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ABSTRACT
Virtual Reality (VR) technology offers an immersive audio-visual

experience to users through which they can interact with a digitally

represented 3D space (i.e., a virtual world) using a headset device.
By (visually) transporting users from their physical world to real-

istic virtual spaces, VR systems enable interactive and true-to-life

versions of traditional applications such as gaming, remote confer-

encing and virtual tourism. However, VR applications also present

significant user-privacy challenges. This paper studies a new type

of privacy threat targeting VR users which attempts to connect their

activities visible in the virtual world to their physical state sensed

in the real world. Specifically, this paper analyzes the feasibility

of carrying out a de-anonymization or identification attack on VR

users by correlating visually observed movements of users’ avatars

in the virtual world with some auxiliary data (e.g., motion sensor

data frommobile/wearable devices) representing their context/state

in the physical world. To enable this attack, the paper proposes

a novel framework which first employs a learning-based activity

classification approach to translate the disparate visual movement

data and motion sensor data into an activity-vector to ease compar-

ison, followed by a filtering and identity ranking phase outputting

an ordered list of potential identities corresponding to the target

visual movement data. A comprehensive empirical evaluation of

the proposed framework is conducted to study the feasibility of

such a de-anonymization attack.
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1 INTRODUCTION
Virtual Reality (VR) is a transformative technology which has funda-

mentally changed how we interact with digital spaces. By utilizing

specialized hardware such as VR headsets and input controllers,

users can immerse themselves in three-dimensional, computer-

generated realistic virtual environments. This level of immersion

has propelled VR from a specialized niche to a mainstream platform

for a range of applications including gaming [16], social interaction

[10], remote conferencing [9] and virtual tourism [2]. As VR tech-

nologies continue to mature, their adoption rates have skyrocketed.

As of February 2023, over 171 million people worldwide, with 65.9

million in the U.S. alone, were using VR applications [1].

While the VR technology enables exciting new applications, it

also raises pressing security and privacy concerns. These concerns

are not merely hypothetical and could be a significant barrier to VR

technology adoption [23]. These issues are further exacerbated by

the fact that VR platforms often interface with other smart devices,

such as mobile phones and wearables, creating a complex ecosys-

tem ripe for security and privacy vulnerabilities. Existing research

efforts in the literature have exposed a variety of security/privacy

vulnerabilities in VR platforms, ranging from motion sensor-based

inference attacks [82] and eye-tracking exploits that harvest sensi-

tive personal data [41] to exploring how gait and movement data

from VR headsets can be used to create deepfake videos [78].

In this paper, we focus on an unexplored, yet highly relevant,

privacy risk that arises when a user is simultaneously engaged

with a VR platform and a non-VR mobile/wearable device equipped

with motion sensors. Individually, an adversary’s access to data

from either system is usually considered non-threatening. However,

within the broader ecosystem, is it possible that a user’s privacy

may suddenly become vulnerable if an adversary gains access to

both data streams? Our work attempts to answer this question by

studying if a combination of these disparate data sources can be

potentially used to de-anonymize users and compromise their pri-

vacy within the VR application ecosystem. Despite recent research

efforts focusing on uncovering and overcoming privacy challenges

in VR applications, the potential threat (and associated risks) of cor-

relating real-world motion sensor data with in-VR visual data has

been largely overlooked. This paper aims to address this specific,

yet critical, gap.
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This work is the first to systematically investigate the user

anonymity and privacy implications stemming from a combination

of data from VR and non-VR (mobile/wearable) platforms, with the

following specific contributions:

• Correlation Framework: We develop a framework for correlat-

ing motion sensor data from users’ mobile/wearable devices with

the visual movement of their virtual avatars in VR applications.

• Empirical evaluation: To validate the performance and efficacy

of our correlation framework, we collect test data from human

subject participants and perform a comprehensive empirical eval-

uation under various practical settings.

• Optimization: We propose improvements and optimizations to

our correlation framework, tailored for large-scale attacks. These

enhancements provide a more efficient and scalable solution to

the identified user-privacy issue.

• Mitigation strategies: We discuss potential mitigation policies

and recommendations that provide actionable insights for both

developers and policy-makers.

2 RELATED WORK
We categorize related research efforts into those that attempt to

infer private information from mobile device motion sensors and

those that employ VR systems and applications.

Information leakage frommobile devicemotion sensors: Mo-

bile and wearable device motion sensors such as accelerometers and

gyroscopes have been heavily scrutinized in the research literature

for their potential to be employed as a side-channel for leaking

users’ private information. For instance, motion sensor data have

been utilized to infer keystrokes and passwords [27, 46, 47, 64],

identify lock screen patterns [85], deduce travel routes and location

[36, 58, 60], infer speeches [35, 37, 52], infer handwritten text [79],

reconstruct 3D models from printer vibrations [67], and estimate

demographic information [31, 66]. Application of such on-body mo-

tion sensors for user authentication [44, 80, 84] has also received

significant attention. However, such biometric authentication sys-

tems require training data from individual users.

Information leakage in VR systems and applications: Albeit

relatively new as a consumer technology, VR has garnered a host

of security and privacy concerns. Attacks such as password infer-

ence from finger movements (using motion sensors) when typing a

password in the virtual world can become a security problem if the

same password is reused by the user in real world [30]. Some VR

headsets include eye-tracking, which can reveal valuable personal

information [41]. VR, when used in conjunction with Deepfakes

[78], can also become a serious threat as an adversary can poten-

tially utilize personal gait and movement data collected from a VR

headset to create a very authentic-looking fake video. These type

of attacks can be used to damage personal reputation [12], conduct

social engineering attacks [81], and spread misinformation [34, 40].

Authentication using authorized sensors on the VR headset or

paired on-body controllers [68] and synchronization among multi-

ple (on-body) VR sensors [28, 39] for utility focused applications

are another closely related research topics. Unlike these prior re-

search efforts, in our attack we focus on out-of-band motion sen-

sor data, which are not natively paired with the VR system. De-

anonymization solely using movements observed in the virtual

world is difficult, especially when the confusion set size is large.

In this work, we attempt to de-anonymize VR users by correlating

visually observed movements of their virtual world avatars with

available out-of-band motion data.

One of the most desirable features in a VR experience is the abil-

ity to use anonymous avatars and identity transformation. Without

appropriate identity protection VR users can be hesitant to partici-

pate in the ecosystem [23]. Previous works on de-anonymization

of VR users utilized in-band data, such as sensors on the VR sys-

tems and/or movement characteristics of virtual avatars, to infer

users’ identity [53, 54], anthropometrics [59], environment [59],

device information [59, 72], and demographics [59]. To the best

of our knowledge, the proposed de-anonymization attack using

out-of-band motion data has never been studied before.

3 SYSTEM AND ADVERSARY MODEL
The target in our proposed attacks are users participating in a VR

application. For this, users employ a primary VR device/hardware

(from manufacturers such as Microsoft, Meta, Apple and HTC),

which typically comprises of a headset running a manufacturer-

provided platform or OS. Users are able to execute a variety of

manufacturer-provided or third-party VR applications [7, 9–11, 18,

19, 21] on the headset. Users may optionally also employ additional

manufacturer-provided or third-party hardware such as hand con-

trollers and headphones/earphones. In addition to the application

that the user is directly interacting with, the VR headset may also

be running other support applications (in parallel and/or in the

background), for example, for live streaming the VR experience.

We refer to all these apps running on the VR headset as VR-apps.
VR-apps often generate visual/video streams comprising of the

users’ virtual embodiment (in the form of an avatar) interacting

with other virtual users (or avatars) or the virtual environment.

Depending on the VR-app, these visual or video stream data may

be publicly available to all users of the VR-app or to everyone (in

case it is live streamed on a public platform).

While interacting with VR-apps, users may also have in their

possession other smart devices such as smartphones and smart-

watches. There may be applications running on these smart devices,

typically distinct from the VR-apps (e.g., operated by different man-

ufacturers or providers), and are referred by us as non-VR-apps.
These non-VR-apps may be able to access local sensors on these

devices (smartphones and smartwatches) either with or without the

explicit permissions of the user. For instance, accessing camera and

microphone may require explicit user permissions, while accessing

motion sensors such as accelerometers and gyroscopes may not.

We consider an adversary whose goal is to de-anonymize a target

VR user (or users) by correlating the visual movements of his/her

anonymous virtual world avatar from the publicly-accessible vi-

sual/video stream data generated by the VR-app with out-of-band,
but identifiable, mobile/wearable motion sensor data from a set of

potential target users collected through non-VR-apps. The size of
the labeled motion dataset of users (collected from non-VR-apps)

in the possession of the adversary, representing the confusion set of
the target VR user or avatar, may vary between a large-scale where
the cardinality (of the dataset) may be very high, to a small-scale.
Similarly, the video recordings of VR users or avatars will result
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Figure 1: Threat model and Attack Summary

in a visual movement dataset, which can also range between a

large-scale where its cardinality may be very high, to a significantly

smaller small-scale such as avatars present within a (targeted) vir-

tual room or playing a (targeted) virtual game. The goal of the

adversary, as depicted in Figure 1, is to de-anonymize a target user

(i.e., its avatar) in the VR space by matching an element in the

labeled motion dataset to the element (corresponding to the target

user or avatar) in the visual movement dataset. This adversarial

goal can also be extended to include de-anonymization of multiple

VR users or avatars.

In order to compile the visual movement dataset (denoted by

𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑝 }, with cardinality 𝑝), the adversary has to join

the virtual world, observe and record each avatar for a baseline

duration of time within which a series of movements are likely

observed. In case of the VR service provider being the adversary,

this process can scale easily. In order to compile the labeled mo-

tion dataset (denoted by𝑀 = {𝑚1,𝑚2, . . . ,𝑚𝑞}, with cardinality 𝑞),

the adversary promiscuously records zero-permission motion (ac-

celerometer and gyroscope) sensor data from a targeted set of users.

Typically, this can be achieved by means of a malicious SDK and/or

a trojan app that offers some utility to the users on the front-end

(e.g., a game or a social networking service), while surreptitiously

recording the motion data on the back-end. User may also be com-

pelled by a higher authority, for example an employer, school, or

government, to download such a (malicious) app onto their smart-

phone or smartwatch [3, 4, 13, 17, 24]. Several research efforts in the

literature have studied/uncovered other significant privacy issues

under a similar assumption [27, 45, 48–50, 55, 57, 63, 75–77, 87, 89].

We also assume that both datasets (𝑉 and𝑀) contains timestamps

which are fairly in sync with the standard global time.

4 CORRELATION FRAMEWORK
Our proposed correlation framework (Figure 2) is composed of two

key components. The first component converts both the (out-of-

band) motion sensor data and the visual movement data into a

comparable format, referred as activity-vector series. The activity-
vector series enables us to directly compare and match elements

from the two datasets (𝑉 and 𝑀) using a matching heuristic. The

second component ranks the closest matches across the elements

of both the datasets, such that the highly ranked matches are most

likely associated with the target user (identifiable from𝑀).

4.1 Activity-Vector Series
Our motivation behind defining an activity-vector series stems from

the fact that the two data sources (𝑉 and𝑀) are not directly compa-

rable to each other. The motion sensor data𝑀 comprises of samples

measuring linear acceleration and orientation changes of a user’s

body, whereas the visual movement data𝑉 consists of video frames

recording an anonymous avatar’s movements. Consequently, we

define an activity-vector series as a sequence of activities observed
(classified by a ML model), combined with a pairwise sequence

of “magnitudes” for each observed activity from each of the data

sources. The magnitude quantification (Section 4.5) associated with

an observed activity is approximate, but serves as a critical attribute

in our correlation framework.

More precisely, our activity-vector series is composed of the

following commonly observed activities: idle, body rotation, head
rotation, hand movements, walking, bending, jumping, and “other”.
These were the common movements observed in over 2000 hours

of activity data collected by us inside VRChat [21] (more details in

Section 5). These activity classifications combined with magnitude

calculations form a vector-like representation where each observed

activity has a corresponding magnitude information. An activity-

vector series from either data sources can be depicted as:

walking walking idle bending walking walking jumping idle walking jumping

𝑎4 𝑎3 𝑎1 𝑎7 𝑎6 𝑎10 𝑎8 𝑎2 𝑎5 𝑎9

Activity

Magnitude

Left-front Hip Pocket (Motion Sensor)

where 𝑎𝑖 ∈ R+ is the positive real magnitude of an activity time

window, such that 𝑎1 > 𝑎2 > . . . > 𝑎10. In order to generate

this activity-vector series, we next detail the steps taken to pre-

process and utilize supervised machine learning models to classify

the activities observed in individual sequences.

4.2 Pre-Processing
We first segment both the physical motion data (obtained from

the mobile device motion sensors) and the visual movement data

(obtained from the VR apps) into small time windows (of𝑤 seconds

each) and classify each window as one of the eight aforementioned

actions. We empirically evaluate the effect of the size of𝑤 on corre-

lation accuracy in Section 6.1 and use the optimal value for rest of

the evaluation. For the visual movement data, we further separate

individual user’s avatar from the background, so as to better classify

the movements of the avatar without any background noise. Pad-
dleSeg [29], an open-source toolkit that applies image segmentation

using different techniques, was used to segment out the individual

avatars. More specifically, we used a pre-trained ORCNet model

with HRNet backbone that was trained using the Cityscapes dataset
[15]. For the motion sensor data, we apply a Savitzky-Golay filter

[61] to smooth the signals for noise reduction before classification.

4.3 Training Data Generation
To generalize and scale our activity classification for a large-scale
attack, we generate a training dataset by adding synthetically gen-

erated variations that capture a wide range of bodily variances
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Figure 2: Overview of our correlation framework.

and anomalies (often caused by imperfections in the VR systems),

otherwise imfeasible to collect from real human subjects, to a well-

known visual movement dataset in the literature. Specifically, we

generate the training data of our visual movement classifier using

the 3D game engine Unity [20] (Figure 3), utilizing the CMU MoCap
[5] dataset and synthetically generated variations of motions cap-

tured in the CMU MoCap dataset. The CMU MoCap dataset was

created using a motion capture system where the subjects wore 41

markers and performed various activities. It is a well-known dataset

for evaluation of activity recognition frameworks [26, 56, 65], and

can be applied to reproduce avatar movements inside Unity using

corresponding body keypoints.

Our synthetically generated movement variations randomized

the speed between 0.25× and 2× of CMU MoCap speeds, and rota-

tion angle between −10° and +10° of CMU MoCap rotation angles.

In addition to the CMU MoCap model avatar, we also train using

another freely available avatar, namely the Futuristic soldier - Scifi
character1. As the video movement data is dependent on the view-

point of the adversary, we also capture varying camera positions

around the virtual avatar in Unity (Figure 3). Specifically, the cam-

era position was randomized around the avatar (across all angles for

which the avatar is visible), enabling different visual perspectives

and thus improving classifier training. The visual movements of

avatars were recorded using OBS Studio [14].

Additionally, in Unity we attached a custom-made virtual motion

sensor to the avatar (Figure 3), which is able to capture acceleration

and orientation changes of the avatar. This virtual motion sensor

closely captures the kinematic forces experienced by the avatar

in the same way a smartphone or smartwatch motion sensor on a

real person would experience, and it allows us to collectively train

a classifier for the motion sensor data alongside the visual move-

ment classifier. Such a strategy of using virtual sensors enables

training data collection without requiring real human subject par-

ticipants and also eliminates related synchronization errors. Even

though our activity classifiers were trained with publicly-available

avatar datasets (and synthetically generated variants of it), for the

experimental evaluation and testing of our framework (from an

adversarial standpoint) we compose a test dataset with the help of

real/actual human subject participants and also address synchro-

nization errors between the motion sensor and visual movement

data (Section 6). Such a strategy is not only easily generalizable but

1
https://assetstore.unity.com/packages/3d/characters/humanoids/sci-fi/futuristic-

soldier-scifi-character-202085

Figure 3: The training data generation setup inside Unity,
depicting one camera viewpoint and virtual motion sensors
attached to the avatar (in red).

also realistic, as in practice an adversary may be unable to train

activity classifiers using the target users’ data.

4.4 Activity Classification
We collectively utilize Apple’s Core ML

2
and Create ML

3
libraries

to generate two classification models (each trained separately),

one using the video movement training data and another using

the motion sensor training data as described above. Core ML is

a state-of-the-art model pre-trained by Apple for generic action

and activity classification, and we further fine-tuned it with the

help of transfer learning [51] using the training data described in

Section 4.3. Prior research has already demonstrated the feasibility

of such activity recognition using Core ML [42]. Moreover, Apple’s

Vision framework
4
is already pre-trained for keypoint detection

on humans, which can also be utilized with Core ML on humanoid

avatars. Applying these trained models on test visual movement and
motion sensor data (as described in Section 5.4), split into𝑤 second
windows, will result in a sequence of activities observed on the two
data sources, which is one of the two sequences in the activity-vector
series described earlier.

4.5 Activity Magnitude
Intuitively, when the same classified activity is observed in both

data sources (in a given time window), we can improve our identity

correlation by ranking smaller magnitude differences above larger

magnitude difference. For example, if an anonymous avatar is ob-

served to be jumping fast in the virtual world (high magnitude), it is

likely that their activity magnitude will also be high on the motion

sensor data. As mentioned earlier, our magnitude quantification

of an observed activity is approximate. For the motion sensor, we

calculate magnitude of each𝑤 second activity window as the av-
erage magnitude of acceleration vectors in the motion sensor data.

For the visual movement data, we utilize optical flow to compute

the average acceleration of areas on the avatar’s body where the

motion sensor may be attached. Optical flow estimates the motion

of objects between consecutive frames in a video, caused by the

relative movement between the object and camera [33, 38].

2
https://developer.apple.com/documentation/coreml

3
https://developer.apple.com/documentation/createml

4
https://developer.apple.com/documentation/vision
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However, as some activities tend to generate disproportionate

levels of motion in various parts of the body, it may result in differ-

ent magnitudes of movements for the same activity. Furthermore,

as the adversary may not have knowledge of the motion sensor’s

positioning for each user’s data, the visually observed magnitude of

movement experienced by an avatar’s different body keypoints is

another attribute that should be factored in to improve our correla-

tion model. We consider six usual body positions where the motion

sensor is likely to be attached, such as a smartphone in pant pocket

or a smartwatch on the wrist: left-front hip pocket, right-front hip

pocket, left-back hip pocket, right-back hip pocket, left wrist, and

right wrist. As a result, the activity-vector series calculated from

the visual movement dataset will consists of six different magnitude

sequences (for the same activity sequence) as follows:

walking walking idle bending walking walking jumping idle idle jumping

𝑎4 𝑎3 𝑎1 𝑎7 𝑎6 − 𝑎8 𝑎2 𝑎5 𝑎9

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎4 𝑎3 𝑎2 𝑎7 𝑎6 𝑎10 𝑎8 𝑎1 𝑎5 𝑎9

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎4 𝑎2 𝑎3 𝑎7 𝑎6 𝑎10 𝑎8 𝑎1 𝑎5 𝑎9

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎4 𝑎3 𝑎1 𝑎7 𝑎6 𝑎9 𝑎8 𝑎2 𝑎5 −

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎3 𝑎4 𝑎1 𝑎6 𝑎7 𝑎8 − 𝑎2 𝑎5 𝑎9

Activity

Magnitude

walking walking idle bending walking walking jumping idle idle jumping

𝑎1 𝑎3 𝑎4 𝑎6 𝑎7 𝑎9 𝑎8 𝑎2 𝑎5 𝑎10

Activity

Magnitude

Left-front Hip (Visual)

Right-front Hip (Visual)

Left-back Hip (Visual)

Right-back Hip (Visual)

Left Wrist (Visual)

Right Wrist (Visual)

where “–” implies unobservable position for optical flow calcula-

tions, all 𝑎𝑖 in red depict mismatched magnitude rank with the

left-front hip pocket motion sensor activity-vector series shown

in Section 4.1, and all green 𝑎𝑖 imply matching magnitude rank.

Moreover, there is an activity misclassification in this example at

the ninth window, highlighted as 𝑖𝑑𝑙𝑒 . All of these seven magni-

tude sequences (one from motion sensor data and six from visual

movement data) are utilized in the correlation and identity ranking

processes described next.

4.6 Correlation and Identity Ranking
The first intuitive assumption in our correlation framework is that

the order of activities by a user (and his/her avatar) will be unique

when observed for a long enough duration. Intuitively, this obser-

vation duration can be shorter in a small-scale attack where the

confusion set is smaller. In a large-scale attack, the observation

duration has to be longer because with a large confusion set the

occurrence of more than one anonymous user conducting the same

sequence of activities within a short observation duration is more

probable, thus creating confusion between them. We use this as-

sumption to filter out unlikely matches from our identity ranking

calculations, using the activity sequences in the activity-vector

series.

Our second intuitive assumption is that varying activity magni-

tudes caused by disproportional levels of motion in various parts

of the body can be utilized to identify closely correlated visual

movement and motion sensor sequences. Accordingly, we utilize

magnitude correlation rankings to rank known identities (from

dataset𝑀) such that users with motion sensor magnitude sequence

closely matching to a visual movement magnitude sequence (best

of the six visual positions) are ranked closer to 1.

4.6.1 Activity-based Filtering. As the activity classification is not

perfect, we cannot reliably use the sequence of activities for correla-

tion. Instead, we use a high degree of mismatch between sequences

of activities (across visual movement and motion sensor data) to

filter out identities whose motion sensor data are objectively differ-

ent from an anonymous avatar being observed. More specifically,

we calculate the Hamming distance between the motion sensor ac-

tivity sequence and the visual movement activity sequence (which

is the same for all six activity-vector series generated from the vi-

sual movement data). Thereafter, we eliminate pairs with distance

threshold > 𝑡 from further magnitude-based identity rankings. We

empirically evaluate threshold 𝑡 in Section 6.1 as part of our frame-

work parameter optimization. For example, between the pair of

activity-vector series illustrated in Section 4.1 and Section 4.5, this

Hamming distance is 1 (or 10%) due to the activity mismatch in the

ninth time window.

4.6.2 Magnitude-based Ranking. After filtering, we are left with
identities whose motion sensor activity sequences closely matched

at least one of the six visual movement activity sequences. We

utilize Spearman’s rank correlation coefficient [88] to correlate and

rank potential identities based on magnitude sequences, which is

computed as follows:

𝜌 = 1 −
6

∑
𝑑2
𝑖

𝑛(𝑛2 − 1)

where 𝑛 is the number of observations (of𝑤 second windows) in

the activity-vector series and 𝑑𝑖 is the difference in the paired ranks

of the two magnitudes (across the visual movement and motion

sensor data sequences) at the 𝑖𝑡ℎ time window. The higher the

Spearman’s coefficient, the more likely the two sequences correlate

to each other, and thus the corresponding identity from 𝑀 would

be ranked closer to 1 out of the 𝑞 (minus the identities that did

not pass the activity-based filtering). As the adversary does not

have positioning information of the motion sensor on the users’

body, we compute Spearman’s correlation coefficient for the six

likely positioning of the motion sensors (Section 4.5), and consider

only the maximum for identity ranking. Between the examples

shown in Section 4.1 and Section 4.5, magnitude from the visual

data sequence of the left-front hip will have the highest Spearman’s

correlation coefficient with the left-front hip pocket motion sensor

magnitudes.When activity-based filtering threshold 𝑡 is set very low

(i.e., only tolerance for very minor or no mismatches in the activity

sequences), it is also possible that all identities are eliminated from

this magnitude-based raking, thus resulting in no identity ranking.

The entire correlation procedure is described in Algorithm 1.
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Algorithm 1 Correlation Algorithm.

1: Input:
2: 𝑣𝑖𝑑𝑒𝑜[] ⊲ Video’s activity-vectors series
3: 𝑚𝑜𝑡𝑖𝑜𝑛[] ⊲ Motion’s activity-vectors series

4: 𝑡 ⊲ Filtering threshold

5: Output:
6: 𝑟𝑎𝑛𝑘𝑒𝑑[] ⊲ Ranked list of correlated motion-video indexes with maximum Spearman’s RCC

7: procedure Correlate
8: 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑[] ⊲ Maps motion indexes to correlated video indexes

9: 𝑢𝑛𝑟𝑎𝑛𝑘𝑒𝑑[] ⊲ Unranked list of correlated motion-video indexes with maximum

Spearman’s RCC

10: for 𝑖 in range(𝑣𝑖𝑑𝑒𝑜.𝑠𝑖𝑧𝑒() − 1) do
11: for 𝑗 in range(𝑚𝑜𝑡𝑖𝑜𝑛.𝑠𝑖𝑧𝑒() − 1) do
12: if 𝐻𝑎𝑚𝑚𝑖𝑛𝑔𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑣𝑖𝑑𝑒𝑜[𝑖],𝑚𝑜𝑡𝑖𝑜𝑛[𝑗]) < 𝑡 then
13: 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑[𝑖].𝑎𝑝𝑝𝑒𝑛𝑑(𝑗 )
14: end if
15: end for
16: end for
17: for 𝑖 in range(𝑣𝑖𝑑𝑒𝑜.𝑠𝑖𝑧𝑒() − 1) do
18: for 𝑗 in range(𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑[𝑖].𝑠𝑖𝑧𝑒() − 1) do
19: 𝑚𝑖𝑑𝑥 = 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑒𝑑[𝑖][𝑗] ⊲ Motion index

20: 𝑚𝑎𝑥𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛 =𝑚𝑎𝑥 (𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛(𝑣𝑖𝑑𝑒𝑜[𝑖],𝑚𝑜𝑡𝑖𝑜𝑛[𝑚𝑖𝑑𝑥 ]))

21: 𝑢𝑛𝑟𝑎𝑛𝑘𝑒𝑑[𝑖].𝑎𝑝𝑝𝑒𝑛𝑑({𝑚𝑎𝑥𝑆𝑝𝑒𝑎𝑟𝑚𝑎𝑛,𝑚𝑖𝑑𝑥 })
22: end for
23: 𝑟𝑎𝑛𝑘𝑒𝑑[𝑖] = 𝑢𝑛𝑟𝑎𝑛𝑘𝑒𝑑[𝑖].𝑠𝑜𝑟𝑡 () ⊲ Sorted based on Spearman’s RCC

24: end for
25: end procedure

5 EXPERIMENTAL SETUP
To evaluate our proposed correlation framework and trainingmethod-

ology, we collect test data (visual and motion sensor) from human

subject participants using a real VR application. Here we outline

details of our test data collection procedure.

5.1 Participants’ Task
Our participants (details in Section 5.3) carry out a set of represen-

tative activities in a virtual reality app while carrying a smartphone

and smartwatch on their body. The controlled activities include

movement of the head, arms, palms, legs, and also actions that

require combinations of them. These different actions were cho-

sen to generate a wide variety of different movements within the

limited time we had with the participants. During the uncontrolled
activity phases, participants were free to interact with the VR app

on their own volition, not limited by the aforementioned activities.

The average time each of our participants spent on the VR app to

provide us data for our study was 1 hours and 8 minutes.

5.2 Adversarial Viewpoint
We continuously observe and record the participants’ avatar in the

virtual world by means of five different virtual camera positions,

where each camera position represents a different adversarial view-

point. Four of these positions are static and positioned at different

corners of the virtual room, each of which represents the fixed (or

static) position of an adversarial avatar observing the target partic-

ipant from that position. The fifth camera is mobile, and represents

the view of an adversarial avatar moving and navigating in the

proximity of the (target) participant’s avatar. We carried out our

experiments in two different virtual worlds – one in a public world

(called Black Cat) where other users’ avatars may be present, and

second in a private world (called Home) where access is restricted to
a select group of users. We refer to these five adversarial viewpoints

in these two worlds by means of a legend outlined in Table 1. In our

evaluation (Section 6), we will also analyze the effect of combin-

ing these five viewpoints on the accuracy of activity classification

Table 1: Legend of camera viewpoints used in Section 6.

Home Legend Black Cat Legend

Static Camera 1 HC1 Static Camera 1 BC1

Static Camera 2 HC2 Static Camera 2 BC2

Static Camera 3 HC3 Static Camera 3 BC3

Static Camera 4 HC4 Static Camera 4 BC4

Mobile Camera HC5 Mobile Camera BC5

Combined HCC Combined BCC

Table 2: Background details of the 35 participants.

Gender
14 Female 21 Male

Dominant Hand
2 Left 33 Right

VR Familiarity
11 Slightly 24 Moderately-Extremely

Prior VR Experience
5 Never Used VR Before 30 Used VR Before

(where the viewpoints are referred to as HCC and BCC for Home

and Black Cat, respectively).

5.3 Participants
We recruited 64 participants for test data collection, however, due to

various personal, technical, and medical challenges, only 35 of them

completed the study and whose data is included in our evaluation.

The participants’ ages were between 18 and 48, with a median age of

19. Additional demographic and other details about our participants

are listed in Table 2. Participants were appropriately compensated

for their time and our study was approved by our institution’s

Institutional Review Board (IRB).

5.4 Data Collection Apparatus
VR Device and App. We utilize the Meta Quest 2 VR device

5
and

the popular VRChat [21] app (installed on the Quest 2) for generat-

ing and collecting test data from the participants in our study. As

of July 2022, VRChat had more than 200,000 daily active users and

more than 7 million registered users [22]. Although other popular

apps also have full-body avatars [8], the fundamental nature of data

generation (and collection) does not significantly differ across a

majority of the VR apps.

Motion Sensors. Participants’ body motion was captured at 20

𝑚𝑠 sampling interval on a smartwatch (TicWatch 2) worn by the

participants on their wrist and on a smartphone (Moto G7 Play)

placed in their pocket. 10 participants chose to wear the smartwatch

on their right wrist, while the rest chose to wear it on their left

wrist. 23 participants placed the smartphone in one of their front

pockets, while the rest place it in one of their back pockets.

Data Logging. The VRChat app was installed on five different

desktops to record the viewpoints/perspective of an adversary as

described in Section 3, and OBS Studio [14] was used to record the

each adversarial perspective into individual video files with times-

tamps. The motion sensors were logged in respective devices with

timestamps, and later transferred to another desktop for analysis.

Analysis Computer. A MacBook Pro, equipped with 10-Core M1

CPU, 16-Core GPU, 16GB memory, 1TB SSD storage and 16-core

Neural Engine, was used to train and classify activities, and for the

activity-based filtering and magnitude-based ranking tasks. For the

5
https://www.meta.com/quest/products/quest-2
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large-scale analysis (Section 7), we used a desktop with Ryzen 5 3600
6-Core 3.6GHz CPU, RTX 3060 12GB GPU, 1TB SSD storage, and

16GB memory, to train and generate large datasets using CTGAN

[6, 83].

6 EVALUATION
We evaluate the proposed correlation framework utilizing the test

data collected from participants, which represents a small-scale
attack with confusion set size of 271 (accumulating different mo-

tion sensor locations from individual participants). After compre-

hensively evaluating the framework in the small-scale setting, we
generate and evaluate a representative dataset for a large-scale
correlation in Section 7.

6.1 Framework Parameters
Our correlation framework has two key parameters: (i) activity

window size (𝑤 ), which is the time duration used to classify an

action, and (ii) Hamming distance used as the activity-based fil-

tering threshold (𝑡 ), which is the minimum requirement for an

activity-vector to be considered in the identity ranking. As the total

observation time, and thus the number of observed activity win-

dows, will vary between different target users, the activity-based

filtering threshold (𝑡 ) is normalized with respect to the number of

observed activity windows. No filtering occurs when the filtering

threshold is set at 100%, whereas at 0% even one mismatch in the

activity sequence will result in that activity-vector being filtered

out.

Figures 4 and 5 show the correlation accuracy, where "None

Correlated" occurs when the activity-based filtering filters all can-

didate activity-vectors, "Incorrectly Correlated" occurs when the

top ranked identity is incorrect, and "Correctly Correlated" occurs

when the top ranked identity is correct. From these figures, we

can see that as we increase 𝑤 , the percentage of identities that

passes the activity-based filtering and then used for identity rank-

ing also grows. Conversely, the percentage of “None Correlated” is

diminished as𝑤 is increased. This can primarily be attributed to:

(i) the size of activity sequence in the activity-vector is inversely

proportional to𝑤 for a constant observation time period thereby

reducing the number of probable mismatches, and (ii) the activity

inference tends to perform more accurately for larger𝑤 .

While the above observation should compel us to select a larger

𝑤 , in Figures 4 and 5 we also observe that there exists a trade-off

between𝑤 and correctly correlated identities for different activity-

based filtering thresholds. For instance, when𝑤 = 5𝑠 we observe

that the percentage of correctly correlated identities starts to de-

crease beyond the filtering threshold of 70% in Figure 4e. This is

most likely because as the size of activity-vector is reduced with

increasing 𝑤 , the probability of confusion with another person’s

activity magnitudes is increased. This trend was consistent across

other experimental variables, such as different adversarial view-

points, motion sensors, and motion sensor positions on the body.

Based on empirical observations across different experimental vari-
ables, we set 𝑤 = 1𝑠 and 𝑡 = 30% for the rest of our analyses. On
average, these selected values are best suited for maximizing the

percentage of correctly correlated identities. The average correctly

correlated identities using these parameter values within top-1 of

the ranking was 16.3%, and 17.0% of the identities were within top-3.

These values are significant as training did not consider participant

data at all! In an alternate adversarial model where the motion

sensor positions on the body is known to the adversary, more spe-

cific (i.e., per target user)𝑤 and 𝑡 values can be selected to further

improve the percentage of correctly correlated identities.

6.2 Activity Confusions
The accuracy of the activity classification models play an important

role in the correlation framework’s overall success rate. Activity

classification between visual and motion sensor data differs sig-

nificantly due to the modality of input signal, and is subject to

different types of noises and interference signals. Different adver-

sarial viewpoint angles, distances, and occlusion levels affect the

visual data classification. For instance, if only half of the avatar is

visible due to being behind a coach or another avatar is in front of

the target avatar, the chance of a misclassification is significantly

increased. The positioning and orientation of the device used to

collect motion sensor data also imposes certain limitations on the

activity classification accuracy, especially as we assume that the

adversary is unaware of the exact position of the motion sensor.

For instance, if the motion sensor data is from a smartwatch worn

on the right hand, it is very useful to classify activities involving

the right hand, but may result in high misclassification of activities

not involving the right arm.

Due to these apparent limitations, we analyze the direct conse-

quence of misclassifications, i. e., the confusion of activities between

the visual and motion sensor data. In Figure 6, we observe that the

idle activity has noticeably low accuracy (36% and 22% for right

wrist smartwatch and front right pocket smartphone, respectively),

and is often confused with other activities. An unexpected, yet

clearly discernible, confusion exists between motion sensor idle
and visual walking. One possible factor behind this observation is

that VR users may be using the VR joystick to walk in the virtual

world. As a result, the target user appears idle in the motion sensor

data, while their virtual avatar is visually walking. Another note-

worthy observation is that head movements had high confusion due

to the fact that placement of motion sensors around hip and wrist

areas is not suitable for capturing the target user’s head movements,

whereas a head-mounted VR device is accurately able to capture

head movements and apply them to the avatar in the virtual world.

In light of these insights, we further optimize our framework as

follows. Rather than considering all the classified actions, we only

utilize activities with less than 60% of confusion – body, hand, walk,

bend, jump, and others – for our activity-based filtering. Remaining

activities in the activity-vector are ignored from the Hamming

distance calculations. The average correctly correlated identities

after this optimization within top-1 of the ranking was 37.3%, while

38.7% of the identities were within top-3. The correlation accuracy

plateaued beyond top-3 due instances of the real identity’s activity-

vector series being eliminated from the rankings by the activity-

based filter. This suggests that as activity classification models

improve in the future, our attack’s correlation accuracy will also

improve.

60



WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Mohd Sabra, Nisha Vinayaga-Sureshkanth, Ari Sharma, Anindya Maiti, & Murtuza Jadliwala

(a) 𝑤 = 0.5𝑠 (b) 𝑤 = 1𝑠 (c) 𝑤 = 2𝑠 (d) 𝑤 = 3 (e) 𝑤 = 5𝑠

Figure 4: Right smartwatch motion sensor and visual movement data correlated with different𝑤 and normalized 𝑡 parameters.
Accuracy based on top-1 identity in the rankings.

(a) 𝑤 = 0.5𝑠 (b) 𝑤 = 1𝑠 (c) 𝑤 = 2𝑠 (d) 𝑤 = 3𝑠 (e) 𝑤 = 5𝑠

Figure 5: Front right pocket smartphone motion sensor and visual movement data correlated with different𝑤 and normalized 𝑡

parameters. Accuracy based on top-1 identity in the rankings.
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(a) Using right wrist smartwatch.
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(b) Using front right pocket smartphone.

Figure 6: Activity classification confusion between motion sensor data and visual movements.

6.3 Time Alignment
Both the visual and motion sensor data are collected with device

timestamps for synchronization. Although most modern mobile

devices are periodically updated using Internet time servers, motion

sensor data collection in the wild may contain time drift errors

and thus misaligned with the visual movements. Misaligned data

sources will likely cause confusion between classified activities,

resulting in a high failure rate in satisfying the activity-based filter

threshold. As shown in Figure 7, misaligned data can drop a 62.1%

correctly correlated result down to 0% in the presence of only 2.4

seconds (of artificially introduced) misalignment. The adversary can

potentially detect and overcome such misalignments by offsetting

the (motion sensor) data in increments, and selecting a time offset

(±𝛿) that results in the minimum Hamming distance in the activity-

based filtering. The value of 𝛿 must be appropriately chosen to keep

the computation time practical.
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Figure 7: Correctly correlated accuracy (top-1 rank) with
artificially introduced misalignment, shown for data from
the right wrist.

6.4 Different Sensor Locations
We next detail how different positions of the motion sensor on

the (human) body and different adversarial viewpoints affect the

correct correlation of our proposed framework. Overall, smartwatch

(motion sensor) on left or right wrist performed better than the

smartphone in the hip pockets (Figure 8). For example, for the

Home world the smartwatch yielded about 41% and 68% correct

correlations (top-1 rank), for left and right wrists, respectively. In

contrast, the front left-front pocket smartphone data resulted in

about 9.1% correct correlations, while other smartphone locations

are in a similar range. Intuitively, one of the main factors behind this

observation is the inability of smartphone motion sensors to pick

up hand movements when they are located in the hip area pockets.

This causes higher confusion between activities (Figure 6), resulting

in the activity-vector of the target user being filtered out with high

likelihood. As far as the impact of different adversarial viewpoints

on the correlation accuracy of our framework is concerned, we can

see from Figure 8 that, except for BC1, all other camera locations

(or adversarial viewpoints) yielded comparable results within each

of the motion sensor locations. The reason behind BC1 performing

particularly poorly is that its location was near the entrance point of

the Black Cat world and most participants eventually moved away

from the field-of-view of this camera during the data collection

experiments. In summary, combining multiple viewpoints and the

availability of wrist-basedmotion sensor data are themost favorable

conditions for the adversary.

6.5 Similar Activity Sequences
There can be situations where multiple users perform a similar or

even an identical sequence of activities. In such cases, themagnitude-

based ranking should ideally still rank the real identity (of the target

user) higher than others. In this part of our analysis, we study the

extent to which our magnitude-based ranking is able to do so,

by comparing correlation accuracy when participants (and their

avatars) performed the same sequence of activities. In Figure 9b,

we observe 16.5% correct correlation for motion data from the right

wrist in top-1 of identity rankings and 50.1% correct correlation

within the top-3 ranks. This demonstrates that magnitude-based

ranking is able to, to an extent, discern the difference between

identities based on the magnitude of movements.

7 OPTIMIZING FOR LARGE-SCALE ATTACKS
An adversary trying to correlate thousands (or even millions) of

anonymous avatars with identified motion sensors data is presented

with a significant computational task. As there are various ongoing

research efforts on improving human activity classification per-

formance [25, 32, 43, 62, 69–71, 73, 74, 86] which can improve our

attack accuracy, in this section, we only focus on the computational

complexity of the correlation task and propose related optimiza-

tions to our framework.

Synthetic Data Generation To test the scalability of our frame-

work, we must first generate a very large synthetic dataset utilizing
real participant data collected in Section 5. While it was not feasible

for us to collect real-world data from a very large number of partic-

ipants, due to the time and resources required for systematic data

collection per participant, we still want to test using a dataset that

has some resemblance to the small-scale dataset instead of generat-

ing random activity-vectors. Nonetheless, as we are only analyzing

computational complexity of a large-scale attack, the realism and

diversity of our synthetic dataset, and corresponding correlation

accuracy results, is not a significant concern.

The activity classification and magnitude calculation tasks take

constant time, and will grow linearly with the size of each dataset

(𝑝 and 𝑞, for visual movement and motion sensor datasets, respec-

tively). For large 𝑝 and𝑞, themore complex task is that of calculating

the correlation of all 𝑞 identities against all 𝑝 anonymous avatars.

However, as seen in Section 6, the activity-based filtering is very ef-

fective in reducing the complexity of the magnitude-based identity

rankings. Therefore, for large 𝑝 and 𝑞 the most computationally

complex task in the entire framework comes down to the activity-

based filtering. Accordingly, we generate our large-scale dataset to
test the scalability of our activity-based filtering, which only re-

quires activity sequences as input. Our first large-scale dataset was
generated using a modern tabular Generative Adversarial Network

(GAN) technique [6], called CTGAN [83], which is trained using

activity sequences from real participants, as outlined in Section 5.

Our second large-scale dataset was generated using random per-

mutations of our activity sequences from Section 5. Each of these

large-scale datasets contained 1 million activity sequences for both

the motion sensor and avatar visual movement data.

Activity-based Filtering without Optimizations.Without any

optimizations, the activity-based filtering has a time complexity of

𝑂(𝑝𝑞𝑘2), where 𝑝 is the number of unique avatars from the visual

movement data, 𝑞 is the number of different identities from the

motion sensor data, and 𝑘 is the size of the activity sequences. As

such, we can further assume that increasing the size of𝑘 would have

diminishing returns (computationally), making it less attractive

for an adversary to record each target for too long. Therefore, we

assume𝑘 would not be scaled, unlike 𝑝 and𝑞, and treat𝑘 as constant,

thus resulting with a complexity of 𝑂(𝑝𝑞). For instance, our setup

takes 2.2×101 ms to finish activity-based filtering when 𝑝 = 𝑞 = 100.

However, when we scale up to 𝑝 = 𝑞 = 10
5
, it requires 3.15 × 10

7

ms (or about 8 hours). We estimate that for 𝑝 = 𝑞 = 10
6
, it will

take approximately 30 days to finish, and about 3000 days when

𝑝 = 𝑞 = 10
7
, which is not very scalable.

Optimization. We propose the use of a hash table to store our

activity sequence data in order to reduce the time complexity of
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(a) Motion sensor in back left pocket (b) Motion sensor in back right pocket. (c) Motion sensor in front left pocket.

(d) Motion sensor in front right pocket. (e) Motion sensor on right wrist. (f) Motion sensor on left wrist.

Figure 8: Accuracy for different cameras positions and motion sensors locations of devices during the free-movement phase.
Accuracy based on top-1 identity in the rankings.

(a) Front left pocket motion data (b) Right wrist motion data

Figure 9: Identity correlation for similar activities.

activity matching and filtering. However, as even a single mismatch

between two activity sequences will result in completely different

hash values (i.e., the keys in a hash table), we design a larger hash

table that allows for some degree of mismatch. Specifically, we

populate a hash table with keys based on permutations of the 𝑞

activity sequences in𝑀 (each of length 𝑘) from the motion sensors

data, accounting for possible errors allowable within the Hamming

distance threshold (𝑡 ). Let us assume that the numbers 0 to 7 denotes

each of the eight activities we classify. If 𝑘 = 5, an example of the

activity string would be ⟨47634⟩. If our hamming distance threshold

is 𝑡 = 2, then any two activities can be mismatched and still pass the

threshold. Now, assume the character ∗ as a wildcard activity that

may or may not be a match. To populate the hash table exhaustively,

we compute every possible permutation of each activity sequence

in 𝑀 including up to two ∗. For our previous example, ⟨47634⟩,
some of the permutations generated would be ⟨∗ ∗ 634⟩, ⟨4 ∗ 6 ∗ 4⟩,
and ⟨47 ∗ 3∗⟩. All these permutations are then used as the key

in our hash table, while the corresponding value is the identity

of users from the motion sensor data (𝑀). Thereafter, during the

correlation process, each activity sequence from the video dataset

also undergoes permutations with up to two ∗, and then queried

against the above hash table for a match. If a matching key exists,

the corresponding identity and activity-vector has satisfied the

activity-based filtering and is included in the identity ranking.

Optimized Performance Analysis. The number of permutations

per activity-vector does not scale with the size of datasets and

thus can be treated as 𝑂(1) time complexity. Similarly, hash table

search and insertion is 𝑂(1) time complexity. Therefore, with the

use of our hash table, the new time complexity becomes 𝑂(𝑝 +

𝑞), where 𝑂(𝑞) time is required to create the hash table, and 𝑂(𝑝)

time is require to iterate through 𝑉 for filtering. Our empirical

results show that with this optimization, the activity-filtering is

significantly faster. For instance with 𝑝 = 𝑞 = 100000, 𝑘 = 10,

and 𝑡 = 3, using the optimization technique was 575 times faster

than the default activity-based filter. Another important aspect we

also evaluate in the empirical results is the number of collisions,

which occurwhenmultiple unique data sources satisfies the activity-

matching threshold. For 𝑘 = 5, we observe 1594.87 average number

of collisions, and for 𝑘 = 10, we observe only 4.26 average collisions

(with 𝑝 = 𝑞 = 100000). This implies that the adversary should

increase the value of𝑘 if it observes a very high number of collisions.

8 CONCLUSION
We proposed a novel framework to correlate anonymous avatars

in virtual worlds with identified out-of-band motion sensor data.

Our work highlights a newfound privacy risk to users of the grow-

ing VR ecosystem. Specifically, VR users can be vulnerable to de-

anonymization attack if they carry a smartphone or wear a smart-

watch while using a VR system. Our evaluation of the proposed

framework is a step towards demonstrating the feasibility of such an

attack, utilizing real-world data from human participants. Through

our empirical analyses, we were able to optimize framework pa-

rameters, improve scalability, and identified current limitations and

potential for further improvements.

63



De-anonymizing VR Avatars using Non-VR Motion Side-channels WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea

REFERENCES
[1] Online; accessed 2023. 25+ Amazing Virtual Reality Statistics. https://www.

zippia.com/advice/virtual-reality-statistics.

[2] Online; accessed 2023. 7 Great Virtual Reality Travel Experiences. https://www.

lifewire.com/virtual-reality-tourism-4129394.

[3] Online; accessed 2023. Can an employer force you to download apps for work

on your personal phones? https://www.reddit.com/r/LegalAdviceUK/comments/

n0em70/can_an_employer_force_you_to_download_apps_for/.

[4] Online; accessed 2023. Churches are demanding members download ‘invasive

spyware’ to check if they are watching porn. https://flipboard.com/topic/

conormcgregor/churches-are-demanding-members-download-apps-that-

spy-on-their-activity/a-IQ2TlaPMRcKAP4RIzkSmtg%3Aa%3A114859074-

692d111f36%2Fthe-sun.com.

[5] Online; accessed 2023. CMU Graphics Lab Motion Capture Database. http:

//mocap.cs.cmu.edu.

[6] Online; accessed 2023. GAN-for-tabular-data. https://github.com/Diyago/GAN-

for-tabular-data.

[7] Online; accessed 2023. Google Blocks. https://arvr.google.com/blocks.

[8] Online; accessed 2023. Legs are finally coming to Mark Zuckerberg’s meta-

verse. https://www.vox.com/recode/2022/10/11/23399439/metaverse-mark-

zuckerberg-connect-avatar-legs-meta-microsoft-apple-vr-ar.

[9] Online; accessed 2023. MeetinVR. https://www.meetinvr.com.

[10] Online; accessed 2023. Meta Horizon Worlds. https://www.meta.com/

experiences/2532035600194083/.

[11] Online; accessed 2023. Mozilla Hubs. https://hubs.mozilla.com.

[12] Online; accessed 2023. MrDeepFakes. https://mrdeepfakes.com.

[13] Online; accessed 2023. My school made us download an app and the app

tracks us. Is this legal? If not, what do I do and how do I confront them?

https://www.quora.com/My-school-made-us-download-an-app-and-the-app-

tracks-us-Is-this-legal-If-not-what-do-I-do-and-how-do-I-confront-them.

[14] Online; accessed 2023. OBS Studio. https://obsproject.com.

[15] Online; accessed 2023. ocrnet-hrnet-w48-paddle. https://docs.openvino.ai/latest/

omz_models_model_ocrnet_hrnet_w48_paddle.html.

[16] Online; accessed 2023. Oculus Store. https://www.oculus.com/experiences/

quest/.

[17] Online; accessed 2023. Should you make your employees download an

app? https://www.teamsense.com/blog/should-you-make-your-employees-

download-an-app.

[18] Online; accessed 2023. Sketchfab Virtual Reality. https://sketchfab.com/virtual-

reality.

[19] Online; accessed 2023. Spatial. https://www.spatial.io.

[20] Online; accessed 2023. Unity Real-Time Development Platform. https://unity.

com.

[21] Online; accessed 2023. VRChat. https://hello.vrchat.com/.

[22] Online; accessed 2023. VRChat’s estimated total players. https://mmostats.com/

game/vrchat.

[23] Devon Adams, Alseny Bah, Catherine Barwulor, Nureli Musaby, Kadeem Pitkin,

and Elissa M Redmiles. 2018. Ethics emerging: the story of privacy and security

perceptions in virtual reality. In ACM SOUPS.
[24] Alex Akinbi, Mark Forshaw, and Victoria Blinkhorn. 2021. Contact tracing apps

for the COVID-19 pandemic: a systematic literature review of challenges and

future directions for neo-liberal societies. Health Information Science and Systems
(2021).

[25] Yair A Andrade-Ambriz, Sergio Ledesma, Mario-Alberto Ibarra-Manzano, Mar-

vella I Oros-Flores, and Dora-Luz Almanza-Ojeda. 2022. Human activity recogni-

tion using temporal convolutional neural network architecture. Expert Systems
with Applications (2022).

[26] Mathieu Barnachon, Saïda Bouakaz, Boubakeur Boufama, and Erwan Guillou.

2014. Ongoing human action recognitionwithmotion capture. Pattern Recognition
47 (2014).

[27] Liang Cai and Hao Chen. 2011. {TouchLogger}: Inferring Keystrokes on Touch

Screen from Smartphone Motion. In USENIX HotSec.
[28] Girija Chetty andMatthewWhite. 2016. Body sensor networks for human activity

recognition. In IEEE SPIN.
[29] PaddlePaddle Contributors. Online; accessed 2023. PaddleSeg, End-to-end im-

age segmentation kit based on PaddlePaddle. https://github.com/PaddlePaddle/

PaddleSeg.

[30] Anupam Das, Joseph Bonneau, Matthew Caesar, Nikita Borisov, and XiaoFeng

Wang. 2014. The tangled web of password reuse. In NDSS.
[31] Erhan Davarci, Betul Soysal, Imran Erguler, Sabri Orhun Aydin, Onur Dincer,

and Emin Anarim. 2017. Age group detection using smartphone motion sensors.

In IEEE EUSIPCO.
[32] Ishan Dave, Zacchaeus Scheffer, Akash Kumar, Sarah Shiraz, Yogesh Singh Rawat,

and Mubarak Shah. 2022. Gabriellav2: Towards better generalization in surveil-

lance videos for action detection. In Proceedings of the IEEE/CVFWinter Conference
on Applications of Computer Vision.

[33] Douglas DeCarlo and Dimitris Metaxas. 1996. The integration of optical flow and

deformable models with applications to human face shape and motion estimation.

In IEEE CVPR.
[34] Nicholas Diakopoulos and Deborah Johnson. 2021. Anticipating and addressing

the ethical implications of deepfakes in the context of elections. New Media &
Society (2021).

[35] Jun Han, Albert Jin Chung, and Patrick Tague. 2017. Pitchln: eavesdropping via

intelligible speech reconstruction using non-acoustic sensor fusion. In ACM/IEEE
IPSN.

[36] Jun Han, Emmanuel Owusu, Le T Nguyen, Adrian Perrig, and Joy Zhang. 2012.

Accomplice: Location inference using accelerometers on smartphones. In IEEE
COMSNETS.

[37] Duncan Hodges and Oliver Buckley. 2018. Reconstructing what you said: Text

inference using smartphone motion. IEEE Transactions on Mobile Computing
(2018).

[38] Berthold KP Horn and Brian G Schunck. 1981. Determining optical flow. Artificial
intelligence (1981).

[39] Daesung Jang, Joon-Seok Kim, Ki-Joune Li, and Chi-Hyun Joo. 2011. Overlapping

and synchronizing two worlds. In ACM GIS.
[40] Stamatis Karnouskos. 2020. Artificial intelligence in digital media: The era of

deepfakes. IEEE Transactions on Technology and Society (2020).

[41] Jacob Leon Kröger, Otto Hans-Martin Lutz, and Florian Müller. 2019. What does

your gaze reveal about you? On the privacy implications of eye tracking. In IFIP
International Summer School on Privacy and Identity Management.

[42] Amit Kumar, Kristina Yordanova, Thomas Kirste, and Mohit Kumar. 2018. Com-

bining off-the-shelf image classifiers with transfer learning for activity recog-

nition. In Proceedings of the 5th international Workshop on Sensor-based Activity
Recognition and Interaction.

[43] Viet-Tuan Le, Kiet Tran-Trung, and Vinh Truong Hoang. 2022. A comprehen-

sive review of recent deep learning techniques for human activity recognition.

Computational Intelligence and Neuroscience (2022).
[44] Gen Li and Hiroyuki Sato. 2020. Handwritten signature authentication using

smartwatch motion sensors. In IEEE COMPSAC.
[45] Yang Liu and Zhenjiang Li. 2019. aleak: Context-free side-channel from your

smart watch leaks your typing privacy. IEEE Transactions on Mobile Computing
(2019).

[46] Chris Xiaoxuan Lu, Bowen Du, Hongkai Wen, Sen Wang, Andrew Markham,

Ivan Martinovic, Yiran Shen, and Niki Trigoni. 2018. Snoopy: Sniffing your

smartwatch passwords via deep sequence learning. Proceedings of the ACM on
Interactive, Mobile, Wearable and Ubiquitous Technologies (2018).

[47] Anindya Maiti, Oscar Armbruster, Murtuza Jadliwala, and Jibo He. 2016.

Smartwatch-based keystroke inference attacks and context-aware protection

mechanisms. In ACM ASIACCS.
[48] Anindya Maiti, Ryan Heard, Mohd Sabra, and Murtuza Jadliwala. 2018. Towards

inferring mechanical lock combinations using wrist-wearables as a side-channel.

In ACM WiSec.
[49] Anindya Maiti, Murtuza Jadliwala, Jibo He, and Igor Bilogrevic. 2018. Side-

channel inference attacks on mobile keypads using smartwatches. IEEE Transac-
tions on Mobile Computing (2018).

[50] Philip Marquardt, Arunabh Verma, Henry Carter, and Patrick Traynor. 2011.

(sp) iphone: Decoding vibrations from nearby keyboards using mobile phone

accelerometers. In ACM CCS.
[51] Oge Marques. 2020. Machine Learning with Core ML. In Image Processing and

Computer Vision in iOS.
[52] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. 2014. Gyrophone: Recognizing

speech from gyroscope signals. In USENIX Security Symposium.

[53] Mark Roman Miller, Fernanda Herrera, Hanseul Jun, James A Landay, and

Jeremy N Bailenson. 2020. Personal identifiability of user tracking data dur-

ing observation of 360-degree VR video. Scientific Reports (2020).
[54] Robert Miller, Natasha Kholgade Banerjee, and Sean Banerjee. 2022. Combining

Real-World Constraints on User Behavior with Deep Neural Networks for Virtual

Reality (VR) Biometrics. In IEEE VR.
[55] Emiliano Miluzzo, Alexander Varshavsky, Suhrid Balakrishnan, and Romit Roy

Choudhury. 2012. Tapprints: your finger taps have fingerprints. In ACMMobiSys.
[56] Clinton Mo, Kun Hu, Shaohui Mei, Zebin Chen, and Zhiyong Wang. 2021.

Keyframe extraction from motion capture sequences with graph based deep

reinforcement learning. In ACM Multimedia.
[57] Reham Mohamed, Habiba Farrukh, Yidong Lu, He Wang, and Z Berkay Celik.

2023. iStelan: Disclosing Sensitive User Information by Mobile Magnetometer

from Finger Touches. Proceedings on Privacy Enhancing Technologies (2023).
[58] Arsalan Mosenia, Xiaoliang Dai, Prateek Mittal, and Niraj K Jha. 2017. Pinme:

Tracking a smartphone user around the world. IEEE Transactions on Multi-Scale
Computing Systems (2017).

[59] Vivek Nair, Gonzalo Munilla Garrido, and Dawn Song. 2022. Exploring the

Unprecedented Privacy Risks of the Metaverse. arXiv preprint arXiv:2207.13176
(2022).

[60] Sashank Narain, Triet D Vo-Huu, Kenneth Block, and Guevara Noubir. 2016.

Inferring user routes and locations using zero-permission mobile sensors. In IEEE
S&P.

64

https://www.zippia.com/advice/virtual-reality-statistics
https://www.zippia.com/advice/virtual-reality-statistics
https://www.lifewire.com/virtual-reality-tourism-4129394
https://www.lifewire.com/virtual-reality-tourism-4129394
https://www.reddit.com/r/LegalAdviceUK/comments/n0em70/can_an_employer_force_you_to_download_apps_for/
https://www.reddit.com/r/LegalAdviceUK/comments/n0em70/can_an_employer_force_you_to_download_apps_for/
https://flipboard.com/topic/conormcgregor/churches-are-demanding-members-download-apps-that-spy-on-their-activity/a-IQ2TlaPMRcKAP4RIzkSmtg%3Aa%3A114859074-692d111f36%2Fthe-sun.com
https://flipboard.com/topic/conormcgregor/churches-are-demanding-members-download-apps-that-spy-on-their-activity/a-IQ2TlaPMRcKAP4RIzkSmtg%3Aa%3A114859074-692d111f36%2Fthe-sun.com
https://flipboard.com/topic/conormcgregor/churches-are-demanding-members-download-apps-that-spy-on-their-activity/a-IQ2TlaPMRcKAP4RIzkSmtg%3Aa%3A114859074-692d111f36%2Fthe-sun.com
https://flipboard.com/topic/conormcgregor/churches-are-demanding-members-download-apps-that-spy-on-their-activity/a-IQ2TlaPMRcKAP4RIzkSmtg%3Aa%3A114859074-692d111f36%2Fthe-sun.com
http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
https://github.com/Diyago/GAN-for-tabular-data
https://github.com/Diyago/GAN-for-tabular-data
https://arvr.google.com/blocks
https://www.vox.com/recode/2022/10/11/23399439/metaverse-mark-zuckerberg-connect-avatar-legs-meta-microsoft-apple-vr-ar
https://www.vox.com/recode/2022/10/11/23399439/metaverse-mark-zuckerberg-connect-avatar-legs-meta-microsoft-apple-vr-ar
https://www.meetinvr.com
https://www.meta.com/experiences/2532035600194083/
https://www.meta.com/experiences/2532035600194083/
https://hubs.mozilla.com
https://mrdeepfakes.com
https://www.quora.com/My-school-made-us-download-an-app-and-the-app-tracks-us-Is-this-legal-If-not-what-do-I-do-and-how-do-I-confront-them
https://www.quora.com/My-school-made-us-download-an-app-and-the-app-tracks-us-Is-this-legal-If-not-what-do-I-do-and-how-do-I-confront-them
https://obsproject.com
https://docs.openvino.ai/latest/omz_models_model_ocrnet_hrnet_w48_paddle.html
https://docs.openvino.ai/latest/omz_models_model_ocrnet_hrnet_w48_paddle.html
https://www.oculus.com/experiences/quest/
https://www.oculus.com/experiences/quest/
https://www.teamsense.com/blog/should-you-make-your-employees-download-an-app
https://www.teamsense.com/blog/should-you-make-your-employees-download-an-app
https://sketchfab.com/virtual-reality
https://sketchfab.com/virtual-reality
https://www.spatial.io
https://unity.com
https://unity.com
https://hello.vrchat.com/
https://mmostats.com/game/vrchat
https://mmostats.com/game/vrchat
https://github.com/PaddlePaddle/PaddleSeg
https://github.com/PaddlePaddle/PaddleSeg


WiSec ’24, May 27–30, 2024, Seoul, Republic of Korea Mohd Sabra, Nisha Vinayaga-Sureshkanth, Ari Sharma, Anindya Maiti, & Murtuza Jadliwala

[61] William H Press and Saul A Teukolsky. 1990. Savitzky-Golay smoothing filters.

Computers in Physics (1990).
[62] Sen Qiu, Hongkai Zhao, Nan Jiang, Zhelong Wang, Long Liu, Yi An, Hongyu

Zhao, Xin Miao, Ruichen Liu, and Giancarlo Fortino. 2022. Multi-sensor informa-

tion fusion based on machine learning for real applications in human activity

recognition: State-of-the-art and research challenges. Information Fusion (2022).

[63] Mohd Sabra, Anindya Maiti, and Murtuza Jadliwala. 2018. Keystroke inference us-

ing ambient light sensor on wrist-wearables: a feasibility study. In ACMWearSys.
[64] Allen Sarkisyan, Ryan Debbiny, and Ani Nahapetian. 2015. WristSnoop: Smart-

phone PINs prediction using smartwatch motion sensors. In IEEE WIFS.
[65] Leonid Sigal, Alexandru O Balan, and Michael J Black. 2010. Humaneva: Synchro-

nized video and motion capture dataset and baseline algorithm for evaluation of

articulated human motion. International journal of computer vision (2010).

[66] Shirish Singh, Devu Manikantan Shila, and Gail Kaiser. 2019. Side channel attack

on smartphone sensors to infer gender of the user. In Proceedings of the 17th
Conference on Embedded Networked Sensor Systems.

[67] Chen Song, Feng Lin, Zhongjie Ba, Kui Ren, Chi Zhou, and Wenyao Xu. 2016. My

smartphone knows what you print: Exploring smartphone-based side-channel

attacks against 3d printers. In ACM CCS.
[68] Sophie Stephenson, Bijeeta Pal, Stephen Fan, Earlence Fernandes, Yuhang Zhao,

and Rahul Chatterjee. 2022. SoK: Authentication in Augmented and Virtual

Reality. In IEEE S&P.
[69] Tan-Hsu Tan, Jie-Ying Wu, Shing-Hong Liu, and Munkhjargal Gochoo. 2022. Hu-

man activity recognition using an ensemble learning algorithm with smartphone

sensor data. Electronics (2022).
[70] Yin Tang, Lei Zhang, Fuhong Min, and Jun He. 2022. Multiscale deep feature

learning for human activity recognition usingwearable sensors. IEEE Transactions
on Industrial Electronics (2022).

[71] Dipanwita Thakur and Suparna Biswas. 2022. An integration of feature extraction

and guided regularized random forest feature selection for smartphone based

human activity recognition. Journal of Network and Computer Applications (2022).
[72] Rahmadi Trimananda, Hieu Le, Hao Cui, Janice Tran Ho, Anastasia Shuba, and

Athina Markopoulou. 2022. OVRseen: Auditing Network Traffic and Privacy

Policies in Oculus VR. In USENIX Security Symposium.

[73] Waseem Ullah, Amin Ullah, Tanveer Hussain, Khan Muhammad, Ali Asghar

Heidari, Javier Del Ser, Sung Wook Baik, and Victor Hugo C De Albuquerque.

2022. Artificial Intelligence of Things-assisted two-stream neural network for

anomaly detection in surveillance Big Video Data. Future Generation Computer
Systems (2022).

[74] Roberta Vrskova, Robert Hudec, Patrik Kamencay, and Peter Sykora. 2022. Human

activity classification using the 3DCNN architecture. Applied Sciences (2022).
[75] Chen Wang, Xiaonan Guo, Yan Wang, Yingying Chen, and Bo Liu. 2016. Friend

or foe? Your wearable devices reveal your personal pin. In ACM ASIACCS.
[76] He Wang, Ted Tsung-Te Lai, and Romit Roy Choudhury. 2015. Mole: Motion

leaks through smartwatch sensors. In ACM MOBICOM.

[77] Lin Wang, Junbao Zhang, Yue Li, and Haoyu Wang. 2023. AudioWrite: A Hand-

writing Recognition System Using Acoustic Signals. In IEEE ICPADS.
[78] Mika Westerlund. 2019. The emergence of deepfake technology: A review. Tech-

nology Innovation Management Review (2019).

[79] RaveenWijewickrama, Anindya Maiti, and Murtuza Jadliwala. 2019. deWristified:

handwriting inference usingwrist-basedmotion sensors revisited. InACMWiSec.
[80] Raveen Wijewickrama, Anindya Maiti, and Murtuza Jadliwala. 2021. Write to

know: on the feasibility of wrist motion based user-authentication from hand-

writing. In ACM WiSec.
[81] John Wojewidka. 2020. The deepfake threat to face biometrics. Biometric Tech-

nology Today (2020).

[82] Yi Wu, Cong Shi, Tianfang Zhang, Payton Walker, Jian Liu, Nitesh Saxena, and

Yingying Chen. 2023. Privacy Leakage via Unrestricted Motion-Position Sensors

in the Age of Virtual Reality: A Study of Snooping Typed Input on Virtual

Keyboards. In IEEE S&P.
[83] Lei Xu, Maria Skoularidou, Alfredo Cuesta-Infante, and Kalyan Veeramacha-

neni. 2019. Modeling tabular data using conditional GAN. Advances in Neural
Information Processing Systems (2019).

[84] Weitao Xu, Girish Revadigar, Chengwen Luo, Neil Bergmann, and Wen Hu. 2016.

Walkie-talkie: Motion-assisted automatic key generation for secure on-body

device communication. In ACM/IEEE IPSN.
[85] Zhi Xu, Kun Bai, and Sencun Zhu. 2012. Taplogger: Inferring user inputs on

smartphone touchscreens using on-board motion sensors. In ACM WiSec.
[86] Lijun Yu, Yijun Qian, Wenhe Liu, and Alexander G Hauptmann. 2022. Argus++:

Robust real-time activity detection for unconstrained video streams with over-

lapping cube proposals. In Proceedings of the IEEE/CVF Winter Conference on
Applications of Computer Vision.

[87] Tuo Yu and Klara Nahrstedt. 2019. Shoeshacker: Indoor corridor map and user

location leakage through force sensors in smart shoes. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies (2019).

[88] Jerrold H Zar. 1972. Significance testing of the Spearman rank correlation coeffi-

cient. J. Amer. Statist. Assoc. (1972).
[89] Shijia Zhang, Yilin Liu, and Mahanth Gowda. 2023. I Spy You: Eavesdropping

Continuous Speech on Smartphones via Motion Sensors. Proceedings of the ACM
on Interactive, Mobile, Wearable and Ubiquitous Technologies (2023).

65


	Abstract
	1 Introduction
	2 Related Work
	3 System and Adversary Model
	4 Correlation Framework
	4.1 Activity-Vector Series
	4.2 Pre-Processing
	4.3 Training Data Generation
	4.4 Activity Classification
	4.5 Activity Magnitude
	4.6 Correlation and Identity Ranking

	5 Experimental Setup
	5.1 Participants' Task
	5.2 Adversarial Viewpoint
	5.3 Participants
	5.4 Data Collection Apparatus

	6 Evaluation
	6.1 Framework Parameters
	6.2 Activity Confusions
	6.3 Time Alignment
	6.4 Different Sensor Locations
	6.5 Similar Activity Sequences

	7 Optimizing for Large-scale Attacks
	8 Conclusion
	References



