
An Empirical Investigation of Container Building

Strategies and Warm Times to Reduce Cold Starts

in Scientific Computing Serverless Functions

AndrÂe Bauer∗, Maxime Gonthier†‡, Haochen Pan†, Ryan Chard‡, Daniel Grzenda†, Martin Straesser§,

J. Gregory Pauloski†, Alok Kamatar†, Matt Baughman†, Nathaniel Hudson†‡, Ian Foster‡†, and Kyle Chard‡†

∗Illinois Institute of Technology, Chicago, USA
†University of Chicago, Chicago, USA

‡Argonne National Laboratory, Lemont, USA
§University of WÈurzburg, WÈurzburg, Germany

andre.bauer@iit.edu

AbstractÐServerless computing has revolutionized application
development and deployment by abstracting infrastructure man-
agement, allowing developers to focus on writing code. To do so,
serverless platforms dynamically create execution environments,
often using containers. The cost to create and deploy these
environments is known as ªcold startº latency, and this cost
can be particularly detrimental to scientific computing workloads
characterized by sporadic and dynamic demands. We investigate
methods to mitigate cold start issues in scientific computing appli-
cations by pre-installing Python packages in container images.
Using data from Globus Compute and Binder, we empirically
analyze cold start behavior and evaluate four strategies for
building containers, including fully pre-built environments and
dynamic, on-demand installations. Our results show that pre-
installing all packages reduces initial cold start time but requires
significant storage. Conversely, dynamic installation offers lower
storage requirements but incurs repetitive delays. Additionally,
we implemented a simulator and assessed the impact of different
warm times, finding that moderate warm times significantly
reduce cold starts without the excessive overhead of maintaining
always-hot states.

Index TermsÐScientific Computing, Serverless, Cold Start,
Measurements, Simulation

I. INTRODUCTION

The emergence of serverless computing has reshaped how

applications are developed and deployed. By abstracting

infrastructure management, serverless platforms promise to

streamline development workflows and optimize resource uti-

lization. At the core of this paradigm shift lies the use

of Function-as-a-Service (FaaS), where users deploy small,

event-driven functions without worrying about the underlying

servers. FaaS platforms are elastic and can scale to zero. When

a function is invoked, it is deployed by the provider with all

necessary resources for execution. Environments are typically

constructed by installing all dependencies in a container.

Once the function completes its execution and no further

requests follow, all allocated resources are released. Although

this scaling has apparent benefits, such as reduced costs, it

introduces cold start overhead to restart the resources for

subsequent executions. For instance, AWS Lambda exhibits

a latency of up to a few seconds for cold start [1]. A recent

study even demonstrated that the cold start of a function can

take up to 166 times the actual function runtime [2].

In addition to its increasing adoption in industry, scientists

and engineers have begun embracing FaaS for more efficient

application execution [3]. Consequently, reducing cold start

times in scientific serverless applications is critical to enable

low-latency, time-sensitive workloads, such as experiment

steering [4], [5]. However, the highly diverse and specialized

nature of scientific computational tasks, both within and across

domains, makes it impractical to maintain custom environ-

ments for each task due to strict data quotas.

Traditional approaches to mitigating or minimizing cold

starts involve either shortening the time required for container

preparation or reducing the provisioning of function depen-

dencies [6]. However, these approaches may not fully address

the unique demands of scientific computing workloads, which

often comprise functions invoked infrequently, exacerbating

cold start delays [7].

In this context, we investigate the effectiveness of pre-

installing Python packages in container images to alleviate the

cold start problem, specifically in scientific computing appli-

cations. Leveraging insights from two prominent datasetsÐthe

Globus Compute dataset [7] and the Binder dataset [8]Ðwe

empirically analyze the cold start behavior of scientific com-

puting functions and investigate four distinct container build

strategies for mitigating cold start delays. These strategies

range from installing all required packages during container

build time to dynamically installing only missing packages

based on historical usage data. We then investigate the effect

of keeping containers ªwarmº for different periods of time to

avoid future cold starts.

In summary, our contributions in this paper are threefold:

(i) We explore the Globus Compute and Binder datasets,

shedding light on the unique challenges posed by scientific

computing workloads in serverless environments. (ii) We con-

duct an empirical study on the cold start characteristics of

scientific computing functions, with a specific focus on the
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impact of pre-installing Python packages in container images.

(iii) We evaluate the effectiveness of different warm times

in reducing cold starts for scientific computing functions,

providing insights into optimizing serverless deployments in

this domain.

Our findings indicate that the choice of container build strat-

egy significantly impacts cold start times. The naÈıve strategy,

which has the longest cold start times, remains a viable option

when historical usage data is insufficient. The two strategies

based on historical information reduce the initial cold start but

introduce high storage requirements. Furthermore, our simu-

lation and analysis of warm times reveal that moderate warm

intervals effectively reduce cold starts without the excessive

costs associated with maintaining always-hot states.

The remainder of this paper is structured as follows: Sec-

tion II provides background information and introduces the

datasets used. Section III analyses the datasets utilized and

highlights the proposed strategies for reducing cold starts.

Section IV presents the experimental setup and discusses the

results of our empirical analysis. Section V investigates various

times for keeping function warm and simulates their impact

on cold start reduction. Section VI discusses related work.

Finally, Section VII concludes the paper.

II. BACKGROUND

In this section, we introduce containerization and cold start.

We also describe the Globus Compute and Binder datasets

used in this paper.

A. Containerization and Cold Start Times

In recent years, containers have become the dominant

deployment technology for serverless functions and microser-

vices. This is because containers are significantly lighter than

virtual machines, as OS and kernel functions can be shared

between containers while still providing the necessary isola-

tion and portability of environments. The lightweight nature of

containers also enables significantly faster start times, which

in turn enables increased application scalability. However, as

recent work [9] has shown, there are also significant variations

in start times between different container images.

Completion Time

Receive
Code

Setup
Environment

Initialize
Environment

Run
Code

Cold Start Warm Start

Fig. 1. Schematic overview of cold vs. warm starts.

In the context of serverless functions, a distinction is often

made between cold and warm starts. In general, the start

process of a function can be divided into four steps, as shown

in Figure 1. In the first step, the code is received, and its

metadata (e.g., environment settings and dependency versions)

are evaluated. In the second step, an environment (e.g., a

Python runtime with a specific version) is configured and

prepared based on these settings. Next, the environment is

instantiated and initialized. In the final step, the actual code is

executed. In a warm start, all static setup steps have already

been completed, and only the code needs to be executed.

Typically, the image is saved after the very first cold start,

eliminating the need to repeat the first two steps with each

subsequent cold start.

To achieve maximum performance and low execution times,

it would be optimal to avoid cold starts completely, i.e., always

provide a sufficient number of ªwarmº containers. However,

there is a tradeoff between response and resource utilization.

Further, resources are limited, and in practice, especially with

dynamic workloads, it is difficult to predict future function re-

quirements and to provide sufficient resources at all times [10].

B. Globus Compute Dataset

There are few publicly available serverless datasets, with

most coming from industry. The most notable are Azure’s

datasets [11], [12] and, although not directly related to FaaS,

Alibaba’s microservices dataset [13]. However, these datasets

do not include information about the functions that are run or

the packages that are used.

To this end, we utilize the Globus Compute dataset [7],

which offers insights into Python functions used in scientific

use cases. This dataset1 spans a period between November

28th, 2022 and July 3rd, 2023 from the Globus Compute

platform. It details information on 2,121,472 tasks submitted

by 252 distinct users across 580 geographically distributed

endpoints. The dataset also includes details about 277,386

registered Python functions with 1,847 distinct function bodies

clustered into 29 clusters.

Globus Compute, formerly funcX [14], is a scientific FaaS

platform that implements a unique hybrid cloud-edge architec-

ture. It integrates a central cloud service with user-deployed

and managed endpoints that can be set up on any computing

resource, from edge devices to high-performance clusters.

Users can register Python functions and submit them for

execution on a chosen endpoint.

In contrast, hosted FaaS platforms like Amazon Lambda

support a wide range of applications in various languages and

are deeply integrated with their cloud ecosystems. Amazon

Lambda uses Firecracker [15], while Globus Compute sup-

ports containerized Python functions with Docker for local

and cloud use, and Singularity [16] and Shifter [17] for HPC

environments.

C. Binder Dataset

We use the Binder dataset [8] to analyze real-world usage of

Python packages in containerized applications. This dataset2

contains information from the repo2docker tool [18] about

deployed containers with Python environments from Novem-

ber, 2018 to June, 2021. During this period, 18,230,454 con-

tainers were deployed from 90,713 different Git repositories.

1Globus Compute dataset: https://doi.org/10.5281/zenodo.10044780
2Binder dataset: https://zenodo.org/records/4915858
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The dataset includes information about the Python packages

installed in 159,646 applications.

The Binder Project facilitates scientific reproducibility by

developing environments that are shareable, interactive, and

reproducible [19]. Through an online service, Binder en-

ables the execution of interactive notebooks sourced from

Git repositories. Users have the flexibility to define their

required environment, typically encompassing datasets, ap-

plication code, and documentation within a Git repository.

Leveraging repo2docker, Binder dynamically constructs

and deploys containers according to these specifications. These

containers are then hosted on public cloud computing plat-

forms, granting users browser-based interaction.

III. METHODOLOGY

In this section we analyze the Globus Compute and Binder

datasets to gain insights into the required environments for

real-world applications. Moreover, we discuss how we use

these datasets in our subsequent experiments. Finally, we

introduce the four container build strategies.

A. Analysis and Usage of the Datasets

As our interest is in reducing the time needed to set up

the environment for the first cold start, we removed all func-

tions/applications from both datasets that do not import any

packages. In the Globus Compute dataset, we find 1441 unique

function bodies located in 24 clusters (see Section III-D) and

performed by 1,140,431 associated tasks. In the Binder dataset,

we find 86,086 unique applications. Table I shows the package

characteristics of the remaining functions/applications. For the

Globus Compute dataset, functions import 3.03 packages on

average. In total, this dataset has 130 unique packages and 246

combinations of these packages. Out of these 130 packages, 37

are from the Python standard library. For the Binder dataset,

applications required 10.93 packages on average. In total, this

dataset has 13,309 unique packages and 19,390 combinations

of these packages. Moreover, 6,394 out of 86,086 images

install more than 20 packages, with a maximum of 1043. When

considering only the images with 20 or fewer packages, the

average number of installed Python packages is 6.39. Please

note that the Binder dataset includes only packages that have

to be installed; that is, it does not list packages from the Python

standard library.

TABLE I
PYTHON PACKAGE CHARACTERISTIC COMPARISON BETWEEN THE

GLOBUS COMPUTE AND BINDER DATASET.

Characteristic Globus Binder

Average imported/installed packages 3.03 10.93
Unique packages 130 13,309
Unique standard library packages 37 Ð
Unique package combinations 246 19,390

B. Package Installation Time

We explore the installation time of each package in these

two datasets by timing the installation of each package

in a new Docker container on our reference system (see

Section IV-A). Each package was installed ten times, and

Table II shows the average installation time for the most

common packages and those with the longest installation time.

torchvision and torch both take more than 180 seconds

to be installed. torch is also the seventh most imported

package of the installed packages. On the right side, the most

imported packages are shown. numpy is the most imported

package in the dataset, and it takes 8.47 seconds to install

on average. So, if a container with numpy already installed

was provided, the cold start time could be reduced by 8.47

seconds. Except for torch and tensorflow, the top 10

imported installed packages require less than 22 seconds to

be installed. On average, a package from this dataset requires

9.16 seconds to be installed.

TABLE II
TOP 10 PACKAGES WITH THE LONGEST INSTALL TIME (LEFT) VS. TOP 10
INSTALLED PACKAGES FREQUENTLY IMPORTED (RIGHT) BASED ON THE

GLOBUS COMPUTE DATASET.

Package Install time [s] Package Install time [s]

torchvision 182.88 numpy 8.47
torch 180.47 pathlib 4.66
tensorflow 83.49 pandas 18.46
keras 77.23 torch 180.47
mlflow 64.65 tensorflow 83.49
mplsoccer 34.59 proxystore 9.61
statsmodels 29.18 sklearn 21.74
quickstats 26.98 datetime 5.80
imblearn 21.83 pyhf 19.12
sklearn 21.74 matplotlib 16.15

Table III reports the ten packages that took the longest time

to be installed (left) and the top 10 installed packages (right)

in the Binder dataset. Here, lux-api took the longest time

to be installed. The remaining nine packages require at least

245 seconds to be installed. On average, a package from this

dataset requires 30.11 seconds to be installed. bokeh is the

most imported package. Like the Globus Compute dataset, the

Binder dataset also includes matplotlib, numpy, pandas,

and sklearn packages among the top 10 packages used.

These four packages are also among the 20 most common

PyPI packages [20].

For the measurements presented in the following sections,

we only use the Globus Compute dataset, while the Binder

dataset is used as a reference point. The reasons for this

decision are (i) given the vast amount of Python packages and

images of the Binder dataset, the experiments as described in

Section IV-A would be infeasible; (ii) and the focus of this

paper is on scientific serverless computing as reassembled by

the Globus Compute dataset.

C. Container Building Strategies

The typical process (i.e., cold start) for invoking a function

for the very first time in a serverless setting is illustrated in
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of the container (NaÈıve). We also evaluated the speed-up of the

strategies compared to NaÈıve as shown in Table V. Please note

that we reported the geometric mean and standard deviation for

the speed-up. On average, using All Top 10 results in a speed-

up of 2.12, with a maximum of 56.66 compared to NaÈıve.

Cluster Top 10 builds the environment on average 2.53 times

faster than NaÈıve, with a maximum speed-up of 71.63. On-

the-fly builds the environment on average 7.28 times faster,

with a maximum speed-up of 296.95.

C. Cold Start Analysis

To investigate the cold start of the four strategies, we

compare the completion time for the very first cold start of

each function with each subsequent cold start, with the results

listed in Table VI.

For the very first cold start, the NaÈıve strategy takes, on

average, 34.89 seconds and up to 266.13 seconds to com-

plete the function invocation. In contrast, with All Top 10

and Cluster Top 10, it takes an average of 7.53 and 6.88

seconds, respectively. As All Top 10 has already torch and

torchvision installed for all functions but a few functions

have to install these packages while using Cluster Top 10,

All Top 10 has a maximum of 86.77 and Cluster Top 10

227.00 seconds, respectively. On-the-fly has an average time of

27.11 seconds. Although NaÈıve and On-the-fly have to install

all dependencies, On-the-fly is faster. Consequently, installing

dependencies in a running container is faster than installing

them during the docker build.

While investigating subsequent cold starts, NaÈıve, All Top

10, and Cluster Top 10 require, on average, less than 1.5

seconds for a complete function invocation. This is because

the docker image for each function is only built once and

then stored and reused. In fact, the differences between these

three strategies are in the order of milliseconds. However, On-

the-fly installs for each cold start every dependency. Therefore,

on average, it takes 23.80 seconds for a function invocation,

while the median and maximum times are almost identical.

TABLE VI
COMPARISON OF COLD START COMPLETION TIMES.

Characteristic Mean Median SD Range

1st cold start completion time [s]

NaÈıve 34.89 7.53 61.93 [2.18, 266.13]
All Top 10 7.53 5.41 8.04 [2.2, 86.77]
Cluster Top 10 6.88 4.76 12.81 [2.18, 227.0]
On-the-fly 27.11 6.72 46.92 [2.18, 219.0]
Subsequent cold start completion time [s]

NaÈıve 1.48 1.20 0.68 [1.01, 4.57]
All Top 10 1.44 1.08 0.69 [1.02, 4.37]
Cluster Top 10 1.44 1.10 0.69 [1.01, 4.42]
On-the-fly 23.8 6.87 43.88 [1.02, 219.3]

D. Storage Requirement

Since All Top 10 provides a single image to build the envi-

ronment for each function and Cluster Top 10 24 images, we

investigate the storage requirements to store built containers.

The results of each strategy are provided in Table VII.

TABLE VII
COMPARISON OF STORAGE REQUIREMENTS.

Image size [GB] Mean Median SD Range

NaÈıve 1.73 1.02 1.61 [1.01, 7.33] 2492.93
All Top 10 8.47 8.45 0.09 [8.45, 9.56] 12205.27
Cluster Top 10 3.33 1.58 2.44 [1.01, 7.33] 4798.53
On-the-fly 1.01 1.01 0 [1.01, 1.01] 1445.41

On average, a function image with NaÈıve has an average

image size of 1.74 GB. When no packages were installed,

the image size was just 1.01 GB. In contrast, the biggest

image is 7.33 GB. We see that All Top 10 requires significantly

more space, with every image larger than the biggest image

with NaÈıve. With All Top 10 images range from 8.45 to

9.45 GB with an average of 8.47 GB. These high values

result from the ªbigº Python packages that were installed

beforehand. In contrast, Cluster Top 10 has a similar storage

range to NaÈıve but has an average of 3.33 GB. As On-the-fly

installs all packages once the container has started, it has a

constant image size of 1.01 GB. Considering the number of

unique functions (1441) within the Globus Compute dataset,

the storage requirements to host all functions are 2,493 GB,

12,205 GB, 4,799 GB, and 1,445 GB for NaÈıve, All Top

10, Cluster Top 10, and On-the-fly, respectively. This number

would be significantly larger for the Binder case with its

86,086 unique applications.

In addition to the traditional approach of saving a separate

image for each function, there are alternative strategies for

saving images. One such strategy, proposed by Kumari and

Sahoo [24], involves deploying multiple functions together

within a single image. If we consider this approach and deploy

functions sharing the same packages together, NaÈıve and On-

the-fly would both require 427.31 GB, All Top 10 would need

728.42 GB, and Cluster Top 10 would require 106.56 GB.

TABLE VIII
COMPARISON OF THE START TIMES. START TIME REFERS TO THE TIME

DOCKER REQUIRES TO PROVIDE A RUNNABLE ENVIRONMENT [9].

Start time [ms] Mean Median SD Range

NaÈıve 247.20 247.10 23.58 [172.61, 374.08]
All Top 10 246.74 246.27 22.54 [174.78, 369.92]
Cluster Top 10 248.15 247.49 23.87 [163.28, 393.68]
On-the-fly 247.82 245.58 28.84 [167.49, 383.57]

E. Start Time Overhead

Besides the storage requirements, we asses the overhead

by the time taken to start the whole Docker image for the

function invocation. With start time, we refer to the time

Docker requires to provide a runnable environment [9]. The

results are visualized in Figure 4 and listed in Table VIII.

On average, NaÈıve exhibits an average start time of 247.20

milliseconds with a median value of 247.01 milliseconds. All

Top 10 and Cluster Top 10 experienced a slower mean start
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For each warm time and building strategy, we simulated 271

days with a total of 1,140,431 task invocations and reported the

build time, start time, and completion time. As we discussed

in Section IV the build and start time, we focus in this section

on the completion time.

B. Simulation Results

To investigate the different warm times, we compare the

completion time, the total saved time, and the number of cold

starts. The results are listed in Table IX.

For each building strategy, the most significant decrease in

both average and median completion times occurs when transi-

tioning from always cold (Cold∞) to a 5-minute warm period

(Warm5). This is primarily because 93% of the functions in

the Globus Compute dataset are invoked with a frequency

equal to or less than five minutes [7]. In our refined dataset

(refer to Section III-A), we observe a cold start occurrence of

4.04% with Warm5. This percentage further improves to 2.24%

and 1.58% with warm periods of 10 minutes (Warm10) and

15 minutes (Warm15), respectively. As Cold∞ by definition

results in 100% cold starts. Warm∞ results in 0.1% cold starts

(i.e., just the 1st start of each function). Overall, the completion

time decreases correspondingly with increasing warm times.

However, the most significant reduction in cold starts happens

between Cold∞ Warm5. The improvements beyond this point

are only marginal and may not justify the associated resource

overhead. Nonetheless, these results demonstrate the unique

challenges that scientific computing faces, as Shahrad et al.

studied workload in industry, for example, and in their dataset,

there is a significant difference between 5, 10, and up to 60

minutes of warm time.

Similar to the results in Section IV, the ranking of the

building strategies remains consistent across all warm times.

On average, Cluster Top 10 has the shortest completion time

followed by All Top 10, NaÈıve, and On-the-fly. For 50% of

the function invocations, those deployed with All Top 10

demonstrate a slightly quicker completion time (by a tenth

of a millisecond) compared to those deployed with Cluster

Top 10.

In our simulation, to explore warm times and building

strategies on a large scale, we quantified the time saved for

each scenario. We set NaÈıve with Cold∞ as the baseline and

compared its total time against the other scenarios, calculating

the percentage of time saved. For instance, On-the-fly with

Cold∞ took 9.56% longer compared to baseline. However,

introducing a warm time with On-the-fly resulted in a minimal

time saving of 0.52% of the total time. Similarly, incorporating

a warm time with NaÈıve led to a minimum saving of 3.18%.

Both All Top 10 and Cluster Top 10 demonstrated savings of at

least 0.41% with Cold∞ and at least 3.50% with a warm time.

Overall, across all scenarios, longer warm times translated to

greater time savings.

C. Effect on Individual Users

In the previous section, we were interested in how the differ-

ent building strategies and warm times affect the whole Globus

TABLE IX
COMPARISON OF THE DIFFERENT WARM TIMES.

Characteristic Cold∞ Warm5 Warm10 Warm15 Warm∞

Average completion time [ms]

NaÈıve 9158.33 8867.18 8861.79 8859.78 8855.05
All Top 10 9121.02 8837.74 8832.47 8830.51 8825.88
Cluster Top 10 9116.20 8837.07 8831.88 8829.94 8825.38
On-the-fly 10034.04 9110.86 9107.57 9105.54 9097.14
Median completion time [ms]

NaÈıve 336.68 33.01 32.71 32.61 32.41
All Top 10 331.67 32.95 32.65 32.55 32.35
Cluster Top 10 321.93 33.05 32.75 32.65 32.45
On-the-fly 337.05 335.35 335.35 335.35 335.35
Total saved time [%]

NaÈıve 0.00 3.18 3.24 3.26 3.31
All Top 10 0.41 3.50 3.56 3.58 3.63
Cluster Top 10 0.46 3.51 3.56 3.59 3.64
On-the-fly -9.56 0.52 0.55 0.58 0.67
Cold starts [%] 100 4.04 2.24 1.58 0.01

Compute landscape. Now, we investigate how this affects

individual users. To this end, we choose three representative

users from the Globus Compute trace:

Power: This user invoked frequently six different functions.

Each function has at least one package to be installed and was

run over 10,000 times. On average, 9.00 Python packages per

function had to be installed.

Standard: This user ran a total of 18 different functions. The

top invoked function was run more than 1,000 times, while the

other functions were run between 10 to 100 times. Also, each

function has at least one Python package to be installed. On

average, 2.86 packages per function had to be installed.

Unique: This user just ran 48 different functions exactly

once. Each function has at least one Python package to be

installed, and on average, 3.40 packages had to be installed.

TABLE X
COMPARISON OF THE DIFFERENT BUILDING STRATEGIES WITH Warm10 .

Characteristic Power Standard Unique

Average completion time [ms]

NaÈıve 77.71 5961.38 24897.24
All Top 10 76.45 5833.33 20895.34
Cluster Top 10 75.65 5804.51 5333.18
On-the-fly 141.15 6019.45 17566.58
Median completion time [ms]

NaÈıve 50.01 5069.91 5077.72
All Top 10 50.02 5069.15 4094.95
Cluster Top 10 50.00 5069.17 3397.01
On-the-fly 49.77 5070.60 4335.48

Table X lists the average and median completion time for

all three users. For this investigation, we set a warm time of

10 minutes, as this is the standard for most industry providers.

The fastest average completion time for Power is maintained

with Cluster Top 10. However, NaÈıve and All Top 10 are just

1 ms slower. For 50% of its function invocations, On-the-

fly exhibits the shortest completion time. For Standard, the

median completion time is almost identical for all building

strategies, while Cluster Top 10 provides the fastest average

completion time. The most interesting user is Unique, as each
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function is called only once. That is, containers cannot be

reused, which is one use case for On-the-fly. Consequently,

this strategy exhibits a faster completion time than NaÈıve and

All Top 10. However, Cluster Top 10 is by far the fastest due

to its fine-grained clusters, and therefore no packages have to

be installed.

D. Summary of the Simulation Results

As the warm-up time increases, the number of cold starts

decreases as expected. However, the change between Cold∞
to Warm5 is much higher than from Warm5 to Warm10 and

even less reaching Warm∞. Warm5 to Warm15 reflect state-of-

the-art warm times, and compared to the best scenario (i.e.,

Warm∞), there is no huge gain justifying the unlimited warm

time. Overall, the rankings and findings from the experiments

(see Section IV) also hold true for the large-scale simulation.

Instead of looking at a whole system but only one selected

user, the choice of the building strategy has more impact on

their completion time.

VI. RELATED WORK

Vahidinia et al. [6] surveyed approaches for reducing cold

start duration and classifies them into two categories: Shorten-

ing the time required for container preparation or reducing the

provisioning of function dependencies. Therefore, we focus on

related work from both categories.

Sandboxing and Isolation Techniques: SAND [29] uses

sandboxing to efficiently manage function resources. It lever-

ages operating system mechanisms to share preloaded code,

like loaded libraries, which are then forked to handle incom-

ing requests. Boucher et al. [30] developed a multi-tenant

worker process that directly executes functions by dynamically

loading function code and executing it as a thread. Kumari

and Sahoo [24] analyze and group similar functions together,

deploying them in one container while isolating them through

different processes.

Container and Unikernel Techniques: SEUSS [31] utilizes

unikernels at the system level to snapshot serverless appli-

cations, cloning them as needed. Silva et al. [32] employ a

cloning technique based on Checkpoint/Restore In Userspace

(CRIU) to restore the state of a function in a cloned process

later for scalability needs. Xu et al. [1] introduced an adaptive

container pool scaling strategy, establishing a repository of

pre-launched containers to respond to requests immediately.

The quantity of containers within each category is dynamically

adjusted according to historical invocation patterns. Oakes et

al. [33] proposed a provisioning strategy using fully packaged

containers that can be immediately deployed without requir-

ing library imports or initialization. Despite its benefits, this

approach raises security concerns as the cache can be shared

among multiple processes. HotC [34] manages a pool of live

container runtimes, analyzing user input or configuration files

to match the environment and load code accordingly.

Pre-warming and Caching Techniques: PipBench [35] pro-

vides a package-aware compute platform where a common

package repository can be shared among different microservice

handlers belonging to various customers. Pagurus [36] incor-

porates an intra-function manager to transform an idle warm

container into one available for other functions’ use without

introducing additional security risks. Shahrad et al. [11] apply

a histogram policy, estimating the following invocations for

each individual function. In addition, they use pre-warming to

reduce resource waste.

Optimizing Function and Container Usage: Lee et al. [37]

suggest merging two functions into one to avoid the cold

start of the second function. However, fusing parallel functions

may increase workflow response time as parallel functions are

executed sequentially. Zhou et al. [2] introduce Multi-Level

Container Reuse, which groups packages into OS, language,

and runtime categories, and employs Deep Reinforcement

Learning to optimize the reuse of warm containers.

In contrast to existing approaches, our work focuses specifi-

cally on alleviating the cold start problem in scientific comput-

ing applications by pre-installing Python packages in container

images. While many related works address cold start issues

through various strategies such as sandboxing [29], uniker-

nels [31], and container pre-warming [33], our research takes

a distinct empirical approach: We evaluate different container

build strategies and explore the impact of different warm times

on cold start delays, aiming to balance between maintaining

container warmth and avoiding excessive costs.

VII. CONCLUSION

In this article, we have addressed the cold start problem

in serverless computing for scientific applications by exam-

ining various strategies for pre-installing Python packages

in container images. Our findings indicate that the choice

of build strategy significantly impacts cold start times and

resource utilization. NaÈıve, while exhibiting the longest cold

start times, remains a viable option when historical usage data

is insufficient. Cluster Top 10 offers a balanced approach,

reducing both build time and storage requirements compared

to All Top 10. On-the-fly, incurs repetitive cold start delays,

making it suitable only for infrequent function executions.

Furthermore, our simulation and analysis of warm times

reveal that moderate warm intervals effectively reduce cold

starts without the excessive costs associated with maintaining

always-hot states. These insights underscore the importance of

tailoring serverless deployment strategies to the specific needs

of scientific workloads, enabling more efficient and responsive

scientific computing in serverless environments.

According to our experimental framework, future studies

could expand by conducting experiments using datasets from

cloud serverless providers to enhance the reliability of the

outcomes. Also, running the experiments in different cloud

providers could reveal potential variations in performance

and resource utilization, providing a more comprehensive

understanding of the effectiveness of different build strategies

across diverse cloud infrastructures. Another avenue worth

exploring is dynamic version control. Essentially, developing

strategies for dynamic version management within container

images could optimize build times and resource utilization.
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