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Joint Device and Training Scheduling for Wireless
Federated Learning

Xiaobing Chen, Xiangwei Zhou, Hongchao Zhang, Mingxuan Sun, and Taibiao Zhao

Abstract—The advent of ubiquitous computing devices in the
Internet of Things (IoT) has resulted in an explosion of data.
Traditional centralized machine learning models face challenges
including limited bandwidth in wireless environments and pri-
vacy concerns due to their data aggregation approach. Federated
learning addresses these challenges via decentralizing model
training across numerous devices, leveraging model updates
to enhance privacy and reduce communication overhead. To
improve its cost efficiency, current research focuses on mini-
mizing either time or energy costs but rarely both, and does
not jointly optimize the parameters of device and training
scheduling in the presence of system and data heterogeneity
inherent in IoT networks. In our paper, we first introduce a
multi-group transmission scheme and propose a comprehensive
device scheduling framework, Group Scheduling on Orthogonal
Frequency-Division Multiple Access (GS-OFDMA), to address
time bottlenecks. Then we formulate a joint optimization problem
for device and training scheduling that minimizes the total cost
of training while ensuring model convergence. To tackle the
resulting mixed integer nonlinear programming problem, we
develop an iterative algorithm. Experimental results show that
our approach significantly reduces the total cost by at least
35% across various real-world datasets and data distributions
in comparison with random participant selection. The proposed
GS-OFDMA protocol also exhibits higher time efficiency over
other device scheduling schemes.

Index Terms—Wireless federated learning, scheduling, partic-
ipant selection, optimization, Internet of Things.

I. INTRODUCTION

W ITH the rapid expansion of the Internet of
Things (IoT), vast networks of interconnected

devices—including smartphones, wearables, and IoT
sensors—generate an ever-growing volume of data. Traditional
machine learning models face challenges due to impractical
large-scale data aggregation and data privacy concerns.
Federated learning offers a decentralized framework for
model training across multiple IoT devices without collecting
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raw data, thus reducing communication overhead and avoiding
data leakage [2].

Since IoT networks often operate under constrained band-
width and varying wireless system conditions, communication
overhead management during the federated training is critical
for overall cost efficiency. In addition, as IoT devices com-
monly have limited computational resources and battery life,
the practical deployment of federated learning systems in IoT
settings demands cost-effective solutions that optimize both
time and energy consumption [3]. To improve training effi-
ciency, empirical methods such as [4, 5] track client training
metrics, such as loss and time cost, to guide participant selec-
tion. However, these heuristic approaches often lack theoretical
guarantees for convergence.

Research in federated learning increasingly focuses on cost
minimization, aiming to reduce time [6, 7] or energy costs
[8, 9] through various control variables and constraints. These
control variables fall into two categories: device scheduling
[6, 7, 10] and training scheduling [11–13]. Device scheduling
involves selecting participants for each round and organizing
model transmissions in IoT networks, to enhance model con-
vergence through data diversity and reduce costs by excluding
inefficient participants. Training scheduling involves configur-
ing the training process, such as the number of participants
per round [12], the number of local iterations [11], and the
number of communication rounds between clients and the
server. Without proper training scheduling, issues such as
client shifts can compromise model convergence and increase
resource usage.

However, current studies on optimizing the cost efficiency
of federated learning systems have notable limitations. First,
many studies focus on reducing either time cost [6, 10, 14] or
energy consumption [8, 9], but not both. Second, comprehen-
sive optimization that jointly considers both device scheduling
and training scheduling is often absent [11, 12]. Third, prob-
lem formulations frequently fail to jointly consider system and
data heterogeneity [14, 15]. Lastly, in terms of the wireless
communication model, existing work using frequency-sharing
protocols typically only considers single-group transmission,
limiting the number of participants to the number of sub-
channels within the frequency band [3, 9, 16].

To address the limitations inherent in current research, we
present a novel joint optimization problem on both device and
training scheduling to minimize the training cost of federated
learning with a convergence guarantee. The main contributions
of our paper are as follows:
1) We introduce a Multi-Group Transmission (MGT)

scheme on Orthogonal Frequency-Division Multiple Ac-
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cess (OFDMA) to increase the number of participants per
training round, reduce stochastic variance, and speed up
model convergence. To address device scheduling chal-
lenges in the MGT scheme, we formulate it as a Hy-
brid Flow Shops (HFS) problem and propose a group-
based Johnson’s rule. Additionally, we develop the Group
Scheduling on OFDMA (GS-OFDMA) protocol to address
various time bottlenecks during training, optimizing the
number of participants per round by ordering and grouping
them based on their time costs.

2) We formulate a new cost-minimization problem to jointly
optimize the parameters of device scheduling and training
scheduling. Control variables include the participant selec-
tion probability, the number of participants, and the number
of local iterations. To make the problem practical, both
system and data heterogeneity are factored in. We develop
an iterative algorithm integrating coordinate descent and
polyhedral active set algorithm (PASA) to solve the chal-
lenging mixed integer nonlinear programming (MINLP)
problem.

3) Through experiments on real datasets, we evaluate the total
cost and convergence speed of the model training config-
ured based on the solution to our optimization. Experiment
results demonstrate that our optimal participant selection
probability reduces the total cost by at least 35% across
different datasets and data distributions in comparison with
random selection.

II. RELATED WORK

Reducing the resource cost of federated learning training,
including time and energy, is crucial for practical imple-
mentation in resource-constrained environments such as IoT
networks. FedAvg [2] addresses this by scheduling a subset of
clients for model training in each round and allowing multiple
local iterations, which significantly reduces communication
overhead while maintaining good training performance.

However, due to data heterogeneity among clients, with
unique and non-I.I.D. private data, FedAvg’s random client
selection leads to sub-optimal model performance and resource
utilization [17]. To address this, various device scheduling
methods based on importance sampling have been proposed.
In [14], a probabilistic device scheduling method is proposed,
which measures the importance of clients by the gradient
norms of local updates and assigns higher participant prob-
abilities to those with larger gradient norms. Other metrics to
measure the data importance have also been studied, including
the volume of local dataset [18], training loss divergence [19],
and model divergence [20].

While these methods improve model convergence and re-
duce communication rounds, they overlook a crucial factor:
system heterogeneity. Differences in computational power,
memory, battery life, and network bandwidth among devices
can lead to varying training times and energy consumption.
Ignoring this can increase training time and inefficient resource
use, reducing federated learning’s cost efficiency. Heuristic
methods that consider both data and system heterogeneity
have been proposed. Oort [4] calculates both statistical utility
(data importance) and system utility (training efficiency) to

rank and select high-utility clients, enhancing time-to-accuracy
performance. PyramidFL [5] further fine-tunes statistical and
system utilities to allow non-straggler participants to train
in more iterations and submit partial updates. Conversely, to
promote fairness, FCFL [21] loosens the network capacity
constraints to allow clients with poor networks to be selected
and schedule participants with high movement relevance to the
global model.

Another approach to improving cost efficiency in federated
learning is to formulate a cost optimization problem with
control variables. The objective function of the optimization
is to minimize the time cost [6, 7, 10, 15, 16, 22], energy cost
[8, 9], or both [11, 12]. The main control variables are device
scheduling and training scheduling.

Device scheduling involves selecting participants and deter-
mining transmission policies for local models. For example,
[6] discusses round robin and proportional fair schemes.
CMFL [10] uses feedback to schedule only highly relevant
clients. An optimal probabilistic client selection scheme in [7]
minimizes the weighted sum of training time and loss.

Training scheduling optimizes parameters such as the num-
ber of global rounds, local iterations, and participants per
round. In [11], an optimization problem minimizes training
loss within time and energy budgets by adaptively choosing
optimal local iterations and communication rounds. Similarly,
[12] finds optimal values for local iterations and participants
to minimize costs while ensuring model convergence. In hier-
archical federated learning, [13] optimizes training scheduling
through joint resource allocation and edge association.

Joint optimization of training and device scheduling is
less explored. [22] presents an online non-linear program
to minimize resource usage by jointly controlling participant
selection and local training iterations, though it only addresses
binary selection and ignores data heterogeneity. To address
both system and data heterogeneity, we propose a new cost-
minimization problem that jointly optimizes device and train-
ing scheduling with model convergence guarantee.

III. SYSTEM MODEL

In this section, we first introduce federated learning with
probabilistic participant selection. Then we present a new
multi-group transmission scheme to schedule the model up-
dates.

A. Federated Learning with Client-Selection Probability

Assume that there are one server and 𝑁 clients with index
set N = {1, 2, ..., 𝑁} in a federated learning system. Client
𝑖 possesses a unique and private dataset D𝑖 = {𝜉𝑖

𝑗
| 𝑗 =

1, 2, ..., |D𝑖 |} of size |D𝑖 |, where 𝜉𝑖
𝑗

denotes the 𝑗-th data
sample of client 𝑖. The composite dataset across all clients
is represented as D =

⋃︁
𝑖∈N D𝑖 and of size |D|. The local

loss function on dataset D𝑖 is defined by

𝐹𝑖 (𝑥) ≔
1
|D𝑖 |

∑︁
𝜉 𝑖
𝑗
∈D𝑖

𝐹𝑖 (𝑥; 𝜉𝑖𝑗 ), (1)

where 𝑥 represents the model parameters.
The objective of a federated learning system is to find an
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optimal model parameter 𝑥 to minimize a global loss function
𝑓 (𝑥) on all the distributed datasets, defined by

min
𝑥
𝑓 (𝑥) ≔

𝑁∑︁
𝑖=1

𝑑𝑖𝐹𝑖 (𝑥), (2)

where 𝑑𝑖 = |D𝑖 |/|D| denotes the ratio of data volume at client
𝑖 and

∑︁𝑁
𝑖=1 𝑑𝑖 = 1.

In this paper, we study federated learning with probabilistic
participant selection, shown in Algorithm 1. Suppose there are
in total 𝑇 rounds of communications between participants and
the server to achieve model convergence, and the stopping
criterion is given by

E( 𝑓 (𝑥𝑇 )) − 𝑓 ∗ ≤ 𝜖, (3)

where 𝑓 ∗ denotes the minimum global loss and 𝜖 > 0.

Algorithm 1: Generalized FedAvg with Probabilistic
Participation

Input: 𝑥0, 𝛾, 𝐼, 𝑀,𝑇, p
Output: 𝑥𝑇

1 for 𝑡 = 0, 1, ..., 𝑇 − 1 do
2 Select 𝑀 participants according to p with

replacement to form M (𝑡 )

3 for 𝑖 ∈ M (𝑡 ) in parallel do
4 𝑦𝑖

𝑡 ,0 ← 𝑥𝑡

5 for 𝑗 = 0, 1, ..., 𝐼 − 1 do
6 𝑦𝑖

𝑡 , 𝑗+1 ← 𝑦𝑖
𝑡 , 𝑗
− 𝛾∇𝐹𝑖 (𝑦𝑖𝑡 , 𝑗 , 𝜉𝑖𝑗 )

7 end
8 end
9 𝑥𝑡+1 ←

∑︁
𝑖∈M (𝑡 )

𝑑𝑖
𝑀𝑝𝑖

𝑦𝑖
𝑡 ,𝐼

10 end

In each round, a training process consists of model broad-
casting, local training, model transmission, and aggregation.
Initially, the server chooses 𝑀 clients to participate in the
𝑡-th training round, forming participant set M (𝑡 ) based on
the participant selection probability p = [𝑝1, 𝑝2, ..., 𝑝𝑁 ], and
sends out the global model parameters 𝑥𝑡 to these participants.
Each participant then synchronizes its local model with the
global one, trains the model using the stochastic gradient
descent (SGD) algorithm, updates the model over 𝐼 iterations,
and transmits the updated model parameters back to the server.
Finally, the server aggregates all received updates to renew the
global model by

𝑥𝑡+1 =
∑︁

𝑖∈M (𝑡 )

𝑑𝑖

𝑀𝑝𝑖
𝑦𝑖𝑡 ,𝐼 . (4)

B. Multi-Group Transmission

Wireless transmission models in federated learning mainly
consist of time-sharing [3, 12] and frequency-sharing protocols
[9, 23]. Time-sharing protocols, such as Time-Division Multi-
ple Access (TDMA), schedule the model submission of partic-
ipants in distinct time slots where each participant occupies all
the frequency resources in the assigned time slot. In contrast,
frequency-sharing protocols subdivide the available bandwidth
into multiple frequency sub-carriers, which allows participants

Time CostOne Global Round

OFDMA

GS-OFDMA
(K=2)

Group 1

Group 2 transmission
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client 3
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client 5
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client 7
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Group 1 transmission

Group-based Johnson's rule

Fig. 1: Comparison of device scheduling methods. Unlike
OFDMA, GS-OFDMA adopts multi-group transmission, al-
lowing more participants in one global round. To reduce the
time cost of multi-group transmission, GS-OFDMA employs
the group-based Johnson’s rule to group and order the model
transmission.

to submit their model updates simultaneously. In terms of
transmission efficiency, it has been shown that frequency-
sharing protocols, such as Orthogonal Frequency-Division
Multiple Access (OFDMA), achieve higher data rates than
time-sharing protocols [9, 24]. However, existing work using
frequency-sharing models [3, 9, 16] only considers Single-
Group Transmission (SGT), i.e., the number of participants
per round equals the number of sub-channels of the frequency
bandwidth.

Existing research indicates that increasing the number of
participants in each round can accelerate model convergence,
leading to potential cost savings [2]. In light of this, we
introduce a novel Multi-Group Transmission (MGT) scheme,
leveraging OFDMA to reduce the stochastic variance and
speed up the model convergence. Our approach significantly
differs from the existing SGT methods, as shown in Figure 1.
Specifically, the number of participants in MGT can greatly ex-
ceed the number of available sub-channels. Participants will be
grouped and MGT in one global round will be implemented,
which is organized through a specific scheduling process. We
will elaborate on the scheduling details in Section IV-A.

We provide a formal description of the MGT scheme.
Consider an OFDMA system where the total bandwidth is
partitioned into 𝑆 sub-channels, where each sub-channel is
exclusively used by one participant. Unlike SGT methods
where 𝑀 = 𝑆, our MGT selects 𝑀 = 𝐾𝑆 participants
according to participation probability p, where 𝐾 denotes the
number of groups and 1 ≤ 𝐾 ≤ ⌈ 𝑁

𝑆
⌉, 𝐾 ∈ Z+.

IV. MULTI-GROUP DEVICE SCHEDULING AND
COST-EFFICIENT FEDERATED LEARNING

In this section, we first propose a group-based Johnson’s
rule to address the challenges of device scheduling in the MGT
scheme and introduce a comprehensive multi-group device
scheduling framework. Then we formulate a joint device and
training scheduling optimization problem to minimize the total
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cost of the training process.

A. Group-based Johnson’s Rule

With the introduction of the MGT scheme, a critical
question emerges: how to optimally group participants and
schedule group transmissions to minimize the time cost of
a single-round training. Addressing this issue is vital for
developing cost-efficient federated learning since various par-
ticipants could have significantly different local training times
and model transmission times.

We reframe the scheduling challenge in the MGT scheme
as a Hybrid Flow Shops (HFS) problem [25]. In this model,
each participant’s task is conceptualized as a job with two
stages, resulting in a total of 𝑀 such jobs. Stage 1 is to
train the model locally, and Stage 2 is to transmit the model
updates. The processing times of Stage 1 and Stage 2 could be
different, but Stage 2 can only start after Stage 1 is finished.
For the local training stage (Stage 1), there are 𝑀 identical
and parallel machines, each capable of processing one job,
with all machines initiating simultaneously. It is worth noting
that “machines” here simply refer to abstract entities that
process these jobs in Stage 1 and Stage 2 and do not indicate
that clients in federated learning have identical hardware or
capabilities. In the model transmission stage (Stage 2), the
number of available machines is limited to 𝑆, corresponding to
the 𝑆 sub-channels for transmission. The objective of the HFS
problem is to minimize the makespan, which is the duration
from the start of local training to the completion of model
transmission. This is achieved by strategically scheduling the
𝑀 participants into 𝐾 ordered groups.

Solving the HFS problem presents a significant challenge,
particularly due to its computational complexity in scenarios
with large numbers of participants (𝑀) and groups (𝐾).
An exhaustive search approach becomes impractical in such
contexts. Specifically, there are in total 𝑀!

(𝑆!)𝐾 possible ways
to partition 𝑀 participants into 𝐾 ordered groups, which
implies a factorial time complexity. Moreover, the complexity
is compounded in our specific HFS problem, which involves
two distinct processing stages, each hosting multiple machines
with no allowance for preemption. This problem has been es-
tablished as NP-complete [26], underscoring the considerable
computational effort required to find an optimal solution.

Branch and bound, while effective for some HFS problems,
struggles with the large-scale job counts typical in federated
learning, often exceeding 1,000 jobs [27]. In federated learning
environments, where job counts can surpass tens of thousands
[28], the time and computational expense of branch and bound
make it impractical for efficient training processes that require
quick scheduling decisions.

Johnson’s rule is a heuristic algorithm that schedules jobs
based on their ranking scores. The scheduling method provides
a minimum makespan of a special HFS problem when there
are two stages and only one machine at each stage [29].
Johnson’s rule states that if a job’s Stage-1 time is shorter
than its Stage-2 time, it should be scheduled earlier; if the
job’s Stage-2 time is shorter, it should be scheduled later. It
exhibits good performance in the case with multiple machines
in Stage 1 and only one machine in Stage 2 [26].

To adapt Johnson’s rule to solving our HFS problem, where
Stage 2 comprises 𝑆 machines, we propose a group-based
Johnson’s rule. Let 𝛿𝑖,𝑙 denote the one-iteration training time
of client 𝑖 in each round and 𝛿 (𝑡 )

𝑖,𝑎
be the model transmission

time of client 𝑖 in round 𝑡. Then 𝛿𝑖,𝑙 𝐼 and 𝛿
(𝑡 )
𝑖,𝑎

correspond
to the processing times of job 𝑖 in Stage 1 and Stage 2,
respectively. Accordingly, the group-based Johnson’s rule can
be described in two steps: calculating the ranking scores of
participants and modifying the rank. Details of group-based
Johnson’s rule are given in Algorithm 2. With the formula
in Step 2 of Algorithm 2, a smaller 𝑔 (𝑡 )

𝑖
naturally indicates

that the 𝑖-th client should be scheduled earlier for the model
transmission if its local training is faster, while a larger
𝑔
(𝑡 )
𝑖

suggests that transmission is shorter, and it should be
scheduled later. Algorithm 2 guarantees that the first group
achieves the minimum local training time. This is a significant
modification from the standard Johnson’s rule, which typically
adjusts the position of only one job.

Algorithm 2: Group-based Johnson’s Rule
Input: Processing times of participants

{(𝛿𝑖,𝑙 𝐼, 𝛿 (𝑡 )𝑖,𝑎), 𝑖 ∈ M (𝑡 )}, number of
sub-channels 𝑆

1 for each participant 𝑖 do
2 Calculate ranking score 𝑔 (𝑡 )

𝑖
using the formula:

𝑔
(𝑡 )
𝑖

=
sign(𝛿𝑖,𝑙 𝐼 − 𝛿 (𝑡 )𝑖,𝑎)

min(𝛿𝑖,𝑙 𝐼, 𝛿 (𝑡 )𝑖,𝑎)
;

3 end
4 Sort participants based on 𝑔 (𝑡 )

𝑖
in ascending order;

5 Identify 𝑆 participants with the smallest 𝛿𝑖,𝑙 𝐼;
6 Prioritize these 𝑆 participants at the top of the ranking;

B. Group Scheduling on OFDMA (GS-OFDMA)

In practical federated learning scenarios, the time bottleneck
varies and depends on the particular application. We identify
three cases based on the relative lengths of local training time
(Stage 1 processing time) and model transmission time (Stage
2 processing time):
1) Stages 1 and 2 Comparable.
2) Stage 1 Dominant: local training time significantly exceeds

model transmission time.
3) Stage 2 Dominant: model transmission time is substantially

longer than local training time.
To evaluate the effectiveness of our group-based Johnson’s

rule across these cases, we conduct simulations of a two-
stage HFS problem. With a fixed group size 𝑆, we generate
random processing times for Stage 1 and Stage 2 for each
job in one trial and the best method is identified across
thousands of independent trials. The objective is to identify
the most efficient heuristic scheduling method that minimizes
the makespan.

In addition to our proposed group-based Johnson’s rule, we
investigate the Shortest Processing Time first (SPT) rule, a
notable heuristic algorithm in single-machine environments
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(a) Stages 1 and 2 Comparable.

(b) Stage 1 Dominant.

(c) Stage 2 Dominant.

Fig. 2: Simulation results of four heuristic scheduling methods
in three scenarios of time bottlenecks. 𝑆𝑃𝑇𝑎 achieves min-
imum makespan in the Comparable and Stage 2 Dominant
cases while group-based Johnson’s rule is the best in the Stage
1 Dominant case. Some bars do not appear in the plot as their
winning percentages are zero.

known for minimizing weighted completion time [25]. The
SPT rule prioritizes jobs based on their shortest processing
times. In our two-stage HFS problem, we define three variants
of the SPT rule: 𝑆𝑃𝑇𝑙 , 𝑆𝑃𝑇𝑎, and 𝑆𝑃𝑇𝑠𝑢𝑚, which apply the
SPT rule to 𝛿𝑖,𝑙 𝐼, 𝛿

(𝑡 )
𝑖,𝑎

, and the sum (𝛿𝑖,𝑙 𝐼 + 𝛿 (𝑡 )𝑖,𝑎), respectively.

Our simulations reveal that the best heuristic scheduling
method for our HFS problem depends on the specific case.
As shown in Figure 2, with a fixed number of sub-channels
𝑆, a distinct method emerges when the number of groups 𝐾
exceeds a certain threshold, i.e., 𝐾 > 8 in the simulations.
Specifically, in the Comparable and Stage 2 Dominant cases,
𝑆𝑃𝑇𝑎 achieves the minimum makespan in all the trials. How-
ever, in the Stage 1 Dominant case, the proposed group-based
Johnson’s rule outperforms other methods in 70% of the trials.
It is also noteworthy that when there are only two groups
(𝐾 = 2), the group-based Johnson’s rule is the most effective
scheduling method across all cases.

Therefore, combining our MGT scheme with the group-
based Johnson’s rule, we propose a comprehensive device
scheduling framework on OFDMA, named Group Schedul-
ing on OFDMA protocol (GS-OFDMA). This framework is

designed to effectively address all three time bottleneck cases
in federated learning environments. GS-OFDMA is described
by the following protocol.

1) The server estimates local training times {𝛿𝑖,𝑙 : 𝑖 ∈ N}.
2) In round 𝑡, the server estimates the model transmission

times of participants {𝛿 (𝑡 )
𝑖,𝑎

: 𝑖 ∈ M (𝑡 ) }.
3) The server identifies the time bottleneck. For Stage 1

Dominant case, the server sorts the participants according
to the group-based Johnson’s rule. For Comparable and
Stage 2 Dominant cases, the 𝑆𝑃𝑇𝑎 rule is applied.

4) Sorted participants are divided into 𝐾 groups according to
{𝛿 (𝑡 )
𝑖
}, i.e., 𝐺𝑖 = {(𝑖 − 1)𝑆 + 1, (𝑖 − 1)𝑆 + 2, ..., 𝑖𝑆}, 𝑖 =

1, 2, ..., 𝐾 .
5) Participants in the first group submit their updates imme-

diately after finishing local training. Model transmission
proceeds from 𝐺1 to 𝐺𝐾 , and group 𝐺𝑖 , 𝑖 ≥ 2, starts
transmitting only if all the updates of group 𝐺𝑖−1 are
received by the server. All the sub-channels are occupied
only by one group.

6) Model transmission of this round ends after K groups finish
uploading updates.

The detailed methodology of GS-OFDMA is outlined in
Algorithm 3.

Algorithm 3: Group Scheduling on OFDMA (GS-
OFDMA)

Input: 𝑀,𝑇, 𝑆, p
1 Server estimates local training time {𝛿𝑖,𝑙 : 𝑖 ∈ N};
2 for 𝑡 = 0, 1, ..., 𝑇 − 1 do
3 Server selects 𝑀 participants according to p with

replacement to form M (𝑡 ) ;
4 Server estimates transmission time

{𝛿 (𝑡 )
𝑖,𝑎

: 𝑖 ∈ M (𝑡 ) };
5 if

∑︁
𝑖∈M (𝑡 ) 𝛿𝑖,𝑙 ≫

∑︁
𝑖∈M (𝑡 ) 𝛿

(𝑡 )
𝑖,𝑎

then
6 Sever sorts participants M (𝑡 ) by group-based

Johnson’s rule in Algorithm 2;
7 end
8 else
9 Sever sorts participants M (𝑡 ) by 𝑆𝑃𝑇𝑎 rule;

10 end
11 Server groups participants such that the index set

𝐺𝑖 = {(𝑖−1)𝑆+1, (𝑖−1)𝑆+2, ..., 𝑖𝑆}, 𝑖 = 1, 2, ..., 𝐾;
12 Groups are scheduled to submit updates in order of

𝐺1, 𝐺2, ..., 𝐺𝐾 ;
13 Server updates the global model using (4);
14 end

C. Cost Evaluation of Federated Learning

Local training and model transmission are two major
sources of cost in federated learning. In terms of cost, time
and energy costs are crucial for efficient federated learning
system design. Similar to existing work in wireless federated
learning [12], we assume that each mobile device has relatively
stable computation capacity but faces dynamic communication
environments, i.e., the cost of local training is the same across
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different rounds while the cost of model transmission is time-
varying.

1) Time Cost
Let 𝛿𝑖,𝑙 denote the one-iteration training time of client 𝑖 in

each round and 𝛿 (𝑡 )
𝑖,𝑎

be the model transmission time of client
𝑖 in round 𝑡. Then the time cost of client 𝑖 in round 𝑡 is

𝛿
(𝑡 )
𝑖

= 𝛿𝑖,𝑙 𝐼 + 𝛿 (𝑡 )𝑖,𝑎 , (5)

where 𝐼 is the number of iterations in the local training.
Suppose Δ

(𝑡 )
𝑘

is the total time cost after the first 𝑘 groups
finish the local training and model transmission in round 𝑡.
For the first group (𝐾 = 1), Δ(𝑡 )1 = 𝛿

(𝑡 )
𝑆

is the time cost of the
straggler in 𝐺1. For the following groups (𝐾 ≥ 2), they need
to wait for the previous group to finish the model transmission
before sending their model updates to the server. Therefore,
we can calculate Δ

(𝑡 )
𝑘

by

Δ
(𝑡 )
𝑘

= max{Δ(𝑡 )(𝑘−1) , 𝛿𝑘𝑆,𝑙 𝐼} + 𝛿
(𝑡 )
𝑘𝑆,𝑎

, 𝑘 ∈ {2, ..., 𝐾}, (6)

where 𝛿𝑘𝑆,𝑙 = max{𝛿𝑖,𝑙} and 𝛿
(𝑡 )
𝑘𝑆,𝑎

= max{𝛿 (𝑡 )
𝑖,𝑎
}, 𝑖 ∈ 𝐺𝑘 , are

the largest time costs for local training per iteration and model
transmission, respectively.

As in [12], we assume that the local training time of the
current group is less than the makespan of previous groups.
Then we have

max{Δ(𝑡 )(𝑘−1) , 𝛿𝑘𝑆,𝑙 𝐼} = Δ
(𝑡 )
(𝑘−1) , 𝑘 ∈ {2, ..., 𝐾}.

Therefore, after the first group finishes the local training, the
communication channel will be occupied until all the partici-
pants finish the model transmission. The time cost for round 𝑡
can be calculated as the summation of the longest computation
time in the first group and the longest communication times
of all groups:

Δ
(𝑡 )
𝐾

= 𝛿𝑆,𝑙 𝐼 +
𝐾∑︁
𝑘=1

𝛿
(𝑡 )
𝑘𝑆,𝑎

. (7)

As a result, the total time cost of 𝑇 global rounds can be
calculated as

Δ =

𝑇∑︁
𝑡=1
(𝛿𝑆,𝑙 𝐼 +

𝐾∑︁
𝑘=1

𝛿
(𝑡 )
𝑘𝑆,𝑎
). (8)

2) Energy Cost
Similar to the time cost, let 𝑒𝑖,𝑙 be the one-iteration nor-

malized energy cost of client 𝑖 in each round and 𝑒 (𝑡 )
𝑖,𝑎

be the
normalized energy cost of model transmission in round 𝑡. The
energy cost of client 𝑖 in round 𝑡 is given by

𝑒
(𝑡 )
𝑖

= 𝑒𝑖,𝑙 𝐼 + 𝑒 (𝑡 )𝑖,𝑎 . (9)

Since device scheduling schemes do not change the total
energy cost, the cumulative energy cost of 𝑇 rounds can be
expressed as

𝑒 =

𝑇∑︁
𝑡=1

∑︁
𝑖∈M (𝑡 )

𝑒
(𝑡 )
𝑖
. (10)

D. Cost Minimization Problem

Cost evaluation reveals that the efficiency is influenced by
several key factors: the participation-selection probability p,
number of global rounds 𝑇 , number of scheduled groups 𝐾 in
GS-OFDMA, and number of local iterations 𝐼. Here, p is the

parameter for device scheduling, and (𝐾, 𝐼, 𝑇) are for training
scheduling. Moreover, the optimal solution to minimize time
cost generally does not render the minimum energy cost, and
vice versa. Therefore, we propose to integrate the time and
energy costs of federated learning into one adjusted cost 𝐶𝑇 ,
given by

𝐶𝑇 = 𝛼Δ + (1 − 𝛼)𝑒, (11)
where 0 ≤ 𝛼 ≤ 1 represents the relative importance of each
cost and provides flexibility to the cost metric. Increasing 𝛼

encourages time efficiency while decreasing 𝛼 weights more
on energy efficiency.

The objective is to minimize the adjusted cost of feder-
ated learning training while satisfying the model convergence
requirement. Therefore, we formulate the joint device and
training scheduling optimization problem as follows

min
p,𝑇,𝐾,𝐼

E(𝐶𝑇 ) (P1)

s.t. E( 𝑓 (𝑥𝑇 )) − 𝑓 ∗ ≤ 𝜖, (P1a)
𝑁∑︁
𝑖=1

𝑝𝑖 = 1, (P1b)

1 ≤ 𝐾 ≤ ⌈𝑁
𝑆
⌉, 𝐾 ∈ Z+, (P1c)

1 ≤ 𝑇 ≤ 𝑇𝑚𝑎𝑥 , 1 ≤ 𝐼 ≤ 𝐼𝑚𝑎𝑥 , 𝑇, 𝐼 ∈ Z+, (P1d)

where 𝑇𝑚𝑎𝑥 and 𝐼𝑚𝑎𝑥 denote the maximum numbers of global
rounds and local iterations, respectively.

V. JOINT DEVICE AND TRAINING SCHEDULING
OPTIMIZATION

In this section, we transform problem P1 into a more
tractable form and develop an iterative algorithm to find the
optimal solutions. First, we derive the analytical expression
of E(𝐶𝑇 ). After the approximation of constraint (P1a) with
the convergence upper bound of Algorithm 1, we connect
the objective and constraints with control variables p, 𝐾, 𝑇, 𝐼
and formulate an alternative optimization problem, P2. Sub-
sequently, we demonstrate that Problem P2 can be effectively
solved following the estimation of the unknown parameters.

A. Analytical Expression of E(𝐶𝑇 )
According to (11), we have

E(𝐶𝑇 ) = 𝛼E(Δ) + (1 − 𝛼)E(𝑒),
where analytical expressions of E(Δ) and E(𝑒) with respect
to p and 𝐾 are needed to make the problem tractable.

According to Algorithm 1, the probability of client 𝑖 partic-
ipating in round 𝑡 can be given by

𝑃(𝑖 ∈ M (𝑡 ) ) = 1 − (1 − 𝑝𝑖)𝑀
(𝑎)
≈ 𝑀𝑝𝑖 , (12)

where (𝑎) approximates (1 − 𝑝𝑖)𝑀 by its zero and first order
terms.

Even though client 𝑖 could be selected multiple times in one
round, the energy cost will be counted only once (one-time
local training and one-time model transmission). Therefore,
we have

E(𝑒) = E
(︄
𝑇∑︁
𝑡=1

∑︁
𝑖∈M (𝑡 )

𝑒
(𝑡 )
𝑖

)︄
=

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑃(𝑖 ∈ M (𝑡 ) )𝑒 (𝑡 )
𝑖
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≈
𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑀𝑝𝑖𝑒
(𝑡 )
𝑖

= 𝐾𝑇𝑆

𝑁∑︁
𝑖=1

𝑝𝑖 (𝑒𝑖,𝑙 𝐼 + 𝑒̄𝑖,𝑎), (13)

where the average energy cost of model transmission for client
𝑖 is denoted by 𝑒̄𝑖,𝑎 = 1

𝑇

∑︁𝑇
𝑡=1 𝑒

(𝑡 )
𝑖,𝑎

.

For E(Δ), we have

E(Δ) = E
(︄
𝑇∑︁
𝑡=1

(︄
𝛿𝑆,𝑙 𝐼 +

𝐾∑︁
𝑘=1

𝛿
(𝑡 )
𝑘𝑆,𝑎

)︄)︄
. (14)

To find the expectation of the first term in (14) that denotes
the longest local training time of the first group, we define
𝑞𝑖 to be the probability of client 𝑖 being selected in round 𝑡
and with the longest training time of the first group, which is
equivalent to that only clients 1, 2, ..., 𝑖 are candidates in the
first group. Therefore, we have

𝑞𝑖 = P(𝑖 is the straggler of group 𝐺1)

=

𝑆∑︁
𝑚=1

(︃
𝑆

𝑚

)︃
𝑝𝑚𝑖

⎛⎜⎝
𝑖−1∑︁
𝑗=1

𝑝 𝑗
⎞⎟⎠
𝑆−𝑚

=
⎛⎜⎝
𝑖∑︁
𝑗=1

𝑝 𝑗
⎞⎟⎠
𝑆

− ⎛⎜⎝
𝑖−1∑︁
𝑗=1

𝑝 𝑗
⎞⎟⎠
𝑆

,
(15)

where the last equality uses the binomial theorem. Then the
first term in (14) becomes

E

(︄
𝑇∑︁
𝑡=1

𝛿𝑆,𝑙 𝐼

)︄
=

𝑇∑︁
𝑡=1

𝑁∑︁
𝑖=1

𝑞𝑖𝛿𝑖,𝑙 𝐼 . (16)

The second term {𝛿 (𝑡 )
𝑘𝑆,𝑎

: 𝑘 = 1, ..., 𝐾} in (14) denotes the
largest model transmission time in each scheduling group and
can vary in different rounds. It is difficult to enumerate all the
combinations of {𝛿 (𝑡 )

𝑘𝑆,𝑎
} and their corresponding probabilities.

Since the model transmission time of each group is indepen-
dent, we approximate the transmission time of each group by
that of the first group and have

E

(︄
𝑇∑︁
𝑡=1

𝐾∑︁
𝑘=1

𝛿
(𝑡 )
𝑘𝑆,𝑎

)︄
=

𝑇∑︁
𝑡=1

𝐾

𝑁∑︁
𝑖=1

𝑞𝑖𝛿
(𝑡 )
𝑖,𝑎
. (17)

With (16) and (17), we have

E(Δ) = 𝑇
𝑁∑︁
𝑖=1

𝑞𝑖
(︁
𝛿𝑖,𝑙 𝐼 + 𝐾𝛿̄𝑖,𝑎

)︁
, (18)

where 𝛿̄𝑖,𝑎 = 1
𝑇

∑︁𝑇
𝑡=1 𝛿

(𝑡 )
𝑖,𝑎

denotes the average time cost of
model transmission for client 𝑖.

The above formulation is still very hard to optimize because
𝑞𝑖 includes the polynomial term of 𝑝𝑖 with the order of 𝑆. For
analytical tractability, we approximate 𝑞𝑖 with 𝑞𝑖 ≈ 𝑝𝑖 . Note
that there are two cases where 𝑝𝑖 is equivalent to 𝑞𝑖 in terms
of E(Δ): 1) When 𝑆 = 1, we can easily show that 𝑞𝑖 = 𝑝𝑖 . 2)
When 𝛿𝑖,𝑙 = 𝛿 𝑗 ,𝑙 and 𝛿̄𝑖,𝑎 = 𝛿̄ 𝑗 ,𝑎 for 𝑖 ≠ 𝑗 , we have

𝑁∑︁
𝑖=1

𝑞𝑖
(︁
𝛿𝑖,𝑙 𝐼 + 𝐾𝛿̄𝑖,𝑎

)︁
=

𝑁∑︁
𝑖=1

𝑝𝑖
(︁
𝛿𝑖,𝑙 𝐼 + 𝐾𝛿̄𝑖,𝑎

)︁
.

Therefore, we formally define the approximated Ẽ(Δ) as

Ẽ(Δ) = 𝑇
𝑁∑︁
𝑖=1

𝑝𝑖
(︁
𝛿𝑖,𝑙 𝐼 + 𝐾𝛿̄𝑖,𝑎

)︁
. (19)

With the analytical expressions of E(𝑒) and Ẽ(Δ), the

approximation of total cost Ẽ(𝐶𝑇 ) is

Ẽ(𝐶𝑇 ) = 𝛼Ẽ(Δ) + (1 − 𝛼)E(𝑒)

= 𝑇

𝑁∑︁
𝑖=1

𝑝𝑖 (𝐼𝑤𝑖,𝑙 (𝐾) + 𝑤𝑖,𝑎 (𝐾)), (20)

where 𝑤𝑖,𝑙 (𝐾) and 𝑤𝑖,𝑎 (𝐾) are functions of 𝐾 defined as
follows:

𝑤𝑖,𝑙 (𝐾) = 𝛼𝛿𝑖,𝑙 + (1 − 𝛼)𝐾𝑆𝑒𝑖,𝑙 ,
𝑤𝑖,𝑎 (𝐾) = 𝐾

(︁
𝛼𝛿̄𝑖,𝑎 + (1 − 𝛼)𝑆𝑒̄𝑖,𝑎

)︁
.

(21)

Here, 𝑤𝑖,𝑙 (𝐾) and 𝑤𝑖,𝑎 (𝐾) can also be regarded as “pseudo
costs” of local training and model transmission of client 𝑖,
respectively.

B. Approximation Optimization Problem of P1

To approximate the 𝜖-convergence constraint, we first make
some commonly used assumptions about local loss functions
{𝐹𝑖} [11, 30].

Assumption 1. 𝐹𝑖 (𝑥) is 𝜇-strongly convex, i.e., 𝐹𝑖 (𝑥) ≥
𝐹𝑖 (𝑦) + (𝑥 − 𝑦)𝑇∇𝐹𝑖 (𝑦) + 𝜇

2 ∥𝑥 − 𝑦∥
2
2 for all 𝑥 and 𝑦.

Remarks: While the 𝜇-strong convexity assumption is
restrictive and does not accurately characterize the loss land-
scapes of modern non-convex deep neural networks, it is
widely used to derive interpretable convergence guarantees
and enable tractable analysis [11, 30]. Moreover, in the ex-
periments, we will empirically demonstrate that our method
remains robust in practical non-convex settings.

Assumption 2. The gradient of 𝐹𝑖 (𝑥) is 𝐿-Lipschitz continu-
ous: for any 𝑥, 𝑦 ∈ 𝑑𝑜𝑚(𝐹𝑖), we have ∥∇𝐹𝑖 (𝑥) − ∇𝐹𝑖 (𝑦)∥ ≤
𝐿 ∥𝑥 − 𝑦∥.

Assumption 3. The variance of the stochastic gradient of

𝐹𝑖 (𝑥) is bounded, i.e., E
∥︁∥︁∥︁∇𝐹𝑖 (𝑥, 𝜉𝑖𝑗 ) − ∇𝐹𝑖 (𝑥)∥︁∥︁∥︁2

≤ 𝛿2
𝑖
, 𝜉𝑖
𝑗
∈

D𝑖 .

Assumption 4. The expected second moment of ∇𝐹𝑖 (𝑥) is
bounded: for any data sample 𝜉𝑖

𝑗
∈ D𝑖 and when there exists

a constant 𝐺𝑖 > 0, we have E(
∥︁∥︁∥︁∇𝐹𝑖 (𝑥, 𝜉𝑖𝑗 )∥︁∥︁∥︁2

) ≤ 𝐺2
𝑖
,∀𝑥 ∈

𝑑𝑜𝑚(𝐹𝑖).

With the above assumptions, we have

Theorem 1. Let Assumptions 1 to 4 hold, 𝛾 = max{ 8𝐿
𝜇
, 𝐸},

and decaying learning rate 𝜂𝑡 = 2
𝜇 (𝛾+𝑡 ) , where 𝑡 denotes

the index of global rounds. Then federated learning with
participation-selection probability p satisfies

E( 𝑓 (𝑥𝑇 )) − 𝑓 ∗ ≤
1
𝑇

[︄
𝐴𝐼

(︄
1
𝐾𝑆

𝑁∑︁
𝑖=1

𝐶𝑖

𝑝𝑖
+ 𝐷

)︄
+ 𝐵
𝐼

]︄
, (22)

where 𝐴, 𝐵, {𝐶𝑖}, and 𝐷 are defined as follows:
𝐴 = 8𝐿

𝜇2 , 𝐶𝑖 = 𝑑2
𝑖
𝐺2
𝑖
, 𝐷 = 2

∑︁𝑁
𝑖=1 𝑑𝑖𝐺

2
𝑖
,

𝐵 = 𝐿

𝜇2

(︂
2
∑︁𝑁
𝑖=1 𝑑𝑖𝐺

2
𝑖
+ 12𝐿Γ + 4𝐿𝜇 ∥𝑥0 − 𝑥∗∥2

)︂
with

Γ =

(︂
𝑓 ∗ −∑︁𝑁

𝑖=1 𝑑𝑖𝐹
∗
𝑖

)︂
.

𝐴, 𝐵, {𝐶𝑖}, and 𝐷 are constants related to the local loss
functions and data heterogeneity among clients. The details of
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convergence analysis can be found in [16].
To re-formulate Problem P1, we use (22) to replace the

convergence constraint and (20) as the objective function. We
have

min
p,𝐾,𝑇,𝐼

𝑇

𝑁∑︁
𝑖=1

𝑝𝑖 (𝐼𝑤𝑖,𝑙 (𝐾) + 𝑤𝑖,𝑎 (𝐾)) (P2)

s.t.
1
𝑇

[︄
𝐴𝐼

(︄
1
𝐾𝑆

𝑁∑︁
𝑖=1

𝐶𝑖

𝑝𝑖
+ 𝐷

)︄
+ 𝐵
𝐼

]︄
≤ 𝜖, (P2a)

(P1b), (P1c), (P1d).

Note that the feasible set of Problem P2 is smaller than that
of Problem P1, i.e., any solution to P2 is also the solution to
P1.

C. Solution to P2

With continuous (p) and integer (𝐾,𝑇, 𝐼) variables, P2 is
a Mixed Integer Nonlinear Programming (MINLP) problem,
which is difficult to solve directly in general. We present an
iterative algorithm to effectively solve Problem P2 by formu-
lating two sub-problems P4 and P5 and iteratively updating
(𝐾, 𝐼) and p, as shown in Algorithm 4.

Algorithm 4: Iterative Algorithm for Solving Problem
P2

Input: 𝐴, 𝐵, {𝐶𝑖}, 𝐷, 𝑆, {𝑤𝑖,𝑙}, {𝑤𝑖,𝑎}
Output: p∗, 𝐾∗, 𝑇∗, 𝐼∗

1 Relax the variables 𝐾,𝑇, 𝐼 such that they are
continuous: 𝐾,𝑇, 𝐼 ∈ R+;

2 Substitute 𝑇 in the objective function of Problem P2
using Equation (23) to formulate Problem P3;

3 Initialize a feasible solution (𝐾0, 𝐼0, p0) of Problem P3;
4 Set iteration counter 𝑙 = 0;
5 while Objective value of Problem P3 is not decreasing

do
6 For the given vector p𝑙 , solve Problem P4 to get

(𝐾𝑙+1, 𝐼𝑙+1);
7 Using (𝐾𝑙+1, 𝐼𝑙+1), solve Problem P5 to get p𝑙+1;
8 Compute the optimal 𝑇𝑙+1 using Equation (23);
9 Increment the iteration counter 𝑙 ← 𝑙 + 1;

10 end

We first apply linear programming relaxation to convert
integer variables 𝐾,𝑇, 𝐼 to be continuous variables, i.e.,
𝐾,𝑇, 𝐼 ∈ R+. Observing 𝑇 in the objective of P2 and constraint
(P2a), we have that the optimal 𝑇∗ minimizing the objective
of P2 also maximizes the LHS of constraint (P2a). 𝑇∗ satisfies

𝑇∗ =
1
𝜖

[︄
𝐴𝐼

(︄
1
𝐾𝑆

𝑁∑︁
𝑖=1

𝐶𝑖

𝑝𝑖
+ 𝐷

)︄
+ 𝐵
𝐼

]︄
. (23)

Then Problem P2 is converted to

min
p,𝐾,𝐼

(︄
𝐴𝐼

𝐾𝑆

𝑁∑︁
𝑖=1

𝐶𝑖

𝑝𝑖
+ 𝐴𝐼

2𝐷 + 𝐵
𝐼

)︄
(P3)

·
(︄
𝑁∑︁
𝑖=1

𝑝𝑖 (𝐼𝑤𝑖,𝑙 (𝐾) + 𝑤𝑖,𝑎 (𝐾))
)︄

s.t.
𝑁∑︁
𝑖=1

𝑝𝑖 = 1 (P3a)

1 ≤ 𝐾 ≤ 𝑁/𝑆, (P3b)
1 ≤ 𝐼 ≤ 𝐼𝑚𝑎𝑥 . (P3c)

Achieving the global minimizer of Problem P3 is challenging
due to its non-convex nature. Notably, the variables (𝐾, 𝐼, p)
are independent within the constraints, with p impacting only
the coefficient terms of 𝐾 and 𝐼. Therefore, we decompose
Problem P3 into two sub-problems and effectively solve the
sub-problems to obtain the suboptimal solution to Problem P3.

Given any p, the first sub-problem with (𝐾, 𝐼) is

min
𝐾,𝐼

(︃
𝑎0𝐼

𝐾
+ 𝑎1𝐼

2 + 𝐵
𝐼

)︃
(𝑎2𝐾𝐼 + 𝑎3𝐾 + 𝑎4𝐼) (P4)

(P3b), (P3c),

where 𝑎0 = 𝐴
𝑆

∑︁𝑁
𝑖=1

𝐶𝑖
𝑝𝑖
, 𝑎1 = 𝐴𝐷, 𝑎2 = (1 −

𝛼)𝑆∑︁𝑁
𝑖=1 𝑝𝑖𝑒𝑖,𝑙 , 𝑎3 =

∑︁𝑁
𝑖=1 𝑝𝑖 (𝛼𝛿̄𝑖,𝑎 + (1 − 𝛼)𝑆𝑒̄𝑖,𝑎) and 𝑎4 =

𝛼
∑︁𝑁
𝑖=1 𝑝𝑖𝛿𝑖,𝑙 are positive constants.

We present the following theorem for Problem P4.

Theorem 2. Given positive constants 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4, sup-
pose a set 𝐻 = [1, 𝑁/𝑆] × [1, 𝐼max] and a function ℎ : 𝐻 → R
is defined as

ℎ(𝐾, 𝐼) =
(︃
𝑎0𝐼

𝐾
+ 𝑎1𝐼

2 + 𝐵
𝐼

)︃
(𝑎2𝐾𝐼 + 𝑎3𝐾 + 𝑎4𝐼) .

Then 𝐻 is a biconvex set and ℎ is a biconvex function on 𝐻.
Therefore, Problem P4 is a biconvex optimization problem.

The proof can be found in Appendix A. Thanks to its
biconvexity, we can use the coordinate descent algorithm to
find the local minimum by alternatively updating 𝐾 and 𝐼

while fixing one of them and solving the corresponding convex
optimization problem.

With Theorem 2, we find that the solution to Problem P4
exhibits several important properties that provide insights into
how 𝐾 and 𝐼 affect the total cost Ẽ(𝐶𝑇 ). We summarize some
properties in Lemma 1.

Lemma 1. Given the participation-selection probability p,
the following relationships between total cost Ẽ(𝐶𝑇 ) and 𝐾, 𝐼
hold:

1) If 𝐼 is held constant and 𝛼 = 0, the value of Ẽ(𝐶𝑇 ) is
monotonically increasing with 𝐾 .

2) If 𝐼 is held constant and 0 < 𝛼 ≤ 1, the value of
Ẽ(𝐶𝑇 ) initially decreases and subsequently increases as
𝐾 increases.

3) If 𝐾 is held constant and 0 ≤ 𝛼 ≤ 1, the value of
Ẽ(𝐶𝑇 ) initially decreases and subsequently increases as
𝐼 increases.

The proof can be found in Appendix B.
Given (𝐾, 𝐼) from Problem P4, we have the second sub-

problem given by

min
p

(︄
𝑏0

𝑁∑︁
𝑖=1

𝐶𝑖

𝑝𝑖
+ 𝑏1

)︄ (︄
𝑁∑︁
𝑖=1

𝑝𝑖 (𝐼𝑤𝑖,𝑙 (𝐾) + 𝑤𝑖,𝑎 (𝐾))
)︄

(P5)
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s.t.
𝑁∑︁
𝑖=1

𝑝𝑖 = 1, (P5a)

where 𝑏0 = 𝐴𝐼
𝐾𝑆

and 𝑏1 = 𝐴𝐼𝐷 + 𝐵
𝐼

are positive constants.
The challenge posed by Problem P5 is characterized by

nonlinear optimization under polyhedral constraints. The Poly-
hedral Active Set Algorithm (PASA), as detailed by [31],
is adopted to solve it. With (𝐾∗, 𝐼∗, p∗), we update 𝑇 by
(23). The process continues by iteratively solving Problems
P4 and P5 until the sequence of objective values of Problem
P3 converges.

Regarding the computational complexity and scalability,
each iteration in Algorithm 4 involves solving two sub-
problems: P4 and P5. Problem P4, a biconvex problem, is
efficiently handled using a coordinate descent method with
polynomial complexity per step. Problem P5 is solved with
the highly effective Polyhedral Active Set Algorithm (PASA)
[31] for polyhedral-constrained optimization. Both methods
leverage matrix or vector sparsity in linear algebra compu-
tations, resulting in an overall computation cost that typically
increases linearly (or at most polynomially) with the number
of clients 𝑁 . The algorithm’s design ensures its scalability,
with per-iteration complexity scaling linearly with 𝑁 , making
it feasible for large-scale federated learning scenarios.

D. Estimates of Unknown Parameters

As shown in Section V-C, there are multiple unknown
parameters before solving the optimization problem, includ-
ing time and energy costs (𝑤𝑖,𝑙 , 𝑤𝑖,𝑎), time cost adjustment
term 𝛿̂, model-relevant parameters (𝐴, 𝐵), and data-relevant
parameters ({𝐶𝑖}, 𝐷). We propose an empirical method to
estimate those unknown parameters by running two trial ex-
periments. The basic idea is to use different sets of parameters
(p(𝑎) , 𝐾 (𝑎) , 𝐼 (𝑎) , 𝜖 (𝑎) ) and (p(𝑏) , 𝐾 (𝑏) , 𝐼 (𝑏) , 𝜖 (𝑏) ) to run two
independent trial experiments and solve a system of equations
using the convergence upper bound in (P2a).

Specifically, we run trial experiment 𝑎 with p(𝑎) =

[1/𝑁, 1/𝑁, ..., 1/𝑁] corresponding to the random participation
selection. We empirically choose (𝐾 (𝑎) , 𝐼 (𝑎) , 𝜖 (𝑎) ) for the
experimental settings and record 𝑇(𝑎) when the global loss
reduces to 𝜖 (𝑎) . During the trial experiment, the participants
are required to submit their model updates along with some
statistics (𝑑𝑖 , 𝐺𝑖 , 𝛿𝑖,𝑙 , 𝛿̄𝑖,𝑎, 𝑒𝑖,𝑙 , 𝑒̄𝑖,𝑎) to the server. Then the
server can calculate 𝐶𝑖 and 𝐷 according to their definitions

𝐶𝑖 = 𝑑
2
𝑖𝐺

2
𝑖 , 𝐷 = 2

𝑁∑︁
𝑖=1

𝑑𝑖𝐺
2
𝑖 . (24)

For trial experiment 𝑏, we sample participants with p(𝑏) =
[𝑑1, 𝑑2, ..., 𝑑𝑁 ], choose (𝐾 (𝑏) , 𝐼 (𝑏) , 𝜖 (𝑏) ) for the experimental
settings, and record 𝑇(𝑏) . According to (P2a), we have⎧⎪⎪⎨⎪⎪⎩

𝐴𝐼 (𝑎)
(︂
𝑁

∑︁𝑁
𝑖=1𝐶𝑖

𝐾(𝑎)𝑆
+ 𝐷

)︂
+ 𝐵
𝐼(𝑎)

= 𝑇(𝑎)𝜖 (𝑎) ,

𝐴𝐼 (𝑏)
(︂∑︁𝑁

𝑖=1 𝑑𝑖𝐺
2
𝑖

𝐾(𝑏)𝑆
+ 𝐷

)︂
+ 𝐵
𝐼(𝑏)

= 𝑇(𝑏)𝜖 (𝑏) .
(25)

We obtain 𝐴 and 𝐵 by solving the above system of equations.
Only a few rounds of training may be enough for the

estimation process with large values of 𝜖 (𝑎) and 𝜖 (𝑏) . There-
fore, the computation cost and communication overhead for

estimation can be low. The trained model in trial experiments
can be reused as a good initial model in further experiments.
Moreover, the estimation does not add much communication
overhead, as only several statistics are added to clients’ trans-
mitted data.

VI. EXPERIMENTS

In this section, we empirically evaluate the proposed cost-
efficient federated learning algorithm with real-world datasets.

A. Experimental Settings

Testbed: Our testbed is built for general federated learning
algorithms based upon the TensorFlow Federated infrastruc-
ture [32]. The experiments are run on an advanced computa-
tional cluster in the simulation environment.

Datasets and Predictive Model: We utilize the EM-
NIST LETTERS [33] and FASHION MNIST [34] datasets.
EMNIST LETTERS contains 26 lowercase English letter
images, and FASHION MNIST features ten different image
classes. For our experiments, we split each dataset into private
datasets for clients and a test dataset for evaluating our method.
We employ LeNet-5 [35] as our classification model.

Data Heterogeneity: To simulate real-world data distri-
butions in federated learning, we employ three data parti-
tioning approaches: one I.I.D. and two non-I.I.D. configura-
tions. I.I.D.: Training data is equally and randomly distributed
among clients, ensuring a balanced class representation in each
client’s dataset. Class: Each client receives data from 𝐶 ran-
domly selected classes, where 𝐶 = 13 for EMNIST LETTERS
and 𝐶 = 5 for FASHION MNIST. This approach represents
50% of classes in each dataset. Dirichlet: Data is distributed
following a Dirichlet distribution with a parameter of 0.1,
resulting in clients having varied data volumes and class
distributions.

System Parameters: We set the total count of clients
as 𝑁 = 10 for FASHION MNIST and 𝑁 = 40 for EM-
NIST LETTERS. During each iteration, participants are sam-
pled according to the selection probability p, following which
every participant updates its local model across 𝐼 iterations
using Stochastic Gradient Descent (SGD) with a batch size
of 256. We use the default Adam optimizer settings from
TensorFlow.

For the communication system, we assume the Additive
White Gaussian Noise (AWGN) channel with 2 MHz total
bandwidth [9, 12]. The number of sub-channels is set as 𝑆 = 2
for FASHION MNIST and 𝑆 = 5 for EMNIST LETTERS,
which leads to 𝐾 ∈ [1, 5] and 𝐾 ∈ [1, 8], respectively. The
size of the transmitted model is 2 million bits. We simulate
the energy costs of clients in millijoules (mJ) from a normal
distribution. Specifically, 𝑒𝑖,𝑙 ∼ N(10, 2) and 𝑒̄𝑖,𝑎 ∼ N(20, 4).
To emulate heterogeneous time costs, we generate 𝛿𝑖,𝑙 and
𝛿̄𝑖,𝑎 from different truncated normal distributions, given in
milliseconds (ms). Specifically, for FASHION MNIST, we
generate 𝛿𝑖,𝑙 ∼ N(5, 1) and 𝛿̄𝑖,𝑎 ∼ N(260, 100). For EM-
NIST LETTERS, we have 𝛿𝑖,𝑙 ∼ N(10, 2) and 𝛿̄𝑖,𝑎 ∼
N(560, 200). The parameter 𝛼 defaults to 0.5 if not specified
otherwise.
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B. Experiment Results

1) Optimal Selection Probability
To evaluate our optimal solution of participant selection

probability p∗, we fix (𝐾, 𝐼) and solve Problem P3 to obtain
p∗. Specifically, (𝐾, 𝐼) = (2, 120) for FASHION MNIST and
(𝐾, 𝐼) = (2, 40) for EMNIST LETTERS. We adopt three
commonly used baselines:
• Uniform Selection [2]. This scheme samples participants

uniformly, i.e., 𝑝1 = 𝑝2 = · · · = 𝑝𝑁 = 1/𝑁 .
• Norm Selection [16]. Participants are chosen in accor-

dance with 𝑝𝑖 , where 𝑝𝑖 =
𝑑𝑖𝐺𝑖∑︁𝑁
𝑖=1 𝑑𝑖𝐺𝑖

.
• Ratio Selection [17]. This technique selects participants

with 𝑝𝑖 = 𝑑𝑖 .
In a broad range of data distributions and datasets, our

scheduling method consistently outperforms the other methods
in all metrics. As detailed in TABLE I, our approach achieves
a minimum cost reduction of 35% across all the settings in
comparison with the uniform method. Specifically, in terms
of the total cost, our approach achieves a 40.97% to 61.92%
reduction on the FASHION MNIST dataset and even greater
efficiency on the EMNIST LETTERS dataset, reducing costs
by 57.65% to 78.01%.

Notably, the robustness of our device scheduling stands in
contrast to the setting-dependent performance of the norm
and ratio methods. While norm and ratio methods show good
performance in specific configurations, such as on the Dir
data distribution, they can also incur higher costs than the
uniform method under certain settings. In challenging scenar-
ios characterized by high data heterogeneity (Dir) and a large
number of clients (EMNIST LETTERS), our method prevails,
achieving nearly an 80% reduction in cost in comparison with
the uniform method.

2) Convergence Performance
To evaluate the convergence performance of our solution
(𝐾∗, 𝐼∗), we demonstrate the training loss curves with respect
to total cost 𝐶𝑇 under Dir setting in Figures 3 and 4, where
the optimal (𝐾, 𝐼) by grid search and other (𝐾, 𝐼) combina-
tions are compared. Subfigures (a) in Figures 3 and 4 show
the performance across different values of 𝐼. Subfigures (b)
demonstrate the convergence behavior across different 𝐾 .

As shown, the performance of our proposed solution
(𝐾∗, 𝐼∗) is notably distinct. Our solution exhibits a conver-
gence trajectory that is on par with the optimal benchmark.
Specially, in the stage characterized by a steep decline in loss,
our solution (𝐾∗, 𝐼∗) often reaches convergence quicker than
the optimal grid search.

It is also noteworthy how various (𝐾, 𝐼) combinations yield
different convergence behaviors and overall total costs. Specif-
ically, the number of participants, linear with 𝐾 , compared
with the number of local iterations 𝐼, appears to have a more
significant influence on cost efficiency.

3) Optimal (𝐾, 𝐼) versus Our Solutions
In Figure 5, the variation of total cost against different

values of 𝐼 is depicted for distinct settings of 𝐾 . As observed,
the total cost displays a non-monotonic trend with 𝐼: starting
with an initial decrease, followed by an upward shift as 𝐼

grows further. This behavior can be attributed to two primary
factors.

At relatively smaller values of 𝐼, local data is not fully uti-
lized, which results in local model under-fitting. This scenario
requires a larger number of communication rounds to reach
the target loss, thereby increasing the overall cost. Conversely,
when 𝐼 is set too high, there is a risk of over-utilizing the
data. This is particularly noticeable for clients with limited
data, where extensive local training can lead to overfitting.
Consequently, this exhaustive local training increases both
time and energy costs.

It is noteworthy that our proposed solution, denoted by
(𝐾∗, 𝐼∗), consistently achieves a total cost close to the optimal.
Moreover, the sensitivity of the total cost with respect to 𝐼

becomes especially obvious for larger values of 𝐾 .
4) Ablation Study on 𝐾
In Figure 6, the total cost is depicted with varying values

of 𝐾 , given fixed 𝐼 = 120 for FASHION MNIST and 𝐼 = 40
for EMNIST LETTERS. A pivotal observation, as underlined
in Lemma 1, is the non-monotonic behavior of the total cost
𝐶𝑇 with respect to 𝐾 . The total cost 𝐶𝑇 initially decreases
and subsequently increases as 𝐾 increases. This behavior is
especially amplified under heterogeneous data distributions
(Class and Dir settings), where an elevated 𝐾 value correlates
with a substantial surge in total cost. The findings suggest that

TABLE I: Cost evaluation for scheduling schemes (* denotes the cost reduced from the uniform method)

.

Data Device FASHION MNIST EMNIST LETTERS
Dist. Scheduling Time Cost Energy Cost Total Cost Time Cost Energy Cost Total Cost

IID

Uniform [2] 541.31 1870.07 1205.69 746.88 2007.96 1377.42
Norm [16] 526.27 1816.45 1171.36 801.30 2160.90 1481.10
Ratio [17] 556.83 1933.35 1245.09 560.12 1503.83 1031.98

GS-OFDMA 297.24 1040.79 669.02 312.56 854.11 583.34
(-45.09%)* (-44.34%) (-44.51%) (-58.15%) (-57.46%) (-57.65%)

Class

Uniform [2] 458.33 1583.16 1020.75 961.03 2581.09 1771.06
Norm [16] 598.55 2048.02 1323.29 722.63 1936.35 1329.49
Ratio [17] 462.18 1606.59 1034.39 857.12 2296.36 1576.74

GS-OFDMA 296.71 908.33 602.52 345.83 938.78 642.31
(-35.26%) (-42.63%) (-40.97%) (-64.01%) (-63.63%) (-63.73%)

Dir

Uniform [2] 1178.36 4100.03 2639.20 782.95 2097.54 1440.25
Norm [16] 523.56 1920.63 1222.10 462.23 1269.25 865.74
Ratio [17] 767.22 2735.80 1751.51 655.98 1783.85 1219.92

GS-OFDMA 419.65 1590.41 1005.03 168.13 465.27 316.70
(-64.39%) (-61.21%) (-61.92%) (-78.53%) (-77.82%) (-78.01%)
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(a) Performance across different values of 𝐼. (b) Performance across different values of 𝐾 .

Fig. 3: Convergence performance on FASHION MNIST.

(a) Performance across different values of 𝐼. (b) Performance across different values of 𝐾 .

Fig. 4: Convergence performance on EMNIST LETTERS.

(a) FASHION MNIST. (b) EMNIST LETTERS.

Fig. 5: Total cost with different values of 𝐼.

(a) FASHION MNIST. (b) EMNIST LETTERS.

Fig. 6: Total cost with different values of 𝐾 .
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the advantages brought by data diversity can be overshadowed
when an overly large 𝐾 amplifies the straggler effect.

The proposed solution, represented by 𝐾∗, distinctly exhibits
the optimal performance, delivering the minimal total cost
across the tested 𝐾 values. This shows the effectiveness of
our approach and the importance of the correct 𝐾 selection.

5) Evaluation of Device Scheduling Schemes
To evaluate the effectiveness of the proposed GS-OFDMA

device scheduling method, we compare the overall time costs
of the training with different device scheduling strategies:
• GS-OFDMA: Our proposed method with ordering partic-

ipants and group scheduling.
• GS-wo: A variant of GS-OFDMA without ordering par-

ticipants.
• OFDMA [7]: A specific instance of GS-OFDMA, con-

strained to a single group (𝐾 = 1).
• TDMA [8]: A conventional approach that schedules

clients in a sequential order.
𝐼 is set to 120 and 40 for FASHION MNIST and EMNIST
LETTERS, respectively, while 𝐾 is the same with “Ours 𝐾∗”
in Figure 6.

To enable a fair comparison of TDMA with frequency
sharing methods, the communication time for TDMA has
been reduced to 1

𝑆
of the time cost of the frequency-sharing

methods. Results are presented in Figure 7.

Fig. 7: Time costs with different device scheduling methods,
datasets, and data distributions.

GS-OFDMA generally exhibits the lowest time costs in
comparison with other methods across both datasets and data
distributions. This suggests that the ordering of groups based
on time costs and the group scheduling are beneficial in
reducing the overall time cost of model transmission. It is
particularly effective in the Class data distribution setting.

GS-wo incurs higher time costs than GS-OFDMA, high-
lighting the impact of participant ordering on transmission
efficiency. Notably, in the special scenario where the optimal
number of groups 𝐾∗ = 1 for the FASHION MNIST dataset
under the Dir distribution, GS-OFDMA will be equivalent to
GS-wo and OFDMA.

VII. CONCLUSION

In this paper, we have introduced a multi-group trans-
mission scheme to schedule the model updates during the
training process of wireless federated learning. To address
the device scheduling challenges, we have proposed a group-
based Johnson’s rule and a comprehensive device scheduling
framework, GS-OFDMA, which orders and groups partici-
pants for the model submissions. Then we have formulated a
joint optimization problem on device and training scheduling

upon the framework, incorporating practical considerations
such as system and data heterogeneity. To solve the mixed
integer nonlinear programming, we have developed an iterative
algorithm. Empirical validations on real-world datasets showed
that our approach significantly improves cost efficiency over
standard federated learning algorithms across various datasets
and data distributions. Our algorithm demonstrated near-
optimal performance in terms of total cost and convergence
speed.

APPENDIX A
PROOF OF THEOREM 2

Proof. Let a function ℎ(𝐾, 𝐼) be defined by

ℎ(𝐾, 𝐼) =
(︃
𝑎0𝐼

𝐾
+ 𝑎1𝐼

2 + 𝐵
𝐼

)︃
(𝑎2𝐾𝐼 + 𝑎3𝐾 + 𝑎4𝐼) ,

where 𝑎0, 𝑎1, 𝑎2, 𝑎3, 𝑎4 > 0 are known, 1 ≤ 𝐾 ≤ 𝑁
𝑆

, and
1 ≤ 𝐼 ≤ 𝐼𝑚𝑎𝑥 .

For any 1 ≤ 𝐾 ≤ 𝑁
𝑆

, we have the first-order derivative of
ℎ(𝐾, 𝐼) with respect to 𝐾 as

𝜕ℎ(𝐾, 𝐼)
𝜕𝐾

= −𝑎0𝑎4𝐼
2

𝐾2 + (𝑎1𝐼
2 + 𝐵) (𝑎2𝐼 + 𝑎3)

𝐼
. (26)

The second-order derivative of ℎ(𝐾, 𝐼) with respect to 𝐾 is

𝜕2ℎ(𝐾, 𝐼)
𝜕𝐾2 =

2𝑎0𝑎4𝐼
2

𝐾3 ≥ 0.

Therefore, with given 𝐼, ℎ(𝐾, 𝐼) is convex with respect to
𝐾 . Moreover, ℎ(𝐾, 𝐼) first increases and then decreases as 𝐾
increases. The optimal 𝐾∗ can be explicitly computed by

𝐾∗ = arg min
1≤𝐾≤ 𝑁

𝑆

ℎ(𝐾, 𝐼)

=

(︃
𝑎0𝑎4𝐼

3

(𝑎1𝐼2 + 𝐵) (𝑎2𝐼 + 𝑎3)

)︃1/2
. (27)

Similarly, for 1 ≤ 𝐼 ≤ 𝐼𝑚𝑎𝑥 , we have

𝜕2ℎ(𝐾, 𝐼)
𝜕𝐼2 = 2

(︂
𝑎0𝑎2 + 𝑎1𝑎2𝐾 +

𝑎0𝑎4
𝐾
+ 𝑎1𝑎4

)︂
+ 2𝑎3𝐾𝐵

𝐼3

≥ 0.
Therefore, with given 𝐾 , ℎ(𝐾, 𝐼) is convex with respect

to 𝐼, which makes ℎ(𝐾, 𝐼) a biconvex function. Moreover,
the feasible set 𝐻 = [1, 𝑁/𝑆] × [1, 𝐼max] is also biconvex.
Therefore, Problem P4 is a biconvex problem [36]. □

APPENDIX B
PROOF OF LEMMA 1

Proof. As shown in Appendix A, when 𝛼 = 0 and 𝑎4 = 0 and
for any 1 ≤ 𝐾 ≤ 𝑁

𝑆
, we have

𝜕ℎ(𝐾, 𝐼)
𝜕𝐾

> 0.

Therefore, Property 1 holds.
With 0 < 𝛼 ≤ 1, 𝜕ℎ (𝐾,𝐼 )

𝜕𝐾
< 0 when 𝐾 is small and

𝜕ℎ (𝐾,𝐼 )
𝜕𝐾

> 0 when 𝐾 is large, which is also true for 𝐼.
Therefore, Properties 2 and 3 hold. □
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