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Hamiltonian equations possess a Hamiltonian function that governs the conserved physical property
for the system. Obtaining a discretization scheme that satisfies the intrinsic geometric properties of
its continuum problem is often a challenge. Spatial schemes that discretely mimic a conservation
law are known to result in accurate discretizations of partial differential equations. The mimetic
methods considered in this paper for spatial discretization are based on the work of Castillo & co-
authors. These methods produce high order mimetic operators which, by construction, result in a

discrete equivalent to a conservation law. These operators work on staggered spatial grids and produce
even orders of accuracy at the boundaries and interiors, while avoiding the use of ghost nodes. The
high order mimetic operators D and G are discrete approximations of their continuum counterpart
vector calculus identities of divergence and gradient. The resulting discretizations are therefore said
to mimic the underlying physics. The preservation of the spatio-temporal energy evolution requires
a corresponding time integration scheme that is structure preserving, such as the staggered leapfrog
scheme. The traditional leapfrog scheme, however, is limited to second order accuracy. In this work,
we study the high order composition temporal methods with the mimetic operators to investigate the
energy preserving aspects of Hamiltonian systems. Fourth and sixth order spatio-temporal energy
preserving schemes are presented for both linear and non-linear Hamiltonian systems. The novelty of
this work includes the validation of a sixth order mimetic energy preserving numerical scheme for
non-linear Hamiltonian systems. Numerical examples that illustrate our findings are also presented in

this work.

1. Introduction

Hamiltonian systems are a class of partial differential
equations (PDEs) used prevalently in engineering and sci-
ences [? ], such as the shallow water equations [? ], the
wave equation [? ] and Maxwell’s equations [? ]. A defining
feature of Hamiltonian systems is the Hamiltonian function,
which is a measure of the energy of the physical system
modeled by the PDE. Numerical schemes that discretely
preserve this energy evolution are a necessity for accurate
long-term spatio-temporal solutions of Hamiltonian PDEs.

Obtaining such energy preserving numerical solutions
with optimal computational cost is often a challenge [? ].
Broadly speaking, the scheme ought to satisfy certain re-
quirements for both the spatial and temporal discretizations.
Spatial discretization schemes that mimic a conservation law
are known to result in energy-stable discretizations [? ]. The
divergence theorem states that the integral of the divergence
of the flux over a volume equals the integral of the flux
across the surface. Discrete spatial operators that mimic
this continuum property lead to stable, energy-preserving
and positivity-preserving spatial discretizations [? ]. In a
one-dimensional framework, the continuum version of the
extended Gauss divergence theorem becomes integration by
parts which the Castillo-Grone mimetic operators satisfy
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[? ]. The classical quadrature rules often fail to discretely
mimic the quadrature over a volume to produce a quadrature
over the surface [? ] while the Corbino-Castillo mimetic
quadratures satisfy the divergence theorem [? ].

The mimetic methods developed by Castillo & Grone
[? ] result in high order discrete equivalents for the vector
calculus identities of divergence and gradient. The underly-
ing idea behind the Castillo-Grone methods lies in the fact
that the discrete operators are developed by mirroring the
properties of a fundamental conservation law. As a result,
the mimetic operators mimic the desirable properties of their
continuum ones. The resulting operators have been shown to
possess the desired spatial orders of convergence [? ] while
operating on staggered grids. Moreover, the order of spatial
accuracy is uniform (and even order; i.e., orders 2, 4, 6 and
higher) at the boundaries and interiors of the grid [? ], and
is achieved while avoiding the use of ghost nodes (which are
non-physical cells outside of the physical domain).

The Castillo-Grone methodology has free-parameters
in the derivation of the mimetic operators. The upgraded
methodology of Corbino-Castillo [? ] retains the same
mimetic character for the high order mimetic operators while
avoiding the use of free-parameters. Moreover, the Corbino-
Castillo operators possess optimal bandwidth for the div and
grad matrices. In this work, the Corbino-Castillo operators
are used as the basis for the spatial discretization.

Spatio-temporal PDEs are numerically solved using the
semi-discrete approach, where the domain is discretized in
space first, followed by integration in time. The Leapfrog
scheme (also referred to as the Verlet method [? ]) is a
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staggered temporal scheme that possesses symplectic quali-
ties [? ]. However, it only possesses second order temporal
accuracy. Symplectic integrators such as the Forest-Ruth
algorithms [? ? ] are limited to fourth order temporal ac-
curacy, and are also not staggered in time. Although other
symplectic integrators exist in the literature for Hamiltonian
systems, these are more often implicit integration schemes
[? ] that add a burden to the computational cost. The re-
laxation Runge Kutta schemes [? ] that provide a viable
option to converting the traditional Runge Kutta methods
into an energy conserving scheme was investigated with
the mimetic operators in [? ]. However, the computational
effort in calculating the relaxation parameter for each step
of integration imposes a computational overhead [? ]. The
staggered temporal schemes of Williams [? ? ] was investi-
gated in [? ] using the mimetic spatial operators. Although
these schemes possess energy preserving properties, their
convergence accuracy is limited to second order in time,
especially for non-linear PDEs. The quest for a staggered
and explicit time integration scheme that achieves fourth
and sixth order temporal accuracy has motivated the current
work, and prompted the investigation of the composition
methods with the mimetic operators.

The composition methods are a staggered explicit tem-
poral scheme based on recursive calculations at each step
size, and have been investigated to solve the wave equation
in, for example, [? ]. These schemes exist up to sixth order
accuracy [? ], and have been noted to possess energy pre-
serving qualities when applied to Hamiltonian systems [? ].
In the current work, the high order composition schemes are
investigated with the staggered high order Corbino-Castillo
[? ] mimetic operators to obtain energy preserving dis-
cretizations of the linear and non-linear Hamiltonian PDEs.
The convergence properties of the proposed schemes are
presented to illustrate our findings. The schemes achieve
fourth and sixth order global spatio-temporal accuracy while
preserving the numerical energy when applied to linear and
non-linear Hamiltonian systems.

This paper is organized as follows: in section two, we
outline the continuum wave equation and its Hamiltonian
structure, and show the use of the extended Gauss divergence
theorem to demonstrate the energy-stability of the system.
In section three, we outline the mimetic methods and its for-
mulation based on the extended Gauss divergence theorem.
Section four presents the discrete version of the continuum
problem, and demonstrates the applicability of the mimetic
methods in discretely conserving the Hamiltonian function.
The high order composition schemes are outlined in section
five. Numerical results illustrating our findings are shown in
section six, followed by concluding remarks.

2. The Continuous Problem

We consider the non-linear wave equation with homoge-
neous boundary conditions

0%u(x, 1)

7 = V-KVu(x,t)— f'u(x, 1)),

inQx[0,T], (1)

subject to the initial and boundary conditions

u(x,0) = ug(x), %(x, 0) =vy(x) inQ, 2)
u(x,t) =0 ondQx[0,T] 3)

The domain Q € R? is a bounded region over the surface
0Q, with the function f(u(x,)) as a continuously differen-
tiable real mapping f : R — R in a d-dimensional space.
The quantity K € R9*? is a symmetric positive definite
tensor. Some examples of non-linear equations that assume
this form shown above are the sine-Gordon equation [? ],

%u(x, 1)
or?

and the non-linear improved Boussinesq equation [? ],

=V .- KVu(x,t) — sin(u(x, 1)) (@)
0%u(x,1) 9 )
o V- Vu(x,t) + atzv Vu+V-V@w) (5

An equivalent formulation for (1)-(2) as two first-order in
time systems is given by

u,(x,t) = v(x,t) inQxI[0,T], 6)
v,(x,0) =V - KVu(x,t) — f'(u(x,1)) inQx[0,T],
@)

where the subscript , refers to the time-derivative. The initial
and boundary conditions are given by

u(x,0) = uy(x),
u(x,t) =0,

v(x,0) = vy(x) inQ, ®)
v(x,t) =0 onodQXx[0,T] )

A well-known property of (1)-(2) is the conservation of
energy, also referred to as the Hamiltonian function. The
Hamiltonian function [? ] is given by

H(u,v,1) = %/ (* + K(Vw)* +2f ) dx  (10)
Q

The temporal evolution rate of the Hamiltonian function is
evaluated as follows:

I _ [ (o0, + Vu - KVo+ f'(w)) dx
ot o

= / (V - KVu + Vu - KVo)dx
Q

=/ v-KVudx
0Q

=0

The conversion of the volume to surface integral in step three
above arises from the use of the extended Gauss divergence
theorem. Then, by incorporating the boundary conditions
of (9), the evolution of the Hamiltonian is obtained to be
constant with time. A key component here is the use of the
extended Gauss divergence theorem. Spatial schemes that
mimic this continuum property are an important necessity
for energy preserving discretizations of Hamiltonian sys-
tems.
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3. Mimetic Methods

Mimetic difference methods are based on constructing
discrete differential operators that mirror their analog equiv-
alents for conserved physical identities. These mimetic oper-
ators replicate the desired behavior found in their continuum
counterparts. The resulting numerical solutions for PDEs
obtained using mimetic methods are therefore expected to
produce results that are physically more meaningful. The
high order Castillo & Grone [? ] mimetic operators are con-
structed to produce discrete differential operators that mimic
the fundamental vector calculus quantities of divergence and
gradient. These operators are incorporated on a staggered
grid and achieve even orders of accuracy at the boundaries
and interiors of a spatial grid. The resulting mimetic oper-
ators satisfy a discrete equivalent of the extended Gauss’
divergence theorem, which is a global conservation law.
The high order operators of Corbino & Castillo [? ] have
been shown to possess optimal bandwidth for the matrices,
and eliminate the need for free-parameters for the discrete
operators.

The idea behind mimetic methods is to construct op-
erators that approximate the vector calculus identities of
divergence and gradient. The extended Gauss’ divergence
theorem in a continuous domain Q C R> of volume V'
enclosing the surface .S is given by

// fV-B dV+/// 5-(Vf) dV = fi-idS (11)
Q Q 0Q

The resulting discrete mimetic operators D and G mimic the
properties of their continuum counterparts V- for divergence
and V for gradient. Here, 7 is the outward normal to the
boundary, and f and U are smooth scalar and vector func-
tions respectively. V- is the divergence operator div, and V
the gradient operator grad. In the one dimensional domain
x € [0, 1], this becomes integration by parts,

1 1 1
/ f@dx+/ 4 pax=ov. |, (12)
0 dx 0 dx 0

dv d . . .
where — and —f are the one-dimensional derivatives that

X X
correspond to the div and grad operators respectively. By
setting either f = 1 or v = 1, the following conservation

laws are obtained:
1 1 1 1
dv d
/—dx:u, /—fdx=f’ (13)
o dx 0 o dx 0
The conservation laws noted above ensure the conversion
between the integral within a domain to the integral over the

surface.
Consider the functionals f and g in the functional space

Q endowed with the scalar property / fedV=(f.go=
Q

7TOg for some quadrature Q. The vector fields # and

and Corbino-Castillo methods obtain high-order div and
grad discretizations D and G that satisfy the order conditions

dv

— =Dv+ O(ARY, df _
dx

— =Gf +OAKY (14)
X
Using the boundary operator B, the discrete equivalent of

(13) in the mimetic framework becomes

(Dv,1)p = (Bv,1), (Gf,1)p=(Bf,1)  (I5)

A discrete version of the extended Gauss’ divergence
theorem is

(Dv.f),+(v.Gf), = (Bv.f) (16)

B is the boundary operator matrix that is comprised of zeros,
with the top-left and bottom-right elements being -1 and
1. The system of algebraic equations in (15) is then solved
individually to obtain the mimetic div and grad operators.
The resulting div and grad operators do not exactly satisfy
(16), but satisfy (16) up to an error term of order Ah [? ]. The
resulting mimetic boundary operator is denoted as B and is
obtained from

oD+G'P=B a7)

The boundary operator Bis comprised predominantly of
zeros, with non-zero terms in the rows corresponding to the
boundaries. While B does not satisfy the mimetic constraint
in (16) exactly, it has been demonstrated that B converges to
B as Ah — 0[? ? ]. A consequence of this observation is
that when the discrete vectors v are identical to zero at the
boundaries (i.e., the term on the right-hand side of (11) is
identical to zero), the duality relation QD = —GT P holds at
the interiors of the grid. The duality relation also holds in the
case of periodic boundary conditions. The mimetic operators
therefore contribute to discretely mirroring the properties
of the extended Gauss’ divergence theorem by construction.
Extensions of the mimetic operators to higher dimensions is
obtained using Kronecker products [? ].

4. The Semi-Discrete Problem

Consider a staggered one dimensional grid X € [0, 1]
discretized into N spatial elements of grid size Ah = 1/N.
The divergence operator D N = C is defined at
the cell centers, and is a mapping that operates on vectors

[VO, Vi,.oosV N] " defined at the nodes. The gradient operator
G : C — N is defined at the nodes, and is a linear mapping
T
that operates on scalars [fo, fi.fs5,... »fN_l ,fn| defined
2 2 2
at the cell-centers and boundaries. Using these mimetic high

order operators, the continuous problem (6) is discretized as
follows:

U(X,n=V(X,t) te€l[0,T] (18)
U are endowed with the vector property /Q uvdv = V,(X,1) = DKGU(X, 1) — F/(U(X, 1)) (19)
(Zi, 0 > p= ii" PU for some quadrature P. The Castillo-Grone U(X,0) =U,, V(X,0) =V, 20)
Srinivasan, Castillo: Preprint submitted to Elsevier Page 3 of 9
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The discretized Hamiltonian function is given by

HIU, V] = 2 [(V.V)g + K (GU,GU) +2 (F(U), 1)]
2D

The temporal evolution of the Hamiltonian function is

oH

= = (V.DKGU)g + (KGU.GV),»
= (BV, KGU)
=0

The semi-discrete mimetic representation of the wave equa-
tion preserves the Hamiltonian evolution over time, thereby
mirroring the properties of its continuum case. The spa-
tial discretization obtained using the high order Corbino-
Castillo mimetic methods can therefore be considered as a
valuable scheme for solving Hamiltonian systems.

5. Composition Schemes

Following the semi-discretization of the problem in the
spatial domain, we now lay the framework for temporal
integration schemes that preserve the intrinsic geometric
properties of the PDE. The Hamiltonian system presented
in the prior section can be represented as

ou dv

— =V H, —=-V H, 22
ot v ot “ (22)

where V, and V,, are gradients with respect to u and v.
By introducing the symplectic matrix J = <_OI (I)>, we
obtain

(1) =7 Vo, @3)
A property of Hamiltonian systems is the area (and volume)
preservation, where the energy evolution of H(?) is a con-
stant for all times ¢ [? ]: H(t) = H(0) = constant V ¢ > 0.
Moreover, the phase-pair evolution over time (x(0), v(0)) —
(u(z),v(r)) is a canonical transformation that preserves
the symplectic 2-form wedge product dp A dg (where
dp A dg(6.&) = dp(&) dg(&) — dp(&) da(&) [2 1.
Temporal integration schemes that numerically preserve this
intrinsic geometric property of Hamiltonian systems are said
to be symplectic. The semi-discrete Hamiltonian formula-
tion using the high order mimetic operators is denoted by

Q0 'V,Hu,v)=Q 'Qv=v (24)
07!V, Hu,v) = 0!G PKGu (25)

= -0 'ODKGu = -DKGu  (26)

The equality in (26) is a direct consequence of the duality

relationship established in the prior section with the mimetic
operators. The semi-discrete Hamiltonian system becomes

<“’> =707V, Hau,v), Q7

Vi

where J is the symplectic matrix and V,, denotes the
gradient with respect to the variables u and v.

Composition schemes stem from the fact that two half-
steps in time result in structure preserving discretizations
that retain the symplectic nature of the PDE. The leapfrog
scheme, or the schemes of Yee [? ] are a classical example
of a second order staggered temporal scheme. The s-stage
composition method for the initial value problem y, =
£(t,y),y(0) =yp is given by [? ? |

_ 4 (1) (s) (%)
Wear= o 00 ° Prpai® " °Proar© Prpar (28

where each q')gl AP (I);’;) A, 18 @ basic integration method for
f with temporallstep a,-At or f;At, a;, p;, Ah € R. We refer
to [? ] for the coefficients for the fourth and sixth order
composition schemes. The recursive time-stepping scheme
for the semi-discrete problem is as follows [? ? ]:

=W = —(f + o) A1V (29)

Vi — Vi1 :(ﬁk‘i‘ak) AtDKGuk, k:1,...,S
followed by the final step update

vt —u, = —a, Arv,, V=, (30)

The fourth and sixth order composition schemes are inves-
tigated in the current work. The results are also compared
with the fourth order Runge Kutta scheme, which is a non-
symplectic scheme.

6. Numerical Results

Numerical examples that illustrate the proposed high
order schemes are presented in this section. Where available,
the analytical solution has been used to compare the nu-
merical error with the discretized solution, and in obtaining
a numerical order of convergence. The error between the
analytical solution # and numerical solution U is evaluated
using the infinity-norm, defined by

en = [lu(®") = U] €29}

The numerical order of convergence g is calculated for each
halving of step-size using

_ 1 (20N
111(2) enAh/z

q (32)

The following legends have been used in the tables and plots
presented in this section: the fourth and sixth order mimetic
operators are denoted by MIM4 & MIM6. The Runge Kutta
(shown in each numerical example below for comparison
to the composition schemes), fourth order and sixth order
composition schemes are denoted by RK4, COMP4 and
COMP6. The open-source library MOLE (Mimetic Oper-
ators Library Enhanced) [? ? ] has been used for the Matlab
implementation.
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Table 1
Order of accuracy, one-dimensional wave equation
m Ah = At MIM4-RK4 MIM4-COMP4 MIM6-COMP6
en q en q en q
64 0.4688 0.2301 0.2194 0.1472
128 0.2344 0.0681 1.756 0.0631 1.797 0.0103 3.842
256 0.1172 0.0060 3.512 0.0047 3.755 1.5974e-04 6.004
512 0.0586 4.3737e-04 3.770 3.4011e-04 3.780 3.3653e-06 5.568
1024 0.0293 2.7853e-05 3.972 2.1550e-05 3.980 5.7981e-08 5.859
2048 0.0146 1.7478e-06 3.994 1.3495e-06 3.997 9.2724e-10 5.966
Example 1. The wave equation (1) is solved in the one- u vs x, 1D Wave Eq
dimensional domain x € [-15,15], t+ € [0,7,] with ! — ‘ N ‘ ‘
. ops P " . = = = - initial h
Dirichlet boundary conditions and initial condition given by — === MIM4-COMP4 0
0.8r| O MIM6-COMP6 " b
- - - - MIM4-RK4 o “
e exact : |I
u(x,O)=r1,,,a(x)=e‘1/"2 (x— g) ,6=05u=0 (33) 061 ¥ .,; ]
¥ l
The analytical solution at time ¢ is given by % 04r ;' ! l 1
B l
u(x,t) =1, ,(x =1 (34 02l D |,: ]
The order of convergence of the schemes is studied by b\ # '&
integrating the system of equations until 7, = 1 s. The exact « )
and numerical solutions are compared at T, for each halving

of the spatial size, and the order of convergence is calculated
using the computed errors. Table 1 shows the computed
errors and the orders of convergence with a CFL-condition
of 1.0 (i.e., Ah = Ar). It can be noted that the schemes
converge to fourth and sixth order accuracy as expected.

Figures 1, 2 show the numerical solution obtained using
each of the schemes, at T, = 12 s. The fourth order schemes
introduce oscillations at the leading edge of the impulse
function, while the sixth order scheme produces a result that
more closely resembles that of the analytical solution.

Figure 3 shows the energy evolution of the one- dimen-
sional wave equation, normalized to the energy at t = O.
The Runge Kutta scheme shows a decaying energy over
time, while the fourth and sixth order mimetic composition
schemes conserve the numerical energy.

Example 2. The convergence and energy evolution in two-
and three-dimensional spaces for the wave equation is pre-
sented in this example. In two-dimensions, the domain is
defined as (x, y) € [—15, 15]% with initial condition u(x, y) =
nﬂ‘o_(x)+;7 o (»). The analytic solution is given by u(x, y, t) =
Nuo(X = 1) + 1, ,(y —1).

In three-dimensional space (x,y,z) € [-25,25]%, the
initial condition is specified as u(x, y, z) = 1, ,(x)+n, ,(»)+
M,,6(2), with analytic solution given by u(x, y, z, 1) = n,, ,(x—
D+1,:y—0+n,,(z-1.

Convergence is evaluated by comparing the analytic and
numerical solutions at time 7, = 1 s. The convergence
properties of the two-dimensional wave equation is shown in

table 2, with a CFL condition of ﬂ = 0.5, step sizes along
the x and y directions denoted by Ah, = Ah, = Ah. In table

Figure 1: Numerical Solution, one-dimensional wave equation

u vs X, 1D Wave Eq

1 B
— AB
= = = = initial /f \\‘
= === MIM4-COMP4 F \
0.8F O MIM6-COMP6 [ ? ,
- - - - MIM4-RK4 | \
————— exact II' \
| \
0.6 ‘-,1 \ b
i
/i \

u(t,x)
2
“Sre
s

0.2 ﬁ & 4
/1 A
mﬁ'ﬂ:“‘;ﬂ‘\ﬁ'fﬂ ---------------- nj—"—l!-ava-

o

0.2 . . . . . . .
9.5 10 10.5 1 1.5 12 125 13 13.5

X

Figure 2: Numerical Solution, one-dimensional wave equation,
zoomed-in

3, the convergence properties are shown for a fixed time-
step At = 0.01 s, and the spatial step-size halved for each
simulation. In both instances, the desired order of accuracy
is attained for the fourth and sixth order schemes.

The energy evolution of the two- and three-dimensional
wave equation is shown in figures 4, 5. The high order
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Table 2
Order of accuracy, two-dimensional wave equation with fixed CFL, Ah = 2At
m Ah MIM4-RK4 MIM4-COMP4 MIM6-COMP6
=n =2At en q en q en q
128 0.2344 0.0924 0.0895 0.0341
256 0.1172 0.0092 3.333 0.0086 3.377 9.6709e-04 5.138
512 0.0586 6.1004e-04 3.908 5.7507e-04 3.904 1.7857e-05 5.759
1024 0.0293 3.8763e-05 3.976 3.6565e-05 3.975 2.9358e-07 5.926
Table 3
Order of accuracy, two-dimensional wave equation with fixed Af = 0.01 s
m Ah MIM4-RK4 MIM4-COMP4 MIM6-COMP6
=n en q en q en q
128 0.2344 0.0817 0.0817 0.0330
256 0.1172 0.0087 3.239 0.0087 3.239 0.0010 4.996
512 0.0586 5.7464e-04 3.912 5.7418e-04 3.913 1.9298e-05 5.742
1024 0.0293 3.6806e-05 3.964 3.6329e-05 3.982 3.1110e-07 5.955
1.0001 Energx En/EO vs ‘time, 1D Wave Eq 1.002 Energx En/EO vs Fime, Wavg Eq 2D
1.00005 |- 1 1|L-\ ----- L e
L C e e e o e T O o e b Ll = R St T Ll = 0.998 - \\\~ T
AN N P MIM4-COMP4
0.99995 TS . 0.996 f ~a O MIM6-COMP6 |
AN S - - - - MIM4-RK4
0.9999 - <7 1 0.994 AN 1
o A P MIM4-COMP4 o R
Y 0.99985 - > O MIM6-COMPS Y0992} S .
w S~o - - - - MIM4-RK4 w S~
0.9998 f T 1 0.99 e :
0.99975 - \‘\\ . 0.988 \\\ .
0.9997 | \\\ . 0.986 | e .
0.99965 - ™ 0.984 N
0.9996 ‘ ‘ ‘ ‘ ‘ 0.982 : : : : :
0 2 4 6 8 10 12 0 2 4 6 8 10 12
time(s) time(s)

Figure 3: Energy Evolution, one-dimensional wave equation

mimetic-composition schemes preserve the Hamiltonian
function over time, and thereby leading to superior numeric
properties when applied to Hamiltonian PDEs.

Example 3. The sine-Gordon equation is presented in this
example. We start with the one-dimensional case, where the
forcing function in (1) is given by f’(u) = sin(u). The initial
condition is given by [? ]

u(x,0) = 4 arctan (e*), (35)

4cet x —ct

v(x,0) = ———, A= ——= (36)

\/1—02(1+e2'1)’ V1-¢c?

and the analytical solution given by

u(x, 1) = 4arctan (ex_”/ v 1_62) 37

Figure 4: Energy Evolution, two-dimensional wave equation

The conserved quantity for the sine-Gordon equation is the
Hamiltonian function

M) =3 /Q (% + K(Vu? +2(1 — cosu)) dx (38)

The problem is defined in the domain x € [-50, 50] with ¢ =
0.5 and periodic boundaries. The numerical solution and the
order of convergence for the schemes is shown in figures 6,
7. Convergence was evaluated with a CFL condition of 0.25.
In addition to achieving the desired order of convergence,
the high order mimetic-composition schemes display energy
conserving properties as shown in figure 8. In contrast, the
Runge Kutta scheme shows an asymptotically increasing
energy over time.

The energy evolution and the numerical solution for the
two-dimensional sine-Gordon equation is depicted in figures
9, 11. The two-dimensional domain is (x,y) € [-50, 5017
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Energy En/EQ vs time, Wave Eq 3D

1.002
1 G-E-EB-8-5-5-8-5 5 5-5-5-5-5-0-5 5-8-0-5-8-5 5 5-5-5-5-5-8-5
eE
N ~
. R MIM4-COMP4
0.998 - AR O MIMe-COMPS ||
M - - - - MIM4-RK4
o 0996 T~ .
L ~
= R
c N
L ~
0.994 A 1
N ~
0.992 | S ,
0.99 - RSO
0.988 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘
0 1 2 3 4 5 6 7 8 9
time(s)

Figure 5: Energy Evolution, three-dimensional wave equation

with periodic boundaries. The initial condition is taken from
the two-dimensional analytical solution of the form [? ? ]

(39)
(40)

u(x, y,t = 0) = —4arctan (Axy)

A S sin(0.5) sech(cx) sech(cy)

xy:
1—c2

with ¢ = 0.5. The equations were integrated up to 7, =
50 s. The three-dimensional case was solved using the initial
condition

u(x,y,t = 0) = —4arctan (4,,,) 41)

/lxyz =—° sin(0.5) sech(cx) sech(cy) sech(cz)
1—¢2

(42)

with ¢ = 0.5, in the domain (x,y,z) € [-50, 5013, and
integrated up to 7, = 40 s. The energy evolution is shown
in fig. 10. It can be observed that the numerical energy is
conserved in one-, two- and three-dimensional cases for
the sine-Gordon equation with the mimetic-composition
schemes.

Example 4. In this example, we evaluate the Boussinesq
equation [? ] of the form

uy =V V) + V- Vu+u?) (43)
written as two first-order in time system of equations

U, =v (44)

(I =V*) v, =Viu+u) (45)

Here, V2 is the Laplacian operator. The conserved quantity
is

H(r) = % / (zﬂ @)+t + %Lﬁ) dx (46)
Q

u vs X, 1D Sine Gordon Eq
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Figure 6: Numerical solution, one-dimensional sine-Gordon
equation
4 Numerical Convergence, 1D Sine Gordon Eq
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Figure 7: Numerical convergence, one-dimensional sine-Gordon
equation

The initial conditions for the one-dimensionnal case are
calculated using the known analytical solution

—_ t_
u(x,1) = a sech’ (\/%—x ﬂﬂ x0> , 47
a=05x,=0,p= 1+2?a

The order of convergence and energy evolution of the
numerical solution solved in the one-dimensional domain
x € [-50,50] is shown in figures 12, 13. The desired order
of accuracy and energy conservation can be noted for the
mimetic-composition schemes for this example as well.

Figure 14 shows the energy evolution of the Boussinesq
equation in the two-dimensional domain (x, y) € [—60, 60]>
with initial conditions as shown in example 2. Energy
conservation can be noted here for the mimetic-composition
schemes, while the RK scheme exhibits an asymptotic
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Energy En-EQ vs time, 1D Sine Gordon Eq
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Figure 8: Energy evolution, one-dimensional sine-Gordon equa-
tion

Energy En-EQ vs time, 2D Sine-Gordon Eq
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Figure 9: Energy evolution, two-dimensional sine-Gordon equa-
tion

divergence in the energy.

Example 5. The last example presented is the non-linear
shallow water system of equations adapted from [? ], given
by

n+V-u+nu)=0 48)
u,+Vn+uVvV-u=0, 49)

with the conserved Hamiltonian function H = % / u> +
Q

#* + n u* dx. The numerical solution was evaluated on a
one-dimensional domain x € [—40,40], with initial con-
ditions u(x,0) = 1 + 0.1 exp (—xz), v(x,0) = 0, and
periodic boundaries. The numerical solution evaluated using
a spatial grid of 400 elements and a time-step size of 0.01
sat T, = 15 s is shown in figures 15, 16. The mimetic
methods capture the non-linear behavior of the solution
well, given that this equation is subject to a shock behavior.

Energy En-EQ vs time, Sine Gordon Eq 3D
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Figure 10: Energy evolution, three-dimensional sine-Gordon
equation

The mimetic-composition schemes also show conservation
of energy behavior, which is not reflected with the Runge
Kutta method. A similar behavior can also be observed in
figure 17 for the three-dimensional case solved in the domain
(x,y,z) € [-25, 25]3 with the same initial condition as in
example 2.

7. Conclusion

The high order mimetic methods produce mimetic vec-
tor calculus operators that mimic a conservation law. The
resulting schemes for partial differential equations obtained
using these operators stay faithful to the physics. In this
work, the high order mimetic operators are used with the
structure preserving composition temporal schemes for the
numerical integration of Hamiltonian systems. The energy
preserving nature of these numerical schemes is illustrated
for Hamiltonian systems in this paper. Numerical examples
that demonstrate the order of convergence for linear and
non-linear problems in one-, two- and three-dimensions are
presented. A novelty of the results presented in this paper
is the sixth order energy preserving mimetic scheme for
non-linear Hamiltonian systems. The high order mimetic-
composition schemes are therefore a valuable tool for the
numerical solution of Hamiltonian systems.

Disclosure And Data Availability

The numerical results presented in this paper were
performed on Matlab with the open source library MOLE,
https://github.com/csrc-sdsu/mole. The Matlab scripts as-
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github.com/asrinivasan@709/HONOM2024. This work was funded
by the Computational Science Research Center, San Diego
State University.
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Figure 11: Numerical solution, two-dimensional sine-Gordon equation

Numerical Convergence, 1D Boussinesq Eq
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Figure 12: Convergence, one-dimensional Boussinesq equation

In memoriam
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of HONOM. Our thoughts and wishes go to his wife Lourdes
and his sister Maria Jesus, whom he left behind.

Energy En/EQ vs time, 1D Boussinesq Eq
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Figure 13: Energy evolution, one-dimensional Boussinesq equa-
tion

CRediT authorship contribution statement

Anand Srinivasan: Conceptualization, Methodology,
Validation, Writing. José E. Castillo: Methodology, Super-
vision, Reviewing, Editing.

Srinivasan, Castillo: Preprint submitted to Elsevier

Page 9 of 9



HONOM 2024 Mimetic

Energy En/EQ vs time, 2D Boussinesq Eq

11r

En/EO

o E— MIM4-COMP4
O MIM6-COMPS ||
- - - = MIM4-RK4

o~
r SolhlognnngonEE0666E-000868-0H

5 10 15 20
time(s)

Figure 14: Numerical solution, two-dimensional Boussinesq
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. u vs x, 1D Shallow Water Eq
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Figure 16: Energy evolution, one-dimensional shallow water

equation
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Figure 17: Energy evolution, 3D shallow water equation
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