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Spin Drag Mechanism of Giant Thermal Magnetoresistance
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We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in
an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is

caused by drag between the electron populations with opposite spin polarization, which arises in the
presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal
magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron
liquid. We express the thermal magnetoresistance in terms of intrinsic dissipative coefficients of electron
fluid and show that it is primarily determined by the spin diffusion constant.
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The role of mutual drag in transport phenomena is
pivotal to understanding kinetic properties of metals,
semiconductors, and insulators. Perhaps the most promi-
nent examples of these effects are phonon drag [1],
Coulomb drag in bilayers [2], and magnon drag in magnetic
systems [3].

Phonon drag, also known as the Gurevich effect, leads to
significant deviations in the thermopower of various
materials from the predictions based solely on electronic
theory. These deviations are caused by the transfer of
momentum from the electrons to the phonons, resulting in a
substantial heat flow carried by phonons. Likewise, the
momentum transfer induced by interlayer electron colli-
sions, mediated by Coulomb interactions, gives rise to drag
resistance [4—7]. This occurs when one layer (e.g., a
quantum wire or a two-dimensional electron system) is
driven out of equilibrium by a current, inducing a nonlocal
voltage in the adjacent layer.

In ferromagnetic metals, electron-magnon scattering
produces thermoelectric anomalies similar to the phonon
drag effect [§—11]. In magnetic insulators, one can realize a
nonlocal magnon drag induced by magnetic dipolar inter-
actions between the layers [12]. In complete analogy to the
Coulomb drag, a magnon current in one layer induces a
chemical potential gradient and/or a temperature gradient in
the other layer, which are characterized by the magnon
current transresistivity and the magnon thermal transresis-
tivity. The effect of mutual drag between phonons and spin
excitations has been also discussed in the literature in the
context of the thermal conductivity of a quantum spin
system [13].

In this Letter, we introduce a different drag-induced
thermal effect. We show that near charge neutrality, spin
polarization of the electrons strongly affects the thermal
conductivity. The salient feature of heat transport at charge
neutrality is that it can proceed via the hydrodynamic flow

0031-9007/24/133(24)/246301(5)

246301-1

of the neutral electron-hole plasma. We thus focus our
consideration on the hydrodynamic regime, which attracted
significant attention in recent years; see reviews [14—16]
and references therein. In a pristine system, the thermal
conductivity becomes infinite and thus very sensitive to
disorder and other perturbations. In realistic systems, the
thermal conductivity is limited by the disorder-induced
friction, which can be made sufficiently weak in high
mobility systems. Significant hydrodynamic enhancement
of thermal conductivity in graphene systems has been
reported in Ref. [17]. Continuing progress in nanofabrica-
tion enables fabrication of samples with an even greater
mobility, making the thermal conductivity of the system
extremely sensitive to other perturbations. Here, we show
that thermal transport properties of high mobility systems
become very sensitive to spin polarization of the liquid,
leading to strong thermal magnetoresistivity. The micro-
scopic mechanism of this phenomenon in the hydrody-
namic regime involves spin diffusion (or spin drag). The
physical reason for this effect can be understood by
observing that since thermal conductivity is measured at
zero spin current, the convective part of the spin current
must be compensated by spin-diffusion relative to the
liquid. This dramatically increases dissipation at nonzero
spin polarization, resulting in giant thermal magnetoresis-
tivity. Our predictions may enable probing of spin drag in
electron-hole plasma in graphene through thermal mea-
surements [18], which were recently extended to probe
thermal transport in a magnetic field [19].

The hydrodynamic description of electron transport in a
solid applies provided the rate of momentum- and energy-
conserving electron-electron collisions exceeds the
momentum and energy relaxation rates on impurities and
phonons [20,21]. Therefore macroscopic hydrodynamic
equations express conservation of the number of particles,
energy, and momentum of the electron liquid. In addition,
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in multivalley conductors or in the spin-polarized systems
additional approximate conservation laws are possible for
(pseudo-) spin degrees of freedom.

In what follows we consider a two-dimensional system
in which the electron fluid is partially spin polarized by an
in-plane external magnetic field. We assume that the spin-
orbit interaction is absent, so that the spin component along
the magnetic field is conserved. Experiments show that
even at room temperature spin transport in single-, bi-, and
trilayer graphene devices exhibit nanosecond spin lifetimes
with spin diffusion lengths reaching 10 pm [22,23]. These
observations justify our assumptions.

When the electron system is tuned to the charge neutral-
ity point by an applied gate voltage the hydrodynamic flow
is decoupled from charge current. Thus, the hydrodynamic
equations involve only the entropy current density j; and
spin current density j,. In a steady state and in the linear
regime these two currents are conserved, which is
expressed by the continuity equation of the form

X. (1)
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V-ij,j:)?u—

Here we used column vector notations

) () (e

where s and ¢ are, respectively, entropy and spin densities,

while X is the vector of conjugated thermodynamic forces
defined by gradients of temperature 7" and spin chemical
potential p,. It should be noted that ¢ refers to the
projection on the axis of the external field, and the other
spin components do not appear in the hydrodynamic
description because they are not conserved due to spin
precession. The first term in Eq. (1) corresponds to the
convective part of the current. It is worthwhile to stress that
in the collision-dominated regime hydrodynamic velocity
u(r) is the same for all the spin components. This is
different from the regime of spin Coulomb drag [24,25],
where the populations of spin-up and spin-down electrons
have different drift velocities.

The net currents of entropy and spin consist of the
convective currents produced by the thermally-driven flow
of the partially spin-polarized electron liquid, and the
dissipative currents relative to the liquid described by
the second term in Eq. (1). The latter are characterized
by the matrix of intrinsic kinetic coefficients

G

[x»

which satisfies the Onsager symmetry principle [26-28].
The diagonal elements contributing to dissipation are the
intrinsic thermal conductivity x and the spin diffusion
constant D, of the electron liquid. The off-diagonal

elements describe the so-called spin Seebeck effect, which
has been studied in much detail for ferromagnets in the
field of spin caloritronics [29]. Since the spin density is
odd under time reversal symmetry and energy is not, the
Onsager symmetry requires the intrinsic spin thermo-
conductivity to be an odd function of the magnetic field
y(i(H) = _yﬁ(_H)'

In the stationary regime the force balance condition for
an element of the fluid can be expressed in the form

V.S —ku=X'X, (4)

where the first term in the left-hand side represents the
divergence of the viscous stress tensor [30]

T = n(0u; + oju;) + (& —n)d;;0kuy (5)

with # and { being, respectively, shear (first) and bulk
(second) viscosity of the electron liquid. The force density
in the right-hand side of Eq. (4) comes from the local
gradients of pressure in the fluid P. To express it in this

form we used the thermodynamic relation VP = sVT +

cVu, = X'X and the column vector notations of Eq. (2).
The superscript T denotes transposition. The remaining
term in Eq. (4) describes the generic disorder-induced
friction characterized by the friction coefficient k. For weak
disorder whose correlation radius & exceeds the electron
inelastic mean free path /.., the coefficient of friction k can
be expressed in terms of the local density variations én(r)
induced by disorder potential and the intrinsic conductivity
o as follows [31]:

o2

k—
20

(6n?). (6)
where (...) denotes spatial averaging. We recall that the
intrinsic conductivity does not vanish in generic electron
liquids which do not possess Galilean invariance. The
assumed model is motivated by the experimental observa-
tions of the long-range disorder in graphene devices in the
form of charge puddles [32—-34] (with the typical scale of
£ ~ 100 nm). The local form of Eq. (4) is supported by the
recent analysis presented in Refs. [31,35,36], where it was
shown that for a weakly-disordered system one can develop
an effective renormalized hydrodynamic description on
length scales exceeding & [37].

For a given geometry of the sample and appropriate
boundary conditions Egs. (1) and (4) uniquely determine
the flow profile. The precise form of macroscopic transport
coefficients follows from the expression for the entropy
production rate [39]
0+ XTEX +hku?) (7)
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that should be equated to the Joule heating power
P =J"RJ. The matrix elements of R define thermal
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and spin resistances. Alternatively, one can proceed via the
linear response to relate currents to applied gradients and
thus infer the effective matrix of conductivities whose

inverse is R. Below we use the second route as it is more
straightforward for the problem at hand.

The macroscopic thermal conductivity x is defined as the
proportionality coefficient between the entropy current and
the temperature gradient at vanishing spin current

x = =T(/VT); - (8)

In the absence of spin polarization, the thermal conductivity
of large systems at charge neutrality is determined by the
friction coefficient and is independent of the liquid vis-
cosity [17,31,35]. We show below that for spin-polarized
systems the thermal resistivity remains independent from
viscosity and is controlled by the spin diffusion coefficient.
To this end, we notice that the comparison of the gradient
terms in Eq. (4) describing viscous stresses, VX =
(n + {)V?u, to the friction term, ku, introduces a character-
istic length scale in the problem, which is the Gurzhi
length [20]

g = /1= (9)

Therefore, if the sample size L is smaller than /g the flow
profile is essentially inhomogeneous (Poiseuille-like) and
thus viscous effects play an important role. In the opposite
case of wide devices, L > [, the flow is mostly uniform
except in the boundary layer of thickness ~Ig near the
sample edges. Based on this reasoning we assume the
following hierarchy of length scales £ < [ < L. In this
limit we may neglect the gradient terms in Eq. (4) in
the bulk of the sample, which significantly simplifies
the consideration. Then trivially solving for u we find
u= —()?Tff )/ k. At the same time, the required condition on
the vanishing spin current gives us from Eq. (1) that
u=(D,/¢)Vu, + (y,/sT)VT. These two equations fix
u and give a local relationship between Vu, and VT

(10)

Having determined both u and Vu, in terms of VT, we
insert both expressions into the first row of Eq. (1), which
gives us the entropy current in the presence of the thermal
spin drag. After straightforward algebra we obtain the
following result for the effective thermal conductivity from
Eq. (8):

( - ) YT_> _ e (11)

x(H) =+ T—= g

For small spin polarizations it is safe to assume that
s > max{(¢y,/TD,). (ky,/<T)}, so that only s2D,/c
should be retained in the numerator of the second term
of Eq. (11), and the last term can be dropped as well.
Indeed, for example, for the graphene monolayer
s~ (T/v)?, where v is the band velocity of graphene.
For long range disorder we have & > I = v/T. Therefore,
the above conditions are satisfied in the hydrodynamic
regime. Furthermore, since for weak disorder x < T's?/k,
our main result can be simplified to

s’D,

Note that in the absence of spin diffusion the thermal
conductivity in Eq. (12) vanishes. This occurs because a
hydrodynamic flow of spin-polarized liquid at vanishing
spin current is impossible in the absence of spin diffusion.
Thus, in the ideal fluid limit, where both intrinsic thermal
conductivity and spin diffusion coefficient vanish, the
system becomes a thermal insulator. This corresponds to
spin-induced stagnation of the electron liquid, which may
be used to create spin-actuated thermal valves. A similar
stagnation effect arises in hydrodynamic transport of
charge away from charge neutrality. In that case simulta-
neous conservation of currents of charge, entropy, and (for
a partially spin-polarized liquid) spin precludes potential
flow of an ideal liquid in a smooth external potential
[21,40], resulting in diverging resistivity of 1D systems in
the ideal fluid limit [41,42].

We note that the reduction of the thermal magneto-
conductivity by spin polarization reaches ~100% when the
spin density ¢(H) becomes of the order of root mean square
of the charge density fluctuations induced by disorder,

namely when ¢ ~ \/(D,e*/6)+\/(6n%). At such weak fields
magnetic field dependence of the spin diffusion constant
D,(H) and intrinsic conductivity o(H) can be neglected.
Furthermore, equation (12) remains valid even in the case
when spin polarization arises due to spontaneous symmetry
breaking as long as the hydrodynamic limit can still be
justified.

In the case of field-induced spin polarization Eq. (12) can
be used to obtain thermal magnetoconductivity at low
magnetic fields. Indeed, we write the spin density in the
form ¢ = yH, where y denotes the spin susceptibility. In
this case Eq. (12) yields a Lorentzian dependence of
thermal conductivity on H,

Ts? 1 kD
Hr—— g =Y (13
AH) R 1+ (H/H,)? X (13)

The corresponding thermal resistivity gy, = %! is thus
positive and quadratic. It is of interest to note that the
relative thermal magnetoresistance,
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_ 2
Ach(H) = ch(l—;zh (Oith(o) — % , (14)

provides a way to extract the spin diffusion coefficient D,,
from thermal transport measurements, since the degree of
spin polarization and the strength of disorder can be
determined from the independent experimental probes.
At stronger field, when spin density saturates, the resistivity
on also saturates to a constant value. The effect is
anomalously strong since Agy, ~ 1 already for H ~ H,.

To evaluate magneto-thermal conductivity induced by
spin drag away from charge neutrality it is important to
realize that the right-hand side of Eq. (8) must be evaluated
at vanishing spin and electric current. Although the latter
condition is no longer automatically satisfied at nonvanish-
ing particle density n, for n < s the result can be obtained
by a straightforward extension of the above consideration.
This requires two main modifications. First, the Coulomb
force —enE, where the electromotive force eE is the
gradient of the local electrochemical potential, must be
added to the right-hand side of the force balance condition,
Eq. (4). Second, the constitutive relations in Eq. (1) have to
be augmented to include the expression for the electric
current density, j, = enu + oE — (y/T)VT, where y is the
intrinsic thermoelectric coefficient. At n < s the thermo-
electric contribution to j, may be neglected because
y/T ~n/s < 1. In this case, the condition of vanishing
current gives E = —(en/o)u. Inserting this expression into
the force-balance condition gives a force term (en)’u/o,
which amounts to the following redefinitoin of the effective
friction coefficient in the previous expressions:

2
k= k(n) = k+ < n. (15)
(o2

Thus, the dependence of the relative thermal magneto-
resistance in Eq. (14) on n has the form of the Lorentzian

with a width ~+/(én?), as follows from Eq. (6). The limit
of charge neutrality corresponds to n < dn. In modern
monolayer graphene devices density inhomogeneity ranges
between +/(6n?) ~ (5+10) x 10° cm™2 [17,19,43]. This
is still safely compatible with the condition {n, \/(én?)} <
s at T~ 100 K in monolayer graphene where hydrody-
namic behavior of Dirac plasma is expected to emerge.

In closing, we note that our consideration focused on the
bulk contribution to thermal spin drag magnetotransport
where momentum relaxation is driven by the disorder
potential and the hydrodynamic flow velocity is uniform.
In devices whose dimensions are smaller or comparable to
the Gurzhi length there will be additional contribution to
the thermal resistance, which is determined by the viscous
flow near sample boundaries. An extension of the present
theory to the devices with Hall bar and Corbino geometry
will be presented elsewhere [44].
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