completion time. For Standard, the
median completion time is almost identical for all building
strategies, while Cluster Top 10 provides the fastest average
completion time. The most interesting user is Unique, as each
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function is called only once. That is, containers cannot be
reused, which is one use case for On-the-fly. Consequently,
this strategy exhibits a faster completion time than Naive and
All Top 10. However, Cluster Top 10 is by far the fastest due
to its fine-grained clusters, and therefore no packages have to
be installed.

D. Summary of the Simulation Results

As the warm-up time increases, the number of cold starts
decreases as expected. However, the change between Cold,
to Warms is much higher than from Warms to Warmyo and
even less reaching Warm,. Warms to Warm; 5 reflect state-of-
the-art warm times, and compared to the best scenario (i.e.,
Warmy), there is no huge gain justifying the unlimited warm
time. Overall, the rankings and findings from the experiments
(see Section IV) also hold true for the large-scale simulation.
Instead of looking at a whole system but only one selected
user, the choice of the building strategy has more impact on
their completion time.

VI. RELATED WORK

Vahidinia et al. [6] surveyed approaches for reducing cold
start duration and classifies them into two categories: Shorten-
ing the time required for container preparation or reducing the
provisioning of function dependencies. Therefore, we focus on
related work from both categories.

Sandboxing and Isolation Techniques: SAND [29] uses
sandboxing to efficiently manage function resources. It lever-
ages operating system mechanisms to share preloaded code,
like loaded libraries, which are then forked to handle incom-
ing requests. Boucher et al. [30] developed a multi-tenant
worker process that directly executes functions by dynamically
loading function code and executing it as a thread. Kumari
and Sahoo [24] analyze and group similar functions together,
deploying them in one container while isolating them through
different processes.

Container and Unikernel Techniques: SEUSS [31] utilizes
unikernels at the system level to snapshot serverless appli-
cations, cloning them as needed. Silva et al. [32] employ a
cloning technique based on Checkpoint/Restore In Userspace
(CRIU) to restore the state of a function in a cloned process
later for scalability needs. Xu et al. [1] introduced an adaptive
container pool scaling strategy, establishing a repository of
pre-launched containers to respond to requests immediately.
The quantity of containers within each category is dynamically
adjusted according to historical invocation patterns. Oakes et
al. [33] proposed a provisioning strategy using fully packaged
containers that can be immediately deployed without requir-
ing library imports or initialization. Despite its benefits, this
approach raises security concerns as the cache can be shared
among multiple processes. HotC [34] manages a pool of live
container runtimes, analyzing user input or configuration files
to match the environment and load code accordingly.

Pre-warming and Caching Techniques: PipBench [35] pro-
vides a package-aware compute platform where a common
package repository can be shared among different microservice

handlers belonging to various customers. Pagurus [36] incor-
porates an intra-function manager to transform an idle warm
container into one available for other functions’ use without
introducing additional security risks. Shahrad et al. [11] apply
a histogram policy, estimating the following invocations for
each individual function. In addition, they use pre-warming to
reduce resource waste.

Optimizing Function and Container Usage: Lee et al. [37]
suggest merging two functions into one to avoid the cold
start of the second function. However, fusing parallel functions
may increase workflow response time as parallel functions are
executed sequentially. Zhou et al. [2] introduce Multi-Level
Container Reuse, which groups packages into OS, language,
and runtime categories, and employs Deep Reinforcement
Learning to optimize the reuse of warm containers.

In contrast to existing approaches, our work focuses specifi-
cally on alleviating the cold start problem in scientific comput-
ing applications by pre-installing Python packages in container
images. While many related works address cold start issues
through various strategies such as sandboxing [29], uniker-
nels [31], and container pre-warming [33], our research takes
a distinct empirical approach: We evaluate different container
build strategies and explore the impact of different warm times
on cold start delays, aiming to balance between maintaining
container warmth and avoiding excessive costs.

VII. CONCLUSION

In this article, we have addressed the cold start problem
in serverless computing for scientific applications by exam-
ining various strategies for pre-installing Python packages
in container images. Our findings indicate that the choice
of build strategy significantly impacts cold start times and
resource utilization. Naive, while exhibiting the longest cold
start times, remains a viable option when historical usage data
is insufficient. Cluster Top 10 offers a balanced approach,
reducing both build time and storage requirements compared
to All Top 10. On-the-fly, incurs repetitive cold start delays,
making it suitable only for infrequent function executions.
Furthermore, our simulation and analysis of warm times
reveal that moderate warm intervals effectively reduce cold
starts without the excessive costs associated with maintaining
always-hot states. These insights underscore the importance of
tailoring serverless deployment strategies to the specific needs
of scientific workloads, enabling more efficient and responsive
scientific computing in serverless environments.

According to our experimental framework, future studies
could expand by conducting experiments using datasets from
cloud serverless providers to enhance the reliability of the
outcomes. Also, running the experiments in different cloud
providers could reveal potential variations in performance
and resource utilization, providing a more comprehensive
understanding of the effectiveness of different build strategies
across diverse cloud infrastructures. Another avenue worth
exploring is dynamic version control. Essentially, developing
strategies for dynamic version management within container
images could optimize build times and resource utilization.
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