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A B S T R A C T

Hamiltonian equations possess a Hamiltonian function that governs the conserved physical property

for the system. Obtaining a discretization scheme that satisfies the intrinsic geometric properties of

its continuum problem is often a challenge. Spatial schemes that discretely mimic a conservation

law are known to result in accurate discretizations of partial differential equations. The mimetic

methods considered in this paper for spatial discretization are based on the work of Castillo & co-

authors. These methods produce high order mimetic operators which, by construction, result in a

discrete equivalent to a conservation law. These operators work on staggered spatial grids and produce

even orders of accuracy at the boundaries and interiors, while avoiding the use of ghost nodes. The

high order mimetic operators D and G are discrete approximations of their continuum counterpart

vector calculus identities of divergence and gradient. The resulting discretizations are therefore said

to mimic the underlying physics. The preservation of the spatio-temporal energy evolution requires

a corresponding time integration scheme that is structure preserving, such as the staggered leapfrog

scheme. The traditional leapfrog scheme, however, is limited to second order accuracy. In this work,

we study the high order composition temporal methods with the mimetic operators to investigate the

energy preserving aspects of Hamiltonian systems. Fourth and sixth order spatio-temporal energy

preserving schemes are presented for both linear and non-linear Hamiltonian systems. The novelty of

this work includes the validation of a sixth order mimetic energy preserving numerical scheme for

non-linear Hamiltonian systems. Numerical examples that illustrate our findings are also presented in

this work.

1. Introduction

Hamiltonian systems are a class of partial differential

equations (PDEs) used prevalently in engineering and sci-

ences [? ], such as the shallow water equations [? ], the

wave equation [? ] and Maxwell’s equations [? ]. A defining

feature of Hamiltonian systems is the Hamiltonian function,

which is a measure of the energy of the physical system

modeled by the PDE. Numerical schemes that discretely

preserve this energy evolution are a necessity for accurate

long-term spatio-temporal solutions of Hamiltonian PDEs.

Obtaining such energy preserving numerical solutions

with optimal computational cost is often a challenge [? ].

Broadly speaking, the scheme ought to satisfy certain re-

quirements for both the spatial and temporal discretizations.

Spatial discretization schemes that mimic a conservation law

are known to result in energy-stable discretizations [? ]. The

divergence theorem states that the integral of the divergence

of the flux over a volume equals the integral of the flux

across the surface. Discrete spatial operators that mimic

this continuum property lead to stable, energy-preserving

and positivity-preserving spatial discretizations [? ]. In a

one-dimensional framework, the continuum version of the

extended Gauss divergence theorem becomes integration by

parts which the Castillo-Grone mimetic operators satisfy
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[? ]. The classical quadrature rules often fail to discretely

mimic the quadrature over a volume to produce a quadrature

over the surface [? ] while the Corbino-Castillo mimetic

quadratures satisfy the divergence theorem [? ].

The mimetic methods developed by Castillo & Grone

[? ] result in high order discrete equivalents for the vector

calculus identities of divergence and gradient. The underly-

ing idea behind the Castillo-Grone methods lies in the fact

that the discrete operators are developed by mirroring the

properties of a fundamental conservation law. As a result,

the mimetic operators mimic the desirable properties of their

continuum ones. The resulting operators have been shown to

possess the desired spatial orders of convergence [? ] while

operating on staggered grids. Moreover, the order of spatial

accuracy is uniform (and even order; i.e., orders 2, 4, 6 and

higher) at the boundaries and interiors of the grid [? ], and

is achieved while avoiding the use of ghost nodes (which are

non-physical cells outside of the physical domain).

The Castillo-Grone methodology has free-parameters

in the derivation of the mimetic operators. The upgraded

methodology of Corbino-Castillo [? ] retains the same

mimetic character for the high order mimetic operators while

avoiding the use of free-parameters. Moreover, the Corbino-

Castillo operators possess optimal bandwidth for the div and

grad matrices. In this work, the Corbino-Castillo operators

are used as the basis for the spatial discretization.

Spatio-temporal PDEs are numerically solved using the

semi-discrete approach, where the domain is discretized in

space first, followed by integration in time. The Leapfrog

scheme (also referred to as the Verlet method [? ]) is a
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staggered temporal scheme that possesses symplectic quali-

ties [? ]. However, it only possesses second order temporal

accuracy. Symplectic integrators such as the Forest-Ruth

algorithms [? ? ] are limited to fourth order temporal ac-

curacy, and are also not staggered in time. Although other

symplectic integrators exist in the literature for Hamiltonian

systems, these are more often implicit integration schemes

[? ] that add a burden to the computational cost. The re-

laxation Runge Kutta schemes [? ] that provide a viable

option to converting the traditional Runge Kutta methods

into an energy conserving scheme was investigated with

the mimetic operators in [? ]. However, the computational

effort in calculating the relaxation parameter for each step

of integration imposes a computational overhead [? ]. The

staggered temporal schemes of Williams [? ? ] was investi-

gated in [? ] using the mimetic spatial operators. Although

these schemes possess energy preserving properties, their

convergence accuracy is limited to second order in time,

especially for non-linear PDEs. The quest for a staggered

and explicit time integration scheme that achieves fourth

and sixth order temporal accuracy has motivated the current

work, and prompted the investigation of the composition

methods with the mimetic operators.

The composition methods are a staggered explicit tem-

poral scheme based on recursive calculations at each step

size, and have been investigated to solve the wave equation

in, for example, [? ]. These schemes exist up to sixth order

accuracy [? ], and have been noted to possess energy pre-

serving qualities when applied to Hamiltonian systems [? ].

In the current work, the high order composition schemes are

investigated with the staggered high order Corbino-Castillo

[? ] mimetic operators to obtain energy preserving dis-

cretizations of the linear and non-linear Hamiltonian PDEs.

The convergence properties of the proposed schemes are

presented to illustrate our findings. The schemes achieve

fourth and sixth order global spatio-temporal accuracy while

preserving the numerical energy when applied to linear and

non-linear Hamiltonian systems.

This paper is organized as follows: in section two, we

outline the continuum wave equation and its Hamiltonian

structure, and show the use of the extended Gauss divergence

theorem to demonstrate the energy-stability of the system.

In section three, we outline the mimetic methods and its for-

mulation based on the extended Gauss divergence theorem.

Section four presents the discrete version of the continuum

problem, and demonstrates the applicability of the mimetic

methods in discretely conserving the Hamiltonian function.

The high order composition schemes are outlined in section

five. Numerical results illustrating our findings are shown in

section six, followed by concluding remarks.

2. The Continuous Problem

We consider the non-linear wave equation with homoge-

neous boundary conditions

)2u(x, t)

)t2
= ∇çÿ∇u(x, t)−f 2(u(x, t)), in ¬×[0, T ], (1)

subject to the initial and boundary conditions

u(x, 0) = u0(x),
)u

)t
(x, 0) = v0(x) in ¬, (2)

u(x, t) = 0 on )¬ × [0, T ] (3)

The domain ¬ * ℝ
d is a bounded region over the surface

)¬, with the function f (u(x, t)) as a continuously differen-

tiable real mapping f ∶ ℝ ³ ℝ in a d-dimensional space.

The quantity ÿ * ℝ
d×d is a symmetric positive definite

tensor. Some examples of non-linear equations that assume

this form shown above are the sine-Gordon equation [? ],

)2u(x, t)

)t2
= ∇ ç ÿ∇u(x, t) − sin(u(x, t)) (4)

and the non-linear improved Boussinesq equation [? ],

)2u(x, t)

)t2
= ∇ ç ∇u(x, t) +

)2

)t2
∇ ç ∇u + ∇ ç ∇(u2) (5)

An equivalent formulation for (1)-(2) as two first-order in

time systems is given by

ut(x, t) = v(x, t) in ¬ × [0, T ], (6)

vt(x, t) = ∇ ç ÿ∇u(x, t) − f 2(u(x, t)) in ¬ × [0, T ],

(7)

where the subscript t refers to the time-derivative. The initial

and boundary conditions are given by

u(x, 0) = u0(x), v(x, 0) = v0(x) in ¬, (8)

u(x, t) = 0, v(x, t) = 0 on )¬ × [0, T ] (9)

A well-known property of (1)-(2) is the conservation of

energy, also referred to as the Hamiltonian function. The

Hamiltonian function [? ] is given by

ö(u, v, t) =
1

2 +¬
(
v2 + ÿ(∇u)2 + 2f (u)

)
dx (10)

The temporal evolution rate of the Hamiltonian function is

evaluated as follows:

)ö
)t

= +¬
(
vvt + ∇u ç ÿ∇v + f 2(u)

)
dx

= +¬ (v∇ ç ÿ∇u + ∇u ç ÿ∇v) dx

= +)¬ v ç ÿ∇u dx

= 0

The conversion of the volume to surface integral in step three

above arises from the use of the extended Gauss divergence

theorem. Then, by incorporating the boundary conditions

of (9), the evolution of the Hamiltonian is obtained to be

constant with time. A key component here is the use of the

extended Gauss divergence theorem. Spatial schemes that

mimic this continuum property are an important necessity

for energy preserving discretizations of Hamiltonian sys-

tems.
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3. Mimetic Methods

Mimetic difference methods are based on constructing

discrete differential operators that mirror their analog equiv-

alents for conserved physical identities. These mimetic oper-

ators replicate the desired behavior found in their continuum

counterparts. The resulting numerical solutions for PDEs

obtained using mimetic methods are therefore expected to

produce results that are physically more meaningful. The

high order Castillo & Grone [? ] mimetic operators are con-

structed to produce discrete differential operators that mimic

the fundamental vector calculus quantities of divergence and

gradient. These operators are incorporated on a staggered

grid and achieve even orders of accuracy at the boundaries

and interiors of a spatial grid. The resulting mimetic oper-

ators satisfy a discrete equivalent of the extended Gauss’

divergence theorem, which is a global conservation law.

The high order operators of Corbino & Castillo [? ] have

been shown to possess optimal bandwidth for the matrices,

and eliminate the need for free-parameters for the discrete

operators.

The idea behind mimetic methods is to construct op-

erators that approximate the vector calculus identities of

divergence and gradient. The extended Gauss’ divergence

theorem in a continuous domain ¬ ⊂ ℝ
3 of volume V

enclosing the surface S is given by

-¬

f ∇ ç v⃗ dV +-¬

v⃗ ç(∇f ) dV = /)¬

fv⃗ ç n⃗ dS (11)

The resulting discrete mimetic operators Ā and ă mimic the

properties of their continuum counterparts ∇ç for divergence

and ∇ for gradient. Here, n⃗ is the outward normal to the

boundary, and f and v⃗ are smooth scalar and vector func-

tions respectively. ∇ç is the divergence operator div, and ∇

the gradient operator grad. In the one dimensional domain

x * [0, 1], this becomes integration by parts,

+
1

0

f
dv

dx
dx + +

1

0

df

dx
v dx = v ç f

||||

1

0

, (12)

where
dv

dx
and

df

dx
are the one-dimensional derivatives that

correspond to the div and grad operators respectively. By

setting either f � 1 or v � 1, the following conservation

laws are obtained:

+
1

0

dv

dx
dx = v

||||

1

0

, +
1

0

df

dx
dx = f

||||

1

0

(13)

The conservation laws noted above ensure the conversion

between the integral within a domain to the integral over the

surface.

Consider the functionals f and g in the functional space

¬ endowed with the scalar property +¬ f g dV � ïf, gðQ =

f⊤Qg for some quadrature Q. The vector fields u⃗ and

v⃗ are endowed with the vector property +¬ u⃗ v⃗ dV �
ï
u⃗, v⃗

ð
P
= u⃗⊤P v⃗ for some quadrature P . The Castillo-Grone

and Corbino-Castillo methods obtain high-order div and

grad discretizations Ā and ă that satisfy the order conditions

dv

dx
� ĀĔ + ý(�ℎk), df

dx
� ăĄ + ý(�ℎk) (14)

Using the boundary operator þ, the discrete equivalent of

(13) in the mimetic framework becomes

ïĀĔ,1ðQ = ïþĔ,1ð , ïăĄ ,1ðP = ïþĄ ,1ð (15)

A discrete version of the extended Gauss’ divergence

theorem is

ï
ĀĔ, Ą

ð
Q
+
ï
Ĕ,ăĄ

ð
P
=
ï
þĔ, Ą

ð
(16)

þ is the boundary operator matrix that is comprised of zeros,

with the top-left and bottom-right elements being -1 and

1. The system of algebraic equations in (15) is then solved

individually to obtain the mimetic div and grad operators.

The resulting div and grad operators do not exactly satisfy

(16), but satisfy (16) up to an error term of order�ℎ [? ]. The

resulting mimetic boundary operator is denoted as �þ and is

obtained from

QĀ +ă⊤P = �þ (17)

The boundary operator �þ is comprised predominantly of

zeros, with non-zero terms in the rows corresponding to the

boundaries. While �þ does not satisfy the mimetic constraint

in (16) exactly, it has been demonstrated that �þ converges to

þ as �ℎ ³ 0 [? ? ]. A consequence of this observation is

that when the discrete vectors Ĕ are identical to zero at the

boundaries (i.e., the term on the right-hand side of (11) is

identical to zero), the duality relation QĀ = −ă⊤P holds at

the interiors of the grid. The duality relation also holds in the

case of periodic boundary conditions. The mimetic operators

therefore contribute to discretely mirroring the properties

of the extended Gauss’ divergence theorem by construction.

Extensions of the mimetic operators to higher dimensions is

obtained using Kronecker products [? ].

4. The Semi-Discrete Problem

Consider a staggered one dimensional grid X * [0, 1]

discretized into N spatial elements of grid size �ℎ = 1∕N .

The divergence operator Ā ∶ ü ³ ñ is defined at

the cell centers, and is a mapping that operates on vectors[
Ĕ0, Ĕ1,& , ĔN

]⊤
defined at the nodes. The gradient operator

ă ∶ ñ ³ ü is defined at the nodes, and is a linear mapping

that operates on scalars
[
Ą0, Ą 1

2

, Ą 3
2

,& , Ą
N−

1

2

, ĄN

]⊤
defined

at the cell-centers and boundaries. Using these mimetic high

order operators, the continuous problem (6) is discretized as

follows:

đt(X, t) = Ē(X, t) t * [0, T ] (18)

Ēt(X, t) = Āÿăđ(X, t) − Ă2(đ(X, t)) (19)

đ(X, 0) = đ0,Ē(X, 0) = Ē0 (20)
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The discretized Hamiltonian function is given by

Ą[đ,Ē] =
1

2

[
ïĒ,ĒðQ + ÿ ïăđ,ăđðP + 2

ï
Ă2(đ),1

ð]

(21)

The temporal evolution of the Hamiltonian function is

)Ą

)t
= ïĒ,ĀÿăđðQ + ïÿăđ,ăĒðP
= ïþĒ,ÿăđð
= 0

The semi-discrete mimetic representation of the wave equa-

tion preserves the Hamiltonian evolution over time, thereby

mirroring the properties of its continuum case. The spa-

tial discretization obtained using the high order Corbino-

Castillo mimetic methods can therefore be considered as a

valuable scheme for solving Hamiltonian systems.

5. Composition Schemes

Following the semi-discretization of the problem in the

spatial domain, we now lay the framework for temporal

integration schemes that preserve the intrinsic geometric

properties of the PDE. The Hamiltonian system presented

in the prior section can be represented as

)u

)t
= ∇vö,

)v

)t
= −∇uö, (22)

where ∇u and ∇v are gradients with respect to u and v.

By introducing the symplectic matrix ø =

(
0 I

−I 0

)
, we

obtain
(
ut
vt

)
= ø ∇uvö(u, v), (23)

A property of Hamiltonian systems is the area (and volume)

preservation, where the energy evolution of ö(t) is a con-

stant for all times t [? ]: ö(t) = ö(0) = constant " t e 0.

Moreover, the phase-pair evolution over time (u(0), v(0)) ³

(u(�), v(�)) is a canonical transformation that preserves

the symplectic 2-form wedge product dp Λ dq (where

dp Λ dq(�1, �2) = dp(�1) dq(�2) − dp(�2) dq(�1)) [? ].

Temporal integration schemes that numerically preserve this

intrinsic geometric property of Hamiltonian systems are said

to be symplectic. The semi-discrete Hamiltonian formula-

tion using the high order mimetic operators is denoted by

Q−1 ∇v Ą(ē, Ĕ) = Q−1QĔ = Ĕ (24)

Q−1 ∇u Ą(ē, Ĕ) = Q−1ăTPÿăē (25)

= −Q−1QĀÿăē = −Āÿăē (26)

The equality in (26) is a direct consequence of the duality

relationship established in the prior section with the mimetic

operators. The semi-discrete Hamiltonian system becomes

(
ēt
Ĕt

)
= øQ−1 ∇uvĄ(ē, Ĕ), (27)

where ø is the symplectic matrix and ∇uv denotes the

gradient with respect to the variables ē and Ĕ.

Composition schemes stem from the fact that two half-

steps in time result in structure preserving discretizations

that retain the symplectic nature of the PDE. The leapfrog

scheme, or the schemes of Yee [? ] are a classical example

of a second order staggered temporal scheme. The s-stage

composition method for the initial value problem ėt =

Ą (t, ė), ė(0) = ė0 is given by [? ? ]

 Ą ,�t = �
(1)

Ą ,�s�t
ë �

(1∗)

Ą ,�s�t
ë ñ ë�

(s)

Ą ,�1�t
ë �

(s∗)

Ą ,�1�t
, (28)

where each �
(i)

Ą ,�i�t
,�

(i∗)

Ą ,�i�t
is a basic integration method for

Ą with temporal step �i�t or �i�t, �i, �i,�ℎ * ℝ. We refer

to [? ] for the coefficients for the fourth and sixth order

composition schemes. The recursive time-stepping scheme

for the semi-discrete problem is as follows [? ? ]:

ēk − ēk−1 = −(�k + �k−1) �t Ĕk−1 (29)

Ĕk − Ĕk−1 = (�k + �k) �t Āÿăēk, k = 1,& , s

followed by the final step update

ēn+1 − ēs = −�s �t Ĕs, Ĕn+1 = Ĕs (30)

The fourth and sixth order composition schemes are inves-

tigated in the current work. The results are also compared

with the fourth order Runge Kutta scheme, which is a non-

symplectic scheme.

6. Numerical Results

Numerical examples that illustrate the proposed high

order schemes are presented in this section. Where available,

the analytical solution has been used to compare the nu-

merical error with the discretized solution, and in obtaining

a numerical order of convergence. The error between the

analytical solution u and numerical solution đ is evaluated

using the infinity-norm, defined by

en = ||u(tn) − đ(tn)||@ (31)

The numerical order of convergence q is calculated for each

halving of step-size using

q =
1

ln(2)

en�ℎ

en�ℎ∕2
(32)

The following legends have been used in the tables and plots

presented in this section: the fourth and sixth order mimetic

operators are denoted by MIM4 & MIM6. The Runge Kutta

(shown in each numerical example below for comparison

to the composition schemes), fourth order and sixth order

composition schemes are denoted by RK4, COMP4 and

COMP6. The open-source library MOLE (Mimetic Oper-

ators Library Enhanced) [? ? ] has been used for the Matlab

implementation.
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Table 1

Order of accuracy, one-dimensional wave equation

m �ℎ = �t MIM4-RK4 MIM4-COMP4 MIM6-COMP6

en q en q en q

64 0.4688 0.2301 0.2194 0.1472

128 0.2344 0.0681 1.756 0.0631 1.797 0.0103 3.842

256 0.1172 0.0060 3.512 0.0047 3.755 1.5974e-04 6.004

512 0.0586 4.3737e-04 3.770 3.4011e-04 3.780 3.3653e-06 5.568

1024 0.0293 2.7853e-05 3.972 2.1550e-05 3.980 5.7981e-08 5.859

2048 0.0146 1.7478e-06 3.994 1.3495e-06 3.997 9.2724e-10 5.966

Example 1. The wave equation (1) is solved in the one-

dimensional domain x * [−15, 15], t * [0, Te] with

Dirichlet boundary conditions and initial condition given by

u(x, 0) = ��,�(x) = e−1∕�
2
(
x −

�

2

)2

, � = 0.5, � = 0 (33)

The analytical solution at time t is given by

u(x, t) = ��,�(x − t) (34)

The order of convergence of the schemes is studied by

integrating the system of equations until Te = 1 s. The exact

and numerical solutions are compared at Te for each halving

of the spatial size, and the order of convergence is calculated

using the computed errors. Table 1 shows the computed

errors and the orders of convergence with a CFL-condition

of 1.0 (i.e., �ℎ = �t). It can be noted that the schemes

converge to fourth and sixth order accuracy as expected.

Figures 1, 2 show the numerical solution obtained using

each of the schemes, at Te = 12 s. The fourth order schemes

introduce oscillations at the leading edge of the impulse

function, while the sixth order scheme produces a result that

more closely resembles that of the analytical solution.

Figure 3 shows the energy evolution of the one- dimen-

sional wave equation, normalized to the energy at t = 0.

The Runge Kutta scheme shows a decaying energy over

time, while the fourth and sixth order mimetic composition

schemes conserve the numerical energy.

Example 2. The convergence and energy evolution in two-

and three-dimensional spaces for the wave equation is pre-

sented in this example. In two-dimensions, the domain is

defined as (x, y) * [−15, 15]2 with initial condition u(x, y) =

��,�(x)+��,�(y). The analytic solution is given by u(x, y, t) =

��,�(x − t) + ��,�(y − t).

In three-dimensional space (x, y, z) * [−25, 25]3, the

initial condition is specified as u(x, y, z) = ��,�(x)+��,�(y)+

��,�(z), with analytic solution given by u(x, y, z, t) = ��,�(x−

t) + ��,�(y − t) + ��,�(z − t).

Convergence is evaluated by comparing the analytic and

numerical solutions at time Te = 1 s. The convergence

properties of the two-dimensional wave equation is shown in

table 2, with a CFL condition of
�t

�ℎ
= 0.5, step sizes along

the x and y directions denoted by �ℎx = �ℎy = �ℎ. In table

-15 -10 -5 0 5 10 15

x

-0.2

0

0.2

0.4

0.6

0.8

1

u
(t

,x
)

u vs x, 1D Wave Eq

initial

MIM4-COMP4

MIM6-COMP6

MIM4-RK4

exact

Figure 1: Numerical Solution, one-dimensional wave equation

9.5 10 10.5 11 11.5 12 12.5 13 13.5

x

-0.2

0

0.2

0.4

0.6

0.8

1

u
(t

,x
)

u vs x, 1D Wave Eq

initial

MIM4-COMP4

MIM6-COMP6

MIM4-RK4

exact

Figure 2: Numerical Solution, one-dimensional wave equation,

zoomed-in

3, the convergence properties are shown for a fixed time-

step �t = 0.01 s, and the spatial step-size halved for each

simulation. In both instances, the desired order of accuracy

is attained for the fourth and sixth order schemes.

The energy evolution of the two- and three-dimensional

wave equation is shown in figures 4, 5. The high order
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Table 2

Order of accuracy, two-dimensional wave equation with fixed CFL, �ℎ = 2�t

m �ℎ MIM4-RK4 MIM4-COMP4 MIM6-COMP6

=n = 2�t en q en q en q

128 0.2344 0.0924 0.0895 0.0341

256 0.1172 0.0092 3.333 0.0086 3.377 9.6709e-04 5.138

512 0.0586 6.1004e-04 3.908 5.7507e-04 3.904 1.7857e-05 5.759

1024 0.0293 3.8763e-05 3.976 3.6565e-05 3.975 2.9358e-07 5.926

Table 3

Order of accuracy, two-dimensional wave equation with fixed �t = 0.01 s

m �ℎ MIM4-RK4 MIM4-COMP4 MIM6-COMP6

=n en q en q en q

128 0.2344 0.0817 0.0817 0.0330

256 0.1172 0.0087 3.239 0.0087 3.239 0.0010 4.996

512 0.0586 5.7464e-04 3.912 5.7418e-04 3.913 1.9298e-05 5.742

1024 0.0293 3.6806e-05 3.964 3.6329e-05 3.982 3.1110e-07 5.955
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Figure 3: Energy Evolution, one-dimensional wave equation

mimetic-composition schemes preserve the Hamiltonian

function over time, and thereby leading to superior numeric

properties when applied to Hamiltonian PDEs.

Example 3. The sine-Gordon equation is presented in this

example. We start with the one-dimensional case, where the

forcing function in (1) is given by f 2(u) = sin(u). The initial

condition is given by [? ]

u(x, 0) = 4 arctan
(
e�
)
, (35)

v(x, 0) = −
4ce�√

1 − c2(1 + e2�)
, � =

x − ct√
1 − c2

(36)

and the analytical solution given by

u(x, t) = 4arctan
(
ex−ct∕

√
1−c2

)
(37)
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Figure 4: Energy Evolution, two-dimensional wave equation

The conserved quantity for the sine-Gordon equation is the

Hamiltonian function

ö(u, t) =
1

2 +¬
(
v2 + ÿ(∇u)2 + 2(1 − cos u)

)
dx (38)

The problem is defined in the domain x * [−50, 50]with c =

0.5 and periodic boundaries. The numerical solution and the

order of convergence for the schemes is shown in figures 6,

7. Convergence was evaluated with a CFL condition of 0.25.

In addition to achieving the desired order of convergence,

the high order mimetic-composition schemes display energy

conserving properties as shown in figure 8. In contrast, the

Runge Kutta scheme shows an asymptotically increasing

energy over time.

The energy evolution and the numerical solution for the

two-dimensional sine-Gordon equation is depicted in figures

9, 11. The two-dimensional domain is (x, y) * [−50, 50]2
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Figure 5: Energy Evolution, three-dimensional wave equation

with periodic boundaries. The initial condition is taken from

the two-dimensional analytical solution of the form [? ? ]

u(x, y, t = 0) = −4arctan
(
�xy

)
(39)

�xy =
c√

1 − c2
sin(0.5) sech(cx) sech(cy) (40)

with c = 0.5. The equations were integrated up to Te =

50 s. The three-dimensional case was solved using the initial

condition

u(x, y, t = 0) = −4arctan
(
�xyz

)
(41)

�xyz =
c√

1 − c2
sin(0.5) sech(cx) sech(cy) sech(cz)

(42)

with c = 0.5, in the domain (x, y, z) * [−50, 50]3, and

integrated up to Te = 40 s. The energy evolution is shown

in fig. 10. It can be observed that the numerical energy is

conserved in one-, two- and three-dimensional cases for

the sine-Gordon equation with the mimetic-composition

schemes.

Example 4. In this example, we evaluate the Boussinesq

equation [? ] of the form

utt = ∇ ç ∇(utt) + ∇ ç ∇(u + u2) (43)

written as two first-order in time system of equations

ut = v (44)
(
I − ∇2

)
vt = ∇2(u + u2) (45)

Here, ∇2 is the Laplacian operator. The conserved quantity

is

ö(t) =
1

2 +¬
(
v2 + (ut)

2 + u2 +
2

3
u3
)
dx (46)
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Exact

Figure 6: Numerical solution, one-dimensional sine-Gordon

equation
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Figure 7: Numerical convergence, one-dimensional sine-Gordon

equation

The initial conditions for the one-dimensionnal case are

calculated using the known analytical solution

u(x, t) = � sech2
(√

�

6

x − �t − x0

�

)
, (47)

� = 0.5, x0 = 0, � =

√
1 +

2�

3

The order of convergence and energy evolution of the

numerical solution solved in the one-dimensional domain

x * [−50, 50] is shown in figures 12, 13. The desired order

of accuracy and energy conservation can be noted for the

mimetic-composition schemes for this example as well.

Figure 14 shows the energy evolution of the Boussinesq

equation in the two-dimensional domain (x, y) * [−60, 60]2

with initial conditions as shown in example 2. Energy

conservation can be noted here for the mimetic-composition

schemes, while the RK scheme exhibits an asymptotic
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Figure 8: Energy evolution, one-dimensional sine-Gordon equa-

tion
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Figure 9: Energy evolution, two-dimensional sine-Gordon equa-

tion

divergence in the energy.

Example 5. The last example presented is the non-linear

shallow water system of equations adapted from [? ], given

by

�t + ∇ ç (u + �u) = 0 (48)

ut + ∇� + u∇ ç u = 0, (49)

with the conserved Hamiltonian function ö =
1

2 +¬ u2 +

�2 + � u2 dx. The numerical solution was evaluated on a

one-dimensional domain x * [−40, 40], with initial con-

ditions u(x, 0) = 1 + 0.1 exp
(
−x2

)
, v(x, 0) = 0, and

periodic boundaries. The numerical solution evaluated using

a spatial grid of 400 elements and a time-step size of 0.01

s at Te = 15 s is shown in figures 15, 16. The mimetic

methods capture the non-linear behavior of the solution

well, given that this equation is subject to a shock behavior.
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Figure 10: Energy evolution, three-dimensional sine-Gordon

equation

The mimetic-composition schemes also show conservation

of energy behavior, which is not reflected with the Runge

Kutta method. A similar behavior can also be observed in

figure 17 for the three-dimensional case solved in the domain

(x, y, z) * [−25, 25]3 with the same initial condition as in

example 2.

7. Conclusion

The high order mimetic methods produce mimetic vec-

tor calculus operators that mimic a conservation law. The

resulting schemes for partial differential equations obtained

using these operators stay faithful to the physics. In this

work, the high order mimetic operators are used with the

structure preserving composition temporal schemes for the

numerical integration of Hamiltonian systems. The energy

preserving nature of these numerical schemes is illustrated

for Hamiltonian systems in this paper. Numerical examples

that demonstrate the order of convergence for linear and

non-linear problems in one-, two- and three-dimensions are

presented. A novelty of the results presented in this paper

is the sixth order energy preserving mimetic scheme for

non-linear Hamiltonian systems. The high order mimetic-

composition schemes are therefore a valuable tool for the

numerical solution of Hamiltonian systems.
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Figure 11: Numerical solution, two-dimensional sine-Gordon equation
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Figure 12: Convergence, one-dimensional Boussinesq equation
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Figure 13: Energy evolution, one-dimensional Boussinesq equa-
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Figure 14: Numerical solution, two-dimensional Boussinesq

equation
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Figure 15: Numerical solution, one-dimensional shallow water

equation
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Figure 16: Energy evolution, one-dimensional shallow water

equation
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Figure 17: Energy evolution, 3D shallow water equation
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