
160 C O M P U T E R P U B L I S H E D B Y T H E I E E E C O M P U T E R S O C I E T Y 0 0 1 8 - 9 1 6 2 / 2 4 © 2 0 2 4 I E E E

SECTION TITLEMICROELECTRONICS

IM
A

G
E

 L
IC

E
N

S
E

D
 B

Y
 IN

G
R

A
M

 P
U

B
LI

S
H

IN
G

Continual learning (CL) is a challenge in which
an agent must learn from sequential, nonsta-
tionary data from changing distributions.
The agent is expected not only to learn new

tasks more efficiently, consuming fewer resources,
such as storage, computing time, and energy, but also
to retain and even improve performance on previously
learned tasks. Although training on interleaved task
data can improve the learner’s performance on all of
the tasks, the sequential nature of the task data in CL
complicates the problem (see Figure 1). Moreover, inter-
leaved training would be untenable when scaling over
an entire lifetime.

The literature is replete with examples of CL algorithms
that can be broadly classified into two groups: resource
constrained and resource growing. Resource- constrained

 algorithms1,2,3,4,5 use fixed-capacity
schemes, reallocating or regularizing
model parameters to learn new tasks.
Fixed-capacity algorithms are useful
when the learning environment has
finite complexity. By contrast, re-

source-growing approaches6,7,(expand the model’s capacity
as more tasks are encountered and thus can cope with a learn-
ing environment with growing or infinite complexity. In
both groups, an important strategy to improve CL algorithms
includes replaying or rehearsing old data to mitigate forget-
ting of old tasks.),10,11 However, all algorithms target specific
aspects of CL rather than approaching it holistically, leading
to a continuous development of new concepts and methods.
This presents a significant challenge in designing CL hard-
ware architectures for existing and evolving algorithms.12

On the other hand, the current artificial intelligence
(AI) accelerators primarily concentrate on a single task,
which contrasts with the sequential multitask challenge
faced by continual learners. While these accelerators sup-
port some aspects of CL, they lack many essential features
required for successful deployment (see Table 1). For in-
stance, edge AI accelerators, similar to CL systems, have
limited computational capabilities, often operate on bat-
tery power, and encounter several other constraints. In

Learning Continually
in Silicon
Nicholas Soures , Bascom Hunter Technologies and University of Texas at
San Antonio
Jayanta Dey  and Dhireesha Kudithipudi  , University of Texas at
San Antonio

Continual learning (CL) is a key advancement in
artificial intelligence, enabling systems to learn
and adapt over time. We introduce the concept
and features of how to approach CL in silicon,
with early examples from the literature.

Digital Object Identifier 10.1109/MC.2024.3437(2(
Date of current version: 23 September 2024

https://orcid.org/0000-0001-8126-7396
https://orcid.org/0000-0002-6713-7402
https://orcid.org/0000-0003-4462-5224

 O C T O B E R 2 0 2 4 161

EDITOR EDITOR NAME
Affiliation;

EDITOR CONRAD JAMES
Sandia National Laboratories, USA;

cdjame@sandia.gov

line with Occam’s razor, the design of
CL accelerators can be regarded as a
type of multiscale optimization with
simple plasticity and learning blocks.

In this article, we review some of
the key features in designing CL accel-
erators. Extensive details on CL can be
found in Kudithipudi et al.12,13

CL ON SILICON
Current AI accelerators predominantly
support inference and plasticity (see
Table 1 for a subset of machine learning
and spiking edge accelerators). This can
be partly attributed to the siloed evolu-
tion of the hardware and models, which
often led to fragmented solutions. We

can achieve progress in specialized
hardware for CL with co-design ap-
proaches that encompass plasticity
blocks coupled with novel learning ar-
chitectures. Recently, we introduced
common features for designing such
accelerators.12 Here, we highlight key
aspects to consider for building such

FIGURE 1. (a) Sequential training from different tasks results in catastrophic forgetting of older tasks for traditional deep learning
algorithms. b) Forgetting is mitigated when the learner is trained on task data in an interleaved fashion. CL strategies include (c) the
resource-constrained scheme, in which multiple tasks are learned with fixed number of parameters, and (d) the resource-growing
scheme, in which new parameters are added with new tasks. (Adapted from van de Ven et al.14)

Task 1 Task 2 Shared Lateral Connection
Between Layers

Time
(a) (b) (c) (d)

Time

Pe
rfo

rm
an

ce

Pe
rfo

rm
an

ce

TABLE 1. Overview of recent AI accelerators with on-device training which support single-task
learning but only partially support CL. Attributes such as quantization, sparsity, and on-chip memory
configurations support different resource-growing and resource-constrained plasticity mechanisms.

Chip Quantization Neural network(s) Power Throughput On-chip memory

Chimera15 INT 8 DNN, CNN 418 mW (40 nm) 0.92 TOP/s 2 MBc

Tenstorrent
Wormhole16

FP16, FP8, bfloat16 DNN, CNN, LSTM 80 W (12 nm) 430 TOP/S 120 MB

SIGMA17 FP16/32 DNN, RNN, CNN 22.3 W (28 nm) 10.8 TFLOPS 68 MB

Loihi18 INT1-INT9a Spiking CNN, SNN,
LSTM

420 mW (14 nm) 50 FPS (10 kHz) 33 MB

SpiNNaker 219 FXP32, FP32 DNN, CNN, SNN ~ 0.72 W (22 nm)b 4.6 TOP/s (250 MHz) 18 MB SRAM, 8 GB
off-chip DRAM

SCOLAR20 FxP16 SNN 21.25 mW (65 nm) 250 MOP/s (10 MHz) 100 KB (SRAM)

aSigned or unsigned integer or mixed-precision number is supported.
bProcessing element power.
cRRAM instead of SRAM.
FPS: frames/s; FP: floating point; FX: fixed point; DNN: deep neural network; CNN: convolutional neural network; SNN: spiking
neural network; LSTM: long short-term memory; DRAM: dynamic random-access memory; SRAM: static random-access memory;
RRAM: resistive random-access memory.

162 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

MICROELECTRONICS

accelerators, including on-device
learning, memory topologies, pro-
grammability, and reconfigurable ar-
chitectures, as shown in Figure 2.

On-device plasticity
Many classes of CL algorithms exhibit
diverse forms of plasticity, enabling
the design of adaptive architectures
that facilitate both local and global
learning across multiple tasks. Exam-
ples of this are changes in synaptic
strength (local) or in network archi-
tecture (global and structural). To fa-
cilitate this, CL architectures should
support various loss/regularization
functions, learning from replayed
data, growth and/or pruning of net-
works at different abstractions (syn-
apse, neuron, layer, or network), and
neuromodulation for context-depen-
dent processing.

Memory topologies
In both resource-growing and re-
source-constrained CL algorithms,
memory topology plays a key role.
Models must store dynamic param-
eters to regulate learning, store pre-
vious activations or parameters, and
store previously seen data or gener-
ative models scaling with task com-
plexity. The data communication costs
for these techniques can be reduced by
near-memory or in-memory comput-
ing approaches. Based on sample size,
access frequency, and replay stage
(sleep or wake), the data can be located
at higher levels of the memory hierar-
chy or in buffers close to the compute
substrate. There is also an opportunity
to apply conventional techniques for
power gating to memory, such as in
sleep modes. Hardware state check-
pointing, to recover from catastrophic
deviations caused by changes in a new
stimulus, is also important for CL mod-
els. While common in software, imple-
menting tracking and checkpointing
of model changes imposes several
challenges in hardware. Coalescing
data flow and layout as well as recom-
putation to reduce memory accesses
can be beneficial in such scenarios.

Reconfigurable architectures
CL models frequently experience dy-
namic changes, requiring fine-grain
reconfigurability at runtime. The sys-
tem should transition learning from
streaming data to accessing, process-
ing, and learning from batched samples
of previous experiences. The architec-
ture should offer on-demand access to
new computing or memory resources
at runtime and generate new resources
that were not previously available (such
as potential synapse) as needed.

Programmability
CL accelerators will need to support
flexible operations within a fixed re-
source or energy budget. There is, how-
ever, a tradeoff between the program-
mability and the energy efficiency
of accelerators. Translating this into
accelerator design requires flexibility
in reassigning resources under size,
weight, and power constraints, where
several features are necessary but need
not be active simultaneously. For ex-
ample, a system might periodically al-
ternate between structural plasticity,
regularization, and replay, or activate
them all in tandem.

CO-DESIGN
When developing CL accelerators, op-
timizations informed by both hard-
ware and algorithms are critical to
enhance performance and scalability.
Such a co-design process is adopted in
SCOLAR for CL with a resource-con-
strained algorithm (metaplasticity).
At the algorithmic level, SCOLAR20
introduced parameter sharing to re-
duce memory overhead, constraining
the hyperparameter search space to
powers of two where beneficial.

A similar effort21 with emerging
devices took advantage of the inher-
ent properties of memristive devices
to implement resource-constrained
learning (metaplasticity). Instead of
using a dynamic learning rate, the
probabilistic nature of state changes in
memristor devices regulated learning
in response to plasticity. The system
operates with low-precision weights,

parameter sharing, and sparse weight
updates. Error thresholding and the
accumulation of gradient signals fur-
ther reduced data flow and the overall
write frequency to memristor devices.
Such examples illustrate the effective-
ness of co-design for CL hardware.

As the algorithmic space for CL
grows, so will the scope of fea-
tures for CL accelerators and

their design complexity. There is an
increasingly greater need for adopt-
ing a co-design paradigm rather than
siloed development. For instance,
communities such as TinyML have put
forth a set of guidelines for general
edge AI accelerators targeting submil-
liwatt power consumption. Such cri-
teria will probably be essential for de-
signers of CL accelerators. Although
some preliminary criteria are given
in Kudithipudi et al. 2023,12 they are
likely to expand as the algorithmic
space advances. Critical issues mov-
ing forward include 1) demonstrating
scalable on-device plasticity for large-
scale applications, 2) understanding
the relation and integrating different
CL mechanisms to design reconfigu-
rable architectures, 3) efficient mem-
ory topologies that facilitate CL and
minimize energy consumption, and
4) developing new evaluation criteria
and metrics to assess CL accelerators.
An avenue of research in advancing
the state of CL accelerators will re-
volve around emerging technology
beyond traditional CMOS, such as re-
sistive random-access memory (RAM).
Finally, biological brains can provide
inspiration for new forms of plasticity
and learning, not available in current
AI models, as CL is a natural phenome-
non seen in biological systems.

“Computers are incredibly
fast, accurate, and stupid.
Human beings are incredibly
slow, inaccurate, and brilliant.
Together they are power-
ful beyond imagination.”

—Albert Einstein

 O C T O B E R 2 0 2 4 163

FI
GU

RE
 2

. O
ve

rv
ie

w
 o

f C
L

al
go

rit
hm

 a
pp

ro
ac

he
s

an
d

th
e

as
so

ci
at

ed
 a

rc
hi

te
ct

ur
es

 th
at

 c
an

 b
e

se
le

ct
ed

 b
as

ed
 o

n
th

e
co

m
pl

ex
ity

 o
f t

he
 p

ro
bl

em
. T

he
 a

rc
hi

te
ct

ur
es

 fe
at

ur
e

po
te

nt
ia

l
m

em
or

y
to

po
lo

gi
es

 a
nd

 fi
ne

-g
ra

in
 re

co
nf

ig
ur

ab
ili

ty
 to

 in
co

rp
or

at
e

di
ff

er
en

t p
la

st
ic

ity
 a

nd
 le

ar
ni

ng
 m

et
ho

ds
. D

R
A

M
: d

yn
am

ic
 ra

nd
om

 a
cc

es
s

m
em

or
y;

 D
M

A:
 d

ire
ct

 m
em

or
y

ac
ce

ss
.

(A
da

pt
ed

 fr
om

 K
ud

ith
ip

ud
i e

t a
l.
2
0
2
3

.1
2

)

R
ep

la
y

T
as

k-
1

E
nv

iro
nm

en
t

T
as

k-
1

R
ep

la
y

D
at

a

R
ep

la
y

L-
B

uf
fe

rs

G
-B

uf
fe

rs
D

M
A

S
le

ep
R

ep
la

y
D

R
A

M

W
ak

e
R

ep
la

y

T
as

k-
2

E
nv

iro
nm

en
t

D
yn

am
ic

 A
rc

hi
te

ct
ur

es
S

yn
ap

tic
 C

on
so

lid
at

io
n

S
yn

ap
tic

 S
tr

en
gt

h

M
et

ap
la

st
ic

 S
ta

te

R
es

ou
rc

e
C

on
st

ra
in

ed
R

es
ou

rc
e

G
ro

w
in

g

T
as

k-
2

T
as

k-
1

N
ew

S
yn

ap
se

D
R

A
M

D
M

A
G

-B
uf

fe
r

L-
Bu

ffe
rs

L-
B

uf
fe

r

G
-B

uf
fe

r
A

ux
ilia

ry
 M

em
or

y

A
ux

ili
ar

y
M

em
or

y
D

R
A

MD
M

A

S
cr

at
ch

B
uf

fe
r

C
on

so
lid

at
io

n
P

ar
am

s

G
en

er
at

iv
e

M
od

el

164 C O M P U T E R W W W . C O M P U T E R . O R G / C O M P U T E R

MICROELECTRONICS

ACKNOWLEDGMENT
This effort is partially supported by
the National Science Foundation (NSF)
Emerging Frontiers in Research and
Innovation Brain-Inspired Dynamics
for Engineering Energy-Efficient Cir-
cuits and Artificial Intelligence Award
2317706, the NSF Partner Neuro-Inspired
AI for the Edge at the University of Texas
at San Antonio Award 2332744, and the
Air Force Research Laboratory under
agreement FA(750-24-2-0151.

REFERENCES
 1. J. Kirkpatrick et al., “Overcoming

catastrophic forgetting in neural
networks,” Proc. Nat. Acad. Sci., vol.
114, no. 13, pp. 3521–3526, 2017, doi:
10.1073/pnas.1611(35114.

 2. F. Zenke, B. Poole, and S. Ganguli,
“Continual learning through syn-
aptic intelligence,” in Proc. 34th Int.
Conf. Mach. Learn, 2017, vol. 70, pp.
3)(7–3))5.

 3. Z. Li and D. Hoiem, “Learning with-
out forgetting,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 40, no. 12, pp.
2)35–2)47, Dec. 2017, doi: 10.110)/
TPAMI.2017.27730(1.

 4. J. Schwarz et al., “Progress and com-
press: A scalable framework for contin-
ual learning,” 201(, arXiv:1(0).06370.

 5. C. Finn, A. Rajeswaran, S. Kakade, and
S. Levine, “Online meta-learning,” in
K. Chaudhuri and R. Salakhutdinov,
Eds., Proc. Int. Conf. Mach. Learn., Long
Beach, CA, USA: PMLR, Jun. 201),
vol.)7, pp. 1)20–1)30.

 6. A. A. Rusu et al., “Progressive neural
networks,” 2016, arXiv:1606.04671.

 7. J. T. Vogelstein et al., “Representa-
tion ensembling for synergistic life-
long learning with quasilinear com-
plexity,” 2020, arXiv:2004.1290(.

 (. R. Ramesh and P. Chaudhari, “Model
Zoo: A growing brain that learns
continually,” in Proc. Int. Conf. on
Learn. Representations, 2021.

). G. M. van de Ven, H. T. Siegelmann,
and A. S. Tolias, “Brain-inspired
replay for continual learning with ar-
tificial neural networks,” Nature Com-
mun., vol. 11, no. 1, 2020, Art. no. 406),
doi: 10.103(/s41467-020-17(66-2.

 10. A. Robins, “Catastrophic forget-
ting, rehearsal and pseudore-
hearsal,” Connection Sci., vol.
7, no. 2, pp. 123–146, 1))5, doi:
10.10(0/0)5400))55003)31(.

 11. H. Shin, J. K. Lee, J. Kim, and J. Kim,
“Continual learning with deep gener-
ative replay,” in Proc. Conf. Adv. Neural
Inf. Process. Syst., 2017, pp. 2))0–2))).

 12. D. Kudithipudi et al., “Design principles
for lifelong learning AI accelerators,”
Nature Electron., vol. 6, no. 11, pp. (07–(22,
2023, doi: 10.103(/s41)2(-023-01054-3.

 13. D. Kudithipudi et al., “Biological
underpinnings for lifelong learn-
ing machines,” Nature Mach. Intell.,
vol. 4, no. 3, pp. 1)6–210, 2022, doi:
10.103(/s42256-022-00452-0.

 14. G. M. van de Ven, N. Soures, and D.
Kudithipudi, “Continual learning
and catastrophic forgetting,” 2024,
arXiv:2403.0)17).

 15. K. Prabhu et al., “CHIMERA: A 0.)2-
TOPS, 2.2-TOPS/W edge AI accelera-
tor with 2-MByte on-chip foundry re-
sistive RAM for efficient training and
inference,” IEEE J. Solid-State Circuits,
vol. 57, no. 4, pp. 1013–1026, Apr. 2022,
doi: 10.110)/JSSC.2022.3140753.

 16. D. Ignjatovic ,́ D. W. Bailey, and L.
Bajic ,́ “The wormhole AI train-
ing processor,” in Proc. IEEE Int.
Solid-State Circuits Conf. (ISSCC), Pis-
cataway, NJ, USA: IEEE Press, 2022,
vol. 65, pp. 356–35(, doi: 10.110)/
ISSCC42614.2022.)731633.

 17. E. Qin et al., “SIGMA: A sparse
and irregular GEMM accelerator

with flexible interconnects for
DNN training,” in Proc. IEEE Int.
Symp. High Perform. Comput. Archit.
(HPCA), Piscataway, NJ, USA: IEEE
Press, 2020, pp. 5(–70, doi: 10.110)/
HPCA4754).2020.00015.

 1(. M. Davies et al., “Loihi: A neu-
romorphic manycore processor
with on-chip learning,” IEEE
Micro, vol. 3(, no. 1, pp. (2–)),
Jan./Feb. 201(, doi: 10.110)/
MM.201(.11213035).

 1). C. Mayr, S. Hoeppner, and S. Furber,
“SpiNNaker 2: A 10 million core
processor system for brain simula-
tion and machine learning-keynote
presentation,” in Communicating
Process Architectures 2017 and 201(,
Amsterdam, The Netherlands: IOS
Press, 201), pp. 277–2(0.

 20. V. Karia, F. T. Zohora, N. Soures, and
D. Kudithipudi, “SCOLAR: A spiking
digital accelerator with dual fixed
point for continual learning,” in Proc.
IEEE Int. Symp. Circuits Syst. (ISCAS),
Piscataway, NJ, USA: IEEE Press,
2022, pp. 1372–1376, doi: 10.110)/
ISCAS4(7(5.2022.))372)4.

 21. F. T. Zohora, V. Karia, N. Soures, and
D. Kudithipudi, “Probabilistic meta-
plasticity for continual learning with
memristors,” 2024, arXiv:2403.0(71(.

 22. A. Tavanaei, M. Ghodrati, S. R.
Kheradpisheh, T. Masquelier, and
A. Maida, “Deep learning in spiking
neural networks,” Neural Netw.,
vol. 111, pp. 47–63, Mar. 201), doi:
10.1016/j.neunet.201(.12.002.

NICHOLAS SOURES is a senior
artificial intelligence/machine learn-
ing engineer at Bascom Hunter
Technologies, Baton Rouge, LA 70809
USA, and a postdoctoral fellow at the
Neuromorphic Artificial Intelligence
Lab, University of Texas at San Antonio,
San Antonio, TX 78249 USA. Contact
him at nms9121@rit.edu.

JAYANTA DEY is a postdoctoral
fellow in the Neuromorphic Artificial
Intelligence Lab at the University of

Texas at San Antonio, San Antonio, TX
78249 USA. Contact him at jayanta.
dey@utsa.edu.

DHIREESHA KUDITHIPUDI is the
founding director of the Matrix AI
Consortium, the Robert F. McDermott
Endowed Chair in Engineering, and a
professor of electrical and computer
engineering/computer science at the
University of Texas at San Antonio, San
Antonio, TX 78249 USA. Contact her at
dhireesha.kudithipudi@utsa.edu.

http://dx.doi.org/10.1073/pnas.1611835114
http://dx.doi.org/10.1109/TPAMI.2017.2773081
http://dx.doi.org/10.1109/TPAMI.2017.2773081
http://dx.doi.org/10.1038/s41467-020-17866-2
http://dx.doi.org/10.1080/09540099550039318
http://dx.doi.org/10.1038/s41928-023-01054-3
http://dx.doi.org/10.1038/s42256-022-00452-0
http://dx.doi.org/10.1109/JSSC.2022.3140753
http://dx.doi.org/10.1109/ISSCC42614.2022.9731633
http://dx.doi.org/10.1109/ISSCC42614.2022.9731633
http://dx.doi.org/10.1109/HPCA47549.2020.00015
http://dx.doi.org/10.1109/HPCA47549.2020.00015
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/MM.2018.112130359
http://dx.doi.org/10.1109/ISCAS48785.2022.9937294
http://dx.doi.org/10.1109/ISCAS48785.2022.9937294
http://dx.doi.org/10.1016/j.neunet.2018.12.002
mailto:jayanta.dey@utsa.edu
mailto:jayanta.dey@utsa.edu

	160_57mc10-microelectronics-3437828

