The All Nearest Smaller Values Problem Revisited in Practice,
Parallel and External Memory

Nodari Sitchinava
University of Hawaii at Manoa
Honolulu, HI, USA
nodari@hawaii.edu

ABSTRACT

We present a thorough investigation of the All Nearest Smaller
Values (ANSV) problem from a practical perspective. The ANSV
problem is defined as follows: given an array A consisting of n
values, for each entry A; compute the largest index [< i and the
smallest index r > i such that A; > A; and A; > A,, i.e, the in-
dices of the nearest smaller values to the left and to the right of A;.
The ANSV problem was solved by Berkman, Schieber, and Vishkin
[J. Algorithms, 1993] in the PRAM model. Their solution in the
CREW PRAM model, which we will refer to as the BSV algorithm,
achieves optimal O(n) work and O(log nn) span. Until now, the BSV
algorithm has been perceived as too complicated for practical use,
and we are not aware of any publicly available implementations.
Instead, the best existing practical solution to the ANSV problem is
the implementation by Shun and Zhao presented at DCC’13. They
implemented a simpler O(nlog n)-work algorithm with an addi-
tional heuristic first proposed by Blelloch and Shun at ALENEX’11.
We refer to this implementation as the BSZ algorithm. In this paper,
we implement the original BSV algorithm and demonstrate its prac-
tical efficiency. Despite its perceived complexity, our results show
that its performance is comparable to the BSZ algorithm. We also
present the first theoretical analysis of the heuristic implemented
in the BSZ algorithm and show that it provides a tunable trade-off
between optimal work and optimal span. In particular, we show
that it achieves 0(71 (1 + lolg(;n)) work and O(k(l +log %)) span,
for any integer parameter 1 < k < n. Thus, for k = ©(log n), the
BSZ algorithm can be made to be work-optimal, albeit at the ex-
pense of increased span compared to BSV. Our discussion includes
a detailed examination of different input types, particularly high-
lighting that for random inputs, the low expected distance between
values and their nearest smaller values renders simple algorithms
efficient. Finally, we analyze the input/output (I/O) complexities of
the BSV algorithm.

CCS CONCEPTS

« Theory of computation — Shared memory algorithms.

Work supported by Independent Research Fund Denmark grant 9131-00113B and
National Science Foundation grant CCF-1911245.

@ @ This work is licensed under a Creative Commons Attribution-
BY NC ND NonCommercial-NoDerivs International 4.0 License.

SPAA °24, June 17-21, 2024, Nantes, France

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0416-1/24/06.
https://doi.org/10.1145/3626183.3659979

Rolf Svenning
Aarhus University
Aarhus, Denmark

rolfsvenning@cs.au.dk

KEYWORDS

Algorithm analysis, parallel algorithms, external memory, PRAM,
algorithm engineering, all nearest smaller values problem, ANSV

ACM Reference Format:

Nodari Sitchinava and Rolf Svenning. 2024. The All Nearest Smaller Values
Problem Revisited in Practice, Parallel and External Memory. In Proceedings
of the 36th ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA °24), June 17-21, 2024, Nantes, France. ACM, New York, NY, USA,
10 pages. https://doi.org/10.1145/3626183.3659979

1 INTRODUCTION

1.1 The All Nearest Smaller Values problem

In the All Nearest Smaller Values (ANSV) problem, we are given an
array A consisting of n totally ordered elements Aj, Az, As, ..., Ap,
referred to as the values. The objective is to compute for each value
the indices of the nearest smaller values to its left and right. Specif-
ically, for a given value A;, find the index [of the nearest smaller
value A; on its left. This index is [= max{j|Aj <AiNj< i},
where Aj is termed the left match of A;. Similarly, the nearest smaller
value on the right, or the right match, should also be computed.
The output of the problem is two arrays, L and R, each of size
n. These arrays store the indices of each element’s left and right
matches in A, respectively. For simplicity, we extend A such that
Ap = Ayt = —oo, and let the index 0 indicate that a value has no
left match, and the index n + 1 that a value has no right match. All
entries of L are initially 0, and all entries of R are initially n + 1.

As is standard, we assume without loss of generality that all
values in A are distinct. The case with equal values can be handled
by simple modifications of the input and running the algorithm
twice, once for left matches and once for right matches. We adopt
the same notation as in [6] such that I[(A;) and r(A;) denote the
indices of the left and right match of A;, respectively.

ANSYV is a fundamental problem since many problems directly
reduce to an ANSV computation or ANSV can be used as an impor-
tant subroutine. A non-exhaustive list of such problems is: finding
the min/max among n elements, merging sorted lists, constructing
Cartesian trees [23], monotone polygon triangulation, range min-
imum queries, parenthesis matching, binary tree reconstruction.
See [4-6] for more details.

To highlight one example, consider merging two sorted lists,
a=a1,a2,a3,...,an and b = by, by, b3, ..., by,. This task directly
reduces to computing the ANSV on aorev(b), where rev(b) denotes
the reverse of list b, and o represents concatenation. Specifically,
the position of each a; and b; in the merged list can be determined
asn+m—r(a;)+i+1andI(bj) + j+ 1, respectively, where r(a;)
and I(b;) are the indices of the right and left matches for a; and b;
in a orev(b).

https://orcid.org/0000-0001-8876-4846
https://orcid.org/0000-0002-9903-4651
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1145/3626183.3659979
https://doi.org/10.1145/3626183.3659979

SPAA 24, June 17-21, 2024, Nantes, France

1.2 Models of computation

For analyzing algorithms, we focus on the CREW PRAM [14, 15]
and the external memory (EM) [1] models of computation and the
only allowed operations on values are comparisons. The CREW
PRAM model is characterized by multiple processors operating
synchronously on shared memory with concurrent reads (CR) and
exclusive writes (EW) capabilities. Algorithms in this model are an-
alyzed in terms of work — the total number of operations performed
by all processors, and span — the depth of the longest computation
path using an infinite number of processors. We adopt the nota-
tion Tp to denote the time it takes to execute an algorithm on a
P-processor CREW PRAM. Then work and span correspond to T
and T, respectively. Analyzing just work and span is sufficient
because Brent’s scheduling principle [9] can then be used to obtain
the runtime Tp for an arbitrary number of processors P > 1 as
Tp = 0(% + Too),

The EM model by Aggarwal and Vitter [1] (also known as the
ideal-cache model [11]1) is characterized by a processor with an
internal memory of size M and an infinite external memory. Ini-
tially, the input of size n is placed in [5] consecutive blocks of B
consecutive elements in the external memory. Each processor can
perform input/output (I/O) operations to move a block of elements
between the external and internal memories and data must be in
the internal memory to perform any computation on it. The cost in
this model is the number of I/Os performed. If an algorithm does
not use the parameters M and B in its description, it is referred to
as being cache-oblivious [11].

Arge et al. [2] extended the EM model to the parallel setting. The
Parallel External Memory (PEM) [2] model consists of P processors,
each containing internal memory of size M and sharing the external
memory. The I/Os are performed in parallel, with a parallel I/O
consisting of up to P processors transferring one block in each time
step. Since no equivalent to Brent’s scheduling principle exists in
the PEM model, analysis of parallel I/Os must be performed for a
specific value of P.

1.3 Previous results

Sequentially, the ANSV problem can be solved in linear time and
O(%) I/Os cache-obliviously using a stack to push elements from
left to right. Before each element A; is pushed on the stack, pop
all elements larger than A; from the stack. The remaining element
at the top of the stack is smaller than A; and is the left match of
A;. Right matches can be found similarly. This algorithm behaves
exactly like the stack-based algorithm in [12] for constructing Carte-
sian trees. Instead of a stack, a simple implementation using arrays
can also be employed [3].

We call the stack/array-based algorithm SEQ. These approaches
are based on the following basic observation.

The main difference between the EM and the ideal-cache models is that in the ideal-
cache model the transfers between the internal and external memories are delegated to
a separate omniscient paging algorithm. Therefore, the paging algorithm can optimize
the I/Os based on its knowledge of future accesses and performs no worse than any
explicitly stated block transfer algorithm in the EM model. The well-known resource-
augmentation result [11] states that any reasonable automated paging algorithm, e.g.,
the one that evicts only the least-recently-used (LRU) block from the internal memory,
with internal memory size of 2M performs asymptotically similarly to the omniscient
paging algorithm with internal memory of size of M.

Nodari Sitchinava and Rolf Svenning

OBSERVATION 1. The matches in the ANSV problem are non-
overlapping. That is, for any value A; with a right match r;, there is no
other value Aj for j < i with a right matchrj, such thati <rj <r;
(likewise for the left match).

In the parallel setting, Berkman, Schieber, and Vishkin (BSV) [6]
presented an optimal O(n) work and O(loglogn) span algorithm
in CRCW PRAM and an optimal O(n) work and O(logn) span
algorithm in CREW PRAM. The latter is our focus and we call this
the BSV algorithm. In the literature, their work-efficient algorithm is
perceived as being "very complicated” [8, 19]. They also presented a
much simpler O(nlogn) work and O(log n) span algorithm which
we call the work-inefficient BSV algorithm. The algorithm proceeds
in two stages, first, it constructs in O(n) work and O(logn) span
(see [6] section 3.2) a balanced binary tree with the values A stored
in its leaves in the original order. Each internal node then takes the
value of the minimum of its children. We call this a min binary tree.
Second, to find the left match of A; it follows the path towards the
root until a left child has a value smaller than A;. From that child, it
follows a path towards the leaves always choosing the right child if
its value is smaller than A;. It is straightforward to see that this finds
the left match I(A;) in O(log n) time and symmetrically the same
for right matches. This algorithm was implemented for parallel
Lempel-Ziv factorization by Shun and Zhao [20] and Cartesian tree
construction by Blelloch and Shun [8, 19] where ANSV was used as
a subroutine. Interestingly, Blelloch and Shun added a surprisingly
effective heuristic, and in [8] they write:

"... we note that the ANSV only takes about 10% of the
total time even though it is an O(nlogn) algorithm.
This is likely due to the optimization discussed above."

In their paper, the role of the heuristic was not emphasized as a
critical element, and its operational details were somewhat unclear
to us.

However, this heuristic is implemented in the publicly available
code [21], and we provide an in-depth explanation of it in Section
1.4. In this paper, we analyze the heuristic and show that it results
in a provably better work than O(nlogn) and provides a tunable
trade-off between work and span.

Generally, the BSV algorithm generalizes well to parallel models
other than PRAM and has been adapted in various other models. For
example, it has been used to solve ANSV in the bulk synchronous
parallel model [13] and a formal derivation using Coq [18]. It has
been implemented in the Distributed Memory models, both in the-
ory [16] and in practice using MPI [10]. In the hypercube model, the
ANSV was solved in optimal O(log n) time with n processors [17].

1.4 The BSZ algorithm

In this section, we describe the BSZ algorithm and the heuristic in
detail. We begin with the heuristic which is based on an integer
parameter 1 < k < n and modifies the simple O(nlogn) work-
inefficient algorithm [6] in three ways. :

H1 Partition the input into [%1 blocks of size k (except the
last block which may not be full). For each block run the
sequential ANSV algorithm to find all matches within the
block, we call these local matches.

H2 When using the min-binary tree to search for a match, per-
form an exponential search in the direction of the match,

The ANSV Problem Revisited

to find it in O(log d) time, where d is the distance in the in-
put to the match. To do this, in addition to following parent
pointers also move horizontally in the tree. In the code, they
facilitate this by implementing the binary tree as an array
of arrays, where the secondary arrays store the nodes at a
given height.

H3 For each block, the elements without a right match form
an increasing sequence (Observations 1a and 1b in [6]). In-
stead of finding the remaining right matches in parallel, do
so sequentially from right to left. When performing an ex-
ponential search for the right match, start from where the
previous search ended. Symmetrically for the left matches.

In short and focusing on the right matches, computing the local
matches in each block leaves an increasing sequence of 1 < d < k
unmatched values at indices u1, u, us, ..., 4. Thus, proceeding from
right to left, for each pair of adjacent unmatched values A, | and
Ay;, the search in the min binary tree for the match of A,, , can
start from where A, found its match.

The BSZ algorithm works on a global array A of n values and
stores the right matches in an array R of n matches, all initialized to
n+1 (we omit the left matches for simplicity). It is supplied with the
hyperparameter k and has access to a min binary tree T on A, which
can be built in O(n) work and O(log n) span. We adopt the Python
notation for subarrays where A[x : y] denotes [A; | x < i < y] and
the notation A’ = A[(i — 1)k + 1 : min(ik, n) + 1] for the ith block
of A. The BSZ algorithm is described in pseudocode as Algorithm 1.

Algorithm 1: The BSZ algorithm for ANSV
Output: Computes the right matches of A and stores them
inR
1 fori =1to [n/k] in parallel do

2 Compute local matches in A? using the SEQ algorithm
and store them in R

3 start «— min(ik, n) + 1

4 for j = min(ik, n) downto (i — 1)k + 1 do

5 if Rj == n+ 1 then

6 Rj «<— matchRight(start, j) // traverses T

from index start for the match of A;
7 start «— R;

1.5 The BSV algorithm

This section presents an overview of the BSV algorithm as described
in [6]. The algorithm is described in pseudocode as Algorithm 2.
Like the BSZ algorithm, the BSV algorithm operates on global ar-
rays A and R, each of size n, representing values and their right
matches, respectively. For simplicity, we omit left matches. The
algorithm uses a min binary tree T based on A and is supplied
with a hyperparameter k. Initially, the algorithm computes the
local matches within each block A’. It also determines the index
im of the smallest value A;,, in each block, along with its left and
right matches [(4;,,,) and r(4;,,), respectively. This latter is done
by traversing the min binary tree T. The results are stored in ar-
ray M. While using M is not mandatory, it prevents redundant

SPAA 24, June 17-21, 2024, Nantes, France

searches in the tree. Then, for each block, the algorithm identifies
the boundaries of a merging problem in constant time based on
the contents of M (refer to Lemmas 3.3 and 3.4 in [6] for details).
For1 < a < b < ¢ <d < nthe two subsequences A[a : b] and
Alc : d] that are merged may be far apart. Through this merging
process, the algorithm identifies all the right matches for A[a : b]
and the left matches for A[c : d]. Note that each block defines at
most two merging problems, leading to a total of O(%) merging
problems. By setting k = ©(log n), traversing the tree a constant
number of times for each block results in ©(n) work. Similarly,
computing local matches within a group or performing a merge
can be accomplished in ©(k) = O(logn) time.

Algorithm 2: The BSV algorithm for ANSV
Output: Computes the right matches of A and stores them
in R
1 M «— Array of size [n/k] // For storing information
to identify merging problems
2 fori =1to [n/k] in parallel do
3 Compute local matches in A' using the SEQ algorithm

and store them in R!
4 im «— index of min value in A’
s | M[i] «— {im.1(Ai,).7(A;,)} // Uses T

¢ for i =1to [n/k] in parallel do

7 (a,b,c,d) «— mergeBoundaries(i) // Computes
boundaries of a merging problem. Uses M
instead of searching in the tree T

8 merge(a,b,c,d) // Computes nonlocal matches by
merging Ala:b] and Alc:d]

2 OUR RESULTS

We give the first theoretical analysis of the heuristic used in the
BSZ algorithm which improves on the simple O(nlog n) work and
O(logn) span algorithm in [6]. We show that it provides a tunable
trade-off between optimal work and optimal span for the hyper-
parameter 1 < k < n. In particular, we show that it achieves

O(n (1 + 10%")) work and O(k(l +log %)) span, for any integer
1 < k < n. Note that setting k = 1 corresponds to the work-

inefficient BSV algorithm; setting k = ©(logn) achieves linear
work, matching the work of the BSV algorithm, but resulting in

the O(log nlog %) span; and setting k = n corresponds to the SEQ

algorithm.

Second, we present the first implementation of the BSV algorithm
for shared memory machines, to our knowledge. Although the BSV
algorithm has been perceived as being theoretically complicated,
our implementation is a simple ~ 175 line C++ implementation, with
~90 lines reused directly from the publicly available ~ 120 line im-
plementation of the BSZ algorithm from [20]. Our implementation
is comparable with the current state-of-the-art BSZ implementa-
tion and achieves parallel speedup of up to 13.7 on 24 cores (48
threads with hyper-threading). We also verify experimentally that
the heuristic introduced in the BSZ algorithm significantly speeds
up the algorithm and reduces the work to O(n) for large enough k.

SPAA 24, June 17-21, 2024, Nantes, France

Third, we show that when each value is drawn i.i.d. from a dis-
crete distribution on a totally ordered set of size m the expected
distance from a value to its match is at most H,;, — the mth Harmonic
number. Thus, these random inputs are not hard instances for this
problem, as even the trivial O (n?) solution for ANSV is expected to
achieve O (nlog n) work and O (log n) span if m = O (poly(n)). Sim-
ilarly, the work-inefficient BSV algorithm achieves O(nloglogn)
work and O(loglog n) span.

Finally, we present the first I/O complexity analysis of the BSV
algorithm in the (P)EM model. As with many other parallel models,
the BSV algorithm generalizes well in the PEM model too and
we show that simple modifications to the BSV algorithm yield
O(% +logg n) parallel I/Os for any positive integer P > 1 of
processors. Finally, we show that the array-based version like the
stack-based version of the SEQ algorithm uses O(n/B) I/Os cache-
obliviously.

3 ANALYZING THE BSZ ALGORITHM

In this section, we analyze the heuristic introduced in the BSZ
algorithm and show that it provides a tunable trade-off between
work and span as described by the following Theorem.

THEOREM 1. Foran input of size n and any integer hyperparameter
1 < k < n, the BSZ algorithm achieves O(n (1 + 10]%")) work and

O(k(l +log %)) span.

We use the terminology that when a value finds its match in the
same block as itself we call it a local match. Likewise, when a value
finds its match in a different block than itself we call it a nonlocal
match. We begin by analyzing the span.

LEmMMA 1. For an input of size n and any integer hyperparameter
1 < k < n, the span of the BSZ algorithm is O(k(l +log %))

Proor oF LEMMA 1. The algorithm has three parts. First, con-
structing the min binary tree takes O(log n) time. Second, finding
the local matches in a block takes O(k) time. Third, using the
heuristic to sequentially find the nonlocal left matches in a block
takes O(Zle (1+1og ni)) time where n; denotes the distance be-

tween the (i — 1)th and ith match and the plus one accounts for
any case n; < 1.2 The sum is then upper bounded as follows:

3K, (1+logn) < k+ 3Tk, log 22k < k (1 +log %) Adding all

parts together gives O(k (1 +log %) +log n) = O(k(l +log %))
span. O

Next, we will prove the following lemma, which bounds the
work Wgsz of the BSZ algorithm:
LEMMA 2. Let Wpsz be the work of the BSZ algorithm on an input

of size n using the hyperparameter k. Then Wpsz = O(n (1 + lo]%n)).

To prove Lemma 2, we will focus on a slightly different recursive
algorithm, which we call REC, for the ANSV problem. We stress
that this algorithm is only used for the analysis of the work of the
BSZ algorithm. The idea is that this algorithm is simpler to analyze

2We adopt the convention that log 0 = 0.

Nodari Sitchinava and Rolf Svenning

and uses about the same work as the BSZ algorithm. Like the BSZ
algorithm, the REC algorithm operates on global arrays A and R of
size n, with R being initialized to n + 1, storing the values and right
matches, respectively (left matches are omitted for simplicity). It
also uses a min binary tree T on A, which can be built using O(n)
work, and is supplied a hyperparameter k. The REC algorithm is
described in pseudocode as Algorithm 3, and its behavior on a
specific input is exemplified in Figure 1.

Algorithm 3: The REC(x, y) algorithm for ANSV

Input: Indices x < y

Output: Computes the right matches of values A[x : y] and
stores them in R[x : y]

if x == y then return ;

-

2 xp «— min(x +k, y)

Compute local matches in A[x : xi] using the SEQ
algorithm and store them in R[x : x|

start «— xy

©

'

@«

for i =x; — 1 down to x do
6 if R; == n+ 1 then

7 R; «— matchRight(start,i) // traverses T from
index start for the match R; of A;

8 REC(start, R;)

9 start «— R;

10 REC(start, y)

To solve the ANSV problem the initial call is REC(1,n + 1). The
REC algorithm, guided by the heuristics, identifies disjoint parts
of A that can be solved independently. To do so, for the first block
of k values, it runs the SEQ algorithm. Among these, some will
find their match locally within the block. It uses the min binary
tree T from right to left for the remaining matches using the same
heuristics (H2 and H3) as the BSZ algorithm. The indices of these
nonlocal matches partition the remaining n — k values into at most
k + 1 disjoint subproblems which can be solved independently. The
following Lemma makes that precise.

LEMMA 3. For any call to REC(x,y), the right matches of all values
inAlx :y] arein Alx : y + 1].

Proor. Follows directly from Observation 1 that all matches are
non-overlapping. O

To bound the work of the BSZ algorithm using the REC algorithm,
we will first prove Lemma 4, which established that they use about
the same work.

LEMMA 4. Let Wpsz and WRgc be the work of the BSZ and REC
algorithms for a particular input of size n using the same value for

the hyperparameter k. Then Wpsz = O(WREC +n (1 + 10,%")).

The converse (swapping Wgsz and Wgrgc) also holds, but this
direction is not required for our analysis.

Next, we will bound the work of the REC algorithm. For clarity
of exposition, let Wrgc = O(T(n)), i.e., denote an upper bound on
the work of the recursive algorithm on an input of size n, excluding

The ANSV Problem Revisited

SPAA 24, June 17-21, 2024, Nantes, France

7 91 56

77 091 :37|135:41:31:68:53:83:97:55:42:79 63|27 6|3 7 144191 2

SEQ S1

H/_/
S Ss S

Figure 1: The REC algorithm begins by running the SEQ algorithm on the first k = 6 values (line 3), finding local matches for
7, 91, and 56. The other three values, 5, 30, and 42, have nonlocal matches, indicated by arrows, which are found using the min
binary tree T. These values partition the remaining input into four independent subproblems: S;, Sz, S3, and S4. For instance,
the recursive call for S; is REC(7, 10) (line 8). For the last subproblem Sy, the recursive call is REC(23, 28) (line 10).

the construction of the min binary tree. Then, T(n) is defined by
the following recursion:

{k +max (T T(np) + T log(n)) n > k

T(n) =

n n <k,
where the maximum is defined over all possible partitions of the

input into k + 1 subproblems, each of size n;, such that Zi?:ll nj =

n — k (because the k values that define the partitions are already

matched), and the sum of logarithmic terms comes from performing

the non-local searches in the min tree using heuristic H2. Lemma 5

bounds T(n) and demonstrates that T(n) decreases as the block

size k increases:

LemMA 5. T(n) = O(n (l + IOgn)).

k

Together, Lemmas 4 and 5 will imply the bound on the work of
the BSZ algorithm as stated in Lemma 2.

We first prove Lemma 4, which shows that the work of the BSZ
and REC algorithms is about the same. We fix an input A of size n
and focus solely on the right matches, as the behavior of the left
matches is symmetric. The analysis begins by splitting the work
of the BSZ and REC algorithms into two parts. The first part is
constructing the binary tree and computing local matches in each
block. The second part is finding the nonlocal match of each element.
Thus, Wesz = ©(n+ X7, zi) and Wree = O(n+ XL, ri), where
z; and r; denote the number of nodes visited in the min binary
tree when finding the ith nonlocal right match of value A; by the
BSZ and REC algorithms, respectively. The count is 0 if the match
is found locally or the search starts from the index of the match,
and it is at least 1 otherwise. At a high level, our strategy will
be to bound the difference between Y, z; and Y., r; for each
block of size k. More precisely, for the BSZ algorithm, consider

blocks of indices Z = [Zl, 7273, .., zIn/kl] each corresponding

to indices where local matches are computed on line 2. That is, Z' =
[i | i—1k+1<j<min(ik, n) + 1], noting that all blocks are of
size k, except possibly the last one. For the REC algorithm, consider
m < n blocks of indices R = [Rl,RZ,RS, Rm], where each R!
corresponds to indices where local matches are computed on line 3.
Specifically, if a recursive call REC(x, y) computes local matches
in A[x : x;] on line 3, it yields a block of indices [j | x < j < xt].
Each block R! has a maximum size of k.

ProoF oF LEmmA 4. We begin by showing that)Zj ezi Zj — rj| =
O(k +logn) for any 1 < i < [n/k]. Consider running the BSZ

algorithm on a fixed input resulting in Z*. Also consider running the
REC algorithm on the same input and focus on the subset of ¢ < k
blocks [R, R, R, .. Ric] = [Rf | ZINR # O A1 < £ < m] that
overlap with Z°,

Case1(c=1).

Since a block from the REC algorithm perfectly overlaps with
Z', exactly the same nodes in the min binary tree (with repetition)
are visited, resulting in 3 ;czi zj —rj = 0.

Case2. [c=2]

Here the blocks Rt and R’ split Z* into two parts. Consequently,
they split the 1 < d < k unmatched values at indices u1, ug, u3, ..., ug
for the BSV algorithm in Z%. Let 5 be the last index of R’ where
the split occurs. Consider the most general case when the split is
strictly between two unmatched values at indices us < § < us41 for
1 <'s <d - 1. See Figure 2 for an example. The cases where the
split occurs before s < uj, after ug < s, or overlaps with some u.
are simpler.

In the part of Z! to the left of the split, i.e., in Zi N R, the
nonlocal matches for the BSZ algorithm are also nonlocal for the
REC algorithm. Now, there are only two places where the running
time between the two algorithms may differ. First, since r,,, does
not start its search in the min binary tree from where r,,, found its
match, it follows that 0 < ry, — z,, = O(log n). Second, all values
in [us + 1, 3] are matched locally for the BSZ algorithm but some of
them may be unmatched for the REC algorithm. We denote these
unmatched values by R; and establish that 0 < ¥ jep, 17 — 2 =
2jeR, Tj = O(|R+| log ﬁ) = O(k), using the concavity of the
logarithm and that }’ ;cg, r; actually corresponds to ©(%; log n;),
where }; n; < k.

Next, we consider the part of Z! after the split, i.e., Zi N Rk,
If ry, is not the last nonlocal match in R, then it is the only
place where a different number of nodes of the min binary tree
are visited, and the difference is 0 < z,,; — ry,; = O(logn). If ryy,
is the last nonlocal match in R, then exactly the same nodes are
visited. Finally, there may be multiple unmatched values for the BSZ
algorithm that are matched locally for the REC algorithm starting
with ry,;. We denote these local matches by R_. As previously, we

establish that 0 < }jep_zj —rj = Xjep_2j = 0(|R_| log ﬁ) =
O(k). For the last nonlocal match at dy, if it exists, the difference is
0 < rg, —zg, = O(logn). Combining all the contributions results

in ‘Zjezi zj —rj| = O(k +log n), concluding this case.

SPAA 24, June 17-21, 2024, Nantes, France

Nodari Sitchinava and Rolf Svenning

Zi
54 i 42 i 98 13:18:15:21 114 : 27 54
77 50 5442198 18 14 ¢ 27 29 154130198 57 37
i %/—/ %/—/ i,
Ri x. . R:

Figure 2: Case 2 in the proof of Lemma 4, where exactly two blocks, R'* and R, overlap with the block Z‘. The numbers that
are underlined are unmatched in their respective blocks. For example, the d = 5 unmatched values in Z i are 7,8, 10, 29, and 30,
and the split § occurs strictly between the unmatched values 8 and 10 at indices uz = us and u3 = us41, respectively. The values
that are unmatched in R but matched in Z i, are 13,15, and 21, corresponding to R,. The values that are matched in R but
unmatched in Z/, are 29 and 30, corresponding to R_. The braces indicate the range where values in R, or R_ are located.

Case3 (3 <o).

Consider any block R for 2 < t < ¢ — 1 and the corresponding
recursive call REC(x, y) with y < n, which computed local matches
at R¥*. Since R'* ¢ Z! then \Rifi =y —x < k, and all nonlocal
matches in R* match Ay, by Lemma 3. For the REC algorithm,
since the search starts from index y (line 4), no nodes are visited in
the min binary tree. For the BSZ algorithm, since y € Z*, then all
the values at R are matched locally, and no nodes of min binary
tree are visited. Thus, the running times may differ only at R and
Ri¢, which is similar to the case for ¢ = 2.

We have now established that |Zjezi zj —rj| = O(k +logn) for

any 1 < i < [n/k]. Summing over each block Z' concludes the
proof:

Next, we prove Lemma 5, which shows that the work to find
nonlocal matches decreases as k increases.

Proor oF LEMMaA 5. We will prove that T(n) < 2n+(% - 1) logn
< 2n+

by induction. In the base case, whenn < k, T(n) = n

(% - 1) log n. For the inductive case:

k+1 k
T(n) = k + max (Z T(ni)+) log ni)
i=1 i=1
k+1

< k + max (Z (2711‘ + (% - 1) 105”1')

k
+ Zlog ni)
i=1 i=1
1 k+1
<k+2(n-k)+ p - max (;nilogni)
k+1

1 k+1
< 2n—k+z (Zni)loani
i=1

i=1

< 2n+(g —1)logn

Using Lemmas 4 and 5, it is now straightforward to bound the
work of the BSZ algorithm, which concludes the proofs of Lemma 2
and Theorem 3.

4 RANDOM INPUTS

Consider a random input where each input value is drawn indepen-
dently and identically distributed from a discrete distribution over a
totally ordered set of size m. Then, the expected distance between a
value and its match (here the first smaller or equal value) is strictly
less than }72, pi";pj' The strictness follows since the array is
j=1

bounded. For exanfple, with a uniform distribution, the expected
distance is strictly less than Hy,. Thus, for m = O(poly(n)) the
expected distance is ©(log n). The arguably simplest ANSV algo-
rithm is a double for-loop that scans left and right for the match
of each value in parallel. For the uniform distribution with m as
discussed earlier, this algorithm achieves expected O (n log n) work.
Similarly, the work-inefficient algorithm with heuristic H2 spends
O(log d) time on finding the match of a value that is at a distance
of d from its match. Thus, using Jensen’s Inequality, it achieves
expected O (nloglog n) work. For this reason, we consider random
inputs to be easy.

The ANSV Problem Revisited

5 EXTERNAL MEMORY

In this section, we prove Theorems 2 and 3, which give the I/O com-
plexity of the BSV (Algorithm 2) and array-based SEQ algorithms
in the PEM model.

THEOREM 2. For any P > 1, the ANSV problem can be solved on
the P-processor PEM model on an input of size n in @(PLB +logg n)
parallel I/Os.

PROOF. Set group sizes to k = ©(Blogg n) and replace the binary
tree with a B-tree. Then run the same BSV algorithm in [%] rounds,
each round processing a contiguous segment of kP elements.

The straightforward bottom-up parallel construction of the B-
tree takes O(PLB +logg n) parallel I/Os. In each round, merging is
done sequentially by each processor, with each processor spending

O(%) = O(logg n) 1/Os per round. Finally, in each round, each

processor traverses the B-tree once, resulting in ©(logg n) parallel
I/Os per round. Combining the I/Os over the [5] rounds results
in overall O($% +logg n) parallel I/O complexity. o

THEOREM 3. The array-based SEQ algorithm is cache-oblivious,
and for an input of size n, it uses O(%) I/Os.

Proor. The SEQ algorithm sequentially finds the left (similarly
right) matches by looping over A from left to right. It maintains the
invariant that in the ith iteration, all left matches of values A[1 : i]
have been found and are stored in the array L[1 : i]. To find the left
match of A;, the algorithm simply follows the matches previously
found in L, starting with L;—1, until it finds a value A; < A;, and
then sets L[i] = j. Given that the matches are non-overlapping (as
noted in Observation 1), this result is not too surprising.

The amortized analysis of the I/O complexity is the same as
for the number of comparisons in the RAM model [12], but with a
potential of one I/O for each block instead of the individual elements.
In particular, in the ith iteration, define the potential to be the
number of blocks currently hit by the path generated by following
the pointers starting from L[i — 1]. Without going through all the
cases, when an insertion (that is not the first in a block and itself
extends the path) causes 3 < k blocks to be visited on the path,
then the new path will hit k — 2 fewer blocks, and the potential can
pay for the visited blocks. O

6 EXPERIMENTS

In this section, we investigate the performance of the BSZ and
BSV algorithms in practice. We show that even though the BSV
algorithm has been perceived as theoretically complicated, the code
is simple, and it achieves comparable performance to the current
state-of-the-art implementation. Our code is available online [22].
We also confirm experimentally that the heuristic introduced for
the BSZ algorithm is effective, and it significantly speeds up the
algorithm and reduces the work to be linear for a large enough k.

6.1 Experimental setup

The experiments were run on two Intel Xeon Silver 4214 2.20GHz
12-core CPUs distributed across 2 sockets with hyper-threading
enabled, totaling 48 threads and 126GB of shared RAM. The cache
configuration included a 32K L1 cache, a 1024K L2 cache, and a

SPAA 24, June 17-21, 2024, Nantes, France

P=1 P=48
SEQ | BSZ | BSV | BSZ | BSV
SORTED 1.03 1.95 2.26 0.27 0.17
Ranpom 3.25 4.86 7.39 0.27 0.31
MERGE 1.27 2.51 2.33 0.34 0.24
RANDOMMERGE 2.16 4.03 4.02 0.34 0.24

Table 1: Running times in seconds for the SEQ, BSZ and BSV
algorithms on the SORTED, RANDOM, MERGE and RaNDOM-
MERGE inputs for P = 1 and P = 48. We report the average
of 5 runs, each with n = [1.7%] = 116335496 and block size
k = 256|log, n| = 6656.

16896K L3 cache. Our implementation is in C++ 17 and compiled us-
ing GCC 7.5.0 with the -03 optimization. All inputs are of type long
(8 bytes). For parallelization, we used the PARLAYLIB library [7],
which supports parallel loops with parlay::parallel_for and
parlay: :blocked_for. For consistency with the BSZ implemen-
tation [8, 20], we use basic arrays instead of parlay: :sequences
and switched their parallel loops from using CILk to PARLAYLIB.
Our simple C++ implementation of the BSV algorithm uses ~175
lines of code, of which ~ 90 are reused directly from the BSZ im-
plementation, which totals ~ 120 lines. Both algorithms use a min
binary tree and find local matches using the SEQ algorithm. They
differ in their approach to finding nonlocal matches. The BSV al-
gorithm uses merging, while the BSZ algorithm searches within
the tree. We simplified the merging in the BSV algorithm by ig-
noring already matched elements. This contrasts with the original
description in [6] steps 6.1 and 6.2, which uses prefix and suffix
minimas to identify the unmatched values. For the SEQ algorithm,
we decided to use the array-based implementation since we found
it to be about 30% faster than the stack-based implementation.

We considered 4 different types of inputs. First, SORTED: the
of numbers 1, 2,3, ..., n. Second, RANDOM: a random permutation
of 1,2,3, ..., n. Third, MERGE: the numbers 0,2,4, ..., |n/2], |[n/2] +
1,n/2] - 1,|n/2] - 3,...,1, corresponding to the reduction from
merging sorted lists to ANSV where the two sorted lists must be
perfectly interleaved (for example, 0,2, 4 and 1, 3, 5 forming input
0,2,4,5,3,1). Fourth, RANDOMMERGE: similar to the MERGE input,
except the two values in each consecutive pair are swapped with
probability 0.5.

6.2 Performance

In Table 1, we list the average running time in seconds for the
three different algorithms across the four types of inputs, both
for P = 1 and P = 48 threads, with n ~ 108 and block size k =
256]log, n] = 6656. The block size is chosen to achieve ©(n) work,
and the constant 256 was determined through initial experiments. In
section 6.3, we explore the impact of the block size k in more depth.
The SoRTED input is a trivial ANSV instance and was primarily
used as a baseline to gauge how the algorithms should perform
on an easy input. In practice, it also turned out to be the fastest.
The RanDoMm input was the slowest overall for P = 1, whereas for
P = 48, there was no decidedly slowest input type. We suspected
the slowdown was due to additional branch mispredictions, which
we investigated using the perf command. The results in Table 2

SPAA 24, June 17-21, 2024, Nantes, France

Nodari Sitchinava and Rolf Svenning

—=—- BSV
BSZ
- SEQ

~
~

o
o

w
«

IS
IS
<.

~ w

-

Running time in seconds normalized by n

Running time in seconds normalized by n
w
-
s

-

o

o

102 103 104 10° 10° 107 108

~
!

—=—- BSV
BSZ

BSZ
—— BSV

sasbhod
agittthd

FULO e

15.0 A]

aasd

,

Speedup
™

e S

Input size n (log scale) 102 10°

10°

10° 107 108 Number of threads P

Input size n (log scale)

(a) Running time in seconds normalized by n
for the SEQ, BSZ, and BSV algorithms with
P=1.

(b) Running time in seconds normalized by n
for the BSZ and BSV algorithms with P = 48.

(c) The speedup 71/7p for the SEQ, BSZ, and
BSV algorithms for P =1, 2,3, ..., 48.

Figure 3: For all three plots, each dot corresponds to the running time in seconds of an algorithm on the RANDOMMERGE input.
For each input size n, we repeat the experiment 5 times and draw a line through the average of these 5 runs. In each run we
set the block size k = 256log n to ensure ©(n) work. For plots 3a and 3b we use a log scale and test inputs of size n = 1.7” for
p=123,..andn < 227 = 134,217, 728. The running time is in seconds normalized by n (see the 1e-8 on the axis).

P=1 P=48
BSZ | BSV BSZ | BSV
SORTED 1.6 1.6 5.0 4.8
RanpoMm 258.4 | 425.5 | 267.0 | 437.2
MERGE 1.4 14 4.1 4.1
RANDOMMERGE | 138.5 | 129.4 | 144.8 | 137.4

Table 2: Branch mispredictions in millions for the BSZ and
BSV algorithms for the same parameters as in Table 1.

provide evidence of this for P = 1. Based on the discussion in
section 4, we decided not to focus on the random inputs in further
experiments. The behavior of the MERGE input is comparable to
that of RANDOMMERGE, experiencing only a 20-30% slowdown. We
believe the latter is the most well-motivated for three reasons. First,
it naturally occurs in the reduction from merging sorted lists to
ANSV. Second, without the heuristic, the BSZ algorithm performs
©(nlogn) work. Third, there are many far-away matches which
are the hard ones to compute. Taking inspiration from the RANDOM
input, we added some randomness, giving us the RANDOMMERGE
input, which, as expected for P = 1, is 60 — 80% slower. Across
the four inputs, for P = 48, the BSV algorithm is comparable to or
slightly faster than the BSZ algorithm.

In Figure 3, we plot increasing n against running time in seconds
normalized by n for each algorithm on the MERGE input. In plot
3a where P = 1, we observe a mostly flat trend as expected, since
all algorithms perform ©(n) work. Even though there is a slight
trend upward, the variance and performance of the BSZ and BSV
algorithms mimic the SEQ algorithm, which serves as a simple
baseline for what ©(n) work should look like. In plot 3b where P =
48, both the BSZ and BSV algorithms converge nicely at around 0.26-
1078 seconds, with a running time of ~0.305 seconds normalized
by n = 116335496.

The speedup of a parallel algorithm is the ratio between its
sequential running time T; with P = 1 processors and its running

| Ti/Tha | T1/Toa | Th/Tug
BSZ 8.59 ‘ 10.86 | 11.98

BSV 8.64 11.99 13.71
Table 3: Speedup of algorithms BSZ and BSV for 12, 24, and
48 processors. Speedup is calculated as T1 /T, where T is the
running time for 1 processor and T}, is the running time for
P processors.

time Tp with P processors. In Figure 3 plot 3c, we plot the speedup
of the BSZ and BSV algorithms as we increase the number of threads
P =1,2,3,...,48. The final speedup Ty /Tyg is 11.98 and 13.71 for
the BSZ and BSV algorithms, respectively. Until around P = 12
we observe a strong linear speedup, likely because one of the two
CPUs with 12 cores is active and no hyper-threading is activated
yet. From 12 to 24 processors, the speedup continues to increase
steadily for both algorithms. From about 24 processors onwards, the
speedup tapers off, but still increases more for the BSV algorithm
than for the BSZ algorithm. See Table 3 for the exact speedups for
P=12and P = 24.

6.3 Block size

Both the BSZ and BSV algorithms use a hyperparameter k for the
block size, where in each block local matches are found sequentially.
The primary distinction between the algorithms lies in their ap-
proach for handling the remaining nonlocal matches. This section
explores the impact of the block size k on the different components
of the algorithms. We categorize the running time into three parts.
First, the tree part denotes the time to construct the min binary
tree for both algorithms. Second, the local part represents the time
to compute local matches in both algorithms, and for the BSV al-
gorithm, it also includes the time to set up the merging problems.
Third, the nonlocal part denotes the time spent traversing the min
binary tree to find nonlocal matches in the BSZ algorithm. For
the BSV algorithm it denotes the time spent on finding nonlocal

The ANSV Problem Revisited

SPAA 24, June 17-21, 2024, Nantes, France

[
5 L S8
" o » o

Running time in seconds
s
>
—

Stacked (cumulative) running time in seconds

75 x“
,
o,
5.0 et
“““‘“Mmm T b

25

0.0

10t 102 10% 10° 10° 10° 107 108

1 2 3
block size (log scale) 10 10 10

block size k (log scale)

(a) Running time in seconds for increasing
block size k with P = 1 for the SEQ, BSZ, and

—— nonlocal
local
—c= tree

—— nonlocal
local
—- tree

Stacked (cumulative) running time in seconds

10t 102 103 10* 10° 108
block size k (log scale)

10° 10° 107 108

(b) The stacked running time in seconds for (c) The stacked running time in seconds for
increasing block size k with P = 1 for the BSZ increasing block size k with P = 1 for the BSV

algorithm.

BSV algorithms. .
algorithm.
" —— nonlocal
s 55z !H £ local
—— BSV S —w= tree
g
i]
i £
]
4 'l £
s E 3
£ } g
g] £
g <
i }
g I T 24
: / 3
£2 1. F]
£ £
E 3
A F
1N)} <
aw, /‘]
%, g
““"lﬂ‘m whanst 4 “"““
0 T T T T T T T v 10! 10? 10°
10t 10? 103 104 10° 10° 107 10°

block size (log scale)

block size k (log scale)

51 =+ nonlocal
local
—= tree

Stacked (cumulative) running time in seconds

10° 10° 107 108 10! 102 10° 10 10° 10° 107 108
block size k (log scale)

(d) Running time in seconds for increasing (€) The stacked running time in seconds for (f) The stacked running time in seconds for

block size k with P = 48.
algorithm.

increasing block size k with P = 48 for the BSZ increasing block size k with P = 48 for the BSV

algorithm.

Figure 4: For all six plots, we measured the average running time for increasing block size k (log scale) on the RANDOMMERGE
input of fixed size n = 227 = 134,217, 728, repeated 5 times, and drew a line through those averages. For the three top plots 4a, 4b
and 4c we have P = 1, and for the three bottom plots 4d, 4e and 4f we have P = 438. In plots 4c, 4c, 4e and 4f, we show the stacked
running time in seconds for the three parts of the BSZ and BSV algorithms. The tree part denotes the time to construct the
min binary tree for both algorithms. The local part denotes the time to compute local matches for both algorithms, and for
the BSV algorithm also the time to set up the merging problems. The nonlocal part denotes for the BSZ algorithm time spent
traversing the min binary tree for nonlocal matches. For the BSV algorithm, it denotes the time spent on finding nonlocal

matches by merging,.

matches by merging. All parts take ©(n) work, except for the non-
local part of the BSZ algorithm, which takes O(n (1 + 10,% n)) time,
as given by Lemma 2. Similarly, for the BSV algorithm, the local

part takes O(n (l + 10,%'1)) time, due to the necessity of traversing

the min binary tree twice for each block to set up the merging

problems. For the RANDOMMERGE input, the parts depending on k

are O(n (1 + 10,%"

) as expected. Figure 4 plot 4a clearly shows this

behavior, with the work decreasing rapidly as k increases. Plots 4b
and 4c further confirm that it is nonlocal and local parts for the BSZ
and BSV algorithms, respectively, that decrease, and that the others
parts are independent of k. For P = 48, we still see an improvement
in running time for small k in Figure 4 plot 4d. Not surprisingly, for
large k, the running time increases dramatically, as both algorithms
solve each block sequentially.

7 ACKNOWLEDGMENTS

The authors express gratitude to the Data-Intensive Systems group
at Aarhus University for their provision of computing resources,
and to the anonymous reviewers whose constructive feedback con-
tributed to the improved presentation of the paper.

REFERENCES

[1] Alok Aggarwal and S. Vitter, Jeffrey. 1988. The Input/Output Complexity of
Sorting and Related Problems. Commun. ACM 31, 9 (1988), 1116-1127. https:
//doi.org/10.1145/48529.48535

[2] Lars Arge, Michael T. Goodrich, Michael J. Nelson, and Nodari Sitchinava. 2008.
Fundamental Parallel Algorithms for Private-Cache Chip Multiprocessors. In
Proceedings of the 20th ACM Symposium on Parallelism in Algorithms and Archi-
tectures (SPAA °08). 197-206. https://doi.org/10.1145/1378533.1378573

[3] Jérémy Barbay, Johannes Fischer, and Gonzalo Navarro. 2012. LRM-Trees: Com-
pressed Indices, Adaptive Sorting, and Compressed Permutations. Theoretical
Computer Science 459 (2012), 26-41. https://doi.org/10.1016/j.tcs.2012.08.010

[4] O. Berkman, Dany Breslauer, Zvi Galil, Baruch Schieber, and Uzi Vishkin.
1989. Highly Parallelizable Problems. In Proceedings of the Twenty-First An-
nual ACM Symposium on Theory of Computing (Seattle, Washington, USA)

https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/48529.48535
https://doi.org/10.1145/1378533.1378573
https://doi.org/10.1016/j.tcs.2012.08.010

SPAA 24, June 17-21, 2024, Nantes, France

(5

=

(6]

[10

(1

[12]

[13]

(STOC °89). Association for Computing Machinery, New York, NY, USA, 309-319.
https://doi.org/10.1145/73007.73036

O Berkman, B Schieber, and U Vishkin. 1988. Some Doubly Logarithmic Parallel
Algorithms Based on Finding All Nearest Smaller Values. In Technical Report
UMIACS-TR-88-79. Univ. of Maryland Inst. for Advanced Computer Studies New
York/Berlin.

O. Berkman, B. Schieber, and U. Vishkin. 1993. Optimal Doubly Logarithmic
Parallel Algorithms Based on Finding All Nearest Smaller Values. Journal of
Algorithms 14, 3 (1993), 344-370. https://doi.org/10.1006/jagm.1993.1018

Guy E Blelloch, Daniel Anderson, and Laxman Dhulipala. 2020. ParlayLib-A
Toolkit for Parallel Algorithms on Shared-Memory Multicore Machines. In Pro-
ceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architec-
tures (SPAA "20). 507-509. https://doi.org/10.1145/3350755.3400254

Guy E. Blelloch and Julian Shun. 2011. A Simple Parallel Cartesian Tree Algorithm
and Its Application to Suffix Tree Construction. In Proceedings of the Workshop
on Algorithm Engineering and Experiments (ALENEX). 48-58. https://doi.org/10.
1137/1.9781611972917.5

Richard P. Brent. 1974. The Parallel Evaluation of General Arithmetic Expressions.
J. ACM 21, 2 (1974), 201-206. https://doi.org/10.1145/321812.321815

Patrick Flick and Srinivas Aluru. 2017. Parallel Construction of Suffix Trees and
the All-Nearest-Smaller-Values Problem. In 2017 IEEE International Parallel and
Distributed Processing Symposium (IPDPS). 12-21. https://doi.org/10.1109/IPDPS.
2017.62

M. Frigo, C.E. Leiserson, H. Prokop, and S. Ramachandran. 1999. Cache-Oblivious
Algorithms. In 40th Annual Symposium on Foundations of Computer Science (Cat.
No.99CB37039). 285-297. https://doi.org/10.1109/SFFCS.1999.814600

Harold N. Gabow, Jon Louis Bentley, and Robert E. Tarjan. 1984. Scaling and
Related Techniques for Geometry Problems. In Proceedings of the Sixteenth Annual
ACM Symposium on Theory of Computing (STOC ’84). Association for Computing
Machinery, New York, NY, USA, 135-143. https://doi.org/10.1145/800057.808675
Xin He and Chun-Hsi Huang. 2001. Communication Efficient BSP Algorithm for
All Nearest Smaller Values Problem. J. Parallel and Distrib. Comput. 61, 10 (2001),

[14

[15

[16

(17

(18

[19

[20

[22

[23

Nodari Sitchinava and Rolf Svenning

1425-1438. https://doi.org/10.1006/jpdc.2001.1741

Joseph JaJa. 1992. An Introduction to Parallel Algorithms. Addison Wesley Long-
man Publishing Co., Inc., USA.

Richard M. Karp and Vijaya Ramachandran. 1991. Parallel Algorithms for Shared-
Memory Machines. MIT Press, Cambridge, MA, USA, 869-941.

Jyrki Katajainen. 1996. Finding All Nearest Smaller Values on a Distributed
Memory Machine. In Proceedings of the Computing: The 2nd Australasian Theory
Symposium (Australian Computer Science Communications), Vol. 18. Computer
Science Association (Australia), 100-107.

D. Kravets and C.G. Plaxton. 1994. An Optimal Hypercube Algorithm for the All
Nearest Smaller Values Problem. In Proceedings of 1994 6th IEEE Symposium on
Parallel and Distributed Processing. 505-512. https://doi.org/10.1109/SPDP.1994.
346129

Frédéric Loulergue, Simon Robillard, Julien Tesson, Joeffrey Legaux, and Zhen-
jiang Hu. 2014. Formal Derivation and Extraction of a Parallel Program for
the All Nearest Smaller Values Problem. In Proceedings of the 29th Annual
ACM Symposium on Applied Computing (Gyeongju, Republic of Korea) (SAC
’14). Association for Computing Machinery, New York, NY, USA, 1577-1584.
https://doi.org/10.1145/2554850.2554912

Julian Shun and Guy E. Blelloch. 2014. A Simple Parallel Cartesian Tree Algorithm
and Its Application to Parallel Suffix Tree Construction. ACM Trans. Parallel
Comput. 1, 1, Article 8 (10 2014), 20 pages. https://doi.org/10.1145/2661653
Julian Shun and Fuyao Zhao. 2013. Practical Parallel Lempel-Ziv Factorization.
In 2013 Data Compression Conference. IEEE, 123-132. https://doi.org/10.1109/
DCC.2013.20

Julian Shun and Fuyao Zhao. 2013. Practical Parallel Lempel-Ziv Factorization.
https://github.com/zfy0701/Parallel-LZ77/blob/release. Accessed: 2023-10-01.
Nodari Sitchinava and Rolf Svenning. 2024. A Parallel Implementation of an
Optimal ANSV Algorithm. https://github.com/algoparc/ANSV/.

Jean Vuillemin. 1980. A Unifying Look at Data Structures. Commun. ACM 23, 4
(1980), 229-239. https://doi.org/10.1145/358841.358852

https://doi.org/10.1145/73007.73036
https://doi.org/10.1006/jagm.1993.1018
https://doi.org/10.1145/3350755.3400254
https://doi.org/10.1137/1.9781611972917.5
https://doi.org/10.1137/1.9781611972917.5
https://doi.org/10.1145/321812.321815
https://doi.org/10.1109/IPDPS.2017.62
https://doi.org/10.1109/IPDPS.2017.62
https://doi.org/10.1109/SFFCS.1999.814600
https://doi.org/10.1145/800057.808675
https://doi.org/10.1006/jpdc.2001.1741
https://doi.org/10.1109/SPDP.1994.346129
https://doi.org/10.1109/SPDP.1994.346129
https://doi.org/10.1145/2554850.2554912
https://doi.org/10.1145/2661653
https://doi.org/10.1109/DCC.2013.20
https://doi.org/10.1109/DCC.2013.20
https://github.com/zfy0701/Parallel-LZ77/blob/release
https://github.com/algoparc/ANSV/
https://doi.org/10.1145/358841.358852

	Abstract
	1 Introduction
	1.1 The All Nearest Smaller Values problem
	1.2 Models of computation
	1.3 Previous results
	1.4 The BSZ algorithm
	1.5 The BSV algorithm

	2 Our results
	3 Analyzing the BSZ algorithm
	4 Random inputs
	5 External memory
	6 Experiments
	6.1 Experimental setup
	6.2 Performance
	6.3 Block size

	7 Acknowledgments
	References

