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Resumo. O objetivo deste trabalho é modelar numericamente a dindmica neuronal unidimesional
da populacao de neurénios. Isto implica a solugdo numérica de um sistema de equagoes diferenciais
parciais (EDPs), chamado de modelo Fitzhugh-Nagumo (FHN). Para resolver o sistema usaremos
0 Método Mimético de Diferengas Finitas (MMDF) com Condigdes de Contorno de Neumann e um
esquema explicito para discretizar a variavel temporal.
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1 Introducao

A simulagdo numérica da dindmica da populagao neuronal, utilizando o Modelo FitzHugh-
Nagumo (FHN), é central para a compreensao dos intricados padroes emergentes em sistemas
neurais. Este estudo se propoe modelar ondas viajantes em meios excitaveis, focando principal-
mente na conducao de neurdnios eletronicamente compactos. A importancia deste trabalho reside
na representacao da rede neuronal com um sistema unidimensional de equagoes diferenciais parci-
ais, onde a coordenada espacial representa a rede com um unico potencial de agao, simplificando
consideravelmente a analise.

A parte essencial da nossa abordagem esta na resolugao numérica do sistema FHN, cuja primeira
equagao incorpora uma derivada de segunda ordem na coordenada espacial, enquanto ambas as
equagOes envolvem a primeira derivada na variavel temporal, veja equagdo (1). A escolha de
considerar neur6nios conetados apenas por sinapse elétrica destaca-se pela eficiéncia proporcionada
pela representa¢ao unidimensional da rede neuronal [5],[10]. Esta abordagem permite uma anéalise
mais detalhada das dindmicas neurais, focando a interagao entre os neurénios de maneira mais
precisa, apresentando a geragao e propagacao de ondas viajantes em redes neurais.

Nas sinapses elétricas, dois neurdnios sao conectados por canais especializados, os quais permi-
tem que os sinais elétricos viajem rapidamente do neurdnio pré-sinaptico ao neurénio pés-sinaptico,
acelerando a transferéncia de sinais [5],[10].

O uso do software MATLAB e a aplicacao de um esquema explicito para discretizar a variavel
temporal sdo fundamentais para a resolucdo eficiente do sistema FHN. Além disso, a escolha dos
Métodos Miméticos de Diferengas Finitas (MMDF) com Condigoes de Contorno de Neumann para
discretizar a variavel espacial garantem a precisao da simulagao em um contexto unidimensional.

Desta forma, esta pesquisa nao apenas se propoe a simular numericamente a dindmica neuronal,
mas também oferece uma compreensao aprofundada da geragao e propagacao das ondas viajantes
em sistemas neurais unidimensionais.
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2 O Modelo de FHN

Em 1961, FitzHugh [3, 4] demonstrou que o modelo, composto por quatro equagoes, proposto
por Hodgkin-Huxley (HH) [6], pertence a uma classe mais geral de sistemas excitaveis, tais como
o sistema neuronal e o tecido cardiaco. Como um protétipo fundamental, o oscilador van der Pol
foi um exemplo desta classe de sistemas, portanto FitzHugh o usou apés adequadas modificacoes.
Uma abordagem semelhante foi desenvolvida por Nagumo em 1962 [9], pelo qual o modelo passou
a ser chamado de FitzHugh-Nagumo (FHN). O modelo de HH possui uma precisdo tnica, porém
devido ao numero de equagoes é de tratamento dificil, especialmente para visualizacao de fendémenos
fisico-quimicos. O modelo de FHN é dado pelo sistema néao-linear de equacoes:

d

o DAu —u(u — a)(u— 1) — w + Leg,

gﬁ) em €2, ¢ > 0. (1)
ar e(u —yw),

onde u representa a excitabilidade do sistema que esta relacionada aos fons de potdssio (Na™)
e pode ser identificada com voltagem (potencial no axénio do neurénio), w ¢ uma variavel de
recuperacao que representa as forgas combinadas que tendem a retornar o estado de repouso da
membrana, I.,; ¢ a magnitude do estimulo externo aplicado ao neurénio que leva a excitagao
(corrente externa) [7], o coeficiente de difusdo D é uma constante positiva. Os parametros «, v e €
sao constantes de valores reais positivos que definem a obtencao ou nao de estabilidade do sistema,
o parametro 0 < € << 1 decreve a proporcao das escalas de tempo das variaveis u e w, visto que
o modelo FHN foi extraido do plano de fase rapido-lento do modelo de HH em que u é a variavel
rapida e w é a varidvel lenta.

3 Métodos Miméticos de Diferencas Finitas

Para resolver o sitema FHN, dada pela equagao (1), usamos os Métodos Miméticos de Diferengas
Finitas (MMDF) [2], os quais ao contrario dos métodos como diferengas finitas (MDF) ou elementos
finitos (MEF), nao sdo usados para discretizar sistemas particulares de equagoes diferencias, mas
usa operadores discretos para representar os operadores continuos presentes em um conjunto amplo
de equagoes diferenciais. Os operadores discretos sao formulados de modo que as caracteristicas
da mecéanica do continuo sejam preservadas. Esta formulacao permite que os operadores discretos
sejam aplicados a problemas onde o MDF ou MEF nao obtenham convergéncia satisfatéria e nem
permitam um tratamento das condigoes de fronteira efetivo.

4 Simulagoes Numéricas

A simulagdo numérica da dinamica neuronal usando o modelo FHN, é feita usando o método
explicito na coordenada temporal e o MMDF com malhas estruturadas sobre o dominio espacial.
Os métodos explicitos sdo condicionalmente estéveis, impondo uma condicao restritiva ao passo de
propagacao na coordenada temporal, o que significa que devemos usar passos de tempo suficiente-
mente pequenos. A solugao do modelo discreto na coordenada temporal, foi obtida escolhendo o
passo temporal como sendo 6t = dz° /10D.

4.1 Exemplo 1

Para ilustrar a dindmica de um potencial de agao numa rede neural, apresentamos os resultados
das simulag¢bes numéricas a partir de uma condigdo inicial (CI) imposta em uma rede neural
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unidimensional. Neste contexto, analisamos o comportamento dos neurdnios da rede em intervalos
especificos de tempo. Adotamos o modelo de FHN, dado por (1), na versao discreta dada pelo
MMDF em todos os exemplos deste estudo. Usamos os parametros definidos em [12], [1] e [11],
de onde este exemplo foi retirado, cujos valores sao dados por a = 0,25, = 0,001,y = 3,D =
3,052 x 1075, A solucdo do modelo discreto na coordenada temporal, foi feita utilizando o método
explicito, escolhendo o passo temporal como sendo 6t = dz2 /10D.

A Figura 1 ilustra o comportamento da CI aplicada em uma rede neural composta por N = 256
neurdnios. Neste exemplo, a CI é imposta apenas para o potencial de agdo u, fixando-o no valor
de 1,2 nos nove neurénios centrais da rede, enquanto os demais valores do potencial de agao e os
valores da variavel de recuperacao w permanecem em estado de repouso, com valor zero. A partir
dessa figura, observamos que o impulso, dado pela CI, propaga-se para os neurdnios adjacentes,
bifurcando-se em dois impulsos simétricos que viajam em diregoes opostas pela extensao da rede
neural unidimensional. A representacao visual desse cenério, evidencia que o potencial de agao se
propaga uniformemente em ambas as dire¢bes, mantendo uma velocidade constante.

Figura 1: Dinamica de um potencial de a¢ao ao longo da rede neural com N = 256 neurdnios. Fonte: dos
autores.

Nos tempos finais da propagagao, geralmente a partir de t = 700, é perceptivel que alguns
neurdnios, principalmente os neurénios centrais, estao muito proximos do valor (ZERO) de repouso.
E importante destacar que todos os neuronios eventualmente retornarao aos seus estados de repouso
ao término da dindmica. Essa caracteristica decorre do fato de que essas células fazem parte de
meios excitaveis, os quais possuim periodos refratarios, onde as células permanecem no estado
refratario imediatamente apos o periodo de excitagao.

4.2 Exemplo 2

Como segundo exemplo consideramos a seguinte CI: o potencial de agdo u tem valor igual a
1,2 em nove neurénios centrados em 64 e outros nove neurénios centrados em 192. Neste exemplo,
veja a evolucao na Figura 2, podemos evidenciar a dissipagao dos potenciais de agao de dois pulsos
viajantes ao final do intervalo temporal considerado, sem a geragao de um novo impulso. Isso ocorre
devido aos neurdnios afetados pela colisao dos dois impulsos ainda estarem no periodo refratério.
Essa configuracao resulta na reproducgao da dindmica simétrica como no Exemplo 1, mas com o
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comportamento da colisao de dois impulsos viajantes e suas dissipagoes, retornando ao estado de
repouso.

1.2

u(x,t)

Figura 2: Dinamica de um potencial de agao ao longo da rede neural com N = 256 neurdnios. Fonte: dos
autores.

4.3 Exemplo 3

Como terceiro exemplo, exploramos a dindmica neuronal em fun¢gdo do nimero de neurdnios
N = 2" para n = 7,8,9,10, identificadas pelas cores azul, vermelha, verde e preta, veja na
Figura 3, respectivamente. Neste contexto, realizamos uma comparacao simultanea das solugoes
numéricas das dindmicas entre as quatro redes neurais no tempo t = 750 considerado uma CI como
no Exemplo 1.
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Figura 3: Potencial de a¢ao no tempo ¢ = 750 ao longo das redes neurais com N = 2" neur6nios, para n
=17,8,9, 10, representadas pelas cores azul, vermelha, verde e preta, respectivamente. Fonte: dos autores.
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Também, visando fazer uma comparacao numérica do MMDF com outros métodos, na Tabela
1, exibimos os tempo necessario para o CPU executar o cdédigo em segundos para o MMDF em
comparagao com o MDF, variando o nimero de neurdnios. Em ambos os métodos temos utlizado
os métodos explicitos para a discretizacao da coordenada temporal. Destaca-se que o tempo de
CPU empregado pelo MMDF, em comparagao com o MDF para as quantidades de neurdnios
consideradas é muito inferior, evidenciando a notével eficiéncia do MMDF.

Nas simulag¢oes numéricas, para o MMDEF temos usado a bilioteca ou pacote MOLE do MA-
TLAB [8] fazendo a discretizagdo da variavel temporal pelo método explicito enquanto que para
o MDF temos implementado nosso proprio codigo para o esquema explicto. A quantidade de
neurodnios é incorparada na quantidade de pontos usados na malha espacial [1].

Tabela 1: Tempo de CPU para o MMDF e o MDF.
Numeo de Neurénios MMDF MDF

128 0,0474  0,2075
256 02221  1,9502

512 42444 27,5378
1024 100,4102  470,6450

5 Consideracoes Finais

Neste trabalho, usando o modelo de FHN unidimensional, simulamos a propagacao do potencial
de agdo numa rede neuronal. Discretizamos o sistema FHN usando os MMDF e apresentamos o
comportamento dindmico da rede neuronal a partir das condigoes inicias impostas no potencial de
agao u. Para um exemplo de simulagdo fazemos uma comparagao entre os tempos de CPU (em
segundos) entre o MMDF e o MDF em fun¢ao da quantidade de neurdnios, demonstrado que o
tempo de CPU do MMDF e muito menor que o tempo usado pelo MDF para esta mesma simulcao,
concluindo que o MMDF muito eficiente computacionalmente.

Na data do evento apresentaremos mais resultados numéricos que evidenciem a eficiéncia do
MMDF em comparagdo com outros métodos tais como o método dos elemntos finitos (MEF) e o
MDF.
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