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Abstract— Content-Addressable Memory (CAM) circuits,
distinguished by their ability to accelerate data retrieval through
a direct content-matching function, are increasingly crucial in
the era of AI and increasing data computation. With the rise of
Al models, hardware matching and hashing capabilities become
essential, underscoring the need for a comprehensive survey of
this evolving technology. This survey explores various CAM types
across circuit designs and technologies, highlighting contributions
to fields such as Machine Learning and genomics. We review
37 CAM cell designs, focusing on emerging trends in area
and energy efficiency, pivotal for next-generation computing.
Furthermore, we discuss current challenges and suggest future
research directions in CAM technology.

Index Terms— Associative memory, Machine Learning, in-
memory computing, semiconductor devices, digital circuits,
analog circuits.

I. INTRODUCTION

ONTENT-ADDRESSABLE Memory (CAM) is a spe-

cialized type of computer memory used in high-speed
search applications [1]. Unlike traditional address-in, data-out
memory types such as Random Access Memory (RAM), CAM
memory functions with a data-in, address-out principle, allow-
ing for rapid and efficient data searches [2], shown in Fig. 1.
This parallel computing capability makes CAM highly relevant
in applications such as networking [3], [4], genomics [5],
(61, [71, [8], [9], [10], [11], [12], databases [13], [14],
optical computing [15], [16], [17], [18], [19], real-time image
processing [20], [21], and Machine Learning models [22],
[23], [24], [25], [26], [27].

CAM operates by comparing input search data against a
table of stored data. If data matching the input is found,
the address of that data is returned [5]. There are several
types of CAMs, with ternary CAM (TCAM) being the most
common. TCAM stores data bits in three states: 0, 1, and X
or “dont care”, which returns a match regardless of the
input [1], [28], [29], [30], [31], [32], [33], [34], [35], [36].
This flexibility allows TCAMs to handle more complex search

Received 30 August 2024; revised 27 November 2024; accepted 6 January
2025. This work was supported by the National Science Foundation (NSF)
under Grant IIS-2332744, Grant ECCS-2328712, Grant CCF-2328805, and
Grant CNS-2112562. This article was recommended by Associate Editor
M. Lopez-Vallejo. (Corresponding author: Tergel Molom-Ochir.)

The authors are with the Department of Electrical and Computer Engineer-
ing, Duke University, Durham, NC 27705 USA (e-mail: tergel.molom-ochir@
duke.edu).

Digital Object Identifier 10.1109/TCSI1.2025.3527309

, Fellow, IEEE, and Yiran Chen", Fellow, IEEE

Address

DECODER

Data Out Data In
(a) (b)

Fig. 1. Basic (a) RAM and (b) CAM operation.

queries efficiently. Analog CAM arrays store data as ranges of
acceptable values, with analog inputs provided for matching.
If an input value falls within the stored range of a cell,
it is considered a match for that cell. This capability is
useful for applications that require the matching of continuous
or multilevel data values [37]. Lastly, differentiable CAMs
handle all analog inputs, storage, and outputs, offering greater
flexibility in search operations. Unlike standard analog CAMs,
differentiable CAMs provide an analog output that indicates
the degree of match between the input and the stored data [38].
This allows closest match search between analog input and
stored values.

The associative or parallel search mechanism makes CAMs
extremely fast at searching through large datasets, which is
particularly beneficial for functions such as matching and
hashing, where a CAM is used to search and decide whether
a certain pattern exists in a large table of data. Binary and
Ternary CAMs have been applied to data intensive genomics
computations [5], [6], [7], [8], [9], [10], [11], [12], ham-
ming distance calculations [39], and hashing [2], [15], [16],
[18], [19], to name a few. Moreoever, Analog CAM’s unique
search mechanism were applied to Machine Learning model
mapping and acceleration [37].

In big data and Al applications where vast amounts of data
need to be accessed and processed rapidly, such as those
found in computer vision and natural language processing,
in-memory computing solutions are emerging to address the
‘memory wall’ challenge in AI hardware trends, where the
speed of CPUs and GPUs is significantly obstructed by
the latency and bandwidth limitations of traditional memory
hierarchies [40]. CAM’s ability to perform parallel searches in
hardware significantly enhances the performance of systems
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that require fast data search and processing in-memory.
In a CAM, the memory array is designed to broadcast input
data to all rows of stored data and compare them simultane-
ously. Unlike sequentially checking each entry, CAM’s parallel
search can locate the matching entry in a single operation,
achieving constant time complexity O(1) [22], [23], [24], [25].
This reduces latency and maximizes bandwidth utilization
by minimizing the need for data to transfer back and forth
between the memory and the processing units, overcoming
the memory wall.

The realm of CAM technology is rapidly advancing, and
a comprehensive survey is needed to understand the current
advancements in the age of Al, and future directions. This
survey aims to fill the gap by providing an in-depth analysis of
the latest developments in CAM technologies, and applications
in the Al landscape.

In this paper, we classify CAM technologies into several cat-
egories based on their operational mechanisms and underlying
memory technologies. Section II will delve into CAM circuits,
detailing different types of CAMs, as well as semiconductor
and emerging non-volatile memory (NVM) technologies used
for CAM implementation. Section III will provide a compre-
hensive analysis on emerging applications of CAM. Lastly,
section IV discusses challenges, potential research directions,
and anticipated advancements in CAM technology.

II. CAM CIRCUITS

Unlike standard memories such as SRAMs, which are
accessed by a specific memory address, CAMs allow data
retrieval based on the content itself. In other words, CAM
operates on search data-in and address-out, while standard
memories operate on address-in and data-out principle.

The core cell, which compares a single bit of stored and
query data, is the fundamental unit of any CAM array.
CAM cells are connected vertically via bit lines, with a
driver controlling the input, and horizontally via matchlines,
where stored bit patterns reside. Each matchline has a sense
amplifier to finalize the readout, and an encoder translates the
sense amplifier outputs to the binary address of the matched
matchline in case of a single best match. Most CAM arrays
support exact matches, requiring all cells on a matchline to
match. The basic structure of a CAM cell consists of two
parts: storage circuitry and compare circuitry. The comparison
operation in CAM cell involves two phases: precharge and
evaluation. Despite numerous proposed and implemented core
cell designs and reviews of existing designs, no comprehensive
survey of recent CAM cell developments and emerging Al
applications exists. This paper presents 39 different CAM core
cells, shown in Table V, and discusses their applications in the
age of AL

In this section, we delve into the various circuits uti-
lized in CAM technology. Different circuit designs provide
various functionalities and performance characteristics, meet-
ing diverse application needs. CAMs are classified by their
underlying concepts, and the technologies used for their imple-
mentation. This section explores several types of CAMs, each
with unique advantages and limitations, and technologies used
for their construction.
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Fig. 2. Basic (a) NOR-type and (b) NAND-type CAM.

A. Matchline Architecture

CAM architectures can be broadly classified into two types:
NOR and NAND, each with distinct characteristics as shown
in Fig. 2.

In NOR-type architecture, each cell has a pull-down transis-
tor connected to the match line. The match line is precharged,
and during a search operation, the cell compares its stored
value with the input value. If the values differ, the transis-
tor discharges the match line via the pull-down transistor,
indicating a mismatch. If all cells match, the pull-down
transistor is not activated and the match line remains high. The
NOR architecture enables simultaneous comparisons, making
it fast. However, it consumes high power as it precharges and
discharges multiple match lines with each search operation.

The NAND-type architecture operates using pass transistors.
Each cell has a pass transistor connected to the match line,
and the match signal propagates sequentially through these
transistors. When a match occurs, the pass transistors are
turned on, allowing the signal to pass to the sense amplifier.
If there is a mismatch, the transistor remains off, blocking
the signal. This architecture is power-efficient since it avoids
precharging and discharging the match lines repeatedly. How-
ever, the sequential nature of the matching process makes it
slower compared to the NOR architecture.

NOR-type is faster due to simultaneous comparisons.
NAND-type is more power-efficient as it avoids continuous
precharging and discharging. In summary, NOR-type archi-
tecture is suited for high-speed applications but at the cost of
higher power consumption, whereas NAND-type architecture
offers lower power usage but slower operation [36], [41], [42].
Balancing these characteristics is key to optimizing CAM per-
formance for specific applications. Systems that combine the
best of two matchline architectures has been developed with
the goal to achieve high-speed, low-power CAM systems [28].

B. Architecture and Peripherals

Fig. 3 depicts the basic structure for a CAM system,
necessary for the execution of high-speed search operations.
Integral elements in this include pre-charge circuitry, pre-
charging match-lines before each search; a query register that
will store and broadcast the input search word to the search-
lines; match line sense amplifiers (MLSAs) that will sense
a match or a mismatch; and an encoder to convert the match
results into a binary address. Depending on the application and
architectural requirements, MLSAs can be designed to output
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Fig. 4. Cell designs across different memory technologies over time.

exact match/mismatch or Hamming distances. In addition,
address decoders and write drivers enable writing and updat-
ing stored data, hence the system is programmable. Other
applications may require more peripherals to make better
functionality. Examples of such are multiple match resolvers
used in networking to handle simultaneous matches, priority
encoders to determine the highest-priority match for routing
application, and segmented matchlines to optimize power in
energy-sensitive designs. In simpler read-only CAM systems,
the write drivers and address decoders can be removed to
further simplify the design. This modularity allows the archi-
tecture to be optimized for particular performance and power
requirements.

C. CAM Cell Concepts

Depending on the the specific needs and limitations of the
application, different CAM circuits have been realized over
the years Fig. 4. Predominantly implemented using SRAM
technology, with digital CAMs, the inputs, storage, and output
are represented as binary values (0 and 1), while digital ternary
storage adds a “don’t care” state (X) for flexibility. Recently,
analog CAM concept was introduced [37]; analog CAMs allow
input and storage values ranging from 0.0 to 1.0, facilitating
multilevel matching, with analog ternary storage also including
the X state. Differentiable CAMs operate fully in analog,
allowing unique output types through differentiable func-
tions. Digital CAMs are discussed in depth in Section. II-C.1,
Analog CAMs in Section. II-C.2, and Differentiable CAMs
in Section. II-C.3. Various types of existing CAM concepts
are shown in Table I.

1) Digital CAMs: CAMs are specialized devices designed
for high-speed search operations. These devices are imple-
mented using SRAM and DRAM technologies and function
entirely with digital inputs, storage, and outputs. At the cell

CELL DESIGNS FOR BINARY AND TERNARY CAM USING SRAM
(10T BINARY, 16T TERNARY) AND DRAM (3T1C BINARY,
6T2C TERNARY) TECHNOLOGIES [31], [43], [44]
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level, Binary CAM cells perform an XNOR operation between
the stored bit and the search bit. If the stored and search bits
are the same (either both 0 or both 1), the cell outputs a “1”
(match); otherwise, it outputs a “0” (mismatch). On a row
level, if all cells in a row match the input data, the row outputs
a “1” on the matchline, and the corresponding memory address
is returned. For instance, as shown in Fig. 1b, if the input
data is 110010, the CAM will compare this input with all
rows in parallel. If the third row matches the input data, the
CAM outputs a “1” for this row and returns the address “2”
via the encoder. Ternary CAMs (TCAMs) operate similarly
to binary CAMs but include a third state, “don’t care” (X),
which can match any input bit. For example, a TCAM row
storing 10 x 1 can match input values 1011 and 1001.
TCAMs provide straightforward match or mismatch signals.
While digital CAMs are advantageous for their simple search
capabilities, they often suffer from large physical sizes due to
the complexity of their digital circuitry. Table II show example
binary and ternary SRAM implmementation based on the 6T
SRAM cell.

2) Analog CAMs: Analog CAMs operate with analog inputs
and storage, enabling the processing and storage of a wide
range of continuous data values [37]. Typically realized using
emerging non-volatile memory (NVM) technologies, they
are valuable for applications requiring precise data control.
Despite using analog inputs and storage, the output is digital
(match or mismatch). This hybrid approach can increase
storage density and design efficiency, but may introduce noise-
related challenges. This design is ideal for multilevel and
non-binary state matching.

Analog CAMs store data as ranges between 0 and 1. When
an analog input is provided, it is compared to these ranges.
If the input falls within a stored range, it is considered
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Fig. 5. Operation of (a) analog CAM with binary matching results and

(b) differentiable CAM with analog matching outputs.

a “1” (match). For example, if a cell stores a range between
0.36 and 0.75 and the input is 0.60, the cell will output a
match. If the input is outside this range, a “0” (mismatch) is
returned. When all cells on a matchline output a match, the
address of that matchline is returned.

3) Differentiable CAMs: Differentiable CAMs, which oper-
ate fully in analog, store data as ranges and receive analog
inputs, providing an analog output that indicates the degree
of match for each row rather than a simple “True” or “False”
result as can be seen in Fig. 5. If a cell stores a range between
0.36 and 0.72, an input of 0.24, being closer to the stored
range, will cause a smaller current in aMLlo and a slower
discharge of the matchline, resulting in a higher analog output
(weak mismatch) compared to an input of 0.12 (strong mis-
match). For any value within the range, i.e. 0.48, the ML stays
charged, indicating a match. This all-analog implementation
links CAMs to analog crossbar arrays, enabling fast searches to
determine the degree of match between tables of analog values
and analog inputs, thus broadening the scope of applications
that can perform similar searches in analog.

D. Semiconductor Technologies for CAM

1) SRAM: The storage circuitry is usually a SRAM cell,
which is often implemented using six-transistors (6T) [29],
[311, [34], [35], [41], [45], [46], [47]. The 6T cell com-
prises two cross-coupled inverters and two access transistors.
Compare circuitry includes transistors that connect to the
matchline and search lines. These transistors are responsible
for comparing the stored bit with the search bit. Table II shows
example binary and ternary SRAM cell designs.

This structure allows stable and low power data storage
without the need for periodic refreshing, making it ideal for
applications that require high-speed memory. This structure is
challenged by scaling issues, resulting in higher production
costs and larger cell sizes.

The two cross-coupled inverters create a stable storage
element that holds a single bit of data. The remaining two
nMOS transistors act as access transistors controlled by the
word line. When writing data, the word line is activated,
allowing the data bit to be written into the storage nodes
through the bit lines. The data is stored at the intersection
of the two cross-coupled inverters, providing a stable state
as long as power is supplied. During a read, the word line is
activated again, allowing the stored data to be read out through
the bit lines.

A typical comparison goes as follows in a NOR-type CAM.
The match line is precharged to a high voltage (logical 1).

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

The search lines carry the search data. If any bit in the
stored data does not match the search data, the corresponding
transistor will pull the match line to a low voltage (logical 0).
Thus, the match line remains high only if all bits match. When
a mismatch is detected, the match line discharges through
the nMOS transistors corresponding to the mismatched bits,
pulling it low.

SRAM-CAMs are fast and have high endurance. However,
they are volatile, have higher power consumption and suffer
from large area. SRAM-CAMs are best for high-speed applica-
tions, such as networking routers and switches, and high-speed
caches.

2) DRAM: Dynamic Random Access Memory (DRAM)
based CAMs are characterized by their single transistor and
capacitor configuration, which supports a compact and high-
density design. This structure, while economical and capable
of achieving higher cell density than SRAM-based CAMs,
necessitates frequent refresh cycles due to charge leakage
from the capacitors. This inherent volatility impacts the overall
speed of memory access. Table II shows example binary and
ternary DRAM cell designs.

Data in DRAM-based CAMs is stored as an electrical
charge in a capacitor, indicative of binary data (1s and Os).
Each cell includes an access transistor, controlled by a word
line, that regulates whether the capacitor charges (to store
a ‘I’) or discharges (to store a ’0’). The need for periodic
refresh cycles to replenish charge leakage is crucial for main-
taining data integrity.

The comparison mechanism within DRAM-based CAM
cells employs two key transistors that link the match line (ML)
to ground. These transistors represent the stored bit and the
inverse of the search bit. During a search operation, if the
stored data matches the input query, only one transistor
activates, preventing the ML from discharging. Conversely,
a mismatch activates both transistors, discharging the ML
through a direct path to ground. The state of the ML—
either holding its precharged level in the event of a match or
discharging in the case of a mismatch—is detected by match
line sense amplifiers to confirm the presence or absence of a
match. During a match, ideally, no current flows through the
match line, and it remains at its precharged level. If there’s
a mismatch, the access transistor allows current to flow from
the match line to ground, pulling the voltage down.

DRAM-based CAMs are ideal for large-scale memory appli-
cations where cost and density are prioritized over speed. Their
use is particularly advantageous in fields requiring substantial
memory resources, such as database acceleration, machine
learning inference, and big data analysis. Despite their higher
density and cost-effectiveness, the slower access times and
the need for regular refreshes due to volatility should be
considered when choosing memory solutions for high-speed
applications.

E. Emerging Non-Volatile Memory (NVM) Technologies

1) Resistive RAM (RRAM/ReRAM): ReRAM-based CAM
cells typically integrate transistors and memristors (ReRAM
devices) to form a compact and efficient memory cell.
A common structure includes configurations like 2T2R
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TABLE III

CELL DESIGNS FOR CAM USING EMERGING NON-VOLATILE
TECHNOLOGIES: TERNARY ReRAM (2T2M) [48], TERNARY
MTJ (4T-2MTJ) [49], TERNARY FeFET (4T-2FeFET) [50],
ANALOG ReRAM (6T2M) [37], AND
DIFFERENTIABLE (6T2M) [38]
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(two transistors and two ReRAMSs) or 3T1R (three transistors
and one ReRAM) for ternary CAMs and 6T2M (six transistors
and two memristors) for Analog and differentiable CAMs. The
transistors are used for access control and signal amplification,
while the memristors are employed for data storage due to
their resistive switching capabilities. For example, in a 2T2R
cell design: Two transistors (T1 and T2) are used to control
the read and write access to the cell. Two ReRAM devices
(R1 and R2) are used to store the binary data, leveraging
their high resistance (HRS) and low resistance (LRS) states
to represent logic ‘1’ and ‘0’.

Data in ReRAM-based CAM cells is stored in the resistive
states of the memristors. Each memristor can switch between
a high resistance state (HRS) and a low resistance state (LRS),
representing binary data. During the write operation, a voltage
is applied across the ReRAM device to change its resistance
state. For example, applying a higher voltage might set the
device to LRS (logic ‘0’), while applying a lower voltage or
reverse polarity might set it to HRS (logic ‘1’). The resistance
state of the ReRAM is non-volatile, meaning it retains its
state even when the power is turned off, thus storing the data
persistently. ReRAM cells are smaller, allowing for higher
density memory arrays. They are non-volatile; ReRAM retains
data without power, unlike SRAM and DRAM which require
constant power. Moreover, ReRAM-based designs generally
consume less power, especially in idle and search operations.

For digital binary or ternary CAMs, in a 2T2R cell shown
in Table III, the current through the cell during a read or
search operation is determined by the combined resistance
of R1 and R2. For a match (both memristors in the same state),
the current flow will be as expected (either high if both are
LRS or low if both are HRS). For a mismatch (memristors
in different states), the current will be different from the
expected value (one high and one low resistance, resulting
in an intermediate current).

In Analog CAMs, implemented as 6T2M [37] shown
in Table III, which checks a range of values, each side of
the cell evaluates a ‘greater than’ or ‘less than’ condition.
When an input voltage is applied to the Data Line (DL), the
conductance through transistors T1 and T3 is compared to the
stored conductances on memristors M1 and M2, respectively.
If the conductance through T1 is greater than that of MI,
transistor T2 remains off, preventing the Match Line (ML)
from being pulled down, indicating DL > M1. Conversely,
if DL < MI, there is a conductive path from the Source Line
high (SLhi) to T2, turning T2 on and pulling ML down to
ground, indicating a mismatch.

The circuit has been modified to operate as a differentiable
CAM (dCAM) by adding the ability to sense the discharge
current on aMLlo, representing a distance metric between the
input and stored data. In the former case, the current changes
as aMLhi discharges but is generally assumed constant while
T2 and T6 are in saturation. In the latter case, the current is
constant and depends on the voltage on aDL and the stored
conductance. If the input is close to the stored values, a small
current flows in aMLlo, whereas a significant difference results
in an increased current, rapidly discharging aMLhi. An exam-
ple cell design is shown in Table III.

Further, Khan and Rashid [48] discusses a hybrid ternary
CAM using memristors to minimize area and wiring
complexity. Bazzi et al. [S1] introduced new analog CAM
cell designs using memristors with an emphasis on the gain
of cell parts. This combination of memristors and transis-
tors introduces a more compact, power-efficient, reliable,
and high-performance memory architectures, which is highly
sought after in big data and IoT.

ReRAM-CAMs are non-volatile, high density, and low
power but are limited in terms of endurance, and has variability
in resistance states. They are best suited for energy-efficient
applications such as machine learning models acceleration, and
edge computing.

2) Magnetoresistive RAM (MRAM): The MTJ based non-
volatile ternary content-addressable memory (NV-TCAM) cell
consists of transistors and magnetic tunnel junctions (MTJs).
Table III shows an example of a 2MTJ-4T design. The
MT]Is act as resistors with two possible states based on their
magnetization: parallel alignment (low resistance, RL) and
antiparallel alignment (high resistance, RH). The transistors
include NMOS transistors for connecting the MTJs to the
search lines (SL and SL), and a PMOS transistor functioning
as a voltage keeper to stabilize the match line (ML) voltage
during the evaluation phase. Additionally, an NMOS transistor
connected to the ML acts as a diode to control the discharge
path.

Data in the NV-TCAM cell is stored in the MTJs based on
their resistance states. For a binary ‘0’, R1 is set to RH and R2
to RL. For a binary ‘1°, R1 is set to RL and R2 to RH. If the
data is ‘don’t care’ (X), both R1 and R2 are set to RH. The
resistance state of each MTJ is determined by the alignment
of the magnetizations in its two ferromagnetic layers, which
can be altered by applying a specific current through the MTJ.

During the precharge phase, SL and SL are grounded, and
the ML voltage (VML) is precharged to VDD using an external
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precharge transistor. In the evaluation phase, SL and SL are set
to opposite voltages depending on the search data (VDD and
GND or vice versa). If the stored data matches the search data,
the connected MTJ remains in the high resistance state (RH),
resulting in a high D-node voltage (Ve p H). VML discharges
from VDD to VepH + VrpKeeper (the threshold voltage
of the voltage keeper), cutting off the voltage keeper. If there
is a mismatch, the connected MTJ is in the low resistance
state (RL), resulting in a low D-node voltage (VepL). VML
discharges to VepL + VrgKeeper. The match line (ML)
sense amplifier detects the voltage difference (AVML) to
determine if the TCAM word matches the search data.

MTIJ-CAMs are non-volatile, high-speed, and have high
endurance. These advantages come at a high cost and fab-
rication complexity. They are best suited for high-speed
non-volatile memory applications as they combine speed and
non-volatility.

3) Ferroelectric Field-Effect Transistor (FeFET): A ferro-
electric field-effect transistor (FeFET) incorporates a ferro-
electric material into its gate dielectric. This material exhibits
unique properties, allowing it to maintain a polarization state
even without a power supply. A ternary FeFET CAM cell
typically consists of two FeFETs and four transistors, shown
in Table III.

Data storage in FeFET-based CAM cells is achieved through
the polarization states of the ferroelectric material. When a
voltage is applied to the gate, it polarizes the ferroelectric
layer, writing binary data (0 or 1) based on the direction of
the polarization. This polarization remains stable even when
the power is turned off, ensuring non-volatile data storage.
In a 2FeFET TCAM, each cell uses two parallel FeFETs
connected to a matchline (ML) and sourceline (ScL). During
a search operation, a specific voltage is applied to the gate of
each FeFET in the CAM array. The current response of the
FeFET indicates whether the stored polarization state matches
the input data. If the stored state matches the input data, the
current does not flow from ML to GND, signifying a match.

A logic ‘1’ is written by applying V_write to the gate
(BL/SL) and GND to the source (ScL), while a logic ‘0’ is
written by reversing these voltages. The don’t care state (X)
is stored by writing logic ‘0’ into both FeFETs, allowing both
transistors to hold ‘0’. During a search operation, the match-
line (ML) is precharged high, and search voltages (V_search)
are applied to the gates (SL/SL) according to the input data—
V_search for logic ‘1’ and O for logic ‘0’. The inputs to
the transistors (SL and SL) and the stored states (S and S)
determine whether the pull-down paths are ON or OFF. If there
is a match, both pull-down paths remain OFF, keeping the
ML high. In the event of a mismatch, at least one pull-down
path is ON, discharging the ML. This design ensures efficient
comparison operations with the current flow indicating the
match or mismatch, while the don’t care state keeps the ML
high regardless of the input [50], [65].

Leveraging the multilevel-cell states in FeFETs, a 2FeFET-
based CAM design, shown in III, can store continuous
analog values by setting upper and lower bounds using two
FeFETs connected to an inverted searchline (SL). Each FeFET
defines the bounds for matching the input voltage (Vsr).
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TABLE IV
COMPARISON OF CAM TECHNOLOGIES

Feature SRAM CAM | DRAM CAM | NVM CAM
Speed High Moderate High (MRAM)
Density Low High Very High
Power Efficiency | Low Moderate High
Non-volatility No No Yes

. High (MRAM),
Cost High Low Low (ReRAM)

. High (MRAM),
Endurance High Moderate Limited (ReRAM)
Applications Networking, Databases, Al, Genomics,

pplications caches ML IoT

During a search, the ML is precharged, and if Vg falls within
the stored range (between the upper and lower bounds set by
the FeFETs’ threshold voltages), the ML remains high, indi-
cating a match. If Vg is outside this range, one of the FeFETs
turns on and discharges the ML, indicating no match. This con-
figuration allows for flexible and efficient range-based search-
ing and matching, suitable for applications requiring continu-
ous range storage and multi-bit quantized searches [66].

Their fast switching capabilities make them ideal for
high-speed search operations, while their non-volatile nature
ensures data retention without power. However, they have
limited endurance due to the wear on the ferroelectric mate-
rial and involve complex materials and fabrication processes.
FeFET-CAMs are well-suited for low-power and high-speed
applications, such as genomic data processing and real-time
data analytics, in-memory computing, and memory-augmented
neural networks [50], where FeFET-based TCAMs can dras-
tically reduce energy use and latency.

F. Comparison of CAM Technologies

As shown in Table IV, comparison among SRAM, DRAM,
and NVM CAM designs shows each technology has different
strengths and trade-offs. SRAM-based CAMs are highest in
terms of speed and endurance and thus seem well suited for
high-end applications, including networking; however, they
have very high power consumption and area footprint and,
therefore, are not scalable. On the other hand, DRAM-based
CAMs have a high density and low cost, enabling compact
solutions for large memory-hungry applications like machine
learning inference but are inherently volatile, with poten-
tially lower access times; otherwise, NVM CAMs, including
ReRAM, MRAM, and FeFET-based architectures, are charac-
terized by non-volatility, energy efficiency, and compact form
factor. Each NVM type has its unique strengths: ReRAM has
high density and low power but faces endurance challenges;
MRAM is high-speed and offers good endurance at a higher
cost; FeFET allows fast multi-state storage but suffers from
fabrication complexity and poor endurance. The final choice
of CAM technology will depend on the specific application
requirements of speed, power efficiency, cost, and memory
density.

III. EMERGING APPLICATIONS

In the space of memory technology, the fast-growing devel-
opment and transformation of CAM has been characterized
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TABLE V
CAM CELL DESIGNS

Design Technology  Process Node (nm)  Area (um?)  Search Energy (fl/bit/search)  Year
16T NOR [1] SRAM 130 6.73 - 2003
16T NAND [28] SRAM 100 22.40 0.70 2005
10T [29] SRAM 180 11.15 - 2001
16T NOR [30] SRAM 65 1.69 1.98 2013
6T [31] SRAM 28 0.15 0.60 2015
10T [47] SRAM 65 3.30 0.77 2013

9T [52] SRAM 130 20.21 1.87 2010
13T [41] SRAM 180 30.00 2.82 2011
12T NAND [32] SRAM 130 12.93 - 2008
8T [46] SRAM 28 0.74 - 2022

4T [33] SRAM 180 17.54 - 2003
16T NOR [34] SRAM 130 7.10 - 2004
12T NAND [35] SRAM 130 15.22 0.44 2009
12T [36] SRAM 180 19.47 1.42 2008
10T [45] SRAM 28 2.66 1.02 2021
16T NAND [42] SRAM 65 7.05 0.17 2011
6T2C [43] DRAM 130 3.59 - 2005
8T4C [53] DRAM 130 4.79 - 2003
2T1C [44] DRAM 28 0.10 - 2021
3T1R [54] ReRAM 90 1.57 0.51 2015
2T2R [55] ReRAM 90 0.41 - 2014
2.5T1R [56] ReRAM 65 0.59 0.28 2016
4T2R [57] ReRAM 180 9.70 - 2014
6T2M [37] ReRAM 16 0.52 - 2020
3T1R [58] ReRAM 90 0.87 0.51 2017
2T2M [48] ReRAM 65 6.11 0.87 2021
10T4MT]J [59] MTJ 45 2.78 40.50 2017
4T2MT]J [49] MTJ 90 3.14 - 2012
1TIMTI [60] MTJ 140 1.25 - 2011
9T2MT]J [61] MTIJ 90 10.35 0.73 2012
11T3MT]J [62] MTJ 180 36.00 7.10 2010
6T2MTJ [63] MTIJ 90 10.35 1.04 2011
3T2MTI [64] MTJ 45 0.13 - 2016
2FeFET [50] FeFET 45 0.15 - 2019
4T2FeFET [65] FeFET 45 0.65 - 2017
2FeFET [66] FeFET 45 0.05 0.18 2020
2FeFET [67] FeFET 45 0.15 0.40 2019

by significant milestones. In the early 1990s, the application
of CAM started with associative memory [76] and process-
ing [77] and image processing [20], [21]. With the recent
trend in processor-memory gap and the rise of the Al models,
in-memory computing has become a promising direction and
CAMs have shown potential solutions in overcoming the
“memory wall.” From 2020 onwards, CAMs developments
were powered by cutting-edge emerging developments such as
ferroelectric devices and compute-in-memory arrays, exploit-
ing CAM’s core fundamental operational principles for Al
hardware and data processing at a large scale [5], [22], [23],
[24], [25], [26], [27], [37], [50], [65], [66], [67]. Fig. 8 shows
the CAM application trends over the last ten years.

A. Machine Learning

Recent advancements in tree-based machine learning mod-
els and analog CAMs have demonstrated significant potential
for in-memory acceleration. Notably, memristive devices have
been utilized to build analog CAMs that accelerate these
models [24], and further developments have enabled the accel-
eration of Deep Random Forests on CAMs [75]. In the realm

of neural networks, redundant analog-to-digital conversions in
RRAM-based CNN accelerators were addressed by BRAHMS,
a hybrid analog RAM and CAM system that enhances perfor-
mance and energy efficiency [23]. Efficient NN acceleration
on GPGPU was achieved by storing important features on
CAM [71], while another study introduced a CAM-based
binarized neural network accelerator using time-domain sig-
nal processing [72]. Additionally, Ferroelectric ternary CAM
was used for one-shot learning via Memory Augmented
Neural Network [67]. In transformer networks, CAM-based
process-in-memory techniques have been integrated with novel
attention mechanisms to overcome computational and memory
bandwidth bottlenecks. iMCAT, an architecture combining
crossbars and CAMs for Transformer network acceleration,
utilized locality-sensitive hashing to filter sequence elements
by importance [26]. Furthermore, iMTransformer [27] and
RACE-IT, a Reconfigurable Analog CAM-crossbar Engine,
have been proposed to accelerate in-memory Transformer
operations, with RACE-IT enabling efficient analog execu-
tion of various non-MVM operations within Transformer
models [25].

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 16,2025 at 22:43:34 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

TABLE VI

PERFORMANCE IMPROVEMENTS OVER SOTA
ACROSS CAM-BASED APPLICATIONS

Year

Application

Improvement

2014

IP Lookup [68]

2x smaller index TCAM, O(logM)
search

2015

Forwarding Engine [69]

1.67x energy, 1.43x cost efficiency, 3
memory accesses per lookup

2016

Approximate
[70]

Computing

1.35x energy, 2.9x vs offline profiling

2017

NN Computation Optimiza-
tion [71]

1.68x energy, 1.4x speed

2018

Binarized NN [72]

1.385x energy, 1.094x area, 2.4x

speed

Memory Augmented NN
[67]
Finite State Machines [73]

Boolean Satisfiability Accel-
eration [74]

Tree-Based ML Model [24]
DNA Classification [6]
Transformer
[25]

2019 60x energy, 2,700x latency

2020 25x throughput/watt

2021 62-185x speed, supports 32M clauses

2021
2022

1,000x throughput, 12x energy

2.2x sensitivity, 1,200x throughput

Acceleration

2023 10.7x speed, 1,193x energy

106x energy (vs CPU),
ReRAM)

10x  (vs

2024 | Deep Random Forest [75]

B. Genomics

CAM'’s unique matching capabilities have significantly
advanced genomic data processing, enhancing speed and
efficiency. In 2020, PARC, a Processing-in-Memory archi-
tecture utilizing ReRAM-based CAM, was introduced to
target the computationally intensive chaining step in DNA
alignment [7]. This step, which involves ordering and aligning
sequences based on similarity, is computationally demand-
ing due to the large amounts of genomic data involved.
In 2022, BioSEAL further advanced CAM applications in
genomics, aiming to accelerate biological sequence alignment
broadly [10]. In 2023, DASH-CAM, a dynamic storage-
based CAM system for pathogen classification, highlighted
the dynamic storage capabilities of CAM [5]. Additionally,
ASMCap, employing capacitive multi-level CAM for approx-
imate string matching in genomic sequence analysis, explored
the potentials of non-ReRAM based CAMs [8]. These devel-
opments contribute to the unique applications of CAM
technologies in data processing-intensive biological research
and medical diagnostics.

C. Hashing and Similarity Searches

CAM’s capabilities for direct data comparison and retrieval
within the memory hardware itself makes it feasible to do
similarity search calculations. Hamming distance calculations
were performed in [16] and [18], streamlining the process of
searching and matching patterns within the memory. Nearest
neighbor searches were performed in-memory in [2] and [15]
using TCAM and FeFET-based multi-bit CAMs, respectively.
Moreover, allowing efficient processing of high-dimensional
data, hashing is performed on the chip using CAMs in [19].

D. Specialized CAM Technologies

1) Optical CAM: Optical Content-Addressable Memory
(Optical CAM) enhances traditional CAMs with advanced
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photonic circuits, using light for search operations across
memory entries. Compared to electronic CAMs, Optical-
CAMs are significantly faster and more energy-efficient.
In Optical CAMs, search data encoded as light signals interact
with stored optical data within the cell’s memory structure.
Match detection is performed using XOR functions imple-
mented with semiconductor optical amplifiers (SOAs) and
Mach-Zehnder Interferometers (MZIs), which determine if the
search data matches the stored data. Data writing involves
changing the optical state of the storage mechanism using
SOA-MZI flip-flops, while reading data involves sending
a probe light and measuring the output with photodetec-
tors. Developments in optical CAM and RAM systems have
achieved error-free 10 Gb/s operations using SOA-MZI-based
optical flip-flops [15]. Additionally, address bit levels were
increased to 2-bit, and all-optical CAM systems were fur-
ther developed [17], [19]. Recently, ternary CAMSs using
optical multiplexing techniques have achieved speeds up
to 10 Gb/s [18].

2) Quantum CAM: Quantum-dot Cellular Automata (QCA)
utilizes electron positioning within quantum dots to represent
binary information, offering a high-speed, low-power alterna-
tive to traditional CMOS technology. QCA-based CAM cells
are highly efficient for nanoscale data storage and retrieval,
with data stored by the spatial configuration of electrons
in a cell, where binary states are determined by electron
positions [78]. The search operation involves initializing the
cells during a precharge period, followed by comparing the
input data to the stored data along a matchline using QCA
gates like the majority and minority gates. These gates check
if the input electron’s position aligns with the stored config-
uration, signaling a match if they do, otherwise, no signal
is sent [79]. The architecture includes arrays of QCA cells
and gates for individual addressing and comparison. Notable
achievements of QCA technology include operational speeds
in the nanosecond range and an area throughput of 0.14 ;m?
per cell [79].

IV. CHALLENGES AND OUTLOOK
A. Challenges

CAMs face reliability challenges due to susceptibility
to errors, affecting the accuracy and efficiency of CAM
operations. These errors can cause incorrect data retrieval and
increased latency, compromising the performance of systems
that depend on data access and processing.

The challenge of maintaining accuracy in CAMs is further
exacerbated by the continuous down scaling of technology
nodes, making them vulnerable to soft errors caused by exter-
nal electromagnetic radiation and internal voltage fluctuations
and noise [80]. With an exact search function, where all cells
on a row have to output a match to yield a row match,
as the number of cells in a row increases, the probability of
encountering an error rises, necessitating an error detection
and correction mechanisms.

To address this challenge, researchers have been devel-
oping various error detection and correction schemes.
Pontarelli et al. [81] proposed an error correction method
based on the CAM/RAM system that does not alter the
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CAM’s internal structure. Varada and Agrawal [82] introduced
a power-efficient TCAM architecture where the traditional
priority encoder is replaced with multiplexers and a 2D
parity technique is used for multi-bit detection and cor-
rection. Moreover, although Analog CAMs enable powerful
capabilities such as acceleration of machine learning tasks
and nonlinear activation functions, they also come with
issues of error and reliability as they depend on memris-
tors. Roth et al. [83] developed a technique to overcome the
reliability issues by introducing coding schemes with minor
additions to the hardware. These advancements highlight

7\ “
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Finite State ~ Boolean DNA
Machines [73] Satisfiability [74] Classification [6]

A A
An A

Deep Random
Forest [75]

Trends in CAM applications over time, highlighting key developments from 2014 to 2024. [6], [24], [25], [67], [68], [69], [70], [71], [72], [73],

the ongoing efforts to overcome the reliability challenges
in CAMs.

B. Directions

From the current trends in CAM technologies, the following

areas are worth particular emphasis for future research:

(1) As depicted by the trajectory of CAM cell area reduc-
tion (Fig. 6) and information density increase (Fig. 7),
we anticipate this trend to continue as technology nodes
and cell designs advance every few years. Notably,
the adoption of memristor devices is expected to grow
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due to designer preference for lower area density, non-
volatility, and analog capabilities.

In the era of A, CAM technologies are undergo-
ing a significant transformation. Traditionally used as
look-up tables, CAMs are now demonstrating how
their matching capabilities can be used for Machine
Learning tasks. Different types of CAM concepts,
as illustrated in Table I, with varied search func-
tions, will enable in-memory acceleration of operations
within next-generation AI models. This highlights fur-
ther exploration of CAM designs tailored especially for
Al workloads. Table IV shows that the most benefi-
cial application of Al acceleration is in the key areas
of natural language processing, computer vision, and
bioinformatics.

Prior works have shown that the parallel processing
capabilities of CAMs have high potentials to accelerate
increasingly data and computations-intensive genomics
sequencing on hardware. The exploration of CAMs for
genomics applications is anticipated to grow with the
expanding computational biology market, driven by the
need for efficient and high-speed data processing. To this
end, the extensions of different types of CAMs for
genomic processing purposes and applications might be
a meaningful future direction.

Development of different CAM concepts, each with
distinct input, storage, and output types, will enable
hardware implementataton of diverse search functions
through circuit-level innovation. Catering to a wide
range of applications, this approach will enable more
flexible search capabilities, such as best match, threshold
match, and partial match. Circuit level innovation of
various search functions will be an significant topic for
future study.

2

3)

4)

V. CONCLUSION

This survey presents CAM circuits as a transformative tech-
nology in the semiconductor memory landscape. We reviewed
various types of CAMs, including digital, analog, and differ-
entiable CAMs, as well as their underlying technologies such
as SRAM, DRAM, ReRAM, MRAM, and FeFET. CAMs have
demonstrated their potential in enhancing and accelerating
traditionally computationally expensive tasks such as machine
learning algorithms, genomics data analysis and hashing.
Future research should focus on developing various CAM con-
cepts and search functions, efficient error correction schemes,
integrating CAMs with emerging Al models, and explor-
ing new applications in computational biology. The ongoing
advancements in CAM technology are poised to address
the computational demands of Al and computation intensive
workloads, representing a significant leap toward faster and
more efficient hardware-based computational methods.
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