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Abstract. Middle school students learned about astronomy and STEM
concepts while exploring Minecraft simulations of hypothetical Earths
and exoplanets. Participant groups (n = 24) were tasked with building
feasible habitats on Mars. In this paper, we designed a new coding scheme
for assessment of habitats that was used to build novel multi/mixed-
input AI models. Using Spearman’s rank correlations, we found that
our coding scheme was reliable with regards to team size, face-to-face
instruction time, and self-explanation scores. We took an exploratory
approach to analyzing image and block data to compare seven different
input conditions. Using one-way ANOVA, we found that the means of the
conditions were not equal for accuracy, precision, recall, and F1 metrics.
A post hoc Tukey HSD test found that models built using images only
were statistically significantly worse than conditions that used block data
on the metrics. We also report the results of optimized models using block
only data on additional Mars bases (n = 57). The results demonstrate
the nuances of assessing work products, such as the information needed
for humans and computers to make similar judgements.

Keywords: Coding Scheme, Artificial Intelligence, Habitat Building, Informal
Learning, Minecraft

1 Introduction

Minecraft has become one of the most popular games in the world. Currently,
Minecraft has over 140 million monthly users, and 21.21% of daily user traffic in
Minecraft originates from the U.S. [14]. Minecraft is available on tablets, smart-
phones, consoles, and personal computers. Minecraft is a digital environment
many adolescents have an established interest in and that can be leveraged in
educational settings. Even with little experience, researchers have shown learn-
ers master controls quickly and can effectively engage content when Minecraft
is used in STEM learning environments [7]. Given the ubiquity of the game,
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as well as the identified opportunities to conduct research on learning and mo-
tivation [8], Minecraft deserves attention regarding effectiveness for promoting
learning and motivation in formal and informal learning environments.

The data used in this study comes from the What-if Hypothetical Imple-
mentations in Minecraft (WHIMC) project that uses Minecraft as a vehicle for
understanding student interest and motivation in exploring STEM content, pri-
marily Astronomy and Earth Science. Learners are presented with a variety of
“what-if” scenarios, such as “What if Earth had a colder sun?” (see Figure 1).
Students are tasked with exploring these hypothetical worlds in Minecraft and
are encouraged to use in-game tools to measure science variables and formu-
late observations and hypotheses about how and why these environments differ
from our own Earth. These “what-if” questions pose novel scenarios that even
seasoned Minecraft players are unlikely to have experienced in-game previously.
Working through counterfactual examples of phenomena in science has shown
promise of enhancing learning above and beyond studying strictly factual infor-
mation [10].

Fig. 1. Minecraft simulation demonstrating the impact of being tidally locked on an
Earth with a colder sun.

A major part of the experience for learners in this Minecraft project is the
collaborative build phase, where they work with peers to construct habitats on
Mars that humans might inhabit. A Minecraft habitat or base is an assigned
region under a few hundred blocks in any dimension where participants work
in teams to build. Constructing habitats requires integrating the STEM content
learners have encountered throughout the exploration phase of the experience.

This paper proposes a novel scoring scheme for work products designed by
middle school age students in Minecraft and a novel method for work product
assessment in educational video games. We propose the use of multi/mixed-input
models in Minecraft that takes data from different modalities such as in-game
images and material data to assess learning. Although multimodal data (MMD)
has been used in educational research and video game environments, AI models
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using MMD has not been applied to student work product assessment [12]. Thus,
our paper is guided by the following questions and hypotheses:

RQ1. What criteria constitute a reliable scoring scheme for Mars habitat
builds in Minecraft, and to what extent does the scoring scheme hold across
differences in group sizes and amount of face-to-face time with instructors? H1:
A comprehensive scoring scheme based on inclusion of essential aspects of hab-
itability will contribute to a reliable scoring scheme. Group size and face-to-face
time with instructors will not contribute to significant differences between scores.

RQ2. What, if any, relationship do Mars habitat scores have with learning
outcomes? H2: Higher scores on Mars habitats will positively correlate with
knowledge assessment scores.

RQ3. What type or combination of data input accessible in Minecraft should
be used for artificially intelligent detectors of habitat knowledge growth? H3:
Incorporating models built using a combination of multiple forms of data con-
catenated together will outperform models solely built using one form of data.
These models can extrapolate information from different aspects of the bases for
more accurate predictions that would be impossible for models only built using
a single type of data.

2 Background

We are interested in analyzing what are called, “student work products”, refer-
ring to specific, task-driven designs and creations, also called “artifacts”. In the
end, a student has created a product manifesting their conceptual understand-
ing of the content they interacted with throughout a learning experience. Work
products as means of assessing learner knowledge and creativity emerged from
Constructionism and the idea that knowledge is produced through students’
creative and collaborative work [5]. This notion has been fully embraced by the
Maker Movement and the desired approach to better understand what tools and
activities are contributing to learning and other desirable outcomes (i.e. creativ-
ity) [11]. Another positive outcome from students creative work products is those
who do not consider themselves aligned with the given subject (e.g., “science-
minded”) may become more engaged due to the empowerment that creating a
work product brings them [3]. There is an increasing need to examine digital
making as it becomes more integrated into our formal and informal learning
environments. With the discussions of AI in education, we seek to understand
how models can be designed around digital making assessment.

Artifacts have been used as a means of assessing integrated knowledge a stu-
dent has acquired throughout a learning experience. In a review of instructional
techniques and interventions to promote integration of multiple texts, Barzilai
et al. [2] identified collaborative discussion and practice as the most prominent
means of instruction for integrating multiple texts and written essays as the
most common medium for analyzing text integration. The stark differences in
learning environments, techniques, and requirements of tasks make generalizing
results difficult, however, the strategies described constitute best practices and
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are effective at aiding students in integrating conceptual knowledge. We seek to
move beyond written artifacts, though, and contribute to this domain by ex-
amining how collaborative discussion and practice impacts integration of knowl-
edge evidenced through collaborative construction of habitats in a customized,
STEM-focused Minecraft learning environment.

Minecraft has been identified as a medium for learning that offers a lot of
potential for educators, researchers, and designers who have an interest in assess-
ing learning and other motivational variables [8]. One Minecraft study measured
student creativity with the Creative Intelligence Task (CREA) before and after
creating “machinima” of their dream house in Minecraft [4]. Results showed
significant increases in CREA scores regardless of score received on the machin-
ima. An observational study examining learner understanding of urban planning,
found that learners from a small town in Brazil incorporated their own interpre-
tations of what matters in a habitat and included additional spaces they deemed
important, such as playgrounds [1]. Minecraft allows flexibility in design and af-
fords opportunities for learners to combine their knowledge with novel ideas and
concepts. A similar study had students identify challenges in their neighbor-
hood and design solutions using Minecraft, and findings showed students went
from initially considering “loose problems” to address to more structural prob-
lems, such as poor lighting, broken roads, and scattered community events [9].
These studies all leverage the affordances of Minecraft to allow student auton-
omy to flourish in addressing problems and designing solutions. To successfully
build products in Minecraft, creative problem-solving and innovation are key,
as students need to plan out details and aspects of their building to fulfill the
requirements laid out by the project [6].

3 Methods

3.1 Participants

A total of n = 48 middle school age students are included in this study (31%
female) with an average age of 11.96 years old. All students participated in
1-week summer camps held in three distinct locations in the West, Midwest,
and East United States. Demographic breakdown is as follows: 30% Caucasian,
23.75% African-American, 21.25% PNA, 12.5% Hispanic, 2.5% Asian, 1.25%
American Indian, and 7% Other. Consent to participate was obtained from at
least one parent/guardian of each participant. Verbal assent was assessed at the
beginning of each camp.

A total of n = 24 individual bases were made from the participants described
above and were analyzed for the coding scheme. The 24 bases include 6 built by
groups consisting of 3 students, 12 built by groups consisting of 2 students, and
6 built by individuals. Due to missing block data, 3 bases had to be excluded,
resulting in a sample of n = 21 bases used for the AI model comparison.
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3.2 Materials

Participants were all provided with a laptop, mouse, and an individual account to
playMinecraft: Java Edition. Participants used the same account for each session
of their respective after school program or summer camp. All maps explored by
participants were created by our lab and represent simulations of “What if”
questions, such as “What if Earth was a moon to a larger planet?”, as well
as known exoplanets, planets outside of our solar system (e.g. Kepler 186-f).
Design of worlds was done in consultation with an astrophysicist and feature
extreme conditions, such as high winds, widespread volcanic activity, freezing
temperatures, or low gravity, which can all be seen or measured using science
tools. As part of the camp curriculum, participants complete pre-written self-
explanation questions following their exploration of each in-game world. Each
world has three total questions which pertain to the quests, non-player character
dialogue, and in-classroom guidance for each world. These questions are scored
as either 0, 1, 2, or 3, each showing a level of astronomy explanation and mastery.
A score of 0 indicates a nonsense or blank answer, a score of 1 indicates that the
answer was either partial, wrong, or low effort, a score of 2 indicates that the
answer is correct but has misconceptions getting at something true, and a score
of 3 indicates a well-reasoned correct answer with evidence.

Minecraft:Java Edition is an open-world sandbox style digital game, where
players can explore vast worlds with varying terrain. Players can interact with
every block in the game, collect resources, and build any type of structure. There
are different modes of the game, creative and survival, with creative mode provid-
ing players with unlimited resources to build, and survival requiring extraction
of resources and battling against enemies. Our project relies entirely on creative
mode to focus on exploration and building without threat of players’ characters
feeling threatened by in-game enemies. The “What if” scenarios and exoplanets
were created using “plug-ins”, or coded adjustments to the game that allow for
customization and data collection.

3.3 Procedure

The final two sessions of the camp or program, participants were tasked with
building a habitat on a Mars map with several features imported in from actual
NASA 3D scans, including a 1:2000 scale portion of Valles Marineris and Olym-
pus Mons as well as 1:60 scale adaption of the Jazero Crater. Participant groups
were formed based on seating arrangements, existing friendships or by researcher
assignment if needed. They were prompted with an introductory video and pre-
sentation and then challenged to design a habitat for humans to survive and
carry out research on Mars. Participants were told to employ knowledge they
learned from exploring all the previous hypothetical worlds and exoplanets to
inform how they respond to conditions they can measure on Mars. Participants
had around 3 hours to work together and build their habitats. About 40 minutes
prior to the end of the last session each group gave a tour of their habitat for the
whole class, explaining the problems they addressed and how they solved them
as well as what made their habitat special.
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3.4 Data Analysis

Habitat Selection Habitats were selected from camps conducted in 2022 to
create the habitat coding scheme and experiment with different data inputs for
the machine learning models. Selection was a simple random process, where each
base, from furthest left on the x-axis to furthest right on the x-axis (west to east
on the map) was given a number from one to as many bases as on the map, and
three random numbers were generated from that range for each map, providing
a total of 24 bases across the 8 camps.

Additional bases were collected in 2023 for a total of 57 bases across 16
camps. The dataset was used to improve existing block data models using feature
selection and hyperparameter optimization.

Habitat Coding Scheme An extensive coding scheme was utilized to ensure
every part of each group’s habitat was accounted for in a fair and balanced
manner, covering all possible aspects of Mars habitat building outlined during
the camp process. In total, 11 categories were outlined, with a three-tier system
of attaching a score to each category. These tiers are classified from least score to
highest score as “Basic”, “Intermediate”, and “Mastered”, each representing a
level of application and mastery that the participants of the Mars habitat activity
during the camps have shown off. These are awarded starting from nothing, so
participants do not lose any points, they are only able to earn them based on
the parts of their bases and how each category has been defined. The “Basic”
tier awards 0 points in each category and is scored here due to the concept not
being present or present but highly unrealistic, such as the component’s presence
without stable survival in mind. The “Intermediate” tier awards a number of
points halfway between 0 and the maximum for each category and is scored this
way due to the concept being present within the habitat, but unfinished, which
could be due to time constraints, a smaller team, or a neglect for that concept
of survival. The final “Mastered” tier awards the maximum number of points
per category, which ranges between 1 point and 1.5 points per category and
represents that the team integrated the concept clearly and accurately reflects
what would be possible by people establishing a real habitat on Mars.

To ensure that the habitats that are the most accurate and scientifically
sound are scored the highest, scoring weights have been applied to multiple cat-
egories, with a multiplication factor of 1.5. The weight applies to the categories of
concepts that are essential for survival on Mars: atmosphere regulation, protec-
tion from radiation, food and water, supply storage, power generation, commu-
nications facilities, and rounded structure shape. Categories such as area where
the base is built, combating different levels of gravity, health and wellness, and
transportation were deemed as important but less essential considerations to
the immediate survival of scientists inhabiting a Mars habitat. Six categories de-
scribe aspects of the exteriors of student habitats (see Table 1) and five describe
interior qualities (see Table 2).
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Table 1. Descriptions of the six categories based on the exterior of bases.

Category Description Example

Oxygen Production and
Atmosphere Regulation
(Category weight: 1.5)

Participants must include
a representation of an air
regulation system and air
locks.

Radiation Protection (Cate-
gory weight: 1.5)

Participants must include
multiple layers of protec-
tion using dense materials
specifically to keep radia-
tion from the sun out of the
base.

Power Generation (Cate-
gory weight: 1.5)

Participants must include
nuclear reactors or solar
panel arrays as their main
source of power.

Shape of Structure (Cate-
gory weight: 1.5)

Participants must build
their habitats with a
rounded or semi-rounded
shape to prevent minute
toxic particles of dust from
penetrating the corners.

Area Built Participants will need to
build their habitat in what
would be considered a
“geographically-protected”
area to reduce regolith
build up and other condi-
tions that would affect the
flat lands on Mars.

Transportation Participants will need to
build transportation for as-
tronauts to traverse Mars
or be able to travel to and
from Earth. For example,
a rover-like vehicle or a
launchpad at or near the
base.
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Table 2. Descriptions of the five categories based on the interior of bases.

Category Description Example

Food and Water (Category
weight: 1.5)

Participants must make the
supply of food and water
easily accessible and not
subject to radiation dam-
age.

Supplies (Category weight:
1.5)

Participants must make
their supply storage facil-
ities easily accessible and
not subject to radiation
damage.

Health and Wellness Participants will need to
include an infirmary and a
psychiatrist’s office to deal
with injuries, both physical
and mental.

Communications Facilities
(Category weight: 1.5)

Participants must include
facilities to communicate
with Earth.

Combating Different Level
of Gravity

Participants will need to
address the lower levels of
gravity on the surface of
Mars such as including a
gym.

Scoring Process and Reliability To complete the scoring for all 24 habitats,
one expert researcher and one novice researcher reviewed each habitat and scored
them based on the scheme described above. The novice researcher was trained
on the scoring scheme using mock bases, and then both researchers scored the
first two bases simultaneously, finding agreement on all aspects. Following this,
each researcher scored the next five bases asynchronously and met a week after.
Comparing scores, an average agreement of 93% emerged, with a calculated
Cohen’s kappa of κ= 0.87, indicating excellent agreement. The remaining 17
habitats were scored independently by the two researchers. Following the scoring
process, habitat scores were correlated using a Spearman’s rank correlation with
team size, face-to-face time, and mean self-explanation score.

Artificial Intelligence Architecture This section describes the seven deep
learning models being compared in this paper. The architectures were chosen
around the capabilities of the learning environment, the habitat coding categories
outlined above, and literature that have demonstrated potential improvements
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of mixed and multi-input machines [12,13]. Minecraft plug-ins on the server au-
tomatically collect instances where students place or remove blocks and can take
screenshots of the game. It is impossible, however, for a model to predict all of
the categories solely from one input type (food sources cannot be interpreted
from aerial images, location cannot be interpreted from underground images,
shape cannot be interpreted by block data, etc.). In addition, we predict that
models can infer what structures are being built by the block type and fre-
quency of usage, since students often use similar types of blocks when building
specific parts of their habitats. Multi/mixed-input models have not been applied
to classification of work products in video games [12]. Thus, we are taking an
exploratory approach to determine which frameworks and data sources works
best for Minecraft. The models were designed to take different combinations of
the three types of input: aerial images, underground images, and block data for
each base.

We designed three baseline models for the three input types. The specific
architecture of our baseline models were based off of a study comparing mixed-
input models in the medical field that used a similar image and numerical
dataset [13]. For both aerial images and underground images, we used a con-
volutional neural network (CNN). Images in our dataset were resized to 128x128
and each pixel value was normalized. For block data, we used a multi-layered
perceptron (MLP). The columns for the dataset were the types of blocks used
for all of the groups and for each cell were the number of the block type used by
the group normalized.

There were a total of four multi/mixed-input classifiers: aerial and under-
ground image model, aerial and block data model, underground and block data
model, and a combination of all three data types. To concatenate the models
into a single classifier, we concatenate the output layers together and flatten
them as input to another connected layer and then an output layer to get the
classification. Before concatenation, we used the same model architectures in the
multi/mixed-input classifiers as the ones used in the baseline models.

AI Model Comparison A total of n = 21 bases were used to compare different
input types for the AI models, 3 were omitted from the dataset due to missing
block data. To compare the seven AI frameworks described above, we used 5-fold
cross-validation. To handle dataset imbalances we used class weighting and to
prevent overfitting we used early stopping. We then ran ANOVA to determine
whether the means of the seven models were identical and a post hoc Tukey
HSD test to determine which pairwise comparisons between conditions yielded
significant differences.

4 Results

4.1 Habitats and Learning

To demonstrate that the scoring process was reliable for all students involved
in the 2022 camps, three Spearman’s rank correlations were performed compar-
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ing habitat scores to team sizes, face-to-face time, and mean self-explanation
score. Assessing the relationship between team size and habitat scores, Spear-
man’s rank correlation showed a non-significant negative correlation between
team sizes and habitat score, r(22) = -.03, p = .89. This indicates that smaller,
or even individual teams, are capable of excelling at the build challenge. The
second correlation found a non-significant positive relationship between face-to-
face camp instruction time and habitat score, r(22) = .13, p = .54. This further
provides evidence that the build challenge can effectively happen in situations
where instructors are not always present. Finally, we found a significant posi-
tive correlation between mean self-explanation score and habitat score, r(22) =
0.51, p = .01. Higher knowledge scores from conceptual knowledge assessments
leading up to the build challenge resulted in overall better builds. This could
indicate productive engagement with the exploratory phase of the camp is a
critical aspect of preparing for the build challenge.

4.2 AI Model Comparison

Model Metrics One-way ANOVAs was conducted to compare the effect of
condition on accuracy, precision, recall, and F1 scores. The ANOVAs for all four
metrics were significant. For accuracy, F (6, 378) = 9.82, p<.01. For precision,
F (6, 378) = 6.99, p<.01. For recall, F (6, 378) = 3.42, p<.01. For F1 score, F (6,
378) = 6.93, p<.01. Table 3 shows the Tukey HSD test results of the comparisons
between conditions on the metrics.
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Table 3. Post hoc Tukey HSD results for accuracy, precision, recall, and F1 scores
(A = Aerial, U = Underground, B = Blocks). ***p<.001, **p<.01, *p<.05

Comparison Accuracy Precision Recall F1

U vs. A 0.04 0.01 0.01 0.01

B vs. A 0.22*** 0.18** 0.09 0.16**

A+U vs. A 0.05 0.02 −0.01 0.01

A+B vs. A 0.20*** 0.13 0.08 0.13*

U+B vs. A 0.19*** 0.15* 0.09 0.14*

A+U+B vs. A 0.25*** 0.19*** 0.12* 0.18***

B vs. U 0.18** 0.17** 0.08 0.15**

A+U vs. U 0.01 0.01 −0.02−0.001

A+B vs. U 0.16** 0.12 0.07 0.11

U+B vs. U 0.16* 0.14* 0.08 0.12

A+U+B vs. U 0.21*** 0.19*** 0.11 0.17**

A+U vs. B −0.17** −0.16** −0.10−0.15**

A+B vs. B −0.02 −0.05 −0.01−0.03
U+B vs. B −0.03 −0.03 −0.004−0.02

A+U+B vs. B 0.03 0.02 0.03 0.02

A+B vs. A+U 0.15* 0.11 0.09 0.12

U+B vs. A+U 0.14* 0.13 0.10 0.12

A+U+B vs. A+U 0.20*** 0.18** 0.13* 0.17**

U+B vs. A+B −0.01 0.02 0.01 0.01
A+U+B vs. A+B 0.05 0.06 0.04 0.05
A+U+B vs. U+B 0.06 0.05 0.03 0.05

4.3 Model Optimization

A total of n = 57 bases were used for feature selection and finding the optimal
amounts of layers and nodes for block only models for each category in the
habitat coding scheme. We decided to optimize the block only models, since our
comparison found that block only models performed just as well as our best
models for the different input types. In addition, using block only data could
reduce deployment issues such as lag associated with collecting images while
students are on our server and collecting images that potentially do not fully
represent the students’ bases. For feature selection, we used correlations between
each building material used by groups across all camps and a cutoff of r = .95 to
remove all but one of highly correlated building materials. We removed a total
of 267 highly correlated block types leaving a total of 428 building materials
that were included in the dataset. Then, using a randomized search with 50
iterations with varying numbers of hidden layers (minimum of 1 and maximum
of 4 layers) and nodes in each layer (minimum of 25 and maximum of 500 nodes),
we ran a 5-fold cross validation for each habitat coding category (results shown
in Table 4).
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Table 4. Results of best models regarding accuracy for each category using random-
ized search 5-fold cross validation.

Feature Accuracy Precision Recall F1

Oxygen Production/Atmosphere
Regulation

.72 .57 .45 .81

Radiation Protection .62 .57 .41 .64
Power Generation .77 .79 .58 .77
Communication .74 .78 .57 .67

Shape of Structure .62 .54 .45 .72
Area Built .76 .87 .58 .72

Transportation .61 .57 .47 .64
Combating Lack of Gravity .56 .55 .55 .54

Food and Water .49 .48 .35 .60
Supplies .67 .63 .47 .65

Health and Wellness .62 .57 .47 .64

Average .65 .63 .47 .68

5 Discussion

In this paper we discuss our research to develop a coding scheme to assess student
Mars habitats and a habitat classifier based on that coding scheme. We discuss
our findings in relation to the research questions hypotheses that guided our
work.

Consistent with our first two hypotheses, we conclude that the scoring method
for the Mars habitats provides a fair and reliable means of assigning a numeri-
cal score to any given base built by camp participants. Because team size and
face-to-face time had a non-significant impact on the scores that participants
received, we can infer that varied contexts do not substantially impact learners’
abilities to construct meaningful habitats. This was further proven by correlat-
ing the mean self-explanation score with the habitat scores, where the higher a
group was able to score on the questions, the better their habitat scored overall.
This indicates that when participants integrate more astronomy knowledge their
builds tend to be more comprehensive and accurate habitat. Progressing through
the exploration phase of the STEM-focused Minecraft experience appears to be
a necessary condition for constructing habitats that address core concepts of
habitability on extraterrestrial environments.

Contrary to our third hypothesis, a model built with a combination of data
sources (aerial and underground images) was significantly outperformed by the
model using only block data. This result is surprising, since this approach pro-
vides the same visual information that human coders are given when assessing
habitats. We believe that although human coders are only given visuals of the
student bases, coders connect their understanding of the building activity and
prior knowledge of Minecraft block types and qualities to make their judgments.
Thus, providing models with block data provides necessary context to capture
human understanding of the domain and task, which has implications for data
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collection and input for future work product classifiers. Similarly, models using a
combination of image and block data did not significantly outperform the model
only using block data. Our best models used a combination of all three forms of
data, which shows potential for this technique to be used in future work prod-
uct classification work. The non-significant improvement compared to the block
only model and deployment considerations, however, informed our decision to
optimize the block only models. A possible limitation of using block only data is
thatMinecraft head blocks are not differentiated. These blocks are customized to
look like objects (e.g. computers, cabbages, etc.) and are often used by students
when designing their bases, thus not differentiating these blocks could impact
the predictive capabilities of block only models on certain categories.

6 Future Work

Our optimized models have been integrated with a pedagogical agent and will
be used in usability studies to provide in-process habitat feedback with students
at our future camps. Automated feedback formulated from classifications made
by our AI models should improve student building behaviors by giving specific
feedback on what they can improve on (see Figure 2). Feedback can also take
the burden off of researchers and educators to manually score habitats during
our camp sessions, freeing time to work with students and discuss why they are
interested in building certain parts of the habitat or how they can continue to
improve. Future directions could include providing students with a checklist of
features that they have completed for their base, designing a collaborative agent
that students can offload building specific parts to, or integrating the system
into schools as a stealth assessment for engineering concepts. We are optimistic
that students using our pedagogical agent in future studies will find it as a
meaningful tool for knowledge growth and developing necessary skills for their
future interests.

Fig. 2. Example habitat feedback given by the agent.
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