The Annals of Applied Probability

2024, Vol. 34, No. 6, 5228-5257
https://doi.org/10.1214/24-AAP2090

© Institute of Mathematical Statistics, 2024

MEAN-FIELD ANALYSIS FOR LOAD BALANCING ON SPATIAL GRAPHS

BY DAAN RUTTEN® AND DEBANKUR MUKHERJEE"

Industrial and Systems Engineering, Georgia Institute of Technology, *drutten@ gatech.edu,
b debankur. mukherjee @isye.gatech.edu

The analysis of large-scale, parallel-server load balancing systems has
relied heavily on mean-field analysis. A pivotal assumption for this frame-
work is that servers are exchangeable. However, modern data-centers have
data locality constraints, such that tasks of a particular type can only be
routed to a small subset of servers. An emerging line of research, therefore,
considers load balancing algorithms on bipartite graphs where vertices rep-
resent task types and servers, respectively. Due to the lack of exchangeabil-
ity in this model, mean-field techniques fundamentally break down. Recent
progress has been made on graphs with strong edge-expansion properties,
that is, where any two large subsets of vertices are well-connected. However,
data locality often leads to spatial graphs that do not have strong expansion
properties.

In this paper, we develop a novel coupling-based approach to establish
mean-field approximation for a large class of graphs which includes spatial
graphs. The method extends the scope of mean-field analysis far beyond the
classical full-flexibility setup. En route, we prove that, starting from suitable
states, the occupancy process becomes close to its steady state in a time that
is independent of system size, which might be of independent interest. Nu-
merical experiments are conducted, which positively support the theoretical
results.

1. Introduction.

1.1. Background and motivation. The study of load balancing algorithms for large-scale
systems started with the seminal works of Mitzenmacher [27] and Vvedenskaya et al. [39].
Since then, there has been a significant development in our understanding of the performance
of various load balancing policies and their tradeoffs between quantities like user-perceived
delay, communication overhead, implementation complexity and energy consumption; see,
for example, [3, 4, 11, 12, 15, 17, 22, 32, 37, 38, 40] for a few recent, representative works
from various research domains. A pivotal methodological tool behind this success has been
mean-field analysis. The history of mean-field analysis, in its current form, goes back to the
foundational works of Kurtz [18-20], Norman [30, 31] and Barbour [5]. The high-level idea
is to represent the system state by aggregate Markovian quantities and characterize their rate
of change as the system size grows large. In the context of load balancing, this representation
is the occupancy process qN (1) = (ql-N (t))i>1, where qiN (t) denotes the fraction of servers
with queue length at least i in a system with N servers at time #. As N — oo, ¢" (¢) tends to
behave like a deterministic, continuous system described by an ordinary differential equation
(ODE) that is analytically tractable. A pivotal assumption for the above scheme to work is
that the aggregate quantity ¢V (¢) is Markovian such that its rate of change can be expressed
as a function of its current state. If "V (¢) is not Markovian, not only does this technique break
down, the mean-field approximation may even turn out to be highly inaccurate.
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In load balancing systems, if servers are exchangeable, then g” (¢) is indeed Markovian.
However, the growing heterogeneity in the types of tasks processed by modern data centers
has recently motivated the research community to consider systems beyond the exchange-
ability assumption. The main reason stems from data locality, that is, the fact that servers
need to store resources to process tasks of a particular type locally and have only limited stor-
age space. Examples of these resources may include databases or machine learning models
specific to particular tasks. This limits the flexibility of the assignment of a task to a queue,
which now needs to ensure that the corresponding server is able to process the assigned task.
In fact, the lack of flexibility also arises in much broader contexts such as due to a spatially
constrained network architecture (e.g., in bike-sharing), see [14, 25, 32], or in the context
of geographically distributed data centers [21, 24]. An emerging line of work thus considers
a bipartite graph between task types and servers; see, for example, [9, 10, 29, 35, 36, 41].
In this compatibility graph, an edge between a server and a task type represents the server’s
ability to process these tasks. In this model, if the graph is complete bipartite, then the prob-
lem reduces to the classical case of a fully flexible system. In reality, the storage capacity
or geographical constraints forces a server to process only a small subset of all task types,
leading to sparser network topologies. This motivates the study of load balancing in systems
with suitably sparse bipartite compatibility graphs.

1.2. Fundamental barriers. The analysis of sparse systems poses significant challenges,
mainly due to the fact that the vector ¢V (¢) is no longer Markovian. In fact, for general
graphs, there does not even exist a Markovian state descriptor that is an aggregate quantity
such as ¢V (¢), and one needs to keep track of the evolution of the entire system in order to
know the instantaneous transition rates. These barriers are the reason, as noted as early as
by Mitzenmacher in his thesis [27], that a network topology is a “very interesting question...
(but) seems to require different techniques”. One key question to understand here is: Under
what conditions on the (sparse) compatibility graph does the system behavior retain the per-
formance benefits (in terms of the queue length behavior) of the fully flexible system? From
a more foundational standpoint, this is equivalent to understanding how much the validity of
the mean-field approximation can be extended to nontrivial graphs.

A few recent works have made successful attempts in analyzing compatibility graphs that
possess the proper edge-expansion properties [29, 35, 41], of which [35] is most relevant to
the current work. Here, the JSQ(d) policy was considered, where each arriving task joins the
shortest of d randomly selected compatible queues. The authors showed that if the graph is
“well-connected”, the limiting occupancy process is indistinguishable from the fully flexible
system both in the transient limit and in steady state. Even though the well-connectedness
condition allows the graph to be sparse, it requires the graph to have strong edge-expansion
properties in the following sense: Pick any subset of servers of size SN for § > 0 however
small. Then, asymptotically, almost all task types should be connected to this set and have
a 8 fraction of their compatible servers in that set. This condition allows the authors in [35]
to ensure that, for any occupancy measure, each task type observes approximately the same
queue length distribution within their set of compatible servers. As a result, the evolution of
the queue length distribution in any neighborhood happens in the same way and this ensures
that, asymptotically, the process evolves in the same way as the fully flexible system.

The well-connectedness property is not satisfied by spatial graphs such as random geo-
metric graphs [33]. The edges in a spatial graph are “local”, and hence dispatchers in one
location cannot assign tasks to servers in spatially distant locations (see Figure 1). However,
as already pointed out via numerical simulations in [35], in steady state, sparse graphs still
retain the performance benefits of a fully flexible system, even though the neighborhood cou-
pling based method in [35] fails for these graphs.
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(a) Erd6s—Rényi graph (b) Random geometric graph

FI1G. 1. Examples of graph topologies generated by an Erdds—Rényi graph and a random geometric graph with
same average degree In N, where N is the number of vertices. The picture illustrates the fundamental difference
between the nature of global vs. local connections in the two graphs.

Aside from the technical difficulties, there is a fundamental barrier that prevents the mean-
field approximation from being applied to spatial graphs. This can be understood by a simple
counterexample: If all the high queues in the system are located in a small spatial region,
then the behavior of the system will be qualitatively different from when they are spread out
across the system, as it will take more time for the congestion to disperse throughout the
rest of the graph. In general, in these situations, the behavior of the system in a local neigh-
borhood of the graph may be very different from the global behavior. Therefore, one cannot
expect the transient behavior of a system with spatial compatibility constraints to coincide
with the fully flexible system. However, in steady state, it may happen that the situation de-
scribed in the above counterexample does not occur with high probability, making the steady
state still behave like the fully flexible system. Thus, one needs to characterize the limit of
the steady state distribution without proceeding via the process-level mean-field limit, as the
transient limit will be provably different. Alternative techniques such as the moment gener-
ating function (MGF) method and Lyapunov approaches may allow moment bounds on the
steady-state via Stein’s method, but cannot commonly be used for the exact characterization
of the limit of stationary distributions. Although Stein’s method has been successfully used
for analyzing the join-shortest-queue (JSQ) policy [41], these results critically rely on the
state space collapse or the degeneracy of the steady state, observed as a consequence of JSQ
(i.e., all queues are of length zero or one, asymptotically). When the limit of the stationary
distributions is nondegenerate, as is the case in the current paper, we enter uncharted waters
in the mean-field approximation literature, and formalizing a new method to take care of the
above difficulties is one of the main contributions of this paper.

2. Main contributions. Let Gy = (Vy, Wy, Ex) be a bipartite graph, where Vy de-
notes the set of servers, Wy denotes the set of task types and Exy € Vy x Wy denotes the
compatibility constraints. Throughout, we will use the words task-types and dispatchers in-
terchangeably. Here, N := |Vy| equals the number of servers and M (N) := |Wy| equals the
number of task types. Let Ny, := {w € Wy : (v, w) € Ey} be the compatible task types for a
server v € Vy and Ny, ;= {v € Vi : (v, w) € Ey} be the compatible servers for a task type
w € Wy. Denote df)v = |Ny| and du]\)’ = | Ny |. Tasks of each type arrive as independent Pois-
son processes of rate AN/M (N) and each task requires an independent and exponentially
distributed service time with mean one. Thus, the total arrival rate is AN and we assume
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A < 1 to ensure stability of the system. If a task arrives at a dispatcher w € Wy, then d > 2
servers are sampled uniformly at random from A/, with replacement, and the task is assigned
to the shortest queue among the selected servers, breaking ties at random. The tasks in the
queue are handled one at a time in first come, first served order.

The criteria for ergodicity of the queue length process for such a system are known and
have been developed, for example, by Bramson [6] and Cardinaels et al. [10]. However, in
this paper, we work with a slightly stronger, but simplified condition on the graph as follows.
Let
Z 1

ay

weN,

(2.1 (Gn) = AN
' PREN) = O M)

Using Lyapunov arguments, it is not hard to show that p(Gy) < 1 implies that the queue
length process of the system is ergodic for any d > 2 (Proposition 4.1). Conceptually, p (G )
is the maximum load on a server if each dispatcher uses random routing (d = 1) and hence it
should seem natural that this condition implies stability also for d > 2. To avoid heavy-traffic
behavior as N — oo, we will assume that p(Gy) < pg for all N > 1 for a constant pg < 1
throughout.

REMARK 1. In comparison, the stability condition in [10] reduces to: the queue length
process is ergodic if for all w € Wy and U C Vy, there exists a probability distribution
Ppw,u (-) on U such that

AN -1
(2.2) max ——— ('Agwl) > pwu) <1.
UGVN M(N) weWN UC-/\/U)
|U|:miﬁ(d,\j\/u,|)

However, to prove the mean-field approximation, we require later that ﬁ 2 weN, dLN ~ 1

for all v € Vi (see the definition of y (Gy) in (2.3) and Corollary 3.2) and hence p(Gy) =~
A < 1 follows immediately. We will therefore work with the simplified stability condition in
(2.1).

We make contributions on four fronts: (a) We establish bounds on a large-scale mixing
time of the underlying Markov process; (b) we quantify how much the transient behavior
deviates from the mean-field ODE, starting from i.i.d queue lengths, in terms of certain graph
parameters; (c) we combine (a) and (b) to formulate a criterion of when the global quantity
g" (1) is asymptotically indistinguishable from the fully flexible system in steady state; and
finally (d) we show how standard generative models for sparse spatial graphs and a large class
of sparse regular graphs satisfy this criterion for convergence.

(a) Large-scale mixing time bounds. Mixing time bounds for large-scales systems are
known to be hard to obtain. Even without any compatibility constraints, bounding the mix-
ing time for the JSQ(d) policy for large N requires significant work [23]. First, as discussed
in [23], a major challenge is posed by the effect of the starting state. As the state space is in-
finite, if the system starts from a bad corner of the state space, it may take a very long time to
come back to the “regular states”, which may even render a mixing time bound useless for our
purposes. Second, in the presence of a compatibility graph structure, regenerative arguments,
such as bounding the time the Markov process takes to hit a fixed state [13], cannot be used
either since these regeneration lengths are typically exponential in N. In fact, for large-scale
analysis we do not require the conventional notion of mixing time. Instead, we introduce a
notion of large-scale mixing time as follows: starting from a set of suitable states, if we com-
pare the distribution of ¢” (¢) and its steady-state distribution, when can we say that they are
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“close” in a suitable sense? Here, it is worth pointing out that, since g” (¢) is not a Markov
process, by its steady-state distribution we mean the functional g” () evaluated on the sys-
tem in steady state. We show that this mixing time does not scale with N (Theorem 3.8).
This implies that, starting from the set of suitable states, observing the system at this mixing
time will give us a good approximation of the steady state. In the above, the set of “suitable
states” in particular includes the empty state. A crucial argument in the proof of Theorem 3.8
relies on a novel stochastic coupling. If one copy of the system starts from a state where the
queue length at each server is at most the queue length of the corresponding server in another
copy of the system, then there exists a stochastic coupling such that this ordering is main-
tained throughout for any sample path (Proposition 3.9). We believe that Proposition 3.9 and
Theorem 3.8 hold for a large class of such monotone property, which may be of independent
interest.

(b) Process-level limit starting from i.i.d. queue lengths. As the system quickly converges to
the steady-state from any of the set of suitable states, it is sufficient to characterize the sample
path of a subset of these states. Thus, we next characterize the asymptotics of the sample path
of ¢ (¢) starting from a system with i.i.d. queue lengths. Let us introduce two quantities of
the underlying graph:

1 1

N N
(2.3) o (Gy) = lr)rel?/)l\(/ W w%\:/' @ —1] and y(Gy):= M) w;:/N

1
an-

Loosely speaking, ¢ (G y) quantifies the extent to which the bipartite graph is regular and
y (G ) describes the average inverse degree of the task types. For example, if dg = dgsk
for all w € Wy and dY = dX ., forall v e Vy, then $(Gy) =0 and y(Gy) = 1/d], (see
also Definition 3.5). We prove that the process-level limit remains close to the system of
ODE:s for the fully flexible system, in terms of the ¢>-distance, if ¢(Gy) and y(Gy) are
suitably small and the system is started in a state that has its queues “sufficiently spread out”
(Theorem 3.10). This in particular includes states with i.i.d. queue lengths. Most importantly,

the result in Theorem 3.10 is nonasymptotic.

(c) Mean-field approximation. Leveraging Theorem 3.10 and the mixing time bound, we
determine the applicability of the mean-field approximation for any compatibility graph in
terms of the local properties ¢ (G ) and y (G ). In particular, in Theorem 3.1 we provide a
finite N guarantee that, for any graph Gy, the £,>-distance between the steady-state and the
fixed point of a system of ODEs is bounded by

C
(In(1/ max{¢(Gn)?, y (GN)I})*

for constants ¢, > 0 that depend only on A, pg and d. In particular, if max{¢(Gy),
y(GNn)} = 0as N — oo, then the distribution of ¢V (r), in steady state, converges weakly to
the Dirac delta distribution at the fixed point of the ODE corresponding to the fully flexible
system.

(2.4)

(d) Implications for specific graph classes. To show that the conditions on the graph se-
quence are satisfied by common graphs, we consider two sequences of sparse graphs for
which the condition max{¢ (Gy), ¥y (Gn)} — 0 as N — oo is satisfied.

First, let (Gy)n>1 be a sequence of random bipartite geometric graphs. From a high level,
these graphs are obtained by placing the dispatchers and the servers at uniformly random
locations and connecting a dispatcher and server by an edge if they are at most a fixed dis-
tance r(N) > 0 apart; see Section 3.2 for a precise definition. Recall that cll[,v and duly de-
note the degree of v € Vy and w € Wy, respectively. We prove that, if »(N) is such that
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liminfy_, 00 E[dY]/In N = 0o and liminfy_;, o E[d ]/ max(In M(N), In N) = oo, then in-
deed max{¢(Gy), y(Gy)} — 0, and g" (¢) in steady-state becomes asymptotically indistin-
guishable from the fully flexible system (Corollary 3.4). Note that these conditions still ensure
sparsity in that the degree of a server is nearly a factor M(N)/In N smaller as compared to
the complete bipartite graph where the degree is M (N).

Second, the above convergence holds in much more generality for a sequence of regular
bipartite graphs. That is, ! is the same for all v and d is the same for all w within each
connected component of the graph; see Section 3.2 for a precise definition. We prove that
the convergence holds whenever y (G y) — 0, which happens if for example, if min,cw, d{;’
diverges (at any rate) as N — oo (Corollary 3.6), and thus ensures sparsity. This includes
arbitrary deterministic graph sequences and thus significantly broadens the applicability of
the mean-field approximation.

3. Main results. In the following, all graphs will refer to bipartite graphs Gy =
(Vn, Wn, En) as described in the beginning of Section 2. We let X, (¢) denote the queue
length of a server v € Vy at time 7. Let QlN(t) = ZveVN 1{X,(t) = i} denote the num-
ber of servers with queue length at least i € N in the entire system. We will refer to these
as global quantities. The local number of servers with queue length at least i € N, as seen
from the perspective of a task type w € Wy, is denoted by va’w(t) =2 ven, HUXy(@) =i}
Define their scaled versions as ¢ (t) := Q¥ (t)/N and qiN’w(t) = Q;V’w(t)/dul\f. Note that
{Xy(t) : v e Vy} is a Markov process, and the vector (qiN (00));>1 will denote the corre-
sponding steady-state functional of this Markov process.

Throughout this paper, the assumption of an exponential service time distribution is cru-
cial. Many stochastic coupling arguments explicitly leverage the memoryless property of the
exponential distribution. However, it is important to note that large-scale asymptotic analyses
of load balancing systems with general service time distributions are scarce in the literature,
even when the compatibility graph is complete bipartite (see [1, 2, 7, 8]). The analysis of
systems with general service time distributions under nontrivial compatibility constraints is
left as an interesting future research direction.

3.1. Steady-state approximation for arbitrary graphs. The JSQ(d) policy is known for
its drastic delay-performance improvement over random routing. It is well known that on
a complete bipartite graph with full flexibility, the steady-state quantity qiN (oc0) approaches

g’ = A% as N — oo [27, 39]. This is often referred to as “the power of two effect”,
meaning that the tail of the queue length distribution decays double-exponentially (in contrast
to just exponentially for random routing). Recall the definitions of ¢ (Gy) and y (Gy) from
(2.3). For an arbitrary compatibility graph Gy, a central result of this paper provides a finite
N bound on the expected £;,-distance between (qiN (00))i>1 and (g;)i>1:

THEOREM 3.1. Givenany Gy, if p(Gn) < po < 1, then X (t) = (X (t))vevy is ergodic.
Moreover, if max{¢(Gy), v(Gn)} <1, then there exist constants c, o > 0 (depending only
on A, pg and d) such that

3.1 OOE N _ g%)? ¢ ’
D ; @70 =) ] = G max g Go)% 7 G D)

di-1 )
where qF =131 fori e N.

Theorem 3.1 is proved in Section 4.4. For large N asymptotics, it also provides a rate of
convergence, although we do not expect this rate to be tight for specific sequences of graphs,
as the result holds for arbitrary graphs. The following is an immediate corollary.
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COROLLARY 3.2. Let (Gny)nN=1 be a sequence of graphs with p(Gn) < po < 1 for all
N > 1 and assume max{¢(Gy), y(Gn)} — 0as N — co. Then ) {2, E[(qiN(oo) —qi*)z] —
0as N — oo.

REMARK 2. It is worthwhile to note that Theorem 3.1 extends to a bound on any -
distance for 0 < p < oo. This follows by bounding the tail sum using Corollary 4.3 and
bounding the finite remainder using Holder’s inequality.

3.2. Convergence for specific graph sequences. Let us now discuss two important classes
of graph sequences that satisfy the mean-field approximation conditions in Corollary 3.2. We
begin with a popular generative model for spatial graphs.

DEFINITION 3.3 (Random bipartite geometric graph). We say that G is a random bi-
partite geometric graph if Gy is constructed as follows. Let #(N) > 0 be fixed and A be the
unit k-dimensional torus for k € N. We assign each v € Vy and w € Wy a location x, € A
and x,, € A, respectively, independently and uniformly at random. Next, (v, w) € Ey if and
only if [lx, — xyll, <7 (N) for 1 < p < o0.

We define random geometric graphs on a k-dimensional torus to avoid boundary effects.
From a practical perspective, however, the boundary effects become negligible as N — oo.
For the following theorem, recall that @ and d¥ denote the degrees of v € Viy and w € Wy
in Gy, respectively.

COROLLARY 3.4. Let (Gy)n>1 be a sequence of random bipartite geometric graphs,
where r(N) is chosen such that

E[dN E[dY
(3.2) lim infM = 00, liminf L, ] =00
N—oo InN N—oo max(InM(N),InN)

Then, almost surely for any realization of the graph sequence (GnN)N>1, X (1) = (Xy(1))vevy
is ergodic for all N large enough and ) {2, E[(qiN(oo) — qi*)z] — 0 as N — o0, where

di-1
g =AdaT forieN.

REMARK 3. The reason that “for all N large enough” is added in Corollary 3.4 is that,
for any fixed N, with (small but) positive probability, the random graph may not satisfy the
stability criterion. As N — oo, this probability becomes small and using the Borel-Cantelli
lemma, we show that the stability criterion is satisfied almost surely for all N large enough.
To be precise, the convergence statement for (qiN (00))i>1 should be interpreted for all N
large enough where the ergodicity holds.

The proof relies on verifying the conditions of Corollary 3.2 using concentration of mea-
sure arguments and is given in Section 4.5. Next, we consider sequences of regular graphs, in
which case, we can allow much more general sequences of graphs.

DEFINITION 3.5 (Regular bipartite graph). We say that Gy is a regular bipartite graph
if (v, w) € Ey implies that Nd¥ = M(N)dY.

Note that the definition of a regular bipartite graph implies that the degrees of all servers
and all dispatchers are the same within every connected component, and it allows the graph
to have many connected components. The next theorem proves the convergence of the steady
state for any such regular bipartite graphs with diverging minimum dispatcher degree.
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COROLLARY 3.6. Let (Gy)n>1 be a sequence of regular bipartite graphs, where
y(Gy) — 0 as N — 00. Then, the queue length process is ergodic for all N > 1 and
di-1
bl E[(qlN(oo) — ql.*)z] — 0 as N — oo, where qf = L a1 for i € N. The convergence
holds in particular if miny,cw, dlll\}’ — o0 as N — o0.

PROOF. The proof is immediate by observing that, due to the regularity of Gy, we have

N 1 N M(N)
3.3 Gy) = max |——— — —1|= — — —1/=0.
(3 @GN =mal W wgvv dN M(N) ng\:/v NaV
Note also that p(Gy) < A(1+¢(Gy)) = A < 1. Therefore, Corollary 3.2 completes the proof

of the first part. The second part is proved by observing that y (G y) < 1/(minyew, dY). O

ax
ve VN

The rest of the contributions will be pivotal in the proof of Theorem 3.1.

3.3. Large-scale mixing-time bound. A crucial step in identifying the steady-state distri-
bution is to show that the distribution of ¢” () becomes close to its steady state within a large,
but finite time. We prove that, in appropriate sense, the Markov process mixes in polynomial
time, independent of N, from any state that is stochastically dominated by the steady-state.
We use the following notion of stochastic ordering.

DEFINITION 3.7 (Stochastic ordering). For n € N, let X = (X,...,X,;) and Y =
(Y1,...,Y,) be two n-dimensional random variables. We write X <;; Y if there exists a
common probability space where X; <Y; foralli =1, ..., n, almost surely.

To formalize the notion of large-scale mixing time, consider two copies of the system on
the same graph G y. For system k, with k = 1, 2, the queue length at server v € Vi is denoted

by X f,k) (t) and the fraction of servers with queue length at least i € N is denoted by qiN‘(k) ().

THEOREM 3.8. Let Gy be a graph, p(Gy) < po < 1 and X be a random variable on
N¥ such that Xo <y X (00). Suppose XD 4 X0 and X® 0 4 X (00). Then there exist
a joint probability space and constants c1,cy > 0,0 < «a < 1 (depending only on pg and d)
such that, for all t > 0,

N o) N
34 Eflg: " t)—gq; "’ t <—
(3:4) ; a0 =g Ol <

The proof is given in Section 4.2 and relies on the fact that the stochastic ordering is
maintained throughout for all # > 0, as shown by the following proposition.

PROPOSITION 3.9. Under the conditions of Theorem 3.8, there exists a joint probability

space such that Xz()l)(t) < X,()Z) (t) for all v € Vi and t > 0, almost surely, along any sample
path.

The proposition is proved in Section 4.2. The proof follows by an induction argument,
where we show that the inequality is maintained for each arrival and departure epoch. At an
arrival epoch, we use a monotonicity property of the JSQ(d) policy: if we sample the same d
servers in both systems, then the task is routed to a server with a higher queue length in system
2 than in system 1. We relate this behavior to a property of the probabilistic assignment
function of JSQ(d) (Lemma 4.4). The proposition generalizes to any assignment policy which
satisfies such a monotonicity property.
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3.4. Process-level limit starting from i.i.d. queue lengths. As our quantity of interest
g™ (1) becomes arbitrarily close to the steady-state in finite time, it is sufficient to charac-
terize the transient behavior of one sample path of the system. We prove that ¢V (r) remains
close to a system of ODEs if ¢ (Gy) and (G ) are small (recall (2.3) for their definition)
and the queues in the starting state are “sufficiently spread out”.

THEOREM 3.10. Let Gy be a graph, p(Gn) < po, and q(t) = (qi(t))i>1 be the unique
solution to the system of ODEs

dg; — = P p |
th(t) =M@ =@ = (@) —Gin (@) forieN.

Then, there exists a constant ¢ > 1 (depending only on pg and d) such that, for all t > 0,

E[ sup > (g (s) — @(s))z]

s€[0,1] i=1

(3.5)

< 2¢(GN>2<M + E[Z a <0>2D

(3.6) =1
R
M(N)

2
DOMCARI() —czi(0>|) }

weWN

1 12e” <t2d2¢(G N+ E[Z(

i=1
+ 41 (pod + l)V(GN)>-

Note that Theorem 3.10 is also a nonasymptotic result. An immediate corollary is the
following.

COROLLARY 3.11. Let (Gny)n>1 be a sequence of graphs, p(Gy) < po and
max{¢(Gn),y(Gy)} — 0 as N — oo. Also, assume that X(0) = (X,(0))yevy are i.id.
and P(X,(0) > i) = g; (0) where Y72, Gi(0) < 0o. Then, for any t > 0,

(3.7 lim E[ sup Y (g (s) — G (S))2:| =0,

N—oo | sef0,1];

where (g;(t))i>1 is as defined in (3.5).

The “sufficiently spread out” condition in Theorem 3.10 is imposed by the initial state
quantity 7 (W ZweWquiN’w(O) — @;(0))?. This term is small if g™* (0) ~ g (0) for
most w € Wy and, hence, if the local queue length distribution from the perspective of each
task type is approximately equal. In particular, this term is at most ¥ (Gn) .72, gi(0) for
1.i.d. queue lengths. Theorem 3.10 is proved in Section 4.3. The proof relies on tracking a
sequence of martingales for each w € Wy and bounding the £>-distance to the ODE by their
quadratic variation and quantities such as ¢ (G y) and y (G y) using Gronwall’s inequality. In
the proof, the quantity ¢ (G ) is used in (4.34) and (4.42) and y (G ) is used in (4.43).

REMARK 4. One should contrast Theorem 3.10 and Corollary 3.11 with the process-
level limit result proved in Budhiraja et al. [9]. In this paper, the authors considered an undi-
rected version of the model in the current paper. The model, as is, is not suitable for capturing
the task-server compatibility constraints. An undirected graph would mean that if server i can
process task type j, then server j must be able to process task type i. However, a general-
ization of the model in [9] to directed graphs can be viewed as a special case of our model:



MEAN-FIELD ANALYSIS FOR LOAD BALANCING ON SPATIAL GRAPHS 5237

when M (N) = N and there is a perfect matching between the set of servers and the set of dis-
patchers (equivalently, a dedicated arrival stream per server). Although the undirected graph
assumption is not crucial in [9], the M (N) = N assumption plays a major role for the ap-
proach to work. In the current paper, M (N) can grow at any rate (sub-/super-linearly) with
N. As a result of the above structural differences, the queue length process in [9] is ergodic
for any graph, whereas in our model, this is nontrivial.

Moreover, [9] establishes the process-level convergence if the initial queue lengths at the
servers are i.i.d. from some distribution as in Corollary 3.11. The idea there is that, if the
system starts from a state where the queue lengths at the servers are i.i.d., then any two
queue lengths retain their stochastic independence on any finite time interval, asymptotically
as N — oo. Consequently, the N-dimensional queue length vector can be coupled with an
infinite-dimensional McKean—Vlasov process where any finite collection of coordinates are
independent on any finite time interval. The assumption that the queue lengths are i.i.d. at
time zero is crucial for this approach to go through. As a result, and as already remarked in
the conclusion of [9], it is unclear how to prove convergence of the steady state. In addition
to our main contribution on the convergence of steady states, Theorem 3.10 generalizes the
process-level limit beyond the i.i.d. case. It identifies a structural condition on the initial state
that ensures the same process-level limit of as the fully flexible system.

4. Proofs. Most of the results in this section are nonasymptotic and hold for any fixed N.
Thus, throughout this section, we drop the dependence on N in the notation where possible,
for the sake of brevity.

4.1. Existence of steady-state and moment bound. We first prove that the Markov process
is positive recurrent and has a unique steady-state.

PROPOSITION 4.1. If p(Gn) < po < 1, then the Markov process X (t) = (Xy(t))yev is
positive recurrent and there exists a unique steady-state of the process denoted as X (00).

The proof relies on a Lyapunov argument. Let V (#) := -2, 352, Q(¢) be the Lyapunov
function. If we show that the drift of V (¢) is strictly negative anywhere outside of a suitably
chosen finite set of states, then this is sufficient for positive recurrence. As such, we compute

the drift.

LEMMA 4.2. Fixanyi € Nandt > 0. Then,

d_|& AN
@.1) gE[; Qj(t)} =E[ﬁ Y g 0! - Qi(z)].

weW

PROOF. To change the value of Z?‘;i Q (1), a task must arrive to a server with queue
length at least i — 1 or a task must depart a server with queue length at least i.

Let us compute the probability that a task is assigned to a server with queue length at least
i — 1. At the epoch time of an arrival, a task adopts a type w € W uniformly at random.
The task is routed to a server with queue length at least i — 1 if and only if the system only
samples servers with queue length at least i — 1, which happens with probability g;” | (t—)4.
This results in a probability of % Yowew 4iy (r—)? to be routed to a server with queue length
atleasti — 1.

Now, we compute the probability that a task departs a server with queue length at least i.
At the epoch time of a potential departure, a server v € V is chosen uniformly at random.
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A task departs a server with queue length at least i if and only if v has queue length at least
i. This results in a probability of g; (t—) to depart a server with queue length at least i.

We describe the arrival and departure process as follows. Let AV(¢) be a Poisson process
of rate (A + 1) N. An event of the process is either an arrival of type w € W with probability
A/((A+ 1)M) or a potential departure at server v € V with probability 1/((A 4+ 1)N), inde-
pendent of the past. Note that this is equivalent to the model description introduced before.
Hence, for any 4 > 0,

E[Z AQJ-@\E}
j=i

:E[Z AQj(z)]AN(z) = 1,]—}]IP>(AN(t) =1)

J=i

(4.2)
LE[AN@)|AN (1) > 2]P(AN (1) > 2)
A 1
- —(A+1)Nh
(A+1Mw§/ql 10 P Qz(f) (A+1)Nhe

£ (o + DNR +2)((n+ DNR),

where AQ (1) := Qj(t +h) — Q;(t) and AN (¢) := N(t + h) — N (t). Here, we use the
shorthand notation £x to denote a term in [—x, x]. The equation above implies

d EIEX-72(Q(t +h) — Q)] F]]

[Z Qj(r)} —11 J= -
Jj=i
[ Y g 0 - 0 (r)}

weW

4.3)

which completes the proof of the lemma. [

PROOF OF PROPOSITION 4.1. Note that

Srao-Y T o

weW weW veN, ¥
Xy (t)=>i
4.4)
= Z i Z = Y =m0,
veV weN, veV
Xy()=i Xy ()>i

Let V(1) ;=372 X252, Q;(t) and X(0) =x € NV. Then,

d > d ad
viol= 538 S o] =3 Gx| S o]
i=1 j=i
(4.5) =) E [ﬁ Y g 0 - Qi(t)] < ZE[ Yo a0 = Qi (t)]
i=1 weW i=1 weW

E[p0Qi—1(1) — Qi(1)] = —(1 — po) Y E[Qi(1)] + poN.,

i=1

Mg

Il
-

where we use the monotone convergence theorem in the first equality, Lemma 4.2 in the third
equality and (4.4) in the second inequality. Note that we exchange derivative and sum in the
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second equality. To check whether this is allowed, we verify the conditions of Theorem 7.17
in [34]. Let f,, (1) :==>"7_,; E[Z?‘;i Q ()] for n € N and notice that f,(¢) is differentiable on
[0, ¢] as a result of Lemma 4.2. Also, f,(0) converges since

(4.6) fn(0) = ZE[Z Qj(O):| =Y D> —i+DF > > —i+ DT,
i=1 Lj=i

i=lveV i=lveV

as n — oo due to monotone convergence theorem. Now,
d “d_| &
@n  Sho=) EE[Z 0 ,~<r>} ZE[
i=1 j=i

by Lemma 4.2. We now check whether 4 2 Jn(#) converges uniformly on [0, 7]. The sum
L E[% Ywew dily (1)?] converges uniformly on [0, ¢] since

S g (0 - 0; (r)]

weW

sup |3 B[S0 S g2 007 - ZE[ > )]
s€[0,1]];—1 weW weW
= sup ) [ > at 1(S>d]< sup Z [ > a” 1(S)}
(4.8) SE[O,[]i:n+1 weWw SE[Ot]l =n+1 weW

_|_
< sup Z ,ooQ, 1(t) sup ,ooNE[<mava(s)—n+1> ]
s€[0,7];— =n+1 s€[0,7] veV

< poNE[<131ea‘§xv + N, () —n+ 1>+] — 0,

as n — 0o, where we use (4. 4) in the second inequality and N, is a Poisson process of
rate AN. Note that the sum ) 7_ | E[Q;(?)] converges uniformly on [0, ¢] too, which follows

from the second half of (4.8). Therefore, 7 Jn (1) converges uniformly on [0, 7]. Then, by
Theorem 7.17 in [34], we conclude that we may interchange derivative and sum in (4.5).
Let S:={xeN": Y Yvey Lxy =i} < N/(1 — po)} and note that S is finite. Then,

d o0
49 ZEVO) =—=(1=p0)3 0:i0)+pN <~ —po)N +NLx €S5).
= i=1

Hence, by Theorem 4.2 in [26], the Markov process X (¢) is positive recurrent and there exists
a unique steady-state of the process denoted as X (00). [

As a consequence, a similar Lyapunov argument shows a moment bound on the steady-
state.

COROLLARY 4.3. If p(Gy) < pg < 1, then E[g;(0c0)] < péfor alli e N.

PROOF. Fixanyi e Nand>0. Welet X(0) = X(oo) such that X () = X(oo) Then,

_a Al = d_
_th[;Qj(t)}—[ > gl ) Q(t)}

(4.10) weW

AN
< E[ﬁ gt — Qi(t)} <E[poQi-1(t) — Qi(®)],
weW

where we use Lemma 4.2 in the second equality and (4.4) in the second inequality. Hence,
by induction, E[g; (t)] < poElg;—1(¢)] < py, which completes the proof of the lemma. [J
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4.2. Proof of the large-scale mixing-time bound. The proofs of this section relies on the
following stochastic ordering property of the load balancing policy as stated in Lemma 4.4.
The lemma is proved in Appendix A. We prove this for the JSQ(d) policy. However, we
believe that it is possible to generalize the mixing time bound to a large class of load balancing
policies which satisfy an analogous monotonicity property.

LEMMA 4.4. Fixany 0 <y <x1 <1land 0 <y, <xy <1 such that x; < xp and y| <

v2. Then,
d_d .d_ .d
it B W B )

“4.11) < .
X1 —Y1 X2 = Y2

PROOF OF PROPOSITION 3.9. We couple the arrival and potential departure epochs of
the two systems such that any arrival of a task type w € W and any potential departure at
a server v € V happen at the same time in both systems. We proceed to design a stochastic
coupling that maintains the inequality X m @) <Xy 2 (t) for all v € V on every arrival and po-
tential departure epoch. At time ¢ = 0, the inequality is maintained by the stochastic ordering
assumption and by defining XV (0) and X ® (0) on the suitable probability space.

Let ¢+ > 0 be a potential departure epoch at server v € V and assume that X l(}) (t—) <
X l()%)(t—) for all v" € V. Clearly, ,(,1) H=<X 1(,2) () also after the departure.

Now, let t > 0 be an arrival epoch of a task type w € W and assume that X 5})(t—) <
X f?(t—) for all v’ € V. Fix any v € N,, with i := X, (—) and let us compute the probability
that the task is assigned to v. The task is routed to a server with queue length i if and only if
the system only samples servers with queue length at least i and not only servers with queue
length at least 7 + 1, which happens with probability ¢;” (t—)4 — g% (t—)¢. By symmetry,
any server in \V,, with queue length i has the same probability of receiving the task and there
are a total of Q" (t—) — Q}‘jrl (t—) of such eligible servers. This results in a probability of

k), w (t—)d __(B,w (t—)d

4.12) @ . Ix®o TIx® o)1
' A S
x®F - xFa—)+1

of assigning the task to a server v € Ny, in system k = 1,2. Let p, := min(pl(,l), Dv )) be

the shared probability mass. For the sake of notation, assume that the servers in N, are or-
dered and correspond to the integers {1, 2, ..., dy}. Let U; € [0, 1] be a uniform random vari-
able, independent of any other processes and independent across arrival epochs, and which is
shared between the two systems. Then, in system k, assign the task to server v € N, if and
only if

[ZPU,ZPU)

v'=1

(4.13)

U[Zﬁv/JrS(pfff) pu). . P +Z A/>

U/GMU v'=1 v E/\/w v'=1

Note that the probability to assign to a server v € Ny, in system k is exactly equal to pl(,k).
To verify that the stochastic coupling maintains the ordering of queue lengths, note that if
Ur < X ven, Dv» then the task is routed to the same server in both systems by the construc-

tion above. Thus, in this case, X f}})(t) <X f?(t) for all v’ € V also after the arrival.
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Next, consider instead that U; > > /. Ny puv. Then, the task is routed to two different
servers in both systems. Let v € NV, be the server the task is routed to in system 1. Note that
it does not matter to which server the task is routed to in system 2, since its queue length
will only increase. By the construction above, it must hold that p(l) > py = (2) . We claim
that this implies that Xl()l)(t )< X 1(,2)(t ). To see why, suppose that Xf,l)(t—) =X 1(,2)(1—)
instead. Note that

@19 o= Y UxPeoyzils Y 1xPa-) =i} = 0" ),
veNy veNy

forall i € N and w € W since Xl()})(t—) < Xl()%) (t—) for all v/ € V. Then, by Lemma 4.4,

D,w (t—)4 — M. w (t—)?

. 190 Tx =41
v 4. (Dw N, MDw _
@is) w qX,(,l)(t—)(t ) qxgl)(t_)+1(t )
| N S i TN (ST
P xPt—)+1 )
=4 @Qw o\ _@w _ v
Y D@y ) T Ay )

which is a contradiction. Hence, it must be that X D (t—) < Xy (2) (t—) and therefore X f}}) (1) <
X 1(3) () for all v" € V also after the arrival, which completes the proof of the proposition. [J

PROOF OF THEOREM 3.8. We couple the two copies of the Markov process according
to Proposition 3.9 such that X vl)(t) < Xy 2 (t) for all v € V and ¢ > 0, almost surely. This
implies that q( ): ) > q(l) Y(t) for all w € W and qi(z)(t) > qi(l)(t) foralli e Nand t >0
by (4.14). Throughout, we will denote A; (¢) := ¢” (1) — ¢\ (¢). Let 6 := min(1/(2pod), po)
and define V (¢) := )2, 6" ?‘;i Aj(t). Then,

E[V()] =

Q.|Q

Ze E[ZA (z)] Ze’ [ZA (z)}

dt

'r”18

N
Il
—

[ )\’ w w
G’E[M 3 @2 o —q; (t)d)—Aim}
(4.16) wew

j rd w w
e’E[ﬁ > @20 - g% ) - 20|

weW

[A
.Mg

Il
=

Mg

0" (Opod — DE[A;(1)] < —= Ze E[A;(1)],
l 1

—_

where we use the monotone convergence theorem in the first equality, Lemma 4.2 in the third
equality and the definition of 6 in the third inequality. Note that we exchange derivative and
sum in the second equality. To check whether this is allowed, we verify the conditions of
Theorem 7.17 in [34]. Let g, (¢) := ?:1 QiE[Zﬁii Aj(t)] for n € N and notice that g, (¢) is
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differentiable on [0, 7] as a result of Lemma 4.2. Also, g, (0) converges since

22(0) :Zel’E[ZAJ-(O)}
i=1 Jj=i

(4.17) —Z Z X200 —i+ )" = xPO) —i+ 1))
UGV

_>Z Z (XP©0) —i+1)" = (xP©0) —i+1)),
veV

as n — oo. Now,

—gnu) = Ze’ [ZA (t)}
(4.18)
w w 1
= Ze IE[ > @2 0! =" 0" — (07 1)~ Q§1>(t>)],
weW
by Lemma 4.2. The sums Y/, 0'E[Z Y, cw g 5" (01, X0 0Bl L S ew a2 041,
1 NIE[Q(D(t)] and }7_, NIE[Q(Z) (0] each converge uniformly on [0, ¢], which follows

along the same lines as (4.8). Therefore, g,,(t) converges uniformly on [0, ¢]. Then, by
Theorem 7.17 in [34], we conclude that we may interchange derivative and sum in (4.16).
The first inequality in (4.16) follows because, by the mean value theorem,

(4.19) 2 =y =ds = y) =d(x - ),
for all 1 > x >y > 0 where & € [x, y]. The second inequality in (4.16) follows because
1
Z B0 — g (1) = = Z >
w

weWw UJGWUGN X(z)(t)>l
X“>(t)§z 1

AN 1
(4.20) = X oy dy

M
vev: xP@)=i - weM
xMn=i—1

2 1
< > =00 -0 ®).
veV: xP1)>i
xMy<i-1

Next, we find a lower bound on 72, O'E[A;(1)] in terms of E[V (¢)]. Note that

o J *© 9(1 — 6
@421) E[V®)]= [ZZ@ A; (z)] [Z Z@lAj(t)] =E[Z %{9)&(:)},
=1li=1

i=1j=i i=1

and hence, again by the monotone convergence theorem,

(4.22) 0 ZE [AO]<E[V()] < li ZIE [A:(D)].

i=1

Therefore, to find a lower bound on 72, O'E[A;(1)] in terms of E[V (7)], it is sufficient to
find a lower bound in terms of > 72, E[A;(#)]. Let n := >_72 | E[A;(r)]. Note that E[A; ()] <
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E[qi(z)(t)] =E[q 2)(oo)] < ,00 by Corollary 4.3. Thus, a lower bound on ) 2 19’E [A; ()] is
given by the prlmal and dual pair

o0
(Pymin  » 6'x; (D) max nz—Zpoy,
i=1 i=1

(4.23)

D Xi=1 2=y <6
S.t. i=1 s.t. 0
) y;i > 0.

0<x; <pp l

Fix any i € N. A feasible solution to the dual is y; = 0 for i < ig, y; = 60 — 0 fori > ig, and
z = 60%. As any dual solution provides a lower bound to any primal solution by weak duality,
it follows that

io
4.24) Z@ IE A; (t) (77 — Z 1o )010 + Z ,009’ = ( 1p—0>9i0 +

i=1 i=ig i=ig — o

p(i)OQio
1—pob’

Now, let ig := [In((1 — po)n)/In(pp)]. Note that ig € N since n < pg/(1 — pp) and pg < 1.
Then,

00 pln((l—po)'))/ln(po) ‘ pm@lo
S 0E[A ()] = (n _ % )elo LA
i=1 1— L0 1— POG
(4.25) _ <n a- ,00)77) gio + PO (pgB)0
I —po 1 —pof 1—pob

0 0
> 1fopoe-(p09)1“((l_p°)")/ 60 — L (1 = o)) M ),

Let o :=1In(0)/In(pp) > 1. The equation above and (4.22) imply that

29 E[Ai(1)] = ,009 ((1 = poyn)' ™
(4.26) i=l
pof (1 —po)(1 —6) I+a
> 1—,009( = Devo))

Thus, we have found a valid lower bound. We apply the lower bound to (4.16) to find
SE[V ()] < —c1 BV (@)D, where ¢1 := pof (1 — po)(1 — 6)/6)' T /2(1 = poh)) > 0.
This implies that

1 1
~(EVOD™ +C10tt)1/“ T (5% +cran)t/e’

where ¢y :=6pg/((1 —0)(1 — pg)) > 0 and we use the fact that

4.27) E[V()] <

- b
4.28) E[VO)] =5 D E[AO] = > ph=c
i=l1 i=1

by (4.22) and Corollary 4.3 in the second inequality. Hence, by (4.22),

ElV@OI _ 1
0 T (" +crant/e’

(4.29) > E[A )] <

which completes the proof of the theorem. [J
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4.3. Proof of the process-level limit.

LEMMA 4.5. Fixanyi € Nand w € W. The process

MP(t):= Q} (1) — 0} (0)

300 _ [N g\ =g O L g
IASr 2 Looro—ore (&Y 01 (5))
Xy(s)=i—1

is a square-integrable martingale started at zero. Moreover, the quadratic variation [M"];
satisfies

w’ d w rn\d
4.31) =IE[ ’(ﬂ q;” () —q" (s) W ow )d:|
/0 M XA:/ wZﬂ; Q}"_/l(w—Q:-”/(s)HQ’ )= 0 () )ds]

Xy(s)=i—1

The proof of Lemma 4.5 is provided in Appendix B.

PROOF OF THEOREM 3.10. Fixanyi € N, w € W and ¢ > 0 and let d}" (¢) := |g;" (1) —
qi(t)|. Then,

w 11N Gl —g
baw % oo A
(4.32) Xy(s)=i—1

! w w = = w |Miw (t)|
+ [ 1607 6) = 47516)) = @05 = G )] ds + () + =L
w
where M;”(t) is a square-integrable martingale as defined in Lemma 4.5. We proceed by
bounding the terms on the right-hand side. The term in the first integral in (4.32) is upper
bounded by

1N g =g
WM e o or o ore e )
Xy(s)=i—1

1y N g% ) =g ()¢
s I (R R STO R )
Xy(s)=i—1

w1 = Gi(s)?
(4.33) (@216 =4 ) Z= =7

Gi—1(s)4 = Gi(s)?

+1(g21(5) = g{"(9)) = (Gi=1(5) = G (9))]

gi—1(8) — gi(s)
Loy N g ) =g ) Gioi9)? = Gi(s)?
Tdw e, Lk M QL@ -0 ) Gimi) G

Xy(s)=i—1

+d(d () +d"(5)),
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where we use the triangle inequality in the first inequality and the mean value theorem in the
second inequality (see (4.19)). The first term on the right-hand side above is further upper
bounded by

Loy
du veNy,
Xy(s)=i—1

T X wrT

qu L) =g () éi—l(S)d—éi(s)d‘
weN, M QY (s) — Q¥ (s) qi—1(s) — qi(s)

a1 =g " G = Gis)?
g () —q" () di-1(s) —qi(s)

/

veNy w'eNy
(4.34) Xy (s)=i—1
_*_L ‘ 1 éifl(s)d—éii(s)d
dw ¥, MweNd/ Gi—1(5) — Gi(s)
Xy(s)=i—1
<Ly (M s K 6 +d ) + o @) 1) - a7 s))
—d M d., il i di—1 q; ,
Y veNy w'eN, w’

where we use the triangle inequality in the first inequality and Lemma C.1 and the mean
value theorem in the second inequality (see (4.19)). Note that the constant K stems from
Lemma C.1 and only depends on d. Then, summing the first term on the right-hand side over
weWw,

1 N K / /
Yo 2w 2 @) +d ()
weW dw veNy, M w'eNy dyy
1 N K / /
=2 2y 2 g dh@+d)
weW "W ywew VEN NN,
1 N / /
=2 =2 (@ (5) +d )
weWw duy weW M VEN NN,/ du
4.35)
=Y : N 3 —(dW’l(s)er?”’(s))
11— 1
weWw duy veEN,, M weN, du
1

]

P2 @1 (5) + 42 5)

"\ (s) +d" (),

where the inequality follows by the assumption that p(G) < pg (recall (2.1) for the definition
of p(G)). The term in the second integral in (4.32) is bounded by

(4.36) (g () = qi1(9)) = (Gi (8) = Gi+1(9))| < d”(s) +di% 1 (5).

Therefore, putting the above together, by Jensen’s inequality and the Cauchy—Schwarz in-
equality,

(w%:vdi”(f))z =< (w%:V(/O ((poK +d)(d}” 1 (s) +d" (s))

+do(G) (g1 (s) — q;"(5))
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w 2
+(dP(s) +dP () ds +dP (0) + |M; (t)I))

dy
(f w;)vcldwl(s)ds> +6(/ wgvcldW(s)ds>
+6(/ w%‘;vdlﬂ(s)ds)
(4.37) +o( [ X o @as )~ (s))ds)2
2
+6(w§Vdi (0))
o ey
<6tc? / <w§vdwl(S)> ds + 61ct / (w%:vd%))
—|—6t/ (wgvlerl(s))
+6M1d*$(G)? / S (" 1) — g () d
weW
wo( X aro) o Y P
weW weW w

where c1 := poK + d + 1. Then, by the monotone convergence theorem,

sup Z( Z dw(s)) <czt/()t sup Z( Z dw(u))

s€l0.1] =1 weW u€l0.s1;—=1 weW
(4.38) + 612d%¢(G)? +6Z< > dw(O))
i=1 weW
MY (s)2
+—= ’ ,
IX;w;vse[O 0o dy
where ¢ := 6(2c12 + 1) and we use that
0 ) o0
(4.39) Do @) =g ))<= Y. Y (g 1() — g () =M
i=lweW weWi=1

Hence, by Gronwall’s inequality,

sup i( > dw(s)> <662 <t2d2¢(G)2+i< >, dw(O))

s€[0,1] ;=1 weWw i=1 weWw

1 MY (s)?
+Z—Z sup ’dgs) )

i=1"" wew s€l0.1]

(4.40)
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This almost completes the proof of the theorem. Now, by Jensen’s inequality,

o0

3 (qi) — G @)°

i=l

<ZZ< D g — q,(t)) +2Z( > g (t)—q,(s))

weW weW

(4.41)

<26(G) Zq,<r)2+22( 3 dw(r))

i=1 weW

<2¢(G)< N +Z‘11(0))+22<

where N,(¢) denotes the number of arrivals until time ¢ and the second inequality follows
because

) dwm)

weW

S 4 () - 0; <z)‘

‘MweW

TD3D> ——Q<f> 2 u Z—— 2. 1

(4.42) weW veNy, du veV we/\/ veV
X, (0)>i Xy ()=i Xy ()=i
N
< > = > ——1‘ Y. $(G)=0(G)Qi).
M d
veV weN, veV

Xy (1)>i Xy(1)2i
Then, (4.40) and (4.41) together imply that

[ sup Z qi(s) — éi(S))Z}

s€[o, l]l 1

<2¢(G)2IE[NN —i—Zq,(O) }+2]E[ sup Z( > a’w(s)) }

i=1 s€[0,1] ;=1 wew

< 2¢><G)2<Ar + E[Z gi (0)2})

i=1

+12¢20° (r2d2¢<6>2 + E[Z( 2 d“’(0>) } + 4t (pod + 1)y(G>),

i=1 weW

(4.43)

where we use Lemma C.2 in the second inequality. This completes the proof of the theorem.
O

4.4. Analysis of the steady-state. The mixing time bound above shows that the system is
close to the steady-state at a large, but finite time, starting from the empty state. The process-
level limit characterizes this sample path and proves that the system remains close to an ODE.
Together with a standard global convergence result, this implies that the steady-state is close
to the fixed point of the system of ODE:s.

PROOF OF THEOREM 3.1. Proposition 4.1 proves the first half of the theorem. To prove
the second half, let g () be the unique solution to the ODEs in Theorem 3.10, where g (0) =
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Theorem 3.6 in [28] shows that there exist constants c1, c3 > 0 (depending only on A) such
that

o0 0
4.44 7: (1) — gF 2 - 7:(1) — g¥| < —ot .
(4.44) ;(qz() a7 _glql() afl scre™ = -

1

Throughout, denote n = max{¢(G)2, y(G)}. Let X(l)(t) and X® (t) be two copies of the

Markov process, where X M) =0 and XP®(0) 4 X @ (00). Then, there exist constants
c4,¢5,¢),¢h, ¢y >0,c3>1and 0 <« <1 (depending only on X, po and d) such that, for all
t>1,

Y E[(¢(00) — /)’ = >_El(g” () — q})’]
i=1 i=l
< Z @20 — ¢ 1) +3ZE (@@ — a )]
+33 E[(3: () — ¢)?
ws) ; (@) — q)°]
3 2
=< m 4+ 6¢(G)“At
+36¢ (12d%¢ (G)? + 4t (pod + 1)y (G)) + 0 icé p
2
1 2 L‘;[
57(6/1“,20“ + cjyt?e y,

where we use Jensen’s inequality in the first inequality and Theorem 3.8 and 3.10 in the
second inequality. We consider two cases. If In(1/n) > 2¢3, then let t = /In(1/1)/(2c3) > 1
such that
In(1 1
(4.46) ety = MA/MY_ <
2¢3 cwln(l/n) (C3vln(1/n )
where we use that In(1/x)+/x <2/+/In(1/x) for 0 < x <1 in the first inequality. Therefore,

o0 1 o
E[(g{” (00) — q})*] < 4
wan 2l M= st G i
' c§ + ¥
(6263«/1n(1/r] o
If instead In(1/n) < 2c3, then let £ = 1 such that
. @) 2 1
E . xX) — * <—+ C/ ec3
! ,C3
(4.48) - V2cs L Cae

~ (c] +ce)*/In(1/n) - /In(1/n)
\/T + che (c] +chH)*
(¢} + c5)*/In(1/n)

where we use that x < 1/4/In(1/x) for 0 < x <1 in the second inequality. This completes
the proof of the theorem. [
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4.5. Verification for random bipartite geometric graphs.

PROOF OF COROLLARY 3.4. Fix any v € Vy and 0 <& < 1/2. As each w € Wy is
placed independently and uniformly at random, d,ﬂv is distributed as a binomial random vari-
able. Therefore, a Chernoff bound (see, e.g., Corollary 2.3 in [16]) shows that

(4.49) P(|dY —E[d)]| > eE[d)]) < 2exp(—£*E[d)]/3).

A similar Chernoff bound holds for w € Wy. Let Exn denote the event that there exists a
v € Vy such that |df)v —E[df}v]| > 8E[d5\'] or there exists a w € Wy such that |du1\)’ —E[dul\}/]| >
EE[dUIY]. Let Nj be large enough such that SZE[d,ﬂV]B >3InN, SZE[duIY]/3 >3InN and
e’E[d)]1/3>31InM for all N > Ny. Then,

P(Ey) < > P(ld) —E[d)]| = eE[d)])+ >_ P(|ld) —E[d}]| > cE[d})])

veVy weWy
(4.50) < 2N exp(—&E[dN]/3) + 2M exp(—’E[d]/3)
<2Nexp(=3InN) +2M exp(—In(M) — 2In(N)) = —,
for all N > Ny. Hence, >_%_; P(Ey) < oo and the Borel-Cantelli lemma shows that, almost

surely, there exists N, < oo such that £y does not occur for all N > Nj. This implies, in
particular that,

1—e N (l—s)E[dN] N minyey, dV N 3 1
1+¢ M(N)(1+8)E[dN] M(N) maxyew, dl ~ M(N) = day
4.51) !
N maxyey, dY N (+eFEdY] 1+e
- M(N) mingewy dY ~ M(N) (1 —&)E[dN]  1—¢’
for all N > N5 and therefore
N 1 l—e 1+c¢ 2¢e
4.52) ¢(Gy):= —1|< -—— " 1)< <de.
(432) ¢(Gw) = maxM(N)wgv ay ‘—max< T4+e 1—¢ )_1—8_8
for all N > N,. Also,
“453) G = 1 1 1 2
‘ VN = M(N) i ¥ = mingewy d¥ — (1 —&)E[@N] ~ N’

for all N > N,. Note also that p(Gy) <A(1 4+ ¢ (Gy)) <A(1 +4¢) <1 forall N > N, and
& small enough. Therefore, Theorem 3.1 completes the proof. [

S. Numerical experiments. We perform numerical experiments to complement the the-
oretical results. The experiments are in the scenario where M(N) = N, d =2 and A = 0.8.
We simulate two types of graph sequences: random bipartite geometric graphs and random
regular bipartite graphs. The random geometric graph is generated as described in its defini-
tion in Section 3.2 for k =2 and p = 2. The random regular bipartite graph is generated by
fixing a degree k upfront. Then, k half-edges are created at each server v € Vy and task-type
w € Wy. The half-edges at the servers are connected to the half-edges at the task types by
sequentially picking two available half-edges at random, one at the server side and one at the
task-type side and creating an edge between them. Although this may lead to multiple edges,
the probability of this happening is negligible for large N.
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FIG. 2.  The mean queue length in steady-state for a random regular bipartite graph and a random bipartite
geometric graph for various degrees compared to the fixed point of the fluid limit.

Mean queue length. Figure 2 shows the mean queue length in steady-state for various (av-
erage) degrees. For the random bipartite geometric graphs, the mean queue length converges
to the fixed point as N — oo for an average degree of (In(N))? and /N as expected by our
main results. The mean queue length also seems to converge for an average degree of In(N),
albeit slowly. A rate of In(V) is the edge case of our main result and, even though the mean
queue length seems to converge, the tail of the occupancy is not double exponential (see Fig-
ure 4). For the random regular bipartite graphs, the mean queue length converges to the fixed
point as N — oo for a degree of In(N), (In(N ))? and +/N. The mean queue length does not
converge for a constant degree of 3 in either case. Thus, the condition for the regular bipartite
graph is both necessary and sufficient.

Process-level limit from the empty state. Figure 3 shows the transient behavior of the system
for two values of N, starting from the empty state. As N increases the process remains close
to the solution of ODEs, or the fluid limit, for both type of graphs. Note that the process still

09 0.9
aqi (N =10°%) @ (N =10%)
08 — @ (N =10°) 038 - — @ (V=10 L
a3 (N = 10°) as (N = 10)
07 a (N =10%) 07k i (N = 10°)
——q (N =107 : — = q (N =109
——q (N =10 — = q (N =10%)
a3 (N =10°) a3 (N = 10°)
ar (N =10%) s @ (N =10%)
fluid limit fluid limit
0 50 100 150 200 0 50 100 150 200
Time Time
(a) Geometric (In(N)?) (b) Regular (In(N))

FIG. 3. The process-level limit of the occupancy process (q; (t)) for a random bipartite geometric graph and a
random regular bipartite graph and compared to the fluid limit, started from the empty state. The average degree
is noted in parentheses.
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FIG. 4. The occupancy in steady-state (q; (00));>1 for a random bipartite geometric graph and a random reg-
ular bipartite graph for various degrees compared to exponential and double-exponential tails for N = 104,

deviates slightly from the fluid limit, especially for ¢3(¢) and g4(¢), since the average degree
grows only logarithmic in N, which directly impacts the convergence rate as in Theorem 3.10.

Exponential or double-exponential tail. There are previous works that have asked whether a
similar double-exponential tail of the queue lengths also holds for graphs of constant degree,
such as a cycle [14]. Figure 4 shows the occupancy ¢; (0o) in steady-state for various degrees

and for N = 10°. The figure compares the occupancy to an exponential tail of A’ and a double
exponential tail of A‘Z%ll. For the random bipartite geometric graph, the double exponential
tail holds for an average degree of (In(N))? and /N as expected by our main results. For
an average degree of 3 or In(/N), the system does not have the double exponential tail, and
the performance even appears to be worse than the exponential tail (or random routing on a
complete graph). For the random regular bipartite graph, the double exponential tail seems
to holds for any choice of degree, even for a constant degree of 3. However, in this case,

the queue lengths have double exponential tail as K% but with a slightly lower value of
d. The question of whether it is possible to analytically characterize this value of d remains

a very interesting direction for future work, even for specific regular graphs with constant
degree.

APPENDIX A: PROOF OF LEMMA 4.4

PROOF OF LEMMA 4.4, Fixany 0 <y <x < 1. Then,

((x—y)+ ¢ —y!
x—y
X () — )y =y
_ =

x4 —yd
X =y

(A.1)

(i

) (x — y)i=lyd=i
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Also,
Bxl—y! oyt T (e —de =y -y
box-y  x=yE o x-y (x = )2

(A2) Sy (e =y —dr— )yt -y

| (x—y)?

d_ . '
=Y (l> (x ="y =0
i=2

Then, by the mean value theorem, there exists & € [y, y2] such that

d_.d d o _ yd
XP =N <d> d— i—1 <) i-1_%X N
— = )y —y1) = =y
Ay 2 i) Z ¥ =i
| =y 0 x§ -y — 4
=2 -2 __ 22 (Y2—y1)< =2 -2
x2—y2 0y x2—y ly=¢ 2— 2

which completes the proof of the lemma. [

APPENDIX B: PROOF OF LEMMA 4.5

PROOF OF LEMMA 4.5. Fix any t > 0. To change the value of Q}’(¢), a task must arrive
to a server v € \V,, with queue length i — 1 or a task must depart a server v € N, with queue
length i.

Fix any v € Ny, with X,(r—) =i — 1 and let us compute the probability that a task is
assigned to v. At the epoch time of an arrival, a task adopts a task type w’ € W uniformly at
random. The task is then routed to a server with queue length i — 1 if and only if the system
only samples servers with queue length at least i—1and not only servers with queue length
at least i, which happens with probability g 1(t — q” (t )¢. By symmetry, any server
in Ny w1th queue length i — 1 has the same probability of receiving the task and there are a
total of Q“’ (=) — Qw (t—) of such eligible server. This results in a probability of
B.1) L q;” l(t—)d —q" )"

M S 0¥ - - 0F )

Now, fix any v € NV, with X, (—) = i and let us compute the probability that a task departs
v. At the epoch time of a potential departure, a server v’ € V is chosen uniformly at random
and a task departs if v’ has at least one task in its queue. This results in a probability of 1/N.

We describe the arrival and departure process as follows. Let AV (¢) be a Poisson process
of rate (A + 1) N. An event of the process is either an arrival of type w € W with probability
A/((A 4+ 1)M) or a potential departure at server v € V with probability 1/((A + 1) N), inde-
pendent of the past. Note that this is equivalent to the model description introduced before.
Hence, for any /& > 0,

E[AQ}”(Z‘)LF,] = E[A OF(OIAN (1) =1, Ft]]P’(A./\/'(t) = 1)
T E[AN@)|AN (1) = 2|P(AN (1) > 2)
w’ d w' r\d
(B.2) _(_* 1 GO —q” @O 1 1
<K +1 vgfw M = oY (- QY () A+l vg;w N>
X, ()=i—1 X, (t)=i

(A + DNhe= DN 4 (L 4 ))Nh +2)((h + 1)NK)?,
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where AQ¥ (1) := QY (t + h) — QY (¢t) and AN (1) := N (¢t + h) — N (). Here, we use the
shorthand notation +x to denote a term in [—x, x]. Fix any 0 < s <. The equation above
implies that

E[E[Q;"(t + h) — OF (DIF:]1F5]
h

YOy g (0 =g 1)
veNy w'eN, Q;U—/l(t) - Q;U/(t)
Xy(t)=i—1

— (21" - 04, (0)

d
ZR[Q¥ ()| F, ] =1i
o [0} ()] F5] }11118

AN
(B.3) =E[—

‘F S] )
and hence, by the second fundamental theorem of calculus and Fubini’s theorem,
t

d
E[Q} (1) — Q' ()| Fs] = —ME[Q;”(u)m]du

N

‘AN g ) — g w)?
_ E[ s , ,
(B.4) s M ;f ZN 0 () — QF ()

Xy ()=i—1
fs}y

— (0 (u) — Q1 (w)) du

which proves that E[M " (¢)|Fy] = M (s). Also,

|MP(1)] < |0 (1) — QF (0)]

AN qiw_/l(s)d_ql‘w/(s)d w w
+ v / 7 + l()_ i () d
Wt % X orw—ore T o)

(B.3) Xy (s)=i—1
AN d
de—i_(ﬁ Z Z d +dw)l<00,
veNy w'eN, w’

by the mean-value theorem. This implies, in particular, that M;"(#) is a square-integrable
martingale.

We proceed by computing the quadratic variation of M;”(¢). As Q}’(0) is a constant and
the integral term is a continuous, finite variation process, it follows that [M"], = [Q"];.
Furthermore, since Q}"(¢) is a finite variation process that is right-continuous with left limits,
it follows that [Q}]; = ZZ‘ZI(Q}”(I;{) — Q}“(tk—))z, where 11,1, ...,1t, are the (random)
jump times of the process. Now, recall that the jumps of Q" (¢) are always equal to one and
hence [Q}"]; must simply count the total number of jumps. Thus, a similar computation along
the lines of (B.2) and (B.3) yields

d_ iy o[AN
®6)  EI0M)=E%;

a0 =g @ v ]

' ! + i(t)_ i t .
P ZN o - or@ &= erw)
Xy(@t)=i—1

Then, applying the second fundamental theorem of calculus and Fubini’s theorem as done in
(B.4) concludes the proof of the lemma. [
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APPENDIX C: AUXILIARY LEMMAS

LEMMA C.1. Fixany 0 <y <x1 <1 and 0 <y, < xp < 1. Then, there exists K >0
(depending only on d) such that

d_ . d d_ .d
(C.1) N~ X T»

X1 — ) X2 — Y2

< K(|x1 — x2] + [y1 — »21).

PROOF. Fixany 0 <y <x < 1. Then,

; o
=yl (== T () =)y =y
x—y x—y x—y

-y (§) ity

i=1

(C2)

Note that [x¢ — y¢| < d|x — y| by the mean value theorem (see (4.19)). Therefore,

S S U\ T )
X1—Yy1 X2—»

d
( )I(m yD)! T (g — y) Ty
1

l) (x1 — Y1)i_1yf_i —(x1 — Y1)i_1y§l l

d d d d ‘

I
M&

Il
—_

(C.3) o o
(= y) I — (o — y) Ty

+

IA
M&

)@=y =2l + G = Dl =) = = )

>
(

IA
M&

?) (@ = Dlxi =l + @ = DIy = 12)

—

< (2d — 1)@ = D(|x1 —x2| + [y1 — y21),

which completes the proof of the lemma. [

LEMMA C.2.  Let M”(t) be as defined in Lemma 4.5. Then, for all t > 0,

MY (s)?
(C.4) [Z— > s %] <4t(pod + )y (G).

— wGWSE[O 1] w
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PROOF. Fixanyi € N, w e W and t > 0. Note that M"(¢) is a square-integrable martin-
gale and therefore, by Doob’s martingale inequality,

E[ sup M,-w(s)z] < 4E[M,'w(f)2] =4E[[M"],]

s€[0,1]
' AM g () — g (s)¢
:415:[ e ,
|~ 2 L o o—or

Xy(s)=i—1

C5) +(0V(s) — Q:-"H(s))ds}
M d
<4IE[/ o= Z d—+(Q,’-”(s)— E”+1(s))ds]
XIES)A[I—I weNy

t
< 41@[ /0 Pod (O, (5) — Q¥ (5)) + (QV (5) — Q}”+1(S))dS],

where we use Lemma 4.5 in the second equality and the mean-value theorem in the second
inequality. The equation above implies, by the monotone convergence theorem and Fubini’s

theorem,
Miu)(s)Z
B[ Ly ap MOV

i=1 weWst’t] w

6 <4 / > ZE,Ood O 1(5) = Q' () + (QF'(5) — 01 ()] ds

weW wl

d+1
<4/ S T ds =4t (pod + Dy (G),
0 MweW dw

which completes the proof of the lemma. [
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