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We explore the impact of retaining three-body operators within the in-medium similarity renormalization
group (IMSRG), as well as various approximations schemes. After studying two toy problems, identical fermions
with a contact interaction and the Lipkin-Meshkov-Glick model, we employ the valence-space formulation of
the IMSRG to investigate the even-A carbon isotopes with a chiral two-body potential. We find that retaining
only those commutators expressions that scale as N’ provides an excellent approximation of the full three-body

treatment.
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I. INTRODUCTION

There has been considerable progress in the past few years
in ab initio many-body methods for atomic nuclei [1], with
an explosion in the number of available methods, as well as in
the systems amenable to ab initio treatment. At present, nuclei
from A =2 up to A =~ 208 can be accessed [2—4], includ-
ing many open-shell nuclei [5-9]. There has simultaneously
been great progress in quantifying uncertainties due to the
truncation of effective field theory (EFT) to a finite order,
especially the use of emulators for the solution of the many-
body problem [10-14]. One of the most important remaining
open issues in ab initio nuclear theory is a robust and reliable
assessment of the error due to approximations made in solving
the many-body problem.

In this paper, we focus on the in-medium similarity
renormalization group (IMSRG) approach [15-19] and work
towards understanding how the adopted truncation scheme
manifests as errors in the predicted observables. The paper
is organized as follows: In Sec. II, we summarize the IMSRG
method and discuss the truncation scheme. In Sec. III we dis-
cuss approaches to approximate a full treatment of three-body
operators within the IMSRG. In Sec. IV we explore two toy
models to develop intuition of the IMSRG truncation scheme,
before applying the machinery to a more realistic calculation
of the carbon isotopes. Finally, in Sec. V we briefly discuss
the computational cost of our implementation of the IMSRG.

II. IN-MEDIUM SIMILARITY
RENORMALIZATION GROUP

In this section, we briefly recapitulate the formalism of
the in-medium similarity renormalization group, which has
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previously been summarized in several review papers, includ-
ing Refs. [17,19].

A. Basic ingredients

The basic approach of the SRG is to perform a unitary
transformation on the Hamiltonian

H(s)=U(s)HU(s) 1))

in order to bring it to a form which is more amenable to solv-
ing the many-body Schrodinger equation. The dependence of
the unitary transformation U(s) on the flow parameter s is
specified by the generator n

d

—U(s) = n(s)U(s). )
ds

To ensure that U(s) is unitary, we require that n is anti-

Hermitian, n" = —7. This leads to the SRG flow equation

iH(S) = [n(s), H(s)]. 3)
ds

Integration of the ordinary differential equation (3) yields
H (s). Given that the only requirement on 7 is that it is anti-
Hermitian, there is some art in choosing a generator which
efficiently leads to an improved form of the Hamiltonian.
Here, we use the White generator [20], or its arctangent vari-
ant which we write schematically as

Hod 1 2H0d
nWh — o 77atan — zatan( A ) (4)

In (4) H* is the suitably defined off-diagonal part of the
Hamiltonian (the part which should be suppressed by the RG
evolution). A is an energy denominator, typically given by
Epstein-Nesbet or Mgller-Plesset partitioning. We employ a
superoperator notation; the division and arctangent should be
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understood as acting elementwise. For a more explicit descrip-
tion, see, e.g., Ref. [21].

B. Magnus formulation

Rather than directly integrating (3), it is often convenient
both numerically and formally to use the Magnus formulation
of the SRG [22]. In this case, we express the unitary transfor-
mation as an exponentiated anti-Hermitian operator 2,

U(s) = 89, ®)
We may derive a flow equation for 2(s) by using the Baker-

Campbell-Hausdorff formula

[e¢]

d By
720 =) 1) Y, (6)

k=0

where By, is the kth Bernoulli number and [, $2]%* indicates a
k-fold nested commutator

w _ [ 1em“ L k>0
The flowing Hamiltonian is then given by
— 1
— o59) —Q(s) _ _ (k)
H(s) = e"YH(0)e " = kEO o [26). HOIT. (8)

To perform a calculation, we must choose a representation
for our operators. Typically we choose a Fock-space repre-
sentation, writing operators in terms of strings of creation
and annihilation operators. For example, a particle-number
conserving operator O would be written as

0 =0+ ZO,-j{ajaj} + — 2')2 ZO,jkg{a a' a;ak}
ij ijkl

Z Ozjklmn{a, aja, amanal} + - (9)

ijklmn

(3')2

where the ellipses indicate terms involving more than three
creation and three annihilation operators. The braces {-} in-
dicate that the string of creation and annihilation operators
are normal ordered with respect to some reference state
|®) (which could possibly be the true vacuum |0)) so that
(®|{a’ - - - a}|®) = 0. The coefficients Oijki» Oijkimn are anti-
symmetrized matrix elements so that, e.g., O;ju = (ij|O|kl),
where |kl) = akal |0).

Occasionally, we find that the norm ||€2]| becomes large
during the IMSRG flow and evaluating (6) and (8) requires the
evaluation of many nested commutators before convergence
is reached. In this case it becomes computationally advanta-
geous to split up the transformation so that (5) becomes

U(s) = U(s — s))U (1) = 27260, (10)
We then save the intermediate Hamiltonian H (s;) and evalu-
ating H(s) = e~V H(s1)e~*=sD converges more rapidly.

If Q(s — s1) becomes large, we can repeat the procedure so
that after n splits,

U(s) = eQ(S—Sn) . eQ(Sz—Sl)eQ(Sl)_ (11)

If we are only interested in energies, we only need to retain the
most recent H and €2 operators. In the limit that we split after
each infinitesimal step ds, the procedure becomes equivalent
to directly integrating the flow equation (3). In the opposite
limit in which the splitting criterion for ||€2]| is so large it is
never reached, then we recover the standard Magnus expan-
sion. By adjusting the criterion, we may therefore interpolate
between the Magnus and flow equation formulations.

For certain approximation schemes, such as the IM-
SRG(2*) and perturbative triples approximations described
below, this splitting leads to an enhanced error due to miss-
ing cross terms. To illustrate, consider a transformation of
the form U = e . While the IMSRG(2*) approximation
will capture contributions of the form [24, [24, H]3b)o, and
[25, [25, H]3p)op, it Will miss the equivalent terms of the
form [Q24, [Q2p, H]3blap. It is then useful to adopt a strategy
which we call “hunter-gatherer,” in which we split the trans-
formation into two parts

U(s) = €200, (12)

where Qp is the “hunter” and 2 is the “gatherer.”” Whenever
the norm ||| gets beyond a (typically small) threshold,
we update the gatherer via the Baker-Campbell-Hausdorff
formula

Qs — Z [Q6, Q1. (13)

This approach retains the benefits of the aforementioned split-
ting strategy, without losing the cross terms in the IMSRG(2*)
approximation.

C. Truncation of the SRG flow equations
and the NOnB approximation

From (9) combined with either (3) or (6) and (8), we can
see that the main computational task required for an IMSRG
calculation is the evaluation of commutators of Fock-space
operators. Even if n and H are initially two-body operators,
integrating (3), or evaluating the nested commutators in (7)
and (8) will induce three-body and higher-body operators. To
make the calculation feasible, all operators, including interme-
diate commutator expressions, are truncated at the two-body
level, yielding the IMSRG(2) approximation.

The IMSRG(2) approximation can be viewed as re-
peatedly making the normal-ordered two-body (NO2B)
approximation, which is also used with other methods,
and which is very accurate beyond A ~ 16 [25-28]. For a
single-determinant reference |®), the normal-ordered n-body
(NOnB) approximation becomes exact when n is equal to
the maximum number of quasiparticles (particles plus holes)
present in the exact wave function. For example, a one-
particle-one-hole (two quasiparticle) configuration receives

'In free-space SRG calculations, due to the translation-invariance
of the reference |®) = |0), three-body operators can be managed
more efficiently by eliminating the center-of-mass coordinate and
working in Jacobi coordinates [23,24].
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contributions from a normal-ordered two-body operator; but
a normal ordered three-body operator will not contribute:
(®¢|{a"a’a’aaa}|®%) = 0. Likewise, a two-particle-two-hole
configuration receives contributions from a four-body opera-
tor, but not a five-body operator.

For an A-body system with a single-determinant reference
with A particles, at most A-particle-A-hole configurations can
be present in the wave function, and so the NOnB approx-
imation is exact for n > 2A [29]. With a vacuum reference,
at most A quamparﬂcles are present, and so the NOnB ap-
proximation is exact for n 2> A. We are interested in treating
systems with A >> 3, and going beyond the NO3B approxi-
mation is generally prohibitively expensive, so the condition
n < A is inevitable.

The NOnB approximation will also be exact if there are
no m-body operators with m > n; for example, working at
low order in chiral effective field theory [30,31] there are no
operators with m > 3, so the NO3B approximation is exact.
However, SRG evolution will induce operators with m > 3
so IMSRG(3) is no longer exact. The error due to neglect-
ing m-body operators will depend on the relative importance
of m-quasiparticle configurations in the wave function. For
the SRG with a vacuum reference, all configurations have
A quasiparticles, while for IMSRG (with a judicious choice
of reference) the wave function should be dominated with
m-quasiparticle configurations with m < A.

Focusing for concreteness on the NO2B approximation of
a three-body operator, we schematically write the expectation
value of a string of creation or annihilation operators in the
exact wave function |W), with reference |®), as

Wa'a'a’aaa| V) ~ (®la’a’a’aaa| D)
+ (®|d'a’aa|®) (Y |{a'a}| W)
+ (®la’a|®) (¥ |{a"a"aa}| W)
+ (W{a"a"a aaa}|W). (14)

The first term in (14) will scale as A>. The second term will
scale as A’N,, where N, is the number of quasiparticles.”.
The third term will go as AN?, and the fourth as N;, SO we
see that we have an organization in powers of N,/A [32,33].
The approximation is improved by the IMSRG flow, which
suppresses excitations so that Ny(s) — 0 as s — oo. This
argument is complicated somewhat by the fact that the three-
body operators induced by the IMSRG flow are not uniformly
distributed over all orbits, but instead are concentrated near
the Fermi surface. Nevertheless, so long as the typical num-
ber of quasiparticles is smaller than the number of particles
feeling the induced forces, we expect the effect of many-body
operators to be suppressed.

As a side note, we remark that the above argument about
the need for 2A-body operators does not apply to coupled
cluster theory as commonly implemented, for two reasons.

’Here, we assume that the size of (¥|{a’a}|¥) is reasonably ap-
proximated by the diagonal terms N, = Zp(p" p)+ >, (hh). In
nuclear structure applications, many of the off-diagonal terms will
be suppressed by selection rules on the quantum numbers j, 7, t,.

von
i

3,30 (3,12 [3,2]2
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FIG. 1. Hugenholtz skeleton diagrams indicating the commu-
tator topologies present in IMSRG(3) which are omitted in the
IMSRG(2) approximation. The circle and square represent the two
operators entering into the commutator. The full commutator is ob-
tained by subtracting the diagram obtained by exchanging the order
of the circle and square.

First, the cluster operator 7 is a pure excitation operator,
which limits the extent to which intermediate many-body
operators feed back into few-body operators. Second, the in-
termediate many-body operators that do contribute are often
included exactly; for example at the CCSD level, the contri-
bution of an intermediate three-body operator to the two-body
piece of the similarity transformed Hamiltonian is included by
factorizing the expression for two nested commutators [34].
Again, the pomt 1s ~somewhat academic since the truncation
T =7 +17 +---T, with n <« A is inevitable.

III. APPROXIMATIONS TO FULL IMSRG(3)

The full commutator expressions necessary for IMSRG(3)
in the uncoupled and J-coupled representations are presented
in Appendixes A and B, respectively (see also Refs. [17,35—
37]). The corresponding Hugenholtz skeleton diagrams which
enter at the IMSRG(3) level are presented in Fig. 1. The naive
computational scaling to evaluate a particular term can be read
off of the diagram by counting the number of fermion lines.
For example, the first diagram in Fig. 1, labeled® [3, 3]y, has
six fermion lines and thus scales as N®, where N is the number
of single-particle states in the basis. The final diagram in Fig. 1
involves nine fermion lines and thus scales as N°. This is too
expensive for realistic applications (see Sec. V), and so we
explore some approximation schemes which can render the
calculation more tractable.

A. Goose-tank diagrams and the IMSRG(2*) approximation

In Refs. [17,36], a perturbative analysis of the IM-
SRG demonstrated that the IMSRG(2) ground-state en-
ergy is exact through third order in MBPT, while some
fourth-order and higher-order terms are missed. Specifi-
cally, all fourth-order diagrams with three-particle-three-hole

3Here we use the shorthand notation [a, b], for the c-body piece of
the commutator of an a-body operator with a b-body operator.
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FIG. 2. Hugenholtz skeleton diagrams indicating the fourth-
order quadruples which are undercounted in the IMSRG(2) (cf.
Fig. 5.5 of Ref. [34]).

intermediate states (triples) are missed, while a subset of dia-
grams with four-particle-four-hole intermediate states (asym-
metric quadruples, shown in Fig. 2) are undercounted by a
factor 1/2. Coupled cluster with singles and doubles (CCSD)
also misses the fourth-order triples but correctly includes the
quadruples [36].

Within the IMSRG, the energy diagrams in Fig. 2 are
obtained* from the commutator of the third order two-body
vertex '3 with the first-order generator n{!l. The missing half
of the quadruples diagrams are due to the contributions to I'**!
which involve an intermediate three-body operator. These are
proportional to [, [1, I'lsp]op, as indicated in Figs. 3(a) and
3(b), where n and I" are evaluated at s = 0. We refer to these
diagrams as “goose-tank” diagram because of their appear-
ance when rotated 90 degrees. We note that their importance
was also identified by Evangelista and collaborators in the
context of quantum chemistry [38—40].

The half of the asymmetric quadruples which are included
in the IMSRG(2) arise from contributions to I''* proportional
to [, [, T'livlop, involving an intermediate one-body oper-
ator, as indicated in Figs. 3(c) and 3(d). Evaluation of the
diagrams in Fig. 3 reveals that Fig. 3(c) is equal to Fig. 3(a),
while Fig. 3(d) is only approximately equal to Fig. 3(b)
Nevertheless, Figs. 3(d) and 3(b) give identical contributions
to the fourth-order energy when further contracted with the
generator 1 to yield a zero-body operator. The full fourth-
order quadruples can therefore be restored by modifying the
IMSRG(2) to the so-called IMSRG(2*) scheme. In the stan-
dard formulation, we modify the flow equation to be

ds V=

where x (s) is an auxiliary one-body operator which obeys the
flow equation

[n(s), H(s) + x (s)], s5)

d
23K = (minj + ;i) [0, Hav ;- (16)

In the Magnus formulation, the nested commutators used in
(8) are modified to

[Q’H](k+1) — {[ , [€2

@ (2.

H]™, k=0

HI® 4 x®], k>0, a7

“The commutator of the third-order generator with the first-order
vertex yields an identical expression [17,36].

(a) -- (b) W --
(c) - (d)

FIG. 3. (a), (b) Diagrammatic illustration of contributions to
[n, [n, H]3],, which we denote “goose-tank” diagrams. (c) Diagram
arising from [n, [, H];], which gives a contribution identical to
that of panel (a). (d) Diagram arising from [7, [n, H];], which is
approximately equal to panel (b). In these diagrams, vertices of H are
represented by circles, while vertices of 7 are represented by squares.

and the one-body operator x % is defined as

X = (unj + mi ) Q. Q. HIY, 1)]11" (18)
As noted in Sec. II B, the procedure is made more complicated
if we split the transformation into multiple steps, and so it is
best to use the hunter-gatherer scheme.

In effect, the IMSRG(2*) scheme approximates the goose-
tank diagram in Fig. 3(b) with a second copy of the diagram
in Fig. 3(d). This replacement is exact for the fourth-order
energy contribution, but only approximate for higher-order
terms. Explicitly, we have

jdi U cdanlabel
F(b)N—Znnbnnd Dyjarl cda -,
ijkl a c A A
abed cdab B abcl
(19)
@ Uijarlcaanl aver
, ikl A E Aglipheng —————,
J A
cdab ijdk

abc

where i, j are particle orbits and k, [ are holes. The dia-
gram in Fig. 3(d) comes with a minus sign in (16) due to
the commutator, so IMSRG(2*) approximately captures in
Fig. 3(b) assuming A;jgx & —Acqap, Which is true to the ex-
tent that all the two-particle-two-hole denominators Apypy
are equal. Because these goose-tank topologies are of pphh
form, they feedback into the generator » and have a nonlinear
effect beyond the fourth-order energy. As we see below, in
some difficult cases in which the IMSRG(2) flow diverges,
the IMSRG(2*) modification stabilizes the flow. As formu-
lated here, the IMSRG(2*) approximation is only relevant
for single-reference decoupling (or the core decoupling in a
valence-space calculation) and is not directly extendable to
the IMSRG(3). An alternative and more general strategy, in
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which the relevant double commutators are evaluated exactly
is presented in Ref. [41].

B. Perturbative triples

The remaining fourth-order energy diagrams, the triples,
are produced in the IMSRG by terms involving the three-body
generator [17,36]. After solving the flow equation (6) at the
IMSRG(2) level, the transformed Hamiltonian is

H=¢"He ® = Hivsrc) + W, (20)
where W is the induced three-body interaction. We can di-
rectly evaluate the contribution of this term to the ground-state
energy in second-order perturbation theory. However, it is
more convenient to use the Magnus formulation here, because
it makes generalizations beyond perturbative counting and
to the VS-IMSRG more straightforward. We use a power-
counting coefficient g which we take to one in the end, and
assign I' = O(g), fii = O(1), fixj = O(gz). Since W is in-
duced by the commutator of two two-body operators, it is
O(g*). We wish to suppress the off-diagonal part of W to
leading-order in g. This can be achieved by perform a second
unitary transformation on the Hamiltonian H = ¢%*He ™% with

Wod

= zjklmn

Qijkimn = = (21)
At]klmn

To simplify the discussion, we use a Mgller—Plesset partition-
ing so that the denominator is

fzz + fjj + fkk - fll fmm - f_;ma (22)

l]klmn

and we see that that Q is also O(gz). To see that this choice
suppresses W, we evaluate

Hy, + [, Al + 0(&%)

—W+|: } +0(g)
=W -W+0(), (23)

where we have denoted Hy, = f to suggest how the last line
in (23) is obtained using (22). The zero-body piece of the
transformed Hamiltonian is

Hoy, = Hop + [, Hloo + 32, [, f1lob + O(8)
= Hop, + [Q, Wl + 5[, (=W)]op + O(8)
= Hop + 512, Wlow + 0(2), (24)

that is, the leading correction to the energy is given by half
the value of the [3, 3]p commutator. Taking the explicit form
of the commutator and assuming a single-reference definition
of W°!, we have the perturbative correction to the energy [36]:

szjkabc Wahcijk

1
E Raitpiicnin g

AEp) =
(3')2 abci jk

(25)
ijkabc

There are several possible ways to approximate W and A [36]
which only involve a single N7 commutator evaluation,® and
which differ in the content beyond fourth order. A strictly
fourth-order correction would be W = [1(0), ['(0)]3p, with A
taken from H(0). In the Magnus formulation, we can just
as easily take the full Q(oco) obtained from the IMSRG(2)
or IMSRG(2*) solution. In fact, we can also include higher
nested commutators by using an intermediate

W= ki[sz HI® = [, Hlx, (26)
with
(k)
Z k+1)' Q,H|P. (27)

=0

In this paper we take the definition (26) and Mgller-Plesset en-
ergy denominators obtained from the one-body part of H (c0).
We indicate this approximation IMSRG(2*) [3].

In the valence-space formulation, the connection to per-
turbation theory is formally less straightforward, but (24)
remains valid. We can still use (25) to approximately
capture the leading effects of the induced three-body inter-
action. This effectively performs second-order perturbation
theory on the (ensemble) reference state. A more for-
mally correct choice would be to use the off-diagonal
induced three-body interaction which connects valence con-
figurations to nonvalence configurations, namely, W
{Woppeees Wopgeevs Wopgevy> Wopgvvy}> Where ¢, v, q indicate core,
valence, and excluded orbits, respectively, and p € {q, v}.
The part of H acting purely in the valence space, includ-
ing the induced 3N interaction, should then be included in
the valence space diagonalization (possibly perturbatively).
The restriction of external lines to valence orbits would keep
the calculation tractable. This direction will be left for a future
study.

C. Truncation to N7 scaling terms

Alternatively, we may assume that not all topologies con-
tributing to the full IMSRG(3) commutator expression are
equally important. A pragmatic way to approximate the full
expression is to retain only those terms which scale as N’
or better. Explicitly, this amounts to neglecting the following
topologies shown in Fig. 1: [3,3],, [3, 2]3, and [3, 3]s. In
this approximation, errors made in the zero-body piece of
H (s) will be at least fifth order in the potential, errors to the
one-body and two-body parts will be at least fourth order, and
the error in the three-body part will be at least third order. This
truncation scheme was previously explored in Refs. [37,42],
and we refer to it as IMSRG(3N7). In principle we can also
consider terms scaling as N® or better, but in practice we find
these extra terms are not worth the substantial computational
effort required for direct evaluation.

*More precisely, this is N7N,', which is better than the worst IM-
SRG(2) commutators.
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IV. BENCHMARKING

Before considering a more realistic case, we explore ex-
actly solvable simplified models which separately probe the
short-range and long-range correlations present in a nucleus.

A. Two fermions with a contact interaction

The simplest nontrivial many-body system consists of
two particles. As discussed in Sec. IIC, IMSRG(2) and
even IMSRG(3) are not exact for this system, because four-
quasiparticle excitations are possible. Therefore, we can gain
some insight by considering a toy problem of two neutrons
in a harmonic trap with a contact interaction. We work in a
basis spanned by three major harmonic-oscillator shells (i.e.,
0s, Op, 1s0d). The Hamiltonian is

1
H = Z e,»aja,' + 1 Z Vijkgaja}alak, (28)
i ijkl

where the single-particle energy is €; = 2n; + £ (we mea-
sure energy in terms of the oscillator energy 7Zw) and the
potential is

V(#) 5(#). (29)

_ &

- (27_[ )3/2
The relative coordinate 7 is expressed in units of the oscillator
length b = /h/mw. With this definition, g < O corresponds
to an attractive interaction, and the normalization is chosen so
that (0sOs|V |0sOs) = g.

While we must retain induced three-body (and four-body)
terms in H to obtain the exact result, there are no three-particle
or three-hole configurations possible for an A =2 system.
Only matrix elements involving pph and hhp configurations
need to be considered. Three-body terms in the generator,
which are of the form npppnhn, Will not contribute. Conse-
quently, the perturbative triples discussed in Sec. III B give no
contribution to the energy, and the IMSRG(2*) approximation
is exact through g* in perturbation theory.

Figure 4 displays the ground-state energy as a function of g,
computed at various levels of approximation. We include per-
turbation theory to second and third order, labeled MBPT(2)
and MBPT(3), respectively, as well as MBPT(3) plus particle-
particle and hole-hole ladders resummed to all orders. We
also include IMSRG(2), IMSRG(2*), IMSRG(3N7), and the
full IMSRG(3). In the top panel of Fig. 4, we observe that
for large positive coupling g, perturbation theory breaks down
completely and resummed ladders do not fix the problem. For
attractive couplings, the relevant physics is captured by the
ladder approximation. In contrast, the IMSRG(2) is accurate
for repulsive couplings, but diverges for sufficiently attractive
coupling. All approximations beyond IMSRG(2) are suffi-
ciently accurate that they cannot be distinguished in the top
panel. In the bottom panel of Fig. 4, we show the error relative
to the exact solution, zoomed in to visualize the difference
between the IMSRG approximations. It appears that there is
little further improvement in going from IMSRG(2¥) to full
IMSRG(3).

For g < —1.4, the IMSRG(2) flow diverges, while the
flow converges to the fixed point for the IMSRG(2*) and

e
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FIG. 4. Correlation energy of two identical fermions in a
harmonic trap with a contact interaction, obtained in various approx-
imation schemes as a function of the coupling strength g. The lower
panel shows the error in the energy as a percent of the correlation
energy.

other approximations of IMSRG(3), as illustrated in Fig. 5.
Figure 5(b), shows the flow of the off-diagonal part of the two-
body vertex I'popn. With the IMSRG(2) approximation, the
off-diagonal pieces are not suppressed, meaning %|I‘pphh| >
0. This can be traced back to the contribution illustrated in
Fig. 6 in which the two-body vertex in the particle-particle
channel I'ppypy contracts with the generator nypyn, to give a
contribution to %Fpphh. The contact interaction is approx-
imately separable, i.e., ["jpcq ~ gFupFeq for some one-body
matrix F. This leads to a coherent effect

d
a(ngpF hh) ~ — Z(gF opFpp )(&Fpp Fin)
P

~ (gFppFin)(—) Y (Fyy)’.  (30)

Py

For g < 0 the contribution to %Fpphh has the same sign as
[pphn (s), driving an exponential enhancement.

In contrast, the diagrams in Fig. 3 give a contribution with
the opposite sign of I'ypun, leading to suppression. This can be
seen by considering the expression for the intermediate xyy, as
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FIG. 5. Flow of (a) zero-body term E; and (b) off-diagonal part
of the two-body vertex I'pun, for the two-fermion problem with g =
—2, computed with the IMSRG(2) and IMSRG(2*) approximations.

defined in (16). For the White generator this becomes
Xhh = Z(nhhp’p’ Cypnh — Thnp'p Mprphn)
P/
-2 |Fp’p’hh|2
p,

) (€29
Ap’p’hh

which is manifestly negative. Contracting xuwn With 7ppnn
then yields a contribution pphh ~ —T'pphn, leading  to
suppression.

This illustrates how, in addition to restoring the fourth-
order quadruples contribution to the ground-state energy,
the IMSRG(2*) approximation—and the more expensive
IMSRG(3N7) and IMSRG(3)—stabilizes the IMSRG flow in
the nonperturbative regime. For this toy problem, this consti-
tutes the main effect of IMSRG(3).

To illustrate the impact of the perturbative triples correc-
tion, we repeat the calculation with eight particles in the trap.
The error as a function of the coupling g is shown in Fig. 7.
The behavior is qualitatively similar to the two-particle case,
with the exception that the perturbative triples now have an
effect. For repulsive g > 0, the perturbative triples correction

hy P, Py h hy P, P, h
d _
4 = —\h-4/ +...

FIG. 6. Diagram illustrating the commutator term [7, Ipyyp]
which contributes to the increasing magnitude of the off-diagonal
two-body vertex I'ppyp.

4
ds

T
MBPT2 I
MBPT3 \ |
pp/hh ladders \ L
IMSRG(2) ‘\ : : /
IMSRG(2*) .
IMSRG(2#)[3] \
IMSRG(3N7) \
IMSRG(3) i/

S RNREE

Error / Ecorr (%)

—1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00

FIG. 7. Error as a function of coupling constant g for eight iden-
tical fermions in a harmonic trap.

is substantial and accounts for nearly all of the difference be-
tween IMSRG(2*) and IMSRG(3N7). On the other hand, for
g < 0, IMSRG(2*) overbinds relative to IMSRG(3N7); it is
clear that the perturbative triples correction, which necessarily
lowers the energy, cannot correct for this difference.

B. Lipkin-Meshkov-Glick model

Another toy problem which can illuminate many-body ap-
proximation schemes is the Lipkin-Meshkov-Glick (LGM)
model [43]. The model consists of N particles distributed
across two N-fold degenerate levels separated by energy e.
The Hamiltonian is

1 1 N
H = 56 Zoaggapa + EV Zagaap,aap/_aap_g, (32)
po pp'o

where o € {—1, 1} labels the lower and upper levels, and p, p’
run from 1 to N, labeling the different degenerate states within
a level.

This model can be solved analytically with a quasispin
formulation, introducing the operators

1 )
Ki=Y a, am. K= 3 Y odl,ap.  (33)
p po

which obey the usual angular momentum commutation rules
(see Appendix C). In terms of the quasispin operators, the
Hamiltonian (32) can be expressed as

H =K, + 3V(KZ + K?). 34

H commutes with the operator K> = KZ2 + %(K+K_ +
K_K), which has eigenvalues k(k + 1), with k < N/2. In the
thermodynamic (N — oo) limit, the LGM model exhibits a
phase transition from an ungapped ferromagnetic phase for
NV /e < 1 to a gapped unmagnetized phase for NV/e > 1.
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We focus here on the specific case N = 8, which has the
analytical solution® for the ground-state energy [43]

E AN V\?2 V\*
———J1o+118( =) +6,/1—2(=) +225(=) .
€ € € €

(35)

The LGM model has been solved in coupled cluster the-
ory, where it has an analytical result in the doubles (CCD)
approximation [44] (see also Ref. [45]). The CCD correlation
energy is

Econ NN —1 V2
__NVEDE G 66
€ 200 €2

where @ = N2 — 7N + 9. We can see that, for N > 6, ¢ > 0
and the energy becomes complex for sufficiently large val-
ues of V/e. For the specific case N = 8 which we consider
here, CCD fails for NV/e > /64/17 ~ 1.94. For comparison
with the IMSRG(2) we also consider an approximation of
CCD in which we omit the intermediate three-body operator
arising in the CCD decoupling condition [38]. We obtain the
same expression for the correlation energy with the modifi-
cation @ — & = N> — 5N + 7. Note that because this model
exhibits an “excitation-parity” symmetry, single and triple ex-
citations have no effect, so that CCD is equivalent to CCSDT.

Moving on to the IMSRG solution, we note that the LGM
model has been frequently studied within flow equation ap-
proach [32,46-50], notably by Pirner and Friman [46], who
used the quasispin operators (without normal ordering) to for-
mulate the flow equation. They found it necessary to include
an induced three-body term, but even then obtained results
which were less accurate than second-order perturbation the-
ory. More recently, the flow equation approach was applied
to obtain 1/N corrections to the thermodynamic limit [50].
Here we are interested in finite system, and in understanding
the impact of truncations in the particle-rank of the flowing
operators. Making an approximation equivalent to IMSRG(2)
requires the use of normal-ordered operators. Commutators of
normal-ordered strings of quasispin operators are presented
in Appendix C. While we may construct the IMSRG flow
equations in terms of the normal-ordered quasispin operators,
integrating these equations must still be done numerically.
However, in the Magnus formulation, we may directly solve
for the Magnus operator at the fixed point, obtaining (see

Appendix E)
Vv
tanh (,/4Q3,@) = va—, (37)
€

and an energy which is identical to the CCD energy with @ —
@. Clearly the IMSRG(2) will fail if /&@V/e > 1.

We now turn to the effects of IMSRG(3). Due to the
excitation-parity symmetry of the LGM model, the three-body
pieces of n and @ vanish. Consequently, the perturbative
triples correction described in Sec. III B has no effect. The

There appears to be a typographical error in the solution presented
in Ref. [43].

- LGM model
— ~ \/g/ N = 8
RN
\(‘»@
—4.5 \@\‘*o
IMSRG(2)
=CCD’
\
—5.0 S
N\
>, N
2 IMSRG(2*)
2 551 =ccb
i
_60 4
symmetric broken
~6.5 - phase phase
-7.0 T T T T r r
0.0 0.5 1.0 1.5 2.0 2.5 3.0

NV/e

FIG. 8. Energy for the N = 8 LGM model with various approxi-
mate methods. See text for details.

only way in which induced three-body operators can affect
the ground-state energy is by modifying the flow for V(s)
which then subsequently gets contracted with 2 to generate
a contribution to the zero-body term.

The factor of @ arises because the double commutator
[K2, [K_%, K2 = :i:855Kj2[ in the NO2B approximation. If we
also include in our set of flowing operators a term propor-
tional to the three-body operator {K; K K_}, we capture the
goose-tank diagrams of Fig. 3, and the double-commutator is
modified so that & — «, exactly reproducing the CCD energy.
In the IMSRG(2*) approximation, we modify the double com-
mutator by adding the commutator [€2, x] with the auxiliary
operator x, which also has the effect of replacing & — «,
without the need to explicitly construct a three-body operator.

There are two additional Hermitian three-body operators
consistent with the symmetries of the problem: {K;} and
({KZK.} + {K.K?}). Including these spoils the simple struc-
ture obtained in the IMSRG(2) approximation, so an analytic
solution is less straightforward. However, it is easy to in-
clude them numerically. We do this using our implementation
in terms of fermionic operators, although we would obtain
identical results in the quasispin basis. The results are shown
in Fig. 8.

As mentioned above, the IMSRG(2*) energy is identical
to the CCD energy, while IMSRG(2) is identical to CCD
with the intermediate three-body operator removed, indicated
CCD' in Fig. 8. IMSRG(3N7) does better than both of these,
and IMSRG(3) gives a significant further improvement. As
mentioned above, due to the excitation-parity symmetry of
the problem, there is no improvement from CCSD to CCSDT.
Even in the IMSRG(3) approximation the generator n and the
Magnus operator €2 are purely two-body, which means that, as
in CCD, both the IMSRG(2) and IMSRG(3) transformations
are specified by a single parameter, $2;,. All the improvement
from IMSRG(2) to IMSRG(3) comes from more accurately
evaluating the transformation (8) by including intermediate
three-body operators which subsequently get contracted back
down to lower-body operators. In the specific case in which
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Eo(s) 4 Enr o

—— IMSRG(2)
---- IMSRG(2")
— Exact

FIG. 9. IMSRG flow in the LGM model, for the IMSRG(2)
and IMSRG(2*) approximations for several values of V(0). Arrows
indicate the direction of the flow. The red lines indicate the exact
solutions from (35) (cf. Ref. [49]).

the three-body operator is immediately contracted back down,
e.g., [, [, H]splp, it is possible to factorize the expression
for the double-nested commutator so that it scales as N°
[7,36,51]. For the LGM model, including this factorizable cor-
rection for all nested commutators in (8) exactly reproduces
the IMSRG(3N7) results. An application to the more realistic
case will be presented in a separate work [41].

Thanks to the simplicity of the LGM model, we may also
evaluate the transformation (8) directly in the A-body space
using the quasispin basis. For N = 8§ this involves the manip-
ulation of 5 x 5 matrices. Taking the ansatz Q2 = %92;,(1(_% -
K?), we solve the flow equations numerically without trun-
cating any intermediate operators. The result is labeled “S2y,
Exact” in Fig. 8. It lies above the full exact result, as it satisfies
the variational principle.

Finally, because the flowing Hamiltonian has essentially
two parameters in the IMSRG(2) and IMSRG(2*) approxi-
mations, we can visualize the SRG trajectory, as shown in
Fig. 9. (The symmetry about the x axis reflects the sym-
metry of the LGM model under V. — —V.) Well below the
critical coupling strength +/@V/e = 1, the IMSRG(2) and
IMSRG(2*) are both accurate and follow essentially the same
trajectory. Near the critical coupling, the IMSRG(2) diverges
significantly from the IMSRG(2*) trajectory, and beyond the
critical coupling the fixed point at V = 0 disappears, so the
flow continues to the fixed point at infinity.

To be clear, the observations of this section do not mean
that the three-body part of the Magnus operator is unimportant
in realistic applications; it is identically zero here because of a
symmetry of the LGM model which is not present in general.”
However, it does demonstrate the significant improvements

7 Although, for closed harmonic-oscillator shells, the usual parity
symmetry does impart an approximate excitation-parity symmetry to
low-lying states.

-10
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A

FIG. 10. Ground-state energy and excitation energy of the first
2% state in carbon isotopes, computed in an oscillator space with
emax = 3, how = 16 MeV.

that can be obtained in the IMSRG by restoring many-body
terms inside nested commutators.

C. Realistic nuclear interaction with the valence-space IMSRG

We next turn to a more realistic nuclear structure calcula-
tion, in which we consider the even-A carbon isotopes with
A = 8-16 computed with a pure two-body interaction derived
from chiral EFT with a cutoff A = 500 MeV [52] and no free-
space SRG softening. We use this relatively hard interaction
to emphasize nonperturbative effects. Our current implemen-
tation of the IMSRG(3) limits us to em,x < 4, so we cannot
perform fully converged calculations to compare with experi-
ment. (In any case, comparing with experiment would conflate
many-body errors with errors due to the input nuclear force.)
Instead, we compare with truncated configuration interaction
(CD in a given ey, space. This introduces a contamination
due to spurious excitations of the center of mass [28,53], but
we find that for this specific system the contamination is neg-
ligible by em,x = 3. The VS-IMSRG calculations use a 0hiw
valence space, defined by a single major harmonic-oscillator
shell for protons and neutrons. For example, for '°C we use
the p shell for protons and the sd shell for neutrons. For
the neutron closed shells 8C and '*C, we do not decouple
a neutron valence space. We do not include the residual 3N
interaction in the valence space diagonalization. Instead, at the
end of the decoupling, we discard the 3N interaction before
renormal ordering with respect to the core.

Ground-state energies and 2] excitation energies of some
even-A carbon isotopes are shown in Fig. 10 for ey, = 3.
To focus on the effect of the IMSRG evolution, for the
ground-state energies we subtract off the energy obtained
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by diagonalizing in the valence space with the unevolved
s = 0 Hamiltonian. Various levels of approximation, from
no IMSRG evolution (labeled “VS-HF” since we use a
Hartree-Fock basis), to full IMSRG(3), are compared with
the truncated configuration-interaction (CI) calculations ex-
trapolated to the full CI (FCI) result. We truncate on Ny,
i.e., the maximum number of harmonic-oscillator quanta
of excitation. We go up to Npnx = {10, 8,6,6,4} for A =
{8, 10, 12, 14, 16}, respectively, and extrapolate to Np,x = 00
with a simple exponential. The gray error bands in Fig. 10
indicate the difference from the largest Np,x calculation
performed to the Np.x — 0o extrapolated value. The first
observation is that going from IMSRG(2) to IMSRG(3) gen-
erally improves agreement with FCI for both the ground-state
energy and the excitation energy. We also notice that the
IMSRG(3N7) approximation accurately reproduces the full
IMSRG(3) result. The IMSRG(2*) approximation overbinds
in the valence space formulation and slightly underbinds in the
single-reference formulation. Nevertheless, it is notable that
the SR-IMSRG(2*) flow converges for >C, while it diverges
for SR-IMSRG(2).

The IMSRG(2) approximation consistently yields excita-
tion energies that are too high, while this is corrected by going
to IMSRG(3N7). It appears that the most important modifica-
tion to the effective valence space interaction in going from
IMSRG(2) to IMSRG(3N7) is that the off-diagonal matrix
element (p3,2p3/2|V|P1/2P1/2)7=0 18 Teduced in magnitude by
~0.5 MeV. This term, which is too large in the IMSRG(2)
approximation, drives 2p-2h correlations which provide too
much correlation energy for the ground state. These correla-
tions are less active in the 2T excited state, and so the net result
is an over-predicted excitation energy. It is also interesting
to note that the IMSRG(2*) approximation has essentially no
impact on these off-diagonal valence space matrix elements,
and thus gives no improvement for the 2% excitation energy.
This can be understood because the IMSRG(2*) approxima-
tion essentially generates the goose-tank diagrams of Fig. 3
via a contraction of a one-body operator x with the two-body
part of the generator, so that the main effect is to modify the
off-diagonal part of H. Valence-to-valence matrix elements
are not included in the definition of off-diagonal and so this
term receives relatively little modification.

V. COMPUTATIONAL COST

Finally, we briefly discuss the computational cost of
our current implementation of the IMSRG(3), and approx-
imations. While this is to some extent specific to this
implementation, other implementations will share the general
features, and this also helps to illuminate where future im-
provements should be focused. All commutator expressions
involving a three-body operator have been recast as matrix
matrix multiplications, leading to significant speedup with
the exception of the [2, 2] — 3 expression. In this case, we
decided that the modest speedup was not worth the consid-
erable complication in the code. Multithreaded parallelism
via OpenMP is utilized throughout these routines. The time
for each expression is shown in Fig. 11. Which commuta-
tor expression is the most expensive depends on the model

x107* IMSRG(2)
4 €max =3
34
24
1_
83 IMSRG(3N7)
2 emax=3
5 41
IS
3 3
1S
IS
S 21
£ 11
0 I N
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0.3 1
0.2 1
0.1 A
0.0 T T T T T T
O -HdNOCHNHOMMANHCCC QQQadc
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A A AN I NHNMANNM [ 1oc cc
o~ | m Q o c [N
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o~ N M m
N m
o~ m

FIG. 11. Compute time per commutator on a single node with
64 threads, for three levels of approximation. The labels indicate the
particle rank of the two operators entering the expression and the
resulting operator. The following strings of p and h indicate whether
the contracted indices are particle or hole, for cases where the routine
was split up according to this feature.

space and system studied, but beyond the smallest spaces
the [2,2] — 3 and [2, 3] — 2 expressions are the main bot-
tleneck of IMSRG(3N7) calculations. For full IMSRG(3),
terms with intermediate pph lines dominate, due to the
angular-momentum recoupling required to cast them as matrix
multiplications. We observe that the naive scaling estimate is
indeed naive; the [3, 3] — 3 commutator with ppp or hhh in-
termediate states scales as N°, but it takes a negligible amount
of time because it is highly amenable to matrix multiplication
without any required recouplings or antisymmetrizations.

VI. CONCLUSION

We have performed a detailed exploration of the impact
of retaining three-body operators within the IMSRG, building
on previous work [37]. While a full inclusion of three-body
operators remains too expensive for practical calculations, we
find that more manageable approximations capture the most
important corrections. We explored two toy models, selected
to emphasize short-range and long-range correlations. We find
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that in the case of a short-range interaction, the main error
made in the IMSRG(2) is corrected by including the effects of
the goose-tank diagrams in Fig. 3, which can be done without
changing the computational scaling. We also investigated the
origin of the diverging IMSRG flow for sufficiently large
coupling constant g and related it to coherent effects due to
the approximately separable nature of the interaction; these
coherent effects were offset by including the missing goose-
tank diagrams, stabilizing the flow.

In the case of long-range correlations, as captured by
the LGM model, we presented an analytic solution for the
IMSRG(2) approximation, and showed that including inter-
mediate three-body can lead to a significant improvement in
accuracy over coupled cluster. Finally, we have explored the
impact of three-body operators in the valence-space IMSRG
with a realistic interaction. We found that the systematic
over-prediction of 21 excitation energies in the IMSRG(2)
approximation is essentially corrected by including three-
body operators during the IMSRG evolution, and that this
improvement is achieved already at the IMSRG(3N7) level
of approximation. Finally, we have presented arguments, sup-
ported by our calculations, that the most important effect of
three-body operators arises as intermediate terms in nested
commutators. The leading corrections of this type can be fac-
torized to scale as N°, and so may be employed in large-scale
calculations. This is presented in a separate paper [41].
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APPENDIX A: UNCOUPLED COMMUTATOR
EXPRESSIONS

We need the expression for the commutator C = [A, B]
where A, B, and C are all Fock-space operators including up
to three-body operators, e.g.,

4 1 P
C=C+ ZC,-j{a} aj} + Z ZC,»jkl{a;a}a,ak}
ij ijki
! 1ot t
* 36 > Cijumialdlajayanar}, (AL)
ijklmn
and likewise for A and B. In the following, the permutation
operator P;; exchanges the indices i and j of the expres-
sion to its right, with no implicit minus sign. For example
P;jApjaiBaivk = ApiaiBajpi. We also use the operator

Pijjx =1 — Py — Pjy. (A2)

1
G = Z(”a ~ 1p)AawBra + 4 Z Naltpiiciiq(Aaped Bedab — BaveaAcdab)

ab abcd

1
+ % Z nanbncﬁdﬁeﬁf(Aabcdedeefabc - BabcdefAdefabc)a

abcdef

(A3)

1
Cij = Z(AiaBaj - BiaAuj) + Z(na - nb)(AabBbiaj - BabAbiaj) + E Z(nunbﬁc + ﬁaﬁbnc)(AciabBabcj - BciabAabcj)

a ab

abc

1
+ Z E nanbncnd(Aabchcdiabj + Aubicijcdab - Babchcdiabj - Babicdecdub)

abed

+ E E (nanbﬁcﬁdﬁe + ﬁaﬁbncndne)(AabicdeBcdeabj - BabicdeAcdeabj)v

abcde

(A4)

Ciju = Z(AiaBa ikl +AjaBiakt — BijaAak — BijkaAar) — Z(BiaAa ikl + BjaAjakt — AijaBak — AijkaBal)
a

a

+ ! Z(flaﬁh — nahp)(AijapBavki — BijapAavk1) — Z(na —np)(1 = Pj)(1 — Pu)ApjaBaivk
2

ab

ab
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1
+ D0 = m)AwBijita = BarAipiaa) + 5 Y (tamiic + faiyne) (| = Pij)(AicarBajpite = Bicarapsire)

ab abc

1
- 5 Z(nanhﬁc + ﬁaﬁbnc)(l - Pkl)(BijcablAabkc - AijcablBabkc)

abc

1 o
+ 3 Z(na”b”cnd — Raitpiicng )(AjjdabeBabekia — BijaabcAabekia)

abced

1
+ 7 Z(ﬁaﬁbncnd — naMpiiciig )(1 — Pij)(1 — Py)AaicarBedjabl

abcd

(A5)

Cijklmn = ZP[/jk(AiaBajklmn - BiaAajklmn) - Pl/mn(BijkamnAal - AijkamnBal) - ZPij/kle/n(AijnaBkalm - BijnaAka/m)

a

a

1 o 1 o
+ 3 Z(”anb — anp)Prj ik (AijabBavkimn — BijabAabkimn) — 3 Z(nanb — 1) Pinjn(BijkabnAabim — AijkabnBabim)

ab

ab

1
- Z(”aﬁb - ﬁanb)Pij/kle/n (AbkanBijalmb - BbkanAijalmb) + 6 Z(nanan + ﬁaﬁbﬁc)(Aijkachabclmn - BijkabcAabclmn)

ab

1 L
- z Z(”anbnc + nanhnc)Pij/kP[m/n(Aijcaanabklmc - BijcahnAabklmc)~

abc

APPENDIX B: COMMUTATOR EXPRESSIONS
IN J-COUPLED FORM

To take advantage of rotational symmetry, we work with
J-coupled matrix elements. To do this, we switch our notation
so that we now explicitly indicate the projection quantum
number m in the uncoupled basis. One body terms are
written as

Cimijmj = Cijam,-m,vv (Bl

while the two and three-body terms are written in terms of
unnormalized J-coupled matrix elements,

_ IM JM J
Cimijmjkmklml - Cjimij,»m,»cjkmkjlmlcijkl’ (B2)
M
o — E JiM, IM
Clm[jm/kmklm,mmmnm,, = Cj;m;j/m/CJlMljkmk
hhLT
M[M[M
% C{zMz CJM Cflfzj (B3)

Jimy " JoMa jumy, i jklmn

The C in (B2) and (B3) are Clebsch-Gordan coefficients. By
inserting (B1), (B2), and (B3) into (A3), (A4), (A5), and (A6),
we obtain the J-coupled commutator expressions.

To make the expressions somewhat more compact, in the
following we use orbit labels to indicate the associated angular
momentum, e.g., in 6, 9j symbols and phase factors so that
(—1)"*7=7 is shorthand for (—1)7*/i~/. We also introduce the
coupled permutation operators

E‘i = (_I)H_j_‘][)ij» (B4)
7 = 1= Sk T ki TP
i
= kI TlikjI TP (BS)
i

abc

(A6)

[

The brackets in (BS) are recoupling coefficients which may be

expressed in terms of 6 symbols

(kI TWkjil Ty = W (=) 24 gk J T,
(B6)

and

ik T ik jJ| Ty = B J (=1 gk g g
(B7)

The notation J; — J| in the superscript in (BS) indicates that
every instance of J; to the right of the permutation operator
should be replaced with J;. We use the usual notation J=
+/2J + 1. With this notation, we have for our antisymmetrized
matrix elements

PiJjCiijl = _C;ijzs (B8)
and
1T i T Jh T
Pk Ciiitmn = 3Cijitmn- (B9)
As in previous presentations, we employ Pandya-
transformed operators, denoted with an overbar
= s2 ., 4
Cly=— Z]’ i j Jk 1 J)C, (B10)
j/

We also define a transformed three-body operator as

~J' - _ 220 1\i+JT i l Y
Cledta @bi) = ;j( D { T oy j}Cabicdl'

(B11)
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With these definitions, the J-coupled commutator expressions become

2 1 7 = =
G = Z Ja(ng = np)AapBpa + 1 Z Z ranpiiciia (Al peaBliay = BipeaAtaan)
ab abed J

1 = = = 520 T phhJ JIL T At T
+ % Z Z nanbncndnenfj (Aalbczde‘dezeflabc - BalbczdefAdze}abc)’ (B12)
abcdef J1L, T

72
Cj =Y (AwBaj — BiaAaj) + Y _ D (na — nb)j.—2 (AwwByiqj — BavAlya;)
a ab J i

1 I £
+ 5 E E (nanpiic + nanbnc)f—z (AziabBébc i BiiabAébC j)
abc J i

1 I L T pl 7 add JIT Al
+ 1 Z Z NaNpNcNd ]A_z (A%peaB g+ Aabgijcdab — BlypeaAllin; — B, A gap)
i

cdiabj cdiabj abicdj
abed J T
4L > > (nampiciafie + Aafipnenan )—‘7 (ALLT ghh T g d f 5l 7 ) (B13)
12 a'bcltd e a’tbltcltd e ) =y abicde™ cdeabj abicde’ “cdeabj)’
abede Jy, T i
J nJ Tl pl ol _ aJ Al ad _AJ
Cijkl = 2 :(AluBajkl +AjaBiakl BijalAak BijkaAal) § :(BlaAajkl +B./aAia1<1 AijalBak AijkaBal)
a a

1 o
+3 YD Gafty — nam) (AL Bt = BliaAlbia)
ab J

N N AV o 72
+ Z Z (}’la - nh)‘] 2(1 - Pl‘;) {]l( 5 J’ }( t{l_al;Bal;k]_' - B;'IZ_aEAaEkJT) + Z Z (n” - nb)j_z (A“bB‘in“lijc]la - BabA{/b‘IZla)

ab J ab T
1 7’ INEE A YT o
o T J LT
- 5 Z Z (nanpiic + Agiipn,) f (1 - Pz/) c J J (chabBabiklc - Bcja abiklc)
abc J' T
Nk L I g 4 T pl
- (1 Y kl) { c J J’} (Bi jcahkAahcl - Ai jcakaahcl)
1 T g oy o
_ o T pldT JI'T AJIT
+ I3 Z Z (nanpneita — Raftpiicna )ﬁ (Ai idabcBabekia — Bi jdahcAahckld)
abed J' T
1 o o ~2
+ Z Z Z (giipncng — nanbncnd)(l - szj)(l - PkJI)JPh
abed  Jpn
JavJed
i j J =T
X {k ! J,,;,} il_;(ch“/)(abJab)B (cdJea)(@bTu, )ik’ (B14)
hWhT _ LT I T WhT LT (phhT WhT
Ci,/'lkl2nm - {Pijl/k (Ak"Bi]]‘a?mn - BkaAij]‘a?mn) - Plnzl/n (Bi]]‘kﬁmaAa” - Ai}k?maBa")}

a
LT phT 75 0 a i J J J J 1 = = ST (ad J1h T J hhT
+ Z Pijl/k Plrfl/n‘ll‘l2 {k J _]2 } (Aijl'nakazlm - Bi}naAkZalm) + E Z(n“nb - nanb)Pij]/k (Aijl'abBalbklmn - Bij]'abAalb/?lmn)
a ab

1 _ 2 _ _ 0 5
— 5 Z(”anb _ nunb)PIJ;lszl(BglgglAi})lm _ A{lfzJsz ) _ Z Z(nanb — figny)J ZJ/ZP.JIJPJZJ(—1)k+n+ll+h+‘7
ab

ijkabn™ ablm ij/k ~ Im/n
ab J'TJ'
b J ] 1
J J1 LT J' JhT' = = = W'T pl'hT J1J' T A T
X k/ Jl “7 (AbkanBijulmb - Bbk(mAijalmb) + g Z Z(I’lal’lbi’lc + n“nbn")(Aijkachabclmn - BijkabcAubclmn)
J a n abc T’
1 k J/ j/
— - 512 52 ph T phJ 1 JRT phlJ" J DT AN T"
+ E Z Z (n“nbnc + nanan)J ‘7 Pij/k le/n Jl "7 ¢ (Aabklchijcabn - Babklchijcabn ) (Bls)
abe 1T T" J n b
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APPENDIX C: NORMAL-ORDERED COMMUTATOR
FOR THE LGM MODEL

Operators built from the usual quasispin operators K, K,
can be reexpressed in terms of operators normal-ordered with
respect to the mean-field ground state in the unbroken phase
(we indicate the normal-ordered operators with braces {}) :

K. = {K.} — N, (C1)

K2 ={K} + (5 - N){K} + %Nz, (C2)
K =K} + 201 - N{K?}

+ 11 = 3N +3N*){K.} — IN°, (C3)

K ={K}}, (C4)

KIK. = {K;K.} — IN{K3}}, (C5)

K.K? = {K.K*} — IN{K?}, (C6)

K K_={K.K_}, (C7)

K K, = {K,K_} —2{K.} +N, (C8)

K KK_ = {K KK} — IN{K,K_}. (C9)

Relevant commutator expression in terms of the vacuum nor-
mal ordered operators are

(K., K+] = £K4, (C10)
Ky, K_]=2K., (C11)

K2, K] = 8K, K.K_ + 8K, K_
— 8K? — 4K, (C12)
[K,, K3] = +2K2, (C13)
(K2, K2] = 4K2K, + 4K2, (C14)
(K2, K2] = —4K,K*> — 4K2, (C15)
[KiK_, K] = —4K>K, — 2K, (C16)
[K.K_,K*] = 4K.K* + 2K". (C17)

In terms of the operators normal ordered with respect to the
mean-field ground state, the commutator expressions are

(K.}, (K2)] = £ 2{K2), (C18)
[{K2}, 1K2)] = + 4{K2K.) + 3{K2), (C19)
HK K-}, (K2 = F4KIK) £ 2(N — D{KZ),  (C20)

[(K?), {K?}] = 8{K, K.K_} + (8 — 4N){K, K_} — 8{K?)
+8(N — D{K,} —2N(N — 1), (C21)
K KK} (Ki1 = 2(K;K_} — 4{K; K}

+2(N — H{KIK} +2(N — DK}
(C22)

APPENDIX D: CCD SOLUTION TO THE LGM MODEL

The coupled cluster doubles solution of the LGM model is
obtained from the decoupling equation

(pl{K2)e "He'|$) = 0. (D1)
where the CCD excitation operator is T = tz{Ki}. To solve
this, we need the coefficient of {K?} in H, [H,T], and
[[H, T], T]. Using the expressions in (C10), we obtain

1V +2et, +2V(N* — TN + 9)t5 =0, (D2)
defining « = N? — 7N + 9, we obtain the solution
—€ V2
th=—|1—,/1— — D3
> Wa a( € ) (D3)

We are interested in the region where NV/e ~ 1, so t, ~
N/a — 1/N as N — oo. The CCD correlation energy is

(9IlH, T]l9)

Wn(gllK?) (K2 11g)
=VHN(N — 1),

Eccp

(D4)

which goes like N as N — oo.

APPENDIX E: MAGNUS(2) SOLUTION
TO THE LGM MODEL

In the Magnus formulation of the IMSRG, the transformed
Hamiltonian is given by (8). At the NO2B level, the only
off-diagonal operators that respect the symmetries of the prob-
lem are Ki. The requirement of antihermiticity means 7n(s) o
(K2 — K2) for all 5, and so all the commutators in (6) vanish.
Consequently, €2 is also proportional to this operator, and the
transformation is specified by a single real number:

Q = 1Qu (K7 — K2). (E1)

Next we consider the behavior of nested commutators of
with H. [, H] yields one term proportional to K7 + K?, and
a second term proportional to

(K> — K2, K2 + K] = 2[K?, K], (E2)
so that
[, H] = a[K2, K21 + by (K2 + K2). (E3)

By applying the commutator expressions in (C10) we find in
the NO2B approximation the double commutator

[KZ.[K;. K2]] = 8&K?, (E4)

with @ = N> — 5N + 7. From (E3), (E2), and (E4), we see
that arbitrary nested commutators [€2,...[2, H]...]] will
have the same structure as (E3), so we may write for the k-fold
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nested commutator
[Q, H1? = ax[K2, K21 + bi(K2 +K?).  (ES)
We have a recurrence relation for a; and by,
ay = 0%a_2, by =67, (E6)
with 6 = (49%,)65)1/ 2 and initial values

a; =1V, a=—-Qe, (E7)

by =1V, by =—Qpe. (E8)

Writing the off-diagonal piece of the transformed Hamiltonian
as H* = 1V (K? + K?), we have

oo

1. 1 1
EV = ;bkﬁ = EVCOSh@ — szG

sinh 6

(E9)

The requirement that 7°¢ — 0 gives the decoupling condition
1%

tanh§ = Va—,
€

which fixes €2;,. The ground-state energy is obtained from
the zero-body piece of H. From the commutator expres-
sions (C10) the zero-body piece of all nested commutator
comes from [K2, K2]oo = —2N(N — 1). Consequently, the
IMSRG(2) correlation energy is

(E10)

v
Envsrooy = —2N(N — 1)( _ Sinh6 + %(1 ~ cosh 9))

4Va

€ vz
NN — ”ﬁ(l —J1 _&6_2)'

In the second line of (E11) we have used (E10) and some
identities of hyperbolic functions.

(E11)
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