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ABSTRACT
The timescales over which soil carbon responds to global change are a major uncertainty in the terrestrial carbon cycle. 
Radiocarbon measurements on archived soil samples are an important tool for addressing this uncertainty. We present time 
series (1969–2023) of radiocarbon measurements for litter (Oi/Oe and Oa/A) and mineral (0–10 cm) soils from the Hubbard 
Brook Experimental Forest, a predominantly hardwood forest in the northeastern USA. To estimate soil carbon cycling rates, 
we built different autonomous linear compartmental models. We found that soil litter carbon cycles on decadal timescales (Oi/
Oe: ~7 years), whereas carbon at the organic-mineral interface (Oa/A), and mineral soil (0–10 cm) carbon cycles on centennial 
timescales (~104 and 302 years, respectively). At the watershed-level, the soil system appears to be at steady-state, with no ob-
served changes in carbon stocks or cycling rates over the study period, despite increases in precipitation, temperature, and soil 
pH. However, at the site-level, the Oi/Oe is losing carbon (−15 g C m−2 year−1 since 1998). The observed decline in carbon stocks 
can be detected when the Oi and Oe layers are modeled separately. This pattern suggests that the rapidly cycling litter layer at 
the smaller scale is responding to recent environmental changes. Our results highlight the importance of litter carbon as an 
“early-warning system” for soil responses to environmental change, as well as the challenges of detecting gradual environmental 
change across spatial scales in natural forest ecosystems.

1   |   Introduction

A key uncertainty in the terrestrial carbon cycle is how and at 
what timescales soil organic matter will respond to environ-
mental changes (Todd-Brown et  al.  2013). This challenge is 

particularly pronounced in natural ecosystems, where grad-
ual environmental changes—as opposed to abrupt shifts in 
carbon inputs or land management as in agricultural sys-
tems—complicate the detection of changes to the soil carbon 
cycle. Understanding these temporal responses is essential for 
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improving model predictions and guiding policy makers on the 
future role of soils in either mitigating or accelerating climate 
change (Le Noë et al. 2023).

In addition to temporal uncertainties, detecting changes in 
soil carbon cycling at different spatial scales is a challenge to 
our understanding of the terrestrial carbon cycle (Bormann 
and Likens 1994; Jungkunst et al. 2022; Shi et al. 2024). On 
one hand, spatial variability is caused by local and regional 
differences such as topography, soil texture, vegetation type, 
and (micro)climate, which influence soil carbon accumula-
tion and loss (Nave et  al.  2021). On the other hand, ecosys-
tems, including soils, are constantly exposed to disturbances, 
ranging from minor events that leave the structure and func-
tion of the ecosystem largely intact, to catastrophic events that 
drastically alter conditions, or to gradual changes that may in-
duce delayed ecosystem response. These disturbances occur 
at different spatial scales—from local events, such as a single 
tree collapse, to large-scale disturbances, such as a drought 
or fire that affect entire watersheds or regions. This complex 
pattern means that parts of an ecosystem may be responding 
to a small disturbance while the entire ecosystem or water-
shed may still be at steady state at the time of measurement 
(Sousa 1984).

Long-term ecological research sites, such as the Hubbard 
Brook Experimental Forest (HBEF) in the northeastern USA 
(Likens  2013), are critical for tracking changes in soil carbon 
cycling over time and across spatial scales. Previous research 
from the HBEF found that the largest carbon pools were in min-
eral soil organic matter (43%) and living biomass (41%), with 
the remainder in litter (15%). Based on the ratio of pool size to 
input (or output) fluxes, the mineral soil organic matter pool had 
the slowest carbon turnover rate (82 years), while litter carbon 
turnover was faster (10 years). Repeated sampling of soil carbon 

stocks showed no significant changes in the late 1990s, although 
high spatial variability limited detection of small changes in soil 
organic matter pools (Fahey et al. 2005). Since the late 1990s, 
the HBEF has experienced significant environmental changes, 
including an increase in total precipitation (~100 mm; USDA 
Forest Service, Northern Research Station 2024b), an increase in 
temperature (~1.4°C; USDA Forest Service, Northern Research 
Station 2024a) and an increase in soil pH of 0.6, due to the re-
covery of the ecosystem from acid deposition (Fuss et al. 2015; 
Groffman and Martel  2024; Ontman et  al.  2023; Figure  1). 
These observations raise the question: Are these environmental 
changes sufficient to induce measurable changes in soil carbon 
cycling in different soil layers and across spatial scales? For ex-
ample, increases in precipitation and temperature may lead to 
increased above- and belowground biomass accumulation, re-
sulting in increased organic matter input from litter and roots. 
However, the same factors could also stimulate microbial ac-
tivity and decomposition, potentially leading to faster turnover 
of organic matter (San Román et  al.  2024; Shi et  al.  2020; Xu 
et al. 2024). In acidic soils, such as those found at the HBEF, low 
pH can inhibit microbial activity and decomposition, leading to 
the accumulation of organic matter. As soil pH increases, mi-
crobial activity may increase, leading to faster decomposition of 
organic matter (Malik et al. 2018).

Radiocarbon time series provide a powerful method to as-
sess changes in soil carbon dynamics. The sharp increase in 
atmospheric radiocarbon from nuclear weapons testing in 
the 1950s and 1960s serves as an isotopic marker for track-
ing carbon turnover in soils, making time series that include 
most of the so-called “bomb” period particularly valuable 
(Trumbore 2009). By using 14C measurements made on soils 
sampled in different years at the same site, it is possible to esti-
mate the rate of new carbon incorporation and its persistence 
in the soil (Baisden et  al.  2013; González-Sosa et  al.  2024; 

FIGURE 1    |    Observed environmental changes at the Hubbard Brook Experimental Forest, including (a) annual precipitation, (b) mean annual 
temperature, and (c) soil pH (averaged across Oi/Oe, Oa/A, and mineral horizon). Red regression lines indicate significant linear changes, whereas 
blue regression lines indicate nonsignificant changes. Climate data are from USDA Forest Service, Northern Research Station (2024a, 2024b), and 
soil pH data are from Groffman and Martel (2024).
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Sierra et  al.  2012; Spohn et  al.  2023; Stoner et  al.  2021). 
However, most of these studies have been conducted on man-
aged soils (agricultural or pasture) or cover relatively short pe-
riods, highlighting the need to improve our understanding of 
soil carbon dynamics in natural forest ecosystems over longer 
periods.

Previous radiocarbon time series studies have predominantly 
focused on mineral soils, neglecting the litter layer, which 
stores approximately 43 Gigatons of carbon in forests world-
wide (5% of total C stored in forests; Pan et al. 2011). The few 
studies that have examined soil carbon cycling rates in the lit-
ter layer using radiocarbon have shown that the litter layer 
usually cycles on decadal timescales, whereas carbon in the 
upper mineral soil (i.e., A horizon) cycles on centennial times-
cales (e.g., Gaudinski et al. 2000; Koarashi et al. 2009). Thus, 
litter carbon is more representative of current atmospheric 
and biological processes than mineral soil and therefore may 
be more responsive to changes in atmospheric carbon and en-
vironmental conditions. Accounting for the relatively rapid 
turnover of litter carbon helps to clarify the timescales over 
which climate change mitigation strategies may affect forest 
carbon stocks and highlights the need to consider both litter 
and soil layers when designing and evaluating climate change 
interventions.

Here, we conducted an analysis of soil carbon dynamics (exclud-
ing root dynamics) across spatial scales and for different litter 
and mineral soil layers. Using two long-term datasets from the 
HBEF and applying compartmental models to radiocarbon mea-
surements, we aimed to quantify soil carbon ages and turnover 
rates in a natural forest system. Specifically, our work explored 
whether there have been changes to carbon cycle dynamics 
over the past five decades in light of observed environmental 
changes.

2   |   Methods

In this study, we measured carbon content, radiocarbon, 
and selective dissolution metals (as proxies for organo–min-
eral interactions) in 164 individual soil samples from the 
Hubbard Brook Experimental Forest (HBEF). The samples 
were collected from the litter layer (Oi/Oe), organic-mineral 
interface (Oa/A), and surface mineral layer (0–10 cm) between 
1969 and 2023. We used different compartmental models to 
best describe the data and to capture differences in soil car-
bon cycling at different spatial scales over time. We linked 
our model results to other long-term measurements from the 
HBEF, including precipitation, temperature, soil pH, and soil 
respiration.

2.1   |   Study Site

The HBEF is located in the White Mountains of New Hampshire, 
USA (43°56′ N, 71°45′ W) and was established in 1955. It encom-
passes ~3160 ha of predominantly hardwood forest (Figure S1). 
The region experiences a humid continental climate with cool 
summers and cold winters. Annual precipitation between 1964 
and 2023 averaged about 1460 mm, with mean air temperatures 

reaching 18°C in July and decreasing to −8°C in January 
(USDA Forest Service, Northern Research Station 2024a, 2024b; 
Figure 1).

Overstory vegetation at the HBEF is dominated by sugar maple 
(Acer saccharum), American beech (Fagus grandifolia), and yel-
low birch (Betula alleghaniensis), with red spruce (Picea rubens) 
and balsam fir (Abies balsamea) at higher elevation (Schwarz 
et al. 2003). Much of the region was heavily logged during the 
late 19th century and the first two decades of the 20th century; 
most of the modern forest stands date from this period. An ex-
ceptional hurricane disturbance in 1938 blew down large for-
est areas; salvage logging in the aftermath of this event further 
opened up the remaining forest (Bormann et al. 1970; Holmes 
and Likens 2016).

Soils are primarily Spodosols (Haplorthods) formed from 
glacial till, with pH values ranging from 3.4 to 3.8 in the lit-
ter layers and from 4.1 to 4.7 in the mineral layers (Johnson 
et al. 2000). The litter layers, typically 5–9 cm thick, include 
the organic layers (Oi), a partially decomposed fibrous layer 
(Oe), and the highly decomposed humic layer at the organic-
mineral interface (Oa/A). The mineral soils are shallow, 
coarse-grained, and predominantly loamy-sand to sandy loam 
(Johnson et al. 2000).

2.2   |   Soil Sampling and Analysis

Soil samples from two different sampling efforts were analyzed, 
both representing Watershed 6, the biogeochemical reference 
watershed at the HBEF (Figure S1). Dataset 1 spans from 1969 to 
2018 and includes two distinct litter layers (Oi/Oe and Oa) sam-
pled in six different years across Watershed 6. These data com-
prise litter layer thickness, soil mass, and organic matter content 
(measured as part of another project). In the field, 15 × 15 cm soil 
blocks of the litter layer were excavated. All samples were oven-
dried at 80°C to constant weight. Large solid plant detritus and 
roots larger than 5 mm, and obviously alive or fresh material 
were removed from the Oa layer samples. For this study, three 
archived field replicates were randomly selected for each year 
sampled (n = 6 sampling years × 2 layers × 3 replicates = 36). For 
the 1969 and 1978 samples, the Oi and Oe layers were sampled 
and analyzed separately; for subsequent years, the Oi/Oe layers 
were sampled and analyzed together. Here, the results from the 
two early sampling years have been C-weighted and combined 
into a single Oi/Oe value. Organic matter content was converted 
to soil carbon content using a conversion factor of 0.58 (assum-
ing that roughly 58% of organic matter is composed of carbon; 
Soil Survey Staff 2022). For more information on the sampling 
and laboratory analysis of dataset 1, see Johnson (2024).

Dataset 2 ranges from 1998 to 2023 and includes two distinct 
litter layers (Oi/Oe and Oa/A) and a mineral layer (0–10 cm). 
The data set is composed of data from nine sampling years, 
collected from a lower elevation site west of Watershed 6 
(Bear Brook; Figure S1). In the field, five field replicates were 
collected each year (n = 9 sampling years × 3 layers × 5 repli-
cates = 135). For each replicate, 3–4 soil cores were collected, 
separated by genetic horizons, merged, and bagged in the 
field (Groffman and Martel 2024). For this study, all samples 
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were oven-dried at 60°C to constant weight. Dry samples were 
passed through a 2 mm sieve; all roots and fresh material 
were removed. All samples were then finely ground and an-
alyzed for carbon and nitrogen using an elemental analyzer 
(Carlo Erba NA-1500 analyzer). Based on analytical replicates 
(n = 16), the coefficient of variation was on average 0.51% for 
carbon (range: 0.04%–2.48%) and 1.34% for nitrogen (range: 
0.20%–3.41%). Bulk density for each sample was calculated 
based on the ovendry weight of total layer mass (g cm−2) and 
layer thickness (cm) from Johnson  (2024). Since no trend in 
bulk density was observed over time (data not shown), all 
carbon stocks for each layer were calculated using the mean 
bulk density value: Oi/Oe = 0.10, Oa/A = 0.25, and min-
eral = 0.64 g cm−3, respectively.

Although dataset 1 and dataset 2 both represent Watershed 
6, there are notable differences. As described, the samples 
that were used to create dataset 1 were collected across the 
entire watershed, which means that the samples cover an area 
of about 13.2 ha, including gradients in elevation from 549 to 
792 m and in slope from 1% to 55%. Northern hardwood forest 
dominates at lower elevations, with more spruce fir at higher 
elevations—all of which result in high variability of soil 
properties within the watershed (Bourgault et al. 2015; Hong 
et al. 2006; Nezat et al. 2004). In contrast, the samples repre-
sented in dataset 2 cover an area of about 30 m2 at a lower el-
evation site (~525 m) that is dominated by northern hardwood 
forest on a gentle slope, resulting in less heterogeneity in soil 
properties.

To quantify Al and Fe phases of varying crystallinity and their 
associated organic matter, we performed three common se-
lective dissolution methods: (i) ammonium-oxalate extraction 
(Alox and Feox), (ii) citrate-dithionite extraction (Aldith and 
Fedith), and (iii) sodium-pyrophosphate extraction (Alpyr and 
Fepyr). The ammonium-oxalate extraction was adapted from 
Sparks et  al.  (1996) and Wagai et  al.  (2013). In brief, samples 
were shaken for 4 h and extracted in the dark. This extraction 
targets amorphous Al and Fe and other noncrystalline phases. 
The citrate-dithionite and sodium-pyrophosphate extractions 
were both adapted from Carter and Gregorich (2007); samples 
were shaken for 16 h for each extraction. Sodium-pyrophosphate 
is assumed to target organo-metal complexes, whereas citrate-
dithionite dissolves crystalline Fe and Al phases. Due to sample 
availability, selective metal extraction was only performed on 
samples from dataset 2 (1998–2023) from the Oa/A and mineral 
(0–10 cm) layers.

Radiocarbon measurements were performed at the Yale 
Analytical and Stable Isotope Center at Yale University, New 
Haven, CT, USA, in 2023 (dataset 1) and 2024 (dataset 2) 
using an IonPlus MIni CArbon DAting System (MICADAS) 
Accelerator Mass Spectrometer (AMS). Samples were com-
busted to carbon dioxide (CO2) in an elemental analyzer (EA). 
The combusted sample was introduced into the MICADAS 
via a gas ion source (GIS) system. The gaseous sample was 
concentrated on a small external trap containing X13 zeo-
lite adsorber material before being transferred to a gastight 
syringe and subsequently loaded into MICADAS-specific 
targets (Ruff et al. 2010). Radiocarbon measurements are re-
ported as Δ14C values, the deviation of the 14C/12C ratio in the 

sample corrected to a common δ13C of −25‰ from the 14C/12C 
value of oxalic acid decay-corrected to 1950 (Stuiver and 
Polach 1977). The analytical error for all radiocarbon samples 
was 6.99‰ ± 1.12‰ (mean ± standard deviation).

2.3   |   Mathematical Modeling

To interpret the radiocarbon values and soil carbon stock es-
timates over time, we built three different autonomous linear 
compartmental models. The first model included the full data-
set (1969–2023) and three pools in series, one for each layer 
(Oi/Oe, Oa/A, and mineral), with different decomposition 
rates and transfer rates between the pools (Figure  S2). The 
other two models included only dataset 2 (1998–2023); one 
had the same pool structure as the first model (three pools in 
series) and the other had two pools for the Oi/Oe layer instead 
of one, totaling four pools in series. This model setup was con-
ducted to test if the soil carbon dynamics vary across spatial 
scales and to separate the litter layer (Oi) from the partially 
decomposed fibrous layer (Oe), which likely have different 
carbon cycling rates.

The first model is mathematically defined by three differential 
equations, each of which describes the temporal changes in C 
stocks in each pool:

where I represents carbon inputs from litterfall; COi/Oe, COa/A, 
and Cmin are the soil carbon stocks in each pool, based on mea-
surements in the same layer; k1 to k3 are the decomposition rates 
for each pool, respectively; and α21 and α32 are the transfer rates 
from pool 1 (Oi/Oe) to pool 2 (Oa/A) and from pool 2 (Oa/A) to 
pool 3 (mineral), respectively. The transfer rates correspond to 
the fluxes between layers. These fluxes include the migration 
of dissolved organic carbon and the incorporation of highly 
decomposed organic matter into lower soil layers. Root carbon 
pools were excluded, as roots were removed prior to sample ar-
chiving. For the model constrained with dataset 2 (1998–2023), 
a fourth pool was added for the Oi/Oe layer while maintaining 
the same model structure, with all pools connected in series by 
transfer rates (Figure S2).

We implemented radiocarbon models using the R package SoilR 
(Sierra et al. 2014) and estimated parameters by inverse data as-
similation using the R package FME (Soetaert and Petzoldt 2010). 
For all models, we added a lag time of 3 years, which reflects the 
average time a carbon atom spends in the vegetation before enter-
ing the Oi layer at the HBEF (Landis et al. 2024). Parameter opti-
mization involved a two-step process: (i) Levenberg–Marquardt 
optimization to define priors for parameter values, followed by 
(ii) Markov Chain Monte Carlo (MCMC) optimization to ob-
tain posterior probability density distribution parameter values. 

dCOi∕Oe

dt
= I − k1COi∕Oe

(1)
dCOa∕A

dt
= �21k1COi∕Oe − k2COa∕A

dCmin

dt
= �32k2COa∕A − k3Cmin ,
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The cost function incorporated carbon stock and radiocarbon 
data from all three layers, estimating the best possible values 
for all k and α values with their respective uncertainties. The 
models were driven by the atmospheric bomb curve (Hua 
et al. 2022), which was extended to 2023 using the R package 
forecast (Hyndman and Khandakar 2008). Constant carbon in-
puts were based on long-term litterfall estimates at the HBEF, 
which showed no temporal trend (Fahey et al. 2005; Fahey and 
Cleavitt  2023). Initial parameter values were modified from 
Fahey et  al.  (2005) by excluding root carbon inputs for which 
we do not have data. The optimization procedure minimized er-
rors between model predictions and observed carbon stocks and 
radiocarbon values, as demonstrated in previous studies (e.g., 
González-Sosa et al. 2024; Spohn et al. 2023; Stoner et al. 2021).

System age and transit time distributions were calculated using 
the median values of each parameter from the MCMC procedure 
and using the method and equations described in Metzler and 
Sierra  (2018). The system age represents the time that carbon 
atoms have remained in the soil since entering at the time of 
observation, indicating carbon persistence. Transit time reflects 
the time between a carbon atom entering and leaving the sys-
tem, i.e., the age of the particles in the output flux. The defini-
tion of transit time in the case for linear autonomous models at 
steady-state is the same as the turnover time, which conceptu-
ally refers to the total carbon stock divided by the total input or 
output flux in a system (Sierra et al. 2018). Uncertainty in the 
fitted models was propagated by iteratively drawing parameter 
sets from the MCMC-derived distributions. These sets were used 
to run the models, calculating system ages and transit times at 
each iteration. By recording the values of these variables at each 
iteration, their distributions were constructed to capture the 

variability carried over from the parameter populations. System 
ages and transit times were calculated only for the steady-state 
model, where carbon inputs equaled carbon outputs.

All analyses were performed in the R computing environment 
(version 4.4.1; R Core Team  2024). In addition to the R pack-
ages mentioned above, we used the R packages “tidyverse” 
(Wickham et al. 2019), “ggpubr” (Kassambara 2023), and “bay-
estestR” (Makowski et al. 2019). For full documentation of the 
data preparation, analyses, including the three different models, 
we refer to the R code published with this paper (von Fromm, 
Groffman et al. 2025; von Fromm and Monroe 2025).

3   |   Results

The steady-state three-pool model using the full dataset (1969–
2023) accurately captures the soil carbon stocks and radiocar-
bon data at the Hubbard Brook Experimental Forest (HBEF; 
Figure 2). The modeled median soil carbon stocks without root 
carbon contributions are 1549 g C m−2 for the Oi/Oe, 1860 g C 
m−2 for the Oa/A, and 2282 g C m−2 for the mineral layer. Root 
Mean Squared Errors (RMSE) for radiocarbon are 45‰ (Oi/Oe), 
40‰ (Oa/A), and 7‰ (mineral), while RMSE for soil carbon 
stocks are 415 g C m−2 (Oi/Oe), 425 g C m−2 (Oa/A), and 168 g 
C m−2 (mineral; Figures  S3 and S4 and Table  S1). The results 
suggest that soils at the watershed level have remained at steady-
state over the past ~50 years, with no evidence of net carbon se-
questration or loss.

Modeled carbon ages range from less than a decade 
(7.4 ± 0.5 years; mean ± standard deviation) in the Oi/Oe pool 

FIGURE 2    |    (a) Modeled and measured radiocarbon values (Δ14C in ‰) and (b) soil organic carbon (SOC) stocks (g C m−2) based on the three-pool 
model at steady-state using the full dataset (1969–2023) for all three soil layers/pools (Oi/Oe: Dark green, Oa/A: Light green, Mineral: Blue). Circles 
and error bars for measured values refer to mean plus standard deviation based on field replicates (n = 3 for dataset 1 and n = 5 for dataset 2). Thick 
lines refer to the modeled medians and shaded areas to the 95% credible intervals based on the Bayesian Markov Chain Monte Carlo procedure (see 
2. Methods).
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to centuries in the Oa/A (104 ± 13 years) and mineral pools 
(302 ± 28 years; Figure 3 and Figure S5). In the Oi/Oe pool, about 
a quarter of the carbon cycles in less than a year; only 1% of the 
carbon has an age greater than 33 years. In the Oa/A pool, about 
60% of the carbon cycles on decadal timescales, while about 5% 
of the carbon has an age older than 300 years. In the mineral 
pool, only 15% of the carbon cycles on decadal timescales, about 
84% of the carbon cycles on centennial timescales, and only 1% 
of the carbon has an age of more than 1000 years.

About 91% (~191 g C m−2 year−1) of the total carbon litter input 
is directly respired from the Oi/Oe pool, whereas only 9% (~19 g 
C m−2 year−1) is transferred to the Oa/A pool (Figure 4). About 
37% (~7 g C m−2 year−1) of this carbon is respired from the Oa/A 
pool, while 63% (~12 g C m−2 year−1) of the carbon is transferred 
to the mineral pool, from where it eventually leaves the system 
via respiration or translocation to deeper soil layers that are not 
part of the model. Since most of the respired carbon comes from 
the rapidly cycling Oi/Oe pool, the average transit time of the 

system is about 27 years. The calculated transfer and respiration 
rates, as well as the decadal transit time, indicate that the carbon 
stored in the Oi/Oe layer may be most sensitive to changes in 
environmental conditions and carbon litter inputs.

Soil carbon stocks in the Oi/Oe layer from dataset 2 (1998–2023) 
show a significant decline of −15 g C m−2 year−1 since 1998 
(Figure 5), but not in the Oa/A and mineral layers. This decline 
in soil carbon stocks in the Oi/Oe layer coincides with an ob-
served increase in soil CO2 respiration of +25 g C m−2 year−1 since 
2015 at the same sites based on a different dataset (Figure S6; 
Groffman and Martel 2023). The quantified Al and Fe phases 
(Alox, Feox, Aldith, Fedith, Alpyr, and Fepyr) show no significant 
trend over time for the last 25 years in the Oa/A and mineral 
layers (Figure S7). The extracted amount is always higher in the 
mineral samples compared to the Oa/A sample, with the differ-
ence being greater for Fe than for Al (Figure S8). These findings 
suggest that only the Oi/Oe layer has experienced changes in 
soil carbon dynamics over the past 25 years at this site.

FIGURE 3    |    Cumulative soil organic carbon (SOC) pool ages for all three layers/pools: (a) Oi/Oe, (b) Oa/A, and (c) mineral (0–10 cm) based on the 
three-pool model using the full dataset (1969–2023). Mean SOC ages (black dashed lines) and 95% credible intervals (shaded grey areas) are derived 
from a subset of accepted model parameters from the Bayesian Markov chain Monte Carlo procedure to calculate the probability distribution of SOC 
ages for each pool (see 2. Methods).

FIGURE 4    |    Graphical representation of the steady-state three-pool model using the full dataset (1969–2023; Equation 1). Pool sizes (values inside 
the boxes) are in g C m−2 and fluxes (values next to the arrows) are in g C m−2 year.−1. Bold values are median values and values in brackets are 95% 
credible intervals based on the Bayesian Markov Chain Monte Carlo procedure (see 2. Methods).
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The three-pool model, constrained only with dataset 2 (1998–
2023), fails to capture the observed decline in soil carbon stocks 
in the Oi/Oe layer over the past 25 years (Figure  5a,b). This 
model performs similarly in predicting Δ14C and soil carbon 
data compared to the three-pool model using the full dataset 
(Figures S9–S11 and Table S1). The model also yields similar de-
composition rates (k) and transfer rates (α) between the pools, 
even though it is not at steady state (Table S2). These results sug-
gest that perhaps only a part of the Oi/Oe layer is responding to 
the environmental changes that have occurred in the forest over 
the past 25 years.

Interestingly, the model captures the decline in soil carbon stocks 
in the Oi/Oe layer very well after introducing separate Oi and Oe 
pools (four pools in total for the entire model; Figure 5c,d). This 
improved model fit is reflected in a smaller RMSE of 54 g C m−2 
for the predicted soil carbon stocks in the Oi/Oe pool, while still 
capturing the radiocarbon data as well as the other two models 
(Figures S12–S14 and Table S1). The four-pool model shows that 

most of the carbon in the Oi/Oe layer is stored in the Oe pool 
(about two-thirds). This observation is in good agreement with 
the two early sampling years (1969 and 1978), in which the Oi 
and Oe layers were sampled and analyzed separately for organic 
matter (see 2. Methods; data not shown). Most of the observed 
carbon loss occurs in the Oe pool (Figure  S12). About 21% of 
the carbon in the Oi pool is transferred to the Oe pool, and 14% 
of this carbon is transferred to the Oa/A pool (Table  S3). The 
Oa/A pool also shows a trend of decreasing soil carbon stocks 
over time, which is reflected in the data. However, for both the 
modeled and observed values, the decline in soil carbon stocks 
in the Oa/A layer are not significant (Figure S12). About 62% of 
the carbon in the Oa/A pool is transferred to the mineral layer 
(Table S3). Overall, the findings from the four-pool model high-
light that although the Oi/Oe pool cycles on decadal timescales, 
subdividing this pool into two provides further information to 
better understand the observed soil carbon dynamics and their 
potential response to environmental changes across spatial and 
temporal scales.

FIGURE 5    |    Model results for the Oi/Oe layer using dataset 2 (1998–2023). Panels (a) and (c) show measured mean SOC stocks (green circles) with 
standard deviation (black error bars) over time and modeled mean values (green line) with 95% credible intervals (green shaded area) for the models 
with one- and two-pool for the Oi/Oe layer, respectively. The dashed black line and gray shaded area represent the fitted linear regression and stan-
dard error for the observed SOC stocks. Panels (b) and (d) show observed versus predicted soil organic carbon (SOC) stocks (g C m−2) for the one- and 
two-pool models of the Oi/Oe layer, respectively.
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4   |   Discussion

At the watershed-level and over the longer period (1969–2023), 
our model results show that the soil system is at steady-state, 
neither losing nor gaining carbon (Figure 2). This steady-state 
finding is consistent with results from Fahey et al. (2005), who 
reported stable litter and mineral carbon pools at the Hubbard 
Brook Experimental Forest (HBEF), based on soil carbon stock 
and flux measurements from about two decades ago. Despite the 
lack of root carbon inputs in our model, the modeled soil carbon 
stocks agree well with the measured soil carbon stocks that in-
cluded root carbon contributions (Fahey et al. 2005). The stabil-
ity of the soil carbon pools suggests that environmental change 
at the HBEF, such as increases in temperature, precipitation, 
and soil pH, may not yet be pronounced enough to disrupt the 
soil carbon balance at the watershed-level.

The concurrent increases in precipitation, temperature, and 
soil pH at the HBEF suggest a nuanced and multifaceted set 
of drivers that have both positive and negative influences on 
soil carbon dynamics. For example, Rocci et al. (2023) showed 
that three decades of increased precipitation did not signifi-
cantly alter surface bulk soil carbon and nitrogen in a grassland 
ecosystem. Their results corroborated findings from a global 
meta-analysis that reported no consistent effect of precipitation 
change on forest SOC content (Xu et al. 2024). In contrast, a 26-
year soil warming experiment in a forest approximately 250 km 
south of the HBEF lost 17% of soil carbon in the top 60 cm 
(Melillo et  al.  2017). Such differences in soil carbon response 
likely reflect the greater magnitude and abruptness of the exper-
imental warming (+5°C above ambient) compared to the more 
moderate, gradual temperature increases observed at the HBEF 
(1.4°C over 35 years). In addition, Melillo et al. (2017) found that 
soil carbon loss occurred nonlinearly, alternating between pe-
riods of rapid carbon loss due to increased microbial activity 
and intervals of slowed carbon loss, likely due to substrate de-
pletion and microbial community adaptation. The interactions 
among soil pH, plants, microbial activity, and soil carbon dy-
namics are even more complex, and the mechanisms by which 
ecosystems and soils recover from decreases in acid deposition 
remain unclear (Ontman et al. 2023). Ultimately, our finding of 
steady-state conditions in soils at the HBEF is consistent with 
the idea that ecosystems, including soils, are more likely to be 
in steady-state at larger spatial and temporal scales (Bormann 
and Likens 1994; Meng et al. 2023; Sundstrom and Allen 2019; 
Wu and Loucks 1995). This pattern may partly also be due to 
the high variability of soil carbon across the watershed, which 
makes it difficult to detect subtle changes (Johnson et al. 1990), 
as steady-state conditions at the watershed level do not necessar-
ily reflect site-scale dynamics.

In contrast to the stable C pools at the HBEF, soils at Harvard 
Forest, a comparable long-term study site to the south, have 
acted as a small carbon sink in recent years, with accumulation 
rates of 10–30 g C m−2 year−1 (Finzi et al. 2020). This difference 
likely reflects the history of Harvard Forest as agricultural land 
until the late 1800s, with soils still recovering from past dis-
turbances (Finzi et al. 2020)—in contrast to the HBEF, which 
has never been used for agriculture. In this context, a recent 
global study found that changes in soil carbon due to land-use 
change are greater than those due to climate change (Beillouin 

et al. 2023). However, note that the soil data at Harvard Forest 
are not conclusive. A radiocarbon study using time series data 
showed that the soil carbon dynamics at Harvard Forest can 
also be adequately modeled with a steady-state compartmen-
tal model similar to the one used here (Sierra et  al.  2012). In 
summary, these studies and our work highlight the challenges 
of linking gradual environmental change in natural ecosystems 
across spatial scales to soil carbon dynamics.

The modeled mean carbon age of 7 years in the Oi/Oe pool 
agrees well with other estimates that typically show decadal 
timescales for litter carbon in temperate forests (Gaudinski 
et  al.  2000; Koarashi et  al.  2009; Perruchoud et  al.  1999). 
Similarly, the modeled mean carbon ages of about 104 years in 
the Oa/A pool and of 302 years in the mineral pool are within 
the range of regional and global estimates for temperate forests 
(Gaudinski et al. 2000; Shi et al. 2020). The increase in soil car-
bon ages from the Oa/A to the mineral layer may be attributed 
to the increase in Al- and Fe-bearing minerals, which are im-
portant in forming organo-mineral interactions that protect 
carbon from decomposition (Hall and Thompson 2022; Masiello 
et al. 2004; Rasmussen et al. 2018; Torn et al. 1997; von Fromm, 
Jungkunst et al. 2025; Figures S7 and S8). However, our mod-
eled values may be somewhat biased toward older carbon esti-
mates overall due to the wide distribution of carbon ages in each 
pool (Figure 3), having only one pool per layer, and the lack of 
younger root carbon (Sierra et al. 2018).

The young carbon ages for the Oi/Oe layer suggest that litter lay-
ers may serve as an “early-warning system” for carbon responses 
to environmental changes. This conclusion is based on the fact 
that younger carbon cycles faster on average than older carbon, 
meaning it is more actively exchanged with the atmosphere and 
biosphere. As a result, litter carbon is likely to respond more rap-
idly to changes in environmental conditions (Chen et al. 2024; 
Gregorich et  al.  2017) compared to mineral soil carbon. This 
conclusion does not necessarily mean that mineral soil carbon 
will respond in the same way as litter carbon. However, given 
the larger carbon stocks and slower carbon cycling rates in the 
mineral soil layer, it is much more difficult to detect subtle short-
term changes in this layer. This idea is further supported by the 
lack of change in the concentration of Al- and Fe-bearing miner-
als in Oa/A and mineral soil layers over time (Figure S7). Future 
soil time series studies should emphasize litter carbon dynam-
ics, and not just mineral soil carbon dynamics.

Approximately 90% of the litter carbon input in the model is re-
spired directly from the Oi/Oe pool (Figure 4). This value indi-
cates that despite the large carbon stock of 1549 g C m−2, most of 
the carbon inputs do not contribute to long-term carbon storage 
in mineral soils (Kramer et al.  2010). The modeled amount of 
carbon respired from the litter layer is of the same order of mag-
nitude as heterotrophic respiration estimates for the HBEF and 
Harvard Forest, although about 30% higher (Fahey et al. 2005; 
Finzi et  al.  2020; Gaudinski et  al.  2000). However, other esti-
mates for temperate forests suggest that 50%–94% of foliar litter 
carbon is respired as CO2 (Perruchoud et al. 1999). In addition, 
25% of the carbon in our modeled Oi/Oe pool cycles in less 
than 1 year and therefore may not be detected by soil sampling 
conducted during the growing season (Gaudinski et al. 2000). 
Furthermore, separating heterotrophic and autotrophic 
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respiration from different soil layers in field or incubation ex-
periments remains challenging and introduces uncertainties in 
direct comparisons with modeling results.

The high proportion of respired carbon from the Oi/Oe pool re-
sults in a modeled transit time of about 27 years for the entire 
soil system. This estimate is consistent with previous HBEF esti-
mates of about 37 years (based on carbon stock/flux ratios), with 
63% of the respired carbon coming from the litter layer (~10-
year turnover time) and the remainder from the mineral layer 
(~82-year turnover; Fahey et al. 2005). Our modeled organic-to-
mineral transfer rates of 12–19 g C m−2 year−1 agree reasonably 
well with observed dissolved organic carbon fluxes at the HBEF 
of about 35 g C m−2 year−1 (Fahey et al. 2005; Landis et al. 2024). 
The slight underestimation of this flux may be due to missing 
contributions from roots in our model (Hagedorn et  al.  2004; 
Uselman et al. 2007). Nevertheless, these results underscore the 
robustness of our model and the role of northern hardwood for-
est soils as substantial carbon reservoirs that appear to be able to 
buffer environmental change to some extent.

The omission of root carbon in our models likely leads to an un-
derestimation of total soil carbon inputs, particularly to the min-
eral soil layers, where roots are a major carbon source (Fahey 
et al. 2005). Excluding roots may thus overestimate modeled car-
bon turnover times and underestimate the responsiveness of soil 
carbon to environmental changes, such as changes in climate, 
soil pH, disturbance, or tree physiology (Gaudinski et al. 2000; 
Hicks Pries et  al.  2018). Future studies that include estimates 
of root carbon inputs and turnover rates will be important for 
accurately representing the full soil carbon cycle in northern 
hardwood forests.

Interestingly, at the site scale, and over a shorter period (1998–
2023), the Oi/Oe layer showed a decline in carbon stocks of 
about −15 g C m−2 year−1 and an increase in soil CO2 respiration 
of about +25 g C m−2 year−1. The four-pool model with two pools 
for the Oi/Oe layer captured this decline in soil carbon stocks 
in the Oi/Oe layer well (Figure  5). It appears likely that the 
observed increases in precipitation, temperature, and soil pH 
have accelerated litter decomposition rates at the low-elevation 
site we studied. This is consistent with global estimates of lit-
ter carbon response to climate change (Carvalhais et al. 2014; 
Chen et  al.  2024). In contrast to the HBEF, observations at 
Harvard Forest indicate that the litter layer is a small carbon 
sink, perhaps due in part to somewhat warmer conditions in 
central Massachusetts compared to the White Mountains (Finzi 
et al. 2020). The differences between HBEF and Harvard Forest 
also point to the importance of legacy effects of land-use his-
tory and other local factors in determining modern soil carbon 
dynamics (Felzer 2023; Vilà-Cabrera et al. 2023). It is therefore 
critically important to continue to study entire ecosystems over 
long periods, archive samples, and conduct experiments to bet-
ter understand the role of multiple global change factors in driv-
ing soil response (Rillig et al. 2019).

In summary, our results show a mismatch between soil carbon 
dynamics at the watershed-level, which appear to be at steady-
state, and at an intensively sampled, low-elevation site, where 
the litter layer is losing carbon. This discrepancy is likely due 
to variation in spatial and temporal scales between the two 

datasets and demonstrates the benefit of examining both the 
long-term persistence of carbon and recent changes in the car-
bon cycle. The large variability in carbon stocks across the wa-
tershed may explain why the data covering the longer period 
and larger spatial area do not show any significant changes in 
soil carbon dynamics (Johnson et al. 2000). In contrast, the in-
crease in soil CO2 respiration is consistent across the elevation 
gradient within the watershed and is not just seen in the lower 
elevation site (Groffman and Martel 2023). The scale-dependent 
nature of ecological processes has long been recognized (e.g., 
Bormann and Likens 1994; Fan et al. 2023; Sousa 1984) and ex-
tends to soils, where the heterogeneity of organic matter com-
bined with a wide distribution of turnover rates complicates the 
understanding and prediction of soil carbon dynamics (Doetterl 
et al. 2025; Jungkunst et al. 2022). This complexity again high-
lights the potential role of litter carbon as an “early-warning sys-
tem” for soil responses to global change. It also emphasizes the 
importance of studying the same processes at different scales, 
and of being cautious when upscaling from the site to the eco-
system level and beyond.

5   |   Conclusion

Future research should prioritize integrating root contributions 
and higher-resolution modeling approaches to refine our under-
standing of soil carbon responses to environmental change. The 
exclusion of roots and the use of single pools for the Oa/A and 
mineral layers in our models are notable limitations, as they may 
underestimate the presence of younger, more responsive carbon 
fractions within these layers. Including additional environmental 
factors, such as changes in temperature seasonality, forest age, and 
tree physiology may further improve our understanding of short- 
and long-term soil carbon dynamics in northern hardwood forests.

In summary, our study highlights the temporal and spatial 
complexity of soil carbon dynamics in a northern hardwood 
forest at the Hubbard Brook Experimental Forest (HBEF). 
Using radiocarbon measurements and compartmental mod-
els, we demonstrated that carbon in the Oi/Oe layer cycles 
on decadal timescales, while carbon in the Oa/A and mineral 
layers cycles on centennial timescales. Despite significant 
increases in precipitation, temperature, and soil pH over the 
past five decades, we observed no changes in carbon cycling 
at the watershed scale, suggesting that these gradual environ-
mental changes have not yet perturbed the overall steady-state 
of the soil system. The inherent heterogeneity of soil carbon 
across the watershed complicates the detection of subtle 
changes and highlights the importance of studying carbon 
dynamics at multiple scales. In fact, at the site level, we de-
tected a significant decline in carbon stocks within the Oi/
Oe layer, coinciding with increased soil respiration rates. The 
observed scale-dependent responses emphasize the need for 
caution when extrapolating site-level observations to larger 
ecosystems or global scales.
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