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Abstract

Let xĤ×Ĥ be an Ĥ × Ĥ matrix of variables and let F[xĤ×Ĥ] be the polynomial ring in these variables over a field F.

We study the ideal ąĤ ¦ F[xĤ×Ĥ] generated by all row and column variable sums and all products of two variables

drawn from the same row or column. We show that the quotient F[xĤ×Ĥ]/ąĤ admits a standard monomial basis

determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of

F[xĤ×Ĥ]/ąĤ is the generating function of permutations in ÿĤ by the length of their longest increasing subsequence.

Along the way, we describe a ‘shadow junta’ basis of the vector space of ġ-local permutation statistics. We also

calculate the structure of F[xĤ×Ĥ]/ąĤ as a graded ÿĤ ×ÿĤ-module.
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1. Introduction

Let x be a finite set of variables and let F[x] be the polynomial ring in these variables over a field F. If

ą ¦ F[x] is a homogeneous ideal, the quotient ring F[x]/ą has the structure of a graded vector space.

© The Author(s) 2020. This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http:// creativecom-
mons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly
cited.
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The Hilbert series of F[x]/ą is the graded dimension of the vector space, viz.

Hilb(F[x]/ą; ħ) :=
∑
Ěg0

dimF (F[x]/ą)Ě · ħĚ . (1.1)

Macaulay [13] characterized the polynomials ė0 + ė1 · ħ + · · · + ėĚ · ħ
Ě with positive integer coefficients

which arise as the Hilbert series of a graded quotient of the form F[x]/ą. Following the exposition of

Stanley [19, Thm. 1.3], for positive integers ė and ğ, there is a unique representation ė =
(Ęğ
ğ

)
+
(Ęğ−1

ğ−1

)
+· · ·+(Ę Ġ

Ġ

)
where Ęğ > Ęğ−1 > · · · > Ę Ġ g Ġ g 1. Let ėïğð :=

(Ęğ+1
ğ+1

)
+ · · · +

(Ę Ġ+1

Ġ+1

)
. Then ė0 + ė1 · ħ + · · · + ėĚ · ħ

Ě

is the Hilbert series of some graded quotient F[x]/ą if and only if ėğ+1 f ė
ïğ+1ð
ğ

for 0 f ğ f Ě − 1.

In this paper we show that a generating function arising from increasing subsequences of permutations

is the Hilbert series of a natural graded ring. Write ÿĤ for the symmetric group on [Ĥ] := {1, . . . , Ĥ}.

If ĭ ∈ ÿĤ is a permutation, an increasing subsequence in ĭ is a set of positions 1 f ğ1 < · · · < ğġ f Ĥ

whose images under ĭ satisfy ĭ(ğ1) < · · · < ĭ(ğġ). The integer ġ is the length of this increasing

subsequence. We write

lis(ĭ) := max{ġ : ĭ has an increasing subsequence of length ġ} (1.2)

for the length of the longest increasing subsequence of ĭ and

ėĤ,ġ := |{ĭ ∈ ÿĤ : lis(ĭ) = ġ}| (1.3)

for the number of permutations in ÿĤ whose longest increasing subsequence has length ġ . For any

positive integer Ĥ, the sequence (ėĤ,1, ėĤ,2, . . . , ėĤ,Ĥ) was conjectured by Chen [4, Conj. 1.1] to

be log-concave, i.e. ė2
Ĥ,ğ g ėĤ,ğ−1 · ėĤ,ğ+1 for all 1 < ğ < Ĥ. When Ĥ = 4, this sequence reads

(ė4,1, ė4,2, ė4,3, ė4,4) = (1, 13, 9, 1).

The following ideal ąĤ is our object of study. Despite the simplicity of its generating set, it will turn

out to have deep connections to the combinatorics of increasing subsequences.

Definition 1.1. Let xĤ×Ĥ be an Ĥ × Ĥ matrix of variables (Įğ, Ġ )1fğ, ĠfĤ and consider the polynomial ring

F[xĤ×Ĥ] over these variables. Let ąĤ ¦ F[xĤ×Ĥ] be the ideal generated by

• any product Įğ, Ġ · Įğ, Ġ′ for 1 f ğ f Ĥ and 1 f Ġ , Ġ ′ f Ĥ of variables in the same row,

• any product Įğ, Ġ · Įğ′ , Ġ for 1 f ğ, ğ′ f Ĥ and 1 f Ġ f Ĥ of variables in the same column,

• any row sum Įğ,1 + · · · + Įğ,Ĥ for 1 f ğ f Ĥ, and

• and column sum Į1, Ġ + · · · + ĮĤ, Ġ for 1 f Ġ f Ĥ.

The ideal ąĤ ¦ F[xĤ×Ĥ] is homogeneous, so F[xĤ×Ĥ]/ąĤ is a graded F-algebra. The natural action

of the group ÿĤ ×ÿĤ on the variable matrix xĤ×Ĥ given by independent row and column permutation

induces an action on F[xĤ×Ĥ] which stabilizes ąĤ, so that F[xĤ×Ĥ]/ąĤ is a graded ÿĤ ×ÿĤ-module.

When Ĥ = 1 we have ą1 = (Į1,1) ¦ F[x1×1] so that F[x1×1]/ą1 = F. When Ĥ = 2 the ideal

ą2 ¦ F[x2×2] has generators

Į2
1,1, Į2

1,2, Į2
2,1, Į2

2,2, Į1,1Į1,2, Į1,1Į2,1, Į1,2Į2,2, Į2,1Į2,2,

Į1,1 + Į1,2, Į1,1 + Į2,1, Į1,2 + Į2,2, Į2,1 + Į2,2

and it is not hard to check that F[x2×2]/ą2 has Hilbert series 1+ħ and that the set of monomials {1, Į1,2}

descends to a basis.

We prove (Corollary 3.13) that the Hilbert series of F[xĤ×Ĥ]/ąĤ is given by

Hilb(F[xĤ×Ĥ]/ąĤ; ħ) = ėĤ,Ĥ + ėĤ,Ĥ−1 · ħ + ėĤ,Ĥ−2 · ħ
2 + · · · + ėĤ,1 · ħ

Ĥ−1 (1.4)
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so that the (reversal of the) generating function for permutations inÿĤ by longest increasing subsequence

is the Hilbert series of F[xĤ×Ĥ]/ąĤ. In particular, the polynomial ėĤ,Ĥ + ėĤ,Ĥ−1 · ħ + · · · + ėĤ,1 · ħĤ−1

satisfies Macaulay’s Criterion, a fact which seems difficult to prove directly from the combinatorics of

increasing subsequences. Taking ħ → 1, the ungraded vector space F[xĤ×Ĥ]/ąĤ has dimension

dimF[xĤ×Ĥ]/ąĤ = Ĥ!. (1.5)

We will attach (Definition 3.9) a monomial đ(ĭ) in the variables Įğ, Ġ to any permutation ĭ ∈ ÿĤ such

that

deg đ(ĭ) = Ĥ − lis(ĭ) (1.6)

and prove (Theorem 3.12) that

{đ(ĭ) : ĭ ∈ ÿĤ} (1.7)

descends to a vector space basis of F[xĤ×Ĥ]/ąĤ. In fact, this will be the standard monomial basis of

F[xĤ×Ĥ]/ąĤ with respect to a “Toeplitz term order" <Top (Definition 3.8). The notation đ refers to the use

of Viennot’s shadow line formulation [20] of the Schensted correspondence in the definition of đ(ĭ).

Our results may be interpreted as the ideal ąĤ ¦ F[xĤ×Ĥ] together with the term order <Top “seeing" the

Viennot shadow line construction.

When the field F has characteristic zero or characteristic Ħ > Ĥ, we characterize the structure of

F[xĤ×Ĥ]/ąĤ as an ungraded (Corollary 4.1) and graded (Theorem 4.2) module over the product group

ÿĤ×ÿĤ. The module structure of F[xĤ×Ĥ]/ąĤ relates to a family of ÿĤ-characters considered by Novak

and the author [14] in a strengthening of Chen’s log-concavity conjecture.

For 1 f ġ f Ĥ, define a character ĂĤ,ġ : ÿĤ → F by the rule

ĂĤ,ġ :=
∑
Č ¢ Ĥ
Č1 = ġ

Ĝ Č · ĆČ (1.8)

where the sum is over partitions of Ĥ whose first row has length ġ . Here ĆČ : ÿĤ → F is the irreducible

character of ÿĤ attached to the partition Č and Ĝ Č = ĆČ (ě) is the dimension of the irreducible ÿĤ-

module attached to Č. We have ĂĤ,ġ (ě) = ėĤ,ġ , so the sequence (ĂĤ,1, . . . , ĂĤ,Ĥ) of class functions is a

representation-theoretic refinement of the sequence (ėĤ,1, . . . , ėĤ,Ĥ) appearing in Chen’s conjecture.

Novak and the author conjectured [14, Conj. 2] the the difference ĂĤ,ġ ∗ ĂĤ,ġ − ĂĤ,ġ−1 ∗ ĂĤ,ġ+1 is a

genuine (rather than merely virtual) character of ÿĤ for all 1 < ġ < Ĥ, where ∗ denotes the Kronecker

product of class functions on ÿĤ. Since ĂĤ,ġ (ě) = ėĤ,ġ , this would imply Chen’s conjecture. One way to

prove this stronger conjecture would be to describe anÿĤ-module which has ĂĤ,ġ ∗ĂĤ,ġ−ĂĤ,ġ−1∗ĂĤ,ġ+1

as its character. We prove (Corollary 4.3) that ĂĤ,ġ is the character of the degree Ĥ−ġ piece of the quotient

F[xĤ×Ĥ]/ąĤ, restricted from the product ÿĤ ×ÿĤ to either factor of ÿĤ. To the author’s knowledge, this

is the simplest explicit module with character ĂĤ,ġ . We hope that this representation-theoretic model for

ĂĤ,ġ can give new insight on the Novak-Rhoades conjecture. In fact, it appears that a stronger equivariant

log-concavity result holds without restriction from ÿĤ ×ÿĤ to one of its factors; see Conjecture 4.4.

Our results have application to permutation statistics. For ġ g 0, a statistic Ĝ : ÿĤ → F is ġ-local

[5, 10] if Ĝ is an F-linear combination of indicator statistics which detect whether a permutation ĭ

carries a given list of ġ positions onto another given list of ġ values. The locality of a permutation

statistic is a measure of its complexity; for example, the 0-local statistics are precisely the constant

functions ÿĤ → F. While the vector space of ġ-local statistics is defined via a spanning set, finding an

explicit basis for this vector space was an open problem in [10]. Our Gröbner-theoretic methods yield

(Theorem 3.16) a solution to this problem.

To prove our results, we apply the method of orbit harmonics to the locus ČĤ ¦ FĤ×Ĥ of permutation

matrices inside the affine space FĤ×Ĥ of Ĥ × Ĥ matrices over F. Orbit harmonics is a general method

of transforming finite point loci Ė ¦ FĊ into graded quotients F[xĊ ]/gr I(Ė) of the polynomial ring
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F[xĊ ]. This method dates back to at least the work of Kostant [11] and has been used to study modules

arising in Macdonald theory [7, 8, 9], understand cyclic sieving results [15], and interpret Donaldson-

Thomas invariants of symmetric quivers as orbit enumerations in the lattice points of break divisor

polytopes [16].

The rest of the paper is organized as follows. In Section 2 we give background material on Gröbner

bases, orbit harmonics, and the Schensted correspondence. In Section 3 we use Viennot’s shadow line

interpretation of the Schensted correspondence to find a monomial basis of F[xĤ×Ĥ]/ąĤ indexed by

permutations in ÿĤ. We also give a basis for the space of ġ-local permutation statistics. In Section 4

we describe the structure of F[xĤ×Ĥ]/ąĤ as a module over the product group ÿĤ × ÿĤ. We close in

Section 5 with directions for future research.

2. Background

2.1. Gröbner theory

Let x = (Į1, . . . , ĮĊ ) be a finite list of variables and let F[xĊ ] be the polynomial ring in these variables

over a field F. A total order < on the monomials in F[xĊ ] is a term order if

• we have 1 f ģ for all monomials ģ, and

• if ģ1, ģ2, ģ3 are monomials with ģ1 f ģ2, then ģ1ģ3 f ģ2ģ3.

If Ĝ ∈ F[xĊ ] is a nonzero polynomial and < is a term order, write in< ( Ĝ ) for the largest monomial with

respect to < which appears with nonzero coefficient in Ĝ .

Let ą ¦ F[xĊ ] be an ideal and let < be a term order. The initial ideal in< (ą) ¦ F[xĊ ] associated to

ą is given by

in< (ą) := ïin< ( Ĝ ) : Ĝ ∈ ą, Ĝ ≠ 0ð ¦ F[xĊ ] . (2.1)

In other words, the ideal in< (ą) is generated by the <-leading monomials of all nonzero polynomials in

ą. A subset ă = {ĝ1, . . . , ĝĨ } ¦ ą is a Gröbner basis of ą if

in< (ą) = ïin< (ĝ1), . . . , in< (ĝĨ )ð. (2.2)

If ă = {ĝ1, . . . , ĝĨ } is a Gröbner basis of ą it follows that ą = ïĝ1, . . . , ĝĨ ð.

Given an ideal ą ¦ F[xĊ ] and a term order <, a monomial ģ in the variables xĊ is a standard

monomial if ģ ≠ in< ( Ĝ ) for any nonzero Ĝ ∈ ą. It is known that the family of cosets

{ģ + ą : ģ a standard monomial} (2.3)

descends to a vector space basis of F[xĊ ]/ą. This is referred to as the standard monomial basis.

2.2. Orbit harmonics

Let Ė ¦ FĊ be a finite locus of points and consider the ideal

I(Ė) := { Ĝ ∈ F[xĊ ] : Ĝ (z) = 0 for all z ∈ Ė} (2.4)

of polynomials in F[xĊ ] which vanish on Ė . The ideal I(Ė) is usually not homogeneous. Since Ė is

finite, we have an identification

F[Ė] � F[xĊ ]/I(Ė) (2.5)

of the vector space F[Ė] of functions Ė → F and the typically ungraded quotient space F[xĊ ]/I(Ė).
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Given a nonzero polynomial Ĝ ∈ F[xĊ ], let ă( Ĝ ) be the highest degree homogeneous component of

Ĝ . That is, if Ĝ = ĜĚ + · · · + Ĝ1 + Ĝ0 where Ĝğ is homogeneous of degree ğ and ĜĚ ≠ 0, we have ă( Ĝ ) = ĜĚ .

If ą ¦ F[xĊ ] is an ideal, the associated graded ideal is

gr ą := ïă( Ĝ ) : Ĝ ∈ ą, Ĝ ≠ 0ð. (2.6)

In other words, the ideal gr ą is generated by the top homogeneous components of all nonzero polynomials

in ą. The associated graded ideal gr ą ¦ F[xĊ ] is homogeneous by construction.

Returning to the setting of our finite locus Ė ¦ FĊ , we may extend the chain (2.5) of ungraded

F-vector space isomorphisms

F[Ė] � F[xĊ ]/I(Ė) � F[xĊ ]/gr I(Ė) (2.7)

where the last quotient F[xĊ ]/gr I(Ė) has the additional structure of a graded F-vector space.

When the locus Ė possesses symmetry, more can be said. Let ă ¦ ăĈĊ (F) be a finite matrix group

and assume that the group algebra F[ă] is semisimple. Equivalently, this means that |ă | ≠ 0 in F.

The natural action of ă on FĊ induces an action on F[xĊ ] by linear substitutions. If Ė is stable under

the action of ă, the isomorphisms (2.7) hold in the category of F[ă]-modules, and the last quotient

F[xĊ ]/gr I(Ė) has the additional structure of a graded F[ă]-module.

2.3. The Schensted correspondence

Given Ĥ g 0, a partition of Ĥ is a weakly decreasing sequence Č = (Č1 g · · · g Čġ) of positive integers

which satisfy Č1 + · · · + Čġ = Ĥ. We write Č ¢ Ĥ to indicate that Č is a partition of Ĥ. We identify a

partition Č = (Č1, . . . , Čġ) with its (English) Young diagram consisting of Čğ left-justified boxes in row ğ.

Let Č ¢ Ĥ be a partition. A tableau of shape Č is an assignment Đ : Č → {1, 2, . . . } of positive

integers to the boxes of Č. A standard tableau of shape Č is a bĳective filling Đ : Č → [Ĥ] of the boxes

of Č with 1, 2, . . . , Ĥ which is increasing across rows and down columns. We display, from left to right,

the Young diagram of Č = (4, 2, 2) ¢ 8, a standard tableau of shape Č, and two tableaux of shape Č

which are not standard.

1 2 5 8

3 4

6 7

1 4 3 7

5 6

2 8

1 3 7 12

4 5

9 10

Although the above tableau Đ : Č → {1, 2, . . . } on the far right is not standard, it is an injective

filling which is (strictly) increasing across rows and down columns. We call a tableau satisfying these

conditions a partial standard tableau.

The famous Schensted correspondence [18] is a bĳection

ÿĤ
∼

−−−−−−→
⊔
Č¢Ĥ

{(Č,č) : Č,č ∈ SYT(Č)} (2.8)

which sends a permutation ĭ ∈ ÿĤ to a pair (Č(ĭ), č(ĭ)) of standard tableaux with the same Ĥ-box

shape. The Schensted correspondence is most commonly defined using an insertion algorithm (see e.g.

[17] for details). We will not need the insertion formulation of the Schensted bĳection, but an equivalent

“geometric" formulation due to Viennot [20] recalled in the next section will be crucial in our work.

Schensted proved that his bĳection relates to increasing subsequences as follows.

Theorem 2.1. (Schensted [18, Thm. 1]) Let ĭ ∈ ÿĤ and suppose that ĭ ↦→ (Č(ĭ), č(ĭ)) under the

Schensted bĳection where Č(ĭ) and č(ĭ) have shape Č ¢ Ĥ. The first part Č1 of the partition Č is the

length of the longest increasing subsequence of ĭ.
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2.4. ÿĤ-representation theory

Let F be a field in which Ĥ ≠ 0 so that the group algebra F[ÿĤ] is semisimple. There is a one-to-one

correspondence between partitions of Ĥ and irreducible representations of ÿĤ over F. If Č ¢ Ĥ is a

partition, we write ĒČ for the corresponding irreducible module, ĆČ : ÿĤ → F for its character, and

Ĝ Č := dimĒČ for its dimension. The number Ĝ Č counts standard tableaux of shape Č.

The vector space Class(ÿĤ, F) of F-valued class functions on ÿĤ has basis {ĆČ : Č ¢ Ĥ} given by

irreducible characters. The Kronecker product ∗ on Class(ÿĤ, F) is defined by

(ą ∗ ć) (ĭ) := ą(ĭ) · ć(ĭ) (2.9)

for any ą, ć ∈ Class(ÿĤ, F) and ĭ ∈ ÿĤ. IfĒ1 andĒ2 are ÿĤ-modules, their vector space tensor product

Ē1 ¹ Ē2 carries a diagonal action of ÿĤ by the rule ĭ · (Ĭ1 ¹ Ĭ2) := (ĭ · Ĭ1) ¹ (ĭ · Ĭ2). The characters

ĆĒ1
, ĆĒ2

, ĆĒ1¹Ē2
: ÿĤ → F of these modules are related by ĆĒ1¹Ē2

= ĆĒ1
∗ ĆĒ2

.

3. Hilbert series and standard monomial basis

3.1. The injection relations

In order to analyze the quotients F[xĤ×Ĥ]/ąĤ, we start by exhibiting strategic elements of the ideal ąĤ.

Given two subsets ď, Đ ¦ [Ĥ], define elements ėď,Đ , Ęď,Đ ∈ F[xĤ×Ĥ] by

ėď,Đ :=
∑

Ĝ :ď©→Đ

(∏
ğ∈ď

Įğ, Ĝ (ğ)

)
and Ęď,Đ :=

∑
Ĝ :ď©→Đ

(∏
ğ∈ď

Į Ĝ (ğ) ,ğ

)
(3.1)

where both sums are over injective functions Ĝ : ď ©→ Đ . For example, if ď = {2, 4} and Đ = {1, 3, 4}

we have

ėď,Đ = Į2,1Į4,3 + Į2,1Į4,4 + Į2,3Į4,1 + Į2,3Į4,4 + Į2,4Į4,1 + Į2,4Į4,3,

Ęď,Đ = Į1,2Į3,4 + Į1,2Į4,4 + Į3,2Į1,4 + Į3,2Į4,4 + Į4,2Į1,4 + Į4,2Į3,4.

In general, the polynomials ėď,Đ and Ęď,Đ are obtained from one another by transposing the matrix xĤ×Ĥ

of variables. We have ėď,Đ = Ęď,Đ = 0 whenever |ď | > |Đ |.

Since the product of any two variables in the same row or column of xĤ×Ĥ is a generator of ąĤ, we

have the congruences

ėď,Đ ≡
∏
ğ∈ď

(∑
Ġ∈Đ

Įğ, Ġ

)
mod ąĤ and Ęď,Đ ≡

∏
ğ∈ď

(∑
Ġ∈Đ

Į Ġ ,ğ

)
mod ąĤ (3.2)

modulo ąĤ. In other words, as far as the quotient F[xĤ×Ĥ]/ąĤ is concerned, we could have defined ėď,Đ
and Ęď,Đ using all functions ď → Đ , not just injections. Our first lemma states that ėď,Đ and Ęď,Đ are

members of ąĤ provided that |ď | + |Đ | > Ĥ.

Lemma 3.1. Let ď, Đ ¦ [Ĥ] be subsets. If |ď | + |Đ | > Ĥ we have ėď,Đ , Ęď,Đ ∈ ąĤ.

Proof. The polynomial Ęď,Đ is obtained from ėď,Đ by transposing the matrix xĤ×Ĥ of variables, an

operation under which ąĤ is stable. As such, it suffices to prove the lemma for ėď,Đ . Furthermore, by the

congruences (3.2) it suffices to prove the lemma when |ď | + |Đ | = Ĥ + 1. Finally, since ąĤ is stable under

the action of the product group ÿĤ ×ÿĤ on the rows and columns of xĤ×Ĥ, it is enough to consider the

case where ď = [ĩ] and Đ = [Ī] for ĩ + Ī = Ĥ + 1.
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We argue by increasing induction on ĩ (and decreasing induction on Ī). If ĩ = 1 then Ī = Ĥ and

ėď,Đ = Į1,1 + Į1,2 + · · · + Į1,Ĥ is a generator of the ideal ąĤ. If ĩ > 1, we have

ėď,Đ ≡

ĩ∏
ğ=1

©­«
Ī∑
Ġ=1

Įğ, Ġ
ª®¬
= (Į1,1 + Į1,2 + · · · + Į1,Ī ) ×


ĩ∏
ğ=2

©­«
Ī+1∑
Ġ=1

Įğ, Ġ
ª®¬

− E (3.3)

where the congruence modulo ąĤ follows from (3.2), the expression [ · · · ] in square brackets lies in ąĤ
by induction, and the “error term" E is given by

E = (Į1,1 + Į1,2 + · · · + Į1,Ī ) ×
∑

∅≠ď′¦{2,...,ĩ}

©­«
∏
ğ′∈ď′

Įğ′ ,Ī+1 ×
∏

ğ∈{2,...,ĩ}−ď′

(Įğ,1 + · · · + Įğ,Ī )
ª®¬
. (3.4)

It suffices to show that E ∈ ąĤ. When the |ď′ | > 1 and ğ′
1
, ğ′

2
∈ ď′ are distinct, the corresponding summand

in E contains the product Įğ′
1
,Ī+1 · Įğ′

2
,Ī+1, and so lies in ąĤ. We conclude that

E ≡ (Į1,1 + Į1,2 + · · · + Į1,Ī ) ×

ĩ∑
ğ0=2

(
Įğ0 ,Ī+1 ×

ğ≠ğ0∏
2fğfĩ

(Įğ,1 + · · · + Įğ,Ī )

)
(3.5)

modulo ąĤ. Applying the congruences (3.2) and the defining relations of ąĤ, we arrive at

E ≡ ±(Į1,Ī+1 + Į1,Ī+2 + · · · + Į1,Ĥ) ×

ĩ∑
ğ0=2

(
Įğ0 ,Ī+1 ×

ğ≠ğ0∏
2fğfĩ

(Įğ,Ī+2 + Įğ,Ī+3 · · · + Įğ,Ĥ)

)
(3.6)

The sum (Įğ,Ī+2 + Įğ,Ī+3 · · · + Įğ,Ĥ) contains Ĥ− Ī − 1 = Ĥ− (Ĥ + 1− ĩ) − 1 = ĩ − 2 terms. The Pigeonhole

Principle implies that every term in the expansion of the RHS of the congruence (3.6) will contain a

product of variables Įğ, Ġ · Įğ′ , Ġ for some ğ ≠ ğ′ so that E ∈ ąĤ. We conclude that ėď,Đ ∈ ąĤ and the lemma

is proven. □

3.2. Shadow sets

We represent a permutation ĭ = [ĭ(1), . . . , ĭ(Ĥ)] ∈ ÿĤ with its graph, i.e. the collection of points

{(ğ, ĭ(ğ)) : 1 f ğ f Ĥ} on the grid [Ĥ] × [Ĥ]. For example, the permutation ĭ = [4, 1, 8, 5, 3, 6, 2, 7] ∈

ÿ8 is given below in bullets.

•

•

•

•

•

•

•

•

Viennot used [20] the graph of a permutation ĭ to obtain its image (Č(ĭ), č(ĭ)) under the Schen-

sted correspondence as follows. Shine a flashlight northeast from the origin (0,0). Each bullet in the

permutation casts a shadow to its northeast. The boundary of the shaded region is the first shadow line;

in our example it is as follows.
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•

•

•

•

•

•

•

•

Removing the points on the first shadow line and repeating this procedure, we obtain the second shadow

line. Iterating, we obtain the third shadow line, the fourth shadow line, and so on. In our example, the

shadow lines are shown below.

•

•

•

•

•

•

•

•

•

•

•

•

Let ĭ ∈ ÿĤ and suppose that the shadow lines of ĭ are given by Ĉ1, . . . , ĈĨ from southwest to

northeast. Viennot proved [20] that if ĭ ↦→ (Č(ĭ), č(ĭ)) under the Schensted correspondence then

the į-coordinates of the infinite horizontal rays in Ĉ1, . . . , ĈĨ form the first row of Č(ĭ) and the Į-

coordinates of the infinite vertical rays of Ĉ1, . . . , ĈĨ form the first row ofč(ĭ). In our example, the first

row of Č(ĭ) is 1 2 6 7 while the first row of č(ĭ) is 1 3 6 8 . In particular, the common

length of the first row of Č(ĭ) and č(ĭ) is the number of shadow lines. The northeast corners of the

shadow lines played an important role in Viennot’s work, and will for us, as well.

Definition 3.2. The shadow set S(ĭ) of a permutation ĭ ∈ ÿĤ is the collection of points (ğ, Ġ) in the

grid [Ĥ] × [Ĥ] which lie at the northeast corner of a shadow line of ĭ.

In our example, the points in the shadow set S(ĭ) = {(2, 4), (4, 8), (5, 5), (7, 3)} are drawn in red.

For any permutation ĭ ∈ ÿĤ, the shadow set S(ĭ) contains at most one point in any row or column.

Such subsets of the square grid have a name.

Definition 3.3. A subset R ¦ [Ĥ] × [Ĥ] is a (non-attacking) rook placement if R contains at most one

point in any row or column.

Rook placements are also known as ‘partial permutations’. Importantly, the Viennot shadow line

construction may be performed on an arbitrary rook placement, not just on the graph of a permutation.

Although every permutation shadow set is a rook placement, not every rook placement is the shadow

set of a permutation. For example, shadow sets contain no points in row 1 or column 1. In Lemma 3.6

below, we give a combinatorial criterion for deciding whether a rook placement is a shadow set.

Returning to our permutation ĭ ∈ ÿĤ, we may iterate the shadow line construction on the shadow

set S(ĭ). In our Ĥ = 8 example this yields the shadow lines.
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•

•

•

•

•

•

Viennot proved that the horizontal and vertical rays of these ‘iterated’ shadow lines give the second rows

of Č(ĭ) andč(ĭ), respectively. In our example, the second row of Č(ĭ) is 3 5 and the second row of

č(ĭ) is 2 4 . These iterated shadow lines produce an iterated shadow set S(S(ĭ)) whose points are

drawn in blue. Repeating this procedure in our example yields the iterated shadow sets and shadow lines

•

•

•

and we conclude that the tableaux Č(ĭ) and č(ĭ) are given by

1 2 6 7

3 5

4

8 and

1 3 6 8

2 4

5

7 ,

respectively.

Theorem 3.4. (Viennot [20]) The shadow line procedure described above computes the image

(Č(ĭ), č(ĭ)) of a permutation ĭ ∈ ÿĤ under the Schensted correspondence.

For our purposes, we may take Theorem 3.4 as the definition of the Schensted correspondence.

Combining Theorem 3.4 with Schensted’s Theorem 2.1 yields the following result immediately.

Lemma 3.5. Let ĭ ∈ ÿĤ. The size |S(ĭ) | of the shadow set of ĭ is given by

|S(ĭ) | = Ĥ − lis(ĭ). (3.7)

We close this subsection with a combinatorial criterion for deciding when a rook placement R is the

shadow set of some permutation ĭ ∈ ÿĤ. We use the fact that the shadow line construction may be

applied to R. This will yield a pair (Č,č) of partial standard tableaux with the same shape such that the

į-coordinates of R are the entries in Č and the Į-coordinates in R are the entries in č.

Lemma 3.6. Let R ¦ [Ĥ] × [Ĥ] be a rook placement and apply the shadow line construction to R. Let

Ĉ1, . . . , ĈĨ be the shadow lines so obtained. Define two length Ĥ sequences Į1Į2 . . . ĮĤ and į1į2 . . . įĤ
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over the alphabet {1, 0,−1} by

Įğ =




1 if one of the lines Ĉ1, . . . , ĈĨ has a vertical ray at Į = ğ,

−1 if the vertical line Į = ğ does not meet R,

0 otherwise.

(3.8)

and

įğ =




1 if one of the lines Ĉ1, . . . , ĈĨ has a horizontal ray at į = ğ,

−1 if the horizontal line į = ğ does not meet R,

0 otherwise.

(3.9)

Then R = S(ĭ) is the shadow set of some permutation ĭ ∈ ÿĤ if and only if for all 1 f ğ f Ĥ we have

Į1 + Į2 + · · · + Įğ f 0 and į1 + į2 + · · · + įğ f 0.

Proof. Suppose R = S(ĭ) is the shadow set of a permutation ĭ ∈ ÿĤ. If ĭ ↦→ (Č(ĭ), č(ĭ)) under

the Schensted correspondence, the horizontal rays of Ĉ1, . . . , ĈĨ give the second row of Č(ĭ) and the

vertical rays of Ĉ1, . . . , ĈĨ give the second row of č(ĭ). The į-coordinates which do not appear in R

give the first row of Č(ĭ) and the Į-coordinates which do not appear in R give the first row of č(ĭ).

Since Č(ĭ) and č(ĭ) are standard all prefix sums of the sequences Į1Į2 . . . ĮĤ and į1į2 . . . įĤ are

nonpositive.

Now assume that all prefix sums of Į1Į2 . . . ĮĤ and į1į2 . . . įĤ are nonpositive. We may apply

Viennot’s construction to the set R to get a pair (Č′, č′) of partial standard tableaux where the entries

of Č′ are the į-coordinates in R and the entries of č′ are the Į-coordinates in R. By the assumption on

prefixes, the tableaux Č andč obtained by adding a first row to Č andč consisting of those į-coordinates

and Į-coordinates which do not appear in R (respectively) are both standard. If we let ĭ ∈ ÿĤ be the

unique permutation such that ĭ ↦→ (Č,č), Viennot’s Theorem 3.4 implies that S(ĭ) = R. □

An example may help in understanding Lemma 3.6 and its proof. Let Ĥ = 8 and let R be the rook

placement

S = {(2, 8), (3, 7), (5, 3), (6, 5), (7, 6)}

of size 5. Applying the Viennot shadow line construction to R yields

•

•

•

•

•

− + 0 − 0 + + −

−

−

+

−

+

+

0

0

where the sequences Į1Į2 . . . Į8 and į1į2 · · · į8 in {1, 0,−1} are shown horizontally and vertically,

respectively. A +1 in a given row (or column) corresponds to an infinite ray of a shadow line, a 0

corresponds to a shadow line segment which is not an infinite ray, and a −1 corresponds to that row

(or column) not containing an element of R. We have Į1 + Į2 + · · · + Į7 = 1 > 0, so by Lemma 3.6 the

set R is not the shadow set of a permutation in ÿ8. Indeed, applying Schensted insertion to the rook
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placement R yields the pair of tableaux Č′ and č′ given by

3 5 6

7

8 and

2 6 7

3

5

(respectively) and adding the row 1 4 8 corresponding to the positions of the −1’s in the sequence

Į1Į2 . . . Į8 to the top row of č′ would not yield a standard tableau.

3.3. Shadow monomials and spanning

Our next task is to convert the combinatorics of the previous subsection into a spanning set for the

quotient ring F[xĤ×Ĥ]/ąĤ. Given any set S ¦ [Ĥ] × [Ĥ] of grid points, let ģ(S) =
∏

(ğ, Ġ ) ∈S Įğ, Ġ be the

corresponding squarefree monomial in F[xĤ×Ĥ].

Lemma 3.7. The family of monomials ģ(R) corresponding to rook placements R ¦ [Ĥ] × [Ĥ] descends

to a spanning set of F[xĤ×Ĥ]/ąĤ.

Proof. This is immediate from the fact that generating set of ąĤ contains all squares Į2
ğ, Ġ of variables

and all products of two variables in a given row or column. □

The spanning set of Lemma 3.7 is far from a basis. In order to extract a basis from this spanning set,

we introduce a strategic term order. Recall that the lexicographical order on monomials in an ordered

set of variables į1 > į2 > · · · > įĊ is given by į
ė1

1
· · · į

ėĊ

Ċ
< į

Ę1

1
· · · į

ĘĊ

Ċ
if there exists 1 f Ġ f Ċ

with ėğ = Ęğ for ğ < Ġ and ė Ġ < Ę Ġ .

Definition 3.8. The Toeplitz term order <Top on monomials in F[xĤ×Ĥ] is the lexicographical term order

with respect to the order on variables given by

Į1,1 > Į2,1 > Į1,2 > Į3,1 > Į2,2 > Į1,3 > · · · > ĮĤ,Ĥ−1 > ĮĤ−1,Ĥ > ĮĤ,Ĥ. (3.10)

Roughly speaking, the Toeplitz term order weights a variable Įė,Ę heavier than Įę,Ě whenever

ė + Ę < ę + Ě, and then breaks ties lexicographically. In fact, this tie breaking process among variables

Įğ, Ġ with ğ + Ġ constant will be irrelevant for the arguments that follow; all that is important is the relative

weight of the variables Įğ, Ġ for which ğ + Ġ differs. The word “Toeplitz" comes from Toeplitz matrices

(which are constant along diagonals). Since all of the relations we apply will be homogeneous, we could

have also defined <Top by ordering by total degree first, and then using the lexicographical order with

respect to the indicated variable order to break ties.

Definition 3.9. Let ĭ ∈ ÿĤ. The shadow monomial đ(ĭ) ∈ F[xĤ×Ĥ]/ąĤ is the squarefree monomial

corresponding to the shadow set of ĭ. In symbols, we have đ(ĭ) = ģ(S(ĭ)).

For example, if ĭ = [4, 1, 8, 5, 3, 6, 2, 7] ∈ ÿ8 we have S(ĭ) = {(2, 4), (4, 8), (5, 5), (7, 3)} so that

đ(ĭ) = Į2,4 · Į4,8 · Į5,5 · Į7,3. Our next lemma shows that the shadow monomials of permutations span

the quotient ring F[xĤ×Ĥ]/ąĤ. The key tools in its proof are the relations in F[xĤ×Ĥ]/ąĤ coming from

Lemma 3.1 and the characterization (Lemma 3.6) of when a rook placement monomial ģ(R) is the

shadow monomial đ(ĭ) of a permutation ĭ ∈ ÿĤ. To begin, we record the <Top-leading terms of the

elements of ąĤ appearing in Lemma 3.1.

Observation 3.10. Let ď = {ĩ1 < · · · < ĩĦ} andĐ = {Ī1 < · · · < Īħ} be subsets of [Ĥ] with Ħ f ħ. Then

in<Top
(ėď,Đ ) = Įĩ1 ,Ī1Įĩ2 ,Ī2 · · · ĮĩĦ ,ĪĦ and in<Top

(Ęď,Đ ) = ĮĪ1 ,ĩ1
ĮĪ2 ,ĩ2

· · · ĮĪĦ ,ĩĦ . (3.11)

In other words, the leading monomials of ėď,Đ and Ęď,Đ correspond to the injection ď ©→ Đ which

assigns the elements of ď to the smallest |ď | elements of Đ in an order-preserving fashion. If ď = {2, 4}
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and Đ = {1, 4, 5} then ėď,Đ given by

ėď,Đ = Į2,1Į4,4 + Į2,4Į4,1 + Į2,1Į4,5 + Į2,5Į4,1 + Į2,4Į4,5 + Į2,5Į4,4

with its <Top-leading term underlined. We have all the pieces we need to prove our spanning result.

Lemma 3.11. The shadow monomials {đ(ĭ) : ĭ ∈ ÿĤ} descend to a spanning set of the quotient ring

F[xĤ×Ĥ]/ąĤ.

Proof. Let R ¦ [Ĥ] × [Ĥ] be a rook placement. By Lemma 3.7 it suffices to show that ģ(R) lies in the

span of {đ(ĭ) : ĭ ∈ ÿĤ} modulo ąĤ. If R = S(ĭ) for some permutation ĭ ∈ ÿĤ then ģ(R) = đ(ĭ)

and this is clear, so assume that R ≠ S(ĭ) for all ĭ ∈ ÿĤ.

Apply Viennot’s shadow line construction to the rook placementR. Let Ĉ1, . . . , ĈĨ be the shadow lines

so obtained, ordered from southwest to northeast, and let Į1Į2 . . . ĮĤ and į1į2 . . . įĤ be the sequences

appearing in the statement of Lemma 3.6. Since R is not the shadow set of a permutation, Lemma 3.6

implies that at least one of the sequences Į1Į2 . . . ĮĤ and į1į2 . . . įĤ has a prefix with a strictly positive

sum. We assume that Į1Į2 . . . ĮĤ has a prefix with strictly positive sum; the case of į1į2 . . . įĤ is similar.

Choose 1 f ė f Ĥ minimal such that Į1 + Į2 + · · · + Įė > 0. By the minimality of ė, we have Įė = 1

so that Į = ė is the vertical ray of one of the shadow lines ĈĦ for some 1 f Ħ f Ĩ . We define a size Ħ

subset {(ğ1, Ġ1), . . . , (ğĦ , ĠĦ)} ¦ R as follows. Starting at the vertical ray of ĈĦ , let (ğĦ , ĠĦ) be the first

element of R encountered by marching south (in particular, we have ğĦ = ė). Now march west from

(ğĦ , ĠĦ) until one encounters a vertical segment of the shadow line ĈĦ−1. March south along this segment

until one reaches a point (ğĦ−1, ĠĦ−1) ∈ R. Now march west from (ğĦ−1, ĠĦ−1) until one encounters a

vertical segment of the shadow line ĈĦ−2. March south along this segment until one reaches a point

(ğĦ−2, ĠĦ−2) ∈ R. Continuing this process, we arrive at a subset {(ğ1, Ġ1), . . . , (ğĦ , ĠĦ)} ¦ R such that

• the point (ğħ , Ġħ) lies on the shadow line Ĉħ for each 1 f ħ f Ħ,

• we have ğ1 < · · · < ğĦ , and

• we have Ġ1 < · · · < ĠĦ .

Let R′ := R − {(ğ1, Ġ1), . . . , (ğĦ , ĠĦ)} be the complement of {(ğ1, Ġ1), . . . , (ğĦ , ĠĦ)} in R.

An example may help in understanding these constructions. Let Ĥ = 11 and consider the rook

placement R ¦ [11] × [11] given by

R = {(2, 9), (3, 8), (4, 3), (6, 2), (7, 6), (8, 7), (9, 5), (11, 11)}.

The sequence (Į1, Į2, . . . , Į11) is given by

(Į1, Į2, . . . , Į11) = (−1, 1, 0, 0,−1, 0, 1, 1, 0,−1, 1);

the figure below shows the shadow lines of R. By Lemma 3.6, the rook placement R is not the shadow

set of a permutation in ÿ8 because

Į1 + Į2 + · · · + Į8 = 1 > 0.

Furthermore, the prefix Į1Į2 . . . Į8 is the shortest positive sum prefix of the word Į1Į2 . . . Į11. We

conclude that ė = 8. Our marching procedure on the shadow line diagram of R is shown in dashed and

blue as follows.
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•

•

•

•

•

•

•

•

− + 0 0 − 0 + + 0 − +

−

+

0

−

+

0

+

0

0

−

+

We conclude that (ğ1, Ġ1) = (4, 3), (ğ2, Ġ2) = (7, 6), and (ğ3, Ġ3) = (8, 7). Furthermore, we have the set

R′
= R − {(ğ1, Ġ1), (ğ2, Ġ2), (ğ3, Ġ3)} = {(2, 9), (3, 8), (6, 2), (9, 5), (11, 11)}

of rooks in R which are not visited by the dashed blue line.

Consider the squarefree monomialģ(R′) corresponding to the rooks inR′ ¦ R which are not reached

by our marching procedure. The ideal ģ(R′) · F[xĤ×Ĥ]/ąĤ generated by ģ(R′) in the ring F[xĤ×Ĥ]/ąĤ
admits a morphism from a smaller quotient of the same form. More precisely, let Ĥ̄ := Ĥ − |R′ | and let

x̄ be the Ĥ̄ × Ĥ̄ matrix of variables

x̄ = {Įğ, Ġ : neither the vertical line Į = ğ nor the horizontal line į = Ġ meet the set R′}. (3.12)

In our example above, the matrix x̄ consists of the variables Įğ, Ġ indexed by ğ ∈ {1, 4, 5, 7, 8, 10} and

Ġ ∈ {1, 3, 4, 6, 7, 10}. Let F[x̄] be the polynomial ring over the variables in x̄ and let ą̄ ¦ F[x̄] be the

natural copy of the ideal ąĤ̄ in the square variable matrix x̄. The map

ą : F[x̄]/ą̄ −→ ģ(R′) · F[xĤ×Ĥ]/ąĤ (3.13)

induced by Ĝ ↦→ ģ(R′) · Ĝ is easily seen to be a (well-defined) homomorphism of F[x̄]-modules; one

simply checks that for any generator ĝ ∈ F[x̄] of ą̄, we have ģ(R′) · ĝ ∈ ąĤ. We consider the sets

Đ := {ğ1 < ğ2 < · · · < ğĦ < ğĦ + 1 < ğĦ + 2 < · · · < Ĥ} − {ğ : (ğ, Ġ) ∈ R′ for some Ġ} (3.14)

and

ď := { Ġ1 < Ġ2 < · · · < ĠĦ}. (3.15)

In our example we have Đ = {4, 7, 8, 10} and ď = {3, 6, 7}.

By the definitions of ď and Đ , the polynomial Ęď,Đ ∈ F[x̄] does not involve any of the variables

which share a row or column with a rook (ğ, Ġ) ∈ R′ which is not visited by our marching procedure.

Since ğĦ = ė and we have the prefix inequality Į1 + Į2 + · · · + Įė > 0, we have |ď | + |Đ | > Ĥ̄. Lemma 3.1

applies to give

Ęď,Đ ∈ ą̄ . (3.16)

Since the map ą of (3.13) is a homomorphism of F[x̄]-modules we obtain

ą(Ęď,Đ ) = ģ(R′) · Ęď,Đ ∈ ąĤ. (3.17)
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Observation 3.10 implies that the Toeplitz-leading term of ģ(R′) · Ęď,Đ is ģ(R), so the membership

(3.17) yields

ģ(R) ≡ Σ mod ąĤ (3.18)

where Σ is a F-linear combination of monomials which are <Top ģ(R). By induction on the Toeplitz

order, the lemma is proven. □

Lemma 3.11 (and its proof) give a Gröbner basis for the ideal ąĤ ¦ F[xĤ×Ĥ] with respect to the

Toeplitz order which consists of

• any product of two variables in xĤ×Ĥ which lie in the same row or column, and

• in the notation of the proof of Lemma 3.11, and polynomial of the form ģ(R′) · Ęď,Đ for a rook

placement R ¦ [Ĥ] × [Ĥ] which is not the shadow set of a permutation ĭ ∈ ÿĤ for which some

prefix of the word Į1Į2 . . . ĮĤ is positive, and the image of ģ(R′) · Ęď,Đ under the involution F[xĤ×Ĥ]

which interchanges Įğ, Ġ and Į Ġ ,ğ .

This Gröbner basis is far from minimal. We leave the computation of a minimal (or reduced) Gröbner

basis of ąĤ as an open problem.

3.4. Standard monomial basis and Hilbert series

Lemma 3.11 bounds the quotient ring F[xĤ×Ĥ]/ąĤ from above by giving an F-linear spanning set. In

this subsection we use orbit harmonics to bound this quotient from below.

Let FĤ×Ĥ be the affine space of Ĥ× Ĥ matrices over F with coordinate ring F[xĤ×Ĥ]. Write ČĤ ¦ FĤ×Ĥ

for the locus of permutation matrices. That is, the set ČĤ consists of 0,1-matrices with a unique 1 in each

row and column. The vanishing ideal I(ČĤ) ¦ F[xĤ×Ĥ] of the permutation matrix locus is generated by

• Į2
ğ, Ġ − Įğ, Ġ for all 1 f ğ, Ġ f Ĥ,

• Įğ, Ġ · Įğ′ , Ġ for all 1 f ğ < ğ′ f Ĥ and ğ f Ġ f Ĥ,

• Įğ, Ġ · Įğ, Ġ′ for all 1 f ğ f Ĥ and 1 f Ġ < Ġ ′ f Ĥ,

• Įğ,1 + · · · + Įğ,Ĥ − 1 for all 1 f ğ f Ĥ, and

• Į1, Ġ + · · · + ĮĤ, Ġ − 1 for all 1 f Ġ f Ĥ.

Indeed, the generators in the first bullet point come from the (ğ, Ġ)-entry of a permutation matrix being

0 or 1, the generators in the second and third bullet points come from products of distinct entries in a

row or column of a permutation matrix vanishing, and the generators in the fourth and fifth bullet points

come from the row and columns summing to 1. Comparing these generators with Definition 1.1, we get

the containment

ąĤ ¦ gr I(ČĤ). (3.19)

Although the highest degree components ă(ĝ1), . . . , ă(ĝĨ ) of a generating set {ĝ1, . . . , ĝĨ } of an ideal

ą are in general insufficient to generate gr ą, in our case the containment (3.19) is an equality.

Theorem 3.12. We have the equality of ideals ąĤ = gr I(ČĤ) of F[xĤ×Ĥ]. Furthermore, the set {đ(ĭ) :

ĭ ∈ ÿĤ} of shadow monomials of permutations in ÿĤ descends to a basis of F[xĤ×Ĥ]/ąĤ. This is the

standard monomial basis of F[xĤ×Ĥ]/ąĤ with respect to the Toeplitz term order <Top.

Standard monomial bases of quotient rings F[x]/ą can be unpredictable, even for nicely pre-

sented ideals ą. However, Theorem 3.12 informally suggests that the Toeplitz term order <Top and the

homogeneous ideal ąĤ “know" the Viennot shadow line incarnation of the Schensted correspondence

ĭ ↦→ (Č(ĭ), č(ĭ)).

Proof. The chain (2.7) of F-vector space isomorphisms coming from orbit harmonics reads

F[ČĤ] � F[xĤ×Ĥ]/I(ČĤ) � F[xĤ×Ĥ]/gr I(ČĤ). (3.20)
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Lemma 3.11 and the containment (3.19) of ideals yield the chain of (in)equalities

Ĥ! = |ČĤ | = dimF[xĤ×Ĥ]/gr I(ČĤ) f dimF[xĤ×Ĥ]/ąĤ f Ĥ! (3.21)

which forces ąĤ = gr I(ČĤ) and dimF[xĤ×Ĥ]/ąĤ = Ĥ!. Another application of Lemma 3.11 shows that

the spanning set {đ(ĭ) : ĭ ∈ ÿĤ} of F[xĤ×Ĥ]/ąĤ is in fact a basis. The proof of Lemma 3.11 shows

that {đ(ĭ) : ĭ ∈ ÿĤ} is the standard monomial basis of F[xĤ×Ĥ]/ąĤ with respect to <Top. □

As a corollary, we get our promised relationship between the Hilbert series of F[xĤ×Ĥ]/ąĤ and longest

increasing subsequences in permutations.

Corollary 3.13. Let ėĤ,ġ be the number of permutations in ÿĤ whose longest increasing sequence has

length ġ . The quotient ring F[xĤ×Ĥ]/ąĤ has Hilbert series

Hilb(F[xĤ×Ĥ]/ąĤ; ħ) = ėĤ,Ĥ + ėĤ,Ĥ−1 · ħ + · · · + ėĤ,1 · ħ
Ĥ−1. (3.22)

Proof. Combine Lemma 3.5 and Theorem 3.12. □

3.5. Local permutation statistics

Corollary 3.13 gives the structure of F[xĤ×Ĥ]/ąĤ as a graded vector space. Our next goal is the structure

of this quotient as a graded ÿĤ ×ÿĤ module (at least when Ĥ! ≠ 0 in F). Our calculation of the module

structure of F[xĤ×Ĥ]/ąĤ will make crucial use of a notion of complexity on permutation statistics due

to Hamaker and the author [10] called ‘locality’.

A permutation statistic (with values in the field F) is a function Ĝ : ÿĤ → F. The study of permutation

statistics is an important subfield of combinatorics. Examples include the exceedance, inversion, and

peak numbers given by

exc(ĭ) := |{1 f ğ f Ĥ : ĭ(ğ) > ğ}| (3.23)

inv(ĭ) := |{1 f ğ < Ġ f Ĥ : ĭ(ğ) > ĭ( Ġ)}| (3.24)

peak(ĭ) := |{1 < ğ < Ĥ : ĭ(ğ − 1) < ĭ(ğ) > ĭ(ğ + 1)}|. (3.25)

Following [10], we define a notion of locality for permutation statistics as follows. If R ¦ [Ĥ] × [Ĥ]

is a rook placement and ĭ ∈ ÿĤ is a permutation, we say that ĭ extends R if we have the containment

of sets R ¦ {(ğ, ĭ(ğ)) : 1 f ğ f Ĥ}. Given a rook placement R ¦ [Ĥ] × [Ĥ], let 1R : ÿĤ → F be the

indicator permutation statistic

1R (ĭ) =

{
1 if ĭ extends R,

0 otherwise,
(3.26)

which detects whether ĭ extends R. A permutation statistic Ĝ : ÿĤ → F is ġ-local if there exist field

elements ęR ∈ F such that

Ĝ =
∑

| R | = ġ

ęR · 1R (3.27)

as functions ÿĤ → F where the sum is over all rook placements R ¦ [Ĥ] × [Ĥ] with ġ rooks.

Remark 3.14. A ġ-local statistic Ĝ : ÿĤ → F is also known to have ‘degree at most ġ’ elsewhere in the

literature, e.g. [5]. We avoid this terminology to guard against confusion with the degree of a character.

Roughly speaking, the locality of a permutation statistic bounds its complexity. The only 0-local

statistics are constant functions ÿĤ → F. The statistic exc is 1-local, the statistic inv is 2-local, and the

statistic peak is 3-local. Following Hamaker and the author [10], we consider the F-vector space

Locġ (ÿĤ, F) := { Ĝ : ÿĤ → F : Ĝ is ġ-local} (3.28)
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of ġ-local statistics on ÿĤ. It is not hard to see that any ġ-local statistic is also (ġ + 1)-local, so

that Locġ (ÿĤ, F) ¦ Locġ+1 (ÿĤ, F). Furthermore, any permutation statistic ÿĤ → F is (Ĥ − 1)-local.

The vector spaces Locġ (ÿĤ, F) will play an important role in the module structure of F[xĤ×Ĥ]/ąĤ
(Theorem 4.2); for now we use shadow monomials to solve an open problem from [10] about the spaces

Locġ (ÿĤ, F) themselves.

By definition, the set {1R : |R | = ġ} of indicator statistics corresponding to rook placements

R ¦ [Ĥ] × [Ĥ] of size ġ is a spanning set of Locġ (ÿĤ, F), but this spanning set is almost always linearly

dependent. In [10, Cor. 4.7] it is proven that when F = R is the field of real numbers, the dimension of

Locġ (ÿĤ, F) equals to the number ėĤ,Ĥ−ġ + · · · + ėĤ,Ĥ−1 + ėĤ,Ĥ of permutations in ÿĤ which have an

increasing subsequence of length at least Ĥ− ġ . The methods of [10] apply whenever F has characteristic

0 or characteristic Ħ > Ĥ; we will see (Theorem 3.16) that this is true over any field.

The paper [10] did not give an explicit basis of the space of ġ-local statistics consisting of statistics

of the form 1R ; we solve this problem in Theorem 3.16 below. Although the members 1R of our basis

for Locġ (ÿĤ, F) can correspond to rook placements with |R | < ġ in general, we will obtain a nested

family of bases for the chain of vector spaces Loc0 (ÿĤ, F) ¦ Loc1 (ÿĤ, F) ¦ · · · ¦ LocĤ−1 (ÿĤ, F). To

achieve these goals, we recall a standard fact about associated graded ideals.

Let x be a finite set of variables and consider the polynomial ring F[x] over these variables. Given

Ě g 0 and a graded F-algebra ý, let ýfĚ ¦ ý be the subspace of elements of degree at most Ě. We have

a filtration F[x]f0 ¦ F[x]f1 ¦ F[x]f2 ¦ · · · of F[x] by finite-dimensional subspaces.

Lemma 3.15. Let ą ¦ F[x] be an ideal and let gr ą ¦ F[x] be the associated graded ideal of ą. Fix

an integer Ě g 0 and let B ¦ F[x]fĚ be a family of homogeneous polynomials of degree at most Ě.

Suppose that B descends to a basis of the vector space (F[x]/gr ą)fĚ . Then B descends to a basis of

the vector space F[x]fĚ/(ą ∩ F[x]fĚ).

Lemma 3.15 is the heart of the orbit harmonics isomorphisms (2.7). We include its straightforward

proof for completeness.

Proof. If B were not linearly independent modulo ą ∩ F[x]fĚ , there would exist scalars ęĘ ∈ F not

all zero and an element ĝ ∈ ą with deg(ĝ) f Ě such that
∑

Ę∈B ęĘ · Ę = ĝ. Since the elements of B

are homogeneous, taking the highest degree component of both sides of this equation would result in a

linear dependence of B modulo gr ą, a contradiction.

If B did not span F[x]fĚ/(ą ∩ F[x]fĚ), there would be some homogeneous polynomial ℎ ∈ F[x]fĚ
such that ĝ does not lie in the span of B modulo ą ∩ F[x]fĚ . Choose such an ℎ with deg(ℎ) minimal.

There exist scalars ęĘ ∈ F such that
∑

Ę∈B ęĘ · Ę = ℎ + ă(ĝ) for some ĝ ∈ ą with deg(ĝ) = deg(ℎ)

(so that in particular ĝ ∈ ą ∩ F[x]fĚ), where ă(ĝ) is the highest degree component of ĝ. Discarding

redundant terms if necessary, we may assume that ęĘ = 0 whenever deg(Ę) ≠ deg(ℎ). We conclude that

ℎ+ĝ−
∑

Ę∈B ęĘ ·Ę has degree < deg(ℎ), so by our choice of ℎ there exist ę′
Ę
∈ F and ĝ′ ∈ ą∩F[x]fĚ with

∑
Ę∈B

ę′Ę · Ę = ℎ + ĝ −
∑
Ę∈B

ęĘ · Ę + ĝ′

so that ℎ =
∑

Ę∈B (ę
′
Ę
− ęĘ) · Ę − (ĝ′ + ĝ) lies in the span of B modulo ą ∩ F[x]fĚ , a contradiction. □

An application of Lemma 3.15 gives a basis of the vector space Locġ (ÿĤ, F).

Theorem 3.16. The vector space Locġ (ÿĤ, F) of ġ-local statistics ÿĤ → F has basis

{1S(ĭ) : ĭ ∈ ÿĤ, lis(ĭ) g Ĥ − ġ} (3.29)

given by indicator functions of shadow sets of permutations in ÿĤ which contain an increasing

subsequence of length Ĥ − ġ .
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Other authors (see e.g. [5]) refer to the functions 1R as juntas. So Theorem 3.16 describes a basis of

shadow juntas.

Proof. For ℓ f ġ , any ℓ-local permutation statistic is also ġ-local, so the indicator functions in question

are members of Locġ (ÿĤ, F) by Lemma 3.5. IdentifyingÿĤ = ČĤ with the locus of permutation matrices

in FĤ×Ĥ, the indicator function 1R corresponding to a rook placement R ¦ [Ĥ] × [Ĥ] is represented by

the degree |R | monomial ģ(R) ∈ F[xĤ×Ĥ]. It follows that we have an isomorphism

Locġ (ÿĤ, F) � F[xĤ×Ĥ]fġ/(I(ČĤ) ∩ F[xĤ×Ĥ]fġ) (3.30)

of F-vector spaces given by 1R ↦→ ģ(R) + (I(ČĤ) ∩ F[xĤ×Ĥ]fġ). Write

B = {đ(ĭ) : ĭ ∈ ÿĤ has an increasing subsequence of length at least Ĥ − ġ} ¦ F[xĤ×Ĥ] (3.31)

for the set of monomials representing the indicator functions in the statement. Theorem 3.12 implies

that B descends to a basis for the F-vector space (F[xĤ×Ĥ]/gr I(ČĤ))fġ . An application of Lemma 3.15

shows that B also descends to a basis for F[xĤ×Ĥ]fġ/(I(ČĤ) ∩F[xĤ×Ĥ]fġ), and the isomorphism (3.30)

completes the proof. □

The nested shadow junta bases of Loc0 (ÿ3, F) ¢ Loc1 (ÿ3, F) ¢ Loc2 (ÿ3, F) are as follows.

•

•

•

1

•

•

•

•

Į2,2

•

•

•

•

Į3,3

•

•

•

•

Į3,2

•

•

•

•

Į2,3

•

•

•

•

•

Į2,3 · Į3,2

It may be interesting to find a basis of Locġ (ÿĤ, F) drawn from the spanning set {1R : |R | = ġ}. By

Theorem 3.12, the above monomials also form a vector space basis of F[x3×3]/ą3.

The results we have proven so far hold when the field F is replaced by a commutative ring Ď. More

precisely, we have an ideal ąĎĤ ¦ Ď[xĤ×Ĥ] with the same generating set as in Definition 1.1.

• The proofs of Lemmas 3.1 and 3.11 goes through to show that the shadow monomials

{đ(ĭ) : ĭ ∈ ÿĤ} span Ď[xĤ×Ĥ]/ą
Ď
Ĥ over Ď. Here we use the fact that the coefficients in the

polynomials ėď,Đ , Ęď,Đ appearing in Lemma 3.1 are all ±1.

• When Ď = Z, a linear dependence of {đ(ĭ) : ĭ ∈ ÿĤ} modulo ąZĤ would induce a linear

dependence modulo ą
Q
Ĥ . By Theorem 3.12 {đ(ĭ) : ĭ ∈ ÿĤ} descends to a Z-basis of Z[xĤ×Ĥ]/ą

Z
Ĥ .

• Since Ď[xĤ×Ĥ]/ą
Ď
Ĥ = Ď ¹Z Z[xĤ×Ĥ]/ą

Z
Ĥ , the set {đ(ĭ) : ĭ ∈ ÿĤ} descends to a Ď-basis of

Ď[xĤ×Ĥ]/ą
Ď
Ĥ for any Ď. The proof of Lemma 3.15 holds over Ď, so the shadow juntas

{1S(ĭ) : ĭ ∈ ÿĤ, lis(ĭ) g Ĥ − ġ} form an Ď-basis of Locġ (ÿĤ, Ď).

4. Module structure

As explained in the introduction, the self-product ÿĤ ×ÿĤ of the rank Ĥ symmetric group acts on the

matrix xĤ×Ĥ of variables by independent row and column permutation. This induces an action of

ÿĤ ×ÿĤ on ąĤ, and endows F[xĤ×Ĥ]/ąĤ with the structure of a graded ÿĤ ×ÿĤ-module. The purpose

of this section is to study this action. To do so, for the remainder of the section we made the following

assumption on the characteristic of F.

Assumption. The field F either has characteristic zero, or has characteristic Ħ > Ĥ.

This assumption guarantees that the group algebras F[ÿĤ] and F[ÿĤ ×ÿĤ] are semisimple. We may

immediately describe the ungraded ÿĤ ×ÿĤ-structure of F[xĤ×Ĥ]/ąĤ.
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Corollary 4.1. Let ÿĤ ×ÿĤ act on the locus ČĤ ¦ FĤ×Ĥ by independent row and column permutation.

We have an isomorphism F[ČĤ] � F[xĤ×Ĥ]/ąĤ of ungraded ÿĤ ×ÿĤ-modules.

Corollary 4.1 may be given as a decomposition into ÿĤ × ÿĤ irreducibles as follows. If Č ¢

Ĥ is a partition of Ĥ, recall that ĒČ denotes the corresponding irreducible ÿĤ-module. Irreducible

representations of the product group ÿĤ × ÿĤ are given by tensor products ĒČ ¹ Ē č for ordered

pairs of partitions (Č, č) of Ĥ. Corollary 4.1 asserts that F[xĤ×Ĥ]/ąĤ �
⊕

Č¢Ĥ Ē
Č ¹ ĒČ as ungraded

ÿĤ ×ÿĤ-modules.

Proof. By Theorem 3.12 we have an isomorphism and an equality

F[ČĤ] � F[xĤ×Ĥ]/gr I(ČĤ) = F[xĤ×Ĥ]/ąĤ (4.1)

of ungraded F-vector spaces. By our assumption on the characteristic of F, these upgrade to an

isomorphism and an equality of ungraded F[ÿĤ ×ÿĤ]-modules. □

We enhance Corollary 4.1 by describing the graded module structure of F[xĤ×Ĥ]/ąĤ. As suggested

by Corollary 3.13, the graded refinement of the isomorphism F[xĤ×Ĥ]/ąĤ �ÿĤ×ÿĤ

⊕
Č¢Ĥ Ē

Č ¹ ĒČ is

obtained by focusing on the length of the first row of Č.

Theorem 4.2. For any ġ g 0, the degree ġ piece of F[xĤ×Ĥ]/ąĤ has ÿĤ ×ÿĤ-module structure

(F[xĤ×Ĥ]/ąĤ)ġ �
⊕
Č ¢ Ĥ

Č1 = Ĥ−ġ

ĒČ ¹ ĒČ. (4.2)

Proof. If ē is any ÿĤ-module over F, the vector space EndF (ē) of F-linear maps ą : ē → ē is a

ÿĤ ×ÿĤ-module via

((ī, Ĭ) · ą) (ĭ) := ī · ą(Ĭ−1 · ĭ) for all ī, Ĭ ∈ ÿĤ, ą ∈ EndF (ē), ĭ ∈ ē. (4.3)

We have EndF (ē) � ē ¹ē∗ and, since ÿĤ-modules are self-dual, we have

EndF (ē) � ē ¹ē (4.4)

as ÿĤ ×ÿĤ-modules.

The group algebra F[ÿĤ] is naturally a ÿĤ ×ÿĤ-module under left and right multiplication. Since

F[ÿĤ] is semisimple, the Artin-Wedderburn Theorem gives an isomorphism of F-algebras

« : F[ÿĤ]
∼
−−→

⊕
Č ¢ Ĥ

EndF (Ē
Č). (4.5)

Given ė ∈ F[ÿĤ], the ČĪℎ component of «(ė) acts on ĒČ by the F-linear map «(ė) : Ĭ ↦→ ė · Ĭ.

Returning to the statement of the theorem, since F[ÿĤ] is semisimple, by induction on ġ it suffices

to establish the isomorphism

(F[xĤ×Ĥ]/ąĤ)fġ �
⊕
Č ¢ Ĥ

Č1 g Ĥ−ġ

EndF (Ē
Č) (4.6)

in the category of ungradedÿĤ×ÿĤ-modules. To this end, Theorem 3.12 gives rise to the identifications

F[ÿĤ] = F[ČĤ] � F[xĤ×Ĥ]/I(ČĤ) � F[xĤ×Ĥ]/gr I(ČĤ) = F[xĤ×Ĥ]/ąĤ (4.7)

of ungraded ÿĤ ×ÿĤ-modules. Let Ĉġ be the image of F[xĤ×Ĥ]fġ in F[xĤ×Ĥ]/I(ČĤ), i.e.

Ĉġ := Image(F[xĤ×Ĥ]fġ ©→ F[xĤ×Ĥ] ↠ F[xĤ×Ĥ]/I(ČĤ)). (4.8)
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Lemma 3.15 implies that

Ĉġ = spanF{ģ(R) + I(ČĤ) : R a rook placement with |R | f ġ}. (4.9)

As explained in the proof of Theorem 3.16, under the correspondence F[ÿĤ] = F[ČĤ] � F[xĤ×Ĥ]/I(ČĤ)

we have the identification

Locġ (ÿĤ, F) = Ĉġ (4.10)

with theÿĤ×ÿĤ-module of ġ-local statisticsÿĤ → F. Lemma 3.15 and the chain (4.7) of isomorphisms

give rise to the further identification

Locġ (ÿĤ, F) = Ĉġ � (F[xĤ×Ĥ]/ąĤ)fġ (4.11)

of ÿĤ ×ÿĤ-modules.

By the last paragraph, we are reduced to establishing the isomorphism

Locġ (ÿĤ, F) �
⊕
Č ¢ Ĥ

Č1 g Ĥ−ġ

EndF (Ē
Č) (4.12)

of ungraded ÿĤ ×ÿĤ-modules. Embed ÿĤ−ġ ¦ ÿĤ by acting on the first Ĥ − ġ letters, let

ĈĤ−ġ :=
∑

ĭ∈ÿĤ−ġ

ĭ ∈ F[ÿĤ] (4.13)

be the group algebra element which symmetrizes over these letters, and let Ćġ ¦ F[ÿĤ] be the two-

sided ideal generated by ĈĤ−ġ . The correspondence between functions Ĝ : ÿĤ → F and group algebra

elements
∑

ĭ∈ÿĤ
Ĝ (ĭ) · ĭ gives rise to an identification

Locġ (ÿĤ, F) = Ćġ (4.14)

of ungraded ÿĤ × ÿĤ-modules. Indeed, the group algebra element ĈĤ−ġ ∈ F[ÿĤ] corresponds to the

indicator permutation statistic 1R : ÿĤ → F indexed by the rook placement

R = {(Ĥ − ġ + 1, Ĥ − ġ + 1), . . . , (Ĥ − 1, Ĥ − 1), (Ĥ, Ĥ)}.

Multiplying ĈĤ−ġ on the left and right by permutations of ÿĤ corresponds to interchanging rows and

columns in the rook placement R0; any rook placement with ġ rooks may be obtained in this way.

Thanks to the identification (4.14), we are reduced to showing

Ćġ �
⊕
Č ¢ Ĥ

Č1 g Ĥ−ġ

EndF (Ē
Č) (4.15)

as ÿĤ × ÿĤ-modules. The image «(Ćġ) of the ideal Ćġ ¦ F[ÿĤ] under the Artin-Wedderburn iso-

morphism (4.5) is an ideal in the direct sum
⊕

Č¢Ĥ EndF (Ē
Č) of matrix rings. Since each summand

EndF (Ē
Č) is simple, there is a set Č(ġ) of partitions of Ĥ such that

«(Ćġ) =
⊕

Č ∈ Č (ġ )

EndF (Ē
Č). (4.16)

The definitions of « and Ćġ imply that

Č(ġ) = {Č ¢ Ĥ : ĈĤ−ġ · Ē
Č
≠ 0}. (4.17)
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It remains to show that Č(ġ) = {Č ¢ Ĥ : Č1 g Ĥ − ġ}. To this end, observe that for any ÿĤ-module

ē , the image ĈĤ−ġ ·ē may be characterized as the trivial component

ĈĤ−ġ ·ē =

(
Res

ÿĤ

ÿĤ−ġ
ē

) triv

(4.18)

of the restriction of ē from ÿĤ to ÿĤ−ġ . In particular, for Č ¢ Ĥ we have

Č ∈ Č(ġ) ô
(
Res

ÿĤ

ÿĤ−ġ
ĒČ

) triv

≠ 0. (4.19)

By the Branching Rule for symmetric group representations (see e.g. [17, Thm. 2.8.3]), the restriction

Res
ÿĤ

ÿĤ−ġ
ĒČ has a nonzero trivial component if and only if Č1 g Ĥ − ġ . This proves the isomorphism

(4.12) and the theorem. □

The ring F[xĤ×Ĥ] carries a natural involution Ă : Įğ, Ġ ↦→ Į Ġ ,ğ which transposes the matrix xĤ×Ĥ of

variables. This induces a homogeneous involution on the quotient ring F[xĤ×Ĥ]/ąĤ, also denoted Ă. The

proof technique of Theorem 4.2 applies to show that in the isomorphism

(F[xĤ×Ĥ]/ąĤ)ġ �
⊕
Č ¢ Ĥ

Č1 = Ĥ−ġ

ĒČ ¹ ĒČ (4.20)

of ÿĤ ×ÿĤ-modules, the action of Ă on the left hand side intertwines with the automorphism (ĭ, ī) ↦→

(ī, ĭ) of the group ÿĤ ×ÿĤ.

Recall from the introduction that ĂĤ,ġ is the character ofÿĤ given by ĂĤ,ġ =
∑

Č1=ġ
Ĝ Č · ĆČ, where the

sum is over partitions Č ¢ Ĥ whose first row has length ġ . As an immediate application of Theorem 4.2,

we get an explicit ÿĤ-module with character ĂĤ,ġ .

Corollary 4.3. The class function ĂĤ,ġ : ÿĤ → F is the character of the restriction of the degree Ĥ − ġ

part of F[xĤ×Ĥ]/ąĤ to either factor of ÿĤ ×ÿĤ. In symbols, we have

ĂĤ,ġ = Res
ÿĤ×ÿĤ

ÿĤ×1

(
Ć(F[xĤ×Ĥ ]/ąĤ )Ĥ−ġ

)
= Res

ÿĤ×ÿĤ

1×ÿĤ

(
Ć(F[xĤ×Ĥ ]/ąĤ )Ĥ−ġ

)
, (4.21)

where ĆĒ : ÿĤ ×ÿĤ → F denotes the character of an F[ÿĤ ×ÿĤ]-module Ē .

The space (F[xĤ×Ĥ]/ąĤ)Ĥ−ġ is the cleanest representation-theoretic model for ĂĤ,ġ known to the

author. There is another model for ĂĤ,ġ involving quotient spaces. For any Ě, we have an action of ÿĤ on

LocĚ (ÿĤ, F) given by (ĭ · Ĝ ) (Ĭ) := Ĝ (ĭ−1Ĭ) for ĭ, Ĭ ∈ ÿĤ and Ĝ ∈ LocĚ (ÿĤ, F). The isomorphism

(4.12) implies that the sum ĂĤ,ġ + ĂĤ,ġ+1 + · · · + ĂĤ,Ĥ is the character of LocĤ−ġ (ÿĤ, F). Therefore, the

quotient module LocĤ−ġ (ÿĤ, F)/LocĤ−ġ−1 (ÿĤ, F) has character ĂĤ,ġ .

Sums of the characters ĂĤ,ġ also arise in the context of Schur-Weyl duality. Let F = C, let Ē = CĚ ,

and let Ē¹Ĥ = Ē ¹ · · · ¹ Ē be the Ĥ-fold tensor power of Ē . The vector space Ē¹Ĥ carries a diagonal

action of ăĈ (Ē), viz.

ĝ · (Ĭ1 ¹ · · · ¹ ĬĤ) := (ĝ · Ĭ1) ¹ · · · ¹ (ĝ · ĬĤ) (ĝ ∈ ăĈ (Ē), Ĭ1, . . . , ĬĤ ∈ Ē). (4.22)

Let EndăĈ (Ē ) (Ē
¹Ĥ) be the algebra of linear maps ą : Ē¹Ĥ → Ē¹Ĥ which commute with the action of

ăĈ (Ē). We have an algebra homomorphism ¨ : C[ÿĤ] → EndăĈ (Ē ) (Ē
¹Ĥ) induced by

¨(ĭ) · (Ĭ1 ¹ · · · ¹ ĬĤ) := Ĭĭ−1 (1) ¹ · · · ¹ Ĭĭ−1 (Ĥ) (ĭ ∈ ÿĤ, Ĭ1, . . . , ĬĤ ∈ Ē). (4.23)

Schur-Weyl duality asserts that the homomorphism ¨ is surjective, but when Ě < Ĥ the kernel of ¨ is

nonzero. In fact, the character of the ÿĤ-module EndăĈ (Ē ) (Ē
¹Ĥ) is given by

ĆEndăĈ (Ē ) (Ē
¹Ĥ ) = sign ¹ (ĂĤ,1 + ĂĤ,2 + · · · + ĂĤ,Ě) (4.24)
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where sign is the degree 1 sign character. In other words, we have ĆEndăĈ (Ē ) (Ē
¹Ĥ ) =

∑
Č′

1
fĚ Ĝ Č · ĆČ

where the sum is over partitions Č ¢ Ĥ whose first column has length at most Ě. By Corollary 4.3, we

have an isomorphism of ÿĤ-modules

EndăĈ (Ē ) (Ē
¹Ĥ) �ÿĤ

sign ¹
⊕

ġ g Ĥ−Ě

(C[xĤ×Ĥ]/ąĤ)ġ . (4.25)

It may be interesting to give a formula for this isomorphism.

By Corollary 4.3, finding an explicit family of linear injections

(F[xĤ×Ĥ]/ąĤ)Ě−1 ¹ (F[xĤ×Ĥ]/ąĤ)Ě+1 ©→ (F[xĤ×Ĥ]/ąĤ)Ě ¹ (F[xĤ×Ĥ]/ąĤ)Ě (0 < Ě < Ĥ− 1) (4.26)

which commute with either the row or column action of ÿĤ on xĤ×Ĥ would prove the Novak-Rhoades

conjecture [14] and imply Chen’s conjecture [4]. In fact, computations suggest that such an injection

can be found which commutes with both row and column permutation.

Conjecture 4.4. Given any degree Ě g 0, let ÿĤ ×ÿĤ act on (F[xĤ×Ĥ]/ąĤ)Ě by independent row and

column permutation. For all 0 < Ě < Ĥ − 1 there exists a linear injection

ą : (F[xĤ×Ĥ]/ąĤ)Ě−1 ¹ (F[xĤ×Ĥ]/ąĤ)Ě+1 ©→ (F[xĤ×Ĥ]/ąĤ)Ě ¹ (F[xĤ×Ĥ]/ąĤ)Ě

which commutes with the diagonal action of ÿĤ ×ÿĤ defined by

(ĭ, Ĭ) · ( Ĝ ¹ ĝ) := ((ĭ, Ĭ) · Ĝ ) ¹ ((ĭ, Ĭ) · ĝ)

for (ĭ, Ĭ) ∈ ÿĤ ×ÿĤ and Ĝ , ĝ ∈ F[xĤ×Ĥ]/ąĤ.

Conjecture 4.4 would imply both the Novak-Rhoades conjecture [14] and Chen’s conjecture [4]. The

existence of a map ą as in Conjecture 4.4 has been checked for Ĥ f 15.

5. Conclusion

This paper established a connection between the algebra of F[xĤ×Ĥ]/ąĤ and the combinatorics of ÿĤ.

It may be interesting to find analogous results for other combinatorial structures. As motivation, Bóna,

Lackner, and Sagan [3] conjectured that the sequence (ğĤ,1, . . . , ğĤ,ġ) given by

ğĤ,ġ = |{ĭ ∈ ÿĤ : lis(ĭ) = ġ, ĭ2
= 1}| (5.1)

which counts involutions in ÿĤ with longest increasing subsequence of length ġ is log-concave. Novak

and the author made (unpublished) the stronger conjecture [14] that the sequence (ĊĤ,1, . . . , ĊĤ,Ĥ) of

characters

ĊĤ,ġ :=
∑
Č ¢ Ĥ
Č1 = ġ

ĆČ (5.2)

is log-concave with respect to the Kronecker product (where a class function is ‘non-negative’ if it is

a genuine character). On the commutative algebra side, adding the differences Įğ, Ġ − Į Ġ ,ğ to the ideal

ąĤ ¦ F[xĤ×Ĥ] gives a candidate quotient ring which could be used to study these conjectures.

A key tool for understanding the structure of F[xĤ×Ĥ]/ąĤ was the orbit harmonics method applied to

the locus ČĤ ¦ FĤ×Ĥ of permutation matrices; it was proven that ąĤ = gr I(ČĤ). It may be interesting to

compute gr I(ĉĤ) for other matrix loci ĉĤ ¦ FĤ×Ĥ. Four suggestions in this direction are as follows.

1. The set ĉĤ = IĤ of symmetric permutation matrices corresponding to involutions in ÿĤ. The ideal

gr I(IĤ) could have application to the Bóna-Lackner-Sagan conjecture [3] and the Kronecker

log-concavity of the character sequence (ĊĤ,1, . . . , ĊĤ,Ĥ).
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2. The set ĉĤ = ă of elements of a complex reflection group. The Hilbert series of F[xĤ×Ĥ]/gr I(ă)

should be generating functions for a ‘longest increasing subsequence’ statistic on ă.1

3. The set ĉĤ = ýĤ of Ĥ × Ĥ alternating sign matrices. A standard monomial basis of

F[xĤ×Ĥ]/gr I(ýĤ) could give a clues about a Schensted correspondence for ASMs.

It may also be interesting to consider loci of rectangular ģ × Ĥ matrices for which ģ ≠ Ĥ. For

example, fixing sequences Č = (Č1, . . . , ČĤ) and č = (č1, . . . , čĤ), one could consider the contingency

table locus of Zg0-matrices with column sums Č and row sums č. Fulton’s matrix-ball construction

[6] generalizes Viennot shadow lines from permutation matrices to contingency tables; perhaps the

matrix-ball construction is also related to standard monomial theory.

The genesis of this paper was an email from Pierre Briaud and Morten Øygarden to the author

regarding a problem in cryptography. We close by describing this problem and its relationship to our

work.

Let ħ be a prime power and let Fħ be the finite field with ħ elements. Given a known matrix A ∈ Fģ×Ĥ
ħ

and a known vector v ∈ FĤħ , the Permuted Kernel Problem [1, Def. 1] seeks to recover an unknown

permutation ĭ ∈ ÿĤ of the coordinates of v which lies in the right kernel of A. The parameters ħ, ģ,

and Ĥ are chosen so that Ĥ! ≈ ħģ and there exists a unique such ĭ ∈ ÿĤ with high probability. The PKP

amounts to solving a polynomial system in the Ĥ2 variables xĤ×Ĥ over the field Fħ consisting of

1. the polynomials which express xĤ×Ĥ as a permutation matrix, and

2. the ģ polynomials coming from the vector equation A · xĤ×Ĥ · v = 0.

In cryptography, one wants to know the difficulty in solving this system using Gröbner methods.2 This

paper analyzed the system of polynomials coming from (1) alone; we hope that this will lead to a better

understanding of the more cryptographically relevant system (1) ∪ (2). The Hilbert series of a quotient

similar to that by (1) ∪ (2) was studied by Briaud and Øygarden in [2] when the linear system analogous

to (2) is sufficiently generic.
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