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Abstract—The expansion of mobile sensors, like robots and un-
crewed aerial vehicles (UAVs), across diverse applications such as
remote sensing, monitoring, and communication relay, has been
exponential. Yet, ensuring their safe and successful operation
depends crucially on optimized deployment tailored to the ap-
plication requirements while constrained by various limitations.
This study focuses on the optimization of robot/UAV trajectories
under these constraints. However, implementing constraints poses
considerable challenges. To this end, a framework for constrained
deployment optimization of wireless robotic swarms is proposed.
This framework formulates as a quadratic-programming prob-
lem which utilizes Bézier curves to model trajectories and predict
their states over a time horizon. Constraints are systematically
categorized and embedded in the Bézier curve formulation. This
framework offers ease of adoption to various scenarios and
flexibility in accommodating different mobile sensor dynamics,
constraints, and deployment strategies.

Index Terms—Swarm deployment, Wireless mobile sensor
networks, Uncrewed aerial vehicle (UAV), Predictive control

I. INTRODUCTION

Gathering high-accuracy data, repeatability, predictability,

reliability, flexibility, shorter time-to-deployment, and lower

costs are among the key factors which make mobile sensors,

like robots and uncrewed aerial vehicles (UAVs), the best

choice in diverse applications such as remote sensing, mon-

itoring, and connectivity. However, these benefits come with

various challenges. These challenges become more complex

when deploying a swarm of heterogeneous mobile sensors,

or implementing robot’s non-linear dynamics, or shifting

from two-dimensional (2D) to three-dimensional (3D) de-

ployment, for example deploying UAVs. These challenges

originate from the constraints imposed by the mobile sensors

themselves, the deployment environment, or the application

requirements. Various constraints have been defined including

energy constraints [1]–[4], connectivity constraints [5]–[9],

collision constraints [10], [11], obstacle constraints [11], [12],

regulatory constraints [13], maneuverability constraints [14],

actuator constraints [15], among others. Similarly, various

solutions have been proposed to optimize robot deployment

while satisfying these constraints [1], [3], [7], [8], [10], [11].

However these solutions are tailored to specific applications

and constraints, requiring significant effort for adopting to

other applications and constraints.

In this paper, we address the problem of optimizing the

deployment of a swarm of mobile sensors under diverse

characteristics and while satisfying various constraints. Such

optimized deployment can be synthesized in design-time

(when requirements, constraints, and targets are pre-defined)

and real-time (when decision is made based on the available

information and context). In scenarios where deployment

targets are not pre-defined, various methods such as gradient

approaches [16], greedy algorithms [17], and particle swarm

optimization [18], might be employed to search and find the

optimal deployment.

We propose a framework that easily adopts diverse con-

straints that (i) relate to the derivatives of robot positions, (ii)

require repulsion, (iii) require attraction, and (iv) require ar-

rival. To this end, we represent the robot/UAV trajectories with

Bézier curves [19], which are parametric curves. Adjusting the

curve parameters defines the robot/UAV trajectory. Although

other parametric curve formulations exist in the literature, the

unique formulation of Bézier curves offer several advantages:

first, they facilitate the prediction of robot states over a time

horizon by sampling the curves as inputs to the mobile sensor’s

dynamics; second, constraints can be imposed directly on the

curve geometry, embedding them into the curve formulation.

The contributions of this paper are as follows:

• We address the deployment of robots including mobile

vehicles in a 2D space and UAVs in a 3D space, propos-

ing a framework that easily adopt to diverse requirements.

• Our novel framework can be utilized for both design-time

and real-time decision making, and adopts with time-

varying networks.

• We employ Bézier curves for modeling mobile sensor’s

trajectories and predict their behavior over a time horizon.

• We identified four categories of deployment constraints

and embedded them into Bézier curves formulation.

The remainder of the manuscript is organized as follows:

The organization of the paper is as follows. The formal

problem formulation is presented in Sec. II. Sec. III introduces

Bézier curves, a core component of our framework, and pro-

vides essential information about them. Our novel framework,

which categorizes and embeds constraints into the Bézier

curve formulation, is detailed in Sec. IV. We demonstrate our

framework on a test case and present key indicators in Sec. V.

Concluding remarks and future work are discussed in Sec. VI.

II. PROBLEM FORMULATION

The problem addressed in this paper is general and en-

compasses a variety of applications where robots and UAVs

are deployed to optimize performance indicators. Given their

diverse requirements and constraints, we present our flexible



framework that accommodates these various constraints and

can implement various search algorithms. The formal problem

formulation is provided below:

This paper considers the deployment of a swarm of N

heterogeneous mobile sensors in a bounded space Ω, which

can be either 2D or 3D. A point in the space is denoted with

a vector ω ∈ Ω. The swarm is denoted with N =
{
n|1 ≤

n ≤ N
}

, where each index n represents a mobile sensor (a

robot in 2D or a UAV in 3D).

Robot n’s tracking dynamics is defined as:

ṗn(t) = f
(
pn(t)

)
+ g

(
un(t)

)
, (1)

where pn(t) ∈ Ω and un(t) ∈ Ω represent its position and its

desired position, respectively. The robot tracking dynamics can

accommodate simple integrator, uni-cycle, random waypoint

mobility (RWM), state-space, or control affine form.

Let us denote p̌n(t) as the target position that achieves the

optimal deployment. To reach the target positions, we consider

each robot traverses on a trajectory whose points represent

un(t) in (1). This trajectory is defined as a Bézier curve.

Thus, by adjusting the Bézier curve parameters, a trajectory is

defined that enables the robot to reach its target position when

followed.

As mentioned earlier, various constraints have been defined

such as (i) Domain constraints: The deployment space may

include obstacles, restricted airspace, or other similar con-

straints; (ii) Collision avoidance: Robots must avoid collision;

(iii) Connectivity: Robots must communicate with each other

to coordinate their actions and transmit the collected data to the

outside world; (iv) Maneuverability constraints: Robots track-

ing their trajectories must not attempt maneuvers that exceed

their capabilities; and (v) Energy constraints: Each Robot’s

energy consumption must be within its energy capacity. The

safe and successful robot deployment depends on satisfying

these constraints. All these constraints can be embedded into

the Bézier curve formulation by adjusting the Bézier curve

parameters. This concept is presented and analyzed in the next

section.

III. BACKGROUND

In geometry, a line is a set of points satisfying a linear

equation: p(t) = p(t0) + kv, where p(t0) is a point, v

is a non-zero direction vector, and k is a scalar parameter.

Alternatively, v can be defined as v = p(t0) − p(t1), where

p(t1) is an additional point. In contrast, a curve can have

arbitrary shape and extension. Simple curves like circular

arcs or parabolic segments are defined by three non-collinear

points. Adding more points adjusts the curve and increases the

complexity. This is the idea behind higher-degree polynomial

curves, splines, and Bézier curves [19]. In a Bézier curve, a

set of T +1 discrete control points, with the τ th control point

denoted with λτ−1, are used in a formula to define a T + 1
degree smooth and continuous polynomial curve. The curve

starts at λ0, ends at λT , and stays within the convex hull

formed by these control points. More control points (a higher

degree curve) allow for a more complex curve. A Bézier curve

can be elevated to higher degrees with the same shape [20].

Formally, a Bézier curve is defined as [19]

ℓ(k) =

T∑

τ=0

λτ
B

T
τ (k), (2)

where k ∈ [0, 1] is a scalar parameter and B
T
τ (k) denotes the

Bernstein polynomials [21], defined as

B
T
τ (k) =

(
T

τ

)

(1− k)
T−τ

(k)
τ
. (3)

A Bézier curve inherits smoothness and its derivative is

calculated as [21]

ℓ̇(k) = T

T−1∑

τ=0

(
λτ+1 − λτ

)
B

T−1
τ (k). (4)

Higher-order derivatives are calculated similarly. The squared

Euclidean distance between the two same-degree Bézier curves

ℓn(k) and ℓm(k) is calculated as [22]:

d2(k) = ||ℓn(k)− ℓm(k)||2 = ||
T∑

τ=0

λτ
dB

T
τ (k)||

2

=

T∑

i=0

T∑

j=0

(
λi
d

)T
λ
j
d

(
T
i

)(
T
j

)

(
2T
i+j

) B
2T
i+j(k), (5)

since the product of the Bernstein polynomials is [22]

B
T
i (k)B

T
j (k) =

(
T
i

)(
T
j

)

(
2T
i+j

) B
2T
i+j(k). (6)

IV. SOLUTION

As discussed earlier, the target position p̌n(t) achieves the

optimal deployment, for example by maximizing the coverage.

The target positions can be defined as

p̌n(t) = h(pn(t), t), (7)

where h(pn(t), t) implements invariant positions or methods

such as gradient ascend [16].

We consider four constraint categories in this work: (i)

derivative related constraints: Derivatives of robot trajectories

are upper/lower bounded; (ii) minimum distance constraints:

The Euclidean distance between two robots are lower bounded;

(iii) maximum distance constraints: The Euclidean distance be-

tween two robots are upper bounded; and (iv) visit constraints:

Robots must visit a specific point in the space.

Derivative related constraints: An example of such con-

straints is the robots’ velocity limitations. Since robots are

tracking a trajectory defined by a Bézier curve, this constraint

can be applied to the first derivative of Bézier curves to derive

||ℓ̇n(k)|| ≤ Vn(pn(t), t), (8)

where Vn(pn(t), t) represents the velocity upper bound. Sim-

ilarly, constraints on robots’ acceleration can be defined using

higher-order derivatives of Bézier curves.

Minimum distance constraints: Throughout the deploy-

ment, robots must avoid collision, i.e., they must maintain a

safe distance with each other or obstacles. Additionally, they

must not enter regions where their operation is unsafe or access

is limited. For a single point ω ∈ Ω, this constraint is defined



as
(
λi
n − ω

)T(
λj
n − ω

)
≥ R(pn(t),ω, t)2, 0 ≤ i, j ≤ T,

(9)

where R(pn(t),ω, t) is the safe distance between pn(t) and

ω.

Proposition 1. A Bézier curve ℓ(k) of degree T remains within

a safe distance r of a point ω if any pair of its control points λi

and λj satisfy the following:
(
λi − ω

)T(
λj − ω

)
≥ r2, 0 ≤ i, j ≤ T. (10)

Proof. Given a Bézier curve ℓ(k) of degree T and control

points λ, using [23], the squared Euclidean distance between

the curve and a point ω is defined as

d2(k) = ||
T∑

i=0

λi
B

T
i (k)− ω||2

= ||
T∑

i=0

(
λi − ω

)

︸ ︷︷ ︸

λi
d

B
T
i (k)||

2. (11)

Using (5), we have

d2(k) =
T∑

i=0

T∑

j=0

(
λi
d

)T
λ
j
d

︸ ︷︷ ︸

αi,j

(
T
i

)(
T
j

)

(
2T
i+j

) B
2T
i+j(k). (12)

Assuming αi,j ≥ r2, 0 ≤ i, j ≤ T , as in (10), we have
T∑

i=0

T∑

j=0

αi,j

(
T
i

)(
T
j

)

(
2T
i+j

) B
2T
i+j(k) ≥

T∑

i=0

T∑

j=0

r2

(
T
i

)(
T
j

)

(
2T
i+j

) B
2T
i+j(k)

T∑

i=0

T∑

j=0

αi,j

(
T
i

)(
T
j

)

(
2T
i+j

) B
2T
i+j(k) ≥ r2

T∑

i=0

T∑

j=0

(
T
i

)(
T
j

)

(
2T
i+j

) B
2T
i+j(k)

︸ ︷︷ ︸

β

,

(13)

where β = 1 because of the Bernstein polynomials. Thus,
T∑

i=0

T∑

j=0

αi,j

(
T
i

)(
T
j

)

(
2T
i+j

) B
2T
i+j(k) ≥ r2,

d(k) ≥ r. (14)

Similarly, to avoid collision between Robot n and Robot m

with a safe distance R(pn(t),pm(t), t), the corresponding

constraint, assuming the same-degree Bézier curves, is:
(
λj
n − λj

m

)T(
λj
n − λj

m

)
≥ R(pn(t),pm(t), t)2. (15)

If the degrees do not match, the lower degree Bézier curve

can be elevated to match the higher-degree curve.

Proposition 2. Given two Bézier curves ℓ(k) and ℓ′(k) of

the same degree T defined with the control points λ and λ′,

respectively, the Euclidean distance between the two curves is

larger than or equal to r if
(
λi
d

)T
λ
j
d ≥ r2, 0 ≤ i, j ≤ T, (16)

where λd = λ− λ′.

Proof. Using (5), the squared Euclidean distance between two

Bézier curves ℓ(k) and ℓ′(k) with the same degree can be

expressed as

d2(k) =

T∑

i=0

T∑

j=0

(
λi
d

)T
λ
j
d

︸ ︷︷ ︸

αi,j

(
T
i

)(
T
j

)

(
2T
i+j

) B
2T
i+j(k). (17)

The rest of the proof is very similar to that of Proposition 1

and is omitted for brevity.

Fig. 1 provides an example where the black and blue curves

fail to satisfy the condition in (15) for a distance of 25,

resulting in collisions indicated by the red lines. Readers are

encouraged to explore this constraint further using our web

application available at http://bezierwebapp.barzegaran.xyz.

Maximum distance constraints: An example of such

constraints is connectivity, which requires two nodes remain

within a maximum distance of each other. As a more specific

example, a robot may need to maintain connections with a

given base station. For a single point ω ∈ Ω and a maximum

distance R(pn(t),ω, t), this constraint is defined as
(
λi
n − ω

)T(
λj
n − ω

)
≤ R(pn(t),ω, t)2, 0 ≤ i, j ≤ T.

(18)

Proposition 3. A Bézier curve ℓ(k) of degree T maintains a

maximum distance r to a point ω if any pair of its control

points λi and λj satisfy the following:
(
λi − ω

)T(
λj − ω

)
≤ r2, 0 ≤ i, j ≤ T. (19)

Proof. The proof is identical to the proof of Proposition 1

replacing ≥ with ≤.

Alternatively, a robot may need to maintain a maximum

distance to a set of points representing another robot’s trajec-

tory. The decision of which robots require connectivity can be

determined using a topology control policy Γ : N −→ N .

The policy maps Robot n to a subset of robots denoted

by Nn ⊂ N , for example the topology control policy pre-

sented in [24]. With a maximum desired distance between

Robot n and Robot m ∈ Nn as R(pn(t),pm(t), t), this

constraint for the same-degree Bézier curves is defined as
(
λj
n − λj

m

)T(
λj
n − λj

m

)
≥ R(pn(t),pm(t), t)2, ∀m ∈ Γ(n),

(20)

where 0 ≤ i, j ≤ T .

Proposition 4. Given two Bézier curves ℓ(k) and ℓ′(k) of

the same degree T defined with the control points λ and λ′,

respectively, the Euclidean distance between the two curves is

less than or equal to r if
(
λi
d

)T
λ
j
d ≤ r2, 0 ≤ i, j ≤ T, (21)

Fig. 1. Keeping the distance between two Bézier curves more than a constant.



where λd = λ− λ′.

Proof. The proof is identical to the proof of Proposition 2

replacing ≥ with ≤.

Fig. 2 shows an example, generated by our web application,

where the black and blue curves fail to satisfy the condition

in (20) for a distance of 100, resulting in communication loss

indicated by the orange lines.

Visit constraints: An example of such constraints is con-

tinuity in iterative implementation, which requires robot tra-

jectories to extend from the robot positions pn(t), ensuring

continuous trajectories throughout the deployment. This con-

straint is defined as

λ0
n = pn(t0), (22)

where t0 is the current time.

Constraint optimization and QP: As discussed earlier, the

trajectory defined by Bézier curve ℓn(k) is the input to the

robot’s dynamics given in (1). We then use these dynamics to

predict the robot’s position, denoted as p̂n(t), over the horizon

t ∈ [t0, tf ] as

p̂n(t) = pn(t0) +

∫ t

t0

(
f
(
pn(t)

)
+ g

(
ℓn(κt

′)
))
dt′, (23)

where t0 is the start of the horizon, tf is the end of the horizon,

and κ = 1

tf−t0
ensures that the Bézier curve’s scalar parameter

remains in the range [0, 1]. Given the target position defined

by (7) and the predicted positions from (23), we formulate the

following quadratic programming (QP) problem to determine

a trajectory that guides the robots to the target positions while

enforcing the required constraints:

min
λn

||p̂n(tf )− p̌n(t)||
2,

s.t. (8), (9), (15), (18), (20), (22). (24)

Solving the QP problem in (24) provides the control points λn

that define the trajectories using Bézier curves ℓn(k). The

constraint in (22) ensures that these trajectories start from the

current robots’ positions. Consequently, remaining at the cur-

rent positions is a feasible solution. In addition, the QP prob-

lem in (24) determines trajectories where all points satisfy all

constraints, and the end of trajectories p̂n(tf ), n = 1, · · · , N
have the minimum distance to target positions p̌n(t), n =
1, · · · , N . Fig. 3 shows an example where the black curve

is the result of optimization in (24), in which (S), (E), and

(T), represent robot’s current/starting position pn(t0), the

end of the trajectory, i.e., final position p̂n(tf ), and target

position p̌n(t), respectively.

Fig. 2. Keeping the distance between two Bézier curves less than a constant.

Fig. 3. Example trajectory solution.

To summarize, mobile sensors following the trajectory so-

lutions from (24) will satisfy all imposed constraints and ap-

proach the target positions p̌n(t), n = 1, · · · , N . As discussed

earlier, iteratively solving (24) and (7) ensures mobile sensors’

positions converge to the optimal deployment.

V. EVALUATION

In this section, first, we compare the characteristics of

our proposed framework with those of the related work in

the literature. The compared related work, as summarized

in Table I, consists of: (i) optimal control (OC) [3], (ii)

deep reinforcement learning (DRL) [1], (iii) predictive control

(PC) [10], and (iv) barrier functions (BF) [11]. Table I’s first

column includes the list of characteristics for each work, sep-

arated by horizontal lines into three categories of deployment

environment, constraint categories, and solution types. Our

proposed framework is the only study that accommodates

all four categories of constraints and can manage various

environments and solution types.

We also compare the use of Bézier curves with other

parametric curve formulations including B-spline, Catmull-

Rom splines (CRS), Lagrange Polynomials curves (LPc), and

Pythagorean Hodograph curves (HPc) [25]. The comparison

consists: (i) Shape control mechanism, (ii) Simplicity, (iii)

Smoothness and continuity, (iv) Starting and Ending, and

(v) Distance computation. In terms of Shape control, Bézier

curves and LPc use control points that directly influence the

curve’s shape, with each control point affecting the entire

curve although LPc may exhibit oscillations. The control

points in B-spline only influence the local shape of the curve.

Meanwhile, CRS are defined by tangents at control points,

affecting the curve shape through pairs of control points.

Finally, HPc require additional parameters to control their

shape.

In terms of simplicity, HPc have the most complex formula-

tion, making them difficult to compute. B-splines are relatively

complex, requiring knowledge of knot points. CRS and LPc

are simpler, but Bézier curves offer the most straightforward

formulation, making them easy to understand and implement.

Furthermore, Bézier curves, B-splines, and HPc have well-

defined and smooth derivatives, making them suitable for

applications requiring higher-order continuity. CRS and LPc

may have complex or non-smooth higher order derivatives.

Bézier curves, CRS, and LPc naturally pass through their

start and end points. In contrast, B-splines and LPc do not

necessarily pass through their control points, including the

start and end points. In terms of distance computation, Bézier

curves, HPc, and B-Splines have direct analytic solutions for

distance computation in special cases, whereas CRS and LPc



TABLE I
RELATED DEPLOYMENT APPROACHES

Characteristics OC [3] DRL [1] PC [10] BF [11] This work

Space dimension adaptation 2D 2D & 3D 2D & 3D 2D 2D & 3D
Robot dynamics adaptation differential-driven uni-cycle state-space any dynamics any dynamics

Derivative related constraints Yes Yes Yes Yes Yes
Minimum distance constraints Yes Yes Yes Yes Yes
Maximum distance constraints No Yes No No Yes
Visit constraints Yes No No Yes Yes

Time domain adaptation cont-T1 disc-T2 disc-T cont-T cont-T & cisc-T

Decision making adaptation des-T3& real-T4 des-T des-T & real-T des-T & real-T des-T & real-T
Target determination adaptation static static & dynamic static & dynamic static & dynamic static & dynamic

1 continuous time; 2 discrete time; 3 design-time; 4 real-time.

generally require numerical methods for distance calculation.

Based on this information, Bézier curves are our most suit-

able solution as they are simple, differentiable, and continuous.

They offer good shape control and ensure that curves pass

through their start and end points while providing simple

distance computation that can handle specific requirements.

A. Evaluation setup

We have implemented our framework to determine the

deployment of a swarm of 4 UAVs in a 3D space. The

deployment space Ω is assumed to be bounded by [−4, 4]
for the X and Y coordinates and [0, 4] for the Z coordinate.

The UAVs’ velocity is limited to 2. They are deployed to

monitor the events placed in the X-Y plane of the space Ω

using a continuous differentiable bi-variate normal distribution

function f . Their initial positions are set randomly inside the

deployment space boundaries. They must avoid colliding each

other by maintaining a safe distance of 0.15. Additionally,

they must establish and maintain a fully connected network,

i.e., any two UAVs remain within a communication range of

2.2. The UAVs’ target positions p̌n(t), originally defined in

(7), are determined through gradient ascent using

p̌n(t) = pn(t) + γn∇pn(t)C(pn(t)), (25)

where C(pn(t)) is defined as

C(pn(t)) =

N∑

n=1

∫

Ωn

f(ω)dω. (26)

In this formulation, Ωn ⊂ Ω represents the disk-shaped

projected area of UAV n on the X-Y plane and an indication

of its covered area. This non-overlapping area is centered at

the projected location of the UAV on the X-Y plane, with a

radius of 0.36 times the UAV’s height.

B. Results

We have evaluated our deployment framework using the

setup in Sec. V-A. UAVs are deployed without collision

and achieved a fully connected network. Their target po-

sitions p̌n(t) maximized the performance function in (26)

where the initial value and the final value are 2% and 80%,

respectively. Fig. 4 shows the evolution of the performance

function C(pn(t)).

Fig. 5 illustrates the evolution of distances between UAV

pairs. As shown in the figure, the minimum distance con-

straint (collision) has consistently been satisfied throughout

Fig. 4. Evolution of performance function C(pn(t)).

the deployment. The dashed blue line represents the threshold

minimum distance of 0.15, which has never been breached

by any two UAVs. The dashed orange line represents the

threshold maximum distance of 2.0, which has been enforced

on UAV pairs. Although the initial UAV network lacked full

connectivity, for example the initial distance between UAVs 1
and 4 is more than 2.0, our framework effectively enforced

the maximum distance constraint, resulting in the eventual

creation of a fully connected network.

To demonstrate the effectiveness of our framework in en-

forcing the derivative related constraints, Fig. 6 shows the

velocity of each UAV. The dashed green line represents the

velocity threshold, set at 2, which has never been breached by

any UAV.

Fig. 5. Distance between pairs of drones.



Fig. 6. UAV velocity.

VI. CONCLUSIONS

In conclusion, this paper presents a framework for optimiz-

ing the deployment for a swarm of robots. This framework

seamlessly transitions form 2D to 3D deployment, adopts

the shift from design-time to real-time decision making, and

accommodates complex robot/UAV dynamics. The trajectories

are represented as Bézier curves, which are sampled as inputs

to the robot/UAV dynamics to predict their states over a time

horizon. Embedded within the geometry of Bézier curves are

formulations for handling various constraints. This frame-

work formulates the robot/UAV deployment as a quadratic

programming problem, enforcing constraints and optimizing

the deployment. Simulation results demonstrate promising

performance of the proposed framework, offering a promising

solution for deployment optimization.

Future research will focus on applying this platform to

realistic use cases and testing it on the NSF-funded Aerial Ex-

perimentation and Research Platform for Advanced Wireless

(AERPAW). Additionally, we will integrate this framework

with various search algorithms to study and enhance the

convergence of the controller. Another aspect of our future

work is to incorporate various sensing and accuracy models

to develop a robust deployment mechanism.
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tion,” Bulletin of the Australian Mathematical Society, vol. 56, no. 3,
pp. 507–515, 1997.

[23] J. Zhou, E. C. Sherbrooke, and N. M. Patrikalakis, “Computation of
stationary points of distance functions,” Engineering with computers,
vol. 9, pp. 231–246, 1993.

[24] E. Koyuncu and H. Jafarkhani, “Asynchronous local construction of
bounded-degree network topologies using only neighborhood informa-
tion,” IEEE Transactions on Communications, vol. 67, no. 3, pp. 2101–
2113, 2018.

[25] G. Farin, Curves and surfaces for CAGD: a practical guide. Elsevier,
2001.


