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Abstract—Federated learning enables decentralized model
training across numerous devices without data centralization,
leveraging model updates to enhance privacy and reduce com-
munication overhead. Despite its advantages, federated learning
systems must be optimized for cost efficiency, considering the
limited computational capabilities and battery life of edge devices.
Current research often focuses on minimizing either time or
energy costs but rarely both, and does not jointly optimize the
parameters of device and training scheduling in the presence of
system and data heterogeneity. In our paper, we formulate a novel
joint optimization problem for device and training scheduling
that minimizes the total cost of federated learning while ensuring
model convergence. We propose a new device scheduling scheme,
Group Scheduling on Orthogonal Frequency-Division Multiple
Access (GS-OFDMA), to improve time efficiency and develop an
iterative algorithm to tackle the resulting mixed integer nonlinear
programming problem. Our experimental results show that our
approach significantly reduces the total cost by at least 35%
across different real-world datasets and data distributions in
comparison with random participant selection.

I. INTRODUCTION

Traditional machine learning models, which centralize
vast data volumes for training, face hurdles in scenarios
where large-scale data aggregation is impractical or sensitive,
especially due to limited bandwidth and strict data privacy
laws. To address the limitations of centralized learning,
federated learning presents a decentralized framework that
enables model training across multiple edge devices without
collecting the raw data. Interchanging only the model updates
between the server and clients not only greatly reduces
the communication overhead but also effectively avoids the
private data leakage [1].

In a federated learning system, the cost efficiency during
training is important in evaluating the utility of the system
design [2]]. Empirical methods like [3} 4] track client training
metrics, such as loss and time cost, to guide participant
selection. However, these heuristic approaches often lack
theoretical guarantees for convergence.

Research in federated learning increasingly focuses on cost
minimization, aiming to reduce time [5) 6] or energy costs
[7, 18] through various control variables and constraints. These
control variables fall into two categories: device scheduling
[S, 6L 9] and training scheduling [10H12]]. Device scheduling
involves selecting participants for each round and organizing
model transmissions, enhancing model convergence through
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data diversity and reducing costs by excluding inefficient

participants. Training scheduling involves configuring the

training process, such as the number of participants per round

[11], the number of local iterations [[10], and the number of

communication rounds between clients and the server. Without

proper training scheduling, issues such as client shift can
compromise model convergence and increase resource usage.

However, current studies aimed at optimizing the cost effi-
ciency of federated learning systems presents several notable
limitations. First, a significant portion of these studies tend
to focus singularly on either reducing time cost [5 9} [13]]
or energy consumption [7} [8]], but not both. Second, a com-
prehensive optimization that jointly considers both device
scheduling and training scheduling is often absent [10, [11]].
Last, in the problem formulation, system heterogeneity and
data heterogeneity are not jointly considered [13} [14].

To address the limitations inherent in current research, we
present a novel joint optimization problem on both device and
training scheduling to minimize the training cost of federated
learning with convergence guarantee. The main contributions
of our paper are as follows:

1) We formulate a new cost-minimization problem to jointly
optimize the parameters of device scheduling and training
scheduling. To make the problem practical, both system
and data heterogeneity are factored in.

2) To improve the time efficiency, we propose a novel de-
vice scheduling scheme: Group Scheduling on Orthogonal
Frequency-Division Multiple Access (GS-OFDMA). By
ordering and grouping participants by their time cost per
round, GS-OFDMA allows more participants in one round
to find the optimal number of participants.

3) We derive the analytical expression for the overall training
cost of federated learning with probabilistic participant
selection. We develop an iterative algorithm integrating
coordinate descent and polyhedral active set algorithm
(PASA) to solve the challenging mixed integer nonlinear
programming (MINLP) problem.

4) Through experiments on real datasets, we evaluate the
total cost and convergence speed of the model training
configured based on the solution to our optimization.
The proposed integrative algorithm shows near optimal
performance on total cost and convergence speed.

II. SYSTEM MODEL
A. Federated Learning with Client-Selection Probability

Assume that there are one server and N clients with index
set N = {1,2,..., N} in a federated learning system. Client



i possesses a unique and private dataset D; = {& | j =

2,...,[Di} of size |Di|, where &) denotes the j-th data
sample of client 7. The composite dataset across all clients
is represented as D = | J;c Di and of size |D|. The local
loss function on dataset D; is defined by
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where = represents the model parameters.

The objective of a federated learning system is to find an
optimal model parameter = to minimize a global loss function
f(x) on all the distributed datasets, defined by
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where d; = |D;|/|D| denotes the ratio of data volume at client
¢ and Zf\il d; = 1.

FedAvg [1] addresses data privacy in federated learning
by training locally and transmitting only model updates from
clients to the server. To reduce communication overhead,
FedAvg employs multi-epoch local training and selects a
random subset of participants for each training round.

We extend this approach by introducing probabilistic partic-
ipant selection in federated learning. This method considers T’
communication rounds between participants and the server to
achieve model convergence. The stopping criterion for these
rounds is defined as: E(f(z7)) — f* < ¢, where f* denotes
the minimum global loss and € > 0.

In each round, a training process consists of model
broadcasting, local training, model transmission, and
aggregation. Initially, the server chooses M clients to
participate in the t¢-th training round, forming participant
set M) based on the participant selection probability
p = |[p1,p2,.-,pN], and sends out the global model
parameters x; to these participants. Each participant then
synchronizes its local model with the global one, trains the
model using stochastic gradient descent (SGD) algorithm,
updates the model over [ iterations, and transmits the updated
model parameters back to the server. Finally, the server
aggregates all received updates to renew the global model by
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B. Device Scheduling Scheme

Effective participation scheduling is crucial for time ef-
ficiency in federated learning, influenced by the wireless
transmission model, which includes time-sharing [2, [11] and
frequency-sharing protocols [8) [15]. In mobile network sce-
narios with variable participant resources, we introduce a
novel scheduling approach based on Orthogonal Frequency-
Division Multiple Access (OFDMA), termed Group Schedul-
ing on OFDMA protocol (GS-OFDMA). GS-OFDMA’s key
innovation lies in allowing more participants within the same
bandwidth per round, achieved through group submissions.

This strategy aims to reduce stochastic variance and enhance
model convergence speed.

Specifically, suppose that the total bandwidth in OFDMA
is divided into S sub-channels, where each sub-channel is
exclusively used by one participant. Unlike existing work
[2, [8, [16] with OFDMA that only samples S participants per
round, GS-OFDMA selects M = K S participants according
to participation probability p, where K is an integer and
1 < K < [&]. Let 6;; denote the one-iteration training time
of client ¢ in each round and 5( ) be the model transmission
time of client ¢ in round ¢. GS- OFDMA is described by the
following protocols.

1) The server estimates {d;; : ¢ = 1,2,..., KS} and sorts
them in terms of local computing time such that §;; <
021 <o <o

2) Participants are divided into K groups according to {d;,},
ie,G; ={(i—-1)S+1,(i—-1)S+2,...,iS},i=1,2,.., K.

3) Participants in one group submit their updates simultane-
ously. Model transmission proceeds from G; to Gx and
the next group starts transmitting only if all the updates of
the current group are received by the server.

4) Model transmission of this round ends after K groups finish
uploading updates.

C. Cost Evaluation of Federated Learning

In terms of cost, time cost and energy cost are crucial for
efficient federated learning system design. Similar to existing
work in wireless federated learning [11l], we assume that
mobile devices have relatively stable computation capacity but
face dynamic communication environments.

1) Time Cost: Let [S,25,..., KS] be the indexes of strag-
gler in each group in terms of communication time. We assume
that all the participants of a group can finish the local training
before the previous group finishes the model transmission.

According to the proposed GS-OFDMA scheduling, 6 can
be calculated by the summation of the longest computation
time in the first group and the longest communication time of
each group.

60 = 65,1 + Z 0\ o 4)
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As a result, the total time cost of T global rounds can be

calculated as

T
A:25311+Zé,§2a (5)
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2) Energy Cost: Similar to the time cost, let e;; be the
one-iteration energy cost of client ¢ in each round and e( ) be
energy cost of model transmission in round ¢. The energy cost
of client ¢ in round ¢ is given by

egt) =e; ] + e(t) (6)

Since device scheduling schemes do not change the total
energy cost, the cumulative energy cost of 7" rounds can be



expressed as
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D. Problem Formulation

Cost evaluation reveals that the efficiency of federated
learning systems is influenced by several key factors: the
participation selection probability p, number of global rounds
T, number of scheduled groups K in GS-OFDMA, and
number of local iterations /. Here, p is the parameter for
device scheduling and (K, I,T) are for training scheduling.
We propose to integrate the time and energy costs of federated
learning into one adjusted cost C'r, given by

Cr=aA+ (1 —a)e, (8)

where 0 < o < 1 represents the relative importance of each
cost and provides flexibility to the cost metric.

The objective is to minimize the adjusted cost of federated
learning training, while satisfying the model convergence
requirement. Therefore, we formulate the joint device and
training scheduling optimization problem as follows

Jmin E(Cr) (PD)
st. E(f(z7)) — f* <e, (PTh)
N
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where 1,4, and 1,4, denote the maximum numbers of global
rounds and local iterations, respectively.

III. JOINT DEVICE AND TRAINING SCHEDULING
OPTIMIZATION

In this section, we transform problem [PI] into a more
tractable form and develop an iterative algorithm to find the
optimal solutions.

A. Analytical Expression of E(Cr)

The probability of client ¢ participating in round ¢ can be
given by

Plie M) =1—(1—p)™ < Mps, ©)

where (a) approximates (1 — p;)™ by its zero and first order
terms.

Even though client ¢ could be selected multiple times in one
round, the energy cost will be counted only once (one-time
local training and one-time model transmission). Therefore,
we have
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where the average energy cost of model transmission of client
1 is denoted by €; , = % Zthl e%.
For E(A), we have

T K
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To find the expectation of the first term in which denotes
the longest local training time, we define ¢; to be the proba-
bility of client ¢ being selected in round ¢ and with the longest
training time of the first group, which is equivalent to that only
clients 1,2,...,7 are candidates in the first group. Therefore,
we have

(1)

g; = IP(¢ has the longest training time of the first group)
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where the last equality uses the binomial theorem. Then the
first term in becomes

T T N
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The second term {5]&27@ ck=1,..,K}in denotes the
largest model transmission time in each scheduling group and
can vary in different rounds. Since the model transmission time
of each group is independent, we approximate the transmission
time of each group by the first group and have

T K T N
E <Z 25152,a> =Y K> ail. (14)
t=1 k=1 =1 =1
With and (T4), we have
N
E(A) =T q; (6] + Kbia), 15)
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where 8;, = =31, 51(2 denotes the average time cost of
model transmission of client <.

The above formulation is still very hard to optimize because
¢; includes the polynomial term of p; with the order of .S. For
analytical tractability, we approximate ¢; with ¢; ~ p;. Note
that there are two cases where p; is equivalent to g; in terms
of E(A). 1) When S = 1, we can easily show that ¢; = p;.
2) When §;; = §;, and &;,, = 6, for i # j, we have

N N
> 6 (0ial + Kbia) = > pi (6i1] + Kdia) .
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Therefore, we formally define the approximated E(A) as
N
E(A) =T pi (6] + Kd;a). (16)
i=1

With the analytical expressions of E(e) and E(A), the



approximation of total cost E(CT) is
E(Cr) = aE(A) + (1 — a)E(e)

N
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where w; ;(K) and w; o(K) are functions of K defined as
follows:

wi(K) =ad;; + (1 —a)KSe;,

wiva(K) =K (O&S@a + (1 - Oé)SéiJ) .

Here, w; ;(K) and w; ,(K) can also be regarded as “pseudo

costs” of local training and model transmission of client ¢,
respectively.

(18)

B. Approximation Optimization Problem of P1

To approximate the e-convergence constraint, we utilize the
convergence result [16]:

E(f(er) - < 7 L(9)

N
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where A, B, {C;} and D are constants related to the local
loss functions and data heterogeneity among clients. To re-

formulate problem we use (19) to replace the convergence
constraint and (17) as the objective function. We have

N
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C. Solution to [P2]

With continuous (p) and integer (K, 7, I) variables, is
a Mixed Integer Nonlinear Programming (MINLP) problem,
which is difficult to solve directly in general. We present an
iterative algorithm to effectively solve problem [P2]

We first apply linear programming relaxation to convert
integer variables K, T, I to be continuous variables. Observing
T in the objective of [P2] and constraint (PZh), we have that
the optimal 7 minimizing the objective of [P2|also maximizes
the LHS of constraint (P2h). T* satisfies

N
1 1 C; B
T = = |Al | — = 4+D — 2
- (KSi_lei+ )+I (20)
Then problem [P2]is converted to
N
. Al C; AI’D+B
min <KS 2ot 1) ®3)
N
: <Zpi(lwi,l(K) + wza(K))>
i=1
N
s.t. Zpi =1, (P3k)
i=1
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Achieving the global minimizer of Problem [P3|is challenging
due to its non-convex nature. Notably, the variables (K, I, p)
are independent within the constraints, with p impacting only
the coefficient terms of K and I. Therefore, we decompose
Problem into two sub-problems and effectively solve the
sub-problems to obtain the suboptimal solution to Problem [P3]

Given any p, the first sub-problem with (K, I) is

. apl a1 1>+ B
wip (G4

s

> (GQKI + G3K + CL4I) (P4)

(P3b), (P3F), (21)
where ay = %Z?’:l%‘,al = AD,a; = (1 —

)8 S pieiiyaz = Yl pi(adia + (1 — @)S@;,) and
as =y ;_, p;0;; are positive constants.
We present the following theorem for Problem

Theorem 1. Given positive constants ag, a1, a2, a3, G4, SUpP-
pose a set H = [1,N/S] x[1, L] and a function h : H — R
is defined as
agl a1I2 + B
MK, I)=—+——
0 = (%
Then H is a biconvex set and h is a biconvex function on H.
Therefore, Problem is a biconvex optimization problem.

> (CL2K1+G3K+G4I).

Thanks to its biconvexity, we can use coordinate descent al-
gorithm to find the local minimum by alternatively updating K
and [ while fixing one of them and solving the corresponding
convex optimization problem.

Given (K,I) from Problem we have the second sub-
problem given by

N C, N
mgn (bo Z j + b1> <Zpi(1wi,l(K) + wza(K))>
i=1 *" i=1

(P5)

N
S.t. Zpi =1, (P5k)
i=1
where by = % and by = AID + ? are positive constants.
The challenge posed by Problem [P is characterized by
nonlinear optimization under polyhedral constraints. The Poly-
hedral Active Set Algorithm (PASA) as detailed by [17] is
adopted to solve it. With (K*,I*, p*), we update T by (20).
The process continues by iteratively solving Problems [P4] and
[P5] until the sequence of objective values of Problem [P3]
converges.

IV. EXPERIMENTS

A. Experimental Settings

Datasets and Predictive Model: We utilize the EM-
NIST_LETTERS and FASHION_MNIST datasets. EM-
NIST_LETTERS contains 26 lowercase English letter images,
and FASHION_MNIST features ten different image classes.
For our experiments, we split each dataset into private datasets



for clients and a test dataset for evaluating our method. We
employ the LeNet-5 as our classification model.

Data Heterogeneity: To simulate real-world data distri-
butions in federated learning, we employ three data parti-
tioning approaches: one LIL.D. and two non-L.LD. configu-
rations. I.I.D.: Training data is equally and randomly dis-
tributed among clients, ensuring a balanced class represen-
tation in each client’s dataset. Class: Each client receives
data from C randomly selected classes, where C' = 13 for
EMNIST_LETTERS and C = 5 for FASHION_MNIST. This
approach represents 50% of classes in each dataset. Dirichlet:
Data is distributed following a Dirichlet distribution with
a parameter of 0.1, resulting in clients having varied data
volumes and class distributions.

System Parameters: We set the total count of clients
as N 10 for FASHION_MNIST and N = 40 for
EMNIST_LETTERS. We use the default Adam optimizer
settings from TensorFlow. For our communication system, the
total bandwidth is fixed at 2 MHz, with S = 2 sub-channels
for FASHION_MNIST and S = 5 for EMNIST_LETTERS,
which leads to K € [1,5] and K € [1,8] respectively. The
size of the transmitted model is 2 million bits. Energy costs
for clients, measured in millijoules (mJ), follow a normal
distribution: e;; ~ N(10,2) and &; , ~ N(20,4). Time costs
are also modeled heterogeneously. For FASHION_MNIST,
we generate 0;; ~ N(5,1) and 0;, ~ N(260,100).
For EMNIST_LETTERS, we have §;,; ~ N(10,2) and
8i.a ~ N(560,200). The parameter o is set to 0.5 by default.

B. Experiment Results

1) Optimal Selection Probability: To evaluate our optimal
solution of participant selection probability px, we fix (K, I)
and solve Problem to obtain p*. Specifically, (K,I) =
(2,120) for FASHION_MNIST and (K,I) = (2,40) for
EMNIST_LETTERS. We adopt three commonly used base-
lines: Uniform Selection [1]]. This scheme samples participants
uniformly, i.e., py = ps = - -+ = py = 1/N. Norm Selection
[16]. Participants are chosen in accordance with p;, where

pi = 4G Ratio Selection [18]. This technique selects
>oimg diG

participants with p; = d;.

In a broad range of data distributions and datasets, our
scheduling method consistently outperforms the other methods
in all metrics. As detailed in TABLE| our approach achieves
a minimum cost reduction of 35% across all the settings in
comparison with the uniform method. Specifically, in terms of
the total cost, our approach achieves from a 40.97% to 61.92%
reduction on the FASHION_MNIST dataset and even greater
efficiency on the EMNIST_LETTERS dataset, reducing costs
by 57.65% to 78.01%.

Notably, the robustness of our device scheduling stands in
contrast to the setting-dependent performance of the norm and
ratio methods. In challenging scenarios characterized by high
data heterogeneity (Dir) and a large number of clients (EM-
NIST_LETTERS), our method prevails, achieving nearly an
80% reduction in cost in comparison with the uniform method.

2) Convergence Performance: To evaluate the convergence
performance of our solution (K*,[*), we demonstrate the
training loss curves with respect to total cost C'r under Dir
setting in Figures [I| where the optimal (K, I) by grid search
and other (K, I) combinations are compared with those under
the same participant selection probability p*.

As shown, the performance of our proposed solution
(K*,I*) is notably distinct. Our solution exhibits a
convergence trajectory that is on par with the optimal
benchmark. Specially, in the stage characterized by a
steep decline in loss, our solution (K*,I*) often reaches
convergence quicker than the optimal grid search.

It is also noteworthy how various (K, I') combinations yield
different convergence behaviors and overall total costs. Specif-
ically, the number of participants, linear with K, compared
with the number of local iterations I, appears to have more
significant influence on cost efficiency.

V. CONCLUSION

This paper presents a joint optimization problem for device
and training scheduling in federated learning, addressing
system and data heterogeneity. We have developed an

Data Device FASHION_MNIST EMNIST_LETTERS

Dist. Scheduling Time Cost | Energy Cost | Total Cost | Time Cost | Energy Cost | Total Cost

Uniform 541.31 1870.07 1205.69 746.88 2007.96 1377.42

Norm 526.27 1816.45 1171.36 801.30 2160.90 1481.10

D Ratio 556.83 1933.35 1245.09 560.12 1503.83 1031.98

GS-OFDMA 297.24 1040.79 669.02 312.56 854.11 583.34
(-45.09%)* | (-44.34%) | (-44.51%) | (-58.15%) | (-57.46%) | (-57.65%)

Uniform 458.33 1583.16 1020.75 961.03 2581.09 1771.06

Norm 598.55 2048.02 1323.29 722.63 1936.35 1329.49

Class Ratio 462.18 1606.59 1034.39 857.12 2296.36 1576.74

GS-OFDMA 296.71 908.33 602.52 345.83 938.78 642.31
(-35.26%) (-42.63%) | (-40.97%) | (-64.01%) | (-63.63%) | (-63.73%)

Uniform 1178.36 4100.03 2639.20 782.95 2097.54 1440.25

Norm 523.56 1920.63 1222.10 462.23 1269.25 865.74

Dir Ratio 767.22 2735.80 1751.51 655.98 1783.85 1219.92

GS-OFDMA 419.65 1590.41 1005.03 168.13 465.27 316.70
(-64.39%) (-61.21%) | (-61.92%) | (-78.53%) | (-77.82%) | (-78.01%)

TABLE I: Cost Evaluation for Scheduling Schemes. (-45.09%)* denotes the cost reduced from the uniform method.
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Fig. 1: Convergence performance on EMNIST_LETTERS.

iterative algorithm that combines coordinate descent with the
polyhedral active set algorithm to solve the mixed integer non-
linear programming challenge. Empirical tests on real-world
datasets demonstrate that our approach achieves superior cost
efficiency in comparison with traditional federated learning
algorithms across various datasets and data distributions.
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