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Resumo. O objetivo deste trabalho é modelar numericamente a dinâmica neuronal unidimesional
da população de neurônios. Isto implica a solução numérica de um sistema de equações diferenciais
parciais (EDPs), chamado de modelo Fitzhugh-Nagumo (FHN). Para resolver o sistema usaremos
o Método Mimético de Diferenças Finitas (MMDF) com Condições de Contorno de Neumann e um
esquema explícito para discretizar a variável temporal.
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1 Introdução

A simulação numérica da dinâmica da população neuronal, utilizando o Modelo FitzHugh-
Nagumo (FHN), é central para a compreensão dos intricados padrões emergentes em sistemas
neurais. Este estudo se propõe modelar ondas viajantes em meios excitáveis, focando principal-
mente na condução de neurônios eletronicamente compactos. A importância deste trabalho reside
na representação da rede neuronal com um sistema unidimensional de equações diferenciais parci-
ais, onde a coordenada espacial representa a rede com um único potencial de ação, simplificando
consideravelmente a análise.

A parte essencial da nossa abordagem está na resolução numérica do sistema FHN, cuja primeira
equação incorpora uma derivada de segunda ordem na coordenada espacial, enquanto ambas as
equações envolvem a primeira derivada na variável temporal, veja equação (1). A escolha de
considerar neurônios conetados apenas por sinapse elétrica destaca-se pela eficiência proporcionada
pela representação unidimensional da rede neuronal [5],[10]. Esta abordagem permite uma análise
mais detalhada das dinâmicas neurais, focando a interação entre os neurônios de maneira mais
precisa, apresentando a geração e propagação de ondas viajantes em redes neurais.

Nas sinapses elétricas, dois neurônios são conectados por canais especializados, os quais permi-
tem que os sinais elétricos viajem rapidamente do neurônio pré-sináptico ao neurônio pós-sináptico,
acelerando a transferência de sinais [5],[10].

O uso do software MATLAB e a aplicação de um esquema explícito para discretizar a variável
temporal são fundamentais para a resolução eficiente do sistema FHN. Além disso, a escolha dos
Métodos Miméticos de Diferenças Finitas (MMDF) com Condições de Contorno de Neumann para
discretizar a variável espacial garantem a precisão da simulação em um contexto unidimensional.

Desta forma, esta pesquisa não apenas se propõe a simular numericamente a dinâmica neuronal,
mas também oferece uma compreensão aprofundada da geração e propagação das ondas viajantes
em sistemas neurais unidimensionais.
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2 O Modelo de FHN

Em 1961, FitzHugh [3, 4] demonstrou que o modelo, composto por quatro equações, proposto
por Hodgkin-Huxley (HH) [6], pertence a uma classe mais geral de sistemas excitáveis, tais como
o sistema neuronal e o tecido cardíaco. Como um protótipo fundamental, o oscilador van der Pol
foi um exemplo desta classe de sistemas, portanto FitzHugh o usou após adequadas modificações.
Uma abordagem semelhante foi desenvolvida por Nagumo em 1962 [9], pelo qual o modelo passou
a ser chamado de FitzHugh-Nagumo (FHN). O modelo de HH possui uma precisão única, porém
devido ao número de equações é de tratamento difícil, especialmente para visualização de fenômenos
físico-químicos. O modelo de FHN é dado pelo sistema não-linear de equações:











du

dt
= D∆u− u(u− α)(u− 1)− w + Iext,

dw

dt
= ε(u− γw),

em Ω, t > 0. (1)

onde u representa a excitabilidade do sistema que está relacionada aos íons de potássio (Na+)
e pode ser identificada com voltagem (potencial no axônio do neurônio), w é uma variável de
recuperação que representa as forças combinadas que tendem a retornar o estado de repouso da
membrana, Iext é a magnitude do estímulo externo aplicado ao neurônio que leva à excitação
(corrente externa) [7], o coeficiente de difusão D é uma constante positiva. Os parâmetros α, γ e ε
são constantes de valores reais positivos que definem a obtenção ou não de estabilidade do sistema,
o parâmetro 0 < ε << 1 decreve a proporção das escalas de tempo das variáveis u e w, visto que
o modelo FHN foi extraído do plano de fase rápido-lento do modelo de HH em que u é a variável
rápida e w é a variável lenta.

3 Métodos Miméticos de Diferenças Finitas

Para resolver o sitema FHN, dada pela equação (1), usamos os Métodos Miméticos de Diferenças
Finitas (MMDF) [2], os quais ao contrário dos métodos como diferenças finitas (MDF) ou elementos
finitos (MEF), não são usados para discretizar sistemas particulares de equações diferencias, mas
usa operadores discretos para representar os operadores contínuos presentes em um conjunto amplo
de equações diferenciais. Os operadores discretos são formulados de modo que as características
da mecânica do contínuo sejam preservadas. Esta formulação permite que os operadores discretos
sejam aplicados a problemas onde o MDF ou MEF não obtenham convergência satisfatória e nem
permitam um tratamento das condições de fronteira efetivo.

4 Simulações Numéricas

A simulação numérica da dinãmica neuronal usando o modelo FHN, é feita usando o método
explícito na coordenada temporal e o MMDF com malhas estruturadas sobre o domínio espacial.
Os métodos explícitos são condicionalmente estáveis, impondo uma condição restritiva ao passo de
propagação na coordenada temporal, o que significa que devemos usar passos de tempo suficiente-
mente pequenos. A solução do modelo discreto na coordenada temporal, foi obtida escolhendo o
passo temporal como sendo δt = δx2/10D.

4.1 Exemplo 1

Para ilustrar a dinâmica de um potencial de ação numa rede neural, apresentamos os resultados
das simulações numéricas a partir de uma condição inicial (CI) imposta em uma rede neural
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unidimensional. Neste contexto, analisamos o comportamento dos neurônios da rede em intervalos
específicos de tempo. Adotamos o modelo de FHN, dado por (1), na versão discreta dada pelo
MMDF em todos os exemplos deste estudo. Usamos os parâmetros definidos em [12], [1] e [11],
de onde este exemplo foi retirado, cujos valores são dados por α = 0, 25, ε = 0, 001, γ = 3, D =
3, 052×10−6. A solução do modelo discreto na coordenada temporal, foi feita utilizando o método
explicito, escolhendo o passo temporal como sendo δt = δx2/10D.

A Figura 1 ilustra o comportamento da CI aplicada em uma rede neural composta por N = 256
neurônios. Neste exemplo, a CI é imposta apenas para o potencial de ação u, fixando-o no valor
de 1, 2 nos nove neurônios centrais da rede, enquanto os demais valores do potencial de ação e os
valores da variável de recuperação w permanecem em estado de repouso, com valor zero. A partir
dessa figura, observamos que o impulso, dado pela CI, propaga-se para os neurônios adjacentes,
bifurcando-se em dois impulsos simétricos que viajam em direções opostas pela extensão da rede
neural unidimensional. A representação visual desse cenário, evidencia que o potencial de ação se
propaga uniformemente em ambas as direções, mantendo uma velocidade constante.

Figura 1: Dinâmica de um potencial de ação ao longo da rede neural com N = 256 neurônios. Fonte: dos

autores.

Nos tempos finais da propagação, geralmente a partir de t = 700, é perceptível que alguns
neurônios, principalmente os neurônios centrais, estão muito próximos do valor (ZERO) de repouso.
É importante destacar que todos os neurônios eventualmente retornarão aos seus estados de repouso
ao término da dinâmica. Essa característica decorre do fato de que essas células fazem parte de
meios excitáveis, os quais possuim períodos refratários, onde as células permanecem no estado
refratário imediatamente após o período de excitação.

4.2 Exemplo 2

Como segundo exemplo consideramos a seguinte CI: o potencial de ação u tem valor igual a
1, 2 em nove neurônios centrados em 64 e outros nove neurônios centrados em 192. Neste exemplo,
veja a evolução na Figura 2, podemos evidenciar a dissipação dos potenciais de ação de dois pulsos
viajantes ao final do intervalo temporal considerado, sem a geração de um novo impulso. Isso ocorre
devido aos neurônios afetados pela colisão dos dois impulsos ainda estarem no período refratário.
Essa configuração resulta na reprodução da dinâmica simétrica como no Exemplo 1, mas com o
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comportamento da colisão de dois impulsos viajantes e suas dissipações, retornando ao estado de
repouso.

Figura 2: Dinâmica de um potencial de ação ao longo da rede neural com N = 256 neurônios. Fonte: dos

autores.

4.3 Exemplo 3

Como terceiro exemplo, exploramos a dinâmica neuronal em função do número de neurônios
N = 2n, para n = 7, 8, 9, 10, identificadas pelas cores azul, vermelha, verde e preta, veja na
Figura 3, respectivamente. Neste contexto, realizamos uma comparação simultânea das soluções
numéricas das dinâmicas entre as quatro redes neurais no tempo t = 750 considerado uma CI como
no Exemplo 1.

Figura 3: Potencial de ação no tempo t = 750 ao longo das redes neurais com N = 2
n neurônios, para n

= 7, 8, 9, 10, representadas pelas cores azul, vermelha, verde e preta, respectivamente. Fonte: dos autores.
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Também, visando fazer uma comparação numérica do MMDF com outros métodos, na Tabela
1, exibimos os tempo necessário para o CPU executar o código em segundos para o MMDF em
comparação com o MDF, variando o número de neurônios. Em ambos os métodos temos utlizado
os métodos explícitos para a discretização da coordenada temporal. Destaca-se que o tempo de
CPU empregado pelo MMDF, em comparação com o MDF para as quantidades de neurônios
consideradas é muito inferior, evidenciando a notável eficiência do MMDF.

Nas simulações numéricas, para o MMDF temos usado a bilioteca ou pacote MOLE do MA-
TLAB [8] fazendo a discretização da variável temporal pelo método explícito enquanto que para
o MDF temos implementado nosso próprio código para o esquema explícto. A quantidade de
neurônios é incorparada na quantidade de pontos usados na malha espacial [1].

Tabela 1: Tempo de CPU para o MMDF e o MDF.

Númeo de Neurônios MMDF MDF
128 0,0474 0,2075
256 0,2221 1,9502
512 4,2444 27,5378
1024 100,4102 470,6450

5 Considerações Finais

Neste trabalho, usando o modelo de FHN unidimensional, simulamos a propagação do potencial
de ação numa rede neuronal. Discretizamos o sistema FHN usando os MMDF e apresentamos o
comportamento dinâmico da rede neuronal a partir das condições inicias impostas no potencial de
ação u. Para um exemplo de simulação fazemos uma comparação entre os tempos de CPU (em
segundos) entre o MMDF e o MDF em função da quantidade de neurônios, demonstrado que o
tempo de CPU do MMDF e muito menor que o tempo usado pelo MDF para esta mesma simulção,
concluindo que o MMDF muito eficiente computacionalmente.

Na data do evento apresentaremos mais resultados numéricos que evidenciem a eficiência do
MMDF em comparação com outros métodos tais como o método dos elemntos finitos (MEF) e o
MDF.
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