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For an n x n matrix A,, the r — p operator norm is defined as

lAnllr—p = sup |Anxllp forr,p>1.
xeR™: x| <1

For different choices of r and p, this norm corresponds to key quantities
that arise in diverse applications including matrix condition number estima-
tion, clustering of data, and construction of oblivious routing schemes in
transportation networks. This article considers » — p norms of symmetric
random matrices with nonnegative entries, including adjacency matrices of
Erd6s—Rényi random graphs, matrices with positive sub-Gaussian entries,
and certain sparse matrices. For 1 < p <r < oo, the asymptotic normality,
as n — 00, of the appropriately centered and scaled norm || Ay |lr— p is es-
tablished. When p > 2, this is shown to imply, as a corollary, asymptotic nor-
mality of the solution to the £, quadratic maximization problem, also known
as the £, Grothendieck problem. Furthermore, a sharp £~c-approximation
bound for the unique maximizing vector in the definition of [|A, ;- p is
obtained, and may be viewed as an {so-stability result of the maximizer un-
der random perturbations of the matrix with mean entries. This result, which
may be of independent interest, is in fact shown to hold for a broad class
of deterministic sequences of matrices having certain asymptotic expansion
properties. The results obtained can be viewed as a generalization of the sem-
inal results of Fiiredi and Komlds (1981) on asymptotic normality of the
largest singular value of a class of symmetric random matrices, which cor-
responds to the special case r = p = 2 considered here. In the general case
with 1 < p <r < oo, spectral methods are no longer applicable, and so a new
approach is developed involving a refined convergence analysis of a nonlin-
ear power method and a perturbation bound on the maximizing vector, which
may be of independent interest.

1. Introduction.

1.1. Problem statement and motivation. For any n x n square matrix A, and r, p > 1,
the r — p operator norm of A, is defined as
(1.1) IAnllr—p:= sup [[Anx]lp.
<1
For different values of r and p, the r — p operator norm represents key quantities that arise
in a broad range of disciplines. For example, when p = r = 2, this corresponds to the largest
singular value of the matrix A,,, which has been studied extensively for decades. On the other
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hand, when p is the Holder conjugate of r, that is, p =r/(r — 1), and A, has nonnegative
entries and A,{ A, is irreducible, then we will see (in Proposition 2.11 and Section 9) that
this problem reduces to the famous ¢, Grothendieck problem [28], Section 5, which has
inspired a vibrant line of research in the optimization community. Two special cases of the £,
Grothendieck problem, namely when » =2 and r = oo, relate to spectral partitioning [15, 20]
and correlation clustering [13], respectively, and the case of general r € (2, 00) can be viewed
as a smooth interpolation between these two clustering criteria. Further, this problem is also
related to finding ground states in statistical physics problems. Another interesting special
case is when p = r, which has been a classical topic; see [42, 51] for general inequalities
involving the p — p norm, [26] for applications of these norms to matrix condition number
estimation, which is crucial for computing perturbations of solutions to linear equations,
and [9, 27] for algorithms to approximate such norms. Other prime application areas are:
construction of oblivious routing schemes in transportation networks for the £, norm [4, 17,
24, 40], and data dimension reduction or sketching of these norms, with applications to the
streaming model and robust regression [29]. Understanding the computational complexity
of calculating » — p norms has generated immense recent interest in theoretical computer
science. We refer the reader to [28] for a detailed account of the applications, approximability
results, and Grothendieck-type inequalities for this norm. In general, this problem is NP-hard;
even providing a constant-factor approximation algorithm for this problem is hard [4, 6, 25].
However, for the case considered in this article, namely matrices with nonnegative entries
and 1 < p <r < 00, this problem can be solved in polynomial time [4, 9]. The cases when
p=1and r > 1 are equivalent to the cases p < oo and r = oo [29], Lemma 8. These cases
are trivial for nonnegative matrices and hence, we do not consider them in this article.

The analysis of this norm for random matrices is motivated from a statistical point of
view. Indeed, asymptotic results on spectral statistics and eignevectors form the bedrock of
methods in high-dimensional statistics (see [10, 48, 50] for a sample of the vast literature
in this area). Further, it is worth mentioning the seminal work of Fiiredi and Komlés [21],
where asymptotic normality of the largest eigenvalue was first established for matrices with
i.i.d. entries. Subsequently, this result has been extended to adjacency matrices of sparse
Erd6s—Rényi random graphs [18], stochastic block model [46], and rank-1 inhomogeneous
random graphs [12]. In the context of general » — p norms for random matrices, the p > r
case has received much attention. For matrices with bounded mean-zero independent entries,
asymptotic bounds on the 2 — p norm was established in [3] for 2 < p < oco. For 1 <r <
2 < p < oo and matrices having 1.i.d. entries, ||A;||,— , is known to concentrate around its
median [32]. Furthermore, in this regime, refined bounds on the expected r — p norm of
centered Gaussian random matrices have been obtained in [23] and later extended to log-
concave random matrices with dependent entries in [45].

Another quantity of considerable interest is the maximizing vector in (1.1). For example,
in the p =r = 2 case, eigenvectors of adjacency matrices of graphs are known to play a piv-
otal role in developing efficient graph algorithms, such as spectral clustering [44, 49], spectral
partitioning [15, 20, 31, 39], PageRank [38], and community detection [34, 35]. Eigenvectors
of random matrices can be viewed as perturbations of eigenvectors of the expectation matrix,
in the presence of additive random noise in the entries of the latter. The study of eigenvector
perturbation bounds can be traced back to the classical Rayleigh—Schrodinger theory [41,
43] in quantum mechanics, which gives asymptotic perturbation bounds in the ¢>-norm, as
the signal to noise ratio increases. Nonasymptotic perturbation bounds in the £>-norm were
derived later in a landmark result [14], popularly known as the Davis—Kahan sin ® theorem.
When the perturbation is random, the above deterministic results typically yield suboptimal
bounds. Random perturbations of low-rank matrices has recently been analyzed in [37]. How-
ever, norms that are not unitary-invariant, such as the £,-norm, as considered in this paper,
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are typically outside the scope of the above works, although they are of significant interest
in statistics and machine learning. The ¢,,-norm bounds in the case of low-rank matrices
have been studied recently in [1, 11, 16, 19, 33, 52], and [1, 19, 36] contain extensive discus-
sions on such perturbation bounds on eigenvectors (or singular vectors) and their numerous
applications in statistics and machine learning.

1.2. Our contributions. Fix 1 < p <r < 0co. We now elaborate on the two main results
of the current article, namely asymptotic normality of a suitably scaled and centered version
of [|Asllr— p, and approximation of the corresponding maximizing vector.

(1) Asymptotic normality. Given a sequence of symmetric nonnegative random matri-
ces (Ap)nen, our first set of results establishes asymptotic normality of the scaled norm

||An||,_>p = n_(%_'l‘)HA,,H,_)p when 1 < p <r < 00. Specifically, let A, have zero diago-
nal entries and independent and identically distributed (i.i.d.) off-diagonal entries subject to
the symmetry constraint that have mean p,,, variance 0,12 > 0. Under certain moment bounds
on the distribution of the matrix entries, and a control on the asymptotic sparsity of the ma-
trix sequence, expressed in terms of conditions on the (relative) rates at which onz and u, can
decay to zero, it is shown in Theorem 2.2 that as n — oo,

1 _
(12) — (1 An = p — (. 1)) > Z ~ Normal(0, 2),
O,

n

d e
where — denotes convergence in distribution, and

2
1 1 lopn
(1.3) ap(p,r)i=n—Dup+5\p—1+ —.
2 r—1/ u,
An extension of the above result for random matrices with inhomogeneous variance profile
is also provided in Theorem 2.9. In this case, however, the matrix is required to be dense.
A result of this flavor appears to have first been established in the seminal work of Fiiredi
and Komlés [21] for the special case r = p = 2, where ||A;|l2—2 = ||An|l2—2 represents

k(ln), the largest eigenvalue of A,. Using spectral methods, it is shown in [21], Theorem 1,
that under the assumption that A, is a symmetric n x n random matrix with zero diagonal
entries, independent, uniformly bounded off-diagonal entries having a common positive mean
i > 0 and variance o2 > 0 (with W, o not depending on n), the limit (1.2) holds with r =
p=2,0,=0,ando;,(2,2)=(n—Du+ 02/u, which coincides with the definition in (1.3),
when one sets u, = u and crnz = 2. Even for the case p =r =2, our result extends the
asymptotic normality result of Fiiredi and Komlés [21] in three directions: it allows for (a)
sequences of possibly sparse matrices (A, ),eN, that is, with w,, — 0; (b) independent and
identically distributed (i.i.d.) off-diagonal entries satisfying suitable moment conditions, but
with possibly unbounded support; (c) independent entries with possibly different variances,
having a dense variance profile. Throughout, the assumption that the diagonal entries are
identically zero is only made for simplicity of notation; the result of [21] also allows for the
diagonal entries to be drawn from another independent sequence of entries with a different
common positive mean and uniformly bounded support on the diagonal, and an analogous
extension can also be accommodated in our setting; see Remark 2.3. Moreover, we do not
necessarily identify the optimal level of sparsity, see Remark 2.1 for an elaboration of this
point.

It is worth mentioning two interesting aspects of the limit in (1.2). Consider the set-
ting where u, = u > 0 and 0,12 =02 > 0, as considered in [21]. First, note that while
IE[Au]ll;—p = (n — 1), and ||A,lly— p/IIE[A,]]l,— » converges in probability to 1, the
centering o, (p, r) is strictly larger than (n — 1) by a ®(1) asymptotically nonvanishing
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amount. Second, whereas the centering o, (p, r) for Il Anll,— p 18 ©(n), the Gaussian fluc-
tuations of || A, |- p are only ®(1), having variance 2. Both these properties also hold for
the case r = p = 2 analyzed in [21], and the second property can be seen as a manifestation
of the rigidity phenomenon for eigenvalues of random matrices. This has subsequently been
shown to occur in a variety of other random matrix models, but there is a priori no reason
to expect this to generalize to the nonspectral setting of a general r — p norm. While spec-
tral methods can be used in the case p = r = 2, they are no longer applicable in the general
r — p norm setting. Thus, we develop a new approach, which also reveals some key reasons
for these phenomena to occur, and brings to light when the shift and rigidity properties will
fail when considering sparse sequences of matrices (see Remark 2.4).

(2) Approximation of the maximizing vector. Our second set of results are summarized in
Theorem 2.6, which provides an £s.-approximation of the maximizing vector for matrices
with i.i.d. entries, and Theorem 2.8, which extends this to random matrices with inhomoge-
neous variance profiles. These results rely on Proposition 5.3, which states an approximation
result for the maximizer of the » — p norm, for arbitrary (deterministic) sequences of sym-
metric matrices satisfying certain asymptotic expansion properties.

It is not hard to see that the maximizing vector for the r — p norm of the expectation
matrix is given by n~!/71, the scaled n-dimensional vector of all 1’s. Thus, the maximizing
vector v,, corresponding to the random matrix can be viewed as a perturbation of n=1/"1,
and our result can be thought of as an entrywise perturbation bound of the maximizing vector
for the expectation matrix. In contrast with the p = r = 2 case, the unavailability of spectral
methods for the general 1 < p <r < oo case makes the problem significantly more challeng-
ing, which led us to develop a novel approach to characterize the £,-approximation error for
a sequence of deterministic matrices satisfying some general conditions.

1.3. Notation and organization. We write [n] to denote the set {1, 2,...,n}. We use the

standard notation of —> and > to denote convergence in probability and in distribution,
respectively. Also, we often use the Bachmann—-Landau notation O(-), o(-), ®(-) for asymp-
totic comparisons. For two positive deterministic sequences (f(n)),>1 and (g(n))>1, we
write f(n) < g(n) (respectively, f(n) > g(n)), if f(n) = o(g(n)) (respectively, f(n) =
w(g(n))). For a positive deterministic sequence (f(n)),>1, a sequence of random variables
(X (n))y>1 is said to be Op(f(n)) and op(f(n)), if the sequence (X (n)/f (n)),>1 is tight

and X (n)/f (n) Eoasn— o0, respectively. For two sequences of real-valued random vari-
ables (X,,),>1 and (Yy,),>1, we will write X,, < Y, if there exists some constant ¢ > 0, such
that P(X,, < cY,) — 1 as n — oo. Normal(u, o2) is used to denote normal distribution with
mean  and variance o 2. For two vectors x = (x;); € R” and y = (yi); € R", define the “x”
operation as the entrywise product given by z = x x y = (x;y;); € R". Define 1 to be the
n-dimensional vector of all 1’s, J, := 117, and 1, to be the n-dimensional identity matrix.
Also, 1{-} denotes the indicator function.

The rest of the paper is organized as follows. In Section 2 we state the main results and
discuss their ramifications. Section 3 provides a high-level outline of the proofs of the main
results. In Section 4 we introduce the basics of the nonlinear power method, which will be a
key tool for our analysis, and present some preliminary results. Sections 5 and 6 concern the
approximation of the maximizing vector in the deterministic and random cases, respectively.
Section 7 presents a two-step approximation of the » — p norm and in particular, identifies a
functional of the underlying random matrix that is “close” to the r — p norm. In Section 8 we
prove the asymptotic normality of this approximating functional. Finally, in Section 9, we end
by exploring the relation between the » — p norm and the ¢, Grothendieck problem. Some
of the involved but conceptually straightforward calculations are deferred to the Appendix.
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2. Main results. In this section we present our main results. Section 2.1 describes re-
sults for random matrices with i.i.d. entries (except possibly the diagonal entries), whereas
Section 2.2 states extension of the main results when the matrix entries can have inhomo-
geneity in their variances. Finally, in Section 2.3 we discuss the implications of our results in
two important special cases.

2.1. Matrices with i.i.d. entries. We start by stating a general set of assumptions on the
sequence of random matrices.

ASSUMPTION 1. Foreachn > 1, let F;, be a distribution supported on [0, co0) and having
finite mean u, and variance anz. Let A, = (ai"j);-1 =1 be a symmetric random matrix such
that:

@) (czl’-1/-);-1 j=1,i<j are i.i.d. random variables with common distribution F;,. Also, a;; =0
for all i € [n].

. 2/3 2
) up,=0Q), u, = w(%), op > n_%+60 for some constant ¢y > 0, and Z—'; =0().
(iii) There exists ¢ < 0o, such that E[|a}, — wnl¥1 < %ck_za,% for all k > 3.

REMARK 2.1. Observe that Assumption 1(ii) is trivially satisfied in the dense regime,
where u, = u and o,% = o are fixed constants, which was the setting considered by Fiiredi
and Komlés in [21]. The weaker conditions imposed in Assumption 1(ii) show that our ap-
proach also covers a broad class of sparse matrices. However, the conditions on the sparsity
of the matrices are not necessarily optimal, and identifying optimal conditions is beyond the
scope of this article. The reasons are elaborated below. The lower bound on o, in Assump-
tion 1(ii) is required when we apply existing asymptotic results for second largest eigenvalues
of random matrices [30] to approximate the operator norm (see the proof of Lemma 8.1), and
the condition on p,, is required in the proof of Lemma 6.1 (to establish well-connectedness),
in the approximation step in Lemma 8.3, and in the proof of Theorem 2.2. Indeed, this as-
sumption is used in the strongest form in the final step of the proof of Theorem 2.2; see the
two displays below (8.15). The moment conditions in Assumption 1(iii) guarantee concen-
tration of certain relevant polynomials of the matrix elements, which we use to approximate
the operator norm. At first sight, they may appear restrictive, but such conditions frequently
arise in the literature (cf. [2, 30]), for example, when applying Bernstein’s inequality.

2.1.1. Asymptotic normality of the r — p norm. Our first main result provides a central
limit theorem for the r — p norms of random matrices satisfying Assumption 1. Theorem 2.2
is proved in Section 8.2.

THEOREM 2.2. Fix any 1 < p <r < 00. Consider the sequence of random matrices

- 1 1
(Ap)nen satisfying Assumption 1 and define A, = n_(ﬁ_?)An. Then, as n — 00,

1, - d
(2.1) O__(||An||r—>p —au(p, r)) — Z ~Normal(0, 2),
n
where
1 o2
(2.2) ap(p,r)=m—Duy+{p—1+ .
r—1/2u,

REMARK 2.3.  The assumption that a; = 0 in Theorem 2.2 is not a strict requirement. In
fact, one can assume a’;’s to be independent of al.”j ’s and to be i.i.d. from some distribution G,
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with nonnegative support, mean ¢, = @(,u%), variance ,0,% = @(onz), and satisfying the mo-
ment condition in Assumption 1(iii) with u, and o, replaced by ¢, and p,,, respectively. Then
(2.1) holds with

2
(2.3) an(p,r)=(n—1)un+§n+(p—1+;> On_
r—1/)2u,
All our proofs go through verbatim in this case, except for a minor modification to
Lemma 8.1, which is addressed in Lemma 8.2. However, assuming the diagonal entries to
be 0 saves significant additional notational burden and computational complications. For that
reason, we will assume a;; = 0 throughout the rest of the paper.

REMARK 2.4. As briefly mentioned in the Introduction, an intriguing fact to note from
Theorem 2.2 is that although ||A,|l,— , is concentrated around ||E[A,]||, p, on the CLT
scale, there is a nontrivial further O (1) shift o, (p, r) in the mean. This is consistent with [21]
for the case p =r = 2. As we will see in the proof of Theorem 2.2 in Section 8.2, this
additional constant shift arises from a Hessian term when we perform the Taylor expansion
of a suitable approximation of || A, ||, p. It is also worth noting that, if a,% < Wy (e.g., when
F, is an exponential distribution with mean p, — 0), this additional shift vanishes, and thus
there may be no shift for certain asymptotically sparse matrix sequences.

REMARK 2.5. There are two noteworthy phenomena about the asymptotic variance of
|Anll;— p. First, the asymptotic variance does not depend on p, r beyond the scaling factor
1

nl_’_%. Second, if p =r and we are in the dense setting (i.e., 4, = > 0 and 0, = 0 >
0), the asymptotic variance is a ®(1) quantity, although the mean is ®(n). The latter is
analogous to the rigidity phenomenon for the largest eigenvalue of random matrices. In the
2 — 2 norm case when the al-”j are uniformly bounded, this constant order of the asymptotic
variance can be understood from the application of the bounded difference inequality (see
[47], Corollary 2.4, Example 2.5, which considers the case when a;’j are Bernoulli). However,
as we see in [47], Example 2.5, in order to bound the expected change in the operator norm
after changing one entry of the matrix, the fact that ¢, is a Hilbert space is crucial, and
this method does not generalize directly for £, spaces with p # 2. Nevertheless, as we have
shown in Theorem 2.2, the variance still turns out to be ®(1) for the general p = r case in
the dense setting.

2.1.2. The maximizing vector. The second main result is an {,,-approximation of the
maximizing vector in (1.1). To this end, let Py be any probability measure on [, R"*", such
that its projection on R"*" has the same law as A,. The following theorem quantifies the
proximity of the maximizing vector to 1. Theorem 2.6 is proved at the end of Section 6. An
analogue of Theorem 2.6 will later be proved for general deterministic sequence of matrices
(see Proposition 5.3). For a sequence of events (E,),>1 with E, being an event involving A,,,
we say that (E,),>1 occurs Po-eventually almost surely if E, occurs for all large enough n,
Pg-almost surely.

THEOREM 2.6. Suppose Assumption 1 holds. Also, let

2.4) v, ;= argmax |[[A,x|,
xeR™": x|, <1

and 1 denote the n-dimensional vector of all ones. Then the following hold:
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(a) Forl < p<r < oo,

6 /1 2
(2.5) v, — n_l/rIHOO < p n_% oen X Ui, Po eventually almost surely.
r—p niln  HUn

(b) For p=r e (1,00),

60 Io 2
(2.6) o, =711 < r n_%‘/ LU G—”, Py eventually almost surely.
r—1 ny HKn

REMARK 2.7. We will see in Section 5 that the vector bound for the p < r case holds
when AT A, is irreducible and A, has concentrated row sums. These two properties, and
hence the result in (2.5) is established (in Proposition 5.3) under a weaker set of assumptions
than Assumption 1.

2.2. Matrices with inhomogeneous variance profile. We now consider random matrices
having an inhomogeneous variance profile. In this case, to prove the asymptotic normality
result we need the matrix to be dense (i.e., the matrix entries have asymptotically nonvanish-
ing mean and variance). This is because our proof uses an upper bound on the second largest
eigenvalue of the matrix, recently established in [2], which requires the matrix to be dense.
The ¢.o-approximation of the maximizing vector, however, still holds for analogous sparse
matrices.

We start by stating the set of assumptions on the sequence of random matrices that are
needed for the £;-approximation of the maximizing vector.

ASSUMPTION 2. Foreach fixedn > 1, let A4, = (a?j)?

j=1 be a symmetric random ma-
trix such that:

@) (a?j):'l, j=li<j is a collection of independent random variables with al’?j having distri-
bution Fl’j’ supported on [0, c0), mean u, and variance o*n2 (i, j). Also, a{’i =0forall i € [n].

(ii) There exists a sequence (7;,),en C (0, 00), and constants c,, ¢* € (0, 00) such that
on(i, ) on(i, J)

¢ <liminf min — <limsup max
n—>o0 l<i<j<n Oy n—oo l<i<j<n Oy

<c*.

(iii) @, and oy, satisfies Assumption 1(ii) by replacing o, by G,.
(iv) There exists ¢ > 0, such that

k!
2.7) max E[|a}; pcn|k] < Eck_zc?z for all k > 3.

I<i<j<n g "
THEOREM 2.8. Suppose A, is a symmetric random matrix satisfying Assumption 2.

Also, as in (2.4), recall that

(2.8) v, ;= argmax [[A,x]|,.
xeR": x| <1

Then v,, satisfies the same approximations as in (2.5) and (2.6), but with o, replaced by &,,.

Theorem 2.8 is proved at the end of Section 6. Next, we state the asymptotic normality
result.
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THEOREM 2.9. Fix any 1 < p <r < oo. Consider the sequence of random matri-

— 1 1
ces (Ap)neN satisfying Assumption 2 and define A, = n7(577)An. Also assume that
liminf,,_ o0 0, > 0. Then as n — o0,

2
_ d
(2.9) — (I Anllr—p — @n(p, r)) = Z ~Normal(0, 2),
where
1\ X070, ))
(2.10) an(p,r)z(n—1mn+(p—1+ ) S
r—1 né iy,

Theorem 2.9 is proved in Section 8.2.

Similar to Remark 2.3, the zero diagonal entry is not a strict requirement in Theorem 2.9.
The expression of o, (p, r) in (2.10) can be suitably updated to accommodate nonnegative
random diagonal entries.

2.3. Special cases.

Adjacency matrices of Erdés—Rényi random graphs. Let ER,(u,) denote an Erd6s—Rényi
random graph with n vertices and connection probability . As an immediate corollary to
Theorems 2.2 and 2.6, we obtain the asymptotic normality for adjacency matrices of certain
sequences of ER,, (u,,) graphs.

COROLLARY 2.10. Fixany 1 < p <r < o0 and let A, denote the adjacency matrix of
ER;, (1y). For w,, = a)(n_% logz/3 n), the vector bounds in (2.5) and (2.6), and the asymptotic

normality result in (2.1) hold with ar% =y (1 — ).

Grothendieck’s £,-problem. We now investigate the behavior of the ¢, quadratic maximiza-
tion problem, also known as the £, Grothendieck problem. For any n x n matrix A, the £,
Grothendieck problem concerns the solution to the following quadratic maximization prob-
lem. For r > 2, define
(2.11) M. (Ap) = sup xT A,x.

llxll-<1
In general, finding M, (A,) is NP-hard [28]. However, in the case of a matrix A with non-
negative entries, for which AT A is irreducible, Proposition 2.11 below states that the ¢,
Grothendieck problem is a special case of the » — p norm problem.

PROPOSITION 2.11. Let A be a symmetric matrix with nonnegative entries such that
AT A is irreducible. Then for any r =2, M,(A) = ||All;—*, where r* =r/(r — 1) is the
Holder conjugate of r.

Proposition 2.11 is proved at the end of Section 9. Together with Theorem 2.2, this imme-
diately yields the limit theorem for A, :=n~(l _%)An stated in the corollary below.

COROLLARY 2.12. Let (Ap)nen be a sequence of random matrices satisfying the as-
sumptions of Theorem 2.2. Then for any fixed r € [2, 00), as n — 00, the asymptotic normal-
ity result in (2.1) holds for M, (A,) with p=r*=r/(r — 1).

3. Proof outline. The proof of Theorem 2.2 consists of three major steps:

Step 1: Approximating the maximizing vector. The first step is to find a good approximation
for a maximizing vector v, for ||A, ;- p, as defined in (2.4). As stated in Theorem 2.6, we
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can precisely characterize the £, distance between v, and n~1/71, the scaled vector of all
ones in R”. In fact we work with a general deterministic sequence of symmetric nonnegative
matrices (see Proposition 5.3). When p < r, the required £~.-bound follows whenever the
row sums are approximately the same, which we call almost regularity (see Definition 5.1).
We actually have a short and elementary proof when p < r. The proof for the case p =r is
more complicated and requires that the entries of A,{ A, be of order n Myz, We call the latter
property, which is stated more precisely in Definition 5.2, well-connectedness.

Step 2: Approximating the r — p norm. The next step is to construct a suitable approxi-
mation of ||A,||,— . With the strong bound in Theorem 2.6, a natural choice would be to
approximate || A, |, » by || An~ V1| p- However, such an approximation turns out to be in-
sufficient on the CLT-scale. To this end, we use a nonlinear power iteration for finding r — p
norms, introduced by Boyd [9]. We start the power iteration from the vector vﬁ,o) =n"1/1.
We show that the rate of convergence of this power-method depends on the proximity of
v’(10) to v, (which we now have from Theorem 2.6), and the second largest eigenvalue of A,
(for which we use existing results from [2, 18, 30]). Our ansatz is that after only one step of
Boyd’s nonlinear power iteration, we arrive at a suitable approximation of || A, |- ». For any
k>1,teR,and x = (x1, ..., x,), define Y (¢) := |t|kflsgn(t), and Wi (x) = (Y (X)),
Then we show that (see Proposition 7.1) the quantity

| 4n ¥ (AT, (A D)l

(3.1) | Anllr—p =~ n(Ay) ==
g W, (ATW, (A, D)l

9

where r* := r/(r — 1) denotes the Holder conjugate of r, provides the required approximation
to || Ay l;— p. Asin Step 1, we also first show this approximation for a deterministic sequence
of matrices satisfying certain conditions, and then show that the random matrices we consider
almost surely satisfy these conditions.

Step 3: Establishing asymptotic normality. The final step is to prove the asymptotic normal-
ity of the sequence {n(A,)},en. This is a nonlinear function, and as it turns out, the state-
of-the-art approaches to prove CLT do not apply directly in our case. For that reason, we
resort to an elementary approach using the Taylor expansion to obtain the limit law. Loosely
speaking, we show that

1_1_4 1 1 1.1 2
(A~ b Zafj+5<p—l+r_l)np Pyl )
L] L]

which after appropriate centering and scaling yields the CLT result as stated in Theorem 2.2.
4. Preliminaries.

4.1. Boyd’s nonlinear power method. We start by introducing the nonlinear power iter-
ation method and stating some preliminary known results, along with a rate of convergence
result that will be crucial for our treatment. The framework for nonlinear power iteration was
first proposed by Boyd [9]. It has also been used in [4] to obtain approximation algorithms
for the r — p norm of matrices with strictly positive entries.

Henceforth, we fix n € N, and for notational simplicity, omit the subscript n, for example,
using A to denote A,, etc. Let A be an n x n matrix with nonnegative entries. For any x # 0,
define the function f(x) := [|[Ax||,/|lx ||, and set y := sup,( f(x). If a vector v is a local
maximum (or, more generally, critical point) of the function f, then since f is smooth, the
gradient of f must vanish at that point. This critical point can further be written as the solution
to a fixed point equation. Now, if there is a unique positive critical point, the fixed point
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equation may potentially be used to construct an iteration that converges to the maximum,
starting from a suitable positive vector. In fact, under suitable assumptions, this convergence
can be proved to be geometrically fast. The above description is briefly formalized below. For
g >1,t e Rand x € R", define

4.1 Y (1) =117  sen(0), Wy (x) = (Vg (xi))i—y»

where sgn(t) = —1,1, and O, for # < 0, ¢t > 0, and ¢ = 0O, respectively. Taking the partial
derivative of f with respect to x;, we obtain, for x # 0,

@y ¥ fc ) 201 Ax ;PO Ax), ATl — 1700 ol Ax )

where A; denotes the ith column of A. Equating (4.2) to zero fori =1, ..., n, yields

(4.3) Ix ;AT W, (Ax) = [|Ax |5 W, (x).

Now, let u with |u||, = 1 be a (normalized) solution to (4.3) and set y (u) := || Au||,. Then

straightforward algebraic manipulations show that
(4.4) W, (AT W, (Aw)) = (y @))?" "V,

where recall that ¥* = r/(r — 1). We denote the operator arising on the left-hand side of (4.4)
as follows:

S

(4.5) Sx =W, (ATW,(Ax)),  Wx:= ”Sx” for x 0.
x|,

Then (4.4) implies

(4.6) Su = (y(u))p(r*_l)u, Wu=u,

where the last equality uses the fact that |[u||, = 1. Thus, any solution to (4.4) is a fixed
point of the operator W. The following lemma proves uniqueness of this fixed point among
all nonnegative vectors, which can be viewed as a generalization of the classical Perron—
Frobenius theorem. The uniqueness in Lemma 4.1 was established for matrices with strictly
positive entries in [4], Lemma 3.4. Below we show that their proof can be adapted to matrices
with nonnegative entries when A7 A is irreducible.

LEMMA 4.1.  Assume that AT A is irreducible. Then (4.4) has a unique solution v among
the set of all nonnegative vectors. Further, v has all positive entries.

PROOF. First note that the maximizer of ||Ax||,/||x ||, over x # 0 (which always exists)
satisfies (4.4). Also, all entries of such a maximizer are nonnegative. To see this, if x has a
negative entry, then the value of |[Ax||, can be strictly increased by replacing the negative
entry by its absolute value, without changing || x||,.

Next, we show that, when A7 A is irreducible, any nonzero, nonnegative vector satisfy-
ing (4.4) must have strictly positive entries. This, in particular, will also prove that v has all
positive entries. We argue by contradiction. Let x be a nonzero, nonnegative vector satisfying
(4.4) and suppose, i € [n] be such that x; = 0. Then, by (4.4) and (4.6) we have

=1
Za,kxk

4.7 (Sx)i=0 = (AT (¥,(Ax)), Za], =0.
j=l1
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In fact, we have
(4.8) (Sx);=0 = (AT Ax), Za],<2ajkxk>

since all the elements of A and x are nonnegative, if AT\IJp (Ax) =0, then W (AT W, (Ax)) =
0 as well. Observe that (4.8) implies x; = 0 for all j € [n] for which there exists j " € [n] with
aj; >0 and a;; > 0. Repeating the above with i replaced by any such j, we conclude that
xj = 0. Continuing in this way and using the irreducibility of AT A, it follows that x i=0
for all j =1,...,n, which this leads to a contradiction. Thus, x must have strictly positive
entries.

To show uniqueness, let u # v be two nonnegative nonzero vectors satisfying (4.4) with
llull, = |lv||,, = 1. Further, without loss of generality, assume that ||Au||, < ||Av]|,. By the
above argument, both # and v have all positive entries. Then there must exist 6 € (0, 1]
such that u — 6 v has a zero coordinate. Let 6 be the smallest such number. Define U := {k :
ux — Ovi =0}, and note that u; — 6v; > 0 for all j € U°. Since |[ul|, = ||v||, and u # v, it
follows that U¢ # @.

CLAIM 1. There exists k € U such that
—1
(4.9) (Su)r > (SOV); = 67T (Sv)y.

PROOF. First, note that since AT A is irreducible, there exists k; € U, k» € [n], and
k3 € U, such that both ai,x, and a,k, are positive. Therefore, the inequalities ug, > Ovg;,,
Qkyky > 0, u; > Ov; for all i € [n] (the latter holds by the minimality of 6), and the nonnega-
tivity of A, u, and v yield

(4.10) (\Ilp(Au))k2 > (\Ilp(A(Qv)))kz and (V,(Au)), = (¥,(A(0v))), forallie [n].
This, together with the fact that ax,x, > 0, implies (AT W, (Au))i, > (ATW,(A(Ov))),, and
by (4.5), (4.9) holds with k = k;. [J

Now fix some k € U satisfying (4.9). Then, using (4.4), one observes that
Syt or=1(Sv) !

r—1 = —1
" G

(4.11) y@)f = =0""y ()"

Since p <r and 6 € (0, 1], this yields ||Au||, = y(u) > y(v) = ||Av]|,, which contradicts
the initial assumption that || Au||, < || Av|| ,. This proves the uniqueness. L[]

The (nonlinear) power iteration for finding y consists of the following iterative method:
Let v be a vector with positive entries and ||[v(?||, = 1. Then for k > 0, define

(4.12) p*HD = W,

In general, the above iteration may not converge to the global maximum y. However, as
the following result states, if in addition to having nonnegative entries, the matrix AT A is
irreducible, then the iteration must converge to the unique positive fixed point.

PROPOSITION 4.2 ([9], Theorem 2). Fix any 1 < p <r < 00. Let A be a matrix
with nonnegative entries such that AT A is irreducible. If v has all positive entries, then
limy o0 | AP, =y
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4.2. Rate of convergence. Due to Lemma 4.1, henceforth we will reserve the notation v
to denote the unique maximizer in (1.1) having positive entries and ||v||, = 1. The notation
y =y (v) = ||Av]|, denotes the operator norm || A, ,. Next, we will study the rate of con-
vergence of v© to v. Specifically, we obtain a fast convergence rate once the approximating
vector comes within a certain small neighborhood of the maximizing vector. The rate of
convergence result builds on the line of arguments used in the proof of [9], Theorem 3. How-
ever, as it turns out, since we are interested in the asymptotics in 7, the rate obtained in [9]
does not suffice (see, in particular, [9], equation 16), and we need the sharper result stated in
Proposition 4.3.

Recall for any x, y € R", we write x x y = (x;y;);. Define the linear transformation

(4.13) Bx == |v|*" » AT (JAv|P 7% x (AX)),
and the inner product
(4.14) [x, y]:={|v]" 2 xx, y).

When AT A is irreducible, v has all positive entries by Lemma 4.1, and thus (4.13) and (4.14)
are well defined for all p,r > 1. Observe that this inner product induces a norm, which will
henceforth be referred to as the “v-norm”:

(4.15) xlly =[x, 1% = (o =2, 1x2)1/%.

It is worthwhile to note that [|v]|2 = [|v||” and [Bv, v]* = ||Av||5. The following fact is im-
mediate.

FACT. The operator B is symmetric and positive semi-definite with respect to the inner
product in (4.14).

Fact 4.2 implies that the eigenspace of B has n orthonormal basis vectors and n nonnega-
tive eigenvalues corresponding to the Rayleigh quotient

[Bx,x] _ (|Av|"~2, |Ax|?)

[x, x] (lv]"=2, |x[2)

Henceforth, we will refer to (4.16) as the v-Rayleigh quotient to emphasize the dependence
on v. Using (4.4), note that Bv = y?v, and hence, y? is an eigenvalue of B. Let Ay > A3z >
-+- > X, be the other eigenvalues. In fact, as shown in the proof of [9], Theorem 3, y? is the
largest eigenvalue of B and is simple.

Now, recall that the convergence rate of the classical (linear) power iteration for the largest
eigenvalue of matrices depends on the the ratio between the largest and the second largest
eigenvalues. As it is stated in the proposition below, in the nonlinear case, this rate depends
on the ratio of the largest and second largest eigenvalues of the operator B.

(4.16)

PROPOSITION 4.3. Let A be an n x n matrix with nonnegative entries such that AT A
is irreducible and 1 < p <r < 00. Also let y have all positive entries. There exists ey =
go(p,r)>0and C =C(p,r) >0, both independent of n, such that if ||y — v||eo < €, then

(p— DX
(4.17) Wy —vlly =(1+Ce)———— Iy — vllv.

(r—=Dy?
Consequently, if for some k > 1 and ¢ < g, v® has all positive entries and || v — Voo <e,
then

— 1A
L2y

(k+1) _
(4.18) v v|, <(1+Ce) r—Dy?

R
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REMARK 4.4. It is worthwhile to point out that the convergence rate of the nonlinear
power method depends on quantities in terms of the v-norm, which depends on the maxi-
mizer v. Thus it might not be clear why this gives a useful rate of convergence. However,
as we will see in Lemma 7.3, the £,-bound on the maximizing vector in the nonlinear case,
stated in Proposition 5.3, enables us to obtain the desired rate of convergence result.

PROOF OF PROPOSITION 4.3.  For any two fixed vectors x, k € R”, and a function f, let
us denote the directional derivative of f at x as

3G ) = lim (e -eh) — (),

whenever the limit exists. Recall that x x y denotes the vector (x;y;);. Now, fix 1 < p <r <
oo. First, note that for a vector x with all positive entries, W, (x; h) = (p — DV, _1(x) x h,
and therefore,

8S(x;h) = (r* — )W (AT W, Ax) x (AT ((p — DW,_1(Ax) x Ah))

—1
- p—llllo(AT\IJp(Ax)) « Sx % L(x; h),
-

(4.19)
where W (z) = (1/z;); for a vector z with all positive entries and L (x; k) := AT(\IJp_l (Ax)*
Ah). Here, due to the irreducibility of AT A, note that AT W p(Ax) has all positive entries
whenever x does. Also, for g(x) := [|Sx||,, using (4.5) and (4.19), we see that

8g(x; h) (r¥,(Sx),8S(x; h))

sl
11
(4.20) = (ATW,(Ax), Wo(AT W, (Ax)) * Sx % L(x; b))
r—1|8x]|
p—1 1 p—1

= ——(Sx, L(x; h)) = ——
r—1 ||Sx||£‘1( = 1S |17

Now observe that since Wx || Sx||, = Sx,

(Wx, L(x; h)).

4.21) SW (v, h)||Svl|l, + W(v)Sg(v; h) =35S(v; h).
Therefore, from (4.19) and (4.20) it follows that

(4.22) SW(v; h) = (p 1) lr_l [IWo|*™" * L(v: k) — Wo(Wv, L(v; h))],
r—=1/|Sv|r

where we have used the fact that v and Wv have nonnegative entries Now, §W (v; -) is a
linear transformation. Clearly, §W (v; v) = 0 since L(v; v) = W, (Sv). Further, it follows that
the eigenvectors of §W (v; -) corresponding to the nonzero eigenvalues coincide with the
eigenvectors of B defined in (4.13) corresponding to Az, ..., A, given by (4.16). This follows
since Bh = Ah for some nonzero A # y implies that L(v; k) = A|v|" 2  h, which together
with Wv o v yields that

(4.23) (Wo, L(v; b)) o< (v, [v] "2 % h) = [v, k] =0.
Thus the second term in (4.22) is zero. Also the first term in (4.22) is proportional to v,
which yields the equality of the eigenvectors. In fact, the eigenvalues of 6 W (v; -) are given

by fT_ll)/—p Ai. Since the Rayleigh coefficients in (4.16) are computed with respect to the
| - Ily norm, we have

- (p—Drz

(4.24) [sW(v; b)|, < = Tyr

I121o.
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Now, for ¢ € [0, 1], define y, = v + t(y — v). Note that y, has all positive entries, since
v has positive entries, and y. Thus, the same expression as (4.22) holds for W (y,; k), with
v replaced by y;. Now, ||y, — V|loc < |y — vlleo < &, for any ¢ € [0, 1]. Using the fact that

(1+¢&)* =14 O(e), it follows that there exists a constant C < 0o and g¢ > 0 both depending
only on p, r, such that for all ¢ < g,

(4.25) SW(y,;;h) <(1+ Ce)dW(v; h).
Now, observe that
d
SWypy—v)= E(Wyz),
and therefore, using (4.6) and the fact that y, = v and y; = y, we obtain
1
(4.26) Wy—v:Wy—Wv:/ SW(y;; y —v)dr.
0
Thus, (4.24) and (4.25) implies that
(p—Dia
(4.27) Wy —vlly =(1+Ce)————Ily — v,
(r—1Dy?

and the proof follows. [

5. An {,-approximation of the maximizer. Given an n X n nonnegative matrix A, =
(al”j) and V C [n], we write

(5.1 d(i,V):=) als, i=1,....n.

jev
Also, we simply write d,, (i) = d,, (i, [n]). When A, is the adjacency matrix of a graph on n
vertices, d, (i) represents the (out)-degree of vertex i.

DEFINITION 5.1 (Almost regular). A sequence of matrices (A;),en is called (g,
Un)neN almost regular if there exists an ng > 1 such that for all n > ng

(5.2) max‘dn @) — I”l,LLn| =NnUnpéy.
i€[n]

In order to show the proximity of the maximizing vector to n~!/"1 for the p = r case, we
need another asymptotic property in addition to the almost regularity defined above.

DEFINITION 5.2 (Well-connected). For a constant C* € (0, 00), a sequence of matrices
(Ap)nen is called (C*, wy)nen well-connected if there exists an ng > 1, such that for all
n>ngandi,je€[n], Zke[n] a?ka,’(’j > C*nuﬁ.

When A, is an adjacency matrix, the well-connected property ensures that there are suffi-
ciently many 2-hop paths between any two sets of vertices. We now state the main result of
this section:

PROPOSITION 5.3. Let (Ap)ueN be a sequence of symmetric matrices with nonnegative
entries, such that A,{ A, is irreducible for all n € N. Assume that there exists (e,)peN C
(0, 00) with &, — 0, and (1) nen C (0, 1), such that (Ap)neN is (€n, Un)neN almost regular.
For eachn € N, let v, be the maximizing vector for || Ay ||, p, as defined in (2.4). Then there
exists an no > 1, such that the following hold:
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(a) For1 < p <r < oo, and for all n > ny,

2
_”pn—%(sn + 0(2)).

(5.3) [on =111 < -

(b) For p =r € (1, 00), further assume that (Ap)neN is (C*, in)neN well-connected for
some constant C* > 0. Then for all n > ny,

_ 10r _1
(5.4) ||v}’l —n 1/r1||00 S msnn r

We prove Proposition 5.3(a) and (b) in Sections 5.1 and 5.2, respectively.

5.1. Maximizer for the case p <r. Given a maximizing vector v, for [|A,|,— , as in
(2.4), define

(5.5 my = min v,;, and M,:= max v,,.
i=l,...n i=1,...n

Let (&, tn)nen with g, — 0 be as in the statement of Proposition 5.3. Suppose we can show
that, for all sufficiently large n, and for some C € (0, 00),
my

(5.6) 2 1= Cent 0(2).

n

Then, 1 =Y v, ; <nM}, so that M, > n~"/". Also, (5.6) yields

n
1= v, >nml,>nM,(1—rCe,+ O(e})).
i=1

Together, this shows that
[on =071 < Cn7 (60 + O(c2)).

Thus, to show Proposition 5.3, it is enough to prove (5.6) with C = rZ__pp‘

Recall Definition 5.1 and the associated notation in (5.1). Using (4.6), (4.5), and (4.1),
together with r* — 1 =1/(r — 1), and the fact that A,, is nonnegative and symmetric, we can
use (5.1) and (5.2) to conclude that for any j,

(Svn)j = (Wre (AT W, (A0))) ; = [(AT W, (As0)); 7T

e
( all (Mndnm)"‘l) 1
i=1

1
r—1
a?i (Myunp, (1 + en))p_1>

A

(5.7) =

1
< ((Munp)? "+ &) g, (1 + £,)) 71

_ 1 P
< (MP7 (npn)P) T (1 + ,) 7T

p—1
=M, (n,u,n)% (1 + r f 18n + 0(85))

A similar computation yields the following lower bound: For any i,

p—1
(5.8) (Sva)i = mi ! ()71 (1 - e+ 0(85))-
r —
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Now, take any iy and jo such that m, = v, ;, and M, = v,_ j,. Since by (4.6), v, satisfies

Sv,, x v,, we must have (S:;—"")’O = %, and consequently, (5.7) with j = jo and (5.8) with
i = ip together imply that

p__l_] p—1 1
(5.9) M, (1 + - £ “en+ 0(8,%)) > my! (1 - £ Ten+ 0(82)),

which in turn implies

p—r p—r 2
M~ =my ! (1— p18n+0(82)).

n
r —

Thus, using the fact that 1 < p < r, we have

r=p
my \ -1 2p 2 m 2p 2
(5.10) (#) > (1 — et o(sn)> = VZ > (1 T 0(8,1)).
This completes the proof of (5.6) with C = 2p/(r — p), and hence Proposition 5.3(a)
follows. O

5.2. Maximizer for the case p =r. We now prove Proposition 5.3(b), which entails es-
tablishing the bound in (5.4) under both the almost-regularity and well-connected conditions
on (A;)nenN. The basic idea again is to show that if a vector v,, satisfies Sv,, « v, then the ra-
tio of its maximum and minimum must be converging to 1 as n — oco. However, when p =r,
one can see that the exponents of M, and m, in equations (5.7) and (5.8) become zero, and
consequently the method used in Section 5.1 fails. The key insight to deal with this issue is
to define two sets of vertices: one consisting of all vertex indices i such that v, ; is suitably
large, and the other with v, ;’s suitably small. Due to the well-connectedness property, we
can ensure that each vertex from one of these sets must be connected to a certain number of
vertices from the other set in 2-hop paths. In that case, we show that if M,,/m,, is not close to
1, then the ratio (Sv); /v; will be very different for the vertices for which v; is minimum and
maximum, respectively. This leads to a contradiction.

For any r € [2, 00), r* € (1, 2] and further, by [29], Lemma 8, and the symmetry of A,,
A, 1Anllr—r = ||A,{||,*_>,* = ||Ap|l;*—,*. Thus, to study the asymptotics of [|A,|l,—r, it
suffices to consider the case r € (1, 2]. Let ng € N be the maximum of the ng specified in the
definitions of the almost-regularity and well-connected conditions and fix n > ng. Also, as in
the proof of Proposition 5.3(a), define m,, and M, as in (5.5). Note that it suffices to show
that for A, := (M, —my)/2,

(5.11) S Oren

M, — C*(r—1)
which is just a restatement of (5.6). To this end, define V,, :={i : v,; > M,, — A,}, and note
that M,, — A, =m, + A,,.

In the rest of the proof, we will obtain upper and lower bounds on each coordinate of
Sv, =W, (A,{ll!,(A,, v,,)). Using the definition of V,,, we have for each k € [n],

(Apvp)k < My Z aZj + My — Ay) Z alrglj = My Z al}zj — Ay Z al’:j’

JEWL J¢Vn J€ln] JEVn
(5.12)
(Apvp)k = (my + Ay) Z ag; +mp Z ag; =mp Z ag; + An Z ag;-
JEW JEVn J€ln] JEW

Take any ip and jo such that m, = v, ;, and M,, = v,_j,. We will use the following elementary
fact: Forall/l € (0, 1] and x € [0, 1],

I I
(5.13) (l—x)lfl—?x and (1+x)lzl+?x.
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Then, by (5.12), (4.1), the fact that r — 1 € (0, 1] and (5.13), we have

(AT, (Ayvp);
0D L apy [y s D]
M Mn " ke jeln] j &V
r—1 A Z alt. qr—1
n JEVn k]
5.14) = Sy (Tap) - e
veon N My 3 jern 9

r—1 —1 Ay Xjgv, 9
= Z alrcljo(z al’clj) |:1_r Ll I;j:|
2 My X jerm %

keln] jeln]

Also, since A, in (C*, u,,) well-connected, Definition 5.2 and the symmetry of A, imply

(5.15) Z Z agiax = C*nui(n —|Vul),
J &V keln]

and similarly,

(5.16) > Aljpkj = C*nps V.
J€Vn keln]

Using the (&, in)nen almost regularity of A, and substituting (5.15) in (5.14), we obtain

(AW (A, vn))jo _

< (a1 +2) " Y af, [1 _r— 1AL Xy, akji|

k
My e 2 My X jeim
s r—1A,
(5.17) < (an (U ea))" = = S (Ut en) 20 D afal
J¢Vn keln]
C*(r—1 A,

< (npa(1+2n)" — (1 + en)) 0l (n — |Val).

2 M,

Similarly, using almost regularity and (5.16) we obtain

(AW, (A, v,))i r-l r—1A, Xjev, %;
n rr_r; n))ig > Zazio(ZaZj) |:1+ —=n nj:|

Mn keln] jeln] 2 mp Y jen) 9y
r—1 n
r—1A, 2jev, a4
(5.18) > Y dl, (Z a;;.) [1+ An 2jev, Ji|
keln] ° jeln] ! 2 MY e 9y
C*(r—1) Ay (=)
> (npn(1 =)+ ——— = ~(n ) ﬁnwm

(Agwr(Anvn))jO _ (AZ\'IJV (Anvn))io

Since v,, satisfies Sv,, « v,,, we must have

— . Thus, combining

Mﬁ_l mpy
(5.17) and (5.18), we get for large enough n,

C*(r—1) A,

(5.19) 2 M,

< (nuy) [(1 +e,) — (1 —¢g,) ]

1— . r—1
" (npn)" Znun[<1+8n>’ 2(n —|Vul) + %qu
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Next, using &, — 0, (5.13) and the fact that r € (1, 2], we can lower bound the left-hand-side
of (5.19) as follows:

C*(r—1) A, . . (1 —ey) !
R ) i (1 )0 = Vi) + Vil
C*(r—1) A, _
> = ) g = Vol + (1= 2r8) | Val]
(5.20) CHr—1) A”
e
=~ ( ) n,u%[n — 2rney]
G =D A,
T ( D (1 —2re,].
Therefore, using (5.20) and Definition 5.2 in (5.19) shows that for large enough 7,
A, 2 Sre,
< 2 " " -
M, = T = (1 = 2rey) 2o Hoe) S ey

This proves (5.11), and hence, completes the proof of Proposition 5.3(b). [J

6. Approximation of the maximizer for random matrices. In this section, we show
that the assumptions in Proposition 5.3 are satisfied almost surely by the sequence of random
matrices of interest. This will complete the proofs of Theorems 2.6 and 2.8. Let Py be any
probability measure on [, R"*", such that its projection on R"*" has the same law as A,,
as defined in Assumption 1.

6.1. Random matrices are almost regular and well-connected. In Lemmas 6.1 and 6.2,
we verify the almost regularity and well-connectedness conditions for the homogeneous and
inhomogeneous instances of the random matrix sequences, respectively.

LEMMA 6.1. Let (Ap)nen be a sequence of random matrices satisfying Assumptions
1(1), (iii). Also, suppose that

2172
6.1) gy = 3<1°g” X 6—”) :
nin Hn

1. Suppose that o} > o log", where ¢ is as in Assumption 1(iii). Then (A,)peN is

(&4, n)neN almost regular Py- almost surely.
2. If Assumption 1(ii) is satisfied, then for any constant C* € (0, 1), (Ap)neN is also
(C*, n)nen well-connected, Py-almost surely.

PROOF.  Verification of almost regularity. First, note that 3 ; ¢\ (i) E[(a;’j — )< na,%
and Assumption 1(iii) provides the moment conditions required for Bernstein’s inequality
(see [8], Corollary 2.11). Therefore, using the fact that (al’?j) i<;j are i.i.d. as well as the union
bound, and then applying [8], Corollary 2.11, for both the upper and lower tails, we conclude
that for all sufficiently large n,

P(3i : |dn (i) — npn| > nunen) < nP(|d, (1) — npy| > npnen)

222

§2nexp(— Z Hnn ),
2(noy +cnpiyén)

(6.2)




5094 S. DHARA, D. MUKHERJEE AND K. RAMANAN

where c is as given in Assumption 1(iii). Since

logn o%\1/?
Cnp&n = 3c<n2;¢ﬁ ni X M—") =
n n

\S]

Jtogn <",

2,22
and “E2%n — 3]ogn, this implies
3no}

P(3i : |dy (i) — npen| > npnen) < exp(—=3logn + logn) =n"2,

which is summable in n. Thus the almost regularity holds Py-almost surely due to the Borel—
Cantelli lemma.

Verification of well-connectedness. Note that it suffices to prove the following claim.

CLAIM 2. Define the sequence (e, )n>1 as

M,,n

Then for all i, j € [n], | Yy aixarj — nuZ| < nu?./el, Po-almost surely.

PROOF. First, note that ¢, — 0 as n — oo since u_ = 0(), /nu, = w(logn) by As-
sumption 1(ii). Next, for each ﬁxedz J € [n], note that

E[Zaikakj] =(n— 2)/&, E[Z aizka,%j:| =(n— 2)(0,% + /,L,%)z
k k

By [8], Corollary 2.11, under Assumption 1, we have for all large enough =,

2 4 /
n Mn n
<2
(’Zazkak, 2> nul /e )_ exp[ 2102+ 12+ gl h)}

where ¢” is a constant that depends only on the constant ¢ in Assumption 1(iii). The proof
of the claim is completed by observing that since &), — 0 as n — oo, and p, and anz /Iy are
upper bounded by some fixed finite positive constant K, we have for all large enough n,

n*upen oy (logn)> _ (logn)’o;
2ol + 1D+ ey — (K + 122 13 n — 8K, 0

This completes the verification of Pg-almost sure well-connectedness. [
The next lemma states the version of Lemma 6.1 in the inhomogeneous variance case.

LEMMA 6.2. Let (A,)neN be a sequence of random matrices that satisfies Assumption 2.
=2
Also, suppose that €, = 3(1,;’% X Z—’;)l/z. Then (Ap)neN is (&n, n)neN almost regular, Poy-

almost surely. Moreover, for any constant C* € (0, 1), it is also (C*, pn)nenN well-connected
Po-almost surely.

PROOF OF LEMMA 6.2. The proof follows verbatim the proof of Lemma 6.1 once o, is
replaced by 0,,. [

PROOFS OF THEOREMS 2.6 AND 2.8. Note that Claim 2 also implies that A,{ A, 1S
irreducible. Thus, Theorems 2.6 and 2.8 are immediate from Proposition 5.3, and Lemmas 6.1
and 6.2, respectively. [J
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7. Approximating the r — p norm. The purpose of this section is to identify a good

approximation for || A, ||, , that is sufficiently explicit. We use the power iteration method
described in Section 4 starting with initial vector v,(qo) = n~1/71. Then after one iteration, we

get the vector v ,(11) which, by (4.12) and (4.5), is given explicitly by

(1) _ "I’r* (A,{\ij(Anl))
" W (AT W, (A, 1)

(7.1)

Then define the quantity

| A (AT, (A D),
PN AW, (A D)

(72) Na(An) == | Ayo)
which will serve as an approximation for ||A,|,— ,. We prove the following estimate:
PROPOSITION 7.1. Let (Ap)neN, (€n)neN, and (fin)neN satisfy the same conditions as

those imposed in Proposition 5.3. Then there exists a constant C € (0, 00) (possibly depend-
ing on p and r) such that for all sufficiently large n,

Az(n)e
1 Anvally = 1n(An)| < C—25"F [ Anlla—p.
M%ni"—?
where ny, is defined as in (7.2) and
IA,x 113

(7.3) A3(n) =

max )
x:(1,x)=0, x#0 ||x||2

The rest of this section is organized as follows. First, we estimate the closeness of vﬁ,l) to
v, in Proposition 7.2. In particular, we show that under the assumptions of Proposition 7.1
(equivalently, Proposition 5.3), v, can be approximated well by vﬁ,l). This is then used to

approximate the operator norm and complete the proof of Proposition 7.1.

PROPOSITION 7.2. Assume that the conditions of Proposition 5.3 are satisfied. Recall
the definition of the v-norm from (4.15). Then there exists a constant Cy < 00, possibly de-
pending on p, r, such that for all sufficiently large n,
AZ(n)en

n?u2

’

[on =], < C2
where Ay (n) is as defined in (7.3).
The next lemma provides key ingredients for the proof of Proposition 7.2.

LEMMA 7.3. Assume that (A,)neN satisfies the conditions of Proposition 5.3 and 1 <
p <r < o0o. Then the following hold:

. 1 —(1+1i-1
(@) lim, ooy 'n TP AL, = 1;

11
(b) maXy: | x|y, <1 ||Anx||p =l +o(1)n2"r maXy:|x|,<1 ”Anx”p;
(c) Let Ay(n) be the second largest eigenvalue corresponding to the v-Rayleigh quotient
defined in (4.16). Then

r=1
() < 2ul 20" 1AL ).
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PROOF. (a) By Proposition 5.3 and the almost regularity condition in Definition 5.1, it
follows that

1Anlr—p = lAwvallp = A1 (n™" " +0(n ™),

= |(2n + o)) (™" + 0 (™)1,

:Mnnl—l/r—i-l/p +0(unnl—1/r+1/p)’

from which the claim in (a) follows.
(b) By (4.15) and Proposition 5.3, we have for all sufficiently large n and x € R",

1

n 2
_ _r=2
(74) ||x||vn=<§,‘|vn,,-|’ 2|xi|2> =n"7% |xll2(1 +o(1)).
i=1

This implies that

[ Anxllp [ Anx|lp(1 +o(1))
= max

max |[|A,x|, = max

r=2
7.5) 0, <1 x#0 [xlly,  xF0 p=T x|
r=2
=n7 (14+o0(1)) max [|A,x]p,
lxl2<1
which proves (b).

(c) Recall the inner product defined in (4.14) and that y? is the largest eigenvalue of B ob-
tained from the v-Rayleigh quotient (4.16). Thus, by using the Courant-Fischer theorem [5],
Corollary III.1.2, and further justifications given below, note that

. [Bx, x] [Bx, x]
A(n) =min max <
u#0 x:[u,x]=0 [x,Xx] x:[Jvn 2", x]1=0 [x,x]
[Bx, x]
= max ——-—
x:(1,x)=0 ||x||vn
12 (|Anva|P 72, [Apx]?)
<n ~r max 5
x:(1,x)=0 ||x||2

2
[ Anx|3

2 1
< 2P 21 HI-D-D) !
x:(1,x)=0 ||x||2
r=1)
<2ul 7" T A (),

where the second equality follows since for any x, [|v,|>~", x] = 0 if and only if (1, x) =0,
and the second and third inequalities follow from (7.4) and the almost regularity. [

Now we have all the ingredients to complete the proof of Proposition 7.2.

PROOF OF PROPOSITION 7.2. Note that for all large enough 7, [|[v, e < 2n~'/" by
Proposition 5.3. Thus, for any x € R"” with ||x| o < 1, it follows that

n 1/2
2 1,1 2 1
(7.6) %11, = (Z |vn,i|’—2|x,-|2) <27 ey <2 )1x oo
i=1
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()

Then the vectors v’ =n~"/"1 and v,(f) from (7.1) in the nonlinear power iteration satisfy

(as justified below)
— Dz _
_ oM )P iy
oo =21, = (1o)==,
2(p — 1) A3(n)

=(I+o (1))—1 n2p2 [on —n=Vr1],

n

<(I4o(1))

2
227 1) A3
(pl ) e fn) ” v, — n—l/rlnOo
r— 2
2
<C Az(”)gn ’
=< 7712#%
where the first inequality is due to Proposition 4.3 and the fact that ||A,|7_ p =yP, the
second inequality is due to Lemma 7.3(a) and Lemma 7.3(c), and the third inequality is due
to (7.6). Proposition 7.2 then follows from an application of Proposition 5.3. [

PROOF OF PROPOSITION 7.1. Once again considering the vector v(l) in (7.1) obtained

after the first step of the nonlinear power iteration and 1, (A,) = || A, v, )|| p» from (7.2), we
have

Awvn ]l = 02 (A)| < 1A VAl = [Anv ]|
< |Anvn — AwviV,
< fou =", max 1Anxl,

1 1
<|lv, — v,gl>||vn(1 +o())n2"7 max |Anx|lp

1 1
< Joa =P, (14 0(D)n2 7| Ayl p.

where the third inequality is due to Lemma 7.3 (b). Proposition 7.1 then follows on using
Proposition 7.2 to bound ||v, — v\ v, O

8. Asymptotic normality. In this section we establish asymptotic normality of 1, (A;)
when A, satisfies Assumption 1. We start in Section 8.1 with some preliminary results.

8.1. Almost-sure error bound on the CLT scale. First, recalling the definition of A;(n)
in (7.3), we prove the following lemma.

LEMMA 8.1. Under Assumption 1 the following holds:
8.1) Ar(n) <3/no, + wn, Po eventually almost surely.

For the proof, it will be convenient to define the following centered version of A,;:
(8.2) A=A, — 117 4, 1,

PROOF OF LEMMA 8.1. First observe that for all vectors x with (1, x) =0, using (8.2),
we can write

(8.3) 1Anxll2 = [(AY + o117 — py 1)x |, < A% |, + snllx 2.
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Therefore, we have

A,x A%
lAwxl _ ARl

(8.4) Ar(n) = max < m
x:(Lx)=0x#0 |lx|l2 T x:x#0 [x]2

ne

Also, note that the matrix H,, = (hf’j)lf,-, j<n defined by H, := Ag /+/noy satisfies the condi-
tions of [30], Assumption 2.3, namely:
1. Foralli € [n], h}; =0, and for all 7, j € [n] with i # j, E[hl’.‘j] =0, E[(h?j)z] = %

2. Setting g, = +/noy, by Assumption 1(iii), there exists a fixed constant ¢; > 0 such
that for all n > 1 and k > 3,

Ella}; — unl“] k1 k=202 . 1
E[n) ] < —F—— <= < (bt
nick 2 pigk nqn

Also, g, > n, due to Assumption 1(ii) and further, g, = O (4/n) since an =0(u,)=0(Q).
Therefore, by [30], Theorem 2.9, for all sufficiently large n,

(V2]
xix£0 [[x]l2
which then implies (8.1) using (8.4). [

(8.5) <3y/noy,

Below we state a general version of Lemma 8.1 that extends the result to the nonzero
diagonal entries case.

LEMMA 8.2. Under Assumption 1 and the assumptions for nonzero diagonal entries in
Remark 2.3, the following holds:

(8.6) A2(n) <3Vnoy + pn +/2n(L2 + p2), Po-eventually almost surely.

The proof of Lemma 8.2 follows verbatim from the proof of Lemma 8.1, except that the
upper bound in (8.4) will be replaced by

1

Apx Alx L 2
IAnxla _ 1A ”2+un+<2(a{’,~)2> _

Aor(n) = max <
x:(Lx)=0x#0 |lx[l2 T x:x#0 x| =

Using standard concentration bounds [8], Corollary 2.11 (as used in (6.2)), we can bound
1 (al.”l.)2 <2n (gnz + p,%), Py-eventually almost surely. Note that this step requires the mo-
ment conditions mentioned in Remark 2.3. The rest of the proof is identical to Lemma 8.1
since since Ag has zero diagonal entries and hence, is omitted.
Next, we prove a bound on the error while approximating || A, ||, » by 7,(A,).

LEMMA 8.3. Under the conditions of Theorem 2.2, the following holds Py-almost surely:
1_1
| Ay ”er = ||Ayv, ||p =nu(Ap) + O(Un”p " )a
where vy, is the maximizer vector in (2.4) and n,, (+) is defined in (7.2).
PROOF. It suffices to show that Py-eventually almost surely,

0,13 1_1 [logn
(8.7) N Anvallp — na(An)| < C2np ™7 ,
My n
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for some constant C > 0, not depending on n. Indeed, if (8.7) holds, then Lemma 8.3
would follow immediately on observing that o,% = O(up) and u, > /(logn)/n by As-
sumption 1(ii).

To show (8.7), note that by Lemma 6.1, under Assumption 1 with associated constants
(Un)neN, (On)nen, (1) the sequence (Ay),en is Po-almost surely (e, tn)nen almost reg-

log n

o2
ular in the sense of Definition 5.1 with g, = O( ”) and (ii) for some constant

¢ €(0,1), (¢, un)neny well-connected in the sense of Deﬁnition 5.2. Also, note that the
well-connectedness also implies that AZ A, is irreducible. In particular, the conditions of
Proposition 5.3 are satisfied and we can apply Proposition 7.1 along with Lemma 8.1 to con-
clude that

(3\/ﬁo'n+,un)2 lOgI’l 62

X ||Anll2
pan3 2N P

C2n03(1+[0 ) [logn

To conclude the proof, we establish the following:

|||Anvn||p - nn(An)| <C;

CLAamM 3. For p € [1,2], () [[Anl2—p = (1 + 0p(1))p¢nn2 , (i) For p > 2,
1 1
|Anll2—p < C, [an2 ' for some constant C > 0.

PROOF. For 1 < p <2, the claim is immediate from Lemma 7.3(a). For p > 2, let a;
denote the ith row of A,,. Then | a; ||% =) j al-zj is a sum of independent random variables.

Using the law of large numbers, | a; ||% < Cno? with high probability. Therefore,

1

|Anllop = max (Z|<ai,x>|p)ﬁ

x:xl2<I\.
Iel<1\, S,

(8.8)

p 1
< ma (X lalfiel}) < Couentnd,
i€[n]

and this completes the proof of the claim. [

Now observe that

AZ(n)e o3 1_1 [logn
2( )l nl S Cz—zl’lp ¥ g ,
1—;4—7 n n

|||Anvn||p - nn(An)| <C

HUnn

Po-eventually almost surely, for constants C1, C» > 0, where the first inequality is due to

Proposition 7.1 and Claim 3, and the last step is due to Lemma 8.1 and the choice of ¢,. This
completes the proof of (8.7). U

REMARK 8.4. While we do not believe that the upper bound on ||A,l|l2—, given in
Claim 3 for the hypercontractive case (p > 2) is tight, it is worthwhile to point out that the

bound (1 + 0p(1))unn%+% does not work in general if p > 2. This can be seen from the
following observation: Recall that 1 denotes the n-dimensional vector (1,1,...,1) and ¢; is
the n-dimensional vector whose ith component is 1 and all other components are 0. Then
note that for any fixed i € [n],

1 An1llp
[IT]]2

+ A, ez”p

1
1 1 W7
lern (L or(D) (i)

NI—‘
S =

and

( + IP’(l))PLn
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Also,

1

1 1
a2t & ()7 ifand only if gy <0 TP

P . .
Therefore, the vector e; produces a larger norm value if u, << n 2?-D. As a side-note, this
observation hints that if 1, scales as n~!/! for some ¢ > 2, then for all sufficiently large p,
the maximizing vector for || A,||2— , may not be close to 1.

8.2. Proof of asymptotic normality. We proceed with the proof of asymptotic normal-
ity using the Taylor expansion. Let 1, ;(A,) == n,(t A, + (1 — )E[A,]). Thus, n,.1(A,) =
nn(Ap) and n,,0(A,) = n,(E[A,]). Using the Taylor expansion of 1, ;(A,) with respect to ¢,
we obtain

2

d 1d
(8.9 Mn(Ay) = nn(E[An]) + Eﬂn,t(An) -0 + Eﬁnn,t(An) t:

for some & € [0, 1]. The next proposition establishes asymptotics of the above derivative
terms. Recall from (6.3) that

;O (logn)2
3

n
oo

(8.10)

PROPOSITION 8.5. Asn — 00,

= (1+ oP(l))n_H%_% Z(ai"j —E[a}]),

d
— Mt (Ap)
1=l l,]

dt

2

(8.11) (iznnt(A )= (1+08(y=1))
1 n_H'%_% Ly (L. " 2
) [p_Hr—J nin ;(Z(aij_E[aij])) ’

j=1

where ¢, is as defined in (8.10) and the Op(\/¢],) is uniform overt € [0, 1].

The proof of Proposition 8.5 is deferred to Appendix 9. We now complete the proofs of
Theorem 2.2 and Theorem 2.9.

PROOF OF THEOREM 2.2. Note that Lemma 8.3 ensures that 7n,(A,) approximates
| Ay llr— p on the fluctuation scale, that is,

1_1
I Anllr—p — 1n(An)| = 0(opn? ")  Po-almost surely.

Thus, it is enough to prove (2.1) when ||A, ||, , is replaced with 1, (A;). The first term of
the Taylor expansion of 7, (A;) from (8.9) is

8.12) Mn(ELAL]) = ptn(n — D77

Note that 3, _ ;(af’; — /tx) is a sum of of iid random variables with total variation s2:=(y)o7.
By Assumption 1(iii), it follows that
o? 1
=)
ndo} noy,

(8.13) = ZE |, — 1] c

nl<J
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which is o(1) since no,, — oo by Assumption 1(ii). Thus Lyapunov’s condition [7], (27.16),
is satisfied and we can apply the central limit theorem for triangular arrays [7], Theorem 27.3,
to conclude that

i a = ) N2 — )
i< ij — Hn = Zi<j i M 4 Normal (0, 1).
Sn Jnn —1)oy,
Thus, Proposition 8.5 shows that the scaled second term on the right hand side of (8.9) is

23 (al — up)
2i<jlai; — tn 4, Normal(0, 2).

(8.14)

1 d
(8.15) 11 X gyt (An)
opnr " !
To evaluate the third term on the right hand side of (8.9), first note that Proposition 8.5,
together with Lemma A.1(iii) implies that for all £ € [0, 1]

= (1 +op())

=0 noy

2 2
1 of 1_1
il _ / -1/2 _ napTr
] = (1 0e([e)) (1 0507 ) (p =125 ) T
Now,
2 2 2.\ 1/2 2/3
o, L1 1_1 o (log n) log" n
—nr r /e P TQ, <= —_— 1 R— —_—
Mnn Ve, Kn n PRTE < Hn > P
which holds due to Assumption 1 (ii). Thus, we conclude that
d? 1 \o? 1_1 11
(816) _dtznn’t<An) ¢ = <p— 1+—r_ ])Enl) r +0P(n17 ro-n).

To complete the proof of Theorem 2.2, substitute (8.12), (8.15), and (8.16) into (8.9). [

We now turn to the proof of asymptotic normality in the dense, inhomogeneous case. First
we will prove a version of Lemma 8.1 in this inhomogeneous case.

LEMMA 8.6. Let (A,)neN be a sequence of random matrices satisfying the conditions
of Theorem 2.9. Then the following holds:

(8.17) Ao (n) <3+/c*no, + uy, Po eventually almost surely,

where recall that ¢* > 0 is a constant defined in Assumption 2.

As shown below, the proof of this lemma follows on arguments similar to the ones used
in Lemma 8.1, with the key difference that the bound on the 2 — 2 norm of the centered
random matrix needs a more careful treatment.

PROOF OF LEMMA 8.6.  We first prove the following bound on the centered matrix Ag
from (8.2):

Alx |, -
% <3c*/na,, Py eventually almost surely.
X2

To this end, note that the matrix H,, = (hf’/-)lfl-, j<n defined by H, = A2 /+/nd;, has the fol-
lowing properties: ‘

1. By Assumption 2(i), 4!, =0 for all i € [n] and E[h?j] =0foralli, jel[n],is#].

P =

2. By Assumption 2(ii), for all sufficiently large n,

Cy . 2 2 c*
5 = minE[(h;)"] < maxE[ (k)] < -



5102 S. DHARA, D. MUKHERJEE AND K. RAMANAN

3. Also, by Assumption 2(iv), for all sufficiently large n, and every k > 3

Ellaj; — mall _
k = k2

kok
n2g}

k
EHh:‘lj =

This shows that H, satisfies the conditions in [2], Theorem 2.1, Remark 2.2. Further, by
GerSgorin’s circle theorem [22], the largest eigenvalue of the matrix (E[(h?j)z]),-, j is bounded

from above by 2¢*G2. An application of [2], Theorem 2.1, Remark 2.2, yields (8.17). [
The next lemma proves a version of Lemma 8.3 in the inhomogeneous variance case.

LEMMA 8.7. Let (Ay)neN be a sequence of random matrices satisfying the conditions
of Theorem 2.9. Then the following holds Py-almost surely:

1_1
1A vallp = [ Anvi" ], + 0(Gun? 7).

PROOF. The proof follows the proof of Lemma 8.3 verbatim, except that Lemma 8.6
must be used in place of Lemma 8.1. [J

PROOF OF THEOREM 2.9. Note that Lemma 8.7 ensures that under the conditions of
Theorem 2.9, 1,,(A,) approximates || A, ||, » on the fluctuation scale, that is,

11
I Anllr—p — 1 (An)| = 0(6,n? " 7) Po-almost surely.

The rest of proof follows the same steps as the proof of Theorem 2.2, if one uses
Di<j 0,12(1' , j) in place of n?¢'2/2, the upper bound (c¢*&,)? for the variances of the entries,
and the CLT

Zi<j(a,-"j —Mn) g

— Normal(0, 1),
\/Zi<j O’}%(l,])

(8.18)

in place of (8.14). O

9. Relation to the £, Grothendieck problem. We end this section with the proof of
Proposition 2.11.

PROOF OF PROPOSITION 2.11. Let x* € R” be a maximizer of x” Ax with ||x*| = 1.
Then, using the method of Lagrange multipliers, there exists ¥ € R such that if g : R" —> R
is the function given by

g() =x"Ax —(lx ]z — 1),
then x* solves the equation
9.1) Vg(x)=2Ax —krW¥,(x) =0,

where recall ¥, (x) = |x|" _lsgn(x). Taking the inner product of x* with the left-hand side of
(9.1) evaluated at x = x*, and using the fact that (x*, ¥, (x*)) = ||x*||, = 1, it can be seen
that
9.2) M,(A)= sup xT Ax = (x*)TAx* = —.
el <1 2
Now, fix any nonnegative solution y of (9.1). It follows that
1

9.3) e (AT y) = (%)_ y
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and also, forr >2and p=r*=r/(r — 1),

kr\P~!
W, (Ay) = (7) W, (U, ()

T kr\P~ g
9.4) — A \IJ,)(Ay):(?) A \Ilp(\llr(y))

p—1
r—1

— Sy=wr*(ATwp(Ay>)=(%r)" W (AT W, (W, ().

Choosing p =r*=r/(r — 1), we have ¥, (¥, (y)) =y, and thus

p—

9.5) ”:<%yfuqﬂw:<%yjydmm@®.

Therefore, Sy o< y. Also, note that since r > 2, we have p = r* < r. Thus, from Lemma 4.1,
we know that Sx =y *1x has a unique solution in x that has all positive entries when A is
a symmetric matrix with nonnegative entries and A” A is irreducible (see Proposition 4.2).
Since the steps between (9.1) and (9.5) consist of implications in both directions, we conclude
that (9.1) also has a unique positive solution x* and for p = r*,

2 cr\ T Kr

9.6) A= p =+ = |Alr»p=—+-
2 2

Therefore, (9.2) yields that M, (A) = ||A||;—+ and the proof follows. [J

APPENDIX: PROOF OF PROPOSITION 8.5

Throughout this appendix, we will omit sub-/superscript n. Also, we will repeatedly use
the fact that row sums of the [E[A] matrix is (n — 1)u =nu (1l + o(1)). Recall

A, =tA+ (1 —-1E[A] forte]0,1],
A=A—E[A],
d = Al,

- xk

e =(d" 1), k>1.

Define E; := W, (A,1). We will now calculated the expression of the derivatives, along with
the value of the first derivative at t = 0.

Derivatives of E;. Since E; = W, (A1),

E;=(p—1DV,_1(A1)+d,
(A1) , o
Ef=(p—Dp-2)¥),2(A1)xd .
Att =0, we have
Ey= (nu)p_ll(l +0(1)),

(A2) _
Ey=(p—Dmw)P2d(1 + o(1)).
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Derivatives of Fy. Fy = A,V ,(A;1) = A;E;. Then,
F/=AE; + AE],
(A.3) Y _ .
F/=2AE, + A E;.
Att =0, we have
Fo= (nuw)P1(1 +o(1)),
Fy= ()P~ *[nud + (p — Dy 1] (14 o(1)).
Derivatives of S;.  S; = W,/ (Fy). Then
S =(r"— 1)V, _(F})x F,
S =Wo(F)*[(r' =2)S,* F/+ (r' = 1)S; = F/'],

(A4)

(A.5)

where the second step follows by noting that
A6) FoxS=F*((r=10)Y_1(F)*xF)= (" — 1)V (F)xF =(r'—1)S; * F,
' —  F/xS/+FxS =" —1)[F/ xS +S xF/].

Att =0, we have
= (1) T1(1 + o(1)),

Sy= (' = 1) ()™ [npd + (p — Dy pd](1 + o(1).

Derivatives of s;. sy = || S|,

(A7)

s —st_(r D(F;,S/),
(s)?

t
(s})?

St

+s CVFL )+ (FL S

(A.8) =—(r-D

=~ = D=4 (7 = D5 TVLEL S (S )L

st Lsl = (W, (S)), S)) = (F,, S))

= = Ds; ()" 57 s = (F S + e S)).

Att =0, we have

p
-In

1
so = (nu)Tnr (14 o(1)),

(A9) o 1
so=p(r' = 1)) 'n =7 m (1 + o(1)).
Derivatives of G;. G = A Sy
G,=AS, +A,S),
(A.10) " 1o "
G, =2AS, + A S, .

Attt =0, we have

Go= ()™ TT1(1 4 o(1)),
(A.11)

G = ()™~ [npud + p(r' — 1) p2] (1 +0(1)).
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Derivatives of g;. 8 = At S|l p-

—(p—1
g =g )(‘pr(Gt),G§>,
A12

t

g/ =—(p—1) g P Vl(p = DW,_1(G)). (G)) + (W, (G)). G))].

where we have used
—1
g’ g =(¥p(Gn), Gy),
(p— Dl (e + 8 '8/ = (p — DWp_1(G). (G)) )+ (W,(G). GY).
Att =0, we have
1

o= ()7 107 (14 o(1)),
(A.13) , 1

g0 = (n,u)mn_H;(p(r/ — 1)+ Dmi(14o(1)).
Therefore, at t =0,

(A.14) d <&>

S DS S
— = por 1 1).
7 s, n mi(1+o(1))

t=0

A.1. Auxiliary results. We start by listing a few auxiliary results that will be used in the
calculation of the second derivatives. Throughout the rest of the Appendix, ¢ will be given
by (6.1). Note that due to Lemma 6.1, with high probability, uniformly for all # € [0, 1],
A1 =nul(l + O(¢g)), and hence, throughout this section we will use, without reference,
that with high probability, uniformly for all ¢ € [0, 1]

E, = ()P '1(1 4 0(e)),

Fr=(np)P1(1+ 0(e)),
(A.15) P
Si = ()= T1(1 + 0 (o)),

Gr =™ 1(1+ 0(e)).

LEMMA A.1. Let Bo(¢) :=={x e R" : |x — 1|l < &}. Then the following hold:
(@) oo S enp2, and

sup [|Ax —d|loc Senpt.
XEBxo(€)

(i) |m1] =|(1,d)| = Op(no/Togn), and

sup  |(x, Ay) — (1,d)| = Op(en’/?0).
X,yE€Bxo(€)

(iii) my = (1, ‘T2> =n202(1 4+ Op(n—1/2)) and with high probability

sup  |{x, (Ay) = (Az)) — (1, 3*2)} = Op(en*o?).

X,y,2€Bso(€)
(iv)

- - -2
sup  |(x, A(y xd)) —(1,d"")| = Op(en’a?).
x,yeBxo(e)
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) (1, (A;d)*?) = Op(n3c?), and uniformly for all t € [0, 1],
sup (1, (A; (x * (Ay)))*?) = Op(n3c* 1~ (logn)?).

X,YE€Bso (e

PROOF. (i) The first bound follows from Lemma 6.1. Also,

sup  ||Ax —d| s < 8maxZ la;; — n| < emax(d; +nu) S enp.
x€Bx(¢) j=1 t

(i) The bound on (1, d ) follows using Var((1, d )) = O(n’*c?) and Chebyshev’s inequality.
Letx =1+¢ewy and y =1+ ewy with [|wy|[oc <1 and [|wy||o < 1. Then

(A.16) (x, Ay) = (1, A1) + e((wy, A1) + (1, Aw,)) + &% (w,, Awy).
We have,

E[Z |di — nll«l] < n\/E[(dl —np)?] = ”\/ZE(%‘ — 2 =0(n¥%0).
i j

Thus,
sup [(w,, A1) :Z|di ~npl = 0p(n30),
i

w0, Wy oo <1

(A.17) _
X A "
Wy, Auty) ‘5 1Allss = Op(o /),

wy.w,720! [[Wxll2]lwyll2
where the final step in the second inequality follows using (8.5). Also, (1, Aw y) = (wy, Al).
Thus, plugging in the Value of g, Part (ii) follows from (A.16) and (A.17).
(iii) Note that (1, d =Y, J, i(aij — w)(ajx — ), and thus,
= > E[(a;j — Wl — w)] = (1 + 0(1/n))n*c>

i,j.k

= Y El@; — waix — iy — W@ — w] =na*(1+ 0(1/n)).
i,j,k
i,,j,,k/

. —*2 . . .
Hence, we can conclude the asymptotics of (1, d ) using Chebyshev’s inequality. Next, there
exists wy, wy, w; € R” such that |[wylleo <1, [wyllo <1, [wyllcc <1, and

(A.18)  (x,(Ay)* (A7)

(A.19) =(1+ewy, (d +eAw,y) x (d + cAw;))

(A.20) =(1.d") +&[(wy. )+ (1. d » (Aw,)) + (1. d + (Aw,))]

(A.21) + &2 [(wy, d x Awy) + (wy, d *w,)] + 3wy, (Awy) * (Aw,)),
where we bound, with high probability,

fwx d*)| < (1,d"%) S n?0?,
(1, d x (Awy))| < [d]l2|All2=2llwy 2 S n%o?,
(wy,d x Awy)| < [d* w2 Alla—allwyll2 Sn’o?

(W, (Awy) * (Aw,))| < (1, [(Awy) * (Aw)[)| < [|Awy 2] Aw_[l2 < [Al3_,n Sn?
Therefore, Part (iii) follows.
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(iv) Note that
(x, A(y xd))=(1, A(y xd)) + e(w,, A(y xd))
=(1,d7)(1 + ) + sw,, Ay » ).

Therefore, with high probability, uniformly for all x, y € By (¢),
- - —%2 —%2 - - _
(x, Ay xd))— (1,d")| < e(1,d ") + ellwy 2l Alla2lly xd 2 S en*o? = Op(emy),

where we have again used that | All2—2 <So./n.
(v) Note that

E[(L, (Ad)?)] =" > Elaf;(ajx —wajj(aj — w)]-

iojk K

We can only have a nonzero contribution from an expectation term only if {j, k} equals one
of {i, j}, {i, j'}, {j/, Kk}, and, {j’, K’} equals one of {i, j}, {i, j'}, {J, k}. This implies that
i=k=k or {j,k} ={j,k'}. In both cases, there are at most n> choices of the indices,
and each of the terms can be at most O(c?) (using Assumption 1 (iii) to bound the higher
moments). Therefore, applying Markov’s inequality yields

(A22) (1, (A, d)*?) = Op(n’c?).
Next,
(A.23) Ar(x x (Ay)) = Aid + e Ay (wy xd) + e A (Awy) + %A, (W, * (Awy)).
Thus,
(A.24) (1, (A (wy + d))?) < 2| Asld||)5 S 2 (aw)?||d |13 = Op(no*logn).
Also,

l(eA/(Awy)),| =€ ijafjc_ljk(wy)k =¢ Xk:(wy)k Zafjdjk < eXk: Zafjéjk ,

J J J

and thus,

(A25) (1. (eAi(Awy))™?) < £ Z(Z
1 k

1

).

> aijdjk
J
Taking expectation,
(A26) ZE(Z > dijdjk
i k'

where we have used the following fact:

) =S (S[EEaanaan] )

i k =j,j

FACT. For any collection of real-valued random variables { X1, X», ..., X,},

E(Xk: |xk|>2 < <Z(E[X%])l/2)2.

k
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Indeed, the above fact can be seen by using the Cauchy—Schwarz inequality. Now, the
expectation terms in (A.26) can be nonzero only if j = j’ or k = i. Thus, for any fixed i,
when k =i, we have

12
[ZE(afjéjiafj/éj’i)] = 0(n(no?)'"?),
iJ’
and, when k # 1,
172 2172
[ ¥ Beandan] = ol
joi =i

Therefore, plugging the bounds in (A.26), we get

Ee(leis

)2 = 0(n*no?),

and hence, from (A.25),
(A.27) (1, (A (Awy))*?) = Op(nPc* " logn).
Next,
(A28) (1, (7 A (w * (Aw,)))"?) < e¥(1, (A, (1A]1))*)
= 0p(84l’l5u20’2) = 0p(n3a4u_l(log n)z),

where |A| = (laij — )i, j- Therefore, using (A.22), (A.24), (A.27), (A.28), and the fact that
forany x; e R, i =1,2,3,4, (x1 +x2 + x3 —I-X4)4 < 16(xf' —I—xg —i-xg1 +xf{), we get

(A.29) up )I(l, (Ar(x * (A9)))%)| = Op(n®o*n=" (logn)?),
Xx,yEBxo (e

and the proof follows. [J
A.2. Calculation of second derivatives at arbitrary point. Our goal is to calculate

d2

W(f_;) at an arbitrary point 7 € [0, 1].

A.2.1. Derivative of s; as given in (A.8). The goal of this section is to prove the following
lemma:

LEMMA A.2. Uniformly overt € [0, 1],

2
r__1 1 o
515 )1 fogn -
s/ = (' = ) = 1+ p(p — D)) =120~ 21y (1 + 0p(VE)).

To prove Lemma A.2, we need to calculate mainly three terms: (F;, S7), (F/, S;), and
(St, F/"). We will calculate the values of these terms in this section at an arbitrary point
t €10, 1]. Let us denote by x, y, z etc. generic variable vectors in By (g) :={x e R" : ||x —
1|0 < €}, which can change values from line to line.
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Calculating (Fy, S;). From (A.6), note that
(e SOl = (" = DSt F)l = (" = D)|(Sr, AE: + A E)|
S PTH 2 e, Ay) + (x, 2% d)] S () TP en o,
where in the last step, we have used Lemma (A.1) and the fact that (x,z xd) = (x  z, A1).

Calculating (F/, S;). Due to (A.5),
(F. )= (' = )(E. Wy (F) x F)
(A.30) _ " )
= (' = 1)W1 (F), (AE)** + (A E))*” +2(AE,) » (AE})).
Using Lemma A.1(iii),
(A31) (U1 (F). (AE)?) = ()™ TP 2[(1,d7) + Op(en’?)]
= (1+ Op(e)) () 177 2y,

Next, due to Lemma A.1(iii) and (v), uniformly for any x € By (&),

2
(A.32) (1, (A (x *»d))?) = Op(n(logn)za—ﬁzg).
n
Therefore,
(A33) (W1 (F), (AED) )| = Op((np) 1P 2ige’),

2
where ¢’ = Z—i % is as defined in (8.10). Finally,

(W, 1 (F), (AE) * (A E)))| < m?-X(\pr/—l(Ft))i x (1,

(AE,) = (AE))|)

< ()PP,

(A34) , (_AEt) (4B
< (™1, (AE;)*2>1/2(1, (AtE;)Q)l/Z
= Op((np) TP 24 VE).

Therefore, plugging the estimates in (A.30),

(A35) (F/.8)) = (1 + 0p (V) (' = 1) () 124y,

where we have used the fact that /&' > ¢.

Calculating (S;, F}'). Note, using (A.3), we get that

(A.36) (S, F/')=(S:,2AE], + AE}).

Now, due to (A.1), and Lemma A.1(iii) and (iv),

(S, AE) = (p — 1)(Si, A(¥,_1(A D) % d)) = (p — D(np) 1P %iin (1 + Op(e)),
and

(S, AcEl) = (p — D)(p — () TP 2475 (1 + Op(e)).

PROOF OF LEMMA A.2. Using (A.8) and the estimates derived in this section, we get
that, uniformly over ¢ € [0, 1],

2
s/ S(nu)%_ln%,/lo n-a—,
| t| g 1

s/ = (' = 1)(r' = 1+ p(p = D)) 7T 20~ F 71y (1 4 0p(Ve)). -
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A.2.2. Derivative of g; as given in (A.12). The goal of this section is to prove the fol-
lowing lemma:

LEMMA A.3. Uniformly overt € [0, 1],

2
< (s L
g N(n/v(/)r Inr log}’l ,
i logn =
1 4L
g!Z[p—l+(r’—1)(1’(”_”+m+1)]%)%—1n (14 0p(VE)).

Similar to Section A.2.1, the proof of Lemma A.3 requires three terms: (¥,(G,), G;),
(Wp—1(Gy), (G))*?), (W,(Gy), G/). We will calculate the values of these terms in this section
at an arbitrary point ¢ € [0, 1]. Recall (A.15).

Calculating (¥ ,(G,), G}).
(W,(G)), G))=(¥,(G,), AS; + A,S])
=(W,(G), AS))+ (r' — D)(¥,(Gy), A/(Y,_ 1 (F) * F)))
=(W,(Gy), ASi)+ (r' = )W, (Gr), A(Wr_1 (Fr) % (AE; + AE}))).

Therefore, from Lemma A.1(ii),

_ 2

- (p—1)
(W, (G), AS) = () =T TP~ (2, Ay) < () 1P en 20,

Also,
(G, A (W (P (AE,+ AED)|
= [(Ur 1 (F) * (A0 (G), AE )| + [(Wry (F) * (AW, (G), A
(A.37) < (np) p(rp—_11)+P*1+£|<x’ Ay)|

+ [((Ar (W1 (F) % (ArY,(Gy)))) * W ,—1 (A1), Al
where the last inequality uses Lemma A.1(ii) again.
Calculating (V,_1(Gy), (G})*?). First, due to (A.10),
(A38) (W, 1(G)), (G))) = (Wp_1(G)), (AS)* + (A;S))"? +2(AS)) » (A,S))).

Similar to (A.31), Lemma A.1(iii) yields

(A.39) (W,-1(G1), (AS)*) = <nu)%“’*2n‘zz(1 + Op(e)).
Now,
(W,-1(Go). (AS))*)
(A40) S{Wp—1(Gr), (Ar (W1 (Fy) x (A}_E, +AE)))"7)
< 2(‘11[,_1 (Go)y (A (Y1 (Fy) * (AE;)))*Z + (A (W — 1 (Fy) = (AIE;)))Q)

r(p=2)

< () TP (A (W1 (F) % (AE)))™ + (A (W1 (F) * (A E)))) ™),
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where the last inequality uses (A.15) and the fact that each term of (A; (W,/_ (F;) * (AE;)))*?
and (A; (W, _1(Fy) % (A,E;)))*2 is nonnegative. We will calculate the two terms in (A.40)
separately. For the first term, we can write

(1, (A (W1 (F) % (AED))™) = (1) 7121, (A (x % ()™

= OP((HIL)%8/H_12),

where ¢’ is defined in (8.10) and the last equality uses Lemma A.1(v).
Next, using (A.1) for the second term in (A.40),
* 2p 3 *.
(1, (A (@1 (F) + (AED) ) S )71 sup [(1, (A (x % (A (y <)) )]
(A.42) *:y€Boo(e)
2 7\ *. 37 *
S ()T (L (A7) )] + (L. (A71d1) )

(A41)

Now,
. 2
E|(1, (A%d)*?)| = ZE<Z ajjaji(ax — M))

i Nkl

=Y > Elajajlan — waijajp(aer — )]
ikl

j,,k/,l/
= 0(n’ max(u*o?, u?c%)),

where, in the above sum, the expectation will be nonzero only if {k,!} is the same as
one of {i, j}, {j, k}, {i, j'}, {J'k'}, {K',I'}, and, {k/,l'} is the same as one of {i, j}, {j, k},
{i, j'}, {k, 1}, {j’, k'}. There are at most n> such choices of indices and the main contribu-
tion comes from the case when there are 5 distinct indices. In that case, each term is at most
O (max(uto?, n?o*)). Also, for the second term in (A.42), using Lemma A.1(i), we get

E[s*(1, (A71d1))] S n°iPo* log n.
Therefore, from (A.42), we get
i 2. o
(1, (A (W1 (Fy) * (ALE}))) 2>| = O]p((nu) = max{naz, nﬁ logzn})

| o2
(A.43) = 0P<(n;,L)f2pln_12 maX{ =, 0—2 logzn})
n’ np
2
= Op((np)Trze’),

where ¢’ is given by (8.10). Thus, plugging in the estimates from (A.41) and (A.43)
into (A.40), we get

2
(A.44) |(lIlp_1(Gt), (A,S;)*2)| = OP((nu)r%’Lp_Znﬁzs’).
Finally, similar to (A.34), using (A.39) and (A.44), we can write that

2
- p S o
(A45) (Wy—1(Go). (AS) * (AS))) = Op((np) TP~ 2ip/e).
Therefore, using (A.39), (A.44), and (A.45), we get that uniformly over ¢ € [0, 1],

(A.46) (W,_1(G)). (G = () T+ 2ma (1 + Op(Ve')).
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Calculating (V,(G,), G/). Using (A.10),
(W,(G), G))=(¥,(G,),2AS, + A,S))
(A.47) =2(r' — 1)(W,(Gy), A(V,_ 1 (F) % F)))
+(Up(Gr), At (Wo(F) * [(F —2)S; « F/ + (r' — 1)S; = F/'])).
As before, we will calculate the above terms separately.
(W,(Gy), A(W,—1 (Fy) x F}))

=(V,(Gy), A(V,_ 1 (F) * (AE; + A/E))))
(A.48) =(W,(Gy), AV, 1 (F) % (AE 4+ (p — DA(Y)p_1(A1) xd))))

=(V,(Gy), A, 1 (F) * (AE))))

+(p = DV,(G), AW, 1 (F) * (A (W1 (A1) % d)))).

For the first term in (A.48), due to Lemma A.1(iii)

(A.49) (U, (Gp), A(Wp_1(F) % (AE)))) = (n) =177 *(x, A(y * (A2)))

- (nu)%ﬂ’*%z(l + Op(¢)).
For the second term in (A.48),
(Wp(Go)y A(Wyr—1 (F) » (A (Wp-1(A/D) +d))))|
— )BTy w (Ax), A2 xd))
(A.50) < P IL, (v« G2 I, (A0 )]
< i ET Iy, (A2 (1L (A x D))
< O]P((nﬂ)éﬂ_z”_n‘/;),

where in the last inequality, we have used Lemma A.1(iii) and (A.29). Therefore, (A.48)
yields

(A.51) (W,(G), A(W,_ (F) * F))) = (np)7 Frtr-2 2 (14 0p(Ve)).
Next, from (A.5), note that
(A.52) S x F = (r' = 1)W,_ (F) * (F))*,

and thus, each term in S; » F/ is nonnegative, Po-almost surely. Therefore, we can write
using (A.35),

(W,(Gy), A (Wo(Fy) + S, = F))) = (A \pr(Gt)) «Wo(F,), S, + F))

(A.53) = ()" ( S/ x F))(14 Op(e))

= —1)(n,u)r l+p 2 (1+O]p>(\/_))
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Also, from (A.3) we get
<\IJp(Gt), Al‘(\pO(Ft) *Sp x Ft//)>
= 2(\Ilp(Gt), A (Wo(Fy) * S¢ % [AEZ/])) + (\IJP(G,), Ai(Wo(Fy) xS« [ALE/')))
+(p = D(p = DW(G). Ar(Po(F) » S, % [Ar(Wp2(A 1) xd)]))
2
= p(p — D)1y (1 + Op(e)),
where in the last step, we have used Lemma A.1(iv) and that
(W,(Gy), Ar(Wo(F) * S, x [AE}]))
=(p = D{(Ar¥,(G)) x Wo(F) * S, A(V)-1(A1) xd))
2
= (p— D) TP iy (1 + Op(e)).
Plugging in the values from (A.51), (A.53), and (A.54) into (A.47),
p2
(\IIP(G,), G/)= (nu)ﬁ+p—2n'12[2(r/ -+ =2)F' =)+ ("= 1)p(p—1)]
(A.55) x (1+ Op(Ve'))

2
=0 =)= D 4 1)) T (1 4+ 0p(VE)).

PROOF OF LEMMA A.3. Using (A.12) and the estimates derived in this section, we get
that uniformly over all 7 € [0, 1],

2
r 1 o
15 G ton g

1
(A.56) g;’:|:p—1+(r/—1)(p(P—1)+:+l)]

x () =T iy (1 4 0p(VE)). O

PROOF OF PROPOSITION 8.5. From (A.14), we can write

d d 8t S I S B
—_ A = —| — = p r 1 1 .
ar Nt ( n) —o  di (St) -0 n ml( + o( ))
Also, using (A.15) and Lemmas A.2 and A.3, we get
d? d* (g 1 iyl _lmp
— Ap)=—=|—)=|p—1 por 1+0 ).
53 (An) = 7 (St) [p +— 1]” W( + Op(Ve')) 0
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