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Continual learning (CL) is a challenge in which 
an agent must learn from sequential, nonsta-
tionary data from changing distributions. 
The agent is expected not only to learn new 

tasks more efficiently, consuming fewer resources, 
such as storage, computing time, and energy, but also 
to retain and even improve performance on previously 
learned tasks. Although training on interleaved task 
data can improve the learner’s performance on all of 
the tasks, the sequential nature of the task data in CL 
complicates the problem (see Figure 1). Moreover, inter-
leaved training would be untenable when scaling over 
an entire lifetime.

The literature is replete with examples of CL algorithms 
that can be broadly classified into two groups: resource 
constrained and resource growing. Resource- constrained 

 algorithms1,2,3,4,5 use fixed-capacity 
schemes, reallocating or regularizing 
model parameters to learn new tasks. 
Fixed-capacity algorithms are useful 
when the learning environment has 
finite complexity. By contrast, re-

source-growing approaches6,7,( expand the model’s capacity 
as more tasks are encountered and thus can cope with a learn-
ing environment with growing or infinite complexity. In 
both groups, an important strategy to improve CL algorithms 
includes replaying or rehearsing old data to mitigate forget-
ting of old tasks.),10,11 However, all algorithms target specific 
aspects of CL rather than approaching it holistically, leading 
to a continuous development of new concepts and methods. 
This presents a significant challenge in designing CL hard-
ware architectures for existing and evolving algorithms.12

On the other hand, the current artificial intelligence 
(AI) accelerators primarily concentrate on a single task, 
which contrasts with the sequential multitask challenge 
faced by continual learners. While these accelerators sup-
port some aspects of CL, they lack many essential features 
required for successful deployment (see Table 1). For in-
stance, edge AI accelerators, similar to CL systems, have 
limited computational capabilities, often operate on bat-
tery power, and encounter several other constraints. In 
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line with Occam’s razor, the design of 
CL accelerators can be regarded as a 
type of multiscale optimization with 
simple plasticity and learning blocks.

In this article, we review some of 
the key features in designing CL accel-
erators. Extensive details on CL can be 
found in Kudithipudi et al.12,13

CL ON SILICON
Current AI accelerators predominantly 
support inference and plasticity (see 
Table 1 for a subset of machine learning 
and spiking edge accelerators). This can 
be partly attributed to the siloed evolu-
tion of the hardware and models, which 
often led to fragmented solutions. We 

can achieve progress in specialized 
hardware for CL with co-design ap-
proaches that encompass plasticity 
blocks coupled with novel learning ar-
chitectures. Recently, we introduced 
common features for designing such 
accelerators.12 Here, we highlight key 
aspects to consider for building such 

FIGURE 1. (a) Sequential training from different tasks results in catastrophic forgetting of older tasks for traditional deep learning 
algorithms. b) Forgetting is mitigated when the learner is trained on task data in an interleaved fashion. CL strategies include (c) the 
resource-constrained scheme, in which multiple tasks are learned with fixed number of parameters, and (d) the resource-growing 
scheme, in which new parameters are added with new tasks. (Adapted from van de Ven et al.14)
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TABLE 1. Overview of recent AI accelerators with on-device training which support single-task 
learning but only partially support CL. Attributes such as quantization, sparsity, and on-chip memory 
configurations support different resource-growing and resource-constrained plasticity mechanisms. 

Chip Quantization Neural network(s) Power Throughput On-chip memory

Chimera15 INT 8 DNN, CNN 418 mW (40 nm) 0.92 TOP/s 2 MBc

Tenstorrent
Wormhole16

FP16, FP8, bfloat16 DNN, CNN, LSTM 80 W (12 nm) 430 TOP/S 120 MB

SIGMA17 FP16/32 DNN, RNN, CNN 22.3 W (28 nm) 10.8 TFLOPS 68 MB

Loihi18 INT1-INT9a Spiking CNN, SNN, 
LSTM

420 mW (14 nm) 50 FPS (10 kHz) 33 MB

SpiNNaker 219 FXP32, FP32 DNN, CNN, SNN ~ 0.72 W (22 nm)b 4.6 TOP/s (250 MHz) 18 MB SRAM, 8 GB 
off-chip DRAM

SCOLAR20 FxP16 SNN 21.25 mW (65 nm) 250 MOP/s (10 MHz) 100 KB (SRAM)

aSigned or unsigned integer or mixed-precision number is supported.
bProcessing element power.
cRRAM instead of SRAM.
FPS: frames/s; FP: floating point; FX: fixed point; DNN: deep neural network; CNN: convolutional neural network; SNN: spiking 
neural network; LSTM: long short-term memory; DRAM: dynamic random-access memory; SRAM: static random-access memory; 
RRAM: resistive random-access memory.
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accelerators, including on-device 
learning, memory topologies, pro-
grammability, and reconfigurable ar-
chitectures, as shown in Figure 2.

On-device plasticity
Many classes of CL algorithms exhibit 
diverse forms of plasticity, enabling 
the design of adaptive architectures 
that facilitate both local and global 
learning across multiple tasks. Exam-
ples of this are changes in synaptic 
strength (local) or in network archi-
tecture (global and structural). To fa-
cilitate this, CL architectures should 
support various loss/regularization 
functions, learning from replayed 
data, growth and/or pruning of net-
works at different abstractions (syn-
apse, neuron, layer, or network), and 
neuromodulation for context-depen-
dent processing.

Memory topologies
In both resource-growing and re-
source-constrained CL algorithms, 
memory topology plays a key role. 
Models must store dynamic param-
eters to regulate learning, store pre-
vious activations or parameters, and 
store previously seen data or gener-
ative models scaling with task com-
plexity. The data communication costs 
for these techniques can be reduced by 
near-memory or in-memory comput-
ing approaches. Based on sample size, 
access frequency, and replay stage 
(sleep or wake), the data can be located 
at higher levels of the memory hierar-
chy or in buffers close to the compute 
substrate. There is also an opportunity 
to apply conventional techniques for 
power gating to memory, such as in 
sleep modes. Hardware state check-
pointing, to recover from catastrophic 
deviations caused by changes in a new 
stimulus, is also important for CL mod-
els. While common in software, imple-
menting tracking and checkpointing 
of model changes imposes several 
challenges in hardware. Coalescing 
data flow and layout as well as recom-
putation to reduce memory accesses 
can be beneficial in such scenarios.

Reconfigurable architectures
CL models frequently experience dy-
namic changes, requiring fine-grain 
reconfigurability at runtime. The sys-
tem should transition learning from 
streaming data to accessing, process-
ing, and learning from batched samples 
of previous experiences. The architec-
ture should offer on-demand access to 
new computing or memory resources 
at runtime and generate new resources 
that were not previously available (such 
as potential synapse) as needed.

Programmability
CL accelerators will need to support 
flexible operations within a fixed re-
source or energy budget. There is, how-
ever, a tradeoff between the program-
mability and the energy efficiency 
of accelerators. Translating this into 
accelerator design requires flexibility 
in reassigning resources under size, 
weight, and power constraints,  where 
several features are necessary but need 
not be active simultaneously. For ex-
ample, a system might periodically al-
ternate between structural plasticity, 
regularization, and replay, or activate 
them all in tandem.

CO-DESIGN
When developing CL accelerators, op-
timizations informed by both hard-
ware and algorithms are critical to 
enhance performance and scalability. 
Such a co-design process is adopted in 
SCOLAR for CL with a resource-con-
strained algorithm (metaplasticity). 
At the algorithmic level, SCOLAR20 
introduced parameter sharing to re-
duce memory overhead, constraining 
the hyperparameter search space to 
powers of two where beneficial.

A similar effort21 with emerging 
devices took advantage of the inher-
ent properties of memristive devices 
to implement resource-constrained 
learning (metaplasticity). Instead of 
using a dynamic learning rate, the 
probabilistic nature of state changes in 
memristor devices regulated learning 
in response to plasticity. The system 
operates with low-precision weights, 

parameter sharing, and sparse weight 
updates. Error thresholding and the 
accumulation of gradient signals fur-
ther reduced data flow and the overall 
write frequency to memristor devices. 
Such examples illustrate the effective-
ness of co-design for CL hardware.

As the algorithmic space for CL 
grows, so will the scope of fea-
tures for CL accelerators and 

their design complexity. There is an 
increasingly greater need for adopt-
ing a co-design paradigm rather than 
siloed development. For instance, 
communities such as TinyML have put 
forth a set of guidelines for general 
edge AI accelerators targeting submil-
liwatt power consumption. Such cri-
teria will probably be essential for de-
signers of CL accelerators. Although 
some preliminary criteria are given 
in Kudithipudi et al. 2023,12 they are 
likely to expand as the algorithmic 
space advances. Critical issues mov-
ing forward include 1) demonstrating 
scalable on-device plasticity for large-
scale applications, 2) understanding 
the relation and integrating different 
CL mechanisms to design reconfigu-
rable architectures, 3) efficient mem-
ory topologies that facilitate CL and 
minimize energy consumption, and 
4) developing new evaluation criteria 
and metrics to assess CL accelerators. 
An avenue of research in advancing 
the state of CL accelerators will re-
volve around emerging technology 
beyond traditional CMOS, such as re-
sistive random-access memory (RAM). 
Finally, biological brains can provide 
inspiration for new forms of plasticity 
and learning, not available in current 
AI models, as CL is a natural phenome-
non seen in biological systems. 

“Computers are incredibly 
fast, accurate, and stupid. 
Human beings are incredibly 
slow, inaccurate, and brilliant. 
Together they are power-
ful beyond imagination.”

—Albert Einstein
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