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Abstract—Spiking neural networks (SNNs) have shown high
efficiency in information processing. Time-to-first-spike (TTFS)
coding, which encodes the information to the times of first
spikes, has been introduced in SNNs due to its simple data
representation. However, there is a lack of studies in synapse
mapping and neuron circuits for compute-in-memory (CIM)
neuromorphic design for low-power TTFS-based SNN inference.
This work presents a CIM neuromorphic processing engine
for TTFS-based SNNs, which comprises a 64x64 8T-SRAM
array for synapse storage and current-based post-neuron circuits.
We propose to map the positive and negative synaptic weights
to adjacent columns in the SRAM array and accumulate the
membrane potential in the dedicated post-neuron circuits. Two
techniques are presented through hardware-software co-design:
“Multi-Level Firing Threshold Adjustment” to mitigate the im-
pact of process variations, and “Timing Threshold Adjustment”
to further speed up the computation. The proposed processing
engine achieves the energy efficiency 249.8 TOPS/W under 8-bit
inputs and signed 4-bit weights.

Index Terms—Compute-in-memory, neuromorphic computing,
spiking-neural-network, time-to-first-spike, temporal coding.

I. INTRODUCTION

W IDE applications of deep neural networks (DNNs)
prompt dedicated hardware accelerators for better per-

formance under tight power consumption constraints [5], [6].
Even though the state-of-the-art (SoTA) domain-specific ac-
celerators have raised the energy efficiency to a higher level
compared with general-purpose CPUs and GPUs, the continued
advance in hardware efficiency becomes difficult without game-
changing technologies [2], [14]. In contrast, the fast-growing
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artificial intelligence and internet of things (AIoT) field require
recklessly higher efficiency under sub-watt power supplies,
calling for the next-generation computing schemes for the AIoT
cognitive tasks as well as their hardware implementations.

The existing DNN algorithms are mainly frame-driven.
The data of each frame are evaluated by the model at a con-
stant frame rate. In contrast, spiking neural networks (SNNs),
regarded as the third-generation neural networks [18], offer an
alternative event-driven solution to realize high computational
efficiency, especially when the input data are encoded in a
sparse format. A neuron in an SNN communicates with another
neuron using a sequence of spiking events. Unlike DNNs, neu-
rons in an SNN are activated only when generating or receiving
spikes, resulting in very low energy consumption.

There are several ways to modulate information on spike
events. Generally, fewer spike events generated during execu-
tion imply less energy consumption. A common data encoding
scheme of SNNs is rate-coding, in which data are carried by the
spike frequency [4], [8]. For example, a spike train with a higher
frequency propagates a stronger signal to its destination neuron.
Usually, a large amount of spike events are needed to convey
a datum via averaging the temporal information of the spike
events. Another limitation of rate-coding-based networks is that
the inference accuracy is significantly affected by parameters
such as the firing threshold [28]. Temporal coding scheme,
which encodes data to spike times, creates a new path to achieve
high efficiency by enabling the data representation with sparse
spikes [11]. Particularly, the time-to-first-spike (TTFS) encod-
ing [24] modulates the input data in the arrival time of the first
spike, which significantly reduces spike numbers in propagation
and thus saves the dominating dynamic computing energy con-
sumption. Even though the restriction of spike number in TTFS
limits the number of neurons that propagate spikes in the SNN
inference, which may degrade the overall accuracy, it incurs
much less energy consumption compared to the conventional
rate-coded SNNs [20].

Built with different data encoding schemes, the spiking neu-
romorphic systems, i.e., the specific hardware that emulate SNN
models, can improve energy efficiency and computation par-
allelism by leveraging asynchronous circuits that work in the
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event-driven manner. These designs can thus eliminate power-
hungry global clock networks [1]. Among CMOS-based prac-
tices, digital neuromorphic systems, such as GoldenGate [19],
TrueNorth [1], SpiNNaker [10] and Loihi [7], have good pro-
grammability to support multiple encoding schemes, including
rate-coding and temporal-coding. However, they approximate
the continuous neuron dynamics and spike propagation in
discrete time steps, which is not biologically plausible and de-
grades the inference accuracy. Mixed-signal neuromorphic sys-
tems such as BrainScaleS [22] and Neurogrid [3] are built with
analog neuron circuits. Power-hungry digital-to-analog/analog-
to-digital converters (DACs & ADCs) are required as the in-
terface between the SRAM-based synapses and analog neuron
circuits. Confronted with the limitations of those neuromorphic
systems using conventional digital and analog CMOS technolo-
gies, researchers introduce new technologies and architectures
to boost the computational efficiency vastly.

The compute-in-memory (CIM) spiking neuromorphic de-
signs based on either conventional static random-access-
memory (SRAM) [13] or emerging non-volatile memory
(NVM), e.g. resistive random-access-memory (ReRAM) [15],
[16], [27], are promising candidates featuring low-power im-
plementation, which perfectly meets the requirements of AIoT
cognitive tasks. Regarding implementing SNNs with CIM de-
sign paradigm, the following questions need to be clarified:

• How to map the excitatory and inhibitory synapses (i.e.
positive and negative weights) to the memory crossbar
array?

• How to leverage the event-driven property of SNNs to
reduce energy consumption as most neurons are in the
idle state?

In order to answer these questions and maximize the
efficiency gain of the emerging neuromorphic computing
paradigm, in this paper, we propose TFSRAM, a TTFS CIM
processing engine that comprises a 64x64 8T-SRAM array
for twin-column synapse storage, and DAC-free current-based
post-neuron circuits to implement the integrate-and-fire (IF)
neuron model. The proposed engine achieves 249.8 TOPS/W
energy efficiency featuring the twin-column synapse mapping
scheme and a power-efficient 2-rail post-neuron circuit design.
Two SNN threshold adjusting techniques are provided to fur-
ther boost the power efficiency and robustness of the proposed
processing engine. More specifically, the main contributions of
this work include:

1) We use a twin-column excitatory/inhibitory synaptic
weight mapping scheme (contrast to the conventional
row-wise mapping scheme) and design a brand-new set
of neuron circuits. To our best knowledge, TFSRAM
is the first SRAM-based CIM neuromorphic design that
elaborates a complete set of peripheral circuits to com-
pute TTFS-based SNNs and leverages the event-driven
characteristics to speed up the computation.

2) Regarding the widely-concerned circuit process
variations, we propose a multi-level “firing threshold
adjustment” method that effectively recovers the
inference accuracy degradation with only 1.5% hardware
overhead.

3) We also devise the “timing threshold adjustment”
method, a design-automation technique specifically for
the proposed post-synaptic neuron circuits. It removes
a considerable amount of unnecessary spike generation
between adjacent neural network layers and thus speeds
up the inference.

We fabricated the proposed processing engine with 65nm
process. The prototype chip measurement results show that the
proposed engine achieves 249.8 TOPS/W energy efficiency.
Our simulation results on the proposed SNN threshold adjusting
techniques also present an outstanding resilience to variations
by maintaining 90.1% accuracy under the process variations
with a 20% standard deviation.

The rest of the paper is organized as follows. We first pro-
vide preliminary knowledge about prior CIM neuromorphic
designs and the inference TTFS-based SNNs in Section II.
Section III describes our proposed processing engine TFSRAM,
as well as the two threshold adjustment schemes. In Section V,
we evaluate the performance of our proposed threshold ad-
justment schemes. In Section V-D, we provide the chip mea-
surement results of TFSRAM. Finally, we conclude this work
in Section VII.

II. PRELIMINARIES

A. TTFS-Based SNNs

In SNNs, the classical integrate-and-fire (IF) neuron model
with a current-based (CuBa) activation follows the following
equation [12]:

Cmem
dVmem

dt
=
∑

i

wi

∑

ti

δ(t − ti) (while Vmem < Vth),

(1)

where Cmem is the membrane capacitance, wi are synaptic
weights, t is time, ti are pre-spike times1, δ(t) is the Dirac
delta function. The membrane potential Vmem is accumulated
by CuBa activation, which is the sum of pre-spikes modu-
lated by synapses, during the inference time window. When
Vmem reaches the preset threshold Vth, a post-spike will be
generated (“fired”) by the post-neuron, and Vmem will be reset.
The biologically-plausible TTFS coding scheme [24] encodes
the data to the firing time of the first spike in the time window,
i.e. ti in Eq. (1). Single spike firing per neuron is adequate to
complete inference in each compute time window. Because of
this unique property, TTFS needs dedicated circuits to realize
single-spike ti.

The inference process of the TTFS-based SNN with the
standard IF model is depicted in Fig. 2. Two properties of this
event-driven inference process can be observed. First, since
each neuron only fires a single spike during the inference, the
neuron will be in an idle state after the post-spike is fired. Sec-
ond, during the membrane potential accumulation, the earlier
pre-spikes contribute more to the membrane potential, while
the pre-spikes coming later than the single post-spike have no

1Pre- and Post-spikes are short for “pre-synaptic spikes” and “post-synaptic
spikes”, respectively.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 16,2025 at 22:46:41 UTC from IEEE Xplore.  Restrictions apply. 



28 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 1, SEPTEMBER 2024

Fig. 1. Comparison of CIM neuromorphic designs: DNN spiking scheme
(top), the conventional SNN scheme (middle) and the proposed SNN scheme
(bottom).

impact on its firing time. In other words, an earlier spike time
represents stronger activation and later spike time represents
weaker activation. We take advantage of these properties during
the SNN inference in our neuromorphic designs to greatly re-
duce unnecessary power consumption and computation latency.

B. CIM Neuromorphic Design

CIM neuromorphic designs perform neural network com-
putation (DNNs or SNNs) as specialized energy-efficient AI
platforms. Prior CIM neuromorphic designs for DNN infer-
ence borrow the spike-based data encoding from SNNs to sim-
plify the computation circuits and remove the power-consuming
DACs and ADCs. There have been rate-coding-based DNN
process engine (PE) designs [17], [27], which count the spike
numbers in fixed-time windows to decode the data. These de-
signs suffer from the large quantization errors caused by the
averaging-distributed spikes of the rate-coding scheme. Li et al.
[15] proposed a single-spiking ReRAM-based DNN PE, which
adopted TTFS encoding by taking the arrival time of a single
spike to represent a datum. This greatly reduced the spike num-
ber and power consumption. However, the frame-driven DNNs
cannot fulfill the potential of TTFS because the computation is
still driven by a fixed clock cycle repeatedly. When applying
TTFS to the event-driven SNNs, the data format of a single
spike event allows the possibility of eliminating unnecessary
idle periods without the restriction of a fixed clock cycle. As
such, the circuit implementation of event-driven SNNs should
adopt different computation principles from the DNN spiking
neuromorphic designs.

As depicted in the top row of Fig. 1, the conventional DNN
spiking neuromorphic designs [15], [27] adopt the clock-driven
dataflow. The excitatory and inhibitory synapses are mapped to

Fig. 2. Time-to-first-spike SNN with integrate-and-fire neurons.

different spatial positions of CIM memory arrays. The compu-
tation with positive and negative synaptic weights are executed
separately, and the post-synaptic activations are calculated from
the difference of the bitline outputs at the clock edge. This is
suitable for the clock-driven DNN hardware but not viable in
the event-driven SNN scheme in that the latter does not have
clock edges.

In the event-driven SNN hardware, the post-synaptic activa-
tions are accumulated throughout the time window. Hence, the
activations from the excitatory synapses should be subtracted by
those from the inhibitory synapses every moment and accumu-
lated by the post-neuron modules. In some existing NVM-based
SNN neuromorphic designs [25], [26], the synapses are mapped
to adjacent excitatory and inhibitory synapse rows to form a dif-
ferential pair, and input positive and negative spike voltages are
fed into the two rows respectively, as depicted in Fig. 1 (middle).
It requires additional circuits to duplicate and reverse the pre-
synaptic spikes, which excessively complicates the computing
peripheral circuits. [13] presents an SRAM-based neuromor-
phic processors for the inference of rate-coded SNNs with 28nm
technology node. The chip stores 4-bit/8-bit synaptic weights
in the 8T-SRAM arrays, takes in input spikes along the read
wordlines and accumulates the membrane potential from the
weighted spikes along the read bitlines. The multi-bit signed
synapses are mapped to the same row instead of adjacent rows.
Two sets of area-consuming capacitor-DAC adders are used to
accumulate potential from excitatory and inhibitory synapses,
controlled by the signed bit, as shown in Fig. 3(a).

III. TWIN-COLUMN SNN PROCESSING ENGINE

In the following two sections, we first introduce the basic
circuit components of TFSRAM, our proposed TTFS CIM neu-
romorphic processing engine and its synapse mapping scheme
(Section III). Then, we propose two novel computer-aided
design methods in Section IV, including “multi-level firing
threshold adjustment” and “timing threshold adjustment” (Sec-
tion IV), to improve the inference robustness and energy effi-
ciency of the TTFS neuromorphic design, respectively.
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Fig. 3. Comparison between (a) prior capacitor-based neuromorphic macros
[13] and (b) our current-based TFSRAM.

A. Fundamental Circuit Components

TFSRAM adopts the TTFS coding scheme to pursue high
energy efficiency. Fig. 4(a) presents the overview of our
twin-column SNN processing engine (PE), namely TFS-
RAM. The main components of TFSRAM include a 64 × 64
SRAM array with read/write interface, 64 spike generators
to generate pre-synaptic spikes, 8 post-neuron circuits, and
spike timing counters to capture the spike times of post-
synaptic spikes. The SRAM array contains a 64 × 8 8-bit
weight matrix.

B. Twin-Column Synapse Mapping on the 8T-SRAM Array

The synapses stored in the 8T-SRAM synaptic array modu-
late the input wordline voltages and generate CuBa activations
in the form of bitline currents. When the pre-synaptic spikes are
horizontally fed to the read wordlines (RWLs) of the 8T-SRAM
array, spiking currents are generated along the read bitlines
(RBLs) vertically from the cells that store ‘1’s. Assume that
the weights stored in the 8T-SRAM cells along j − th RBL are
Gi,j , i = 0, 1, · · · , 63. The strength of CuBa activation along
each bitline is calculated as:

IRBL,j =
N−1∑

i=0

Wi,jIDδ(t − ti), (2)

where ID is the current flowing through the read devices of the
8T-SRAM cell when the RWL is activated by the pre-synaptic
spike δ(t − ti). Note that there are multi-bit excitatory and
inhibitory synapses in SNN models. We need a novel synapse
mapping scheme and corresponding neuron circuit designs to
support it.

In our proposed twin-column SNN processing element, we
use the eight adjacent columns of 8T-SRAM cells to represent
the multi-bit excitatory and inhibitory synapses. To be specific,
one signed 8-bit synaptic weight is partitioned to a 4-bit positive
part and a 4-bit negative part, and programmed to the SRAM
cells in adjacent 4 RBLs along the same RWL, respectively.
The positive and negative RBLs form a differential pair. Each
8 RBLs belonging to the same synaptic weight are connected
to the same post-neuron circuit.

The twin-column synapse mapping provides an alternative
solution compared to the row-wised synapse mapping scheme
adopted in [25], [26]. In the row-wised synapse mapping
scheme, the excitatory and inhibitory synapses modulating the
same inputs are mapped to different rows, hence additional
circuits are required to duplicate and reverse the pre-synaptic
spikes and feed into the positive and negative rows, leading
to area overhead and inevitable delay of spike timing. In the
column-wise mapping, the excitatory and inhibitory synapses
share the same inputs. The subtraction between the potential
accumulated from the excitatory and inhibitory synapses is
executed in the neuron circuits which will be introduced in the
following paragraphs.

C. 2-Rail Post-Neuron Circuit

The post-neuron circuit (Fig. 5) computes the difference
of the complementary spiking currents from twin-column
synapses and implements neuron dynamics. Each post-neuron
module contains 8 current mirrors with proportional gains along
the 8 RBLs, and one 2-rail IF circuit (IFC). As shown in Fig. 5,
the 2-rail IFC contains two capacitors Cp and Cn with identical
capacitance. The current mirrors from the positive part are
connected to Cp, while the current mirrors from the negative
part are connected to Cn. Cp accumulates membrane potential
(Vmem,p) from 0V, while Cn accumulates membrane potential
(Vmem,n) from Vth. Once Vmem,p is larger than Vmem,n, the
output post-synaptic spike (Vout) is generated with its pulse
width controlled by Vref . The differential membrane potential
on Cp/Cn will then be reset to 0V/Vth by the following inverter
chain. The post-synaptic spikes are converted to the digital
domain by the subsequent 8-bit spike timing counters.

In each post-neuron circuit, assume Cp = Cn = Cm, the in-
put spiking currents along RBLs from the positive part are
denoted as Ip

RBL,j , the input spiking currents along RBLs from
the negative part are denoted as In

RBL,j , and the current gains
of the corresponding current mirrors are Acm,j (j=0, 1, 2, 3).
The neural dynamics performed in the post-neuron module are
formulated as:

Vmem = Vmem,p(t) − (Vmem,n(t) − Vth);

Vmem,p(t) =
∫ t
0

1
Cp

∑3
j=0 Acm,jI

p
RBL,j(t)dt;

Vmem,n(t) = Vth +
∫ t
0

1
Cn

∑3
j=0 Acm,jIn

RBL,j(t)dt;

Cm
dVmem

dt =
∑3

j=0 Acm,j(I
p
RBL,j(t) − In

RBL,j(t)). (3)

Eq. (3) resembles Eq. (1), indicating that the twin-column PE
is able to compute the IF neural dynamics. Fig. 5 shows the
post-layout transient simulation waveform of the post-neuron
module under Vth = 400mV and Vref=150mV, validating the
function of twin-column PE. The key circuitry parameters are
summarized in Table I. In the simulation waveform, Vmem,p

takes in two spikes at 10ns and 170ns while Vmem,n takes in
on spike at 10ns. Vmem,p is accumulated from 0 and increases
at 10ns and 170ns, while Vmem,n is accumulated from Vth =
400mV and increases at 10ns. When Vmem,p exceeds Vmem,n

(∼ 179ns), the IFC generates an output post-spike. The pulse
width of the output post-spike is 25ns (179 ∼ 204ns), which is
large enough to be captured by the subsequent 100MHz spike
timing counter.
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Fig. 4. Design overview of TFSRAM. The main components of TFSRAM include the 64 × 64 8T-SRAM array (a) for synaptic weight storage, 8 post-
neuron circuits (b) to accumulate membrane potential and generate post-synaptic spikes, spike generators (c) and spiking timing counters (d) for the conversion
between pre-/post-synaptic spikes and digital inputs/outputs.

Fig. 5. Post-neuron circuit and transient simulation waveform.

TABLE I
CRITICAL CIRCUITRY PARAMETERS IN THE

POST-NEURON CIRCUIT

Symbol Value Symbol Value
VDD 1V Frequency 100MHz
Cp 110fF Cn 110fF
Vref 150mV Vth,0 400mV

D. Threshold Voltage Scaling

In the 2-rail IFC, the equivalent Vmem cannot surpass
VDD − Vth. To expand the dynamic range of Vmem, we intro-
duce the threshold voltage scaling (TVS) mechanism specif-
ically tailored for temporal-coded SNNs. The spike timing
counter takes in a control signal named vth_scale to decide
which spike from each neuron within the inference time window
is regarded as the “first spike”, whose spike timing is counted

Fig. 6. Threshold voltage scaling increases the dynamic range of Vmem.

as the output. During the inference, Vmem repetitively increases
towards Vth to trigger post-synaptic spikes and is reset to 0 after
it reaches Vth. Therefore, the n-th post-synaptic spike indicates
that the membrane potential has increased to the equivalent
n-fold Vth (Fig. 6). If Vth is relatively high so that Vp reaches
VDD before Vmem reaches Vth, the applied threshold voltage
can be reduced to 1/n Vth, and the n-th post-synaptic spike
will be detected as the “first spike” to get equivalent threshold
voltage of Vth.

IV. FIRING/TIMING THRESHOLD ADJUST

Aiming to further improve the efficiency and robustness
of the twin-column SNN PE, we propose two schemes, i.e.
multi-level firing threshold adjustment (MFTA) and timing
threshold adjustment (TTA). MFTA and TTA are orthogonal
to each other and can be simultaneously applied to the SNN
processing engine.

A. Multi-Level Firing Threshold Adjustment

Process variations of transistors in the proposed SNN PE
are inevitable. They impose noises on the CuBa activation
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Algorithm 1: MFTA scheme

Input: Target firing time of neurons texp(i, l, n)
Input: No. of MFTA each neuron should complete C
Output: The threshold of each neuron Vth(l, n)
No. of MFTA each neuron has completed c(l, n) = 0;
The initial threshold of each neuron Vth(l, n) = Vth,N ;
while Any c(l, n) < C do

for (l = 0; l < L; l + +) do
Convergence detector CD(l, n) = 0;
Value indicating last adjustment result r(l, n);
while CD(l, n) = 0 do

t(i, l, n) = TTFS (Inputi) //Inputi is
processed;

if t(i, l, n) < texp(i, l, n) and c(l, n) < C then
Vth(l, n) + +; c(l, n) + +;
if r(l, n) = 0 then CD(l, n) = 1;
else r(l, n) = 1;

else if t(i, l, n) > texp(i, l, n) and c(l, n) < C
then

Vth(l, n) −−; c(l, n) + +;
if r(l, n) = 1 then CD(l, n) = 1;
else r(l, n) = 0;

from the SRAM-based synapses, affect the post-spike firing
times, and subsequently degrade the computational accuracy.
This problem can be effectively solved by calibrating firing
thresholds Vth to correct the firing times. When the post-spike
of a post-neuron is fired earlier than expected due to the process
variations, we deliberately raise its Vth to postpone the post-
spikes, and vice versa.

MFTA is applied to SNN processing element right after
deploying the pre-trained SNN model to the SRAM array.
In MFTA, Vth of each post-neuron module can be selected
from a preset group of evenly-distributed discrete values
{Vth,1, Vth,2, ..., Vth,2N} rather than continuous variables.

MFTA is applied to SNN processing element only once for
each SNN deployment before iterative workloads begin. A set
of input test patterns are fed to adjust the thresholds. MFTA
starts from Vth = Vth,N , which is the expected global threshold
voltage in the pre-trained SNN model. Before MFTA starts,
the expected firing time of the n-th neuron in Layer l for the
i-th test input, denoted as texp(i, l, n), is derived from the pre-
trained SNN and stored in the cache.

Algorithm 1 shows the principle of our proposed MFTA
scheme. For each test input Inputi, MFTA starts from the
first layer (l = 1). The threshold voltage of all the neurons
in the first layer will be adjusted according to the differ-
ence between texp(i, 1, n) and the actual post-spike time
t(i, 1, n). If t(i, 1, n) > texp(i, 1, n), the threshold voltage of
the n-th neuron lowers one discrete step of preset thresh-
old values; otherwise it rises up to the next higher preset
threshold value. Through experiments, we observe that it takes
no more than 10 iterations in most cases to converge into
an optimal threshold value. When all the neuron thresholds
in the SNN model have been adjusted, the next input test
pattern will be taken in. By repeatedly conducting MFTA

Fig. 7. The block diagram of (1) the multi-level firing threshold adjustment
module and (2) the timing threshold adjustment controller.

with different inputs, the thresholds are adjusted to proper
levels to compensate for the firing time deviation caused by
process variations.

Apparently, how to feed input test patterns for threshold
adjustment is critical for MFTA scheme. By setting C (adjust-
ment number allowed by each neuron), Algorithm 1 guarantees
that all the firing thresholds can be involved in the adjustment.
This method also prevents unnecessary threshold changes and
dynamically schedules the number of required test inputs.

Based on the proposed MFTA method, we implement the
circuit for MFTA control logic at TSMC 65nm technology
node. The block diagram is depicted in Fig. 7 (1). A counter
is used to convert the post-spike timing to the digital value t.
The expected firing time, i.e. texp, is fetched from the controller
cache. A threshold adjustment module compares t versus texp

and adjusts the threshold guided by Algorithm 1. A convergence
detector gets the last adjustment result r from the threshold ad-
justment module, and determines if the adjustment has already
converged. It disables the threshold adjustment module once the
convergence condition in Algorithm 1 is fulfilled. The circuit
results in only 1.5% energy overhead for our SNN processing
element. The efficacy of MFTA scheme is given in Section V-B.

B. Timing Threshold Adjustment

While MFTA improves the resilience against device process
variations, TTA scheme speeds up the inference and enables
further energy savings. In each TTFS-SNN layer, neurons fire
spikes earlier, representing stronger activations; while other
neurons fire spikes later and contribute less to the membrane
potential accumulation of the neurons in the subsequent layers.
We propose TTA scheme for our neuromorphic designs by tak-
ing advantage of the event-driven nature of TTFS-based SNN
models. A timing threshold will be set. During each iteration,
the post-spikes that fire before the timing threshold will be
propagated. At the timing threshold, the activation propagation
of all the neurons will cease, and the next iteration starts.

TTA scheme cuts the duration of iterations by allowing only
a portion of neurons in each layer to propagate their spikes.
It helps reduce energy consumption as it shortens the time
windows and eliminates unnecessary spike generation. On the
other hand, the inference accuracy could be affected due to the
loss of some post-spikes, but the degradation is marginal be-
cause the propagated strong activations have contributed to the
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Fig. 8. Tests of (a) C and (b) 2N affecting the recovering inference accuracy (higher is better) and how many iterations that MFTA needs (lower is better).

majority of the destination neurons’ potential. We will discuss
the detailed trade-off between the benefits of TTA scheme and
the accuracy degradation in Section V-C.

V. EXPERIMENTS

A. Experimental Setup

We first evaluate the performance of our proposed thresh-
old adjustment schemes based on the simulation. The sim-
ulation of the circuit components of TFSRAM is conducted
in Cadence Virtuoso with 65nm CMOS process. Gaussian-
distributed noises are injected into the synaptic weights to verify
the performance of MFTA scheme.

In this paper, we present our investigation for the hardware
on the well-studied lightweight TTFS-based SNN perceptrons
on the MNIST dataset. As long as the mechanisms of deeper
TTFS-based SNN models are fully investigated, more work
can be conducted with the same computing principles because
the basic operations are identical regardless of the model size.
The pre-trained SNN model has 400 hidden-layer neurons and
10 output neurons. Its ideal inference accuracy without consid-
ering process variations is 95.4%. For the standard IF neuron
module, a 2.56µs time window are adopted. The average infer-
ence energy consumption is calculated as the arithmetic mean
of the energy consumption of the MNIST test set.

B. Accuracy Analysis of MFTA

MFTA scheme is to rescue the inference accuracy from cir-
cuit process variations. The efficacy of MFTA lies in the two
key parameters: C and 2N .

Dependency on C: C is the iteration number of threshold
adjustment neurons should complete. A larger C means that
each firing threshold is involved in more adjustments triggered
by more input testing patterns. To quantitatively analyze this,

the simulation injects process variations with different standard
deviation σ = 10%, 20%, 30% and 40% to the synaptic weights.
The standard deviation is chosen to cover the typical process
variations of CMOS and emerging devices [29], [30]. For each
process variation setup, we conduct 50 experiments and obtain
the average inference accuracy. We set the number of available
threshold levels 2N = 16 for this set of experiments.

Fig. 8(a) presents the results. The “baseline” group refers to
the inference accuracy with the process variation injection and
without applying MFTA. As C increases, the iteration number
of MFTA (black dots) increases in an approximately linear
relation, and shows no correlation to the process variations.
This trend validates that C is the knob to control the MFTA
iterations. A larger C induces more iterations which imply
higher compensation overhead.

The inference accuracy (bars) is boosted by applying MFTA
compared to the baseline. With a larger C, MFTA leads to better
accuracy given the process variation, and there is a clear satu-
ration of accuracy recovery as C keeps increasing. Therefore,
there is a sweet point that balances the iteration number and
inference accuracy. For our pre-trained model, we set C = 10
for both satisfactory accuracy recovery and relatively small
hardware costs.

Dependency on 2N : 2N is the number of available levels
for Vth candidates. A larger 2N value means finer granularity
of MFTA scheme, projecting to more precise MFTA tuning. Yet
more iterations are required to complete MFTA since the step
change of the threshold voltage in each iteration is smaller.

The initial global voltage threshold of MFTA is set to 400mV
based on the original circuit-level configuration, and the range
of the available threshold levels is set to 260mV ∼ 560mV.
Fig. 8(b) shows how the average accuracy and total MFTA
iteration number change with the number of threshold levels
under different process variation setups. We select the number
of threshold levels to be 2 (160mV interval), 4 (80mV interval),
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Fig. 9. (a) Energy savings and speedup vs. timing threshold; (b) Inference accuracy and timing threshold under different process variations. Notably, the
x-axes of (a) and (b) are the ratio of timing threshold to time window size.

Fig. 10. Accuracy recovered by MFTA under various process variations.
x- and y-axis are the percentage accuracy before and after applying MFTA,
respectively.

8 (40mV interval), 16 (20mV interval). The average accuracy
after applying MFTA increases with more threshold levels from
the baseline accuracy. Under these four process variations σ, the
accuracy after applying MFTA increases significantly when the
number of threshold levels jumps from 2 to 4, whereas gains
only marginally in the cases over 4. Besides, the numbers of
iterations to complete MFTA in all the process variation cases
increase from ∼ 150 to ∼ 300. This validates the trend that finer
granularity of MFTA levels (2N ) would cause more iterations.
In this set of experiments, the results also show that the number
of iterations to complete MFTA has no correlation to process
variations. Based on these observations, we set the default 2N
parameter as 4 levels to achieve satisfactory accuracy recovery
as well as small hardware cost.

Fig. 10 shows the Monte Carlo simulation to validate the ef-
ficacy of MFTA scheme. It is the result of 50 experiments under

Fig. 11. Die photo and summary of TFSRAM.

different process variation levels, including the accuracy before
threshold adjustment (x-axis) and the accuracy after threshold
adjustment (y-axis), under the aforementioned MFTA config-
uration. As shown, all the experiments under σ = 10% ∼ 40%
obtain accuracy improvement. On average, TFSRAM remains
at 95.3% accuracy under 10% variations, and at 94.2% accuracy
under 20% variations.

C. Trade-Off in TTA

We investigate the trade-off between the energy savings and
speedup of TTA scheme and the accuracy degradation under
different timing threshold setups. Fig. 9(a) shows the trade-
off between energy savings and speedup. The baseline is the
proposed twin-column PE without TTA. Smaller timing thresh-
old results in faster inference as well as better energy savings.
Fig. 9(b) shows the accuracy degradation induced by TTA.
When the timing threshold is half of the time window size, TFS-
RAM remains above 91.4% accuracy under 10% variations, and
above 90.1% accuracy under 20% variations. Under this timing
threshold setup, more than 1.7× speedup and 68.8% energy
savings can be achieved. As such, the optimal setup of “timing
threshold is 0.5× time window size = 1.28µs” for TFSRAM.

D. Prototype Chip Results

Fig. 11 presents the die photo and chip summary of TFS-
RAM, fabricated in 65nm CMOS process. Under the condi-
tion of 1V/100MHz, the TFSRAM macro consumes 406.7µW
and 98.2µW during computation and during idle state, respec-
tively. Fig. 12 shows the measured power breakdown and area
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TABLE II
COMPARISON WITH PRIOR SPIKE-BASED CIM MACROS

Work This work VLSI’19 [27] VSLI’22 [13] ASSCC’22 [23] TCSI’24 [9]
Process 65nm 150nm 28nm 65nm 40nm

Computing cell 8T-SRAM 1T1R RRAM 8T-SRAM 8T-SRAM SOT-MRAM
Voltage (V) 1 - 1.1 - -

Clock frequency (MHz) 100 50 200 - -
Macro size (bit) 64x64 256x256 64x160 32Kb 512x512

Macro area (mm2) 0.036 - 0.048 0.25 ∼0.064
Die area (mm2) 0.96 - 2.91 - -

Input precision (bit) 1-8 1-8 1-8 6-12 spikes 2
Weight precision (bit) 4 1 1/4/8 1.5b 4
Output precision (bit) 8 8 8 - -
Macro power (mW) 0.41 1.52 15.8 0.56 -

Energy efficiency (TOPS/W) 249.8
(8b, 4b)

16.9
(1b, 8b)

413.8
(4b, 4b)

290
(2.8b, 1.5b)

17.56
(2b, 4b)

Fig. 12. (a) Area and power breakdown of TFSRAM. (b) Measured macro
power under different voltage supply. (c) Measured energy efficiency under
different voltage supply.

breakdown of the TFSRAM macro. The synaptic SRAM array
dominates the area by 62.05%, with the 8T-SRAM cell area
of 2.4µm × 0.9µm. The neuron circuits incur only 21.25%
area. During the computation, the neuron circuits, the synaptic
SRAM array, and the digital circuit components each consume
about one-third of the overall power.

We also measure the macro power under the voltage supply
from 0.5V to 1V under the clock frequency of 100MHz. Tested
with a pre-trained 2-layer TTFS-SNN on Sklearn’s 8 × 8 digit
dataset, TFSRAM is able to generate correct outputs while
applying the voltage over 0.65V, whereas temporal variations
are observed in multiple cycles. Under 1V/100MHz, we select
the first four post-neurons in the first layer and compare their
firing times to the expected firing times from the algorithm in 50
continuous runs. The mean absolute error of the measured post-
spike firing times is 7.11 time steps out of the 256-time-step
time window. These dynamic errors stem from thermal noises

and cycle-to-cycle variations of spiking currents that charge the
membrane capacitors [21]. Table I shows the comparison results
with prior spike-based CIM neuromorphic macros. TFSRAM
achieves an energy efficiency of 249.8 TOPS/W and an area
efficiency of 2.85 TOPS/mm2 under 8-bit inputs and signed
4-bit weights, measured under 1V/100MHz.2 Fig. 12(c) depicts
the change in energy efficiency with different voltage supply.

Thanks to the great potential of TTFS-based SNNs and
the dedicated energy-efficient neuron circuit designs, TFS-
RAM outperforms prior spike-based CIM macros [9], [27]
in terms of energy efficiency. It achieves comparable energy
efficiency with the rate-coded macro [23], whereas [23] only
supports the inputs of 6-12 spikes, equivalently 2.8b input
precision. TFSRAM does not demonstrate higher energy effi-
ciency than the rate-coded macros [13] due to less advanced
technology node.

VI. FUTURE WORK

Despite the fact that TFSRAM achieves a competitive im-
provement of energy efficiency when executing SNN inference,
exploring additional methodologies that can further enhance
its efficiency and expand its compatibility with diverse real-
life scenarios is still ongoing. First, potential optimization lies
in the sparsity of SNN models mapped to the CIM memory
array. In our twin-column mapping scheme, excitatory and in-
hibitory synapses equally occupy the adjacent portions of the
array. However, ordinary SNN models usually have imbalanced
excitatory and inhibitory synapse distribution. When excitatory
synapses dominate, the mapping scheme leads to significant
zero redundancy of data stored in the inhibitory portion and
degrades memory utilization and area efficiency. This calls for
improved synapse mapping schemes to reduce the data spar-
sity, as well as modified neuron circuit designs to support the
reorganized data layout.

Second, our proposed neuromorphic design focuses on the
efficient inference of TTFS-based SNNs. Another critical ad-
vantage of temporal-coded SNNs over conventional DNNs is
the capability of exploiting temporal dynamics and performing

2OP is defined as the number of MAC operations within each SNN
inference time step. TOPS is defined as MACs×Frequency×2.
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unsupervised learning rules such as spike-timing-dependency-
plasticity (STDP). Compared to supervised learning algorithms,
unsupervised learning rules eliminate the costs of gradient com-
putation and data communication of backpropagation and en-
able local learning. While introducing these learning mecha-
nisms to the CIM neuromorphic designs, the key challenge is
how to capture the spatiotemporal information of spike events
from the inference and program the synaptic arrays accordingly.
An efficient solution should take full advantage of both the
local learning capability (from the algorithm perspective) and
the parallelism of the crossbar structure (from the hardware
perspective) to avoid unnecessary data caching, conversion and
transmission. We are now targeting unsupervised learning sup-
port on the basis of our neuromorphic processing engine design.
The major issue to be resolved include the methodology and
circuit implementation to translate the firing times of the single
spikes from the post-neuron circuits to update the synaptic
weight values stored in the CIM arrays. Enabling unsupervised
learning in the CIM neuromorphic designs is a promising direc-
tion that will benefit the edge computing AI hardware in online
learning and model fine-tuning tasks.

Third, TFSRAM is tailored for lightweight SNN inference
in power-constrained and area-constrained edge computing ap-
plications. Nevertheless, the design paradigm of TFSRAM can
be migrated to various memory technologies, hardware config-
urations and network structures. With a higher area and power
budget, TFSRAM could achieve higher efficiency by boosting
the computation parallelism with increasing synaptic array size,
holding the potential to function as basic processing elements
in large-scale neuromorphic computing systems that execute
deeper SNNs for more complex cognitive tasks. However, this
leads to the increasing number of neurons in each macro and
thus complicates the data communication between neurons in
different macros. How to deploy different partitions of the SNN
workload to multiple analog spiking CIM macros and how
to manage the inter-macro data communication are valuable
questions that need addressing in future research.

VII. CONCLUSION

Neuromorphic computing hardware that harnesses the spike-
based computation and compute-in-memory significantly
boosts energy efficiency, paving the way towards next-
generation AI hardware that pursues the capabilities of the
human neural system. In this paper, we present TFSRAM,
a timing-to-first-spike compute-in-memory neuromorphic
processing engine with twin-column SRAM Synapses.
TFSRAM features the novel twin-column synapse mapping
scheme and dedicated neuron circuits. Specifically for the TTFS
spiking encoding scheme and the fabricated neuromorphic
processing engine, we introduce the multi-level firing threshold
adjustment methodology to improve the resilience against
process variations and the timing threshold adjustment
methodology to exploit the advantage of event-driven SNN
execution models. These two methods enable highly efficient
execution of SNN inference. Measurement results show that
TFSRAM achieves an energy efficiency of 249.8 TOPS/W and

an area efficiency of 2.85 TOPS/mm2 under 8-bit inputs and
signed 4-bit weights.

REFERENCES

[1] F. Akopyan et al., “TrueNorth: Design and tool flow of a 65 mw 1 million
neuron programmable neurosynaptic chip,” IEEE Trans. Comput.-Aided
Des. Integr. Circuits Syst., vol. 34, no. 10, pp. 1537–1557, Oct. 2015.

[2] A. Ankit, A. Sengupta, P. Panda, and K. Roy, “RESPARC: A recon-
figurable and energy-efficient architecture with memristive crossbars for
deep spiking neural networks,” in Proc. 54th ACM/IEEE Des. Automat.
Conf. (DAC), 2017, pp. 1–6.

[3] B. V. Benjamin et al., “Neurogrid: A mixed-analog-digital multichip
system for large-scale neural simulations,” Proc. IEEE, vol. 102, no. 5,
pp. 699–716, May 2014.

[4] Y. Cao, Y. Chen, and D. Khosla, “Spiking deep convolutional neu-
ral networks for energy-efficient object recognition,” Int. J. Comput.
Vis., vol. 113, pp. 54–66, 2015.

[5] T. Chen et al., “Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” ACM SIGARCH Comput. Archit.
News, vol. 42, no. 1, pp. 269–284, 2014.

[6] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-
efficient reconfigurable accelerator for deep convolutional neural net-
works,” IEEE J. Solid-State Circuits, vol. 52, no. 1, pp. 127–138,
Jan. 2017.

[7] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, Jan./Feb. 2018.

[8] P. U. Diehl, G. Zarrella, A. Cassidy, B. U. Pedroni, and E. Neftci,
“Conversion of artificial recurrent neural networks to spiking neural
networks for low-power neuromorphic hardware,” in Proc. IEEE Int.
Conf. Rebooting Comput. (ICRC), Piscataway, NJ, USA: IEEE Press,
2016, pp. 1–8.

[9] H. Fu et al., “DS-CIM: A 40nm asynchronous dual-spike driven, MRAM
compute-in-memory macro for spiking neural network,” IEEE Trans.
Circuits Syst. I: Reg. Papers, vol. 71, no. 4, pp. 1638–1650, Apr. 2024.

[10] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
project,” Proc. IEEE, vol. 102, no. 5, pp. 652–665, May 2014.

[11] W. Gerstner, R. Kempter, J. L. Van Hemmen, and H. Wagner, “A
neuronal learning rule for sub-millisecond temporal coding,” Nature,
vol. 383, no. 6595, pp. 76–78, 1996.

[12] J. Göltz et al., “Fast and deep neuromorphic learning with time-to-first-
spike coding,” 2019, arXiv:1911.10124.

[13] S. Kim, S. Kim, S. Um, S. Kim, K. Kim, and H.-J. Yoo, “Neuro-
CIM: A 310.4 TOPS/W neuromorphic computing-in-memory processor
with low WL/BL activity and digital-analog mixed-mode neuron firing,”
in Proc. IEEE Symp. VLSI Technol. Circuits (VLSI Technol. Circuits),
Piscataway, NJ, USA: IEEE Press, 2022, pp. 38–39.

[14] H. Kwon, P. Chatarasi, M. Pellauer, A. Parashar, V. Sarkar, and T. Kr-
ishna, “Understanding reuse, performance, and hardware cost of DNN
dataflow: A data-centric approach,” in Proc. 52nd Annu. IEEE/ACM
Int. Symp. Microarchit., Piscataway, NJ, USA: IEEE Press, 2019,
pp. 754–768.

[15] Z. Li, B. Yan, and H. Li, “ReSiPE: ReRAM-based single-spiking
processing-in-memory engine,” in Proc. 57th ACM/IEEE Des. Automat.
Conf. (DAC), Piscataway, NJ, USA: IEEE Press, 2020, pp. 1–6.

[16] Z. Li, Q. Zheng, B. Yan, R. Huang, B. Li, and Y. Chen, “ASTERS:
Adaptable threshold spike-timing neuromorphic design with twin-
column ReRAM synapses,” in Proc. 59th ACM/IEEE Des. Automat.
Conf., 2022, pp. 1099–1104.

[17] C. Liu et al., “A spiking neuromorphic design with resistive crossbar,”
in Proc. 52nd Annu. Des. Automat. Conf., 2015, pp. 1–6.

[18] W. Maass, “Networks of spiking neurons: The third generation of neural
network models,” vol. 10, no. 9, pp. 1659–1671, 1997.

[19] P. Merolla, J. Arthur, F. Akopyan, N. Imam, R. Manohar, and D. S.
Modha, “A digital neurosynaptic core using embedded crossbar memory
with 45pJ per spike in 45nm,” in Proc. IEEE Custom Integr. Circuits
Conf. (CICC), Piscataway, NJ, USA: IEEE Press, 2011, pp. 1–4.

[20] S. Oh et al., “Spiking neural networks with time-to-first-spike coding
using TFT-type synaptic device model,” IEEE Access, vol. 9, pp. 78098–
78107, 2021.

[21] S. Park, D. Lee, and S. Yoon, “Noise-robust deep spiking neural
networks with temporal information,” in Proc. 58th ACM/IEEE Des.
Automat. Conf. (DAC), Piscataway, NJ, USA: IEEE Press, 2021,
pp. 373–378.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 16,2025 at 22:46:41 UTC from IEEE Xplore.  Restrictions apply. 



36 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR ARTIFICIAL INTELLIGENCE, VOL. 1, NO. 1, SEPTEMBER 2024

[22] J. Schemmel, D. Brüderle, A. Grübl, M. Hock, K. Meier, and S. Millner,
“A wafer-scale neuromorphic hardware system for large-scale neural
modeling,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), Piscataway,
NJ, USA: IEEE Press, 2010, pp. 1947–1950.

[23] J. Song et al., “Spike-CIM: A 290TOPS/W spike-encoding sparsity-
adaptive computing-in-memory macro with differential charge-domain
integrate-and-fire,” in Proc. IEEE Asian Solid-State Circuits Conf.
(A-SSCC), Piscataway, NJ, USA: IEEE Press, 2022, pp. 1–3.

[24] S. Thorpe, A. Delorme, and R. Van Rullen, “Spike-based strategies for
rapid processing,” Neural Netw., vol. 14, nos. 6–7, pp. 715–725, 2001.

[25] Z. Wang et al., “Fully memristive neural networks for pattern classi-
fication with unsupervised learning,” Nature Electron., vol. 1, no. 2,
pp. 137–145, 2018.

[26] P. Wijesinghe, A. Ankit, A. Sengupta, and K. Roy, “An all-memristor
deep spiking neural computing system: A step toward realizing the low-
power stochastic brain,” IEEE Trans. Emerg. Topics Comput. Intell.,
vol. 2, no. 5, pp. 345–358, Oct. 2018.

[27] B. Yan et al., “RRAM-based spiking nonvolatile computing-in-memory
processing engine with precision-configurable in situ nonlinear activa-
tion,” in Proc. Symp. VLSI Technol., Piscataway, NJ, USA: IEEE Press,
2019, pp. T86–T87.

[28] L. Zhang, S. Zhou, T. Zhi, Z. Du, and Y. Chen, “TDSNN: From deep
neural networks to deep spike neural networks with temporal-coding,”
in Proc. AAAI Conf. Artif. Intell., vol. 33, no. 1, 2019, pp. 1319–1326.

[29] M. Zhao et al., “Investigation of statistical retention of filamentary ana-
log RRAM for neuromorphic computing,” in Proc. IEEE Int. Electron
Devices Meeting (IEDM), Piscataway, NJ, USA: IEEE Press, 2017,
pp. 39–4.

[30] W. Zhao et al., “Rigorous extraction of process variations for 65-nm
CMOS design,” IEEE Trans. Semicond. Manuf., vol. 22, no. 1, pp. 196–
203, Feb. 2009.

Ziru Li (Graduate Student Member, IEEE) received
the B.Eng. degree in electronic engineering from
Tsinghua University, Beijing, China, in 2019, and
the Ph.D. degree in electrical and computer engi-
neering from Duke University, Durham, NC, USA,
in 2024. His research interest includes integrated
circuit design for advanced artificial intelligence
algorithms.

Qilin Zheng (Graduate Student Member, IEEE)
received the B.Sc. and M.Sc. degrees from KU
Leuven and Peking University, and the Ph.D. degree
in electrical and computer engineering from Duke
University, in 2024. His research interests include
machine learning accelerator, in-memory comput-
ing, and non-volatile memory design.

Jonathan Ku (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
and computer science from National Tsing Hua
University, in 2022. He is currently working to-
ward the Ph.D. degree in electrical and computer
engineering with Duke University, Durham, NC,
USA. His research interests include VLSI design,
hardware acceleration in cryptography and machine
learning.

Brady Taylor (Graduate Student Member, IEEE)
received the B.S. degree in electrical engineering
from Rice University, in 2019, and the M.S. degree
in electrical and computer engineering from Duke
University, in 2022. He is currently working toward
the Ph.D. degree with Duke University, researching
mixed-signal circuits for implementing biologically-
plausible learning rules. His research interests in-
clude mixed-signal VLSI, neuromorphic computing,
computer architecture, and emerging nonvolatile
memories for artificial intelligence.

Hai Li (Fellow, IEEE) received the B.S. and M.S.
degrees from Tsinghua University, Beijing, China,
and the Ph.D. degree from the Department of
Electrical and Computer Engineering. She is the
Clare Boothe Luce Professor and Department Chair
of the Electrical and Computer Engineering De-
partment with Duke University. Purdue University,
West Lafayette, IN, USA. Prior to joining Duke
University, she worked with Qualcomm Inc., Intel
Corporation, Seagate Technology, the Polytechnic
Institute of New York University, and the University

of Pittsburgh. Her research interests include neuromorphic circuits and systems
for brain-inspired computing, machine learning acceleration and trustworthy
AI, conventional and emerging memory design and architecture, and software
and hardware co-design. Dr. Li served/serves as an Associate Editor for
multiple IEEE and ACM journals. She was the General Chair or Technical
Program Chair of numerous IEEE/ACM conferences and the Technical
Program Committee Member of over 30 international conference series. She is
a Distinguished Lecturer of the IEEE CAS Society (2018–2019) and a Distin-
guished Speaker of ACM (2017–2020). She is a recipient of the NSF Career
Award, DARPA Young Faculty Award, TUM-IAS Hans Fischer Fellowship
from Germany, ELATE Fellowship, Ten Year Retrospective Influential Paper
Award from ICCAD, nine best paper awards, and another nine best paper
nominations. Dr. Li is a Fellow of ACM.

Authorized licensed use limited to: University of Texas at San Antonio. Downloaded on May 16,2025 at 22:46:41 UTC from IEEE Xplore.  Restrictions apply. 


