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TESTING CONDITIONS FOR MULTILINEAR
RADON-BRASCAMP-LIEB INEQUALITIES

PHILIP T. GRESSMAN

ABSTRACT. This paper establishes a necessary and sufficient condition for
LP-boundedness of a class of multilinear functionals which includes both the
Brascamp-Lieb inequalities and generalized Radon transforms associated to
algebraic incidence relations. The testing condition involves bounding the av-
erage of an inverse power of certain Jacobian-type quantities along fibers of
associated projections and covers many widely-studied special cases, including
convolution with measures on nondegenerate hypersurfaces or on nondegener-
ate curves. The heart of the proof is based on Guth’s visibility lemma [Acta
Math. 205 (2010), pp. 263-286] in one direction and on a careful analysis of
Knapp-type examples in the other. Various applications are discussed which
demonstrate new and subtle interplay between curvature and transversality
and establish nontrivial mixed-norm LP-improving inequalities in the model
case of convolution with affine hypersurface measure on the paraboloid.
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1. INTRODUCTION

1.1. Background and main results. Radon-like transforms are objects of ex-
tensive study in harmonic analysis, appearing in connection with singular integral
theory (both single and multiparameter), microlocal analysis, and Fourier-theoretic
settings [24, 31, 32, 34-36,41, 43, 54, 55,6365, 71]. Such objects also find applica-
tion in a wide variety of theoretical and applied problems even beyond the more
well-known setting of medical imaging [3,45,53,60]. This paper introduces a class
of multilinear inequalities which combine both Radon-like transforms and linear
and nonlinear Brascamp-Lieb inequalities, which are, in their own right, tools of
immense importance in modern Fourier analysis, particularly in decoupling theory
(see [4-7,9,10,12,14,27]). The main result is a geometric characterization of the
boundedness of these multilinear objects on products of Lebesgue spaces along a
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752 PHILIP T. GRESSMAN

certain scaling line of exponents. The nature of the result is rather different than
existing results concerning extremizers or quasi-extremals for Radon-like transforms
[13,21,67] and instead reduces the problem to what can be viewed as an unusual
new category of uniform sublevel set inequalities.

The literature contains many useful ways to describe and study Radon-like trans-
forms (e.g., projections, fibrations, and vector fields [22,66,72]); the formulation
that seems most helpful for present purposes is to work primarily with defining
functions and incidence relations. To that end, suppose © C R™ x R is an open
set. Let m: Q — R* for some k < min{n,n'} and suppose that 7 is smooth. The
zero set of 7 will represent incidence pairs (z,y) € R™ x R™ such that the associated
Radon-like transform, when evaluated at x, integrates functions over a submanifold
passing through y. For this perspective to be applied in a straightforward way, it
is necessary for the defining function 7 to be nonsingular in a certain sense. For
any vectors vy, ..., vg in R™, let d,7|(5,4)(v1,...,vx) be defined to equal the deter-
Lom’
J ozt
when some v € RY must be expressed in standard coordinates, superscript notation
(vt,...,v") is generally used). Let dym|(z ) (v1,...,v) be defined similarly as the

minant of the k x k matrix whose i, j-entry is >, , v (throughout this paper,

determinant of the matrix whose 1, j-entry is Z?;l vfg—;rz. Finally, for any n-tuple
w = {w; }I~; of vectors in R™, let

N|=

11— Zk 1

and likewise set

ldym(z,y)|lw = o Z Z |d 7T (2,y) (W “’“"w;k)‘z

7,11 Zkl

Nl

for any n'-tuple of vectors w' = {w/}? | in R™. The notation ||d,7(z,y)| and
|dym(x,y)| will be used when w or w’ should be taken to be the tuple of standard
basis vectors of R™ or R”/, respectively.

Any triple (Q,m,X) will be called a smooth incidence relation on R™ x R™ of
codimension k when  C R™ x R" is open, 7 :  — RF is smooth, and

(1) Ni={(z,y) € Q [ n(z,y) = 0, [|dem (2, y)l|, [[dym (2, y)|| > 0} .

As above, it will always be assumed that & < min{n,n’}. The notation *3 and XY
will indicate slices of ¥ with fixed x and y, respectively:

Y= {yER"/ |(:c,y)€2} and XY :={z e R" | (z,y) €Z}.

On each slice *Y¥ and ¥, ¢ denotes what will be called the coarea measure (also
known as the Leray or microcanonical measure elsewhere), given by

B d’H"‘() . dH" " (x)
[ o= [ s TGl ™ %= IO

for any Borel-measurable function f on the shces (Borel measurablhty is assumed
for convenience throughout the paper to avoid technical difficulties associated with
restricting Lebesgue-measurable functions to submanifolds), where d#* is the usual
s-dimensional Hausdorff measure.
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 753

The main result of this paper is as follows.

Theorem 1. For any integer m > 1 and each j =1, ..., m, let (Q;,7;,%;) be
a smooth incidence relation on R™ x R™ with codimension k; < min{n,n;} and
let 0; denote the associated coarea measures on slices. Let w; : £; — [0,00) be
continuous, and let T; be the generalized Radon-like transform given by

(2) T f(x / fi(yp)w;(z, y;)do;(y;)
for all nonnegative Borel-measumble f; on R™ . Suppose p1, ..., pm € [1,00) and
qis -, gm € (0,00) satisfy the scaling condition
3) oy bt
j=1 Pi

Let ||T|| be the smallest positive constant (supposing one exists) such that for all
nonnegative Borel measurable functions f; € LPi(R™),

(4) | H T35 (@) % da < 1T H 165012, -

There exists a constant C depending only on n and the constants n;, k;,p;,q;

for 3 =1, ..., m such that for any x € R™ and any vectors w1, ..., w, with
| det(wr,...,wn)| =1 (where det(ws, ..., ,wy) is the determinant of the matriz whose
columns are coordinates of wy, ..., wy, in the standard coordinate system),

a;

qj ) PG A (2 i
® I =» Jw; (@,9;) V [y (,y;) daxyﬂ < e,
Jipi>1

simmr ey e (@) o, g1~

where for each j, p; and p; are Hélder dual exponents. Conversely, suppose [[T]
is defined to be the supremum of

- S TGV l / |wj<z,yj>|pjdoj/<yj>]
jopmr vy ey, ys) |l o5 dgms () 10

over all x € R"™ and all {w;}_; with |det(ws,...,wy)| = 1. If [[T]] < oo and

each mj(x,y;) is a polynomial functzon of © with bounded degree as a function of

y;, then (4) holds for nonnegative f; with a finite value of ||T| satisfying |T|| <

C'[[T] H;"zl(degwj)qj/pf for some C' depending only on n and the constants

24

Jip;>1

nj ki, pj.q; (=1, ..., m), where degm; := sup, degﬂjl-(-,yj)-~-degﬂ;?(-,yj).

When the defining functions 7; have the form w;(z,y;) := y; — L;(z) for some
linear map L; : R™ — R* of full rank, the inequality (4) reduces to the classical
Brascamp-Lieb inequality. In this case, the testing condition (5) simplifies signifi-
cantly because the slices *3; are simply points and the coarea measure is simply a
delta measure at y; = L;(x). The condition on the maps L; that results from (6)
can be understood using ideas from Geometric Invariant Theory [38], and in par-
ticular, the supremum of (6) over all {w;}? ; with determinant +1 exactly equals a
constant multiple of the Brascamp-Lieb constant as a consequence of [38, Lemma 1].

Radon-like transforms can of course also be written in terms of defining func-
tions m;. The scaling condition (3) is in some cases not necessary for boundedness:
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754 PHILIP T. GRESSMAN

several very general works on LP-improving properties of Radon-like transforms,
including the groundbreaking works of Tao and Wright [72], Stovall [68-70] and
Christ, Dendrinos, Stovall and Street [22], include positive results beyond the scal-
ing line (3). A number of other important results also fail to be captured by (3) and
Theorem 1, including results in mixed-norm Lebesgue spaces [19,23, 28,40, 46, 52]
and results focusing specifically on minimal regularity assumptions for associated
submanifolds (e.g., [8]). These exceptional works notwithstanding, there is a truly
vast body of literature which pertains specifically to the scaling line (3). The famous
LD/n L4 inequality for averages over curved hypersurfaces, first proved by
Littman [44], has the scaling (3), as do all results in intermediate dimensions for
maximally-curved “model surfaces” [51,59]. Endpoint estimates for convolution
with affine arclength on the moment curve, first proved in the restricted weak-type
sense in all dimensions in the groundbreaking work of Christ [20], also belong to the
scaling line (3) (or more precisely, one of the two endpoint inequalities falls on that
line, and the other follows by duality). See [1,2,26,47,56] for just a few additional
unweighted examples and [18,25,48-50,61] for various weighted cases (because the
weights w; in (2) are essentially arbitrary, Theorem 1 covers affine weights and,
after a limiting argument, extends to fractional integration kernels as well). This
frequency is due to the fact that bounds for (4) on the given scaling are automati-
cally sharp in the sense that no bounds can hold when the right-hand side of (3) is
strictly larger than n (see the end of Section 5 for justification). Thus, even in the
linear case m = 1, Theorem 1 represents a significant advance in the understand-
ing of many of the most fundamentally-important LP-improving inequalities for
Radon-like transforms of any dimension and codimension. In particular, Theorem
1 is itself a significant generalization of Theorem 2 of [38]. It is not expected that
the appearance of Brascamp-Lieb weights in [38] should be sharp, for example, and
it is further the case that the testing condition appearing here is both simpler and
more broadly applicable than the hypotheses of nonconcentration type appearing
n [38]. An interesting item to note, however, is that the sharpness of Theorem 1
above means that the main hypothesis of Theorem 2 in [38] must imply (5), but it
is not immediately clear if a more direct proof of this implication is possible.

Like the techniques of the recent paper [38], the method of proof used here is
neither combinatorial in the typical way (involving the construction and analysis of
inflation maps) nor Fourier analytic. This new approach circumvents a number of
recurring limitations of these common strategies. For example, it is clear from the
statement of Theorem 1 that there are no special constraints on the dimensions n,
n;, and k; in which the theorem applies, while constraints of this sort frequently
arise when working with inflation map technology. Moreover, even in comparison to
[38], the current proof involves a number of critical improvements. One key change
is that the approach to be used here does not require a direct analysis of any
nonconcentration inequalities, which was a key component of [38]. This is due to a
significant shift in the way that the Kakeya-Brascamp-Lieb inequality is formulated
(compare Theorem 3 in Section 3 to [38, Theorem 1]). The shift illustrates that,
while in some cases it is natural to use Brascamp-Lieb inequalities as a means of
building sharp weights in Kakeya-type inequalities (e.g., Zhang’s variety version
of Brascamp-Lieb [73, Theorem 8.1]), in this more general setting it turns out to
be beneficial to be somewhat agnostic about the sort of weights that should be
encountered and to proceed along slightly more abstract lines.
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 755

Theorem 1’s criterion (5) may be regarded as roughly analogous to a sort of
uniform sublevel set inequality, which transforms the problem of proving (4) into
a very different and more tractable form to which a host of powerful tools (e.g.,
[15,17,33,37,57]) may be applied after suitable adaptation. Even so, the estima-
tion of (6) is not trivial, particularly for intermediate dimensions (averaging over
submanifolds that are neither curves nor hypersurfaces). The problem of comput-
ing the supremum of (6) under relatively general conditions will be taken up in a
follow-up series of papers. Section 4 does contain several simple examples of how
the necessary computations can be accomplished; a primary application of Theorem
1 appearing in Section 4 is the following result.

Theorem 2. For any integers 2 < £ < n, any functions fi, ..., fn on RY, and
any exponent p € [1,00),

P13

n
(7) / 11 Fi@i Tt T T T 182 dt | da

kel T

n
< Cpm [ I15llze ey

j=1

(where indices of x are interpreted periodically with period n, e.g., 2" = x1 etc.,

and ||t[|? = (t1)2 + - - + (t*~1)2) for some finite constant Cy,,, ¢ depending only on
n, €, and p, if and only if
n+1

<<L
=P

When p = £/(£ — 1), the restricted strong-type analogue of (7) holds.

»

The inequality (7) may be viewed as a “Radon-Brascamp-Lieb inequality,” com-
bining features of both Radon-like transforms and Brascamp-Lieb inequalities. A
particularly interesting feature of (7) is that applying classical Brascamp-Lieb in-
equalities and known inequalities for convolution with affine hypersurface measure
on the paraboloid in R’ establish (7) when p = (£ + 1)/¢, but fail to explain why
the inequality (7) must be true for the remaining ranges of p. In particular, even
in the case £ = n, the inequality (7) holds for a broader range of p than the convo-
lution inequality and Holder’s inequality combined would otherwise suggest. Thus
in some sense, the inequality (7) necessarily depends on some deeper interplay be-
tween the transversality and curvature properties of the relevant objects than can
be understood through a naive approach.

1.2. Notation. Although defining functions 7(z,y) will be essentially ubiquitous
throughout this paper, there will be only a few specific points at which it is necessary
to consider the simultaneous dependence of 7 on both x and y. As a consequence, it
will be convenient in most cases to use notation which suppresses dependence on one
or the other of the two “sides” of 7(z,y) and to think primarily in terms of one-sided
computations and parametrized perturbations of one-sided objects. To be specific,
supposing that 7 is some smooth map from an open subset of R™ into R”, the
notation D7 (z) will be used to indicate the Jacobian matrix of 7 at a point x in the
standard coordinates, i.e., when x := (z!,...,2") and 7(z) = (7'(2),...,7"(x)),
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then

1 1
gr@ o ()

(8) Dr(z) =

(@) o F(o)
When the point  at which Dr(z) is to be calculated is clear from context, the
shorthand notation Dz will be used. If 7 is defined on an open subset of a product
space like R” x R | the notation D,m(z,y) or Dy7(z,y) will indicate the k x n
Jacobian matrix of = with respect to the x variables only (regarding y as fixed);
likewise Dym(z,y) and Dym(z,y) both refer to the k x n’ Jacobian matrix of 7 with
respect to the y variables only. As before, the pair (z,y) may in some cases be
omitted when it is clear from context.
The notation dr(z) indicates the k-fold wedge product drt A --- A dr* at z:

\ " o’
dr(x) := —(x)da?
@) /\ — O ()
i=1 \j=1
Just like above, when 7 depends on multiple distinct groups of variables, notation
like d,7(x,y) or dy7|(y,) indicates that the 2 or first collection of variables should
be used for differentiation. This dr(x) will also be regarded as a k-linear functional
on vectors in R™ whenever it is convenient to do so: the symbol dr|,(v1,...,vk)
indicates the result of evaluating dr(z) on the k-tuple of vectors vy, ..., v, i.e., if
v; has coordinates (v},...,v") in the standard basis, then

" o’
dm|g(v1,...,v,) = det [Z va}
=1

Note that one can also evaluate dm|,(vy,...,v,) as det(Dm(x)V), where V is the
n X k matrix of coordinates of the vectors v, i.e., the row £, column j entry of V is
simply vf.

As already noted, it will be important to quantify the size of dn(z) in essentially
arbitrary local coordinate systems. In analogy with the definition already given,

i,j=1,...k

when w{, ..., w? are pointwise linearly-independent vector fields on R", define
1 n n 9
|dm(x)]|pe = HZZ |dr]o (W, ... W)
i1=1  ip=1

When no w is specified, the notation ||dr(z)|| indicates that the standard basis
vectors on R™ should be used at every point.

1.3. About the organization of this paper. The proofs of Theorems 1 and 2 are
divided into several stages. Section 2 provides some important identities regarding
dym (found in Section 2.1) and a proof of Lemma 1, which is the main technical
lemma driving the sufficiency direction of Theorem 1. This is the lemma which
is based on Guth’s visibility lemma; the lemma itself is formulated in such a way
that direct considerations of visibility can be confined exclusively to Section 2.2.
The same is true of the algebraic constraint that m;(-,y;) be given by polynomial
functions for each j—this assumption plays a role in the arguments of Section 2.2
but is largely irrelevant elsewhere.
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 757

Section 3 provides the proof of boundedness (i.e., the finiteness of ||T']| in (4))
under the finiteness assumption on (6) and the algebraic assumption on the 7;. This
is accomplished in two stages. The first stage is to establish Theorem 3 in Section
3.1, which is in some sense an analogue of Zhang’s variety version of Brascamp-Lieb
[73, Theorem 8.1]. The main difference is that one does not invoke the Brascamp-
Lieb inequality, but rather uses an approach similar to Zhang’s to estimate a more
general object, which is called Q(fi,..., fim) in Theorem 3. It turns out that this
more abstract quantity Q(f1,..., fm) is often effectively larger than what would
result from the Brascamp-Lieb power weight of Zhang’s Theorem 8.1, particularly
in the presence of curvature. The proof of (4) from (6) and the algebraic assumption
on the ; is itself accomplished in Section 3.2 as a consequence of Theorem 4, which
is a local version of the sufficiency portion of Theorem 1, expanded to include the
additional features of restricted strong-type inequalities and local estimates off the
scaling line (3).

Section 4 explores several applications: a corollary of Theorem 1 in the spirit
of Stein’s program to quantify the LP-improving properties of convolution with
singular measures [62], a fractional integration-type result based on Theorem 1,
and Theorem 2 itself (proved under the assumption that Theorem 1 has been fully
established). The nature of Theorem 1 means that the proof of Theorem 2 reduces
to the analysis of the quantity (6). The necessary inequalities for determinants are
established in Section 4.2 and the remainder of the proof of Theorem 2 appears in
Section 4.3. Section 4.4 repurposes some computations from Section 2 to establish
an endpoint restricted strong-type mixed norm inequality for convolution with affine
hypersurface measure on the paraboloid.

Section 5 contains the proof of necessity of (5) under the assumption that (4)
holds. The proof is essentially a careful quantitative analysis of certain optimized
Knapp-type examples.

Finally, Section 6 is an appendix which establishes a number of background
results a la geometric measure theory concerning the behavior of smooth incidence
relations and smooth perturbations of incidence relations. Readers will likely find
the results of this section to be minor variations on existing results, but their proofs
have been included for completeness, due to the fact that the somewhat qualitative
nature of the definition (1) means that many of these elementary facts do not quite
follow trivially from nice existing versions of the coarea formula, etc.

2. BASIC COMPUTATIONS AND VISIBILITY

2.1. Initial computations regarding d,m. This section contains two very basic
computations concerning dr which will be used repeatedly throughout the remain-
der of this paper. Both deal with alternate ways of calculating the magnitude of or

generally understanding the nature of d,7(x,y) for some smooth incidence relation
(Q,m ).

Proposition 1. Suppose (Q,m,%) is a smooth incidence relation on R™ X R™ of
codimension k. At every point (z,y) € X,

(9) ldam(e, )| = \/det(Dam (e, ) Dy, 1)) T
and
(10) Idym(,y)l| = y/det(Dyr(z, ) (Dym(z, )"
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Proof. The proof of the proposition consists entirely of a string of observations
about matrices and has nothing in particular to do with the geometric structure of
Y. For any k x n matrix M, let M;,...;, be given by

My, -+ My,
Mil"'ik = det : .
Myiy -+ Mg,
for any 41, ..., i € {1,...,n}. It suffices to show that
1 n n 9
(11) det MMT = S M
=1 ip=1

Once this is established, the identities (9) and (10) follow by taking M := D, 7 and
M := Dy, respectively.

To begin, observe that both sides of (11) are unchanged when M is replaced by
O1 M for any k x k orthogonal matrix O;: on the left-hand side this is because
det(O1M)(O1M)T = (det O1)(det MM7T)(det OT) = det MMT, and on the right-
hand side it is because (O1M);,... 5, = (det O1)M;,...;, = £M;, .. It is also
the case that replacing M by MO for any n x n orthogonal matrix O, preserves
both sides of (11). This is more immediate to verify for the left-hand side because
(MO2)(MO2)T = M(0,07)MT = MM?T. The computation for the right-hand
side is a bit lengthier; to simplify, the subscript of Oy will be temporarily suppressed.
Substituting MO in the place of M on the right-hand side of (11) gives

2

1< = 1
yZ"'Z‘(MO)““'Z’kP:y SIS My 04 044,

11=1 =1 B1yeesll |J1seesJk

E E E M, ...;,. M, ’03111 ’ OjklkOJ{n e .Oj;i.ik'

il,.--,zk JiseesJk §15mensdp,

Summing over i1, ..., i first simplifies the expression significantly because
> 05i0ji = b5
i

for every pair j,j’ € {1,...,n}, where ¢ is the Kronecker delta. Therefore

MO = Y3

i1=1 1p=1 J1=1 Je=1
as asserted. Now by the Singular Value Decomposition, there exist orthogonal

matrices O; and O such that Oy M O5 has its only nonzero entries on the diagonal.
Let o; denote the i-th diagonal entry of this matrix. Then clearly

det MMT = det(O; MO5)(0; MO,)" Ha

because O1 M Oy(01MO3)7T is itself a diagonal matrix whose i-th diagonal entry is
o?. Similarly

(12) B Y Ml =g 3 o, Ha

J1seesdk [AREA
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 759

because (O1MOs3);,...;, vanishes unless (i1,...,4) is a permutation of (1,...,k),
in which case it equals Hf;l 0;. Thus (11) is true and (9) and (10) follow. O

The second and final basic proposition to be proved at this point provides a
dictionary of sorts to translate the notation of this paper into the form used by
Zhang [73], which will become relevant shortly.

Proposition 2. Let (Q,7,X) be a smooth incidence relation on R™ x R™ of codi-
mension k. Then at each point x € XY,

d
(13) T (2,Y)
[dem(z, )|
equals a k-fold wedge product wi A --- A wy,, where the covectors wy, ..., w; are

orthonormal and annihilate the tangent space of XY at x. In the notation of Zhang
[73], this means that (13) equals (T, X¥)* up to a factor of &1.

Proof. This result is closely related to Proposition 1. Consider the Jacobian
1
o (l’ y) o gm(ay)
Dyn(z,y) = - :
k k
By the Singular Value Decomposition, there is a k x k orthogonal matrix O such
that the row vectors

k ; k

ol
g z]a Y] LL' y 3;Olj%(xﬂy)

are pairwise orthogonal. Consequently

det [(Dzw(;v,y))(Dmﬂ(x,y))T] = det [O(wa(x,y))(wa(x,y))TOT]

k
= [T I&I?
i=1

because (OD,7)(OD,m)T is simply a diagonal matrix whose i-th diagonal entry is

(14)

exactly ||R;||?. For eachi=1, ..., n, let
£ n ;
Z OU@ 0 a
j=1 =1
The covectors r}, ..., 7} are pairwise orthogonal with ||r¥|| = ||R;| for each 3.

Observe also that 75 A -+ A7t = (det O)(dr(z,y) A -+ Adr¥(z,y)). This is true
because the map

onl
1]8 Z BVA ZZMkJWd{E

/=1 =1 =1

HM»

is an alternating k-linear functional of the rows of M. Since scalar-valued alter-
nating k-linear functionals on R* are unique up to a scalar multiple, it follows by
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760 PHILIP T. GRESSMAN

writing the coordinates of the above k-form in the standard basis that

kE n 9 j k n ;
ZZMUa—;dm ‘A ZZM,W (W
j=1¢=1 j=1¢=1

= (det M) (dpm (z,9) A - Adpm®(x,y)) = (det M)d,7(z,y)

(because each coefficient of the k-fold wedge product in the standard basis is a scalar
alternating k-linear functional of the rows of M and so equals det M times its value
when computed on the identity matrix). To finish, if one fixes w} := 7} /| R;||, then
it follows that the w; are now orthonormal covectors, each of which annihilates all
vectors tangent to XY at the point z, and

dem (2, y) A - A dpm® () TIA- AT
= =dwi A Awy,
ldem (2, y)|| IRl - [| Rl ' g
where (14) and (9) are used to establish that ||d,7(z,y)|| = ||R1|| - - - || Rk||- In other
words, one has
do7(2,
[dem (2, y)|l
in the notation of Zhang [73, p. 557]. |

2.2. Visibility considerations and Lemma 1. The stage is now set to prove the
main lemma behind the sufficiency of (6) with regard to Theorem 1. As mentioned
earlier, this key lemma is primarily a reformulation of Guth’s visibility lemma [39],
originally developed to prove the endpoint case of the Multilinear Kakeya conjecture
(previously formulated and proved up to the endpoint by Bennett, Carbery, and
Tao [11]). Carbery and Valdimarsson [16] provide a very nice alternate proof of the
lemma which is based on a variation of the Borsuk-Ulam Theorem and avoids a
number of advanced tools from algebraic topology which featured in Guth’s original
approach. While these lemmas certainly involve visibility in a rather direct way,
in the context of the present paper, it is perhaps misleading to think of them as
being “about” visibility because the version of the lemma recorded below is, in fact,
easiest to state without any reference to the notion of visibility at all. At its heart,
Lemma 1 is a geometric lemma about the behavior of integrals of |dr||,= along
slices 3.

Lemma 1. For any dimension n > 1, there exists a constant C,, such that the
following holds: for any positive integer R and any Borel measurable, nonnegative
integrable function ¢ on the box Br := [—R, R)"™, there exist Borel measurable
R™-valued functions wf, ..., wE on Br (i.e., measurable vector fields) such that

(15) | det{w{}71| =1 for every x € Bp,

(det{w?}? | is the determinant of the n x n matriz whose columns are wy, ..., Wk
expressed in standard coordinates) and a nonnegative Borel-measurable function
on Br equal to v almost everywhere such that every polynomial map m : R™ — RF

with 1 < k < n satisfies
16 b
(16) /,: . [w(x)}
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where ¥ = {z € R" | 7(z) = 0,]||d,7(z)|| >0} and do := dH" "% /||d.7|. Here
degm is the product of degrees of the coordinate functions of mw, i.e., degm =
(degm!) - (deg k).

As a brief aside, observe that the passage from v to zz in (16) is necessary in
g~eneral because the varieties X, are themselves sets of measure zero. If the function
1) were forced to equal ¥ everywhere, it would be possible, by adding a large multiple
of xx, to ¢ for some fixed 7, to make the left-hand side of (16) as large as desired
without changing the right-hand side.

Before developing a full proof of the lemma, it is convenient to first handle the
case k = n, as the only dependence of either side of (16) on ¢ is through the vector
fields {w . It turns out that ||d7(z)||.= happens in this case to be independent
of {w? To see this, observe that

|ldm (z w“” = |d7r| Wiy )|2 = \d7r|x(wf,...,wfl)\2.
|

11=1 Tn=1

As dr is an alternating n-linear functional on R”, |d7|,(w?,...,w?)| must simply
equal |det{w"”}” 1| times some x—dependent function which is otherwise indepen-
dent of {w?¥}? . Since |det{w?}}_,| is constrained to equal 1 everywhere, it follows
that ||dm(x )me = ||dr(z)|| at every x (i.e., the value does not change when {w?}?* ;
is replaced by the standard basis). This means that ||dm ()| =do is just dHY, i.e.,
counting measure. Therefore the left-hand side of (16) simply counts nondegen-
erate solutions of the equation 7(x) = 0 inside Bg (it counts only nondegenerate
solutions because ¥, contains only points where the Jacobian 97 /dz is nonsingu-
lar). Bézout’s Theorem [30, Chapter 8, Section 4] gives an upper bound of deg 7 for
the number of such points (note that the complex version of the Bézout’s Theorem
which counts irreducible components of the solution variety is sufficient in this real
setting because real nondegenerate solutions are also irreducible components of the
solution variety over C).

The rest of the proof of Lemma 1 requires additional terminology and a few
auxiliary propositions. Let g be any finite positive measure on R™. The fading
zone F'(p) of this measure will be defined to equal the symmetric convex set

/\wy*ldu(y*) < 1}

and the visibility Vis(p) defined to equal

(17) F(u) = {u eRrR"”

.
[E ()]’

where |-| indicates Lebesgue measure. This definition deviates in a small but crucial
way from that of other authors in that the fading zone is not assumed to be a subset
of the unit ball. This makes the fading zone formally larger than the object of the
same name considered elsewhere and consequently makes the visibility, as defined
here, formally smaller than its standard counterpart.

Two propositions upon which Lemma 1 rests are given below. The proof of
Lemma 1 will proceed immediately after the statement of both propositions. Once
completed, the propositions themselves will be proved.

(18) Vis(p) =
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Proposition 3. Let R and Bgr be as in Lemma 1. Suppose § := 277 for some
nonnegative integer j, and let As be the collection of boxes [§16, (j1 + 1)0) x -+ X
[920, (jn + 1)d) contained in the large box Bg, where ji, ..., jn € Z. Suppose ¢ is
a function on the box Br which is nonnegative, constant on every box Q € As, and
not identically zero. For each v € Bp, there is a finite positive measure p* on the
unit sphere S*~ 1 such that

(19) Vis(u®) > 9(x) and
(20) /|u -~y ldpt (y*) > % ( . 1/1(x)dx> ’ for all u € R™.

The measures p* are constant as a function of x on every box Q) € A, and for all
polynomial maps 7 : R — R* with 1 <k < n,

/z U A () A YT A A gl (i) du””(yiik)] do(x)
21 T -
(21) < C,degm [ Wﬂ?)da:] =

Br
for some constant C,, depending only on n, with ¥, and do as in Lemma 1.

Proposition 4. Let i be a finite positive measure on R™ such that

/|U Y ldp(y*) > vollul| for all u € R™,

where ||| is the standard FEuclidean norm and 1o > 0. There exists a basis {w; } 4
of R"™ for which |det{w;}?_,| = 1 such that for any k € {1,...,n — 1} and any
k-form A* on R"™, regarded as an alternating k-linear functional,

2 n—k n—~k
(2) vis)"™" o 14" i)
115050k
(22) < / A" Ay A Ay lduy]) - dp(sy)-

Proof of Lemma 1. Using these two propositions, the proof of Lemma 1 is rather
routine. The first step is to handle the case when 1) is a locally constant function of
the sort described in Proposition 3. If ¢ is identically zero, (16) is trivially satisfied
with C,, = 1, ¥ = 0 and {wf}l_, is the standard basis at every point because
both sides of (16) will be zero when k < n (and the case k = n holds for reasons
already identified). Fixing 1, the measures p* from Proposition 3 are constant on
cubes ) € As. Since fBR ¥ > 0, (20) implies that Proposition 4 may be applied
pointwise to these measures u” to give xz-dependent vectors {w?}? ; (which will
also be constant on cubes in As). For any z, (22) implies by taking A* = dm(x)
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that

/ ldr(@) AT A Ayl ldiT @) - d® ()

g

n—k n %
2 . g ek k! 1 Z 12
> (E) (Visp®) = \ E (H‘ E |dm(wy,, - - - wi)] > :

iqip=1

n—k
2 n—k
> <—) (Visp®) ™ max |[dr(wf, ..., wi )|
n i1- ’

Applying (19), integrating over ¥, and employing (21) gives (16) with zz =1 (the
constant can be chosen independently of k because the number of possible values
of k is finite and depends only on n).

Now that (16) has been established for all ¢ which are constant on dyadic boxes
(and noting that one may assume without loss of generality that {/; =1 in all such
cases), the final step is to extend it to all nonnegative integrable Borel functions on
Bpg. Let 9 be any such function; it may be assumed that 1 is positive on a set of
positive measure in B, as otherwise (16) will once again hold by taking {w{ L,
to be the standard basis at every point * € Br and taking 1/) to be identically
zero. The vector fields {w?}? ; are constructed via approximation. To that end,
let o = 9. For all 1ntegers Jj 2 0, let ¢; be any nonnegative function on Bgp,
constant on some dyadic scale ¢;, such that

[ i)~ esiitr < 5 [ oyt

for some large N to be specified. Then let ¢;11(z) := ¢;(x) Nolo (o)
The inequality ¢;(z) < (N — 1)¢;(z)/N holding for a partlcular x implies that
wj(x) < N(pj(z) —;(z)) < N|g;(z) —,(x)|. It follows that when ¢;41(x) is not

simply zero, ¢;41(z) < N|¢;(x) — ¢;(z)|. Consequently

/BR oje1(z)dz < N/BR s (2) — 5 () |dar < — /BR (@

so by induction on j it follows that

(23) / p;(x)de < N~ Y(x)dx for all j > 0.
Br Br

Similarly, the triangle inequality dictates that

N2+1 N2 +1
e oo o= Y st
(24) . ¥j B ©j B -l < B i = TN+ (U

for every j > 0.

The functions ¢; are pointwise nonincreasing as functions of j and in fact for
each z, the sequence {;(z)}72, must either be constant or must be zero beyond
some finite value of j. The Lebesgue Dominated Convergence Theorem (which
applies because ¢;(z) < ¥(z) for all + € Br and because lim;_,, ¢;(z) exists for
every € Bg) implies that ¢;(z) — 0 for almost every € Bpg, so almost every
x € Bp admits some finite minimal index jo > 0 for which ¢, (z) = 0. For each
index j > 0, let £ be the set of those points © € Br such that j is the minimal
index for which ¢;(z) = 0. Let E. be the collection of those points € Bg not
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764 PHILIP T. GRESSMAN

belonging to any E; for a finite value of j. As defined, the sets Fw,, Eo, F1, ... are
pairwise disjoint and their union is Bg.

Now for each finite j, let (wf);,..., (w%); be the piecewise-constant vector fields
obtained by applying Lemma 1 to locally constant function 1; (which is possible
because the Lemma has already been established as true for such functions). Let
{(Wf)oos - -, (WE)oo} be the standard basis (i.e., the vector fields are constant as
functions of x for each i = 1, ..., n). The lemma will be shown to hold for the
vector fields

wzw:XEoc(x)( ) +XE0 O+ZXE j 1 i:1>"‘7n

when 9(z) == Y(x)XBy\Ew (). Every x € Br belongs to exactly one of the sets
Es, Ey, E1, ..., so the condition |det{wZ}? ;| = 1 is satisfied at every = € Bp
because |det{(w});}"_1| = 1 for every € B and every j. Now substitute this
definition of w¥ into (16) and expand the sum. Because 1[ vanishes on the null set
F by definition and because 1 vanishes at every point of Fy, it follows that

/ ) () do Z /

for every k with 1 < k < n and every polynomial map 7 : R® — R¥. For any
x € E; with j > 1, ¢;_1(x) = ¢(x) # 0; consequently the definition of ¢; combined
with the knowledge that ¢;(z) = 0 implies that ;_1(z) > (N — 1)p,;_1(z)/N =
(N —1)¢(x)/N. In other words ¥(x) < Nv;_1(z)/(N — 1) for every = € Ej, so

/ (@) 5l (2) ey, do ()
Y NE,

(@)l (e, _, do ()

n—k

| AT

N 15 nok
< Cy(degm) [m] {/B %‘—1]

for all j > 1 by virtue of the fact that 1;_; is constant on some dyadic grid and

therefore (16) is known to hold with Jj_l = 1;_1. Summing over j and using the
upper bound (24) gives

/. =

<awsn|f, o] Xlwm) " [

=0

|dr(2)||ee do ()

Since k£ < n, choosing N suitably large depending on n and k, one may assume

o0

n—k
> N +1 T <9
NN -D) =T

which means that (16) holds for any integrable ¢ with a C,, no more than double
the constant which holds for functions constant on dyadic scales. (Il
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Proof of Proposition 3. This lemma is a consequence of Guth’s visibility lemma [39,
Lemma 6.6] (or, alternatively, Theorem 3 of Carbery and Valdimarsson [16]) and
Zhang’s intersection estimate [73, Theorem 5.2]. It is assumed by the proposition
that 1 is nonnegative and not identically zero, so it suffices to assume that the
integral of 1) on Bpg is exactly (2R)™, since if not, one may apply the lemma to
the function (2R)"(fBR 1)~ (z) and then multiply the resulting measures u® by

2R)"([5, )™ to recover the full proposition.

The proof proceeds by first taking 6 = 1 and then establishing all other cases
by rescaling. By Guth’s Lemma 6.6, given any finitely-supported, nonnegative,
integer-valued function M(Q) defined on the lattice of cubes Aj, there exists an
algebraic hypersurface Z of degree at most Cy, (3o M (Q))*/™ for some C,, (not the
same as in (21)) such that

(25) Vis[ZN Q] > M(Q) for all Q € Ay,

where Vis[Z N Q)] is the quantity called mollified visibility, defined to be the recip-
rocal of the Euclidean volume of the convex set of vectors u for which |lul| < 1
and

1 / / ~r ! n—1/_/ /
26 —_ u-n(z)|dH 2)dZ" < 1.
(@) BZ ) Jpze Jomg " TN

Here n(z) is the unit normal to Z’ at the point 2z’ and the metric structure and
measure on the space of algebraic hypersurfaces is the one inherited by identifying
each hypersurface Z’ of the given degree with the polynomial defining it modulo
nonzero scalar multiples. The technical constraint ||u|| < 1 in Guth’s definition of
mollified visibility is one which must be properly handled, as on its surface it makes
mollified visibility larger than it might otherwise be. One of the principal points of
the current proposition is to remove this requirement so that one may work with
the unrestricted definition of visibility given by (18).

Zhang’s approach of adding hyperplanes works here as well. Let P be the union
of all hyperplanes having the form

1
Tp=5+7 }

{(ml,...,xn) 5

for some i € {1,...,n} and j € {—R, ..., R—1}. This collection P is itself the zero
set of a polynomial of degree 2Rn and each cube @ € A; intersects P in a union
of n orthogonal faces, each with (n — 1)-dimensional Hausdorff measure equal to 1.

Therefore
n
[ uea@an e = [ e el @ -3 el
(Z'UP)NQ Z2'nQ im1
where eq, ..., e, are standard Euclidean unit vectors. Averaging over Z’ implies

that any u € R™ for which

1 / / ~7 ! —1 !/ !/
—_— w-n(Z)|dH"(z)dZ' <1
|B(Z,€)| J(z,) J¢ ’UP)0Q| &) )

(note that the difference from (26) is that the inner integral is now over (Z'UP)NQ),
must satisfy both ||u]| < 1 and (26). Now for each @ € A;, define a measure g on
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the unit sphere S"~! by means of the pushforward formula

en [ e = g | » / g T A2

(Note that pq is finite because the (n — 1)—dimensional Hausdorff measure of an
algebraic hypersurface must be finite on @ with a bound depending only on degree.
One of many possible proofs of this fact is to use Zhang’s inequality (5.5) with
U:=[-1,1]""Y, 7, := Z' and Z, ..., Z, ranging over all hyperplanes which
pass through the center of () and have normals pointing in standard coordinate
directions.) The (untruncated) fading zone F'(ug) is automatically contained in
the intersection of the unit ball and also in the set of those u € R™ satisfying (26).
Therefore

Vis(ug) > Vis[Z N Q] > M(Q) and /|u ~y*|dpg(y*) > |jul| for all u € R™.

Each variety Z’' U P appearing on the right-hand side of (27) has degree at most
Cn(Xg M(Q))*™ + 2Rn. Now for each = € [-R, R)", let u” be the measure pg
for the unique @ € Ay containing z. This gives that Vis(u”) = Vis(ug) > M(Q)
for all z € Q and [ |u-y*|du®(y*) > ||u| for all u € R™.

The next step is to use Zhang’s Theorem 5.2 to establish that when X is the
smooth zero set of ,

[/ /’H - ANy AT (YE) At () | AT ()
1/n n—k

(28) <27V degr |C, Z M(Q) + 2Rn

On the left-hand side of (28), write each du”(y}) in terms of (27) as an integral
over varieties. For a given x € Bpg, the measure ug for which u* = pg has the
property that on the right-hand side of (27), the integral over z’ is restricted in
such a way that x and 2’ both belong to the same unique @ € A;. This means that
z/ —x € [-1,1]" for any © € Br and any 2z’ in the support of the integral defining
©®. Thus

U /“ e

W/B(ZE).../B(ZG)I(Z{,..., ! Az -dZl

with I(Z1,...,Z]_,) equal to

/
/ / /, — Ty, 2 g — )
Z{uP

_dn(x)
lldn (@)l

and U := [~1,1]""~ %), Now Proposition 2 combined with the observation that
n(z;) = (T.;(Z' U P))* in Zhang’s notation allows one to apply his Theorem 5.2 to

7

A (yy) - - dp® (yp ) | dH" ()

AR(Z) A A ﬁ(z;k)‘ AH" N2 ) - dHT () dH R (2)

Licensed to Univ of Pennsylvania. Prepared on Fri May 16 18:54:15 EDT 2025 for download from IP 165.123.34.86.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 767

conclude that
1/n n—k

(29) I(Z,.... 2 ) <2 ® degr | C, ZM +2Rn

Since the left-hand side of (28) is simply an average over Zi, ..., Z/

!k, the full
inequality (28) follows immediately (with constant 2"("~1) because k > 1). It is also
worth noting that it is possible to slightly relax the condition that 7 is polynomial: if
the functions 7!, ..., 7% are Nash functions (see [42] for an accessible introduction),
then (29) holds with deg 7 replaced by the product of the complexities of 71, ...,
7% thanks to the Bézout Theorem for Nash functions [58]. As this is the only
place in the proof where Bézout’s Theorem is needed (aside from the earlier proof
of the case k = n, which can also be replaced by the Nash analogue), a Nash
version of Theorem 1 must also hold once the remaining portions of the main
proof are complete: finiteness of the supremum (6) implies boundedness of (4) with
T < C'[[T) H;n:l(l—[i€ L e(m8))9/Pi | where ¢(nt) is complexity. The analogous
version of Theorem 4 (which is stated in Section 3.2) holds as well.

To conclude the case & = 1, observe that (28) directly implies (21) when one
takes M (Q) to be the smallest integer greater than or equal to 1+ on (. Because

1+ ) < M(Q) <2+ 1)|q for each Q,
M@ <D (24%)=202R)"+ > tlg=302R)"=3 v
Q Q Q R

SO
1/n

%: M(Q) +2Rn < (3Y/"C,, +n) (/BR w)

The lower bound (20) follows simply because it has already been shown that left-
hand side is greater than |Ju||, and (fBR Y)Y/"/(2R) = 1 with the current normal-
ization of 1.

The proposition is now fully proved when 6 = 1. At finer scales §, apply the
scale 1 version of the proposition to the function ¥(dx) on the box [-R§~1, R6—1)™.
This yields measures i® for z € [-R§~!, R6~1)™ such that

(f[ Ré6-1,R6-1 n¢(59€)dl’)
2R6—1

for all z € By (and a change of variables shows that the coefficient of ||u|| above is
exactly (fBR )Y/ /(2R)). Now consider the quantity

LS g vinee i

where the integral sign inside the brackets is shorthand for the (n — k)-fold iterated
integral over v, ..., y;*k o After rescaling x — dx, this must equal

d7r
n— k 5
’ U ‘ ldns(a IR
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where ms(z) is the polynomial 7(dz) (note, e.g., 513X, = X,,). By (21), this does
not exceed

o"kC, deg s [/ w(éx)dz] = C,degm {/ w(x)d:v]
[—R6—1,R5~1)n Br

Therefore the proposition must hold at scale é by choosing u® := [L‘rlr from the
unit scale construction. (]

n—k
n

n—k
n

Proof of Proposition 4. Consider the quantity

lull, = / -y |duy”).

The fading zone F'(u) is precisely the set of those vectors u for which [ju||, < 1.
Moreover, the assumption that [jul[,, > to||u| and the finiteness of the measure p
guarantee that F'(u) is compact and contains an open ball centered at the origin.
Let (u1,...,uy,) be any tuple in (F(p))" which maximizes

| det(uy, ..., un)l|-

Because F(u) contains a neighborhood of the origin, the maximum value attained
is not zero. Let uj, ..., u;, be such that u} - u; = d;;. It follows that

iordet(v,ug, .o g, uy)
det(uy, ..., un)

(30) ul v = (-1)

(here ™ denotes omission) for all v because both sides of (30) are linear functions of
v which equal one when v = u; and vanish when v = w; for j # 4. In particular, if
v belongs to the unit ball of || - ||,,, then the ratio of determinants on the right-hand
side of (30) has magnitude at most 1. After scaling, this implies that

(31) max |ug - v| < o],
i=1,...,n

for all v € R™. Since

(32) v = Z(uf V),
i=1
(again, because both sides are equal when v = w; for any j = 1, ..., n), by the

triangle inequality,

(33) loll < D Ju - ol.
i=1

Now consider the set of vectors v such that v =Y | 6;u; for >, |6;| < 1. By
(32) and (33), ||v]|, < 1, meaning every such v belongs to the fading zone F(u).
This set of v is a polytope in R™ of volume %| det(ug,...,u,)|, so

n

2
m| det(uy, ..., un)| < |F(p)l-

Likewise, (32) and (31) imply that the fading zone is contained in the set of
v’s expressible as Y., 6;v; with max;|6;] < 1, which is a polytope of volume
2"| det(uq, ..., up)|. Therefore

n

n!

|det(ug, ... u)| < |F ()] < 2" det(uq, ..., u,)l
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Taking reciprocals gives

(34) 27" det(uy, ..., ur)| < Vis(u) < nl27" det(uy, ..., uy)l|
Let w; = ui/\det{ul Y™ and wi o= wd /| det{u} }5_, |/ for each i = 1,
, n. Now |det{w;}™ | = | det{w;}} \ =1; (31) and (33) imply
[det(uf, .. up)|" max ool < ol < [det(uf,up) 7Y fof 0

Using (34) to estimate |det(u, ..., u*)[*/" gives

n

2 . 1 * =
i (Visi¥ max ol < [ 1oy lduty D <2Vt et

(35)

for every v € R".

The proof of (22) is by induction on n — k. Regarding A* Ay} A--- Ay’_, as
a linear functional acting on ¥y _, gives the existence of v € R™ depending on A*
and yf, ..., yi_,_; such that A* Ayf A--- Ayl =v-y!_,; applying (35) to this
particular v gives

2
E(Visu) max [ATAYTA - Ay Ay

S/IA*AyTN-'AyZ_kldu(yi_k)

Integrating over the remaining i, ..., y\_,_; gives
1 * * * * * *
(Vlsu)w Jnax /---/IA AYT A A Ypogpoa AW ldp(yr) - dplyr 1)

/ /|A*Ay1 A Y gldp(yr) - dpyn_g)-

Now the induction hypothesis (applied to the (k + 1)-linear functional A* A w})
gives the inequalities

/ / ARG A Ay 1 AW du(y]) - dp(y 1)

9 A\ k—1
> (—(Vis,u)v‘z) o omax AT AW A AW Awr],
n i1

ln—k—1
seensln—k—1

which ultimately implies that

n7k|

n—=k
2 1
<E(Visu)i> , T0aX |A*/\w A AW

/IA*/\y1 A Yneldp(yy) - dp(yn_g)-

The conclusion of the proposition rests on the observation that |A* A wf A--- A
wi = A%(wjy, - wh, )| where {iy, .o dn g} U {j1, -5k} = {1,...,n}, which
one can easily see using the fact that w; - w; = d;; and writing A* in terms of the
basis w;‘l AR /\w;‘k for all possible i1 < ig < -+ < i. O
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3. GENERALIZED BRASCAMP-LIEB ON VARIETIES

3.1. Statement and proof of Theorem 3. The portion of Theorem 1 dealing
with the sufficiency of the testing condition (5) follows from Theorem 3, which is
itself a rather direct consequence of Lemma 1.

Theorem 3. For any positive integer m, suppose that for each j = 1, ..., m,
(Qy,7,%5) is a smooth incidence relation on R™ x R"™ with codimension k; such
that m;(x,y;) is a polynomial map as a function of x with bounded degree as y;
varies. Fix exponents ri, ..., rp > 0 satisfying kir1 + - -+ + knrm = n, and for
each nonnegative integrable Borel function f; on R™, j =1, ..., m, let

Q(fhufm)(x) =
(36) inf (/ fi y;)lld Wj(x yj)||wd03(yj)> .

{witis, j=
\dct{wi}i:ﬂ 1

There exists a constant Cy, depending only on n such that

(37) /[RR)nQ(fl,...,fm dx<H[ (deg ;) /anfj]

for any positive integer R, where degm; := max,, degm;(-,y;).

This result should be compared to Zhang’s variety version of Brascamp-Lieb
[73, Theorem 8.1]. An interesting feature here is that there is in some sense no
need to introduce the Brascamp-Lieb machinery at this stage because Lemma 1
is already powerful enough not only to reproduce the Brascamp-Lieb inequalities,
but to yield a strictly richer family of inequalities (or, to view it another way, to
yield multilinear inequalities where the weight factor involved is, in some favorable
situations, strictly larger than the power of the Brascamp-Lieb constant that would
otherwise be found there). For the moment, all the associated subtlety of this
problem is encapsulated in the quantity @, and the interesting geometric question
which follows after the proof of Theorem 3 is one of establishing various lower
bounds for Q.

Pmof of Theorem 3. Let ¢ be any nonnegative Borel function on Bg. Let {w?}1,

and 1/) be the promised vector fields and function on Bpg, respectively, from Lemma
1. Because |det(w?,...,wZ)| = 1 for every & € Bg, @Q is bounded above by the
quantity obtained by striking the infimum in (36) and replacing w by w”. As a
consequence, fixing r := 711 + - -+ + 1y, gives

/B QU ) @) ()] di

(38) < /B [ } 1:[ (/ fi(yi)lldem;(z, yj)erdO'j(yj)) T dx.

The appearance of ’(/J on the right-hand side of (38) follows simply because 1) and {[;
are equal almost everywhere with respect to n-dimensional Lebesgue measure. By

virtue of the identity
m
BE=L T
nor r’

i=1

.
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 771

one may pull the factor ({/;)(’"*1)/’" into the product over j and apply Holder’s
inequality to conclude

J

(/ £5(5) ldas yj>|wxdaj<yj>> e

i

[2

-(yj)ldﬂj(w,yj)llwxdaj(yj)> da

sk

(39) <H</B P lz_fj<yj>|dzwj<x,yj>||wzdaj<yj>dx)

To estimate (39) using the inequality (16) given by Lemma 1, one needs an auxiliary
Fubini-type result which guarantees that the measure do;(y;) dx on X, is equal to
doj(z)dy; (where in the first case coarea measure is on slices *X; and in the second
case is on slices ij.j ). This a consequence of the identity (84) proved in Section 6.
Using this fact gives

/ )+ / £ ) s (2, 95) e dors ) e =
Br o3,

(40) Lo [, wers

By Lemma 1 and Fubini’s Theorem, the quantity (40) is no greater than

(2, Yj) |we doj () dy;.-

n—k;

C(deg ;) [/B 14 I fill L1 rray-

Thus

1
™

[ QU )@ )

3
X

n—k; i

J
n

< I |Cutdosm) [ / ) w] TA.

I

When r = 1, the inequality just proved has no dependence on v, so (36) is
immediate in this case. Otherwise r must be strictly greater than 1, because
ri4 -4 rg >ri(ki/n) + -+ rm(kn/n) =1 by virtue of the fact that k;/n <1
for each i. In this case, let ¢ := |g|”’ for any g € L™ (Bg), where 1/ is exponent

Sl

H Cn degWJHfJHLl R"J))TJ'
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dual to r in the Holder sense. Then

/ Qs Fu) @) ()
Br

n—k; -

Sjl;[l Cn(deg;) [/BRw} 1 £ill 22 gma)

m [N
=gl 5y [ [(Cn deg il £ill 1 wmsy) 7
j=1

By duality, then, it must be the case that (Q(f1, ..., fm))"/" belongs to L" and
QU (e H (Cr deg ;|| fll 1 znay) ™
R :

as desired. O

3.2. Proof of Theorem 1: Sufficiency of the testing condition. This section
contains the proof of Theorem 4, which is a slight generalization of Theorem 1. The
inclusion of the parameter s allows one to deduce local inequalities for products of
Radon-Brascamp-Lieb transforms; unlike the s = 0 counterpart, the s > 0 case is
not expected to be sharp, but is included for its natural utility nevertheless. The-
orem 4 also includes provisions for establishing restricted strong-type inequalities;
this will be useful because several examples in Section 4 will showcase settings in
which restricted strong-type inequalities are the best possible endpoint inequalities.

Theorem 4. Foreachj=1, ..., m, let (Q;,m;,%;) be a smooth incidence relation
on R™ x R™ with codimension k; and let w; be a continuous, nonnegative function
on Xj. Suppose p1, ..., Pm € [1,00) and q1, ..., Gm, S € [0,00) satisfy the scaling

condition
(41) n—s=y L
i1 Pi
Let Jo, Ji, and Jy be pairwise disjoint subsets of {1,...,m} whose union is

{1,...,m} and let J; U Jy be exactly the set of those indices j for which p; > 1.
Let [[T]] be the supremum of

i”wﬂ] R IT sw sl )l 1T l/ wi(mayjﬂp;’daj,(yj)]p-

s viemss ldemi(@, y)llo 27 s (2, ;)|

-

Q

27

7
Py

Xlldamy ) o <eluwg (o) |05 (2 yj)ldaj(yj)]
over all x € R"™ and all {w;}1, with |det{w;}?¢| = 1. If [[T]] < oo and each
mi(x,y;) is a polynomial in = with degree bounded as a function of y;, then for each

R >0,

(43) / TL17355()1% d < TR [ (o m) 15 1%, oy

R] 1 j=1
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 773

holds for Borel measurable fi, ..., fm under the assumption that f; is a char-
acteristic function for each j € Jy, with the constant C' depending only on n,
s, and nj,kj,pj,q;. As before, degm; := sup,, degw}(~,yj)---degw;?(-,yj) and
Bg = |[-R,R)".

The proof of Theorem 4 is accomplished by establishing a number of different

lower bounds for quantities like those appearing in the definition (36) of
Q(f1,---, fm)- These inequalities are recorded in Proposition 5.

Proposition 5. Suppose f is a nonnegative Borel function on R and that (Q,m,%)
is a smooth incidence relation on R™ x R™ of codimension k. Suppose also that w
is any continuous, nonnegative function on X. Let {w;}?, be any tuple of vectors
with | det{w;}?_,] = 1.

e Ifpe(1,00), then

[ @t yioty) < [ / If(y)l”lldﬂ(x,y)llwdo(y)]
(44) , 1
[ / [w(a,y)|” dg@)r |
s [dor(@ )L

If, in addition, f is a characteristic function, then

[ twteaist <2 | [ 1)t o)
(45) i
+Sup |:61p/ / Xdeﬂ'(m,y)Hw<ew(w,y)w(‘ra y)dg(y):|
e>0 zy
e Ifp=1, then

[ _stuteot) < | [ flldcntenladot)

46
1o o D)
yers || dem (2, )l
o If m(z,y) == 3 (lz—yl>— R?) on R® x R" and f is (4R)™™ times the
characteristic function of [—2R, 2R]"™, then there is a constant C,, depending
only on n such that
-1
4 e < Z | [ [ soldnte o).

Proof. To establish (44), observe by Holder’s inequality that

L w(z,y)do(y)
Azf(y) w(z, y)doly /f )y (a )”“udw(xy)u

1
7

[ / w(x,ynp/do/(y)] "
s ldem(a, y)]1Z
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The inequality (46) is even simpler:

w(z,y)
[ st < [ rwldnte )l 22D o)

w(z,y)
< [ rwlldsn(e. ) oty sp

It suffices to prove (45) under the assumption that the right-hand side is finite and
the left-hand side is nonzero. This implies that both sides are finite and nonzero,
since if

ﬂ )l (a o) = 0

the fact that ||d,7(z,y)||, > 0 almost everywhere with respect to o (by definition
of ¥) means that f = 0 almost everywhere and thus implies that

/f w(z, y)do(y) = 0

as well, which has already been assumed otherwise. Similarly, if

/f w(z, y)do(y) = oo,

let F' be the set on which ||d,7(z,y)|l, < w(z,y). Then

/ w(z,y)do(y) < oo
*SNF

by virtue of the fact that the supremum on the right-hand side of (45) is, without
loss of generality, finite (and therefore the expression inside the supremum is finite
when e = 1). Thus if E C *Y is the set of those y for which f(y) = 1, then E has
infinite measure with respect to wdo and ||d,m(x,y)||. > w(z,y) on all but a set
of finite measure with respect to wdo. Consequently

00 = / w(z, y)do(y) < / o (2, y;)llwdo (y),
*SN(E\F) eSN(E\F)

which forces the right-hand side of (45) to be infinite. Thus without loss of gener-
ality, one may also assume that the ratio

1

A o) [ Moty

is finite and nonzero. By Chebyshev’s inequality, if E’ consists of those points y € F
at which ||d,7 (2, y)||lw > 2Aw(z,y), then

dem(z,y)||w
[ wteaoty < [ 1 eg,)
zYNE’ zYNE’
1

<3 Lm w(z,y)do(y).

It follows that the measure of £\ E’ with respect to wdo is at least half of the
measure of E itself. As F\ E’ consists only of points y at which ||d,7(z,y)|. <
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 775

2Aw(x,y), the measure of E with respect to wdo being bounded above by twice
the measure of E'\ E’ gives the integral inequality

/ ’LU(J?, y)dO'(y) < 2/ X||d17r(:r:,y)Hw<2Aw(m,y)w('/Ea y)dO’(y)
TYNE z3]

< 2(24)" 'supe?

/ X||d17r(m,y)|\w<ew(x,y)w(x7y)da(y)'
>0 zy

Substituting the definition of A back into this last line and simplifying gives

’

+ Sup El_p / XHdmfr(x,y)Hw<ew(z,y)w(x7 y)dU(y)
e>0 3

Raising each side to the power 1/p’ and recalling the definition of F gives (45).

Finally, consider (47). Suppose that m(z,y) :=  (|]z — y|?> — R?) on R"” x R"
and f is (4R)™™ times the characteristic function of [-2R,2R]™. Computation
gives that Dy7| . v = v (y — 2) and D,7|,)v = v - (r — y), meaning that for
(z,9) €%, dyrl| = ||lz — yl| = R and [|du7|l, = /321, [(x — y) - wif?. Thus

) (zux_y) .wi|2> i)

1 : Rt
> xBr(T / Rz-wi? | —=—dH" (2

=1

/ F@)lden(e )l (s) = /|

z—y|=R

because f(y) is identically equal to (4R)™™ on the sphere |z —y| = R when x € By
(and note that the integral over z is obtained simply by the change of variables
z = R(z — y), which gives dH" 1(y) = R""1dH""1(z)). Continuing this chain of
inequalities leads to the conclusion

[ il oot = X2 [ (DZ.M) e

i=1

XBR (‘,E) / 1 = n—1
> i Y
2R o U ; |z - wi|[dH" ™ (2)

XBr ({E) -
> =" ill-
= C.R ;1 el
The last line of this derivation follows by the fact that symmetry and scaling imply
/ |2 - wildH"H(2) = Jlwsll / |2 - ex|dH" 7 (2),
Sn—1 Sn—1

where e is the first vector in the standard basis. The constant C,,, as the notation
suggests, depends only on n. This completes the proof of (47). |

Proof of Theorem 1: finiteness of (6) implies (4). Assuming that Theorem 4 is es-
tablished, the proof of (4) from finiteness of the supremum (6) is almost immediate.
Take J to be empty and set s = 0. The quantity (42) then reduces exactly to (6).
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For any fixed fi, ..., fm, the Monotone Convergence Theorem applied in the limit
R — oo implies that

(48) / H ‘T f] |qJ dx < C[[T H deg”ﬂ Hfj”%jpj (R™5)

which then imphes exactly the promised bound on ||T|| in (4). O

Proof of Theorem 4. Let [[T]]z .. equal (42) (i.e., before the supremum over z or w is
taken). Let Jo, J1, J2 be as described in the statement of the theorem, and if s > 0,
let fin41 be the function (4R)™"x[_2r,2r)» and set Tmi1(2,y) == 3(|z — y|* — R?)
for the current fixed value of R. By taking pointwise products of (44)—(47), each
raised to the appropriate power,

XBgr(® H T fi ()| < [[Tﬂzw (/ fi (i)l dam; (2, yJ)||deJ(yJ)>

j=1 Jj€Jo

(/.

JE€EJL

(49) H 24 (/ fiy)lldem;(z, yj)”wdaj(yj)> ]

JEJ2

| f5 (yi) |7 || ders(, yj)||wd0j(yj)>

J

: (CHR/Z fm+1(ym+1)||d:rr7rer1(37aym+1)||wd0m+1(ym+1)>
Tlm41

under the assumption that f; is a characteristic function for each j € Jy. (If s =0,
simply omit the final factor.). Let r; := ¢;/p; for 1 < i < m, and if s > 0, let
Tm+1 := 8. The scaling condition (41) implies k171 + -+ + kp7m = n when s = 0
and kir1 + - + ko + g1 = n when s > 0. Now the inequality [[T]q.. < [[T]]
permits the following pointwise estimate of ) from below:

XBr (@ H|Tf )% < 2Zien B (TNQUAI, ... | fm

Pm )

when s =0 and
XBg (T H|Tf )| < 2%0e 9 (C RITNQUA - [ finlP™  frntr)

when s > 0. (Note that when j € Jo, f; = |f;j|?/, so there is no error made by
replacing f; by |f;|P inside the terms (49)). By Theorem 3, this implies (in both
cases s > 0 and s = 0) that

/ H\Tf] )Y dx
Br j—1

a;
m 7

(Cl) 2ZJ€J2 a5 (C Rdegﬂ-erl H |:degﬂ—] / fj|pj:| ’
R'Vlj

with the constant C/, being the one from Theorem 3. Here it has been implicitly
observed that || fit1||r = 1. This yields exactly the inequality (43). O
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4. APPLICATIONS

Note that in this section it is assumed that Theorem 1 has been fully proved;
some readers may wish to read Section 5 for the proof of the necessity of the testing
condition (5) and return here later.

4.1. Simple corollaries of Theorems 1 and 4 for Radon-like transforms.
Even in the linear case, Theorem 1 has interesting and novel implications. In the
spirit of a question of Stein [62], it is possible to give an explicit criterion by which
convolution with certain measures on affine varieties are LP-improving for some
pairs of exponents p and ¢:

Corollary 1. Let 1 < k < n and suppose © : R" — R¥ is polynomial. Let D1 be
the k x n Jacobian matriz of w, let X C R™ consist of those points in the zero set
of m at which D7 is full rank, and let p be the measure on R™ given by

_ )
[ = [ 1 BT

for some nonnegative continuous function w on X and any monnegative Borel-
measurable function f on R™. Let s be any positive real number. Then convolution
with u extends to a bounded map from LP(R™) to LY(R™) for all pairs p,q satisfying

:(n—k)s and ‘l_’_l_ n — sk
p

1
(50) a n(s+1) q 1’_n(8+1)

1
p
if and only if

- [ vl

MeRmxn y)MMT (Dr(y))T|*/?
| det M|=1

Proof. To apply Theorem 1, first select a defining function for the full Radon-
like transform; the natural choice is to take m(x,y) := m(x — y). In this case
|ldym|| = ||dz||, and by a slight modification of (9), it must be the case that

|dam (. )]l := /et Dr(z — y) MMT (Dr(z — )7,

where M is the matrix whose columns are the coordinates of wy, ..., wy,, respec-
tively. Beyond Theorem 1 itself, the other necessary observation is that || f||, <
C|fll, for all f if and only if || * f||,y < C||f|lq because the dual of convolution
with p is simply convolution conjugated by reflection x — —z in R™. Setting p so
that s = p’ — 1 gives one of the two extreme points on the line segment (50) and
the other is obtained by duality. O

The condition (51) is very much in the same spirit as D. Oberlin’s curvature
condition [49, Corollary 3] but, when comparing (51) to Oberlin’s condition, one
sees that (51) is most reasonably understood as a sort of sublevel set inequality on
the measure p transported to the submanifold {D7(y) € R™ | y € X} rather than
it being a condition “directly” on X itself. To be clear about why this integral
inequality is morally a strengthened sublevel set inequality, note that while (51) is
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778 PHILIP T. GRESSMAN

not explicitly computing the measure of a sublevel set, the layer cake formula

/ (y))*dp(y)
|detD7r MMT(Dﬂ'( )T |s/2
de

= 5/ € °u ({y ey ’ | det Dr(y)MMT (Dr(y))"[M? < ew(y) }) -
0
shows the very close relationship between (51) and simpler sublevel set estimates
of the sort appearing in Theorem 4 in the restricted strong-type cases. This is also
to be expected when considering the interpolation theory of Lorentz spaces and its
implications for the finiteness of the right-hand side of (43).

Another consequence of Theorems 1 and 4 is that restricted strong-type inequal-
ities for Radon-like transforms with fractional-integration-like kernels are virtually
automatic along the scaling line ¢ = np/k (though note that results of Secco [61]
show that at least in some cases, full LP—L? boundedness may also hold if one has
additional information about the structure of the Radon-like transform).

Corollary 2 (Fractional integration). Suppose (2,7, %) is a smooth incidence re-
lation on R™ x R™ of codimension k such that the Radon-like transform

= 12 f(y)do(y)

admits a constant C < oo and an exponent p € [1,00) such that

(52) 1T fllponriny < CIFIl Loy
for all Borel functions f on R™. Let W be a nonnegative continuous function on
3 such that

sup / XW(w,y)gedU(y) < C'e®

TzER™ Jz3

for all € > 0, where s is any fized real number strictly greater than 1 and C' is finite.
If 7(-,y) is a polynomial function for each y with bounded degree as a function of
y, then the Radon-like transform

71w = [ 1w

admits a finite constant C" such that
(53) HTXEHLP”/" R™) C”|E‘7
for all Borel sets E C R™ , where p:= sp/(s —1).

Proof. By Theorem 1, the bound (52) implies the existence of some constant C4

such that
d
/ % <0
22 [|dem (2, y) |l

for all z and all w with | det{w;}? ;| = 1. By Chebyshev’s inequality, this implies
the bound

o({y € 7S | |dom(a,y)|lw < 0}) < C1o71 71

for all 6 > 0, uniformly in z and w. Now let w be any nonnegative continuous func-
tion on ¥ which is bounded above by 1/W (z, y) at every point. For any nonnegative
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value of e,

wo({y € *% | |[dem(z, y)]lw < ew(z,y) })

<o ({vers [l < i 1),

Now for any fixed § > 0, every point y € X at which ||d,7(z,y)||lw < ¢/W(z,y)
must either satisfy 0 < ¢/W(z,y) or ||dz7(z,y)|l. <9I, so

wo({y € *Z | [|dem(z, y)[lw < ew(z,y)})
e

€
I x < - <
i ({vers | lanml < sma gt <o)
i @ e -5€
<JZOW({@/€ > ’2 5 <Wlwy) =2 5})
5
+lo(yers | eyl <o)

< oS¢ (w%)s L0 e < Oy LoD 4 gr e
€
j=0

for some constant Cy which is finite by virtue of the fact that s > 1. Note in
particular that Cy does not depend on w, w, x, or the parameters é and e. Fixing
§ 1= €%/ (5tP' =) gives that

’ ~/
16l — gp' el — P -

SO
wo({y € S | |dom(z,y)|lw < ew(a,y)}) < 2Coe” 1.

By Theorem 4, this uniform sublevel set inequality implies that every Borel set

in R" satisfies
</BR

for some constant C”" which is independent of R and of the particular choice of w
for which w(z,y) < 1/W(x,y). By Monotone Convergence as R — oo and by fixing
w(z,y) = min{ NW(x,y),1/W(z,y)} and letting N — oo, the inequality (53) must
hold. O

np

/ el y)da<y>"“ dx> < "B}

The next two subsections are devoted to the proof of Theorem 2. As mentioned
in the introduction, Section 4.2 establishes some fundamental inequalities for Gram
determinants which are relevant to the proof, and the proof itself is carried out in
Section 4.3.
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4.2. Some inequalities for Gram determinants. Let H be any Hilbert space;

for any vectors vy, ..., vp € H, let G(vy,...,v) be the associated Gram determi-
nant, i.e.,

<’U1,'U1> <U17/Uf>
(54) G(v1,...,vp) :=det : . :

<U£av1> <’U[,’Ug>

The matrix on the right-hand side of (54) is always positive semidefinite because

¢ ¢ ¢ 2

Z Z e (v, vp) = Zczvi

i=1i'=1 i=1
This identity guarantees that G(vy,...,v,) is never negative and that it vanishes if
and only if vy, ..., vy are linearly dependent. The quantity G(vy,...,v¢) can also
be understood geometrically via the identity
(55) G v, ... vg)| 7% = / el ozl g

R¢

to prove this formula, first observe that when the matrix G with entries G;; =
(vi, v7) is nonsingular, the fact that it is symmetric and positive-definite means
that it has an inverse square root G—/2 satisfying the condition det G—/2 =
(det G)~Y/2 = (G(v1,...,v))~ /2. Making the change of variables z — G~/22

gives
_ 1 Lt 2
/ e ||z v 42 | dz
R¢

1\2 22
=|G(vy,...,v0)| 2 /Ze_”(z VoG dy = |Gy, . v) | TR
R

On the other hand, if G happens to be singular, then both sides of (55) have to
be infinite. For the left-hand side, this is automatic; the right side must be infinite
by virtue of the fact that when u € R’ belongs to the kernel of G, the identity
221 + -+ 2fv| = [|(21 + tul)or + - - + (2 + tu)v,|| holds for all real ¢, which
means that the integrand is constant in the direction of u and therefore the integral
is infinite by Fubini (because the integral on any hyperplane will always be nonzero).

The identity (55) has some important consequences. By making various linear
changes of variables in the z integral, one can easily verify that G(vy,...,vp) is
invariant under permutations of the v; (verified by permuting indices of the coor-
dinates of z) and that

G(v1,...,vp—1,v¢ + cv;) = G(v1,...,0¢)

for any constant ¢ and any i # ¢ (verified by the change of variables 2% — 2% + cz%).
Similarly, for any orthogonal projection P on H,

(56) G(vi,...,v0) > G(Puvy,..., Pu)

by virtue of the fact that || Zle 2P| < || Zle Z'; || for all v; and z, so integral
on the right-hand side of (55) cannot decrease when the v; are projected.

Using (56), it is also possible to prove several identities and inequalities for Gram
determinant when computed for collections of vectors that have some elements in
common. To be more precise, let uy, ..., uy € H and suppose P is projection onto
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 781

the orthogonal complement of the span of uy, ..., up. Then for any vy, ..., vy,
because Pv; = vy + Zle c;u; for some coefficients ¢;, it must be the case that

G(u1, ... upv1,...,0p) = G(u1,...,up, Pvy,..., Poy).

Applying the definition (54) directly to G(u1,...,us, Pv1,..., Pvyp) expresses it
as the determinant of a block-form matrix because (u;, Pv;/) = 0 for all ¢,7’. In
particular, the Gram determinant factors as the product of the determinants of the
blocks and therefore

(57) Guty ..y up,v1,. . vp) = Glug, ..., up)G(Puy, ..., Pug).
If P’ is projection onto the orthogonal complement of Puvy, ..., Pvy, then for any
Wy, ..., W € H,

G(ulv sy Uy V1, . ,’U@)G(Ul, ceey Ug, W, - 77.1)[//)

= (G(u1,...,u0))?’G(Pvy, ..., Pvy)G(Pw,..., Pwm)
Z (G(ul, e ,’U,g))zG(Pl}l, NN 7]D’Ug/)GY(]D/f)’LUl7 ey P’P’LU@//)
= (G(u1,...,u0))?>G(Pvy,...,Pvy, Pwy,..., Pwm),

where (57) is used to justify the second and last lines and the third line follows
from (56). Applying (57) again to the final line gives that

Gut, .oy Upy V1,0 )G (UL, .o Ugy Wy« e, Werr)
(58)
> G(ut, . ug)G(Ury e U VT e, Uy W, e Werr).
A virtually identical argument (i.e., replacing each w; by P’w; and using (56) and
(57)) shows that the analogue also holds when there are no common w;, i.e., that

(59) G(Ul, c.. ,Ug/)G(’wl, .. .,w[//) > G(Ul, co U, W, . ,’wg//).

There is one last family of inequalities for the Gram determinant which will be
important in the proof of Theorem 2. For any fixed n-tuple of vectors vy, ...,
v, € H and any ¢ € {1,...,n}, let

n
(60) L= ][ Gj,....vj101),
j=1
where the indices are interpreted periodically (i.e., vy 41 1= v1, Upt2 := v2, etc.).

These quantities I, and the various inequalities they satisfy will be of critical im-
portance in the next section. The identity (58) implies when ¢ > 1 that

G’(’Uj7 cee ,’Uj+(_1)G(’Uj+1, cen ,’Uj+g) > G(Uj_H, ey Uj+g_1)G(Uj, ey Uj+g)

for every j (again, with indices understood periodically) so taking the product as
Jj ranges from 1 to n gives that I} > I,_1I4q for each £ € {2,...,n — 1}. This

means that the sequence {Iy,...,I,} is log-concave. In particular, it must be the
case that
(61) Lo > (L) T (L) T = (L) W00 (Gon, oy v)) 70

for each ¢ € {2,...,n—1} (because I,, = (G(v1,...,v,))"™ by periodicity). Likewise
by log concavity,

n—~ —1

(62) I > (L)1 (L)1 > (G(vy,...,vm))"

~
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by virtue of the identity I,, = (G(v1,...,v,))" and inequality I; > G(v1,...,v,)
(which is proved by a repeated application of (59) splitting G(v1,...,v,) into in-
dividual factors G(v;) for ¢ = 1, ..., n). Then (61) combined with the identity
1> (G(v1,--.,vn))" 'Y (a consequence of (62)) gives

n—~{
n—~0+1
for 2 < £ < n. The upper limit of s cannot be improved. To see this, let e, ..., e,
be mutually orthogonal unit vectors and define vy := N" " ley, v; := N le; + N le;
for i = 2, ..., n and some large real number N. Clearly N"~! < ||v;| < v2N""!
for each ¢ and each N > 1, so N2n(n=1) < 1 < onN2n(n=1) T ig also easy to
check that G(vy,...,v,) = G(vi,v2 —v1,...,v, —v1) = 1 for each N because this
latter collection of vectors is mutually orthogonal. By (62), it must be the case that
I > N?"(»=0 foreach £ = 1, ..., n. But similarly, G(v;, ..., vj10-1) = G(vj,vj41—
Vg -5 Ojpe—1 = V3) < ([0 |vj41 =051 - [y 401 —v5]|* < 2N D(E@N-2)t =
2EN2(=8) 50 I, < 2 N27(n=0) and therefore

s s+(1—s)¢ 2sn(n—~0+1)
(Ie—1)*(G(v1,-- -, vn)) > N s
I, ont N 2n(n—~£)

as N s o0ifs>(n—40)/(n—LC+1).

(63) I > (I-1)%(G (v, . .., 0,))*TE= for all 5 <

(64)

4.3. Proof of Theorem 2.

Proof of Theorem 2. The integral appearing on the left-hand side of (7) can be put
in the form (4) by choosing

-1
mi(a,yy) =2t =yt > [l Ty
i=1
foreach j =1, ..., ¢, with indices of z understood as periodic of period n. The first

important calculation to carry out is to identify that the coarea measures o; agree
with the Lebesgue measure with respect to t € R~1 as it appears in (7). For each
x € R", the submanifold *; consists of those y; € R? belonging to the paraboloid

-1
’ " L o
y; =2/t + Z 27—y,
i=1
Viewing yf as a function of yjl-, cee yf_l gives a parametrization of the paraboloid

as a graph, and the (¢ — 1)-dimensional Hausdorff measure on this graph will equal

-1
. .dy;?—l = (14 42 \y; — gi+i|? dy]l o dyf_l_
i=1
For these maps 7,
Dyjﬂ-j(I’yj) = [Q(yjl — IjJrl) Q(y]lf—l - sz*l) _1] 7
which means that
-1
dymj(z,y;)|l = |1+ 42 |y — 22,
i=1
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 783

Because do; = dH'"1/|d,7;]|, it follows that do; = dy! ---dy’~! on *%;, and so a
j y7j j j j

J
simple renaming of variables le =gl et yf_l = g1 4 471 gives

/ fi(yj)do;(y;) = /Rz ) Fi@ I T T g7t

as is necessary for the application of Theorem 1.

The matrix Dym;j(x,y;) is a 1 X n matrix with entry equal to 1 in column j + ¢
and equal to 2(zi i — y;/) in column j + ¢ for 1 < ¢ < £ — 1; the entries in all
remaining columns are zero. Given {w;}?" ;, it follows that

n -1 2
d 2 _ 2 i’ g+’
o (@, )12 =D |wi - i +2> (5 — 2 )wi - ejuir|
i=1 ir=1
where ey, ..., e, are the standard basis vectors of R™ and - is the usual inner

product. By Theorem 1 (and the substitution ¢t = 2(y]1 — It ,yf 1 — gLy,
the constant Cp ¢, in (7) is finite exactly when

-1 2|~ 25
(65) SUP H/ Wi - €jye+ Z ti/wi €t dt < oo.
fwidis, = =1

| det{wl}” 1‘ 1

The goal of the rest of the proof is consequently to determine the range of p for
which finiteness of (65) holds.

Consider for a moment a single term j in the product (65). Let Ry, ..., Ry be
vectors in R™ defined so that the coordinates of R; are (e;j1; - wi,...,€j4i - wy) for
each i =1, ..., n. By virtue of the identity

n -1 2 -1 2
Z ejre - Wi) Z t* (ejpir - wi) R, + Z t" Ryl||
i=1 =1 i'=1

it is possible to choose any ¢, € R~ and write

n 1 2 -1 1 2
D ege-wi) + Dt (ejpi - wi)| = —Y R+ > (t—t)'R;
i=1 =1 =1 =1

(where the reader is reminded that the notation (£ —t*)¥ refers to the i’ coordinate
of t —t*). For a suitable choice of t,, it can always be arranged so that R, —t1 Ry —

-—t:"1R,_, is orthogonal to Ry, ..., Ry_1, giving that
-1 -1 2 —1 ‘ 2
Ry— Y iR+ Y (t—t.)" Ry|| =PRI+ ||D (t—t.)" Ry
ir=1 ir=1 i'=1
2
= ||PR€H2 1+ )
\PR I Z
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where P is orthogonal projection onto the orthogonal complement of the span of
Ry, ..., Ry_1. Now for any p > 1,

—1 —(p'~1)
/ R4+Zti/Ri/ dt
Re_l =1
= 2\ ~IF
:|PR¢|’(”/’1)/ L4 ||iss > (¢ dt
PRl e\ PR 2=
_p=t
0—1 2 2
= |PR,||~® 9 / 1 t'R dt
[ PRl - +1D

i'=1

= IPRAO0 @GRy R [ 1P

- (?G(l(%}lz’ln...iRég)l)) 7 (G(Ru,.. Reoy))* /RH(1+ 1£)2)~

_ (G(Ry, R 1))(1» —£—1)/2 )
B (G(Rl,...,lRe))( —0)/2 /Rl_l(lJr I1£]12)

)(p —0)/2

The integral quantity on this final line is independent of Ry, ..., Ry and is finite if
and only if p’ =1 > /¢ —1, ie, p<{/({—1). Taking a periodic product gives that

n £—1 —('-1) /
; - . ([e_l)(p —£=1)/2
(66) 1_[1/11@21 Rjio+ z;t Rjyi dt = (Cp) )T
j= i=

By (63) and (64), the ratio (I,_1)® ~¢=1/2/(1,)®'~/2 is uniformly bounded for all

Ry, ..., R, with G(Ry,...,R,) =1 (which is true in this case because the matrix
with rows Ry, ..., R, equals the matrix with columns wy, ..., wy,) if and only if
./
1< T =

which occurs exactly when p’ < n + 1. Thus it follows that

_p -1
n n -1 2 2
H/ Z Wi €jye+ Z 1" w; - ejqq dt < (Cp)"
j=17RTT = i'=
uniformly in {w;}}_; with |det{w;}]—,| = 1 for a finite constant C, if and only if

(n+1)/n<p<l/(f—1).
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 785

When p = /¢/(¢ — 1), one instead uses the inequality

|{teRf1 Se}

2
-1
t RV [PRyol* + || Dt Ry
=1

|{teR£1 Se}

(67) = Cy(G(Rjy1,-- Rjre1)) V2L
Taking a product over j and using the inequality I, > (G(Ry, ..., R,))* = 1 gives

/—1
Rjto+ Z 'Rt

=1

< é

IN

J+i

Hsglge Hoj(ly € 7S5 | ldamj(z,yj)lw < €}) < (Co)",

which implies by Theorem 4 that (7) holds in the restricted strong-type sense when
p=1L/(L—1). O

4.4. Mixed-norm inequalities from Theorems 1 and 4. Although not specif-
ically phrased in terms of mixed-norm inequalities, the multilinear nature of Theo-
rems 1 and 4 allows one to deduce certain mixed-norm inequalities for Radon-like
transforms. For purposes of clarity (and to take advantage of the existing compu-
tations), we consider mixed norm estimates for the model operators

Tied) = [ St

for x € R~ and 2’ € R. Theorem 4 implies the following result.

Theorem 5. The operator T satisfies a restricted strong-type L‘Z/(‘V]_l)(Re_1 xR) —
L(LY) inequality.

The endpoint mixed-norm inequality just stated does not appear to be widely
observed in the literature (and although the exponents involved suggest that one
might be able to prove this inequality by slicing the paraboloid into spheres of
one lower dimension, no elementary argument of this sort appears to suffice when
¢ > 2). By interpolation with the standard L(*TD/¢ — L1 inequality, it follows
that

1Tl ey < Coll fllp ¥ € PR X R)

when ((+ 1)/ <p<{/({—1)and 1/g=1— ({/p") (where, as usual, p and p’ are
dual exponents). The restricted strong-type L*/(‘~1 (R~ x R) — L9(L!) bound
is particularly interesting because the full LY/ ~1D(R =1 x R) — L9(LY) fails to
hold.

Proof. Just as was computed in the previous section, this operator can be regarded
as being of the form (2) for a defining function 7 ((z, z'), (y,9')) := 2’ —y'+ ||z —y||?
when y € R~! and ¢ € R. Exactly as was the case for (67),

sup e o ({(y,1) € @5 | dgaanym((@,2), (1)l < € })

e>0

< Cy(G(Ry,...,Ro—1)) V2,
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786 PHILIP T. GRESSMAN

where Ry, ..., Ry are vectors in R? with the property that R; := (wi-€;,...,we-€;)
fori=1, ..., £ with e, ..., e; being the standard basis of R*. Now suppose that
m((z,2),2) == z — 2’ for z € R. For this ', ||d( 7|l = ||Rel| = G(Re)'/2.
Therefore
1
sup

2 Nd@onm((2,2), 2') |l
—0+1 ’ (z,2) / /
-sup e o , € Y| |dgpanT(z,2), (y, w<e
supe o ({(5.4/) | e arym(@,2), (5 o < € })
< Cg(G(Rl, RN Rgfl))_lm(G(Rz))_l/Q < C[(G(Rl, ceey Rz))_1/2 =C4.
Because ,
1.
b=———+1
DR

Theorem 4 (with (k1,q1,p1) = (1,£,£/(£ — 1)) and (k2, g2, p2) == (1,1,1) followed
by the standard limiting argument R — oo) implies that

L _
| el o) ldnda’ < CIEI gl

for all Borel sets £ C R*~! x R, all Borel functions g on R, and some constant
C depending only on ¢. Fixing F momentarily and applying duality in g(z') gives
that
ess.sup/ |Txe(x,2")| de < C|E|*L.
x/ ER RZ*l

Raising both sides to the power 1/¢ gives that T satisfies a restricted strong-type
LYE=1 5 129(LY) inequality.

Regarding sharpness, observe that the full L#¢~1) — L%(L!) bound cannot
hold, for if it did, it would imply an inequality of the form

J4
/R\/lel |Tf($,l‘/)| |g(:17/)|dxdx' S CHf||i£/(£*”(RZ*1><R)HgHLl(]R)

for all f and g, which would subsequently imply finiteness of

1 / do
sup —— T
2’ ||d(w,x’)ﬂ-/((x7'r/)7Z/)”w (@2) % ‘|d(x7x’)77||£1 !

for all (z,7) and w := {w;}¢_;. In this case, it has already been observed that the
power ¢ — 1 is not large enough to achieve finiteness of the integral on the right-
hand side. The fact that the restricted strong-type inequality holds while the full
mixed-norm inequality fails suggests that one should not immediately assume that
strong endpoint inequalities always hold. For example, there may be situations in
which endpoint mixed-norm inequalities outside the range proved by Christ and
Erdogan [23] actually fail to hold. O

5. PROOF OF THEOREM 1: NECESSITY OF THE TESTING CONDITION

This section marks the return to the main goal of proving Theorem 1; it remains
only to establish (5) under the assumption that (4) holds. The process is carried
out by first computing some basic limits related to Knapp-type examples and then
employing these computations to complete the proof. Throughout this section, no
algebraic assumptions on the mappings m; are necessary or relevant.
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 787

5.1. Preliminary Knap-type calculations. Given a smooth incidence relation
(Q,m,%) on R™ x R™ of codimension k, the associated mapping 7 may always be
multiplied on the left by any invertible £ x k matrix with smooth entries without
changing the definition of the resulting incidence set ¥. Among all such equivalent
choices for 7, there is one which most efficiently captures the geometric properties
of the associated Radon-like transform (or at least those geometric properties which
matter for the present purposes). Because the determinant det D, 7 (D,7)? is non-
vanishing on ¥, by restricting the domain of 7 to some smaller set 2’ C ) as needed,
it may be assumed that the matrix [D,7(x, y) (D, (x,y))T]~/? is uniquely defined
(as a positive-definite symmetric matrix) and is a smooth function of z and y on
some open set ) C ¥ and that ||d,7(z,y)| and ||dy7(z,y)| are both strictly positive
on Q as well. (An elementary proof of smoothness of [D,m(z, y)(Dym(z,y))T]~ /2
can be established using the Cauchy integral formula; see [38, Appendix]).
For the remainder of this section, let

(68) (@, y) = [Dam(@, y)(Dem(z,9)) ]~ 2r(a, y).
Because 7(x,y) = 0 for any point (z,y) € 3, it must be the case that

om om

%(‘T> y) = [me(xv y)(DIW(:I;v y))T]_l/Q@(xv y)

at all points (z,y) € X for all ¢ = 1, ..., n by the product rule: any term in
the product rule expansion of d7/0x" in which a derivative falls on the matrix
(Do (x, y)(Dym(z,y))"]~/? must vanish identically on ¥ because it will be multi-
plied by an undifferentiated 7 factor which necessarily vanishes on 3. The analogous
formula is true for derivatives with respect to y* as well. Consequently it must be

the case that
D, = [D:cﬂ'(DacW)T]il/szﬂ' and Dy = [DM(DM)T]*”QDM
at every point of . Tt follows by (9) and (10) that
Id,7
[l de]]

at all points of . Moreover, D,7m(D,7)T is exactly the k x k identity matrix at
every point of ¥, which means that the rows of D,7T are orthonormal with respect
to the standard inner product on R".

To prove necessity of the testing condition (5), one must find suitable families
of functions to which the multilinear Radon-Brascamp-Lieb transforms may be
applied. The precise functions to be used are as follows: fix any zy € R”, and for
each j € {1,...,m} such that p; > 1 and each ¢ sufficiently small, define

(69) |de7l[ = 1 and |[dy7|| =

. . —1
i w; (20, y) r”
70 . ::6 Pj 7 (zo et ANl LA ;
(70) fis(y) X175 (z0,y)]| <8 [”dﬂj(%’yﬂ n;(y)

for any fixed, nonnegative, continuous 7; with values in [0, 1] which is supported
close to *°%; in the sense of Section 6. If j € {1,...,m} has p; = 1, take instead

(71) Fis W) = 0" X7, (wo <65 (W)

for some nonnegative continuous 7; with values in [0, 1] supported close to *°X;.
The transforms T will be applied to these functions and both sides of (4) will be
examined in the limit § — 0. The key phenomenon occurring in this limit is that
the mass of the left-hand side integral becomes concentrated on the d-ball centered
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788 PHILIP T. GRESSMAN

at xg. This is a regime which corresponds to one of the typical families of Knapp-
type examples and, in that sense, the principal innovation of the argument below
is not the concept, but rather the level of detail.

There are two key computations regarding the limit 6 — 0T, both recorded in
the proposition below.

Proposition 6. For a smooth incidence relation (2,7, %) on R™ X R™ with codi-

mension k, suppose f is any continuous function on R™ supported close to 0.
Then for T as in (68),

(72) 1l / F)Xmeay<sdy = / @)l dam(z0,9) dor ().

§—0t (Sk

Additionally, the map

£ T X7 (o) <50 (y)

(zg+88) 9

is well-defined on ||€|| < ¢ for any fixred ¢ < 1 provided ¢ is sufficiently small; this
map has the property that

(73) lim f( )XHﬂ.(zOy ‘<5d0 / f dU

0—=01 J(zo+s6) %

with convergence that is uniform for all ||€|| < c.

Proof. To prove (72), one needs only to use the coarea formula for 7:

dH" " (y)
74 o dy = an )
(74) /Rn FOXim (o, m)l<sy /|s|<6 Vy;f(xo,y)—sf(y)Idw(xo,y)ll

The inner integral on the right-hand side is continuous in s at s = 0. (This is a
consequence of the upcoming Corollary 3 in Section 6 applied to the family of maps
7s(y) := m(x0,y) — s.) Therefore

- dH" M y) / )W)

Y — = () ATy ——
5—0 y: 7 (xo,y)=s ||dy77(l’0ay)H deW(Ian)”
- / ol o),

where the final line uses the computation (69) to relate the coarea measure for
7(x0, ) to the corresponding coarea measure for m(xg,-). By continuity at s = 0,
the limit of the right-hand side of (74) multiplied by §~* exists and

1
AL 5 /R FXimomli<sdy = cx Lg F@)lldem (0, y)lldo(y),

where c;, is the volume of the k-dimensional unit ball.
As for (73), by Taylor’s Theorem, for any y at which 7(z¢ + §£,y) =0,

m(20,y) = T(wo + 08, y) — DaT| (1 5¢,4) (6€) + 0(6)

with the implicit constant in the O(62) term being uniform for all y belonging to
any fixed compact set (in this case, the support of f) and all ||€|| < ¢ < 1. Now
m(zo + 0§,y) = 0 and the rows of Dy7|(, s, are orthonormal, so it follows

that ||T(wo,y)|| < ¢§ + O(6%). This means that for all § sufficiently small, the

ds.

Y (a0,
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TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 789

characteristic function X|z(z,y))|<s Will be identically 1 on the support of f inside
the integral on the left-hand side of (73). Consequently

/mmeg FWX 7@ i<sdo(y) = / f(y)do(y)

(zg+d8) 9

for all sufficiently small §. By (83) from Corollary 3, it follows that this expression
converges uniformly in £ to

AZ f(y)do(y)
as § — 0F. O

5.2. Conclusion of the proof of Theorem 1. We are now ready to complete
the proof of Theorem 1 by showing that the testing condition (5) must hold.

Proof of the necessity of (5). Recall the definitions (70) and (71) of the testing
functions f; s to be used. By the limit computation (72), when p; > 1, it must be
the case that

lim || f; )
T (1755,

1

pj 55
dyj]

= | lim
§—0t Jrni

-k wy(@o,y) 177
; J )
0 X, (wo.y) 1 <8 Ldﬂj(%,yj)” n;(y)

1

— ck]"l (wj(xmyj))pj |nj(yj)|pjd0j(yj)] N

os; || des(@o, ;) |75 "

1

(75) < ij/z (wj(xo’yj))pjﬁ?j(yj)dffj(yj)] .

ox; |dem; (2o, y;) "

Here the identity (p; — 1)p; = pj; is used to compute exponents inside the integral;
this explains why the final exponent on w; is p}. The exponent of ||d, ;|| becomes
p; — 1 after accounting for the extra factor of |d,m;|| arising from (72). Lastly
|nj|P# < m; because n; is nonnegative and no greater than one (and p; > 1). If
p; = 1, then one instead has

. . —k.
51—1>I(I)1+ I fs.sllx = 51—1>%1+ /an 0" X1 (0.0 1 <875 (Y5)AY;
)
=ty [y o) ) )

J

also by (72).
Now consider the integral

a [ Tl [
Bua(xo)]l;[l e B.(0) H

Jj=1

2

ki
87T fis(xo +08)| dE

(here Bs(xg) indicates the Euclidean ball at z¢ with radius ¢d), where the change of
variables z — zg+0J€ is applied to reach the right-hand side, and the Jacobian factor
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0™ is absorbed into the product over j using the fact that k1q1 /p1+- - - +kmGm/Pm =
n. By (73), when p; > 1,
L2} L2}
lim 6% T; f5(x0 +0€) = lim 675 / Fis(@wj(zo + 0&, y;)do;(y;)
6—0+ 6—0+

(10+5€)27.

- / (w; (0, )

s, T, gy P00

with uniform convergence for all ||£]| < ¢ < 1 (where we have also used the fact that
w;(zo + 0, y;) converges uniformly to w;(zo,y;) on the support of n; and that the
integrals

/ (w; (w0, )P "
(

—n; (y;)do; (y;
corsors, Tdom;(aoryy 71 040 80)

are uniformly bounded in & for all small ¢ and ||£|| < ¢, which is a consequence of
Corollary 3 in Section 6 as well). If instead p; =1,

lim 6"T; f;.6(z0 + 6€) :/ w; (2o, y;)15(y;)do; (y;)-
§—0t 0%,
Therefore the limit as § — 07 of (77) exists and

(78) lim /B 1175 f56(2)” da

6—0+ s (20) =1
= B0 []
Jipj=1

/ (w; (w0, ;)15 (y;)
0%,

1
e (2o, y;) 177

a5

[ w0 ()

J

qj

do;(y;)

jipj>1

By (75) and (76),

m aj
S, [Trely < T1 [ckj LOZ_ ||dm7Tj($o,yj)|77j(yj)d0j(yj)]
j=1 jipy=1 i

95

I lck-f[n (wj(rTOyyj)):lnj(yj)do'j(yj)‘| "

jip;i>1 0% Hdmﬂ—](x(hy])‘l

Combining this inequality with (78), the boundedness condition (4) therefore im-
plies that

Jooxs, wi(@wo, y;)m;(y;)do (y;) "
iire LJos, Ndams(zo, y5)lIn; (y5)dor; (y;)

q

4

11 V’ (wj(xo’yj)ﬁ:l Wj(yj)daj(yj)] "< || T’

jipi>1 0% deﬂ-j(x()ayj)

for some constant ¢ depending only on exponents and dimensions.

The next steps of the argument involve taking limits to remove the cutoff func-
tions n;. For those indices j having p; = 1, fix any point z; € *°X and let n; be
replaced by n;(y;) max{1 — R||y; — z;||, 0} where n; is the cutoff function supported
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near z; given by the second part of Proposition 7 in the Appendix. The numerator
and denominator of the ratio

Jeoss, wi(@o, y;)m; (y;) max{l — Rlly; — 2|, 0}do; (y;)
Jeoss, Ndamj(@o, y;)lIn; (y;) max{1 — Rlly; — z;[,0}do;(y;)

do not vanish for any R > 0, but as R — oo, the support of the integrand is
contained in the 1/R-neighborhood of z;, and so by continuity of both integrands,
the limit as R — oo exists and equals

w; (0, 2;)
l|drj (o, 2;)|]

Now taking a supremum over each z; gives
qj
T | sw (%0, 2j)
i ez dem(@o, 25)l

(w; (w0, y;))"m; (y;)dor; (y;)
11 [/ ] < e|7].

/
i demi(@o,yy) P!

3 ‘-Q
SN

Jjip;j>1
For the remaining indices j, let 7; be replaced by terms of a sequence of cutoff
functions tending to 1 everywhere on *°X;. The existence of such a sequence will be
shown in Section 6 via Proposition 7. The sequence constructed there monotonically
increases to 1 everywhere on “°¥;. By Monotone Convergence, it follows that

wi(zo,y;))Pido;(y;) | 7
1 V (w; (20, ;) |;/_<_1J>] <olTll.
£ J

jipi>1 J Hdwﬂ'j(xoayjﬂ

a5

sup w; (2o, 7)
2;ET0T; ||d9c7Tj (‘T07 Z])H

Jipj=1
This is exactly (5) when w is taken to be the standard n-tuple of coordinate vectors.
The leap from this case to the full condition (5) is accomplished by applying this
inequality just derived to the family of defining functions 7, as(x,y;) = m;(xo +
M(x — x0),y;) (with associated weight function wj ar(z,y;) = wj(zo + M(z —
x0),y;) for any n x n matrix M of determinant +1. Because the determinant of M
is magnitude one, one trivially has by (4) and a change of variables that

JILmas@lvae < imi TLis0
j=1 j=1

uniformly in M for any nonnegative Borel measurable functions f;. Therefore

q;
wj v (o, 2;)
Sup e 7
jipi=1 2;€EP0X; Hdwﬂ—j’M(l‘O’Zj)”
9y
’ -
II l/ (wj,M(ﬂfo,yj))pdej(yj)] ) < T
AC < :
Jopion Looms e (o, )P~

Now w; ar(zo,y;) = wj(zo,y;) for each y; € *°3;. The proof is therefore finished

once it is observed that ||dym; am(zo,y;)|| = ||demj(0,Y;)]lw When wi, ..., wy, are
the columns of M. Because one can construct such an M for any {w;}? ; with
| det{w;}™ ;| = 1, the testing condition (5) must hold. O
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To close this section, a final, brief justification of an earlier remark is in order.
By (77), if exponents p; and ¢; were chosen so that

m

kg
IL
=1 Pi
then one would instead have that
(79) 5 %7‘ / H \T; f1.6(x)|% dz
Bes (o) ;

has a limit as § — 07, the value of which is the same as the expression on the right-
hand side of (78). If the product of the weights H;n:l w;(x,y;) is anywhere nonzero,
the limit of (79) can arranged to be nonzero. However, the product H;"zl | fisllz
still remains finite as 6 — 0 while a finite positive limit for (79) implies that the
left-hand side of (4) tends to infinity, so one concludes that no such inequality (4)
can hold in this case.

6. APPENDIX

This last section is devoted to resolving some technical issues which arise from
the fact that the nondegeneracy assumption made for smooth incidence relations
(namely, that ¥ contains only those points of  at which ||d,7(z,y)|| and ||dy7(z,y)||
are nonzero) is of a qualitative rather than quantitative nature. Opting for a qual-
itative approach (i.e., making no assumptions about positive lower bounds for
ldem(z,y)|| and ||dy7(z,y)| and setting no minimum distance between points of
¥ and points on the boundary of Q or points at which ||d,7(z,y)| or ||dy7(z,y)]]
vanish) is in some sense necessitated by the fact that Theorem 1 is invariant un-
der all volume-preserving affine coordinate changes in = and y, a small fact which
nevertheless plays an important role to conclude Theorem 1’s proof near the end
of Section 5. As a consequence, it is possible in principle for the submanifolds 3
to have limit points at which certain undesirable things happen (e.g., points on the
boundary of  or points at which ||d, || vanishes for which every neighborhood has
infinite coarea measure).

The purpose of this section is to establish that there exist natural ways to localize
around “good” compact sets via continuous functions of compact support such that
no undesirable anomalies are encountered. Specifically, it will be established that
the manifolds *¥ and their measures can be exhausted by such good compact sets,
and that classical results like the Implicit Function Theorem hold in an appropriate
sense around such good compact sets.

The first step is to make precise exactly what these good compact sets are. For
the most part, the results in this section are sensitive only to one-sided behavior
of defining functions, so as was done in Section 2.1, one of the two sides will be
suppressed when possible.

Suppose  C R” is open and 7 :  — R* is smooth. Let E C £ be a compact
set such that 7(z) = 0 and ||d,7(z)|| # 0 for every z € E. Any compact set
K containing E will be called 7-close to E when K is contained in €2 and when
inf ek [|dzm(z)|| > 0. An open neighborhood U of E will be called w-close to E
when its closure is compact and m-close to E. Finally, a continuous function n on R™
will be said to be supported close to ¥, := {x € Q | w(z) =0 and ||d,7(z)| > 0}
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when it is compactly supported, ¥, Nsuppn is compact and supp 7 is w-close to
suppn N 2.

Proposition 7 establishes that continuous cutoff functions exist which are sup-
ported close to ¥, and either exhaust all of ¥ or concentrate around any single
T E Y.

Proposition 7. For any open set Q C R™ and any smooth function m : 0 — R,

(1) There is a sequence {n;}5°, of continuous functions supported close to X,

with values in [0, 1] such that

(80) / mdos < o0
pI.

for each i and such that n;(x) converges monotonically to 1 as i — oo for
all z € ¥. Here o, is the coarea measure dH" % /||d .

(2) For any x € X, there is a continuous function n supported close to Y.
taking only values in [0,1] having the property that

(81) 0< / nfdo, < oo
PP
for any nonnegative continuous function f on X, which is not equal to zero
at x.

Proof. Consider the sequence {n;}$2; from (80). For each z € X, ||dy7(z)] is
nonzero, so the Implicit Function Theorem guarantees the existence of a (Euclidean)
ball Bs(z) such that H"~*(Bs(x) NX,) is finite and nonzero, Bs(z) NS, is closed,

and inf , 5 |[dzm(2")]] > 0. Without loss of generality, it may be assumed that

Bs(z) € @ and o,(Bs(z)) is finite and nonzero. This ball will for the moment be
called the IFT ball at z. Let B be the collection of all balls in R™ with rational
radius and center point having all rational coordinates. For each B € B, let g be
a point of ¥ such that the IFT ball at xp contains B; if no such point exists, xp
remains simply undefined for this B. Note that it is not necessary for zp to belong
to B, only that the IFT ball associated to zp is sufficiently large that it contains
all of B. The set of all points xp defined in this way is countable because B is. We
claim that the union of balls B

(82) \J{B€B |p is defined }

for which zp is defined contains X,. To see this, let 2’ € X;. This 2’ has its own
IFT ball By (x'), and for any rational number §” < ¢’, there is a rational point
x” € Bg/(x') such that ' € Bsv (") C Bs(2'). Because this ball B” := B (a")
belongs to the rational collection B and is contained in the IFT ball By ('), the
point zp is defined for B”. Therefore the entire ball B” belongs to the union (82)
and consequently a2’ belongs to (82) as well.

Because (82) covers ¥, and because every B in the union (82) is contained in
an IF'T ball, there must exist a countable collection {Bs, (x;)}32; of IFT balls such
that (J;°, By, (x;) contains X.. For each integer N, let

_Jmin{1, N(6; — |lz — z;[))} =z € Bs,;(w;),
ean (@) = {o € R\ By, (z;).
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For each j, ¢; v is a continuous function supported on Bs,(7;), and ¢; y(z) is a
nondecreasing function of N which tends to 1 at all points of B, (x;) and is zero
everywhere else. Now define
(@) = max ;@)

for each ¢. It remains only to show that this sequence accomplishes the requirements
of the first part of this proposition. First, the support of 7; is contained in the
union U;’:l Bs, (x;) and consequently the intersection of the support of 7; and ¥,
is compact. The union [ J;_, Bs, (x;) is also 7-close to Xx NJ;_, Bs, (x;) because
||dzm(x)|| is bounded below by a positive constant on each ball. Because 7; < 1
everywhere, the integral of n; with respect to o is bounded above by o, (Bs, (1)) +
-+++0.(Bs,(x;)), which is finite. Lastly, 7;(x) is clearly nondecreasing as a function
of i for every z, and every x € X, is contained in some ball Bs,(z;) for some j,
which means that n;(x) — 1 as ¢ — oo because ¢;;(x) — 1 as i — oc.

For the second part of the proposition, one can simply take 1 to be ¢; ; for the
value of j such that 2 € Bs, (x;). The integral

/ () (@Yo (')

is never zero because the integrand always strictly bounded below on some small
ball centered at  and the (n — k)-dimensional Hausdorff measure of ¥ intersected
with any small ball centered at x is positive, meaning that the measure of that ball
with respect to o is positive. (Il

Note that when applying Proposition 7 to slices 3 or XY of a two-sided defining
function 7(z,y), the domain Q of 7(z,y) can without loss of generality be inter-
sected with the open set on which ||d,7(x,y)|| > 0 and ||dym(z,y)|| > 0 to avoid
any issues related to the fact that on its face, the proposition only enforces one or
the other of these two inequalities through the definition of support close to X5
(where 7 is obtained from m(z,y) by freezing one of either x or y).

The next step is to establish a number of local continuity/uniformity results for
smooth perturbations of the map 7. The main result in this direction is Lemma 2,
but first an auxiliary proposition is necessary. This proposition can be thought of
as a topological extension of the classical Implicit Function Theorem.

Proposition 8. Let E,G C R" and F C R’ be compact sets. Suppose that ®(x,y)
18 a smooth map from some neighborhood of E X F into R™ such that

e [or each y € F, the map x — ®(z,y) is one-to-one on E.

e For eachy € F and z € G, there is an © € E such that ®(z,y) = z.

e For each (z,y) € E X F, D, ®(z,y) is rank n.
Then there exist neighborhoods U of E and V' of F, each with compact closure, such
that U x V is contained in the domain of ® and

e For each y € V, the map x +— ®(x,y) is one-to-one on U.

e For eachy €V and z € G, there is an x € U such that ®(z,y) = z.

e For each (z,y) € U x V, D, ®(z,y) is rank n.

Proof. When E, F, and G are all singleton sets, this proposition is essentially
the Implicit Function Theorem (as in that case, the assumptions are merely that
points z,y, z exist with ®(z,y) = z and D,®(x,y) is full rank, and the conclusion
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are that ®(z’,y’) is one-to-one for all 2’ in some neighborhood of z, provided g’ is
sufficiently close to y, and that the equation ®(a’,y’) = z has a solution 2’ in the
given neighborhood of x for each 3’ close to y). The bulk of the work to establish this
proposition is to show that the local information provided by the Implicit Function
Theorem can be consistently glued together on (presumably larger) compact sets.

Let j be any positive integer and define U; to be the 1/j-neighborhood of E and
V; be the 1/j-neighborhood of F' with respect to Euclidean distance. Compactness
of F x F' guarantees that for all sufficiently large j, the closure of U; x V; will be
contained in the open set on which ® is defined and that ||d; ®(x, y)|| > 0onU; x V;
as well. Suppose that among the indices j satisfying these constraints, there is none
such that ®(-,y) is one-to-one on FJ for all y € VJ This implies the existence of
twin sequences (z;,y;) and (z,y;) belonging to U, x Vj for each large j such that
®(zj,y;) = ®(2},y;) but x; # z). Let &;, £, and 7; be points in F, E, and F,
respectively such that [|z; — &;l| < 1/4, ||z} — &Il < 1/3, and [ly; — n;l| < 1/3 for
each large j. Compactness of £ and F' implies that one may pass to a subsequence
Ji such that &;,, f;‘w and 7);, converge as i — 0o to some points £ € E,{ € E,
and 7 € F, respectively. Consequently (zj,,y;,) — (§,n) and (2 ,y;,) = (§',n)
as i — oo. Continuity of ® also guarantees that ®(&,7n) = lim;_o ®(z,,y,,) =
lim; 0 (2}, 95,) = ®(¢',n), but by assumption on ®, ®(-,n) is one-to-one on
E, implying that § = &’. Thus (z;,,y;,) and (z7,,y;,) both converge to (£,n) as
i — 00. But now because D, ®(&, ) is nonsingular, the Implicit Function Theorem
implies the existence of an open neighborhood A x B of (§,n) such that ®(-,7) is
one-to-one on A for all n € B. Since (z;,,y;,) and (2, y;,) both belong to A x B
for all i sufficiently large, the equality ®(z;,,y;,) = ®(),,y;,) forces z;, = 2/ for
all ¢ sufficiently large, causing a contradiction.

Note the following mild self-improvement of the result just obtained: because
the sets 7] and Vj are decreasing as a function of j, it follows that for all sufficiently
large j, j' with j° > j, ®(-,y) must be one-to-one on U; for all y € V;, and that
D, ® must be full rank on 7] X W Suppose, for some such large fixed j, that there
is no j' > j such that G C ®(U;,y) for all y € V;,. This would imply the existence
of a sequence of points (y;, z;:) € Vj» x G such that ®(U;,y;/) does not contain z;..
Passing to a subsequence as above implies that there are points n € F and ( € G
such that (y;/, zj:) = (,() as i — oo. By assumption, there exists an x € £ such
that ®(z,n) = ¢. By the Implicit Function Theorem applied to ® at the point (z,7),
there must exist a continuous function y, z — £(y, z) defined on some neighborhood
B x C of (n,¢) such that £(n, () = x and ®(£{(y, 2),y) = z for all (y,2) € BxC. For
all i sufficiently large, (y;:,2;/) belongs to B x C' and consequently x;: := §(y;1, 25/)
is well-defined for sufficiently large i and satisfies @(leg,yjé) = zj;. Because ¢ is
continuous, z;; converges to x € £ as ¢ — 00, meaning in particular that xj; must
indeed belong to U; for i large enough and consequently that z; € o(U;, yjlg) after
all. Therefore taking V' := V, for some sufficiently large j° > j will achieve the
desired conclusions of the proposition. O

Proposition 8 will now be applied to establish Lemma 2, which proves a number
of important stability results for the level sets ¥, when the map 7 is smoothly
perturbed. Throughout the lemma, the parameter p represents the smooth pertur-
bation parameter while x continues to represent the “spatial” variable in which the
perturbed level sets reside. In particular, given a smooth map 7« from some open
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subset of R™ into R*, the notation ¥, continues to refer to those points x in the
domain of 7 for which 7(z) = 0 and ||d,7(z)|| # 0.

Lemma 2. Suppose that 7 is a smooth map defined on some open subset of R™ x R?
with values in R¥; for each p € RY, let Q, C R™ be the set of points x € R™ such that
(z,p) belongs to the domain of m and let m, : 2, — R¥ be given by m,(z) := n(x, p)
for each x € Q. Assuming that o is nonempty, let E C X, be compact and
let K C RY be any compact set which is mo-close to E. There exist an open set
Q containing K which is wg-close to £, a § > 0, and a smooth R™-valued map ¥
defined on a neighborhood of Q x Bs(0) C R™ x RY such that

o The domain of ¢ is contained in the domain of m and K C Q, for all
Il < 0. B

e For each ||p|| < &, the map ¢, : Q& — R™ given by ¢,(x) := Y(x,p) is
one-to-one and Dy, (x) is nonsingular at every x € Q. Moreover, for each

Ipll <6, K C1,(Q) C,(R) € Q, and
7p(Vp(2)) = mo(z) for all x € Q.

e Forallz € Q, Yo(x) =x. Asp— 0, ¥,(z) converges uniformly on Q to x
and Dy,(z) converges uniformly on Q to the n x n identity matriz for all
e

o The set ¥gq = Xr, NQ is an embedded (n — k)-dimensional submanifold
of R™ with finite (n — k)-dimensional Hausdorff measure and |d,mo|| is
bounded between two positive constants for all x € ¥ q. The my-coarea
measure of Yo o 1s finite as well.

e For all ||p|| < 6, the map v, restricted to oo parametrizes an (n — k)-
dimensional embedded submanifold on which m, is identically zero. The
submanifold contains all points ¥, k = {x € K | mp(x) =0}. The quan-
tity ||demp(¥p(2))|| is bounded uniformly between positive finite constants
independent of p on X and the Hausdorff and m,-coarea measures of
¥p(Zo.0) are uniformly bounded for all ||p|| < 6. The measure w,dH"* on
Yo. which pushes forward to Hausdorff measure dH" ™ on 1,(X0.q) has
density wy, which converges uniformly to 1 on o q as p — 0.

Proof. Let E and K be as indicated. Because K is mg-close to E, it is in particular
true that ||d,mo(x)| must be well-defined and strictly positive on some neighbor-
hood of K. Consequently, any point z € K at which mp(xz) = 0 automatically
belongs to Y., (i.e., it has ||d;mo(z)|| > 0). Continuity of my and compactness
of K guarantee that K N X,  is compact, and one may invoke the Implicit Func-
tion Theorem to cover it by finitely many balls B of finite radius such that that
KNZX; NB is an embedded submanifold of dimension n — k in R” with finite
(n — k)-dimensional Hausdorff measure as well. Thus, geometrically, the level sets
of my are straightforward on K (or any set which is mp-close to E).
Now consider the map

®(2,¢,p) = m(z + (Dam(2,0))¢, p) = 7(x,0),
which is well-defined on some open subset containing K x {0} x {0} C R™ x R¥ x
Rf. At any point (x,0,0) for z € K, the Jacobian matrix D¢®(z,0,0) equals

D, mo(z)(Dymo(x))T, which is nonsingular because D, m(z) is full rank at all points
of K. Additionally, for all (z,p) € K x {0}, ®(x,0,p) = 0. Proposition 8 will

Licensed to Univ of Pennsylvania. Prepared on Fri May 16 18:54:15 EDT 2025 for download from IP 165.123.34.86.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



TESTING FOR MULTILINEAR RADON-BRASCAMP-LIEB 797

now be applied in a slightly counterintuitive way: ®(z,(,p) will be regarded as a
function of ¢ € R* with parameters (z,p) € R"*. The set E from Proposition
8 will simply be {0} C R¥, and likewise G := {0} C R*. The set F will be
K x {0}. By Proposition 8, there exists a neighborhood of K x {0} C R™ x Rf,
which without loss of generality may be written Uy x Bs, (0) for some neighborhood
U; of K and some ¢; > 0, and an € > 0 such that ¢ — ®(z,(, p) is one-to-one for
all (x,p) € Uy x Bs,(0) when ¢ belongs the ball B.(0). Moreover ®(x,(,p) = 0
has a unique solution ¢ € B(0) for all (z,p) € U; x B, (0). Thus there is a map
¢ : Uy x Bs,(0) = Be(0) for which ®(x,{(z,p),p) = 0. Because D ® is full rank for
all (z,¢,p) € Uy x Bc(0) x Bs,(0), the Implicit Function Theorem guarantees that
this map ((z,p) is smooth on Uy x Bs, (0). Since ¢ — ®(x,(,p) is one-to-one for
any (z,p) € Uy x Bs, (0) and ®(,0,0) = 0 for all z € Uy, it follows that ((z,0) = 0
for all = € U,. Shrinking U, as necessary, it may be assumed that U, is mo-close to
E.

Now consider the smooth function ¥(x,p) := x + (D,7(z,0))?¢ (2, p). This map
is well-defined on U; x Bg, (0) and smooth on the interior. When p = 0, ¢(x,0) is
the identity map on Uy, so in particular D,1)(x,0) is the identity matrix on all of
K. Tt is also trivially true that all z € K admit an € K such that ¢(z,0) = 2
(namely, © = z). Let us also temporarily restrict the domain of ¥ to only those
pairs (z,p) € Uy x Bs, (0) which are at a distance at least 6y > 0 to the boundary
of the domain of 7 and have such ||d,7m(x,p)|| > ¢ and ||d 7 (Yp(z),p)|| > ¢ for
some fixed ¢ > 0. This can clearly be done in such a way that the set K x {0}
still belongs entirely to the domain of ¥ because K is compact and ||d,7(z,0)| =
ldsm(wo(x),0)|| is never equal to zero for any x € K. Now apply Proposition 8
again: let F and G both equal the set K C R” and let F equal {0} C R’ and apply
to the map 9 (z,p). It follows that there exists an open set 2 containing K and

a § > 0 such that v is defined on Q x Bs(0) and has the property that D, (z,p)

is nonsingular on Q x Bs(0), that 1,(x) := t(z,p) is one-to-one on Q2 for each
Ilpll <98, and K C ¢,(2) for all ||p|| < 6. Because the domain of ¢ was temporarily
restricted before the application of the proposition, 2 is mg-close to E, the closure
of the domain of % is contained in the domain of 7, and ||d,mp(x)|| > ¢ for all
(z,p) € Q x Bs(0). (And also note that 1 is defined and smooth on U; x Bs, (0),
which is an open neighborhood of Q x Bs(0).)

It remains only work through the promised bullet points:

e Taking the domain of ¢ to be Uy x Bs, (0), it is immediate by the first
application of Proposition 8 that this product set is contained in the domain
of m. Moreover K C Uy, so K x Bg,(0) is contained in the domain of 7,
meaning K C Q, for all ||p|| < d1.

e It is a direct consequence of the second application of Proposition 8 that
1, is one-to-one on () for all ||p|| < & and that the Jacobian D1, (x) is
never singular on Q x Bs(0). It is also immediate that K C v,(Q) for each
Ipll < 4. It is less obvious that v,(Q) C €, for each |[p|| < §. To see
why, observe that ((z,p) is defined on all of Uy x Bg, (0), which necessarily
requires that ¢(x,p) € Q, for any x € U; and |p|| < 01 (by virtue of
the definitions of ((z,p) and 3 (x,p)). Because Q x Bs(0) is contained in
Uy x Bs, (0), it must be the case that 1, (Q) C €, for all ||p|| < §. Finally, the
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identity mp,(¥p(2)) = mo(x) follows directly from the definitions of ((x,p)
and ¥ (x,p).

e The observation ((x,0) = 0 for all z € U; guarantees that iy(z) = x for
all x € U;. Smoothness of ¥(z,p) in both variables and compactness of
Q C U, give the desired uniform convergence properties as p — 0.

e Because Q is mg-close to E, it is necessary (just as was shown for K itself
at the beginning of the proof of this lemma) for ¥ o to be an embedded
submanifold with finite (n — k)-dimensional Hausdorff measure. Because
Q is compact and |d,mo(x)| is strictly positive there, ||d,mo(z)|| must be
uniformly bounded above and below on © by positive constants, which
implies comparability of the Hausdorft and my-coarea measures on X q.

e The image 1, (2¢,q) is an embedded submanifold because v, is one-to-one
and has everywhere nonsingular Jacobian on some open set containing the
(compact) closure of ¥ o. On this submanifold, 7, is identically zero sim-
ply because m,(¢p(z)) = mo(x) and mo(x) vanishes on X . The image
¥p(Z0.q) contains all points in K at which 7, = 0 by virtue of the fact that
K belongs to the domain of ;! for all ||p|| < d: if m, () = 0 for some = € K
and some [[p]] < 8, 0 = my(z) = mp(p(e; (@) = 0 = mo(wy (&), so
1/);1(:13) is the point in © whose image via v, is ¢ € K. Because of the tem-
porary restriction of the domain of 1) imposed before the second application
of Proposition 8, it must be the case that ||dy7(z, p)| and ||d7(¥p(z), p)||
are bounded uniformly above and below by positive constants on all of
Q x B;(0), which guarantees comparability of (n — k)-dimensional Haus-
dorff measure and the m,-coarea measure on the submanifold (X q).
Finiteness of the Hausdorff measure follows from the fact that the norms
of || Dythp|l and || Dyt ! || are necessarily uniformly bounded above and be-

low on all of Q by continuity of D,, and the fact that it is everywhere
full rank. The density w,(z) on Yoo that pushes forward to Hausdorff
measure must equal /det(Dyt),(vs) - Dotp(v)))i jequ,... .n—k} for any n —k
orthonormal vectors vy, ..., v,—; tangent to Xg o at the point € ¥ .
Since D,1, converges uniformly to the identity on €, this density must
converge uniformly to 1 as p — 0.

This finishes the proof of the lemma. O

A key corollary of Lemma 2 is that integrals on ¥, are continuous functions of
p at p = 0 when the integrands are continuous and supported close to ¥, .

Corollary 3. If m, is a smooth family of maps from open sets in R™ into R (such
that the set in R™ x R® of points (z,p) in the domain of m,(x) is open and 7 is
smooth as a function of (x,p) there) and 7 is a continuous function on R™ which
1s supported close to X, then

83 lim do, = doy, .
(53) iy [ o, = [ o,

Proof. Apply Lemma 2 with K equal to the support of n and E := suppn N X,.
For all ||p|| < 4, the integral
/ ndox,
b

p
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must be finite because 7 is bounded and the intersection of the support of n with
¥r, is exactly the set ¥, ;¢ from Lemma 2, which has finite 7)-coarea measure for
all sufficiently small p. For all such p, one can parametrize ¥, N K in terms of 1,
to obtain the identity

dH"F dH"F(z)
d T, — T — _
/ e / Wil = oy, MO
Now for every ||p|| <, the function
77(%(33))%(93)
| domp(¥p ()]

is bounded on as a function of x € ¥y o and p, and it moreover converges pointwise
to n(x)/||dymo(x)|| for all x in its support as p — 0. Finiteness of the (n — k)-
dimensional Hausdorff measure of ¥ o allows one to use the Lebesgue Dominated
Convergence Theorem to immediately conclude (83) for any sequence of parameters
p tending to 0. |

The final technical result of this section is the Fubini-type identity for coarea
measure which was used in Section 3.1 to prove Theorem 3.

Proposition 9. Suppose (2,7, %) is a smooth incidence relation on R™ x R™ of
codimension k. If F' is any nonnegative Borel measurable function on %, then

o L[ [ [ o]

Proof. Let g be any continuous function of compact support contained in §2 such
that both ||d,7(x,y)|| and ||dy7(z,y)| are both strictly positive on the support of
g. The coarea formula (e.g., Federer [29] Theorem 3.2.12 when k < min{n,n’} and
Theorem 3.2.5 when k = min{n,n’}) dictates that for any continuous ¢ on R¥,

/w(ﬂ(a?,y))g(a?,y)dwdy=/w(U) / /m(w)_ug(a?,y)wdy du

|dem(z, y)l

= /w(U) ;/n/w(w)_ug(x,y)%dx] du

dH™ R, y)
= [ »(u) / 9(a,y) ———— < | du.
/ (z,y) :m(z,y)=u Hdw,yﬂ'(xay)‘l

Here the identity (11) has been implicitly used, as the coarea formula is typically
written with \/det(D,7(z,y))(D.7(z,y))T in the place of ||d,7(z,y)||, etc. Like-
wise, in the final equality, the coarea formula is applied treating both z and y
variables as components of a single point (z,y) € R . Because ||d, ,m(z,y)|> >
|l dom (2, y)||2+ ||dym(z, y)||?, it must be the case that ||d; ,m(z,y)]|| is bounded below
on the support of g.

For each u € R¥ and each y € R"/, the function g(-,y) is supported close to the
smooth zero set of the map y — 7(x,y) — u because the lower bound for ||d,7|| on
the support of g guarantees that the intersection of this support with the zero set
of m(z,y) —u will also be compact. Consequently, Corollary 3 implies that the map

dH* (z)
(y,u) = 9(x,y) o
z:m(z,y)=u ||dx7T(£L',y)H
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is continuous. The support of this function in the variables (y, u) is also necessarily
compact, and so as a consequence

dH"F(z)
u— 9(@,y) T~ dy
/"’ /a::ﬂ'(z,y)—u ||d957r($7 y)”

is a continuous function of u. Likewise

/ / romn Dol ;( (y>)||d9”

is a continuous function of u, as is

wes oo,y @)
@) ir@y)=u  Ndeym(@y)|

By choosing an appropriate sequence of functions ¢ concentrating around the point
u = 0, it follows that

fo L ezl o= [ i o

AH™ R (2, y)
= g .’E,y _—
/z: @@l

The goal now is to extend (85) to successively larger classes of functions g.

Fix any compact set K C Q on which ||d,7(z, y)|| and ||d,7(z, y)|| never vanish.
By compactness of K and the Implicit Function Theorem, there is a neighborhood
U of K N'Y such that U N'Y is an embedded submanifold of R™™"" of codimension
k with finite (n + n’ — k)-dimensional Hausdorff measure. Let £ C K N'Y have
(n+n’ — k)-dimensional Hausdorff measure equal to zero. For any positive € and ¢,
we may cover E by countably many Euclidean balls B; of radius at most § such that
Zj dH”*”'*k(Bj N E) < e. By taking ¢ sufficiently small, it may be assumed for
each j that (85) holds when g := ¢; for some continuous nonnegative function ¢;
which is identically 1 on B; and identically zero on the complement of the double of
B;. By Monotone Convergence, the identity (85) holds also for g := ;- Since
g dominates the characteristic function of E, letting €, — 07 implies that (85)
also holds whenever g is the characteristic function of a (n 4+ n’ — k)-dimensional
null set contained in K N ¥ (and, crucially, that all three integrals vanish). An
important consequence is that any such null set E has the property that *X N E is
an (n’ — k)-dimensional null set for almost every x € R™ and similarly ¥ N E' is an
(n — k)-dimensional null set for almost every y € R™ .

Now continuous functions on the submanifold U N X% are dense in the integrable
functions with respect to (n + n’ — k)-dimensional Hausdorfl measure on U N X.
Likewise, all continuous functions supported on the submanifold U N'% have exten-
sions to R x R™ supported on some fixed compact set K containing K and having
the property that ||d,7(x,y)|| and ||d,7(x,)|| never vanish on K. Thus given any
Borel function g on UNY which is integrable with respect to (n+k’—k)-dimensional
Hausdorff measure on ¥, there must be a sequence {g; };‘;1 be a sequence of con-

(85)

tinuous functions on K such that
dH™ R (2, )
Ig z,y) — 9T Y| ————

<9277,
l|dzym (2, )
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Exponential convergence implies that

Joe) n+n'—k T
(56) L3 lote) = e T G <

which in turn means that the sum over j inside (86) is finite on UNY except possibly
for some (n +n’ — k)-dimensional null set. This means that g; must converge to j
almost everywhere on U N %, and consequently it means that for almost every =z,
g;(z,y) converges to g(z,y) almost everywhere on *X (and likewise g; converges
to g almost everywhere on X¥ for almost every y). By Dominated Convergence
(using the dominating function |g1(z,y)| + 3255, 9;(7,y) — gj—1(2,y)|) one can
apply (85) to each function in the sequence g; and pass to the limit as j — oo to
conclude that (85) holds for g itself. If g is nonnegative but not integrable on X, the
identity (85) can still be seen to be true for g by bounding it below by a sequence
of Borel-measurable simple functions whose integrals tend to co.

Finally, taking a sequence of sets K, defined to be those points (z,y) € 2 at
which [[z[|+ly[| < m, dist((z,y), Q) = 1/m, [|de7(z,y)|| = 1/m, and |[dy7(z, y)[| =
1/m gives an increasing sequence of compact sets on which ||d,7(z,y)| and
|ldym(z,y)|| never vanish. The union of these sets is exactly the set of points in
2 at which ||dg7(z,y)| and ||dy7(x,y)| are nonzero, and so

Jim (@, y)xr, (2,9) = 92, V)X (@) dan (el Idyw(2.9) >0

Because (85) is already known to hold for the function g(x,y)xx,, (x, y), it follows by
Monotone Convergence that (85) must hold for any nonnegative Borel-measurable
function g. O
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