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Continual learning (CL) is a key advancement in
artificial intelligence, enabling systems to learn
and adapt over time. We introduce the concept
and features of how to approach CL in silicon,

with early examples from the literature.

ontinuallearning (CL)is a challenge in which

an agent must learn from sequential, nonsta-

tionary data from changing distributions.

The agent is expected not only to learn new

tasks more efficiently, consuming fewer resources,

such as storage, computing time, and energy, but also

to retain and even improve performance on previously

learned tasks. Although training on interleaved task

data can improve the learner’s performance on all of

the tasks, the sequential nature of the task data in CL

complicates the problem (see Figure 1). Moreover, inter-

leaved training would be untenable when scaling over
an entire lifetime.

The literature is replete with examples of CL algorithms

that can be broadly classified into two groups: resource

constrained and resource growing. Resource-constrained
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algorithms?34> use fixed-capacity
schemes, reallocating or regularizing
model parameters to learn new tasks.
Fixed-capacity algorithms are useful
when the learning environment has
finite complexity. By contrast, re-
source-growing approaches®”8 expand the model’s capacity
asmoretasksare encountered and thus can copewith alearn-
ing environment with growing or infinite complexity. In
both groups, an important strategy to improve CL algorithms
includes replaying or rehearsing old data to mitigate forget-
ting of old tasks.>!01! However, all algorithms target specific
aspects of CL rather than approaching it holistically, leading
to a continuous development of new concepts and methods.
This presents a significant challenge in designing CL hard-
ware architectures for existing and evolving algorithms.?
On the other hand, the current artificial intelligence
(AI) accelerators primarily concentrate on a single task,
which contrasts with the sequential multitask challenge
faced by continual learners. While these accelerators sup-
port some aspects of CL, they lack many essential features
required for successful deployment (see Table 1). For in-
stance, edge Al accelerators, similar to CL systems, have
limited computational capabilities, often operate on bat-
tery power, and encounter several other constraints. In
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line with Occam’s razor, the design of
CL accelerators can be regarded as a
type of multiscale optimization with
simple plasticity and learning blocks.

In this article, we review some of
the key features in designing CL accel-
erators. Extensive details on CL can be
found in Kudithipudi et al.1213

Performance
Performance

CL ON SILICON

Current Al accelerators predominantly
support inference and plasticity (see
Table 1 for a subset of machine learning
and spiking edge accelerators). This can
be partly attributed to the siloed evolu-
tion of the hardware and models, which
often led to fragmented solutions. We

can achieve progress in specialized
hardware for CL with co-design ap-
proaches that encompass plasticity
blocks coupled with novel learning ar-
chitectures. Recently, we introduced
common features for designing such
accelerators.!? Here, we highlight key
aspects to consider for building such
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FIGURE 1. (a) Sequential training from different tasks results in catastrophic forgetting of older tasks for traditional deep learning
algorithms. b) Forgetting is mitigated when the learner is trained on task data in an interleaved fashion. CL strategies include (c) the
resource-constrained scheme, in which multiple tasks are learned with fixed number of parameters, and (d) the resource-growing
scheme, in which new parameters are added with new tasks. (Adapted from van de Ven et al.1*)

TABLE 1. Overview of recent Al accelerators with on-device training which support single-task
learning but only partially support CL. Attributes such as quantization, sparsity, and on-chip memory
configurations support different resource-growing and resource-constrained plasticity mechanisms.

Chimera'> INT 8

Tenstorrent FP16, FP8, bfloat16
Wormbholel®

SIGMAY FP16/32

Loihi8 INT1-INT9?
SpiNNaker 219 FXP32, FP32
SCOLAR?° FxP16

DNN, CNN

DNN, CNN, LSTM

DNN, RNN, CNN

Spiking CNN, SNN,
LSTM

DNN, CNN, SNN

SNN

418 mW (40 nm)

80 W (12nm)

22.3 W (28 nm)

420 mW (14 nm)

~0.72 W (22 nm)®

21.25 mW (65 nm)

0.92 TOP/s

430 TOP/S

10.8 TFLOPS

50 FPS (10 kHz)

4.6 TOP/s (250 MHz)

250 MOP/s (10 MHz)

2 MB¢

120 MB

68 MB

33 MB

18 MB SRAM, 8 GB
off-chip DRAM

100 KB (SRAM)

aSigned or unsigned integer or mixed-precision number is supported.

bProcessing element power.
‘RRAM instead of SRAM.

FPS: frames/s; FP: floating point; FX: fixed point; DNN: deep neural network; CNN: convolutional neural network; SNN: spiking
neural network; LSTM: long short-term memory; DRAM: dynamic random-access memory; SRAM: static random-access memory;

RRAM: resistive random-access memory.

OCTOBER 2024 161



MICROELECTRONICS

accelerators, including on-device
learning, memory topologies, pro-
grammability, and reconfigurable ar-
chitectures, as shown in Figure 2.

On-device plasticity

Many classes of CL algorithms exhibit
diverse forms of plasticity, enabling
the design of adaptive architectures
that facilitate both local and global
learning across multiple tasks. Exam-
ples of this are changes in synaptic
strength (local) or in network archi-
tecture (global and structural). To fa-
cilitate this, CL architectures should
support various loss/regularization
functions, learning from replayed
data, growth and/or pruning of net-
works at different abstractions (syn-
apse, neuron, layer, or network), and
neuromodulation for context-depen-
dent processing.

Memory topologies

In both resource-growing and re-
source-constrained CL algorithms,
memory topology plays a key role.
Models must store dynamic param-
eters to regulate learning, store pre-
vious activations or parameters, and
store previously seen data or gener-
ative models scaling with task com-
plexity. The data communication costs
for these techniques can be reduced by
near-memory or in-memory comput-
ing approaches. Based on sample size,
access frequency, and replay stage
(sleep or wake), the data can be located
at higher levels of the memory hierar-
chy or in buffers close to the compute
substrate. There is also an opportunity
to apply conventional techniques for
power gating to memory, such as in
sleep modes. Hardware state check-
pointing, to recover from catastrophic
deviations caused by changes in a new
stimulus, isalso important for CL mod-
els. While common in software, imple-
menting tracking and checkpointing
of model changes imposes several
challenges in hardware. Coalescing
data flow and layout as well as recom-
putation to reduce memory accesses
can be beneficial in such scenarios.
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Reconfigurable architectures

CL models frequently experience dy-
namic changes, requiring fine-grain
reconfigurability at runtime. The sys-
tem should transition learning from
streaming data to accessing, process-
ing,andlearning from batched samples
of previous experiences. The architec-
ture should offer on-demand access to
new computing or memory resources
at runtime and generate new resources
that were not previously available (such
as potential synapse) as needed.

Programmability

CL accelerators will need to support
flexible operations within a fixed re-
source or energy budget. There is, how-
ever, a tradeoff between the program-
mability and the energy efficiency
of accelerators. Translating this into
accelerator design requires flexibility
in reassigning resources under size,
weight, and power constraints, where
several features are necessary but need
not be active simultaneously. For ex-
ample, a system might periodically al-
ternate between structural plasticity,
regularization, and replay, or activate
them allin tandem.

CO-DESIGN

When developing CL accelerators, op-
timizations informed by both hard-
ware and algorithms are critical to
enhance performance and scalability.
Such a co-design processis adopted in
SCOLAR for CL with a resource-con-
strained algorithm (metaplasticity).
At the algorithmic level, SCOLARZ0
introduced parameter sharing to re-
duce memory overhead, constraining
the hyperparameter search space to
powers of two where beneficial.

A similar effort?! with emerging
devices took advantage of the inher-
ent properties of memristive devices
to implement resource-constrained
learning (metaplasticity). Instead of
using a dynamic learning rate, the
probabilistic nature of state changesin
memristor devices regulated learning
in response to plasticity. The system
operates with low-precision weights,

parameter sharing, and sparse weight
updates. Error thresholding and the
accumulation of gradient signals fur-
ther reduced data flow and the overall
write frequency to memristor devices.
Such examples illustrate the effective-
ness of co-design for CL hardware.

s the algorithmic space for CL

grows, so will the scope of fea-

tures for CL accelerators and
their design complexity. There is an
increasingly greater need for adopt-
ing a co-design paradigm rather than
siloed development. For instance,
communities such as TinyML have put
forth a set of guidelines for general
edge Al accelerators targeting submil-
liwatt power consumption. Such cri-
teria will probably be essential for de-
signers of CL accelerators. Although
some preliminary criteria are given
in Kudithipudi et al. 2023,12 they are
likely to expand as the algorithmic
space advances. Critical issues mov-
ing forward include 1) demonstrating
scalable on-device plasticity for large-
scale applications, 2) understanding
the relation and integrating different
CL mechanisms to design reconfigu-
rable architectures, 3) efficient mem-
ory topologies that facilitate CL and
minimize energy consumption, and
4) developing new evaluation criteria
and metrics to assess CL accelerators.
An avenue of research in advancing
the state of CL accelerators will re-
volve around emerging technology
beyond traditional CMOS, such as re-
sistive random-access memory (RAM).
Finally, biological brains can provide
inspiration for new forms of plasticity
and learning, not available in current
Almodels,as CLisanatural phenome-
non seen in biological systems.

“Computers are incredibly

fast, accurate, and stupid.

Human beings are incredibly

slow, inaccurate, and brilliant.

Together they are power-

ful beyond imagination.”
—Albert Einstein
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