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Intrinsic anomalous Hall effect in altermagnets
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We study the anomalous Hall effect arising from the altermagnetic order and spin-orbit interaction in doped
FeSb2. To investigate the anomalous transport, we have constructed a tight-binding model of FeSb2. We
separately considered the constraints imposed on the model parameters by the spin symmetry group and magnetic
symmetry group at zero and finite spin-orbit interaction, respectively. The resulting model includes the effect of
exchange splitting and is applicable at both zero and finite spin-orbit interaction. In the case of spin symmetry,
the analysis covers the spin-only subgroup arising from collinear magnetism, as well as nontrivial symmetry
elements. This allows us to explore changes in the hopping amplitudes as symmetry is reduced by spin-orbit
interaction from the spin group to the magnetic group. While the anomalous Hall effect is forbidden by spin
symmetry, it is allowed by the symmetries of the magnetic group. The intrinsic Hall conductivity is shown to
vanish linearly with spin-orbit interaction. This nonanalytic behavior is universal to altermagnets. It originates
from the singularity of the Berry curvature localized along lines on a Fermi surface confined to symmetry planes.
These planes host spin degeneracy protected by spin symmetry, which is lifted by spin-orbit interaction.
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I. INTRODUCTION

Altermagnetism is a novel form of collinear magnetism,
distinct from both ferromagnetism and antiferromagnetism
[1–9]. For instance, in an altermagnet, zero net magnetization
does not rule out a well-defined band spin polarization [10].
The latter arises from the combination of the antiferromag-
netic order coupled to the itinerant spins and the nontrivial
orbital wave function of the electronic states residing at the
two magnetic sublattices, A and B.

The spin polarization in altermagnets is distinct from the
more commonly known spin splitting induced by the spin-
orbit interaction (SOI) in noncentrosymmetric materials. In
the latter more familiar situation, the time-reversal symmetry
(T ) is preserved while parity (P) is broken. In contrast, in
magnets T is broken and the parity P is often preserved.

When the antiferromagnetic order causes the doubling of a
unit cell, the electronic bands remain spin degenerate. Indeed,
in such cases even though T is not a symmetry, the combina-
tion of T and a translation (τ) that exchanges the magnetic
sublattices is. As a result, spin states form the degenerate
Kramers doublets related by the τT P antiunitary symmetry
operation. Similarly, if the inversion P ′ exchanging the A and
B sublattices is a symmetry of the nonmagnetic crystal the
two Kramers partners are related by P ′T . In both scenarios
no spin polarization of electronic bands arises.

In contrast, magnetic order of an altermagnet does not
double the unit cell, and P ′ is not a symmetry of the non-
magnetic state. To form a symmetry T has to be combined
with some rotation. A given rotation R maps the generic
electron momentum k to another momentum Rk �= −k. As a
consequence, a combined symmetry RT relates spin states at
distinct momenta, RT k �= k, and therefore allows for a finite
spin band splitting.

The above spin splitting may arise from a nontrivial mag-
netic form factor of localized magnetic moments [11–13].
Such moments are associated with the nonzero orbital angular
momentum, l = 2, 4, 6. The exchange interaction with these
moments causes the spin splitting of itinerant electrons except
for the k along the nodal directions of the magnetization
density.

The spin splitting described above is a hallmark of al-
termagnetism. Clearly, it is unrelated to the SOI. Therefore,
it arises most naturally in nonrelativistic density functional
rheory (DFT) calculations, where the SOI is set to zero. The
symmetry of a magnetic crystal at finite SOI is defined by
the specific magnetic space group of a given crystal [14].
The symmetry operations in a magnetic space group act in
the same way on positions of atomic sites and on the local
magnetic moments. If, e.g., such transformation is a rotation
it rotates both the crystal and magnetic moments.

At zero SOI, the system may possess symmetries that act
differently on spin and orbital degrees of freedom [16]. In this
case the symmetry operations form the so called spin (space)
group containing the magnetic space group as a subgroup. For
instance, in the case of the collinear magnetism considered
here such group contains a trivial, and yet important, spin-only
group. The latter contains an arbitrary angle rotation around
the magnetization axis as well as rotation by π around an axis
perpendicular to the magnetization axis followed by T . The
algorithm to construct all the possible spin groups for a given
crystal and magnetic order has been formulated in Ref. [17].

Spin group symmetries protect extra spin degeneracies
that appear as accidental from the point of view of a stan-
dard magnetic space group. An extended spin symmetry
classification has been recently proposed to describe the spec-
trum degeneracies of collinear magnets in a nonrelativistic
limit [18].
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(a) (b) (c)

FIG. 1. Crystal structure of FeSb2, space group 58. (a) Unit cell of FeSb2 with the cages created by Sb atoms surrounding the Fe. The
orthorhombic lattice distances along the x̂, ŷ, ẑ directions are a, b, c. The two sublattices are oppositely polarized in the magnetic phase.
(b) YZ-plane projection of FeSb2. (c) Tight-binding hopping matrix elements for the intersublattice interaction, Eq. (9), and intrasublattice
interactions, Eq. (23). The three amplitudes displayed define all other hopping matrix elements. Presentation is aided by VESTA [15].

The observation of robust anomalous Hall effect (AHE)
in altermagnets such as RuO2 [1,19] highlights the decisive
role of the antiunitary symmetries in this class of magnets
[20]. Here for definiteness, we focus on the FeSb2 with an
orthorhombic unit cell containing two distinct Fe atoms lo-
cated at the A and B sublattices respectively. Fe atoms at the
A and B sublattices are oppositely spin polarized along ŷ [see
Figs. 1(a) and 1(b)].

The symmetry operations are outlined in Sec. II. In Sec. III
we construct the minimal tight-binding model at zero and
finite SOI. The AHE is studied in Sec. IV. We summarize in
Sec. V.

II. SYMMETRIES AND BAND DEGENERACIES

In this section we introduce the magnetic space group
Pnn′m′ appropriate to FeSb2 with finite SOI. We list the el-
ements of the magnetic point group, GM = GM/R, which is
a factor group of magnetic space group GM by the group of
translations, R. GM contains unitary and antiunitary elements,
and we employ the Wigner criterion to find out the momenta
with double degeneracy due to antiunitary symmetries.

We then repeat the above steps for the spin group of antifer-
romagnetic FeSb2 with zero SOI. The degeneracies have been
studied in Ref. [10]. We rely on the results below as a con-
sistency check. Moreover, it is of interest to apply the Wigner
trichotomy test in a nonstandard setting of spin groups.

A. Finite SOI

In this case the magnetic point group can be presented
as GM = Gu

M + T C2zGu
M . Here the unitary elements form a

simple Abelian subgroup, Gu
M = {E ,P, τC2x, τmx}, where E

is the identity operation and mx = PC2x is a mirror in the yz
plane.

In the case of GM , the Wigner criterion states that for a
given k one computes the sum to distinguish between the three
cases:

′∑
g∈Gu

M

χk[(C2zg)
2] =

⎧⎨
⎩

+[k]T 2 case (a)
−[k]T 2 case (b)
0 case (c)

. (1)

In the case (a) the antiunitary operation C2zT does not cause
the extra degeneracy, and in cases (b) and (c) it does. The

band degeneracy, in addition, requires that there are elements
g ∈ Gu such that C2zg reverses k [21,22]. The summation in
Eq. (1) runs over [k] such elements. The χk is the irreducible
character of the group of k, Gk.

Consider for illustration the generic point in the ky = π

plane, k = (kx, π, kz ). For generic kx and kz, the group Gk
contains only translations, R. The sum in Eq. (1) reduces to
a single term, g = τC2x, [k] = 1. And since this operation
squares to (C2zτC2x )2 = −RyC2

2y with Ry = ŷ, the sum in the
Wigner criterion is trivially evaluated:

χk[(C2zg)
2] = −T 2. (2)

Indeed,C2
2y = T 2 = ∓1 for (half)-integer spin, and according

to the Bloch theorem χk(R) = exp(−ikR). Based on Eq. (2)
we conclude that the degeneracy of Bloch bands at the ky = π

plane doubles due to the C2zT antiunitary symmetry. Similar
analysis shows that this statement holds true for two lines
parallel to the ŷ axis, (kx = 0, kz = π ) and (kx = π, kz = 0).
In total, the subset with double degeneracy,KSO, included one
plane and two lines.

B. Zero SOI

As discussed in Sec. I, this case requires an analysis of
the spin group, GS . Similar to magnetic groups, the spin
point group GS = GS/R contains the unitary elements Gu

S as
a subgroup of index 2:

Gu
S = [(C∞y||E ) + τC2x(C∞y||E )]

× {(E ||E ), (E ||P ), (E ||mz ), (E ||C2z )}, (3)

where g(gs||go) denotes the operation with gs (go) acting
on spin (orbital) degrees of freedom, respectively, followed
by the unitary or antiunitary operation g acting in the
same way on both degrees of freedom. Operations (C∞y||E )
form a unitary subgroup of the spin-only group, (C∞y||E ) +
T (C2x||E )(C∞y||E ), acting only on spins [17]. It emerges as
spins decoupled from the orbital motion can be freely rotated
around the magnetization axis by an arbitrary angle without
affecting the Hamiltonian. The second line of Eq. (3) reflects
the C2h site symmetry of the Sb cage enclosing Fe atoms at
both sublattices.
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TABLE I. The action of the orbital part of the operations from
the listC2x{E ,P,mz,C2z} on the momentum k = (kx, ky, kz ).

C2x mx my C2y

(kx,−ky, −kz ) (−kx, ky, kz ) (kx, −ky, kz ) (−kx, ky, −kz )

The full spin point group including the antiunitary opera-
tions can then be represented in a compact form as

GS = Gu
S + τT (E ||C2x )Gu

S . (4)

Before considering the possible doubling of the degeneracy
due to nonunitary symmetries, one has to determine the irre-
ducible representation of the group of k, Gk. The elements
acting on the orbital degrees of freedom form a D2h Abelian
group. This allows us to focus on spin degeneracy.

At a generic k, up to translations, Gk = (C∞y||E ) and the
irreducible representations are one dimensional. Hence there
is no spin degeneracy unless k is invariant under one of
the four operations, C2x{E ,P,mz,C2z}. These operations are
listed in Table I along with their action on k. It follows directly
from Table I that the spin degeneracy is doubled at four planes
kx = 0, π and ky = 0, π comprising the set Kalt. For instance,
the ky = π plane is invariant under C2xmz = my operation.

In contrast to the magnetic group, the antiunitary opera-
tions of the spin group do not lead to degeneracy doubling.
We demonstrate this by extending the Wigner criterion to the
spin group (see Appendix A for details).

III. SINGLE ORBITAL TIGHT-BINDING MODEL

We construct the tight-binding model of itinerant electrons
to incorporate the SOI and the exchange coupling in an alter-
magnet. We start with the atomic limit by looking at the effect
of the lattice on electronic states localized at a given lattice
site. The exchange splitting 2Bex is assumed to be much larger
than the spin splitting induced by the SOI locally at a given
site. This makes it reasonable to ignore the local effect of
SOI. In contrast, we do study in detail the effect of SOI on the
hopping amplitudes to the neighboring sites in the following
sections.

In the absence of the local SOI, the spin and orbital degrees
of freedom at each site decouple. We therefore, discuss the
localized orbital wave functions ignoring the spin. The site
symmetry group is Abelian, and the Sb cage lifts the orbital
degeneracy at Fe sites. Hence, we focus on a single orbital
model with orbital wave functions φA(B)(r) at the A and B
sublattices.

The nonsymmorphic τC2x symmetry implies the relation-
ship φB(r) = φA(C−1

2x r). It is crucial for altermagnetism that
the functional forms of the φA(r) and φB(r) orbital wave
functions of the two members in each degenerate doublet
may differ. Indeed the on-site symmetry allows orbitals of
same parity that are both even or odd with respect to C2z

to hybridize. This makes room for the hybridization of or-
bitals transforming differently under C2x. For instance, the
hybridization of s and dxy orbitals gives rise to distinct orbital
wave functions at the two sublattices [see Fig. 2(a)]. This point
is further elaborated upon in Sec. III B.

(a) (b)

FIG. 2. (a) Symmetry-allowed hybridization of s and dxy orbitals
at Fe sites. The hybridized wave functions at the A and B sublattices
are related by the nonsymmorphic τC2x symmetry operation. As a
result, the hybridized orbital wave functions at the two sublattices are
distinct. (b) The projection of the crystal structure on the xy plane.
The difference in the orbital wave functions for the two sublattices
implies A′ �= 0 in Eq. (25) causing a spin splitting even at zero SOI.

These considerations naturally lead us to the tight-binding
four band model

H =
∑
k

�
†
kαĤαβ (k)�kβ (5)

expressed in terms of the generalized Nambu spinor:

�
†
k = [ψ†

kA↑, ψ
†
kA↓, ψ

†
kB↑, ψ

†
kB↓]. (6)

When applied to vacuum, |0〉, ψ
†
kAs, and ψ

†
kBs create the

electronic Bloch states localized at the A and B sublattices,
respectively, with two possible spin projections on the ẑ axis.
Specifically,

ψ
†
kAs|0〉 = 1√

N

∑
R∈A

eikRφA(r − R)χs, (7a)

ψ
†
kBs|0〉 = 1√

N

∑
R∈A

eik(R+τ )φB(r − R − τ)χs, (7b)

where N Fe ions of the A sublattice are located at the sites
of the orthorhombic lattice, R = nxax̂ + nybŷ + nzcẑ, defined
by the vector n = (nx, ny, nz ) with integer valued components
[see Fig. 1(a)]. Hereinafter, the distances along the three crys-
tallographic directions are measured in units of a, b, and c,
respectively. Correspondingly, the momentum components kx,
ky, and kz are measured in units of a−1, b−1, and c−1.

To parametrize the Hamiltonian (5) we introduce the two
sets of Pauli matrices, κ and σ, acting in sublattice and spin
spaces, respectively. The unit matrices acting in these spaces
are denoted as κ0 and σ0. The generic model Hamiltonian
reads

Ĥ (k) = Ĥe(k) + Ĥa
n (k) + Ĥa

nn(k) + Ĥex(k), (8)

where the exchange interaction is Ĥex = Bexκzσy, Ĥe(k) is
the contribution of the nearest neighbor intersublattice hop-
ping processes, and Ĥa

n (k) and Ĥa
nn(k) originate from the

nearest and next to nearest neighbor intrasublattice hopping
processes, respectively. Below we obtain the generic form of
these terms constrained by the GM and GS symmetries.

A. Nearest neighbor intersublattice hopping processes

We start with the analysis of the Ĥe(k) part of the tight-
binding Hamiltonian. The real space hopping matrix elements
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TABLE II. The nearest neighbor intersublattice hopping param-
eters constrained by Eq. (16). The four out of eight hopping vectors,
τn = n/2, are sufficient in view of Eq. (13), and τ−n = −τn. The
Bravais lattice vector, 
R(τn ), is introduced in Eq. (12). For the
neighboring sites that are not shown it is given by 
R(−τn ) =
−x̂ − ŷ − ẑ − 
R(τn ). These parameters are visualized in Fig. 5(a)
of Appendix B.

n (1,1,1) (−1, 1, 1) (1, −1, 1) (1, 1, −1)

t0(τn ) t0 t∗0 t0 t∗0
tx (τn ) tx t∗x tx t∗x
ty(τn ) ty −t∗y −ty t∗y
tz(τn ) tz −t∗z tz −t∗z

R(τn ) 0 −x̂ −ŷ −ẑ

of the full microscopic space periodic Hamiltonian H are
introduced in a standard way:

T s′s
BA (τn) = 〈φB(r − τn)χs′ |H |φA(r)χs〉. (9)

A given A site has eight neighboring sites to hop to in the B
sublattice with the hopping vectors τn = (1/2)(nxx̂ + nyŷ +
nzẑ) fixed by the choice of nx,y,z = ±1 [see Fig. 1(c)]. In
particular, τn = τ for nx = ny = nz = 1. It is convenient to
represent the spin dependence of amplitude Eq. (9) in the form

T̂BA(τn) =
∑

μ

tμ(τn)σμ, (10)

where μ runs over the four values 0, x, y, and z.
The tight-binding Hamiltonian resulting from the

intersublattice hopping processes reads

Ĥe(k) =
∑

μ

[
κxt

R
μ (k) + κyt

I
μ(k)

]
σμ, (11)

where tRμ (k) and t
I
μ(k) are real and imaginary parts of

tμ(k) =
∑
τn

e−ik[
R(τn )+τ]tμ(τn). (12)

Here 
R(τn) is the Bravais lattice vector connecting the unit
cells hosting the neighboring sites at A and B sublattices (see
Table II).

1. Finite SOI

We now turn to the constraints imposed on the matrix
elements Eq. (9) by the magnetic point group, GM . The parity
P imposes the condition

T̂BA(τn) = T̂BA(−τn). (13)

The unitary symmetry τC2x imposes the constraint

T̂BA(τn) = σx[T̂BA(C2xτn)]
†σx. (14)

The antiunitary symmetry C2zT leads to the condition

T̂BA(τn) = σx[T̂BA(C2zτn)]
∗σx. (15)

Applying the set of Eqs. (13), (14), and (15) to Eq. (10) yields
the following constraints:

t0(x)(τn) = t0(x)(−τn)= t∗0(x)(C2xτn)= t∗0(x)(C2zτn), (16a)

ty(τn) = ty(−τn) = −t∗y (C2xτn) = t∗y (C2zτn), (16b)

tz(τn) = tz(−τn) = −t∗z (C2xτn) = −t∗z (C2zτn). (16c)

Equation (16) implies that GM reduces the 32 complex pa-
rameters in Eq. (9) down to four, tμ = tμ(τ). The eight real
parameters fixing the Hamiltonian Eq. (11) are the real and
imaginary parts, tRμ and t Iμ of tμ. The rest of the hopping ampli-
tudes follow from Eq. (16) as summarized in Table II. It turns
out to be convenient to split the resulting tight-binding Hamil-
tonian Eq. (11) into two parts, Ĥe(k) = Ĥe

T (k) + Ĥe
B(k),

where the first part Ĥe
T (k) is invariant under T , and the second

part Ĥe
B(k) breaks T and is associated, therefore, with the

exchange field, B. We have

Ĥe
T (k) = 8tR0 κxσ0 cos

kx
2
cos

ky
2
cos

kz
2

− 8t Ixκyσx sin
kx
2
cos

ky
2
sin

kz
2

− 8t Iyκyσy cos
kx
2
sin

ky
2
sin

kz
2

+ 8t Iz κyσz cos
kx
2
cos

ky
2
cos

kz
2

, (17)

and the terms induced by the exchange field:

Ĥe
B(k) = −8t I0κyσ0 sin

kx
2
cos

ky
2
sin

kz
2

× 8tRx κxσx cos
kx
2
cos

ky
2
cos

kz
2

− 8tRy κxσy sin
kx
2
sin

ky
2
cos

kz
2

− 8tRz κxσz sin
kx
2
cos

ky
2
sin

kz
2

. (18)

The spectrum of both Eqs. (17) and (18) taken separately
is Kramers degenerate. In the case of Eq. (17) this is due
to the combined T P symmetry. In the case of Eq. (18) it
occurs because of the κzT P thanks to the chiral symmetry κz

characteristic for the intersublattice processes on a bipartite
lattice.

The terms respecting T symmetry, Eq. (17), are obtained
when the exchange field breaking T is set to zero. They,
therefore, give the usual SOI, and as expected agree with the
results of Ref. [23], where the T -breaking term describing the
coupling to the exchange field is added separately.

In contrast, the terms breaking T symmetry, Eq. (18), re-
quire a finite B. Some of these terms result from the combined
action of the SOI and the exchange field. Still, others are inde-
pendent of SOI. The framework of the spin symmetries allows
one to disentangle these two spin dependent interactions. And
that is what we do next.

2. Zero SOI

Since the magnetic group GM is the subgroup of the spin
group, GS , Eqs. (17) and (18) still hold, possibly with some of
the coefficients forced to be zero due to a larger spin symmetry
group. The spin-only group implies that all the terms in Ĥe(k)
proportional to σx or σz are zero. In particular, we have tR,I

x =
tR,I
z = 0 in Eqs. (17) and (18). This conclusion is quite obvious
given that the magnetism in the case of zero SOI is collinear.

The less obvious conclusions are obtained as one considers
nontrivial spin group operations. The (E ||mz ) operation acting
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on orbital degrees of freedom implies

T̂BA(τn) = T̂BA(mzτn), (19)

which upon comparison with Table II yields t0 = t∗0 and ty =
t∗y . The nonunitary symmetry τT (E ||C2x ) yields the constraint

T̂BA(τn) = σyT̂
tr
BA(C2xτn)σy. (20)

This condition does not constrain Ĥe(k) farther.
The rest of the operations beyond the spin-only group

are obtained by combining the operations considered so far
with GM , and therefore do not result in additional constraints.
As a consistency check we may consider the operation
T (C2x||E ) = (τC2x )τT (E ||C2x ). It implies

T̂BA(τn) = σz[T̂BA(τn)]
∗σz. (21)

And again, t I0 = t Ix = 0. As expected, it contains no new infor-
mation. In summary, at zero SOI and finite exchange field, the
intersublattice hopping Hamiltonian takes the form

Ĥe(k) = 8tR0 κxσ0 cos
kx
2
cos

ky
2
cos

kz
2

− 8tRy κxσy sin
kx
2
sin

ky
2
cos

kz
2

. (22)

Here the first term is the usual spin independent contribution
to the dispersion. The second term is the spin dependent
contribution arising ultimately from the exchange interaction.
Although this term is similar in form to the SOI, it is funda-
mentally distinct from it. It breaks T and exists at zero SOI
interaction.

B. Intrasublattice hopping processes

We now turn to the intrasublattice part of the tight-binding
Hamiltonian, Ĥa(k). Since the spin dependence has been
considered in detail in Sec. III A, here we focus on the spin
independent part of the tight-binding Hamiltonian. As we will
see, the generic Hamiltonian describes hopping processes into
nearest and next to nearest neighboring sites. The hopping
amplitudes for these processes are defined similarly to Eq. (9):

TA(Rn(nn) ) = 1

2

∑
s

〈φA(r − Rn(nn) )χs|H |φA(r)χs〉, (23)

where Rn and Rnn denote the vectors connecting nearest and
next to nearest neighbors on the A sublattice. The same def-
inition is adopted for TB(Rn(nn) ) for the hopping amplitude
on the B sublattice. The vector Rn can take six values: ±x̂,
±ŷ, and ±ẑ. The vector Rnn can take 12 values: ±x̂, ±ŷ, ±ẑ,
m1x̂ + m2ŷ, m1ŷ + m2ẑ, and m1x̂ + m2ẑ for m1,2 = ±1.

Consider first the nearest neighbor hopping amplitudes,
Ĥa
n (k). Both at finite and zero SOI, the symmetry constrains

it to be the same for the two sublattices:

Ĥa
n (k) = κ0σ0[A0 + f1(k)],

f1(k) = Ax cos kx + Ay cos ky + Az cos kz, (24)

where A0, Ax, Ay, and Az are three real parameters.
Qualitatively, we expect a sublattice dependence at the

level of the next to nearest neighbors [see Fig. 2(b)]. In this

TABLE III. The next nearest neighbor intrasublattice hopping
parameters constrained by the symmetry. The six out of twelve
amplitudes are shown. The rest follows from the symmetry of all the
amplitudes under reversal of 
R. These parameters are visualized in
Fig. 5(b) of Appendix B.


R x̂ + ŷ x̂ − ŷ ŷ + ẑ ŷ − ẑ ẑ + x̂ ẑ − x̂

TA(
R) A+ A− A1 A1 A2 A2

TB(
R) A− A+ A1 A1 A2 A2

case the symmetry reduces the 24 real parameters down to
four (see Table III). Notably, TA(x̂ ± ŷ) = A∓ and TB(x̂ ± ŷ) =
A±, with all the rest of the amplitudes being equal on the
two sublattices. The feature essential for the altermagnetism
is A+ �= A−. Since Ĥa

nn(k) is generally weaker than Ĥa
n (k)

it is permissible to retain only the essential part of Ĥa
nn(k)

by setting A+ = −A− = A′, and the rest of the amplitudes to
zero:

Ĥa
nn(k) = 2A′

κzσ0 f2(k), f2(k) = 2 sin kx sin ky. (25)

Qualitatively, the emergence of a finite spin splitting at zero
SOI can be understood as originating from the difference in
the orbital wave function for the two sublattices as shown in
Fig. 2(b). We note, however, that even if such difference is not
included, the finite A′ in Eq. (25) results from the sublattice
dependent potential experienced by an electron hopping to the
next to nearest neighbors in the xy plane. Indeed, this has been
found in Ref. [23] for a model with identical dx2−y2 orbital
wave functions on the two sublattices. In fact, these are the
two manifestations of the same sublattice asymmetry.

C. Band degeneracies of the model Hamiltonian

Here we discuss the band degeneracies of the model
Hamiltonian, Eq. (8), and compare them with the general
results of Sec. II.

1. Nonzero SOI

In this case the Hamiltonian, Eq. (8), is given by Eqs. (17),
(18), (24), and (25). We have confirmed the double degeneracy
at k ∈ KSO.

2. Zero SOI

To study the spectrum degeneracies it is enough to consider
the difference,
Ĥ (k) = Ĥ (k) − Ĥa

n (k), as the term Ĥa
n (k) ∝

κ0σ0, Eq. (24). According to Eq. (22), the spin along the
magnetization is a good quantum number, and the spectrum
splits into two bands 
Ĥ± for the two spin wave functions
χ̄± = (χ↑ ± iχ↓)/

√
2 satisfying σyχ̄± = ±χ̄±:


Ĥ±(k) = ±Bexκz + 2A′
κz f2(k)

+ 8tR0 κx cos
kx
2
cos

ky
2
cos

kz
2

∓ 8tRy κx sin
kx
2
sin

ky
2
cos

kz
2

. (26)
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The eigenvalues E± of 
Ĥ± satisfy

E2
± = [Bex ± 2A′ f2(k)]2 + 64 cos2

kz
2

×
(
tR0 cos

kx
2
cos

ky
2

± tRy sin
kx
2
sin

ky
2

)2

. (27)

The spin degeneracy amounts to the condition E2
+ = E2

−. This
implies with necessity f2(k) = 0, namely k ∈ Kalt . If kx = 0
or ky = 0, the last term in the second line of Eq. (27) vanishes.
If kx = π or ky = π the first term does. In both cases we
indeed have a degeneracy only for k ∈ Kalt as expected.

IV. ANOMALOUS HALL EFFECT

The AHE can be understood based on the symmetry con-
siderations. The AHE is finite as T symmetry is replaced
by the combined T C2z operation. Due to the Onsager rela-
tion, T C2z imposes the restrictions σ̂xy = σ̂yx, σ̂xz = −σ̂zx, and
σ̂yz = −σ̂zy on the conductivity tensor, σ̂ . This implies at most
the transport anisotropy in the xy plane in the form of the
planar Hall effect, yet no AHE as σH

xy = (σxy − σyx )/2 = 0. In
contrast to T , the combined T C2z symmetry is consistent with
σH
xz �= 0 and σH

yz �= 0. The unitary τC2x symmetry imposes
σH
xz = 0 and still allows a finite σH

yz .
An alternative way to see this is to notice that the fer-

romagnetic exchange field BF = BF x̂ is consistent with the
magnetic point group. And the symmetry that allows for a
finite BF also allows for a finite σH

yz . It turns out that the weak
ferromagnetic component causes a slight enhancement of the
AHE (see Appendix C for details).

Physically the finite ferromagnetic exchange field can be
thought of as resulting from the canting of the antiferromag-
netic magnetization. Such canting must originate from the
SOI. Indeed, in this case the spin-only group is inconsistent
with a finite BF . We expect, therefore, that σ̂yz = 0 vanishes
at zero SOI. Indeed, in this case the additional C2z rotation
symmetry applied solely to the orbital motion with spins left
untouched enforces σ̂yz = 0 as the current operator is spin
independent. Therefore, a finite SOI is required for AHE. This
is unlike the π transition in altermagnet Josephson junctions
[24].

The intrinsic contribution to AHE [25,26],

σH
i j = e2

′∑
bk

�b
i j (k), (28)

relates it to the Berry curvature antisymmetric tensor
�b

i j (k) = −2Im〈∂kiub(k)|∂k j ub(k)〉, where ub(k) are periodic
parts of the Bloch functions, at the band b and momentum k.
At zero temperature the primed summation in Eq. (28) runs
over all occupied Bloch states.

Here we limit the consideration to the large exchange field.
In this case the upper (u) and lower (l) band doublets are clus-
tered around +Bex and −Bex, respectively. The two band dou-
blets belong to the upper (Vu) and lower (Vl ) subspacesVu(l ) =
{φA(r)χ̄+(−), φB(r)χ̄−(+)} that approximately decouple.

Projecting the total Hamiltonian Eq. (8) onto Vu(l ) spaces
we obtain two simpler 2 × 2 effective Hamiltonians:

Ĥu(l )(k) = ±Bexρ0 + f1(k)ρ0 − hu(l )(k) · ρ, (29)

where ρ0 and ρ are the unit and Pauli pseudospin matrices
operating in V±, and

hu(l )x = ∓8t Ix sin
kx
2
cos

ky
2
sin

kz
2

,

hu(l )y = −8t Iz cos
kx
2
cos

ky
2
cos

kz
2

,

hu(l )z = −2A′ f2(k), (30)

where we ignore the contribution of Ĥe
B(k), Eq. (18), for

brevity. The x component of h is opposite at the upper and
lower subbands. This ensures that AHE vanishes when all the
bands are occupied, and the system is a topologically trivial
insulator. Here we consider the metallic regime with the upper
(lower) band doublets partially (fully) occupied, respectively.
This situation is described by Ĥu(k). It gives rise to the two
Fermi surfaces split by the spin dependent terms of Eq. (29);
see Fig. 3. Even though the spectrum appears as symmetric
under the C2z operation, it is not symmetric at finite SOI.
Indeed, Eq. (30) shows that hu(l )x flips under this operation.
Therefore Bloch states have a different spin dependence at
momenta related by C2z.

The integration region in Eq. (28) is contained in be-
tween the two split Fermi surfaces arising from Ĥu(k). The
straightforward calculation based on Eqs. (29) and (30) yields
σH
xy = 0, since �u

xy(−kx, ky, kz ) = −�u
xy(kx, ky, kz ). Similarly,

σH
xz = 0. The nonzero σH

yz arises from

�u
yz(k) = A′t Ix t

I
z [2 cos(ky/2)]

4(sin kx )2

|hu(k)|3 . (31)

We can see that in the limit of the weak SOI, the ky = 0
plane hosts the nodal line where hu(k) = 0, and Eq. (31)
becomes nonanalytic. It is natural to expect this degeneracy
to produce the nonanalytic dependence of the AHE on SOI.
To clarify this point we consider the set of parameters re-
sulting in a small Fermi surface centered at the � point [see
Figs. 3(a) and 3(b)]. We take for the diagonal part of the
effective Hamiltonian (29) f1(k) = E0k2, which is obtained
by setting A0 = 6E0 and Ax = Ay = Az = −2E0 in Eq. (24).
We next set the chemical potential counted relative to the
bottom of the band at Bex, μ � E0. The Fermi momentum
becomes kF = √

μ/E0 � 1. In the same limit of a small and
nearly spherical Fermi surface we approximate

hux ≈ −2t Ix kxkz, huy ≈ −8t Iz , huz ≈ −2A′kxky. (32)

With these approximations, taking into account the smallness
of the Fermi energy, and setting t Ix = t Iz = t for the SOI, the
Berry curvature simplifies to

�u
yz(k) ≈ 2A′k2x t

2

[
A′2k2x k2y + (4t )2

]3/2 . (33)

To find the asymptotic behavior of σH
yz in the limit t → 0

note that the Berry curvature is strongly localized in the ky = 0

plane [see Fig. 3(c)]. For the fixed kx and kz =
√
k2F − k2x on

a t = 0 Fermi surface the ky integration range |ky| < k̄y is
fixed by the condition, E0k̄2y − (A′2k2x k̄

2
y + (4t )2)1/2 < 0. This

gives k̄y = A′|kx|/E0 not too close to the north pole of the
Fermi sphere, k̄x < |kx| < kF , with k̄x = 4

√|t |E0/A′. Except
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(a) (b) (c)

FIG. 3. Fermi surface for the effective Hamiltonian, Ĥu(k), Eq. (29). (a) At zero SOI, t Ix = t Iz , Eq. (30), the two bands are degenerate at
kx = 0 and ky = 0 planes. (b) SOI splits the bands. (c) Berry curvature �u

yz, Eq. (31), computed on the external Fermi surface, peaks at the
ky = 0 meridian.

for a tiny interval of |kx| < 2k̄x the ky integration of �u
yz(k)

converges fast enough to approximate

σH
yz ≈ 4

∫ −k̄x

−kF

dkx
2π

∫ k̄(2)z

k̄(1)z

dkz
2π

∫ ∞

−∞

dky
2π

�u
yz(k), (34)

where the factor of 4 accounts for the contributions of the
four sectors in the ky = 0 meridian of the Fermi sphere. The
straightforward integration over ky results in

σH
yz ≈ 1

(2π )3

∫ −k̄x

−kF

dkx|kx|
∫ k̄(2)z

k̄(1)z

dkz. (35)

In the small t regime, the limits of the kz integration are set
by the energy split 2|h(k)| ≈ 16|t | in the ky = 0 plane [see
Eq. (32)]. This allows us to perform the kz integration in
Eq. (35), and write

σH
yz ≈ 2|t |

vFπ3

∫ 0

−kF

dkx
|kx|
kF

√
k2F − k2x = 2|t |k2F

3vFπ3
, (36)

where the Fermi velocity vF = 2E0kF , and we have set the up-
per limit of the kx integration −k̄x to zero, as the contribution
of the region close to the north pole is negligible in this limit.

The numerical coefficient in Eq. (36) depends on the details
of the model. The generic feature of Eq. (36) is the nonana-
lytic linear dependence of the Hall conductivity on the SOI.
We have traced its origin to the crossing lines of the Fermi
surface(s) with the plane ky = 0. This nonanalyticity is present
whenever such crossing occurs, and in this sense is universal.
The concentration of the Berry curvature at these crossing(s)
expressed via Eq. (33) has been reported for the specific model
of SOI in Ref. [1]. The linear in SOI Hall conductivity agrees
with the more recent numerical calculations [23]. At the same
time the result, Eq. (36), vanishes in the insulating phase as
the Fermi surface shrinks. Both trends are illustrated in Fig. 4.

At weak SOI the Hall conductivity, Eq. (36), is independent
of the exchange splitting A′. It holds for t < μ(A′/E0)2, which
may be not too restrictive given that the bandwidth and the
Fermi energy μ are of the same order and A′ is a few tens of
meV based on the DFT of Ref. [27] performed on RuO2.

V. SUMMARY AND OUTLOOK

In this paper, we have computed the intrinsic anoma-
lous Hall effect of an altermagnet based on the minimal
symmetry-constrained tight-binding model. We have studied
the collinear altermagnet with and without SOI separately.
At finite SOI we have employed an analysis based on the
magnetic group symmetry of FeSb2. We have found the terms
that are either even or odd under the T symmetry. The terms
belonging to the first category agree with the terms obtained
in the approaches based on the nonmagnetic space groups
[23,28]. The terms odd in T describe a combined action of
the altermagnetic order parameter and SOI. These require the
magnetic group approach.

We next analyzed the zero SOI in the framework of the
spin symmetries. In this case we have identified and presented
explicitly the symmetry elements including the possibility of
acting differently on spin and orbital degrees of freedom.
The tight-binding model in this case is considerably more
restricted compared to the case of a finite SOI. We note that
both the elements of spin-only group as well as the nontrivial

FIG. 4. Hall conductivity, σH
yz , as given by Eq. (36) as a function

of spin-orbit interaction strength, t , and Fermi energy, μ, valid in
the regime where the altermagnetic splitting exceeds the SOI spin
splitting (arbitrary units).
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elements of the spin group are instrumental in restricting the
zero SOI model.

Comparison of the models based on magnetic and spin
groups respectively allows one to single out the effect of the
SOI on the dispersion relation. This would be hard to achieve
without having done both types of analysis. We have worked
out the band degeneracies based on the Wigner criterion. Usu-
ally it is done for the magnetic or nonmagnetic space groups.
We have extended this treatment to the spin group in question.
The summation over the spin-only elements in this case has to
be understood as integration over the continuous spin rotation
angle. The tight-binding models in both the finite and zero
SOI comply with the general symmetry requirements. And
we have used the properly generalized Wigner criterion to
benchmark our results.

Here we have focused on FeSb2 material, yet our con-
clusions are qualitatively similar for other altermagnetic
materials such as RuO2. According to Refs. [23,28] the SOI
has a similar form in two materials. Since the exchange in-
duced splitting has in fact the same form we expect the same
results to apply qualitatively to both types of systems.

This paper addresses the intrinsic contribution to AHE. Our
model is general, and yet simple enough to serve as a starting
point to explore the extrinsic contributions to AHE. One can
expect the extrinsic contribution to dominate in the metallic
regime where the Fermi energy exceeds the gap due to the
SOI as well as the gap induced by the exchange interaction.
This task is relegated for future studies.
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APPENDIX A: ANTIUNITARY SPIN SYMMETRIES

Here we show that the antiunitary spin symmetries cause
no additional degeneracy. The elements of the spin group are
listed in Eq. (4). In Sec. II B the unitary half of the spin point
group, Eq. (3), has been shown to produce double degeneracy
at momenta k ∈ Kalt , where Kalt contains four planes: kx = 0,
ky = 0, kx = π , and ky = π .

At a given k, the degeneracy doubles due to the antiunitary
operations if at least one of the antiunitary operators in Eq. (4)

TABLE IV. The action of the orbital part of the operations from
the list {E ,P,mz,C2z} on the momentum k = (kx, ky, kz ).

E P mz C2z

(kx, ky,−kz ) (−kx, −ky, −kz ) (kx, ky, −kz ) (−kx,−ky, kz )

with T removed flips k. In this case, the extra degeneracy
appears in cases (b) and (c):

′∑
g∈Gu

S

χk{[τ(E ||C2x )g]
2} =

⎧⎨
⎩

+[k]T 2 case (a)
−[k]T 2 case (b)
0 case (c)

. (A1)

The symmorphic unitary operators include the rota-
tions around ŷ, Cy(ϕ), by an arbitrary angle, ϕ. For k /∈
Kalt , χk[C2

y (ϕ)] = exp(∓iϕ), and for k ∈ Kalt , χk[C2
y (ϕ)] =

2 cosϕ. In both cases
∫ 2π
0 dϕ/(2π )χk[C2

y (ϕ)] = 0 and there-
fore the symmorphic operations do not contribute to the sum.

In contrast the nonsymmorphic unitary operations
do contribute, since [C2xCy(ϕ)]2 = Ē , and therefore
χk[C2xCy(ϕ)]2 = −1(−2) for k /∈ Kalt , (k ∈ Kalt). The
action of symmorphic operations on the momentum k is the
same as that of the four operations {E ,P,mz,C2z} given in
Table IV.

For a generic k only the inversionP contributes to the sum,
Eq. (A1), and we have case (a). At the � point k = 0 all eight
unitary operations reverse k such that [k] = 8. And the sum
is the product of the point group character −2 and the number
of elements contributing +4, and we have case (a) again.
Similarly one can show that the case (a) holds throughout the
Brillouin zone, and indeed there is no degeneracy caused by
the antiunitary operations. So we get no degeneracy doubling
due to the antiunitary operations in the case of a given spin
symmetry group.

APPENDIX B: SYMMETRY CONSTRAINED
HOPPING AMPLITUDES

Here we illustrate the constraints imposed on hopping
amplitudes by the magnetic group symmetry (Fig. 5). The
most general form of the intersublattice nearest neighbor hop-
ping amplitudes is given in Table II. Here we illustrate the

(a) (b)

FIG. 5. Amplitudes of hopping between the Fe sites. (a) Inter-
sublattice nearest neighbor hopping amplitudes as summarized in
Table II. Only the terms of Eq. (10) ∝ σy are displayed. (b) Intrasub-
lattice next nearest neighbor hopping amplitudes. Only the processes
that are distinct for the two sublattices are shown, with the full list of
amplitudes given by Table III.
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constraints contained in this table in Fig. 5(a). For clarity, we
do it just for one out of four types of hopping amplitudes
presented in Eq. (10). Namely we consider the μ = y term of
Eq. (10) and show the hopping amplitudes in Fig. 5(a) based
on Table II. The remaining three amplitudes can be illustrated
in a very similar way based on the same table.

The full information on the intrasublattice hopping ampli-
tudes, TA(B)(
R), over the distanceR is contained in Table III.
Here we show the intrasublattice hopping amplitudes impor-
tant for an altermagnetism in Fig. 5(b).

APPENDIX C: EFFECT OF MAGNETIZATION
CANTING ON AHE

Here we study the effect of a weak ferromagnetic compo-
nent of magnetization on AHE. To clarify this we consider
the limit where the exchange field Bx = Bxx̂ is added to the
collinear staggered magnetization, such that Bx � Bex. We do
not intend to cover all possible cases, and instead consider the
limit of the Bx exceeding the spin splitting at Bx = 0.

To find the small correction to AHE in this case
we employ the method of the effective Hamiltonian
[29]. It is a generalization of the standard perturba-
tion theory to the case of quasidegenerate bands. In
our problem we have two quasidegenerate spaces Vu(l ) =
{φA(r)χ̄+(−), φB(r)χ̄−(+)} separated by the large exchange
energy splitting. In the four-dimensional space spanned by
the four states {φA(r)χ̄+, φB(r)χ̄−, φA(r)χ̄−, φB(r)χ̄+} the
Hamiltonian takes the form

H =
(
Ĥu V̂ul
V̂lu Ĥ l

)
, (C1)

where the block diagonal part is specified by Eqs. (29) and
(30). For the exchange field Bx = Bxx̂ we have V̂ul = −iρz and
V̂lu = V̂ †

ul .
The coupling V̂ul affects the energy levels as well as wave

functions of the problem defined for the two-dimensional up-
per subspace Vu. To the second order in Bx/Bex, the energy
levels are fixed by the effective Hamiltonian, Ĥ eff = Ĥu +

Ĥ eff , with


Ĥ eff
ss′ = 1

2

∑
k

u〈s|V̂ul |k〉l

×
(

1

Eu
s − El

k

+ 1

Eu
s′ − El

k

)
l〈k|V̂lu|s′〉u, (C2)

where the states Ĥu(l )|s〉u(l ) = Eu(l )
s |s〉u(d ), s = 1, 2, diagonal-

ize the two decoupled Hamiltonians. Based on Eq. (29) the
energies of the decoupled Hamiltonians read

Eu(l )
s=1 (k) = ±Bex + f1(k) + |hu(l )(k)|,

Eu(l )
s=2 (k) = ±Bex + f1(k) − |hu(l )(k)|. (C3)

We compute the correction
H eff to the effective Hamiltonian
given by Eq. (C2) to the first order in h/Bex � 1. The first
contribution 
H eff

(a) comes from the expansion of El
k , and set-

ting Eu
s to Bex. This contribution takes the form, in the original

basis Vu,


Ĥ eff
(a) = − B2

x

4B2
ex

ρz[hl (k) · ρ]ρz. (C4)

Additional contribution 
H eff
(b) originates from the expansion

of Eu(l )
s,s′ in hu/Bex and setting El

k to −Bex in Eq. (C2):


Ĥ eff
(b) = − B2

x

4B2
ex

[hu(k) · ρ]. (C5)

Combining Eqs. (C4) and (C5) we obtain for the total correc-
tion


Ĥ eff = − B2
x

2B2
ex

huy (k)ρy. (C6)

The result (C6) indicates that the effect of the ferromag-
netic magnetization component in the considered limit is the
renormalization of the t Iz interaction amplitude as defined in
Eq. (30) to the effective one:

t I,effz = t Iz

(
1 + B2

x

2B2
ex

)
. (C7)

Here we focused on the spectrum renormalization. In fact the
wave functions also change as a result of the perturbation.
This effect can be shown to be negligible in the considered
range of parameters.

Equation (C7) indicates that the weak ferromagnetism
causes a a slight enhancement of the AHE.
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