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ABSTRACT

Virtual Reality (VR) technology offers an immersive audio-visual
experience to users through which they can interact with a digitally
represented 3D space (i.e., a virtual world) using a headset device.
By (visually) transporting users from their physical world to real-
istic virtual spaces, VR systems enable interactive and true-to-life
versions of traditional applications such as gaming, remote confer-
encing and virtual tourism. However, VR applications also present
significant user-privacy challenges. This paper studies a new type
of privacy threat targeting VR users which attempts to connect their
activities visible in the virtual world to their physical state sensed
in the real world. Specifically, this paper analyzes the feasibility
of carrying out a de-anonymization or identification attack on VR
users by correlating visually observed movements of users’ avatars
in the virtual world with some auxiliary data (e.g., motion sensor
data from mobile/wearable devices) representing their context/state
in the physical world. To enable this attack, the paper proposes
a novel framework which first employs a learning-based activity
classification approach to translate the disparate visual movement
data and motion sensor data into an activity-vector to ease compar-
ison, followed by a filtering and identity ranking phase outputting
an ordered list of potential identities corresponding to the target
visual movement data. A comprehensive empirical evaluation of
the proposed framework is conducted to study the feasibility of
such a de-anonymization attack.
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1 INTRODUCTION

Virtual Reality (VR) is a transformative technology which has funda-
mentally changed how we interact with digital spaces. By utilizing
specialized hardware such as VR headsets and input controllers,
users can immerse themselves in three-dimensional, computer-
generated realistic virtual environments. This level of immersion
has propelled VR from a specialized niche to a mainstream platform
for a range of applications including gaming [16], social interaction
[10], remote conferencing [9] and virtual tourism [2]. As VR tech-
nologies continue to mature, their adoption rates have skyrocketed.
As of February 2023, over 171 million people worldwide, with 65.9
million in the U.S. alone, were using VR applications [1].

While the VR technology enables exciting new applications, it
also raises pressing security and privacy concerns. These concerns
are not merely hypothetical and could be a significant barrier to VR
technology adoption [23]. These issues are further exacerbated by
the fact that VR platforms often interface with other smart devices,
such as mobile phones and wearables, creating a complex ecosys-
tem ripe for security and privacy vulnerabilities. Existing research
efforts in the literature have exposed a variety of security/privacy
vulnerabilities in VR platforms, ranging from motion sensor-based
inference attacks [82] and eye-tracking exploits that harvest sensi-
tive personal data [41] to exploring how gait and movement data
from VR headsets can be used to create deepfake videos [78].

In this paper, we focus on an unexplored, yet highly relevant,
privacy risk that arises when a user is simultaneously engaged
with a VR platform and a non-VR mobile/wearable device equipped
with motion sensors. Individually, an adversary’s access to data
from either system is usually considered non-threatening. However,
within the broader ecosystem, is it possible that a user’s privacy
may suddenly become vulnerable if an adversary gains access to
both data streams? Our work attempts to answer this question by
studying if a combination of these disparate data sources can be
potentially used to de-anonymize users and compromise their pri-
vacy within the VR application ecosystem. Despite recent research
efforts focusing on uncovering and overcoming privacy challenges
in VR applications, the potential threat (and associated risks) of cor-
relating real-world motion sensor data with in-VR visual data has
been largely overlooked. This paper aims to address this specific,
yet critical, gap.
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This work is the first to systematically investigate the user
anonymity and privacy implications stemming from a combination
of data from VR and non-VR (mobile/wearable) platforms, with the
following specific contributions:

o Correlation Framework: We develop a framework for correlat-
ing motion sensor data from users’ mobile/wearable devices with
the visual movement of their virtual avatars in VR applications.

o Empirical evaluation: To validate the performance and efficacy
of our correlation framework, we collect test data from human
subject participants and perform a comprehensive empirical eval-
uation under various practical settings.

e Optimization: We propose improvements and optimizations to
our correlation framework, tailored for large-scale attacks. These
enhancements provide a more efficient and scalable solution to
the identified user-privacy issue.

e Mitigation strategies: We discuss potential mitigation policies
and recommendations that provide actionable insights for both
developers and policy-makers.

2 RELATED WORK

We categorize related research efforts into those that attempt to
infer private information from mobile device motion sensors and
those that employ VR systems and applications.
Information leakage from mobile device motion sensors: Mo-
bile and wearable device motion sensors such as accelerometers and
gyroscopes have been heavily scrutinized in the research literature
for their potential to be employed as a side-channel for leaking
users’ private information. For instance, motion sensor data have
been utilized to infer keystrokes and passwords [27, 46, 47, 64],
identify lock screen patterns [85], deduce travel routes and location
[36, 58, 60], infer speeches [35, 37, 52], infer handwritten text [79],
reconstruct 3D models from printer vibrations [67], and estimate
demographic information [31, 66]. Application of such on-body mo-
tion sensors for user authentication [44, 80, 84] has also received
significant attention. However, such biometric authentication sys-
tems require training data from individual users.
Information leakage in VR systems and applications: Albeit
relatively new as a consumer technology, VR has garnered a host
of security and privacy concerns. Attacks such as password infer-
ence from finger movements (using motion sensors) when typing a
password in the virtual world can become a security problem if the
same password is reused by the user in real world [30]. Some VR
headsets include eye-tracking, which can reveal valuable personal
information [41]. VR, when used in conjunction with Deepfakes
[78], can also become a serious threat as an adversary can poten-
tially utilize personal gait and movement data collected from a VR
headset to create a very authentic-looking fake video. These type
of attacks can be used to damage personal reputation [12], conduct
social engineering attacks [81], and spread misinformation [34, 40].
Authentication using authorized sensors on the VR headset or
paired on-body controllers [68] and synchronization among multi-
ple (on-body) VR sensors [28, 39] for utility focused applications
are another closely related research topics. Unlike these prior re-
search efforts, in our attack we focus on out-of-band motion sen-
sor data, which are not natively paired with the VR system. De-
anonymization solely using movements observed in the virtual
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world is difficult, especially when the confusion set size is large.
In this work, we attempt to de-anonymize VR users by correlating
visually observed movements of their virtual world avatars with
available out-of-band motion data.

One of the most desirable features in a VR experience is the abil-
ity to use anonymous avatars and identity transformation. Without
appropriate identity protection VR users can be hesitant to partici-
pate in the ecosystem [23]. Previous works on de-anonymization
of VR users utilized in-band data, such as sensors on the VR sys-
tems and/or movement characteristics of virtual avatars, to infer
users’ identity [53, 54], anthropometrics [59], environment [59],
device information [59, 72], and demographics [59]. To the best
of our knowledge, the proposed de-anonymization attack using
out-of-band motion data has never been studied before.

3 SYSTEM AND ADVERSARY MODEL

The target in our proposed attacks are users participating in a VR
application. For this, users employ a primary VR device/hardware
(from manufacturers such as Microsoft, Meta, Apple and HTC),
which typically comprises of a headset running a manufacturer-
provided platform or OS. Users are able to execute a variety of
manufacturer-provided or third-party VR applications [7, 9-11, 18,
19, 21] on the headset. Users may optionally also employ additional
manufacturer-provided or third-party hardware such as hand con-
trollers and headphones/earphones. In addition to the application
that the user is directly interacting with, the VR headset may also
be running other support applications (in parallel and/or in the
background), for example, for live streaming the VR experience.

We refer to all these apps running on the VR headset as VR-apps.
VR-apps often generate visual/video streams comprising of the
users’ virtual embodiment (in the form of an avatar) interacting
with other virtual users (or avatars) or the virtual environment.
Depending on the VR-app, these visual or video stream data may
be publicly available to all users of the VR-app or to everyone (in
case it is live streamed on a public platform).

While interacting with VR-apps, users may also have in their
possession other smart devices such as smartphones and smart-
watches. There may be applications running on these smart devices,
typically distinct from the VR-apps (e.g., operated by different man-
ufacturers or providers), and are referred by us as non-VR-apps.
These non-VR-apps may be able to access local sensors on these
devices (smartphones and smartwatches) either with or without the
explicit permissions of the user. For instance, accessing camera and
microphone may require explicit user permissions, while accessing
motion sensors such as accelerometers and gyroscopes may not.

We consider an adversary whose goal is to de-anonymize a target
VR user (or users) by correlating the visual movements of his/her
anonymous virtual world avatar from the publicly-accessible vi-
sual/video stream data generated by the VR-app with out-of-band,
but identifiable, mobile/wearable motion sensor data from a set of
potential target users collected through non-VR-apps. The size of
the labeled motion dataset of users (collected from non-VR-apps)
in the possession of the adversary, representing the confusion set of
the target VR user or avatar, may vary between a large-scale where
the cardinality (of the dataset) may be very high, to a small-scale.
Similarly, the video recordings of VR users or avatars will result
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Figure 1: Threat model and Attack Summary

in a visual movement dataset, which can also range between a
large-scale where its cardinality may be very high, to a significantly
smaller small-scale such as avatars present within a (targeted) vir-
tual room or playing a (targeted) virtual game. The goal of the
adversary, as depicted in Figure 1, is to de-anonymize a target user
(i.e., its avatar) in the VR space by matching an element in the
labeled motion dataset to the element (corresponding to the target
user or avatar) in the visual movement dataset. This adversarial
goal can also be extended to include de-anonymization of multiple
VR users or avatars.

In order to compile the visual movement dataset (denoted by
V = {01,02,...,0p}, with cardinality p), the adversary has to join
the virtual world, observe and record each avatar for a baseline
duration of time within which a series of movements are likely
observed. In case of the VR service provider being the adversary,
this process can scale easily. In order to compile the labeled mo-
tion dataset (denoted by M = {my, my, ..., mq}, with cardinality g),
the adversary promiscuously records zero-permission motion (ac-
celerometer and gyroscope) sensor data from a targeted set of users.
Typically, this can be achieved by means of a malicious SDK and/or
a trojan app that offers some utility to the users on the front-end
(e.g., a game or a social networking service), while surreptitiously
recording the motion data on the back-end. User may also be com-
pelled by a higher authority, for example an employer, school, or
government, to download such a (malicious) app onto their smart-
phone or smartwatch [3, 4, 13, 17, 24]. Several research efforts in the
literature have studied/uncovered other significant privacy issues
under a similar assumption [27, 45, 48-50, 55, 57, 63, 75-77, 87, 89].
We also assume that both datasets (V and M) contains timestamps
which are fairly in sync with the standard global time.

4 CORRELATION FRAMEWORK

Our proposed correlation framework (Figure 2) is composed of two
key components. The first component converts both the (out-of-
band) motion sensor data and the visual movement data into a
comparable format, referred as activity-vector series. The activity-
vector series enables us to directly compare and match elements
from the two datasets (V and M) using a matching heuristic. The
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second component ranks the closest matches across the elements
of both the datasets, such that the highly ranked matches are most
likely associated with the target user (identifiable from M).

4.1 Activity-Vector Series

Our motivation behind defining an activity-vector series stems from
the fact that the two data sources (V and M) are not directly compa-
rable to each other. The motion sensor data M comprises of samples
measuring linear acceleration and orientation changes of a user’s
body, whereas the visual movement data V' consists of video frames
recording an anonymous avatar’s movements. Consequently, we
define an activity-vector series as a sequence of activities observed
(classified by a ML model), combined with a pairwise sequence
of “magnitudes” for each observed activity from each of the data
sources. The magnitude quantification (Section 4.5) associated with
an observed activity is approximate, but serves as a critical attribute
in our correlation framework.

More precisely, our activity-vector series is composed of the
following commonly observed activities: idle, body rotation, head
rotation, hand movements, walking, bending, jumping, and “other”.
These were the common movements observed in over 2000 hours
of activity data collected by us inside VRChat [21] (more details in
Section 5). These activity classifications combined with magnitude
calculations form a vector-like representation where each observed
activity has a corresponding magnitude information. An activity-
vector series from either data sources can be depicted as:

Left-front Hip Pocket (Motion Sensor)

Activity | walking | walking | idle | bending | walking | walking |jumping| idle | walking |jumping

Magnitude | ay, as a, a; ag apo ag a, as Qg

where a; € R” is the positive real magnitude of an activity time
window, such that a; > a2 > ... > ajo. In order to generate
this activity-vector series, we next detail the steps taken to pre-
process and utilize supervised machine learning models to classify
the activities observed in individual sequences.

4.2 Pre-Processing

We first segment both the physical motion data (obtained from
the mobile device motion sensors) and the visual movement data
(obtained from the VR apps) into small time windows (of w seconds
each) and classify each window as one of the eight aforementioned
actions. We empirically evaluate the effect of the size of w on corre-
lation accuracy in Section 6.1 and use the optimal value for rest of
the evaluation. For the visual movement data, we further separate
individual user’s avatar from the background, so as to better classify
the movements of the avatar without any background noise. Pad-
dleSeg [29], an open-source toolkit that applies image segmentation
using different techniques, was used to segment out the individual
avatars. More specifically, we used a pre-trained ORCNet model
with HRNet backbone that was trained using the Cityscapes dataset
[15]. For the motion sensor data, we apply a Savitzky-Golay filter
[61] to smooth the signals for noise reduction before classification.

4.3 Training Data Generation

To generalize and scale our activity classification for a large-scale
attack, we generate a training dataset by adding synthetically gen-
erated variations that capture a wide range of bodily variances
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Figure 2: Overview of our correlation framework.

and anomalies (often caused by imperfections in the VR systems),
otherwise imfeasible to collect from real human subjects, to a well-
known visual movement dataset in the literature. Specifically, we
generate the training data of our visual movement classifier using
the 3D game engine Unity [20] (Figure 3), utilizing the CMU MoCap
[5] dataset and synthetically generated variations of motions cap-
tured in the CMU MoCap dataset. The CMU MoCap dataset was
created using a motion capture system where the subjects wore 41
markers and performed various activities. It is a well-known dataset
for evaluation of activity recognition frameworks [26, 56, 65], and
can be applied to reproduce avatar movements inside Unity using
corresponding body keypoints.

Our synthetically generated movement variations randomized
the speed between 0.25x and 2X of CMU MoCap speeds, and rota-
tion angle between —10° and +10° of CMU MoCap rotation angles.
In addition to the CMU MoCap model avatar, we also train using
another freely available avatar, namely the Futuristic soldier - Scifi
character!. As the video movement data is dependent on the view-
point of the adversary, we also capture varying camera positions
around the virtual avatar in Unity (Figure 3). Specifically, the cam-
era position was randomized around the avatar (across all angles for
which the avatar is visible), enabling different visual perspectives
and thus improving classifier training. The visual movements of
avatars were recorded using OBS Studio [14].

Additionally, in Unity we attached a custom-made virtual motion
sensor to the avatar (Figure 3), which is able to capture acceleration
and orientation changes of the avatar. This virtual motion sensor
closely captures the kinematic forces experienced by the avatar
in the same way a smartphone or smartwatch motion sensor on a
real person would experience, and it allows us to collectively train
a classifier for the motion sensor data alongside the visual move-
ment classifier. Such a strategy of using virtual sensors enables
training data collection without requiring real human subject par-
ticipants and also eliminates related synchronization errors. Even
though our activity classifiers were trained with publicly-available
avatar datasets (and synthetically generated variants of it), for the
experimental evaluation and testing of our framework (from an
adversarial standpoint) we compose a test dataset with the help of
real/actual human subject participants and also address synchro-
nization errors between the motion sensor and visual movement
data (Section 6). Such a strategy is not only easily generalizable but

!https://assetstore.unity.com/packages/3d/characters/humanoids/sci-fi/futuristic-
soldier-scifi-character-202085
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Figure 3: The training data generation setup inside Unity,
depicting one camera viewpoint and virtual motion sensors
attached to the avatar (in red).

also realistic, as in practice an adversary may be unable to train
activity classifiers using the target users’ data.

4.4 Activity Classification

We collectively utilize Apple’s Core ML? and Create ML? libraries
to generate two classification models (each trained separately),
one using the video movement training data and another using
the motion sensor training data as described above. Core ML is
a state-of-the-art model pre-trained by Apple for generic action
and activity classification, and we further fine-tuned it with the
help of transfer learning [51] using the training data described in
Section 4.3. Prior research has already demonstrated the feasibility
of such activity recognition using Core ML [42]. Moreover, Apple’s
Vision framework? is already pre-trained for keypoint detection
on humans, which can also be utilized with Core ML on humanoid
avatars. Applying these trained models on test visual movement and
motion sensor data (as described in Section 5.4), split into w second
windows, will result in a sequence of activities observed on the two
data sources, which is one of the two sequences in the activity-vector
series described earlier.

4.5 Activity Magnitude

Intuitively, when the same classified activity is observed in both
data sources (in a given time window), we can improve our identity
correlation by ranking smaller magnitude differences above larger
magnitude difference. For example, if an anonymous avatar is ob-
served to be jumping fast in the virtual world (high magnitude), it is
likely that their activity magnitude will also be high on the motion
sensor data. As mentioned earlier, our magnitude quantification
of an observed activity is approximate. For the motion sensor, we
calculate magnitude of each w second activity window as the av-
erage magnitude of acceleration vectors in the motion sensor data.
For the visual movement data, we utilize optical flow to compute
the average acceleration of areas on the avatar’s body where the
motion sensor may be attached. Optical flow estimates the motion
of objects between consecutive frames in a video, caused by the
relative movement between the object and camera [33, 38].

Zhttps://developer.apple.com/documentation/coreml
3https://developer.apple.com/documentation/createml
“https://developer.apple.com/documentation/vision
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However, as some activities tend to generate disproportionate
levels of motion in various parts of the body, it may result in differ-
ent magnitudes of movements for the same activity. Furthermore,
as the adversary may not have knowledge of the motion sensor’s
positioning for each user’s data, the visually observed magnitude of
movement experienced by an avatar’s different body keypoints is
another attribute that should be factored in to improve our correla-
tion model. We consider six usual body positions where the motion
sensor is likely to be attached, such as a smartphone in pant pocket
or a smartwatch on the wrist: left-front hip pocket, right-front hip
pocket, left-back hip pocket, right-back hip pocket, left wrist, and
right wrist. As a result, the activity-vector series calculated from
the visual movement dataset will consists of six different magnitude
sequences (for the same activity sequence) as follows:

Left-front Hip (Visual)

Activity | walking | walking | idle | bending imping | idle idle npin
Magnitude | a, as a, a ag - ag a; as Qg
Right-front Hip (Visual)

Activity | wa ing L my i idle
Magnitude | a, as a, ar Qg aqg ag a; as Qg
Left-back Hip (Visual)

Activity | wa idle |t I idle
Magnitude asz a; ag aqg ag a; as Qg
Right-back Hip (Visual)

Activity | w idle | bending (mpin; i idle
Magnitude [ a, as a, a; Qg 22 ag a; as -
Left Wrist (Visual)

Activity | wa fle | my i idle
Magnitude | a3 ay a, ag az ag — a, as Qg
Right Wrist (Visual)

Activity id| il idle
Magnitude ay ag a; aqg ag a, as

>

where “-~” implies unobservable position for optical flow calcula-
tions, all g; in red depict mismatched magnitude rank with the
left-front hip pocket motion sensor activity-vector series shown
in Section 4.1, and all green ¢; imply matching magnitude rank.
Moreover, there is an activity misclassification in this example at
the ninth window, highlighted as idle. All of these seven magni-
tude sequences (one from motion sensor data and six from visual
movement data) are utilized in the correlation and identity ranking
processes described next.

4.6 Correlation and Identity Ranking

The first intuitive assumption in our correlation framework is that
the order of activities by a user (and his/her avatar) will be unique
when observed for a long enough duration. Intuitively, this obser-
vation duration can be shorter in a small-scale attack where the
confusion set is smaller. In a large-scale attack, the observation
duration has to be longer because with a large confusion set the
occurrence of more than one anonymous user conducting the same
sequence of activities within a short observation duration is more
probable, thus creating confusion between them. We use this as-
sumption to filter out unlikely matches from our identity ranking
calculations, using the activity sequences in the activity-vector
series.
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Our second intuitive assumption is that varying activity magni-
tudes caused by disproportional levels of motion in various parts
of the body can be utilized to identify closely correlated visual
movement and motion sensor sequences. Accordingly, we utilize
magnitude correlation rankings to rank known identities (from
dataset M) such that users with motion sensor magnitude sequence
closely matching to a visual movement magnitude sequence (best
of the six visual positions) are ranked closer to 1.

4.6.1 Activity-based Filtering. As the activity classification is not
perfect, we cannot reliably use the sequence of activities for correla-
tion. Instead, we use a high degree of mismatch between sequences
of activities (across visual movement and motion sensor data) to
filter out identities whose motion sensor data are objectively differ-
ent from an anonymous avatar being observed. More specifically,
we calculate the Hamming distance between the motion sensor ac-
tivity sequence and the visual movement activity sequence (which
is the same for all six activity-vector series generated from the vi-
sual movement data). Thereafter, we eliminate pairs with distance
threshold > t from further magnitude-based identity rankings. We
empirically evaluate threshold ¢ in Section 6.1 as part of our frame-
work parameter optimization. For example, between the pair of
activity-vector series illustrated in Section 4.1 and Section 4.5, this
Hamming distance is 1 (or 10%) due to the activity mismatch in the
ninth time window.

4.6.2 Magnitude-based Ranking. After filtering, we are left with
identities whose motion sensor activity sequences closely matched
at least one of the six visual movement activity sequences. We
utilize Spearman’s rank correlation coefficient [88] to correlate and
rank potential identities based on magnitude sequences, which is
computed as follows:

6% d?
p=l-———
n(n? —1)
where n is the number of observations (of w second windows) in
the activity-vector series and d; is the difference in the paired ranks
of the two magnitudes (across the visual movement and motion
sensor data sequences) at the i time window. The higher the
Spearman’s coefficient, the more likely the two sequences correlate
to each other, and thus the corresponding identity from M would
be ranked closer to 1 out of the g (minus the identities that did
not pass the activity-based filtering). As the adversary does not
have positioning information of the motion sensor on the users’
body, we compute Spearman’s correlation coefficient for the six
likely positioning of the motion sensors (Section 4.5), and consider
only the maximum for identity ranking. Between the examples
shown in Section 4.1 and Section 4.5, magnitude from the visual
data sequence of the left-front hip will have the highest Spearman’s
correlation coefficient with the left-front hip pocket motion sensor
magnitudes. When activity-based filtering threshold t is set very low
(i.e., only tolerance for very minor or no mismatches in the activity
sequences), it is also possible that all identities are eliminated from
this magnitude-based raking, thus resulting in no identity ranking.
The entire correlation procedure is described in Algorithm 1.
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Algorithm 1 Correlation Algorithm.

1: Input:

2:  video[] > Video’s activity-vectors series
3:  motion|] > Motion’s activity-vectors series
4t v Filtering threshold
5: Output:

6:  ranked[] > Ranked list of correlated motion-video indexes with maximum Spearman’s RCC
7: procedure CORRELATE

8: correlated(] > Maps motion indexes to correlated video indexes
9: unranked|(] > Unranked list of correlated motion-video indexes with maximum

Spearman’s RCC

10: for iinrange(video.size() — 1) do

11: for j inrange(motion.size() — 1) do

12: if HammingDistance(video[i], motion[j]) < t then

13: correlated([i].append(j)

14: end if

15: end for

16: end for

17: for i in range(video.size() — 1) do

18: for j in range(correlated[i].size() — 1) do

19: Mgy = correlated|i][j] > Motion index
20: maxSpearman = max(Spearman(video[i], motion[m;gy]))

21: unranked|[i].append({maxSpearman, m;gy })

22: end for

23: ranked|[i] = unranked(i].sort() > Sorted based on Spearman’s RCC
24: end for

25: end procedure

5 EXPERIMENTAL SETUP

To evaluate our proposed correlation framework and training method-
ology, we collect test data (visual and motion sensor) from human
subject participants using a real VR application. Here we outline
details of our test data collection procedure.

5.1 Participants’ Task

Our participants (details in Section 5.3) carry out a set of represen-
tative activities in a virtual reality app while carrying a smartphone
and smartwatch on their body. The controlled activities include
movement of the head, arms, palms, legs, and also actions that
require combinations of them. These different actions were cho-
sen to generate a wide variety of different movements within the
limited time we had with the participants. During the uncontrolled
activity phases, participants were free to interact with the VR app
on their own volition, not limited by the aforementioned activities.
The average time each of our participants spent on the VR app to
provide us data for our study was 1 hours and 8 minutes.

5.2 Adversarial Viewpoint

We continuously observe and record the participants’ avatar in the
virtual world by means of five different virtual camera positions,
where each camera position represents a different adversarial view-
point. Four of these positions are static and positioned at different
corners of the virtual room, each of which represents the fixed (or
static) position of an adversarial avatar observing the target partic-
ipant from that position. The fifth camera is mobile, and represents
the view of an adversarial avatar moving and navigating in the
proximity of the (target) participant’s avatar. We carried out our
experiments in two different virtual worlds - one in a public world
(called Black Cat) where other users’ avatars may be present, and
second in a private world (called Home) where access is restricted to
a select group of users. We refer to these five adversarial viewpoints
in these two worlds by means of a legend outlined in Table 1. In our
evaluation (Section 6), we will also analyze the effect of combin-
ing these five viewpoints on the accuracy of activity classification
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Table 1: Legend of camera viewpoints used in Section 6.

Home Legend ‘ Black Cat Legend
Static Camera 1 HC1 Static Camera 1 BC1
Static Camera 2 HC2 Static Camera 2 BC2
Static Camera 3 HC3 Static Camera 3 BC3
Static Camera 4 HC4 Static Camera 4 BC4
Mobile Camera HC5 Mobile Camera BC5

Combined HCC Combined BCC

Table 2: Background details of the 35 participants.

Gender
14 Female 21 Male
Dominant Hand
2 Left 33 Right
VR Familiarity

11 Slightly 24 Moderately-Extremely
Prior VR Experience
5 Never Used VR Before 30 Used VR Before

(where the viewpoints are referred to as HCC and BCC for Home
and Black Cat, respectively).

5.3 Participants

We recruited 64 participants for test data collection, however, due to
various personal, technical, and medical challenges, only 35 of them
completed the study and whose data is included in our evaluation.
The participants’ ages were between 18 and 48, with a median age of
19. Additional demographic and other details about our participants
are listed in Table 2. Participants were appropriately compensated
for their time and our study was approved by our institution’s
Institutional Review Board (IRB).

5.4 Data Collection Apparatus

VR Device and App. We utilize the Meta Quest 2 VR device® and
the popular VRChat [21] app (installed on the Quest 2) for generat-
ing and collecting test data from the participants in our study. As
of July 2022, VRChat had more than 200,000 daily active users and
more than 7 million registered users [22]. Although other popular
apps also have full-body avatars [8], the fundamental nature of data
generation (and collection) does not significantly differ across a
majority of the VR apps.

Motion Sensors. Participants’ body motion was captured at 20
ms sampling interval on a smartwatch (TicWatch 2) worn by the
participants on their wrist and on a smartphone (Moto G7 Play)
placed in their pocket. 10 participants chose to wear the smartwatch
on their right wrist, while the rest chose to wear it on their left
wrist. 23 participants placed the smartphone in one of their front
pockets, while the rest place it in one of their back pockets.

Data Logging. The VRChat app was installed on five different
desktops to record the viewpoints/perspective of an adversary as
described in Section 3, and OBS Studio [14] was used to record the
each adversarial perspective into individual video files with times-
tamps. The motion sensors were logged in respective devices with
timestamps, and later transferred to another desktop for analysis.
Analysis Computer. A MacBook Pro, equipped with 10-Core M1
CPU, 16-Core GPU, 16GB memory, 1TB SSD storage and 16-core
Neural Engine, was used to train and classify activities, and for the
activity-based filtering and magnitude-based ranking tasks. For the

Shttps://www.meta.com/quest/products/quest-2
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large-scale analysis (Section 7), we used a desktop with Ryzen 5 3600
6-Core 3.6GHz CPU, RTX 3060 12GB GPU, 1TB SSD storage, and
16GB memory, to train and generate large datasets using CTGAN
[6, 83].

6 EVALUATION

We evaluate the proposed correlation framework utilizing the test
data collected from participants, which represents a small-scale
attack with confusion set size of 271 (accumulating different mo-
tion sensor locations from individual participants). After compre-
hensively evaluating the framework in the small-scale setting, we
generate and evaluate a representative dataset for a large-scale
correlation in Section 7.

6.1 Framework Parameters

Our correlation framework has two key parameters: (i) activity
window size (w), which is the time duration used to classify an
action, and (ii) Hamming distance used as the activity-based fil-
tering threshold (¢), which is the minimum requirement for an
activity-vector to be considered in the identity ranking. As the total
observation time, and thus the number of observed activity win-
dows, will vary between different target users, the activity-based
filtering threshold (¢) is normalized with respect to the number of
observed activity windows. No filtering occurs when the filtering
threshold is set at 100%, whereas at 0% even one mismatch in the
activity sequence will result in that activity-vector being filtered
out.

Figures 4 and 5 show the correlation accuracy, where "None
Correlated" occurs when the activity-based filtering filters all can-
didate activity-vectors, "Incorrectly Correlated" occurs when the
top ranked identity is incorrect, and "Correctly Correlated" occurs
when the top ranked identity is correct. From these figures, we
can see that as we increase w, the percentage of identities that
passes the activity-based filtering and then used for identity rank-
ing also grows. Conversely, the percentage of “None Correlated” is
diminished as w is increased. This can primarily be attributed to:
(i) the size of activity sequence in the activity-vector is inversely
proportional to w for a constant observation time period thereby
reducing the number of probable mismatches, and (ii) the activity
inference tends to perform more accurately for larger w.

While the above observation should compel us to select a larger
w, in Figures 4 and 5 we also observe that there exists a trade-off
between w and correctly correlated identities for different activity-
based filtering thresholds. For instance, when w = 5s we observe
that the percentage of correctly correlated identities starts to de-
crease beyond the filtering threshold of 70% in Figure 4e. This is
most likely because as the size of activity-vector is reduced with
increasing w, the probability of confusion with another person’s
activity magnitudes is increased. This trend was consistent across
other experimental variables, such as different adversarial view-
points, motion sensors, and motion sensor positions on the body.

Based on empirical observations across different experimental vari-
ables, we set w = 1s and t = 30% for the rest of our analyses. On
average, these selected values are best suited for maximizing the
percentage of correctly correlated identities. The average correctly
correlated identities using these parameter values within top-1 of
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the ranking was 16.3%, and 17.0% of the identities were within top-3.
These values are significant as training did not consider participant
data at all! In an alternate adversarial model where the motion
sensor positions on the body is known to the adversary, more spe-
cific (i.e., per target user) w and t values can be selected to further
improve the percentage of correctly correlated identities.

6.2 Activity Confusions

The accuracy of the activity classification models play an important
role in the correlation framework’s overall success rate. Activity
classification between visual and motion sensor data differs sig-
nificantly due to the modality of input signal, and is subject to
different types of noises and interference signals. Different adver-
sarial viewpoint angles, distances, and occlusion levels affect the
visual data classification. For instance, if only half of the avatar is
visible due to being behind a coach or another avatar is in front of
the target avatar, the chance of a misclassification is significantly
increased. The positioning and orientation of the device used to
collect motion sensor data also imposes certain limitations on the
activity classification accuracy, especially as we assume that the
adversary is unaware of the exact position of the motion sensor.
For instance, if the motion sensor data is from a smartwatch worn
on the right hand, it is very useful to classify activities involving
the right hand, but may result in high misclassification of activities
not involving the right arm.

Due to these apparent limitations, we analyze the direct conse-
quence of misclassifications, i. e., the confusion of activities between
the visual and motion sensor data. In Figure 6, we observe that the
idle activity has noticeably low accuracy (36% and 22% for right
wrist smartwatch and front right pocket smartphone, respectively),
and is often confused with other activities. An unexpected, yet
clearly discernible, confusion exists between motion sensor idle
and visual walking. One possible factor behind this observation is
that VR users may be using the VR joystick to walk in the virtual
world. As a result, the target user appears idle in the motion sensor
data, while their virtual avatar is visually walking. Another note-
worthy observation is that head movements had high confusion due
to the fact that placement of motion sensors around hip and wrist
areas is not suitable for capturing the target user’s head movements,
whereas a head-mounted VR device is accurately able to capture
head movements and apply them to the avatar in the virtual world.

In light of these insights, we further optimize our framework as
follows. Rather than considering all the classified actions, we only
utilize activities with less than 60% of confusion - body, hand, walk,
bend, jump, and others - for our activity-based filtering. Remaining
activities in the activity-vector are ignored from the Hamming
distance calculations. The average correctly correlated identities
after this optimization within top-1 of the ranking was 37.3%, while
38.7% of the identities were within top-3. The correlation accuracy
plateaued beyond top-3 due instances of the real identity’s activity-
vector series being eliminated from the rankings by the activity-
based filter. This suggests that as activity classification models
improve in the future, our attack’s correlation accuracy will also
improve.
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Figure 6: Activity classification confusion between motion sensor data and visual movements.

6.3 Time Alignment

Both the visual and motion sensor data are collected with device
timestamps for synchronization. Although most modern mobile
devices are periodically updated using Internet time servers, motion
sensor data collection in the wild may contain time drift errors
and thus misaligned with the visual movements. Misaligned data
sources will likely cause confusion between classified activities,
resulting in a high failure rate in satisfying the activity-based filter
threshold. As shown in Figure 7, misaligned data can drop a 62.1%
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correctly correlated result down to 0% in the presence of only 2.4
seconds (of artificially introduced) misalignment. The adversary can
potentially detect and overcome such misalignments by offsetting
the (motion sensor) data in increments, and selecting a time offset
(£0) that results in the minimum Hamming distance in the activity-
based filtering. The value of § must be appropriately chosen to keep
the computation time practical.
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Figure 7: Correctly correlated accuracy (top-1 rank) with
artificially introduced misalignment, shown for data from
the right wrist.

6.4 Different Sensor Locations

We next detail how different positions of the motion sensor on
the (human) body and different adversarial viewpoints affect the
correct correlation of our proposed framework. Overall, smartwatch
(motion sensor) on left or right wrist performed better than the
smartphone in the hip pockets (Figure 8). For example, for the
Home world the smartwatch yielded about 41% and 68% correct
correlations (top-1 rank), for left and right wrists, respectively. In
contrast, the front left-front pocket smartphone data resulted in
about 9.1% correct correlations, while other smartphone locations
are in a similar range. Intuitively, one of the main factors behind this
observation is the inability of smartphone motion sensors to pick
up hand movements when they are located in the hip area pockets.
This causes higher confusion between activities (Figure 6), resulting
in the activity-vector of the target user being filtered out with high
likelihood. As far as the impact of different adversarial viewpoints
on the correlation accuracy of our framework is concerned, we can
see from Figure 8 that, except for BC1, all other camera locations
(or adversarial viewpoints) yielded comparable results within each
of the motion sensor locations. The reason behind BC1 performing
particularly poorly is that its location was near the entrance point of
the Black Cat world and most participants eventually moved away
from the field-of-view of this camera during the data collection
experiments. In summary, combining multiple viewpoints and the
availability of wrist-based motion sensor data are the most favorable
conditions for the adversary.

6.5 Similar Activity Sequences

There can be situations where multiple users perform a similar or
even an identical sequence of activities. In such cases, the magnitude-
based ranking should ideally still rank the real identity (of the target
user) higher than others. In this part of our analysis, we study the
extent to which our magnitude-based ranking is able to do so,
by comparing correlation accuracy when participants (and their
avatars) performed the same sequence of activities. In Figure 9b,
we observe 16.5% correct correlation for motion data from the right
wrist in top-1 of identity rankings and 50.1% correct correlation
within the top-3 ranks. This demonstrates that magnitude-based
ranking is able to, to an extent, discern the difference between
identities based on the magnitude of movements.
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7 OPTIMIZING FOR LARGE-SCALE ATTACKS

An adversary trying to correlate thousands (or even millions) of
anonymous avatars with identified motion sensors data is presented
with a significant computational task. As there are various ongoing
research efforts on improving human activity classification per-
formance [25, 32, 43, 62, 69-71, 73, 74, 86] which can improve our
attack accuracy, in this section, we only focus on the computational
complexity of the correlation task and propose related optimiza-
tions to our framework.

Synthetic Data Generation To test the scalability of our frame-
work, we must first generate a very large synthetic dataset utilizing
real participant data collected in Section 5. While it was not feasible
for us to collect real-world data from a very large number of partic-
ipants, due to the time and resources required for systematic data
collection per participant, we still want to test using a dataset that
has some resemblance to the small-scale dataset instead of generat-
ing random activity-vectors. Nonetheless, as we are only analyzing
computational complexity of a large-scale attack, the realism and
diversity of our synthetic dataset, and corresponding correlation
accuracy results, is not a significant concern.

The activity classification and magnitude calculation tasks take
constant time, and will grow linearly with the size of each dataset
(p and g, for visual movement and motion sensor datasets, respec-
tively). For large p and g, the more complex task is that of calculating
the correlation of all q identities against all p anonymous avatars.
However, as seen in Section 6, the activity-based filtering is very ef-
fective in reducing the complexity of the magnitude-based identity
rankings. Therefore, for large p and g the most computationally
complex task in the entire framework comes down to the activity-
based filtering. Accordingly, we generate our large-scale dataset to
test the scalability of our activity-based filtering, which only re-
quires activity sequences as input. Our first large-scale dataset was
generated using a modern tabular Generative Adversarial Network
(GAN) technique [6], called CTGAN [83], which is trained using
activity sequences from real participants, as outlined in Section 5.
Our second large-scale dataset was generated using random per-
mutations of our activity sequences from Section 5. Each of these
large-scale datasets contained 1 million activity sequences for both
the motion sensor and avatar visual movement data.
Activity-based Filtering without Optimizations. Without any
optimizations, the activity-based filtering has a time complexity of
O(pgk?), where p is the number of unique avatars from the visual
movement data, g is the number of different identities from the
motion sensor data, and k is the size of the activity sequences. As
such, we can further assume that increasing the size of k would have
diminishing returns (computationally), making it less attractive
for an adversary to record each target for too long. Therefore, we
assume k would not be scaled, unlike p and g, and treat k as constant,
thus resulting with a complexity of O(pq). For instance, our setup
takes 2.2x 10! ms to finish activity-based filtering when p = g = 100.
However, when we scale up to p = ¢ = 10°, it requires 3.15 x 107
ms (or about 8 hours). We estimate that for p = g = 10°, it will
take approximately 30 days to finish, and about 3000 days when
p = q = 107, which is not very scalable.

Optimization. We propose the use of a hash table to store our
activity sequence data in order to reduce the time complexity of



WiSec ’24, May 27-30, 2024, Seoul, Republic of Korea

o 1
38
£ 06
Y 04
T 02
[V vy - 8§ ]
T L o o oD ¥R E®wWw
AnNnOo0nNAa
EOERGERRREBRAR

Camera

(a) Motion sensor in back left pocket

Percentage
el g 4
O N O\

o SR
O |
S
ot |
SO R
oort
s
oo |
o0 [
o |
DU G
ooe R

Camera

(d) Motion sensor in front right pocket.

Mohd Sabra, Nisha Vinayaga-Sureshkanth, Ari Sharma, Anindya Maiti, & Murtuza Jadliwala

o 1
%038
e 06
Y 04
T 02
"—‘*0—- I —2 -84 & 3§ 3 B |
T T o L oL %W W W W W W
el elsNale o)
BRRBRAREBRABRGR

Camera

(b) Motion sensor in back right pocket.

Percentage
cooo
O N = O\ =

oH
o
o
o

SOH
DDH m-

B
o [ S
©d
»0u [
<ou [
208

10d |

Camera

(e) Motion sensor on right wrist.

o 1

%0 0.8

€ 06

Y 04

T 02

[ (=== == pasdysass) L} __§ |} et
I O L L I L ¥ % %W www
S0RPGRB0BEER

Camera

(c) Motion sensor in front left pocket.

Percentage

o EaEn
o
oH -
©oH
o
sort [N
oo
o0
20
=
o EEN
>0 I
004 NN

(f) Motion sensor on left wrist.

= None Correlated ® Incorrectly Correlated * Correctly Correlated

Figure 8: Accuracy for different cameras positions and motion sensors locations of devices during the free-movement phase.

Accuracy based on top-1 identity in the rankings.

1 *Top1=Top3 1 *Top1=Top3
gno.s %0.8
€06 €06

So4 o4
802 802 I J
PUCT e e | Oﬁ i a

0 HC1 HC2 HC3 HC4 HCC HC1 HC2 HC3 HC4 HCC
Camera Camera

(a) Front left pocket motion data  (b) Right wrist motion data

Figure 9: Identity correlation for similar activities.

activity matching and filtering. However, as even a single mismatch
between two activity sequences will result in completely different
hash values (i.e., the keys in a hash table), we design a larger hash
table that allows for some degree of mismatch. Specifically, we
populate a hash table with keys based on permutations of the g
activity sequences in M (each of length k) from the motion sensors
data, accounting for possible errors allowable within the Hamming
distance threshold (¢). Let us assume that the numbers 0 to 7 denotes
each of the eight activities we classify. If k = 5, an example of the
activity string would be (47634). If our hamming distance threshold
is t = 2, then any two activities can be mismatched and still pass the
threshold. Now, assume the character = as a wildcard activity that
may or may not be a match. To populate the hash table exhaustively,
we compute every possible permutation of each activity sequence
in M including up to two *. For our previous example, (47634),
some of the permutations generated would be (x * 634), (4 6 * 4),
and (47 * 3x). All these permutations are then used as the key
in our hash table, while the corresponding value is the identity
of users from the motion sensor data (M). Thereafter, during the
correlation process, each activity sequence from the video dataset
also undergoes permutations with up to two *, and then queried
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against the above hash table for a match. If a matching key exists,
the corresponding identity and activity-vector has satisfied the
activity-based filtering and is included in the identity ranking.

Optimized Performance Analysis. The number of permutations
per activity-vector does not scale with the size of datasets and
thus can be treated as O(1) time complexity. Similarly, hash table
search and insertion is O(1) time complexity. Therefore, with the
use of our hash table, the new time complexity becomes O(p +
q), where O(q) time is required to create the hash table, and O(p)
time is require to iterate through V for filtering. Our empirical
results show that with this optimization, the activity-filtering is
significantly faster. For instance with p = g = 100000, k = 10,
and t = 3, using the optimization technique was 575 times faster
than the default activity-based filter. Another important aspect we
also evaluate in the empirical results is the number of collisions,
which occur when multiple unique data sources satisfies the activity-
matching threshold. For k = 5, we observe 1594.87 average number
of collisions, and for k = 10, we observe only 4.26 average collisions
(with p = g = 100000). This implies that the adversary should
increase the value of k if it observes a very high number of collisions.

8 CONCLUSION

We proposed a novel framework to correlate anonymous avatars
in virtual worlds with identified out-of-band motion sensor data.
Our work highlights a newfound privacy risk to users of the grow-
ing VR ecosystem. Specifically, VR users can be vulnerable to de-
anonymization attack if they carry a smartphone or wear a smart-
watch while using a VR system. Our evaluation of the proposed
framework is a step towards demonstrating the feasibility of such an
attack, utilizing real-world data from human participants. Through
our empirical analyses, we were able to optimize framework pa-
rameters, improve scalability, and identified current limitations and
potential for further improvements.
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