
royalsocietypublishing.org/journal/rspa

Research
Cite this article: Dang X, Paulino GH. 2024
Axisymmetric blockfold origami: a
non-flat-foldable Miura variant with
self-locking mechanisms and enhanced
stiffness. Proc. R. Soc. A 480: 20230956.
https://doi.org/10.1098/rspa.2023.0956

Received: 23 December 2023
Accepted: 4 March 2024

Subject Areas:
geometry, structural engineering, mechanical
engineering

Keywords:
axisymmetric blockfold origami, Miura-ori,
non-flat-foldable, self-locking, stiffness

Author for correspondence:
Glaucio H. Paulino
e-mail: gpaulino@princeton.edu

Electronic supplementary material is available
online at https://doi.org/10.6084/m9.figshare.
c.7132041.

Axisymmetric blockfold
origami: a non-flat-foldable
Miura variant with self-locking
mechanisms and enhanced
stiffness
Xiangxin Dang1 and Glaucio H. Paulino1,2

1Department of Civil and Environmental Engineering, and
2Princeton Materials Institute (PMI), Princeton University,
Princeton, NJ 08544, USA

XD, 0000-0003-0737-9597; GHP, 0000-0002-3493-6857

Origami foldcores, especially the blockfold cores,
have emerged as promising components of high-
performance sandwich composites. Inspired by the
blockfold origami, we propose the axisymmetric
blockfold origami (ABO), which is composed of both
rectangular and trapezoidal panels. The ABO inherits
the non-flat-foldability of the blockfold origami,
and furthermore, displays self-locking mechanisms
and enhanced stiffness. The geometry and folding
kinematics of the ABO are formulated with respect to
the geometric parameters and the folding angle of the
assembly. The mathematical conditions are derived
for the existence of self-locking mechanisms. We
perform compression test simulations to demonstrate
enhanced stiffness and increased load-bearing
capacity. We find that the existence of rectangular
panels not only dominates the non-flat-foldability of
the ABO, but also contributes to the enhancement
of the stiffness. Our results suggest the potential
applications of the ABO for building load-bearing
structures with rotational symmetry. Moreover, we
discuss the prospects of designing tightly assembled
multi-layered origami structures with prestress
induced by the mismatch of successive layers to
enlighten future research.
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1. Introduction
Sandwich structures are extensively used in structural engineering from bridges on the land
to aircrafts in the air [1,2]. A sandwich structure is composed of two high-strength outer skins
and a low-density inner core placed between them. Classical sandwich cores include numerous
members including wood cores, foam cores, honeycomb cores, corrugated cores, textile cores,
etc [3]. For aircraft manufacturing applications such as fuselages and wings, only honeycomb
cores and a limited number of foams are used due to certification restrictions [4]. However,
the honeycomb cores on fuselages create difficulties in venting and do not allow air to escape
from the closed cells bounded by the cores and skins. The air can easily condense into water
because of the discrepancy of the environments inside and outside the cabin [5]. The condensing
water will decrease the structure life and increase weight, especially when it accumulates in
the closed cells to a considerable extent. To solve this problem, foldcores were proposed as a
replacement of honeycomb cores, dating back to 1960 for the first patent [6] and 1972 for the
first publication [7]. As a new type of structural sandwich core, the foldcores were inspired by
the concept of origami and have common benefits with honeycomb cores in multifunctional
aspects such as the high strength and stiffness-to-weight ratios, good thermal insulation, and
acoustic damping. In addition, foldcores allow air flow through their open channels between
the skins, and thus avoid moisture accumulation [8,9]. Since the mid-1990s, foldcores have been
drawing increasing research interest and a comprehensive review can be found in [10]. One
of the most comprehensive studies on foldcores was conducted within the European Union
research project CELPACT (Cellular Structures for Impact Performance) [11]. Beyond the zig-zag
configurations of Miura origami, the foldcores proposed in CELPACT have additional cell walls
at front folding edges and can form blocked configurations when the cores are fully folded in
geometry [12,13]. From the viewpoint of origami, the blocked foldcores are distinguished from
the Miura foldcores in the sense that the Miura foldcores are flat-foldable while blocked foldcores
are not. Therefore, the blocked foldcores essentially correspond to a different class of origami
from the classical Miura origami. We refer to this class of origami as blockfold origami, to reflect
the feature that they can be fully folded to blocked configurations. The sandwich structures with
blocked foldcores were shown to have promising performance in both static and impact tests [10].
Naturally, it is intriguing to explore the variations of blockfold origami for potential engineering
applications.

The Miura origami has stood out as a highly acclaimed design, since it originated as
a solution for packaging and deploying large spatial membranes in 1985 [14]. The unique
combination of flexibility and structural integrity makes Miura folds a promising choice in
diverse engineering scenarios from reconfigurable architecture [15] and soft robotics [16,17] to
electronic devices [18,19] as well as the foldcores in sandwich structures [20,21]. As shown
in figure 1a, the Miura crease pattern is a tessellation in bi-direction translational symmetry
and the repetitive unit cell consists of four congruent parallelograms. Expanding upon the
original Miura origami, a spectrum of Miura-derivative patterns have been proposed, including
but not limited to cylindrical patterns [22,23], axisymmetric patterns [23–25], and isomorphic/
non-isomorphic symmetric patterns [26,27]. These Miura-derivative patterns inherit the
topological mountain-valley assignment and geometrical flat-foldable kinematics from the
original Miura origami. Additionally, certain Miura-derivative patterns break the original
crease topology and flat-foldability to offer distinguished mechanical properties, such as the
curved-crease pattern for stacked metamaterials with infinite bulk moduli [28,29] and the
blockfold pattern for sandwich structures with high stiffness-to-weight ratios [12,13]. Figure 1b
demonstrates the crease pattern and folded configuration of a blockfold origami. The blockfold
pattern can be obtained by inserting square (or generally rectangular) arrays between rows of the
Miura origami. In the Miura pattern, the horizontal mountain and valley creases are arranged
alternatively in the vertical direction. By comparison, in the blockfold pattern, the alternative
arrangement turns from the single-mountain-single-valley order into the dual-mountain-dual-
valley order as a result of the insertion of square cells. The inclusion of square cells also renders
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Figure 1. The crease patterns and folded configurations of (a) Miura origami, (b) blockfold origami, (c) axisymmetric Miura
origami and (d) axisymmetric blockfold origami. The mountain and valley creases are coloured in red and blue, respectively.

the blockfold origami non-flat-foldable with blocked configurations when fully folded. From a
different perspective, some Miura-derivative patterns break the translational symmetry of the
original Miura pattern, showing distinct folding shapes. A typical example is the axisymmetric
Miura origami (AMO) [25] characterized by its rotational symmetry. Figure 1c illustrates the
crease pattern and folded configuration of an AMO. Compared to the original Miura pattern,
parallelograms are modified into trapezoids while the mountain-valley assignment is preserved.
The folded AMO takes on a closed-ring shape, and therefore opens up diverse possibilities
to design shell structures and stacked metamaterials with rotational symmetry. The AMO is
also set apart by its non-monotonic deployment kinematics (i.e. the non-monotonic variation
of central angle upon deployment) from Miura variants with translational symmetry [25]. The
AMO and the blockfold origami are typical examples of Miura variants that exhibit diverse
attributes—rotational symmetry in the former and non-flat-foldability in the latter.

In this paper, we aim to develop a new class of Miura-derivative pattern, the axisymmetric
blockfold origami (ABO) that features both rotational symmetry and non-flat-foldability. As shown
in figure 1d, the ABO can be generated by inserting rectangle arrays along the radial direction
of the AMO. This paper is organized as follows. In §2, we formulate the geometry of flat
patterns and three-dimensional configurations of ABO. We discuss the non-flat-foldability of
ABO based on the three-dimensional geometry formulations. In §3, we formulate the folding
kinematics of ABO. We discuss the closability and the self-locking mechanisms of ABO based on
the folding kinematics formulations. In §4, we show quasi-static compression test simulations of
ABO and discuss their enhanced stiffness. In §5, we discuss the prospects of designing tightly
stacked axisymmetric origami structures based on the ABO and the AMO. Section 6 concludes
the paper.

2. Geometry and non-flat-foldability of axisymmetric blockfold origami

(a) Flat geometry
We start by investigating the flat ABO pattern. As shown in figure 2a, we extract the innermost
unit cell to describe the geometry of the flat ABO pattern. The unit cell is composed of four obtuse
trapezoids and four rectangles. All the trapezoids have two acute angles α and β and two legs b
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Figure 2. The unit cell and the tessellation of axisymmetric blockfold origami. (a) The flat unit cell (in dark yellow and grey)
in the tessellation (in light yellow and grey). (b) The folded unit cell in the three-dimensional configuration of the tessellation.

and d. Two of the trapezoids are smaller with bases a and e, while the other two are larger with
bases e and f . The edges of the trapezoids meet the following relationships

d= b
sin α

sin β
, e= a + b

sin(α − β)
sin β

and f = a + 2b
sin(α − β)

sin β
. (2.1)
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Table 1. Geometric conditions of the Miura origami and its variants

type of origami conditions

Miura origami 0< α = β < π/2 and c = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

blockfold origami 0< α = β < π/2 and c > 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

axisymmetric Miura origami (AMO) 0< α < β < π/2 and c = 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

axisymmetric blockfold origami (ABO) 0< α < β < π/2 and c > 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

For the rectangles, two of them have side lengths b and c, while the other two have side lengths
c and d. To build the whole origami pattern, firstly, the unit cell is replicated and rotated by 2δ0
in the circumferential direction. Secondly, in the radial direction, the unit cell is replicated and
translated by 2b while the trapezoid bases increased by (f − a). The above procedures are repeated
for M times in the radial direction and N times in the circumferential direction to generate an M-
by-N ABO pattern. Altogether, the ABO pattern can be determined by the following parameters:
the angles α and β, the side lengths a, b and c, and the repetitive numbers M and N. The overall
radial size of the flat ABO pattern can be described by the inner radius r0 and the outer radius R0,
as shown in figure 2a. We denote the included angle between the adjacent inner radius and outer
radius by δ0, which satisfies

δ0 = α − β. (2.2)

The inner radius r0 and the outer radius R0 can be calculated by

r0 = c × cos δ0 + 1
2 sin δ0

+ a × sin β

sin δ0
(2.3)

and

R0 = c × cos δ0 + 1
2 sin δ0

+ a × sin α

sin δ0
+ 2Mb × sin α

sin β
. (2.4)

The detailed derivations for equations (2.3) and (2.4) are given in appendix A. For an M-by-N
ABO pattern, we denote the total central angle by δ̃0, expressed as

δ̃0 = 2Nδ0. (2.5)

For the ABO crease pattern illustrated in figure 1d, we have δ̃0 = 2π . In addition, we define the
inner perimeter

s0 = δ̃0r0, (2.6)

and the outer perimeter

S0 = δ̃0R0. (2.7)

The perimeters s0 and S0 describe the overall circumferential size of the ABO pattern.
The ABO pattern is general in the sense that we can degenerate the ABO pattern to the Miura

pattern, the blockfold pattern and the AMO pattern, by changing the angles α and β, and the
side length c. For a non-degenerate ABO pattern, the parameters should satisfy 0 < α < β < π/2
and c> 0. Without loss of generality, we have assumed α > β, because interchanging the values
of α and β only reverses the orientation of the origami pattern. The geometric conditions for
the ABO and other three types of degenerate origami are summarized in table 1. If α = β, the
inner radius r0 and the outer radius R0 extend to infinity, and their included angle δ0 decreases to
zero. Consequently, the origami patterns lose their rotational symmetry and exhibit translational
symmetry instead, corresponding to the Miura origami and the blockfold origami. If c= 0, the
size of rectangles becomes zero, reminiscent of the Miura origami and the AMO, both of which
are flat foldable.
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(b) Three-dimensional geometry and non-flat-foldability
Now we switch to the three-dimensional configuration of ABO. As shown in figure 2b, by folding
the unit cell and replicating it in the radial and circumferential directions, we can obtain the three-
dimensional configuration of ABO. In figure 2b, we illustrate three representative dihedral angles
γ , ξ and η. The angle γ is between the two trapezoids intersected at the edge e. The angle ξ is
between the rectangles with sides b and c. The angle η is between the rectangles with sides c
and d. The three dihedral angles describe the degree of folding of the three-dimensional ABO
configuration, but are not independent variables. Specifically, the dihedral angles ξ and η can be
determined by the dihedral angle γ as follows:

ξ = arccos(sin2 α cos γ − cos2 α) (2.8)

and

η = arccos(sin2 β cos γ − cos2 β). (2.9)

The detailed derivations for equations (2.8) and (2.9) are given in appendix A. The dihedral angle
γ varies in the range [0, π ]. The upper limit γ = π corresponds to the unfolded and flat state of
the origami, and the lower limit γ = 0 represents the fully folded state. Equation (2.8) indicates
the one-to-one correspondence and monotonic dependence between the dihedral angles ξ and γ .
Thus, substituting γ = 0 into equation (2.8) yields the minimum value for the dihedral angle ξ ,
denoted by ξmin = π − 2α. Considering the basic condition 0 < α < π/2 for non-degenerate ABO
patterns, we have ξmin > 0. Similarly, we can investigate equation (2.9) and obtain the non-zero
minimum value for the dihedral angle η, denoted by ηmin = π − 2β > 0. Therefore, the dihedral
angles ξ and η cannot be zero, indicating that ABO are non-flat-foldable.

We can also describe the non-flat-foldability of ABO by its overall volume V. To express
the volume, we need to know the sizes of the three-dimensional configurations in the radial,
circumferential and vertical directions. We use the inner radius r and the outer radius R to describe
the overall radial size of the origami, as shown in figure 2b. The inner radius r and the outer radius
R can be calculated by

r= c × F(α, β, γ )
2 sin(γ /2)(tan α − tan β)

+ a × G(α, γ )
tan α cot β − 1

(2.10)

and

R= c × F(α, β, γ )
2 sin(γ /2)(tan α − tan β)

+ a × G(β, γ )
1 − cot α tan β

+ 2Mb × G(β, γ )
csc α tan β

, (2.11)

in which the functions F(α, β, γ ) and G(x, γ ) are defined by

F(α, β, γ ) = 1 + sin2
(γ

2

)
tan α tan β + G(α, γ )G(β, γ )

and G(x, γ ) =
√

1 + sin2
(γ

2

)
tan2 x.

⎫⎪⎪⎬
⎪⎪⎭ (2.12)

The angle included between the adjacent inner radius and outer radius is expressed as

δ = arctan
[

sin(γ /2)(tan α − tan β)

1 + sin2(γ /2) tan α tan β

]
. (2.13)

The height h of the three-dimensional ABO configuration is given by

h= b sin α cos
(γ

2

)
. (2.14)

The detailed derivations for equations (2.8)–(2.14) are given in appendix A. Equations (2.8)–(2.14)
indicate that, once the flat pattern of an ABO (say, α, β, a, b and c) is given, the three-
dimensional configuration can be uniquely determined by the dihedral angle γ . For an M-by-N
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ABO, we denote the central angle by δ̃, expressed as

δ̃ = 2Nδ. (2.15)

For the folded configuration of ABO illustrated in figure 1d, we have δ̃ = 2π . Corresponding to
the perimeters s0 and S0 for the flat pattern, we define the inner perimeter

s= δ̃r= 2Nδr (2.16)

and the outer perimeter
S= δ̃R= 2NδR. (2.17)

The perimeters s and S represent the overall circumferential size of the three-dimensional ABO
configuration with respect to the dihedral angle γ . Given the radial sizes R and r, the
circumferential sizes S and s, and the height h, the overall volume of ABO is expressed by

V = 1
2

(SR − sr)h. (2.18)

We substitute equations (2.10), (2.11), (2.16) and (2.17) into equation (2.18), and calculate the Taylor
series of V about γ = 0, which corresponds to the fully folded state. Then we obtain

V = 2Nc
(
a + 2Mb sin α

tan β

)
+ O(γ ). (2.19)

According to equation (2.19), we know that the overall volume of a three-dimensional ABO
configuration has a finite value even if the dihedral angle γ approaches zero. This again indicates
the non-flat-foldability of ABO. It is worth noting that the non-flat-foldability can be transformed
to flat-foldability by reducing the side length of the rectangles c to zero. In this scenario, the ABO
degenerates to AMO.

3. Folding kinematics, closability and self-lockingmechanisms of axisymmetric
blockfold origami

We are interested in the ABO that form closed-ring shapes. Figure 1d shows a special example
which is closed at both the flat unfolded state and a folded state. Generally speaking, an ABO
that can be closed should satisfy the condition δ̃max ≥ 2π , in which δ̃max is the maximum central
angle during the whole folding process of the origami. To obtain the expression of δ̃max, we need
to investigate the folding kinematics of ABO. We define a kinematic parameter

γ̃ = π − γ . (3.1)

The parameter γ̃ can be referred to as the folding angle that determines the three-
dimensional configuration of ABO folded from its flat pattern. Substituting equations (3.1) and
(2.13) into equation (2.15), we can rewrite δ̃ as

δ̃(γ̃ ) = 2N arctan
[

cos(γ̃ /2)(tan α − tan β)
1 + cos2(γ̃ /2) tan α tan β

]
, (3.2)

in which γ̃ ∈ [0, π ]. Specifically, γ̃ = 0 represents the flat unfolded state, and γ̃ = π represents the
fully folded state. To derive the expression of δ̃max, first, we take the derivative of δ̃(γ̃ ) with respect
to γ̃ :

δ̃′(γ̃ ) = dδ̃

dγ̃
= N sin(γ̃ /2)(tan α − tan β)

[G(α, γ )G(π − β, γ )]2 [cos2(γ̃ /2) tan α tan β − 1], (3.3)

in which the function G(x, γ ) is given in equation (2.12). If 0 < α + β ≤ π/2, the inequality
tan α tan β ≤ 1 holds true. In addition, we recall that for all the ABO, the angles α and β meet the
precondition 0 < β < α < π/2, which implies tan α > tan β. Then we have δ̃′(γ̃ ) < 0 over (0, π ] and
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Figure 3. The folding kinematics of axisymmetric blockfold origami without self-locking mechanisms for different closability:
(a) with no closed state, (b) with a flat closed state and (c) with a closed-folded state.

δ̃′(0) = 0. Otherwise if π/2 < α + β < π , the inequality tan α tan β > 1 holds true. Then we have
δ̃′(γ̃ ) > 0 over (0, γ 	), δ̃′(γ̃ 	) = 0, and δ̃′(γ̃ ) < 0 over (γ 	, π ], in which

γ̃ 	 = 2 arccos
(

1√
tan α tan β

)
. (3.4)

Altogether, the variation of the central angle δ̃ with the folding angle γ̃ can be divided into the
following two situations:

— If 0 < α + β ≤ π/2, δ̃(γ̃ ) is decreasing over [0, π ].
— If π/2 < α + β < π , δ̃(γ̃ ) is increasing over [0, γ̃ 	] and is decreasing over (γ̃ 	, π ].

By substituting γ̃ = 0 and γ̃ 	 into δ̃(γ̃ ), we obtain the expression of δ̃max as

δ̃max =
⎧⎨
⎩

2N(α − β), if 0 < α + β ≤ π

2
,

2N arctan[H(α, β)], if
π

2
< α + β < π ,

(3.5)

in which the function H(α, β) is defined by

H(α, β) = tan α − tan β

2
√

tan α tan β
. (3.6)

Obviously, if δ̃(γ̃ ) is monotonically decreasing and the flat pattern is not closed, the ABO cannot
form closed-ring shapes throughout the folding process. Figure 3a gives an example of ABO with
no closed state. The angles α = 0.25π and β = 0.18π and the circumferential unit cell number N =
12 satisfy 0 < α + β ≤ π/2 and 2N(α − β) < 2π . While the central angle δ̃(γ̃ ) is in non-monotonic
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variation, the unclosability condition reads π/2 < α + β < π and 2N arctan[H(α, β)] < 2π , which
means at the extreme point γ̃ 	, the maximum central angle δ̃max is less than 2π .

When the maximum central angle δ̃max ≥ 2π , the ABO can have at least one closed
configuration. Now we derive the expression of the folding angle γ̃ corresponding to the
closed configurations. Considering equation (3.5) with the basic relationships α − β < π/2 for
non-degenerate ABO and arctan[H(α, β)] < π/2 for the inverse tangent function, we know that
δ̃max <Nπ . Therefore, to guarantee that δ̃max ≥ 2π , the circumferential unit cell number N should
satisfy

N ≥ 3, (3.7)

which is necessary for any closed configuration of ABO. For the convenience of the following
formulations, we define two functions L(α, β) and T(N)

L(α, β) =
√

tan α

tan β
and T(N) = tan

(π

4
+ π

2N

)
. (3.8)

Then we can rewrite H(α, β) as

H(α, β) = 1
2

[
L(α, β) − 1

L(α, β)

]
, (3.9)

and we have the following equivalence:

δ̃max ≥ 2π ⇔
⎧⎨
⎩

α − β ≥ π

N
, if 0 < α + β ≤ π

2
,

L(α, β) ≥ T(N), if
π

2
< α + β < π .

(3.10)

The condition (3.10) guarantees the ABO can form closed-ring shapes. Under this condition, we
solve the equation δ̃(γ̃ )|γ̃=γ̃c = 2π and obtain

γ̃c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ( case 1) if 0 < α + β ≤ π

2
and α − β = π

N
,

γ̃ 	, ( case 2) if
π

2
< α + β < π and α − β <

π

N
and L(α, β) = T(N),

γ̃+ or γ̃−, ( case 3) if
π

2
< α + β < π and α − β <

π

N
and L(α, β) > T(N),

0 or γ̃−, ( case 4) if
π

2
< α + β < π and α − β = π

N
,

γ̃−, ( case 5) if α − β >
π

N,

(3.11)

in which γ̃± is given by

γ̃± = 2 arccos

[
H(α, β) ±

√
[H(α, β)]2 − tan2(π/N)√

tan α tan β tan(π/N)

]
. (3.12)

The solutions γ̃c are the folding angles at which the ABO form closed-ring shapes. The detailed
derivation of equations (3.10)–(3.12) is given in appendix B. Equation (3.11) divides the expression
of γ̃c into five cases, in which we have 0 < γ̃+ < γ̃− for the third case and γ̃− > 0 for the fourth case
and the fifth case. The five cases correspond to different folding behaviours of ABO while all of
them have closed configurations. In the first case, the ABO are closed at the initial flat state and
the central angle decreases monotonically upon folding. Figure 3b gives an example of ABO with
a flat closed configuration. The angles α = 0.25π and β = 0.1667π and the circumferential unit cell
number N = 12 satisfy 0 < α + β ≤ π/2 and α − β = π/N.

In the second case, the central angle γ̃ varies non-monotonically, and the ABO form the
closed configuration at the extreme folding angle γ̃ 	. Figure 3c gives an example of ABO with
a closed-folded configuration. The angles α = 0.4π and β = 0.3395π and the circumferential unit
cell number N = 12 satisfy π/2 < α + β < π and α − β < π/N and L(α, β) = T(N).
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Figure 4. The folding kinematics of axisymmetric blockfold origami with self-locking mechanisms for different flat patterns:
(a) deficit pattern, (b) closed pattern and (c) surplus pattern.

The ABO in both the first and the second cases can be folded in continuous rigid motion
from the flat state to the fully folded state. By contrast, in the third case, the central angle of the
flat pattern is less than 2π , and in theory, the non-monotonic folding motion allows the central
angle to increase to larger than 2π . As a result, the ABO has two closed-folded configurations
corresponding to γ̃±. However, the configurations between γ̃+ and γ̃− are invalid in physics
because the rigid panels cannot intersect with each other to make the central angle exceed 2π .
In other words, there exists a region between the flat state and the fully folded state that the ABO
cannot reach through rigid folding. Figure 4a gives an example of ABO with two closed-folded
configurations. The angles α = 0.4π and β = 0.325π and the circumferential unit cell number
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N = 12 satisfy π/2 < α + β < π and α − β < π/N and L(α, β) > T(N). If the panels are rigid, the
ABO gets self-locked when folded to the closed state at γ̃ = γ̃+. The folding cannot proceed unless
the panels deform to cross the barrier between γ̃+ and γ̃−, which results in non-rigid motion.
Once the ABO arrives at the other closed state at γ̃ = γ̃−, the folding can continue in rigid motion
and finally stops at the fully folded compact state. Because of the non-flat-foldability, the ABO
occupies a finite volume at the compact state with the blocked configuration, which are different
from the flat-foldable Miura origami or AMO. The flat pattern of the ABO in the third case has
a central angle less than 2π , which we call a deficit pattern. In this case, the non-monotonic
variation of the central angle plays a fundamental role in the self-locking mechanisms. Otherwise
if the central angle varies monotonically, no self-locking phenomenon will emerge as shown in
the previous example in figure 3a.

The self-locking mechanisms do not necessitate a deficit pattern. In the fourth case, the
ABO have closed flat patterns, and the non-monotonic variation of the central angle induces
a closed-folded configuration. Figure 4b gives an example of ABO with a closed flat pattern
and a closed-folded configuration. The angles α = 0.4π and β = 0.31667π and the circumferential
unit cell number N = 12 satisfy π/2 < α + β < π and α − β = π/N. Again, the transition between
the two closed states can only be achieved through non-rigid folding. In this case, the self-
locking in rigid folding motion happens at the initial flat state, which is also dominated by the
non-monotonic variation of the central angle.

However, if the flat pattern is surplus, which means the initial central angle δ̃(0) is greater
than 2π , the self-locking mechanism always exists whether the variation of the central angle is
monotonic or not. This is the fifth case, in which the ABO have surplus flat patterns and no
other constraints on the monotonicity are applied. Figure 4c gives an example of ABO with a
surplus flat pattern and a closed-folded configuration. The angles α = 0.4π and β = 0.3π and the
circumferential unit cell number N = 12 satisfy α − β > π . The surplus pattern has an overlapping
area with two layers of panels. If the panels are rigid, the ABO cannot be folded to the three-
dimensional closed state, and therefore is self-locked at the initial flat state. Finally, we remark
that, for the ABO represented by three examples shown in figure 4, the self-locking mechanisms
can also be observed and described in terms of the deployment process, that is, with the kinematic
parameter γ̃ varying from π to 0. In this way, the ABO in figure 4 are self-locked at γ̃ = γ̃− when
deployed from the fully folded and blocked configurations.

For more visual details, we refer to the supplemental Movie 1 for the animations of the folding
kinematics of all the ABO illustrated in figures 3 and 4.

From the above analysis, we know that the values of the angles α and β and the circumferential
unit cell number N determine the folding kinematics of ABO. To visualize this, in figure 5,
we demonstrate contour plots of the maximum central angle δ̃max with the angles α and β for
different circumferential unit cell number N. Figure 5a shows the contour plot for N = 12 with
scatters accommodating the examples of ABO given in figures 3 and 4. The whole feasible domain
of (α, β) is the triangular region confined by the condition 0 < α < β < π/2, which is applied to all
ABO as summarized in table 1. The triangular region is divided into two parts demarcated by the
red solid line α − β = π/N for α + β ≤ π/2 and the yellow solid line L(α, β) = T(N) for α + β > π/2.
The lines of demarcation and the region below them are described by the condition (3.10), and
therefore correspond to the ABO that have closed configurations. By contrast, the region above the
lines of demarcation corresponds to the ABO that cannot form closed-ring shapes. The red solid
line of demarcation represents the ABO that have a closed flat pattern with monotonic folding
kinematics, as shown in figure 3b. The yellow solid line of demarcation represents the ABO
that have a deficit flat pattern and a closed-folded configuration induced by the non-monotonic
folding kinematics, as shown in figure 3c. The red dashed line is the extension of the red solid line
into the non-monotonic-folding region for α + β > π/2, and thus represents the ABO that have
a closed flat pattern and a closed-folded configuration, as shown in figure 4b. As such, the solid
lines of demarcation and the region below them correspond to the ABO that have self-locking
mechanisms. Above the solid lines is the non-locking region where the ABO can be folded in
continuous rigid motion from the flat state to the fully folded blocked state. Figure 5b,c shows the
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Figure 5. Contour plot of the maximum central angle δ̃max with the angles α and β for different circumferential number of
unit cells N: (a) N = 12, (b) N = 24 and (c) N = 48. Note that as the number of unit cells increases, the locking region shrinks.

contour plots for N = 24 and N = 48, respectively. We can see that the non-locking region shrinks
with the increase of the circumferential unit cell number N. This indicates that the closability and
the self-locking mechanisms are destined to arise if the number of the circumferential unit cells is
large enough.

To end this section, we remark that the formulations of the geometry of ABO can be directly
applied to AMO by setting c= 0. The kinematics of ABO depends only on the angles α and β and
the circumferential unit cell number N, and independent from side lengths a, b and c. Therefore,
the formulations of the kinematics of ABO in the current paper are consistent with the deployment
analysis of AMO in [25]. The kinematics analysis in the current paper aims to give more concise
formulations and to provide more insights into the self-locking mechanisms and closability of the
family of axisymmetric Miura variants including both ABO and AMO.

4. Enhanced stiffness of axisymmetric blockfold origami
Inspired from blockfold origami, we are interested to explore the mechanical properties of
ABO. To this end, we used the origami structural analysis software MERLIN [30,31] to perform
quasi-static compression test simulations on the ABO with different sizes of rectangular panels.
The ABO structures in our simulations are shown in figure 6a. The geometric and kinematic
parameters that determine the ABO structures are given in table 2. The only difference in the four
origami structures is the edge length c of the rectangular panels. Specially, when c= 0, the ABO
degenerates to AMO. We selected the interior angles α = 0.4π and β = 0.275π and circumferential
unit cell number N = 8, which belong to case 4 in equation (3.11). In this case, we set the folding
angle γ̃ = γ̃− = 0.821π corresponding to the closed-folded configurations of the ABO. The ABO in
case 4 have a closed flat pattern and a closed-folded configuration (figure 4b). This characteristic
benefits the practical manufacture of closed-folded ABO structures, especially as candidates for
foldcores of sandwich composites. The reason is that one can directly fold a closed flat sheet
through non-rigid motion to get the three-dimensional closed axisymmetric structure, which is
easier compared to folding a sheet with a cut through the radius and then gluing the gap. If the
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Figure6. Load–displacement curves of the quasi-static compression test simulations of the axisymmetric blockfold origami for
different sizes of rectangular panels. (a) The axisymmetric blockfold origami configurations for the compression test simulations.
The first axisymmetric blockfold origami degenerates to axisymmetric Miura origami with c = 0. For each origami, the bottom
vertices are fixed on the xy plane; the top vertices are controlled by their displacements in the minus z direction with free
movements in the x and y directions. (b) The absolute load versus large displacement. (c) The absolute load versus the small
displacement. (d) The loadper unitmass versus the largedisplacement. (e) The loadper unitmass versus the small displacement.

Table 2. Geometric and kinematic parameters of the ABO for compression test simulations.

geometric and kinematic parameters value(s)

side length a 6 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

side length b 10 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

side length c 0, 2 mm, 5 mm, 10 mm
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interior angleα 0.4π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

interior angleβ 0.275π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

folding angle γ̃ 0.821π
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

radial unit cell numberM 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

circumferential unit cell number N 8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

flat sheet is real paper or plastic film, the creases can be perforated by light-duty cutting machines
or laser cutting systems, and the folding can be done by hand [32]. If the flat sheet is made of metal,
the creases can be perforated by CNC milling machines and the folding can be done through the
cold gas-pressure process [33] or punch stamping process [20].

The material properties and other MERLIN settings for our compression test simulations are
listed in table 3. We set the material properties as typical values of real paper: ‘ModElastic’
(elastic modulus) 1000 MPa, ‘Poisson’ (Poisson’s ratio) 0.3, ‘Thickness’ (thickness) 0.1 mm and
the ratio of length-scale factor ‘LScaleFactor’ 2, which determines the rotational modulus of
the creases. Detailed definition and typical values of ‘LScaleFactor’ can be found in [34]. We
used the ‘N5B8’ bar-and-hinge model (ModelType) to capture realistic doubly curved out-
of-plane deformations and isotropic in-plane behaviours of the origami panels. The material
calibration method (MaterCalib) was set as ‘auto’ to specify the constitutive models implicitly
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Table 3. Material properties and simulation options assigned to the compression test simulations in MERLIN.

material properties value

ModElastic 1000 MPa
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Poisson 0.3
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

thickness 0.1 mm

simulation options value

ModelType N5B8
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

MaterCalib auto
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LScaleFactor 2
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

LoadType displacement
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

DispStep 200
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

based on the input material properties using the formulae defined in [34]. For each origami in
figure 6a, the bottom vertices were fixed on the xy plane; the top vertices were controlled by
their displacements (LoadType) in the minus z direction with free movements in the x and y
directions. The displacements were applied in 200 incremental steps (DispStep) from 0 to 4 mm,
which are approximately half of the height of the origami h= 9.14 mm. The height h can be
calculated from equations (2.14) and (3.1) with the parameters given in table 2. Figure 6b illustrates
the load–displacement curves of the compression test simulations for the four origami. We can
see that the applied displacements were large enough to induce deformation of the origami,
which changes from compression dominated by the bars to folding/bending dominated by the
hinges in the computational simulation. By adding slender rectangular panels to build the ABO
(c= 2 mm) from the AMO (c= 0), we dramatically increased the peak load by about four times
from 4.1 kN to 16.6 kN. However, larger rectangular panels (say, c= 5 mm and 10 mm) cannot
further increase the peak load. Instead, the peak loads drop back to around 7.3 kN for both the
ABO with c= 5 mm and 10 mm. This may be related to the fact that the critical stress of rectangular
plate buckling is inversely proportional to the square of the width of the plate [35]. To compare
the stiffness of the origami in their linear deformation regions, we extracted the initial parts of the
load–displacement curves with the displacement varying from 0 to 0.1 mm, as shown in figure 6c.
We can see that the ABO with c= 2 mm has the linear stiffness 10.1 kN/(mm · g), which is more
than three times as high as the 2.7 kN mm−1 of the AMO with c= 0. Importantly, the mass of
the rectangular panels with c= 2 mm is very small compared to the whole origami structure. To
visualize this point, we divided the load by the mass of the origami structures and reproduced the
load–displacement curves, as illustrated in figure 6d for the large deformations and in figure 6e
for the small deformations. We calculated the mass of the panels by using the parameters in
table 2 and the typical density of paper 0.001 g mm−3. In figure 6d, we can see that the peak
load per unit mass of the ABO with c= 2 mm is about 40.6 kN g−1, which is still nearly four
times as high as the 12.2 kN g−1 of the AMO with c= 0. However, when we further increased the
size of the rectangular panels, the increase of mass and the increase of the peak load cancelled
out, and as a result, the peak loads per unit mass of the ABO with c= 5 mm and 10 mm are
approximately at the same level as the AMO. Similarly, in figure 6e, the ABO with c= 2 mm has
the linear stiffness per unit mass 24.9 kN/(mm · g), which is still about three times as high as the
8.2 kN/(mm · g) of the AMO with c= 0. By contrast, the linear stiffness per unit mass of the ABO
with c= 5 mm and 10 mm has no significant difference to that of the AMO.

To further compare the load-bearing capacity of the ABO and AMO, in figure 7, we show the
variations of the loads at different nodes of the origami structures. Figure 7a shows the load–
displacement curve of the whole structure and node A and node B of the ABO with c = 0.2 mm.
Node A and node B belong to the same trapezoid panel. We can see that node B bears more load
than node A does. Figure 7b shows the load–displacement curve of the whole structure and node
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Figure 7. Load–displacement curves of the compression test simulations of (a) the axisymmetric blockfold origami and (b) the
axisymmetric Miura origami.

A and node B of the AMO with c= 0. Again, node A and node B belong to the same trapezoid
panel. We can see that node A bears more load than node B does, and this gap expands quickly
after the origami reaches the peak load. The discrepancy between the load distributions of AMO
and ABO is induced by the existence of the rectangular panels in the latter pattern. Altogether, the
enhanced stiffness and the increased load-bearing capacity of the ABO, especially of those with
rectangular panels of relatively small sizes, suggest the promising potential applications of the
ABO such as foldcores of sandwich composites.

5. Prospects for tightly stacked axisymmetric origami structures
We extend the contents of the paper by demonstrating a tightly stacked axisymmetric origami
structure. The stacked origami structure is composed of alternative layers of ABO and AMO, as
shown in figure 8a. The ABO was generated by the angles α = 0.4π , β = 0.275π and γ̃ = 0.821π ;
the side lengths a= 9 mm, b= 15 mm and c= 9 mm; and the cell numbers M= 3 and N = 8. The
AMO has the same geometric parameters as those of the ABO, except that the AMO has no
rectangular panels (i.e. c= 0). The key point is that the three-dimensional configurations of the
aforementioned AMO and ABO are not rigidly compatible, which means they can only be tightly
stacked with deformations of their panels. Figure 8b illustrates the stacking strategy, by which
we move the panels of the ABO to make them fit into the slots of the AMO, creating tight line
contacts and point contacts between the AMO and the ABO. To make a physical model, we used
a laser cutter (Universal Laser Systems) to cut the outlines and to engrave the creases on the
paper (Canson, 150 GSM), as shown in figure 8c. Then we folded the paper along the creases and
assembled them into a tight structure, as shown in figure 8d. We used transparent elastic bands to
tie the structure up so as to confine its shape. Figure 8e illustrates the front view of the structure
with four layers of ABO and three layers of AMO (invisible) between the ABO. The ABO and
the AMO are stacked in tight contact because the mismatch of their rigid configurations induces
prestress in the assembling process. The prestress is anticipated to contribute to the stability and
load-bearing capacity, which is left for future work.

6. Concluding remarks
In summary, we propose a family of non-flat-foldable Miura-variant origami with rotational
symmetry, which we name the ABO. We characterize the geometry of the flat patterns and the
three-dimensional folded configurations of the ABO. We investigate the folding kinematics of the
ABO and derive the conditions regarding the geometric parameters under which the ABO can
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Figure 8. The stacked axisymmetric origami structure. (a) The axisymmetric blockfold origami and the axisymmetric Miura
origami that are used to assemble the stacked origami structure. (b) The stacking strategy. The green and red arrows indicate
the locations where the AMO and the ABO join each other. (c) The unfolded paper for the axisymmetric blockfold origami
(in black colour) and the axisymmetric Miura origami (in orange colour). The white lines are added to highlight the creases.
(d) The stacked origami structure with prestress (top view). (e) The stacked origami structure (front view). The transparent
elastic bands are used to confine the shape of the origami structure.

exhibit the closed ring-shape three-dimensional configurations and the self-locking behaviours.
We performed compression test simulations for the ABO with rectangular panels of different
sizes. The simulation results indicate that by trading off a slight increase of mass from the
rectangular panels, we can obtain a significant enhancement of the stiffness and dramatic increase
of the load-bearing capacity of the ABO structures compared to the AMO. As an extension
of the current work, we propose a stacking strategy for tightly stacked axisymmetric origami
structures which takes advantage of the prestress induced by the mismatch of the ABO and AMO
in successive layers.
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Figure 9. Notation for the geometric elements of the ABO unit cell.

Appendix A. Derivation of geometric relationships
Figure 9 illustrates supplemental notations of the three-dimensional unit cell in figure 2b. The
notations include the points O, Oi, Pi, i= 1, 2, . . . , 6, the points O′

3, O′
4 and O′

6, the angles α′ and β ′,
the sides b′ and d′, and the height h. The prime superscript indicates that the geometric element
is vertically projected to the bottom plane of the origami. Specifically, O′

3, O′
4 and O′

6 are the
projection points of O3, O4 and O6, respectively; α′ and β ′ are the projection angles of α and β,
respectively; b′ and d′ are the projection sides of b and d, respectively. The projection angle α′
satisfies

tan α′ = |O′
3O5|

|O1O5|
= |O′

3O5|
|O3O5|

|O3O5|
|O1O5|

= sin
γ

2
tan α. (A 1)

The dihedral angle ξ satisfies

sin
ξ

2
= |O1O′

3|
|O1O3|

= |O1O′
3|

|O1O5|
|O1O5|
|O1O3|

= cos α

cos α′ (A 2)

and

cos ξ = 1 − 2 sin2
(

ξ

2

)
. (A 3)

Combining equations (A 1)–(A 3), we can derive

cos ξ = 1 − 2 cos2 α

cos2 α′

= 1 − 2 cos2 α(1 + tan2 α′)

= 1 − 2 cos2 α
[
1 + sin2

(γ

2

)
tan2 α

]
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= sin2 α
[
1 − 2 sin2

(γ

2

)]
− cos2 α

= sin2 α cos γ − cos2 α. (A 4)

Considering ξ ∈ [0, π ], we obtain the expression of ξ in equation (2.8). The expression of the
dihedral angle η can be obtained by following the similar procedure. The angles β ′ and η satisfy

tan β ′ = |O2O′
6|

|O′
4O

′
6|

= |O2O′
6|

|O2O6|
|O2O6|
|O4O6|

|O4O6|
|O′

4O
′
6|

= sin
γ

2
tan β, (A 5)

sin
η

2
= |O2O′

4|
|O2O4|

= |O2O′
4|

|O′
4O

′
6|

|O′
4O

′
6|

|O4O6|
|O4O6|
|O2O4|

= cos β

cos β ′ (A 6)

and cos η = 1 − 2 sin2
(η

2

)
. (A 7)

For the derivations in equations (A 5) and (A 6), we have applied |O4O6| = |O′
4O

′
6|. Combining

equations (A 5)–(A 7), we can derive

cos η = 1 − 2 cos2 β

cos2 β ′

= 1 − 2 cos2 β(1 + tan2 β ′)

= 1 − 2 cos2 β
[
1 + sin2

(γ

2

)
tan2 β

]
= sin2 β

[
1 − 2 sin2

(γ

2

)]
− cos2 β

= sin2 β cos γ − cos2 β. (A 8)

Considering η ∈ [0, π ], we obtain the expression of η in equation (2.9). The included angle δ can
be simply given by

δ = α′ − β ′. (A 9)

Then, we combine equations (A 1), (A 5) and (A 9) and derive

tan δ = tan(α′ − β ′)

= tan α′ − tan β ′

1 + tan α′ tan β ′

= sin(γ /2)(tan α − tan β)

1 + sin2(γ /2) tan α tan β
. (A 10)

Considering δ ∈ [0, π/2], we obtain the expression of δ in equation (2.13). The inner radius r can
be derived by

r= |OP4|
= |OP3| + |P1P2| + |P2O1|

= |P1P3|
tan δ

+ |P2P5|
sin δ

+ |O1O2| sin β ′

sin δ

= c
2 tan δ

+ c
2 sin δ

+ a sin β ′

sin δ

= c
2 tan δ

+ c
√

1 + tan2 δ

2 tan δ
+ a

√
1 + tan2 δ

tan δ

tan β ′√
1 + tan2 β ′ . (A 11)

Substituting equations (A 5) and (A 10) into equation (A 11), we can obtain the expression of r
in equations (2.10) and (2.12). The inner radius of the flat pattern r0 can be obtained by simply
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substituting δ = δ0 and β ′ = β into equation (A 11). Specifically, we have

r0 = c
2 tan δ0

+ c
2 sin δ0

+ a sin β

sin δ0

= c × cos δ0 + 1
2 sin δ0

+ a × sin β

sin δ0
. (A 12)

For the ABO with M unit cells in the radial direction, the outer radius R can be derived by

R= |OP6| + 2M|O2O′
4|

= |OP1| + |P1P5| + |P2O2| + 2M|O2O′
4|

= |P1P3|
sin δ

+ |P2P5|
tan δ

+ |O1O2| sin α′

sin δ
+ 2M|O2O4| sin

(η

2

)

= c
2 sin δ

+ c
2 tan δ

+ a sin α′

sin δ
+ 2Md sin

η

2

= c
√

1 + tan2 δ

2 tan δ
+ c

2 tan δ
+ a

√
1 + tan2 δ

tan δ

tan α′√
1 + tan2 α′

+ 2Mb sin α

sin β

cos β

cos β ′

= c
√

1 + tan2 δ

2 tan δ
+ c

2 tan δ
+ a

√
1 + tan2 δ

tan δ

tan α′√
1 + tan2 α′

+ 2Mb sin α

tan β

√
1 + tan2 β ′. (A 13)

For the derivation in equation (A 13), we have applied equations (2.1) and (A 6). Substituting
equations (A 1), (A 5) and (A 10) into equation (A 13), we can obtain the expression of R in
equations (2.11) and (2.12). The outer radius of the flat pattern R0 can be obtained by simply
substituting δ = δ0, β ′ = β and α′ = α into equation (A 13). Specifically, we have the following
derivations:

R0 = c
2 sin δ0

+ c
2 tan δ0

+ a sin α

sin δ0
+ 2Mb sin α

sin β

= c × cos δ0 + 1
2 sin δ0

+ a × sin α

sin δ0
+ 2Mb × sin α

sin β
. (A 14)

Finally, the expression of height h in equation (2.14) can be derived by

h= |O4O′
4| = |O3O′

3| = |O3O5| cos
(γ

2

)
= |O1O3| sin α cos

(γ

2

)
= b sin α cos

(γ

2

)
. (A 15)

Appendix B. Derivation of γ̃c
Substituting the expression of δ̃(γ ) in equation (3.2) to the equation δ̃(γ ) = 2π , we obtain

2N arctan
[

cos(γ̃ /2)(tan α − tan β)
1 + cos2(γ̃ /2) tan α tan β

]
= 2π . (B 1)

Equation (B 1) leads to

cos
(

γ̃

2

)
= H(α, β) ± √


(α, β,N)√
tan α tan β tan(π/N)

, (B 2)

in which the functions H(α, β) and 
(α, β,N) are defined by

H(α, β) = tan α − tan β

2
√

tan α tan β
and 
(α, β,N) = [H(α, β)]2 − tan2

( π

N

)
. (B 3)

Considering the range of the variable γ̃ ∈ [0, π ], we obtain

γ̃ = γ̃± = 2 arccos

[
H(α, β) ± √


(α, β,N)√
tan α tan β tan(π/N)

]
. (B 4)

We need to check the validity of the solutions γ̃±. When doing this, two preconditions should
be satisfied: 0 < β < α < π/2 and δ̃max ≥ 2π . The condition 0 < β < α < π/2 guarantees the angles
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α and β can generate a non-degenerate ABO configuration, which also yields the following
relationships:

tan α − tan β > 0 and 0 < α − β <
π

2
. (B 5)

The condition δ̃max ≥ 2π guarantees the equation δ̃(γ ) = 2π has at least one valid solution.
According to equation (3.5), the condition δ̃max ≥ 2π reads

δ̃max ≥ 2π ⇔
⎧⎨
⎩

α − β ≥ π

N
, if 0 < α + β ≤ π

2
,

H(α, β) ≥ tan(
π

N
), if

π

2
< α + β < π .

(B 6)

The following relationships will be useful:

0 < α, β <
π

2
and 0 < α + β ≤ π

2
⇒ 0 < tan α tan β ≤ 1

and 0 < α, β <
π

2
and

π

2
< α + β < π ⇒ tan α tan β > 1.

⎫⎪⎬
⎪⎭ (B 7)

For conciseness, we will not specifically point them out when we use the relationships (B 5) and
(B 7) in the following text. To begin with, we check the sign of the function 
(α, β,N). It is useful
to rewrite 
(α, β,N) as the following forms:


(α, β,N) = tan(α − β) − tan(π/N)
cot(π/N)/(1 + tan α tan β)

+
[
H(α, β) −

√
tan α tan β tan

( π

N

)]2
(B 8)

and


(α, β,N) = H(α, β) − tan(π/N)
cot(π/N)/2

+
[
H(α, β) − tan

( π

N

)]2
. (B 9)

When 0 < α + β ≤ π/2, the condition (B 6) is α − β ≥ π/N, which leads to 
(α, β,N) ≥ 0 according
to equation (B 8). When π/2 < α + β < π , the condition (B 6) is H(α, β) ≥ tan(π/N), which leads
to 
(α, β,N) ≥ 0 according to equation (B 9). Thus, the square root operation

√

(α, β,N) always

gets a real number. Next, we consider the range of the folding angle γ̃ ∈ [0, π ]. This means the
valid solutions γ̃± should satisfy 0 ≤ cos(γ̃±/2) ≤ 1, in which cos(γ̃±/2) is given in equation (B 2).
For the inequalities on the left-hand side, we know cos(γ̃±/2) ≥ 0 always holds true, which is
due to H(α, β) >

√

(α, β,N) > 0 based on equation (B 3). For the right-hand side, we deal with

cos(γ̃−/2) ≤ 1 and cos(γ̃+/2) ≤ 1 separately. First, we check the constraint cos(γ̃−/2) ≤ 1. When
0 < α + β ≤ π/2, the condition (B 6) is α − β ≥ π/N. Based on equations (B 4) and (B 8), we have

cos
(

γ̃−
2

)
= H(α, β) − √


(α, β,N)√
tan α tan β tan(π/N)

≤ 1. (B 10)

The equality cos(γ̃−/2) = 1 holds if and only if α − β = π/N. In this case, we have γ̃− = 0. When
π/2 < α + β < π , the condition (B 6) is H(α, β) ≥ tan(π/N). Based on equations (B 4) and (B 9), we
have

cos
(

γ̃−
2

)
= H(α, β) − √


(α, β,N)√
tan α tan β tan(π/N)

≤ 1√
tan α tan β

< 1. (B 11)

The strict inequality cos(γ̃−/2) < 1 implies γ̃− > 0 for π/2 < α + β < π . The above derivations
prove that γ̃− is always a valid solution to the equation δ̃(γ ) = 2π as long as the two preconditions
0 < α < β < π/2 and δ̃max ≥ 2π are satisfied. Second, we check the constraint cos(γ̃+/2) ≤ 1. We
rewrite H(α, β) as

H(α, β) = 1 + tan α tan β

2
√

tan α tan β
tan(α − β), (B 12)

and rewrite 
(α, β,N) as


(α, β,N) = (1 + tan α tan β)2

4tan α tan β

[
tan2(α − β) − tan2

( π

N

)]
+

[
1 − tan α tan β

2
√

tan α tan β
tan

( π

N

)]2
. (B 13)
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When 0 < α + β ≤ π/2, the condition (B 6) gives α − β ≥ π/N. equations (B 4), (B 12) and (B 13)
lead to

cos
(

γ̃+
2

)
= H(α, β) + √


(α, β,N)√
tan α tan β tan(π/N)

≥ 1
tan α tan β

≥ 1. (B 14)

The equality cos(γ̃+/2) = 1 holds if and only if α − β = π/N and α + β = π/2. In this case, we have
γ̃+ = γ̃− = 0. Otherwise, the solution γ̃+ is not valid. When π/2 < α + β < π , the condition (B 6)
gives H(α, β) ≥ tan(π/N). The expression of H(α, β) given in equation (B 3) implies

H(α, β) ≥ tan(α − β). (B 15)

Therefore, we can further consider two different situations: α − β > π/N and α − β ≤ π/N. If α −
β > π/N, equations (B 4), (B 12) and (B 13) lead to

cos
(

γ̃+
2

)
= H(α, β) + √


(α, β,N)√
tan α tan β tan(π/N)

> 1, (B 16)

which indicates γ̃+ is not a valid solution. If α − β ≤ π/N, equation (B 4), (B 12) and (B 13) lead to

cos
(

γ̃+
2

)
= H(α, β) + √


(α, β,N)√
tan α tan β tan(π/N)

≤ 1, (B 17)

which indicates γ̃+ is a valid solution. Specifically, when α − β = π/N, we have γ̃+ = 0 and
γ̃− > 0. When α − β < π/N, we have 0 < γ̃+ ≤ γ̃−. The double solution γ̃+ = γ̃− arises if H(α, β) =
tan(π/N). In this case, we have γ̃+ = γ̃− = γ̃ 	 = 2 arccos(1/

√
tan α tan β). Altogether, we can write

the solutions of the equation δ̃(γ̃ )|γ̃=γ̃c = 2π as

γ̃c =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 < α + β ≤ π

2
and α − β = π

N
,

γ̃ 	, if
π

2
< α + β < π and α − β <

π

N
and H(α, β) = tan

( π

N

)
,

γ̃+ or γ̃−, if
π

2
< α + β < π and α − β <

π

N
and H(α, β) > tan

( π

N

)
,

0 or γ̃−, if
π

2
< α + β < π and α − β = π

N
and H(α, β) ≥ tan

( π

N

)
,

γ̃−, if α − β >
π

N
.

(B 18)

In equations (B 18) and (3.11), the subdomains of the piecewise expression of γ̃c are not in the
same forms. Now we prove the partition of subdomains in equation (B 18) are equivalent to that
in equation (3.11). First, we prove the following equivalences:

H(α, β) = tan(π/N) ⇔ L(α, β) = T(N)

and H(α, β) > tan
( π

N

)
⇔ L(α, β) > T(N),

⎫⎬
⎭ (B 19)

in which the functions L(α, β) and T(N) are given in equation (3.8). To do this, we recall the
function H(α, β) can be written as H = [L(α, β) − 1/L(α, β)]/2. By solving [L(α, β) − 1/L(α, β)]/2 =
tan(π/N), we obtain L(α, β) = [sin(π/N) + 1]/ cos(π/N) = T(N). Then the equivalences (B 19) can
be proved by the fact that H(α, β) is monotonically increasing with L(α, β) increasing. Second, we
have the following relationship

α − β = π

N
⇒H(α, β) ≥ tan

( π

N

)
. (B 20)

This is obvious according to equation (B 15). Therefore, equation (B 18) is equivalent to equation
(3.11). Finally, equations (B 6) and (B 19) lead to equation (3.10).
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