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Abstract

Let X, x5, be an n X n matrix of variables and let F[X;x, ] be the polynomial ring in these variables over a field F.
We study the ideal I,, € F[x,x,] generated by all row and column variable sums and all products of two variables
drawn from the same row or column. We show that the quotient F[X,,x,]/I,; admits a standard monomial basis
determined by Viennot’s shadow line avatar of the Schensted correspondence. As a corollary, the Hilbert series of
F[Xnxn]/In is the generating function of permutations in &,, by the length of their longest increasing subsequence.
Along the way, we describe a ‘shadow junta’ basis of the vector space of k-local permutation statistics. We also
calculate the structure of F[X,,x,]/I as a graded S, X S,-module.
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1. Introduction

Let x be a finite set of variables and let F[x] be the polynomial ring in these variables over a field F. If
I € F[x] is a homogeneous ideal, the quotient ring F[x]// has the structure of a graded vector space.
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The Hilbert series of F[x]/I is the graded dimension of the vector space, viz.

Hilb(F[x]/I; q) := Z dimp(F[x]/D)a - ¢°. (1.1)
d>0

Macaulay [13] characterized the polynomials ag+a;-g+---+agq4- qd with positive integer coefficients
which arise as the Hilbert series of a graded quotient of the form F[x]//. Following the exposition of
Stanley [19, Thm. 1.3], for positive integers a and i, there is a unique representation a = (bl') +(5)

i-1
(};’) where b; > bi_y > -+ >b; > j = 1.Leta := (lz.’:'ll)+~"+(I’J!;1).Thena0+a1 q+-+ag-q?

is the Hilbert series of some graded quotient F[x] /[ if and only if a;4; < a§i+l> forO0<i<d-1.
In this paper we show that a generating function arising from increasing subsequences of permutations

is the Hilbert series of a natural graded ring. Write &,, for the symmetric group on [n] := {1,...,n}.
If w € &, is a permutation, an increasing subsequence in w is a set of positions 1 <i; <--- <ix <n
whose images under w satisfy w(i;) < --- < w(ix). The integer k is the length of this increasing

subsequence. We write
lis(w) := max{k : w has an increasing subsequence of length k} (1.2)
for the length of the longest increasing subsequence of w and
ani =|{we &, : lis(w) = k}| (1.3)

for the number of permutations in &, whose longest increasing subsequence has length k. For any
positive integer n, the sequence (dn.1,dn2,...,dnn) Was conjectured by Chen [4, Conj. 1.1] to
be log-concave, i.e. afu. > api-1 - an,i+1 for all 1 < i < n. When n = 4, this sequence reads
(as,1,a42,a43,a44) = (1,13,9,1).

The following ideal I,, is our object of study. Despite the simplicity of its generating set, it will turn
out to have deep connections to the combinatorics of increasing subsequences.

Definition 1.1. Let X,,»,, be an n X n matrix of variables (x; ;)1<i j<» and consider the polynomial ring
F[Xnxn] over these variables. Let I,, C F[x;,x,| be the ideal generated by

* any product x; ; - x; j» for1 <i <nand1 < j, j’ < nof variables in the same row,

e any product x; ; - x;7 j for 1 <i,i” < nand 1 < j < n of variables in the same column,
e any row sumx; j +---+x; , for1 <i <n,and

* and column sum xyj +---+x, ; for1 < j < n.

The ideal I,, C F[X,x,] is homogeneous, so F[x,,x,]/I, is a graded F-algebra. The natural action
of the group S,, X S, on the variable matrix X,x, given by independent row and column permutation
induces an action on F[x,,x,] which stabilizes I,;, so that F[x,,x,]/I, is a graded S,, X &,-module.

When n = 1 we have I} = (x1,1) € F[xixi1] so that F[xix;]/I1 = F. When n = 2 the ideal
I, € F[xax2] has generators

2 2 2 2
xl’l’ x1,27 x2,17 x2’29 x1,1x1,27 x1,1x2,17 x1,2x2,2, x2,1x2,27

X1,1+X1,2, X1,1 +X2,1, X1,2+X22, X2,1 +X22
and it is not hard to check that F[Xax2] /1> has Hilbert series 1 + ¢ and that the set of monomials {1, x>}
descends to a basis.

We prove (Corollary 3.13) that the Hilbert series of F[X;,,x,]/I, is given by

Hilb(F[Xnxn]/In;q) = Gnn + Ann-1-q + ann-2 q2 +-otan - q"_l (1.4)
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so that the (reversal of the) generating function for permutations in S,, by longest increasing subsequence
is the Hilbert series of F[X,x,]/I,. In particular, the polynomial a, , + dpn-1-qg+- - +an1 - q"‘l
satisfies Macaulay’s Criterion, a fact which seems difficult to prove directly from the combinatorics of
increasing subsequences. Taking ¢ — 1, the ungraded vector space F[x;,x, ]/, has dimension

dim F[x;,x,,] /1, = n!. (1.5)

We will attach (Definition 3.9) a monomial s(w) in the variables x; ; to any permutation w € &,, such
that

degs(w) =n —lis(w) (1.6)

and prove (Theorem 3.12) that
{s(w) : weG,} .7

descends to a vector space basis of F[X,x,]/I,. In fact, this will be the standard monomial basis of
F[Xnxn]/1, with respect to a “Toeplitz term order" <top (Definition 3.8). The notation s refers to the use
of Viennot’s shadow line formulation [20] of the Schensted correspondence in the definition of s(w).
Our results may be interpreted as the ideal I, C F[x,,x,] together with the term order <o, “seeing" the
Viennot shadow line construction.

When the field F has characteristic zero or characteristic p > n, we characterize the structure of
F[Xuxn]/I, as an ungraded (Corollary 4.1) and graded (Theorem 4.2) module over the product group
S, X S,,. The module structure of F[x,,x, /I, relates to a family of &,,-characters considered by Novak
and the author [14] in a strengthening of Chen’s log-concavity conjecture.

For 1 < k < n, define a character a,,  : S, — F by the rule

Uk = E V% (1.8)
Arn
A=k

where the sum is over partitions of n whose first row has length k. Here y! : &, — Fis the irreducible
character of &, attached to the partition 1 and f* = y*(e) is the dimension of the irreducible &,,-
module attached to 1. We have @, x(e) = an i, so the sequence (a1, .., @) oOf class functions is a
representation-theoretic refinement of the sequence (an. 1, - . ., an,n) appearing in Chen’s conjecture.

Novak and the author conjectured [14, Conj. 2] the the difference @y, k * @n x — @n.k-1 * Un k+1 18 2
genuine (rather than merely virtual) character of S,, for all 1 < k < n, where * denotes the Kronecker
product of class functions on S,,. Since @, x(e) = aj, k, this would imply Chen’s conjecture. One way to
prove this stronger conjecture would be to describe an &,,-module which has @, i * @ k —@n k-1 * U k+1
as its character. We prove (Corollary 4.3) that «,, x is the character of the degree n—k piece of the quotient
F[X;xn /I, restricted from the product S,, X S, to either factor of S,,. To the author’s knowledge, this
is the simplest explicit module with character a, . We hope that this representation-theoretic model for
ap k can give new insight on the Novak-Rhoades conjecture. In fact, it appears that a stronger equivariant
log-concavity result holds without restriction from &S,, X S, to one of its factors; see Conjecture 4.4.

Our results have application to permutation statistics. For k£ > 0, a statistic f : S, — F is k-local
[5, 10] if f is an F-linear combination of indicator statistics which detect whether a permutation w
carries a given list of £ positions onto another given list of k values. The locality of a permutation
statistic is a measure of its complexity; for example, the O-local statistics are precisely the constant
functions &S,, — F. While the vector space of k-local statistics is defined via a spanning set, finding an
explicit basis for this vector space was an open problem in [10]. Our Grobner-theoretic methods yield
(Theorem 3.16) a solution to this problem.

To prove our results, we apply the method of orbit harmonics to the locus P,, € F"*" of permutation
matrices inside the affine space F"*" of n X n matrices over F. Orbit harmonics is a general method
of transforming finite point loci Z C FV into graded quotients F[xx]/grI(Z) of the polynomial ring
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F[xp]. This method dates back to at least the work of Kostant [11] and has been used to study modules
arising in Macdonald theory [7, 8, 9], understand cyclic sieving results [15], and interpret Donaldson-
Thomas invariants of symmetric quivers as orbit enumerations in the lattice points of break divisor
polytopes [16].

The rest of the paper is organized as follows. In Section 2 we give background material on Grobner
bases, orbit harmonics, and the Schensted correspondence. In Section 3 we use Viennot’s shadow line
interpretation of the Schensted correspondence to find a monomial basis of F[x,x,]/I, indexed by
permutations in S,,. We also give a basis for the space of k-local permutation statistics. In Section 4
we describe the structure of F[X,x,]/I,;, as a module over the product group S,, X S,. We close in
Section 5 with directions for future research.

2. Background
2.1. Grobner theory

Letx = (xp,...,xy) be afinite list of variables and let F[x, | be the polynomial ring in these variables
over a field F. A total order < on the monomials in F[xy ] is a term order if

e we have 1 < m for all monomials m, and
e if my, my, m3 are monomials with m; < my, then mymsz < moms.

If f € F[xy] is a nonzero polynomial and < is a term order, write in. ( f) for the largest monomial with
respect to < which appears with nonzero coeflicient in f.

Let I C F[x,] be an ideal and let < be a term order. The initial ideal in. (I) C F[xy] associated to
I is given by

inc(I) :=(inc(f) : fel, f+0)CF[xpn]. 2.1

In other words, the ideal in. (/) is generated by the <-leading monomials of all nonzero polynomials in
I. A subset G ={g1,...,gr} C Iisa Grobner basis of I if

inc(I) = (inc(g1),...,in<(gr)). 2.2)

If G ={g1,...,gr}is a Grobner basis of [ it follows that I = (g1, ..., g,).
Given an ideal I C F[xy] and a term order <, a monomial m in the variables x is a standard

monomial if m # in.(f) for any nonzero f € I. It is known that the family of cosets

{m+1 : m astandard monomial} 2.3)
descends to a vector space basis of F[xx]/I. This is referred to as the standard monomial basis.
2.2. Orbit harmonics
Let Z C FN be a finite locus of points and consider the ideal

I(Z2) ={f € Flxn] : f(z)y=0forallz e Z} 2.4)

of polynomials in F[x, ] which vanish on Z. The ideal I(Z) is usually not homogeneous. Since Z is
finite, we have an identification

F[Z] = Flxn]/1(Z) (2.5)

of the vector space F[Z] of functions Z — F and the typically ungraded quotient space F[xy]/I(Z).
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Given a nonzero polynomial f € F[xy], let 7(f) be the highest degree homogeneous component of
f.Thatis,if f = fg+---+ f1 + fo where f; is homogeneous of degree i and f; # 0, we have 7(f) = fy.
If I C F[xy] is an ideal, the associated graded ideal is

grl:=(t(f): fel, f+0). (2.6)

In other words, the ideal gr / is generated by the top homogeneous components of all nonzero polynomials
in . The associated graded ideal gr I C F[x,] is homogeneous by construction.

Returning to the setting of our finite locus Z € FM, we may extend the chain (2.5) of ungraded
F-vector space isomorphisms

F[Z] = F[xy]/I(Z) = F[xn]/erI(Z) 2.7

where the last quotient F[xp]/gr I(Z) has the additional structure of a graded F-vector space.

When the locus Z possesses symmetry, more can be said. Let G € G Ly (F) be a finite matrix group
and assume that the group algebra F[G] is semisimple. Equivalently, this means that |G| # 0 in F.
The natural action of G on F¥ induces an action on F[xy ] by linear substitutions. If Z is stable under
the action of G, the isomorphisms (2.7) hold in the category of F[G]-modules, and the last quotient
F[xn]/grI(Z) has the additional structure of a graded F[G]-module.

2.3. The Schensted correspondence

Given n > 0, a partition of n is a weakly decreasing sequence A = (1] > --- > Aj) of positive integers
which satisfy 4 + --- + Ax = n. We write A + n to indicate that A is a partition of n. We identify a
partition A = (4, ..., 4;) with its (English) Young diagram consisting of A; left-justified boxes in row i.

Let A + n be a partition. A tableau of shape A is an assignment 7 : 2 — {1,2,...} of positive
integers to the boxes of A. A standard tableau of shape A is a bijective filling T : A — [n] of the boxes
of A with 1,2, ...,n which is increasing across rows and down columns. We display, from left to right,
the Young diagram of 1 = (4,2,2) + 8, a standard tableau of shape A, and two tableaux of shape A
which are not standard.

[ ] 1/2]5]8] 114]3]7] 113]7]12]
4 506 415
6|7 213 9 [10

Although the above tableau 7 : 4 — {1,2,...} on the far right is not standard, it is an injective
filling which is (strictly) increasing across rows and down columns. We call a tableau satisfying these
conditions a partial standard tableau.

The famous Schensted correspondence [18] is a bijection

& —— | |{(P.Q) : P,O e SYT(1)} 2.8)

Arn

which sends a permutation w € S, to a pair (P(w), Q(w)) of standard tableaux with the same n-box
shape. The Schensted correspondence is most commonly defined using an insertion algorithm (see e.g.
[17] for details). We will not need the insertion formulation of the Schensted bijection, but an equivalent
“geometric" formulation due to Viennot [20] recalled in the next section will be crucial in our work.
Schensted proved that his bijection relates to increasing subsequences as follows.

Theorem 2.1. (Schensted [18, Thm. 1]) Let w € ©,, and suppose that w — (P(w), Q(w)) under the
Schensted bijection where P(w) and Q(w) have shape A v n. The first part 11 of the partition A is the
length of the longest increasing subsequence of w.
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2.4. S, -representation theory

Let FF be a field in which n # 0 so that the group algebra F[S,,] is semisimple. There is a one-to-one
correspondence between partitions of n and irreducible representations of &, over F. If A + n is a
partition, we write V4 for the corresponding irreducible module, X’l . S, — F for its character, and
£ := dim V" for its dimension. The number f counts standard tableaux of shape A.

The vector space Class(S,,, F) of F-valued class functions on ,, has basis {y? : A n} given by
irreducible characters. The Kronecker product = on Class(S,,, F) is defined by

(@) (w) =o(w) - y(w) 2.9

for any ¢, ¢ € Class(S,,F)andw € S,,.If V| and V; are S,,-modules, their vector space tensor product
Vi ® V;, carries a diagonal action of S,, by the rule w - (vi ® v2) := (w - v{) @ (w - v3). The characters
XVis XVys XViav, - S, — F of these modules are related by yv,ev, = Xv, * Xv,-

3. Hilbert series and standard monomial basis
3.1. The injection relations

In order to analyze the quotients F[X,x,|/I,, we start by exhibiting strategic elements of the ideal 7.
Given two subsets S,T C [n], define elements as 1, bs.T € F[X,xn] by

asr = Z (Hx"’f(i)) and bsr = Z (l_[xf(i)’i) 3.1

F:SoT \ies F:SoT \ies

where both sums are over injective functions f : S < T. For example, if S = {2,4} and T = {1, 3,4}
we have

as,T = X2,1X4,3 + X2 1X4.4 + X2.3X4,1 +X2,3X4 4 + X2 4X41 + X2 4X4 3,

bs,T = X12X3,4 +X12X4.4 +X32X1 4 +X32X4,4 +X42X1 4 +X42X3 4.

In general, the polynomials as 7 and bs r are obtained from one another by transposing the matrix X,,x,
of variables. We have as r = bs 1 = 0 whenever |S| > |T|.

Since the product of any two variables in the same row or column of Xx,,x,, is a generator of [,,, we
have the congruences

asrT = l_[ (Z xi,j) mod I, and bsT = 1_[ (Z xj,l-) mod [, (3.2)

ieS \jeT ieS \jeT

modulo 7,,. In other words, as far as the quotient F[X,,x,]/I, is concerned, we could have defined as
and bg r using all functions S — T, not just injections. Our first lemma states that as r and bg r are
members of I, provided that |S| + |T| > n.

Lemma 3.1. Let S,T C [n] be subsets. If |S| + |T| > n we have as r,bs.t € I,.

Proof. The polynomial bg r is obtained from ags r by transposing the matrix X,x, of variables, an
operation under which I, is stable. As such, it suffices to prove the lemma for as . Furthermore, by the
congruences (3.2) it suffices to prove the lemma when |S| + |T| = n + 1. Finally, since I,, is stable under
the action of the product group S, X S,, on the rows and columns of X, it is enough to consider the
case where S = [s] and T = [f] for s+t =n+1.
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We argue by increasing induction on s (and decreasing induction on 7). If s = 1 then t = n and
as.T =X1,1 +X12+ - +x1,,1s a generator of the ideal 7,,. If s > 1, we have

s t K] t+1

aS,TEI—[ in,j =(x1,1+x|,2+~--+x1,,)>< 1_[ in,j -E (33)

=1\ j=1 i=2 \ j=1

where the congruence modulo 7,, follows from (3.2), the expression [ - - - | in square brackets lies in [,
by induction, and the “error term" E is given by

E=(ri+xio++x)x > |[Jowwmx [ Gosovxn] G4
@+S’C{2,...,s} \i’eS’ i€{2,...,s}-5"

It suffices to show that E € I,,. When the |S’| > 1 and i; , i’2 € §’ are distinct, the corresponding summand
in E contains the product Xit 141 - Xil, 41 and so lies in /,,. We conclude that

S i#1(
E=(x1+xi2+ -+x1,) X Z (xi(),t+l X 1_[ (i +--- +Xi,z)) (3.5
ip=2 2<i<s

modulo 7,,. Applying the congruences (3.2) and the defining relations of I,,, we arrive at

K] i#ip

E=x(x 41 + X142+ - +X1,) X Z (Xio,t+1 X 1_[ (X2 + Xi 04370 +Xi,n)) (3.6)
i0=2 2<i<s

The sum (X; ;42 +X; 143 - - +X; n) contains n —t—1 =n—(n+1-s)—1 =5 —2 terms. The Pigeonhole

Principle implies that every term in the expansion of the RHS of the congruence (3.6) will contain a

product of variables x; ; - x; ; for some i # i’ so that E € I,,. We conclude that as 7 € I,, and the lemma

is proven. ]

3.2. Shadow sets

We represent a permutation w = [w(l),...,w(n)] € S, with its graph, i.e. the collection of points
{(i,w(i)) : 1 <i < n} onthe grid [n] X [n]. For example, the permutation w = [4,1,8,5,3,6,2,7] €
Sg is given below in bullets.

Viennot used [20] the graph of a permutation w to obtain its image (P(w), Q(w)) under the Schen-
sted correspondence as follows. Shine a flashlight northeast from the origin (0,0). Each bullet in the
permutation casts a shadow to its northeast. The boundary of the shaded region is the first shadow line;
in our example it is as follows.
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Removing the points on the first shadow line and repeating this procedure, we obtain the second shadow
line. Iterating, we obtain the third shadow line, the fourth shadow line, and so on. In our example, the
shadow lines are shown below.

Let w € &, and suppose that the shadow lines of w are given by Ly, ..., L, from southwest to
northeast. Viennot proved [20] that if w — (P(w), Q(w)) under the Schensted correspondence then
the y-coordinates of the infinite horizontal rays in Ly,..., L, form the first row of P(w) and the x-
coordinates of the infinite vertical rays of L1, . . ., L, form the first row of Q (w). In our example, the first

row of P(w) is E while the first row of Q(w) is En In particular, the common

length of the first row of P(w) and Q(w) is the number of shadow lines. The northeast corners of the
shadow lines played an important role in Viennot’s work, and will for us, as well.

Definition 3.2. The shadow set S(w) of a permutation w € S,; is the collection of points (i, j) in the
grid [n] X [n] which lie at the northeast corner of a shadow line of w.

In our example, the points in the shadow set S(w) = {(2,4), (4, 8), (5,5), (7,3)} are drawn in red.
For any permutation w € S, the shadow set S(w) contains at most one point in any row or column.
Such subsets of the square grid have a name.

Definition 3.3. A subset R C [n] X [n] is a (non-attacking) rook placement if R contains at most one
point in any row or column.

Rook placements are also known as ‘partial permutations’. Importantly, the Viennot shadow line
construction may be performed on an arbitrary rook placement, not just on the graph of a permutation.

Although every permutation shadow set is a rook placement, not every rook placement is the shadow
set of a permutation. For example, shadow sets contain no points in row 1 or column 1. In Lemma 3.6
below, we give a combinatorial criterion for deciding whether a rook placement is a shadow set.

Returning to our permutation w € S,,, we may iterate the shadow line construction on the shadow
set S(w). In our n = 8 example this yields the shadow lines.
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Viennot proved that the horizontal and vertical rays of these ‘iterated’ shadow lines give the second rows
of P(w) and Q (w), respectively. In our example, the second row of P(w) is and the second row of

Q(w)is These iterated shadow lines produce an iterated shadow set S(S(w)) whose points are
drawn in blue. Repeating this procedure in our example yields the iterated shadow sets and shadow lines

and we conclude that the tableaux P(w) and Q(w) are given by

2]6]7] 6]8]

(O8]

|OO|-I> Q) | =
|\1|Ul N | —

and

respectively.

Theorem 3.4. (Viennot [20]) The shadow line procedure described above computes the image
(P(w), Q(w)) of a permutation w € S,, under the Schensted correspondence.

For our purposes, we may take Theorem 3.4 as the definition of the Schensted correspondence.
Combining Theorem 3.4 with Schensted’s Theorem 2.1 yields the following result immediately.

Lemma 3.5. Let w € S,,. The size |S(w)| of the shadow set of w is given by
|S(w)| =n —lis(w). 3.7

We close this subsection with a combinatorial criterion for deciding when a rook placement R is the
shadow set of some permutation w € S,,. We use the fact that the shadow line construction may be
applied to R. This will yield a pair (P, Q) of partial standard tableaux with the same shape such that the
y-coordinates of R are the entries in P and the x-coordinates in R are the entries in Q.

Lemma 3.6. Let R C [n] X [n] be a rook placement and apply the shadow line construction to R. Let
Ly, ..., L, be the shadow lines so obtained. Define two length n sequences x1x3 ...X, and y1y2 ... ¥n
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over the alphabet {1,0, -1} by

1 if one of the lines L1, ..., L, has a vertical ray at x = i,
x;i =4—1 ifthe vertical line x = i does not meet R, (3.8)

0 otherwise.

and

1 ifone of the lines Ly, ..., L, has a horizontal ray at y =i,
yi =91—1 ifthe horizontal line y = i does not meet R, 3.9)
0 otherwise.

Then R = S(w) is the shadow set of some permutation w € S,, if and only if for all 1 < i < n we have
Xi+x2+--+x; <0andy;+y,+---+y; <0.

Proof. Suppose R = S(w) is the shadow set of a permutation w € S,. If w — (P(w), Q(w)) under
the Schensted correspondence, the horizontal rays of Ly, ..., L, give the second row of P(w) and the
vertical rays of Ly, ..., L, give the second row of Q(w). The y-coordinates which do not appear in R
give the first row of P(w) and the x-coordinates which do not appear in R give the first row of Q(w).
Since P(w) and Q(w) are standard all prefix sums of the sequences x;x;...x, and y;y;...y, are
nonpositive.

Now assume that all prefix sums of x;x>...x, and y;y;...y, are nonpositive. We may apply
Viennot’s construction to the set R to get a pair (P’, Q’) of partial standard tableaux where the entries
of P’ are the y-coordinates in R and the entries of Q’ are the x-coordinates in R. By the assumption on
prefixes, the tableaux P and Q obtained by adding a first row to P and Q consisting of those y-coordinates
and x-coordinates which do not appear in R (respectively) are both standard. If we let w € &,, be the
unique permutation such that w — (P, Q), Viennot’s Theorem 3.4 implies that S(w) = R. O

An example may help in understanding Lemma 3.6 and its proof. Let n = 8 and let R be the rook
placement

§=1{(2.8),(3,7),(5,3),(6,5),(7,6)}

of size 5. Applying the Viennot shadow line construction to R yields

-+ 0 - 0 + + -

+ + © O

where the sequences xx;...xg and y;y,---yg in {1,0,—1} are shown horizontally and vertically,
respectively. A +1 in a given row (or column) corresponds to an infinite ray of a shadow line, a 0
corresponds to a shadow line segment which is not an infinite ray, and a —1 corresponds to that row
(or column) not containing an element of R. We have x; +x, +---+x7 = 1 > 0, so by Lemma 3.6 the
set R is not the shadow set of a permutation in Sg. Indeed, applying Schensted insertion to the rook
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placement R yields the pair of tableaux P’ and Q’ given by

5(6] 6]7]

[oo[<]w
EBE

and

(respectively) and adding the row ﬂ corresponding to the positions of the —1’s in the sequence
X1X2 . .. xg to the top row of Q’ would not yield a standard tableau.

3.3. Shadow monomials and spanning

Our next task is to convert the combinatorics of the previous subsection into a spanning set for the
quotient ring F[X,x,]/1,. Given any set S C [n] X [n] of grid points, let m(S) = [](; j)es *i,; be the
corresponding squarefree monomial in F[X,;x,].

Lemma 3.7. The family of monomials m(R) corresponding to rook placements R C [n] X [n] descends
to a spanning set of F[Xnxnl/In.

Proof. This is immediate from the fact that generating set of [,, contains all squares xiz j of variables
and all products of two variables in a given row or column. m}

The spanning set of Lemma 3.7 is far from a basis. In order to extract a basis from this spanning set,
we introduce a strategic term order. Recall that the lexicographical order on monomials in an ordered
set of variables y; > y, > -+ > yp is given by y{'--- V¥ < y?‘ ~~-yfv’\’ if there exists 1 < j < N

with a; = b; fori < jand a; < b;.

Definition 3.8. The Toeplitz term order <t,, on monomials in F[X,,, ] is the lexicographical term order
with respect to the order on variables given by

X1,1 > X21 > X12>X3,1 >X22>X13> "> Xpn-1>Xn-1,n > Xn,n- (3.10)

Roughly speaking, the Toeplitz term order weights a variable x, ; heavier than x. ; whenever
a+b < c+d, and then breaks ties lexicographically. In fact, this tie breaking process among variables
x;,; withi+ j constant will be irrelevant for the arguments that follow; all that is important is the relative
weight of the variables x; ; for which i + j differs. The word “Toeplitz" comes from Toeplitz matrices
(which are constant along diagonals). Since all of the relations we apply will be homogeneous, we could
have also defined <t,, by ordering by total degree first, and then using the lexicographical order with
respect to the indicated variable order to break ties.

Definition 3.9. Let w € S,,. The shadow monomial s(w) € F[X,xn]/1, is the squarefree monomial
corresponding to the shadow set of w. In symbols, we have s(w) = m(S(w)).

For example, if w = [4,1,8,5,3,6,2,7] € Sg we have S(w) = {(2,4), (4,8), (5,5),(7,3)} so that
s(W) = Xx2.4 - X4.8 - X5.5 - x7,3. Our next lemma shows that the shadow monomials of permutations span
the quotient ring F[X,x,]/I,. The key tools in its proof are the relations in F[xX,x,]/I, coming from
Lemma 3.1 and the characterization (Lemma 3.6) of when a rook placement monomial m(R) is the
shadow monomial $(w) of a permutation w € &,,. To begin, we record the <rp-leading terms of the
elements of /,, appearing in Lemma 3.1.

Observation 3.10. LetS = {s; <--- <sp}andT = {t; <--- < 1t,} besubsets of [n] with p < g. Then
in<T0p (aS,T) = xsl,tlxsz,tz e xsp,tp and in<'1"0p (bS,T) = xtl,slxtz,sz e xtp,sp . (31 1)

In other words, the leading monomials of as 7 and bs 1 correspond to the injection S < T which
assigns the elements of S to the smallest |S| elements of 7" in an order-preserving fashion. If S = {2, 4}
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and T = {1,4, 5} then ag 1 given by

as, T = X2,1X4,4 +X2,4X41 +X2,1X4,5 + X2,5X4,1 +X2,4X4,5 + X2 5X4 4

with its <top-leading term underlined. We have all the pieces we need to prove our spanning result.

Lemma 3.11. The shadow monomials {s(w) : w € S, } descend to a spanning set of the quotient ring
F[Xnxnl/In.

Proof. Let R C [n] X [n] be a rook placement. By Lemma 3.7 it suffices to show that m(R) lies in the
span of {s(w) : w € S,,} modulo I,,. If R = S(w) for some permutation w € S, then m(R) = s(w)
and this is clear, so assume that R # S(w) forallw € S,,.

Apply Viennot’s shadow line construction to the rook placement R.Let Ly, . . ., L, be the shadow lines
so obtained, ordered from southwest to northeast, and let x;x, ...x, and y;y> ...y, be the sequences
appearing in the statement of Lemma 3.6. Since R is not the shadow set of a permutation, Lemma 3.6
implies that at least one of the sequences xx; ...x, and y;y; ...y, has a prefix with a strictly positive
sum. We assume that x;x; . . . x,, has a prefix with strictly positive sum; the case of y;y; . ..y, is similar.

Choose 1 < a < n minimal such that x; + x, + - - - + x, > 0. By the minimality of a, we have x, = 1
so that x = a is the vertical ray of one of the shadow lines L, for some 1 < p < r. We define a size p
subset {(i1, j1),..., (ip,jp)} € R as follows. Starting at the vertical ray of L, let (i, j,) be the first
element of R encountered by marching south (in particular, we have i, = a). Now march west from
(ip, jp) until one encounters a vertical segment of the shadow line L ,_1. March south along this segment
until one reaches a point (i,_1, jp—1) € R. Now march west from (i,_1, j,—1) until one encounters a
vertical segment of the shadow line L,_,. March south along this segment until one reaches a point
(ip-2, jp-2) € R. Continuing this process, we arrive at a subset {(iy, j1),..., (ip, jp)} € R such that

* the point (iy, j,) lies on the shadow line L, foreach 1 < g < p,
* we havei; <--- <i,,and
* we have j; < -+ < jp.

Let R" := R - {(i1, j1), ..., (ip, jp)} be the complement of {(iy, j1),..., (ip,jp)}in R.
An example may help in understanding these constructions. Let n = 11 and consider the rook
placement R C [11] x [11] given by

R =1{(2,9),(3,8),(4,3),(6,2),(7,6),(8,7),(9,5), (11,11)}.

The sequence (x1,x3,...,Xx11) is given by

(x1,x2,...,x11) = (-1,1,0,0,-1,0,1,1,0, -1, 1);

the figure below shows the shadow lines of R. By Lemma 3.6, the rook placement R is not the shadow
set of a permutation in Sg because

Xi+x2+---+xg=1>0.

Furthermore, the prefix x;x,...xg is the shortest positive sum prefix of the word x1x...x11. We
conclude that a = 8. Our marching procedure on the shadow line diagram of R is shown in dashed and
blue as follows.
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+ O

We conclude that (i, j1) = (4,3), (i2, j2) = (7,6), and (i3, j3) = (8, 7). Furthermore, we have the set

R/ =R - {(il’jl)’ (i2’ ].2)’ (i3’ ]3)} = {(2’ 9)’ (3’ 8)’ (6’ 2)’ (9’ 5)’ (11’ 11)}

of rooks in R which are not visited by the dashed blue line.

Consider the squarefree monomial m (R’) corresponding to the rooks in R € R which are not reached
by our marching procedure. The ideal m(R’) - F[X,,x,|/I, generated by m(R’) in the ring F[X;x, ]/,
admits a morphism from a smaller quotient of the same form. More precisely, let 77 := n — |R’| and let
X be the 71 X 7 matrix of variables

X = {x; ; : neither the vertical line x = i nor the horizontal line y = j meet the set R'}. (3.12)

In our example above, the matrix X consists of the variables x; ; indexed by i € {1,4,_5, 7,8,10} and
j €{1,3,4,6,7,10}. Let F[X] be the polynomial ring over the variables in X and let / C F[X] be the
natural copy of the ideal I in the square variable matrix X. The map

¢ FIX]/T — m(R") - F[Xuxn]/In (3.13)

induced by f +— m(R’) - f is easily seen to be a (well-defined) homomorphism of F[X]-modules; one
simply checks that for any generator g € F[X] of I, we have m(R’) - g € I,,. We consider the sets

T:={ii<ip<--<ip<ip+1<ip+2<---<n}—{i: (i,j) € R forsome j} (3.14)
and
S={j1<jp<---<jp} (3.15)

In our example we have T = {4,7,8,10} and S = {3,6,7}.

By the definitions of S and T, the polynomial bs 7 € F[X] does not involve any of the variables
which share a row or column with a rook (i, j) € R’ which is not visited by our marching procedure.
Since i, = a and we have the prefix inequality x; + x5 +- - - +x, > 0, we have |S| +|T| > . Lemma 3.1
applies to give

bS,T el (316)
Since the map ¢ of (3.13) is a homomorphism of F[X]-modules we obtain

@(bs,r) =m(R’) - bs,r € I. (3.17)



14 Brendon Rhoades

Observation 3.10 implies that the Toeplitz-leading term of m(R’) - bs 1 is m(R), so the membership
(3.17) yields

mR) =Y mod I, (3.18)

where X is a F-linear combination of monomials which are <t,, m(R). By induction on the Toeplitz
order, the lemma is proven. O

Lemma 3.11 (and its proof) give a Grobner basis for the ideal I, C F[x,x,] with respect to the
Toeplitz order which consists of

* any product of two variables in X,,x, which lie in the same row or column, and

* in the notation of the proof of Lemma 3.11, and polynomial of the form m(R’) - bs 1 for a rook
placement R C [n] X [n] which is not the shadow set of a permutation w € S,, for which some
prefix of the word x1x3 . .. x,, is positive, and the image of m(R’) - bs r under the involution F[X,x]
which interchanges x; ; and x; ;.

This Grobner basis is far from minimal. We leave the computation of a minimal (or reduced) Grobner
basis of I,, as an open problem.

3.4. Standard monomial basis and Hilbert series

Lemma 3.11 bounds the quotient ring F[X,x,]/I, from above by giving an F-linear spanning set. In
this subsection we use orbit harmonics to bound this quotient from below.

Let F"*" be the affine space of n X n matrices over F with coordinate ring F[X,,x, |. Write P,, C F"*"
for the locus of permutation matrices. That is, the set P,, consists of 0,1-matrices with a unique 1 in each
row and column. The vanishing ideal I(P,) C F[X,x,] of the permutation matrix locus is generated by
. x;.{j —x;jforall1 <i,j<n,

e x;j-xp jforalll <i<i’"<mandi<j<n,
e xij-xipforall <i<mandl<j<j <n,
* Xj1+ - +x;,—1foralll <i<n,and

. xl,j+~~~+xn,j—1f0ralll <j<n

Indeed, the generators in the first bullet point come from the (i, j)-entry of a permutation matrix being
0 or 1, the generators in the second and third bullet points come from products of distinct entries in a
row or column of a permutation matrix vanishing, and the generators in the fourth and fifth bullet points
come from the row and columns summing to 1. Comparing these generators with Definition 1.1, we get
the containment

I, C grI(Py). (3.19)

Although the highest degree components 7(g1), ..., 7(g,) of a generating set {gy, ..., g,} of an ideal
I are in general insufficient to generate gr /, in our case the containment (3.19) is an equality.

Theorem 3.12. We have the equality of ideals I,, = gr I(P,,) of F[X,xn|. Furthermore, the set {s(w) :
w € G} of shadow monomials of permutations in S, descends to a basis of F[Xpxn]/IL. This is the
standard monomial basis of F[Xuxn]/In with respect to the Toeplitz term order <top.

Standard monomial bases of quotient rings F[x]// can be unpredictable, even for nicely pre-
sented ideals /. However, Theorem 3.12 informally suggests that the Toeplitz term order <t,, and the
homogeneous ideal 7,, “know" the Viennot shadow line incarnation of the Schensted correspondence

w = (P(w), Q(w)).

Proof. The chain (2.7) of F-vector space isomorphisms coming from orbit harmonics reads

F[Pn] = FlXnxnl /I(Ppn) = F[Xnxn]/grI(Pp). (3.20)
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Lemma 3.11 and the containment (3.19) of ideals yield the chain of (in)equalities
n! = |P,| = dimF[x,x,]/grI(P,) < dimF[X,x,]/1y < n! (3.21)

which forces I, = grI(P,) and dim F[x,x,]/I, = n!. Another application of Lemma 3.11 shows that
the spanning set {s(w) : w € S,} of F[X,xn]/I, is in fact a basis. The proof of Lemma 3.11 shows
that {s(w) : w € &} is the standard monomial basis of F[X,,x,]/I, with respect to <top. )

As a corollary, we get our promised relationship between the Hilbert series of F[x,,x,,]/I,, and longest
increasing subsequences in permutations.

Corollary 3.13. Let a, i be the number of permutations in &, whose longest increasing sequence has
length k. The quotient ring F[X,,x, ]/, has Hilbert series

Hilb(F[Xan]/In; Q) =dapntapnpn-1-q+---t+anp1- 6]"—1~ (3.22)

Proof. Combine Lemma 3.5 and Theorem 3.12. m]

3.5. Local permutation statistics

Corollary 3.13 gives the structure of F[x,,«,] /I, as a graded vector space. Our next goal is the structure
of this quotient as a graded &,, X &,, module (at least when n! # 0 in F). Our calculation of the module
structure of F[x,,x,]/I, will make crucial use of a notion of complexity on permutation statistics due
to Hamaker and the author [10] called ‘locality’.

A permutation statistic (with values in the field F) is a function f : S,, — F. The study of permutation
statistics is an important subfield of combinatorics. Examples include the exceedance, inversion, and
peak numbers given by

exc(w) ={1<i<n:w(i)>i} (3.23)
inviw) :={1<i<j<n:w(i)>w()} (3.24)
peak(w) :=|{l <i<n:w(i-1) <w(@) >w(i+1)}. (3.25)

Following [10], we define a notion of locality for permutation statistics as follows. If R C [n] X [n]
is a rook placement and w € &, is a permutation, we say that w extends R if we have the containment
of sets R C {(i,w(i)) : 1 <i < n}. Given a rook placement R C [n] X [n], let 1g : S, — F be the
indicator permutation statistic

(3.26)

e (w) 1 if w extends R,
w =
R 0 otherwise,

which detects whether w extends R. A permutation statistic f : S,, — F is k-local if there exist field
elements cg € F such that

f= Z cr - 1g (3.27)
|RI=k

as functions S,, — F where the sum is over all rook placements R C [n] X [n] with k rooks.

Remark 3.14. A k-local statistic f : S,, — Fis also known to have ‘degree at most &k’ elsewhere in the
literature, e.g. [5]. We avoid this terminology to guard against confusion with the degree of a character.

Roughly speaking, the locality of a permutation statistic bounds its complexity. The only 0-local
statistics are constant functions &,, — F. The statistic exc is 1-local, the statistic inv is 2-local, and the
statistic peak is 3-local. Following Hamaker and the author [10], we consider the F-vector space

Lock(S,,F) :={f: S, > F : fis k-local} (3.28)
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of k-local statistics on S,,. It is not hard to see that any k-local statistic is also (k + 1)-local, so
that Locg (S,,,F) € Lock+1(S,, F). Furthermore, any permutation statistic S,, — F is (n — 1)-local.
The vector spaces Locg (S, F) will play an important role in the module structure of F[X,x,]/I,
(Theorem 4.2); for now we use shadow monomials to solve an open problem from [10] about the spaces
Locy (S, F) themselves.

By definition, the set {1g : |R| = k} of indicator statistics corresponding to rook placements
R C [n] x [n] of size k is a spanning set of Locg (S, F), but this spanning set is almost always linearly
dependent. In [10, Cor. 4.7] it is proven that when F = R is the field of real numbers, the dimension of
Loci (S,, F) equals to the number a, n—r + - - - + dnn-1 + an_n of permutations in S,, which have an
increasing subsequence of length at least n — k. The methods of [10] apply whenever F has characteristic
0 or characteristic p > n; we will see (Theorem 3.16) that this is true over any field.

The paper [10] did not give an explicit basis of the space of k-local statistics consisting of statistics
of the form 1g; we solve this problem in Theorem 3.16 below. Although the members 1¢ of our basis
for Locg (S, F) can correspond to rook placements with |R| < k in general, we will obtain a nested
family of bases for the chain of vector spaces Locy(S,,F) € Loc;(S,,F) C --- C Loc,-1(S,,F). To
achieve these goals, we recall a standard fact about associated graded ideals.

Let x be a finite set of variables and consider the polynomial ring F[x] over these variables. Given
d > 0 and a graded F-algebra A, let A<; C A be the subspace of elements of degree at most d. We have
a filtration F[x] <o € F[x]<; € F[x]<2 C --- of F[x] by finite-dimensional subspaces.

Lemma 3.15. Let I C F[x] be an ideal and let gr1 C F[xX] be the associated graded ideal of I. Fix
an integer d > 0 and let B C F[x]<q be a family of homogeneous polynomials of degree at most d.
Suppose that B descends to a basis of the vector space (F[x]/grI)<g4. Then B descends to a basis of
the vector space F[X]<q/(I NF[x]<q).

Lemma 3.15 is the heart of the orbit harmonics isomorphisms (2.7). We include its straightforward
proof for completeness.

Proof. If B8 were not linearly independent modulo 7 N F[x] <4, there would exist scalars ¢, € F not
all zero and an element g € I with deg(g) < d such that },,cg cp - b = g. Since the elements of B
are homogeneous, taking the highest degree component of both sides of this equation would result in a
linear dependence of 8 modulo gr I, a contradiction.

If B did not span F[x] <4/ (I NF[x]<4), there would be some homogeneous polynomial . € F[x] <4
such that g does not lie in the span of 8 modulo I N F[x]<4. Choose such an /& with deg(/) minimal.
There exist scalars ¢;, € F such that > ,cgcp - b = h+7(g) for some g € I with deg(g) = deg(h)
(so that in particular g € I N F[x]<y), where 7(g) is the highest degree component of g. Discarding
redundant terms if necessary, we may assume that ¢, = 0 whenever deg(b) # deg(h). We conclude that
h+g—2peg cp-bhas degree < deg(h), so by our choice of  there exist ¢;, € Fand g’ € INF[x] <4 with

Zc'b-b=h+g—2cb-b+g’

beB beB

sothath = 3 e g(c), —cp) - b —(g" + g) lies in the span of B modulo I NF[x] <4, a contradiction. O

An application of Lemma 3.15 gives a basis of the vector space Locg (S, F).

Theorem 3.16. The vector space Locy (S, F) of k-local statistics S,, — F has basis
{Isw) : w e S, lis(w) > n—k} (3.29)

given by indicator functions of shadow sets of permutations in S, which contain an increasing
subsequence of length n — k.
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Other authors (see e.g. [5]) refer to the functions 1 as juntas. So Theorem 3.16 describes a basis of
shadow juntas.

Proof. For ¢ < k, any {-local permutation statistic is also k-local, so the indicator functions in question
are members of Loc (S, F) by Lemma 3.5. Identifying S,, = P,, with the locus of permutation matrices
in F"*"_ the indicator function 1g corresponding to a rook placement R C [n] X [n] is represented by
the degree |R| monomial m(R) € F[X,xn]. It follows that we have an isomorphism

LOCk(en, F) = F[ann]sk/(I(Pn) N ]F[ann] Sk) (330)
of F-vector spaces given by 1g +— m(R) + (I(P,) N F[X;xn]<k). Write
B ={s(w) : w € S, has an increasing subsequence of length at least n — k} C F[x,x,]  (3.31)

for the set of monomials representing the indicator functions in the statement. Theorem 3.12 implies
that B descends to a basis for the F-vector space (F[X,,xn]/gr I(P;))<k. An application of Lemma 3.15
shows that B also descends to a basis for F[X;,, x| <x/ (I(P) NF[X,xn]<k), and the isomorphism (3.30)
completes the proof. m}

The nested shadow junta bases of Locy(S3, F) C Loci (3, F) C Locy (S3, F) are as follows.

X2,2 X3,3 X3,2 X2,3 X2,3 * X32
It may be interesting to find a basis of Locy (S,,, F) drawn from the spanning set {1g : |R| = k}. By
Theorem 3.12, the above monomials also form a vector space basis of F[x3x3]//3.

The results we have proven so far hold when the field F is replaced by a commutative ring R. More
precisely, we have an ideal IR C R[x,x,] with the same generating set as in Definition 1.1.

* The proofs of Lemmas 3.1 and 3.11 goes through to show that the shadow monomials
{s(w) : we S,} span R[xnx,,]/l,’f over R. Here we use the fact that the coefficients in the
polynomials as 7, bs,r appearing in Lemma 3.1 are all +1.
* When R = Z, a linear dependence of {s(w) : w € S,} modulo % would induce a linear
dependence modulo 19. By Theorem 3.12 {s(w) : w € &,,} descends to a Z-basis of Z[X,x,] /1.
* Since R[xnxn]/lf =R ®yz Z[xnxn]/l;zi, the set {s(w) : w € S,,} descends to a R-basis of
R[Xxn]/IR for any R. The proof of Lemma 3.15 holds over R, so the shadow juntas
{1sw) : we€ &, lis(w) = n - k} form an R-basis of Locy (S, R).

4. Module structure

As explained in the introduction, the self-product S,, X &,, of the rank n symmetric group acts on the

matrix X,x, of variables by independent row and column permutation. This induces an action of

S, X S, on I,;, and endows F[X,x, ]/, with the structure of a graded S,, X S,,-module. The purpose
of this section is to study this action. To do so, for the remainder of the section we made the following

assumption on the characteristic of .

Assumption. The field F either has characteristic zero, or has characteristic p > n.

This assumption guarantees that the group algebras F[S,] and F[S,, X &,,] are semisimple. We may
immediately describe the ungraded S,, X S,,-structure of F[X,x,]/1,.
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Corollary 4.1. Let S, X S,, act on the locus P,, € F"*" by independent row and column permutation.
We have an isomorphism F[ P, ] = F[x,x,]/I, of ungraded S, X S,-modules.

Corollary 4.1 may be given as a decomposition into S, X &, irreducibles as follows. If 4 F
n is a partition of n, recall that V4 denotes the corresponding irreducible &,-module. Irreducible
representations of the product group &, x S, are given by tensor products V4 ® VH for ordered
pairs of partitions (4, 1) of n. Corollary 4.1 asserts that F[X,xn]/I, = € ,,, V1 ® V4 as ungraded
S, X S,,-modules.

Proof. By Theorem 3.12 we have an isomorphism and an equality
F[P,] = F[Xpxnl/grI(Py) = F[Xnxnl/In 4.1

of ungraded F-vector spaces. By our assumption on the characteristic of F, these upgrade to an
isomorphism and an equality of ungraded F[S,, X &,,]-modules. O

We enhance Corollary 4.1 by describing the graded module structure of F[X,x,]/I,. As suggested
by Corollary 3.13, the graded refinement of the isomorphism F[X,x,]/In =g,xs, @ n Vg Vais
obtained by focusing on the length of the first row of A.

Theorem 4.2. For any k > 0, the degree k piece of B[Xpxn /I, has S, X S,-module structure

(Flxwanl Ik = P vie v, 4.2)

Arn
/llzn—k

Proof. If W is any &,,-module over F, the vector space Endg(W) of F-linear maps ¢ : W — Wis a
S,, X S,,-module via

((,v) - @) (W) i=u- (v~ w) forall u,v € S,, ¢ € Endg(W), w € W. 4.3)
We have Endg(W) = W @ W* and, since S,,-modules are self-dual, we have
Endz(W) = W W 4.4

as S, X S,-modules.
The group algebra F[S,] is naturally a S,, X S,,-module under left and right multiplication. Since
F[ S, ] is semisimple, the Artin-Wedderburn Theorem gives an isomorphism of F-algebras

¥ F[G,] — @Endy(vﬂ). 4.5)

Arn

Given a € F[S,,], the A" component of ¥(a) acts on V* by the F-linear map ¥(a) : v > a - v.
Returning to the statement of the theorem, since F[S,,] is semisimple, by induction on £ it suffices
to establish the isomorphism

(Flxnxn] /In)<k = € Endr(v?) (4.6)

Arn
Ay =2n—k

in the category of ungraded S, x S,-modules. To this end, Theorem 3.12 gives rise to the identifications
F[Sn] = F[Py] = F[Xpxal /I(Py) = F[ann]/ng(Pn) =F[Xuxnl/1n 4.7
of ungraded S,, X S, -modules. Let L be the image of F[X,x, ]| <k in F[X,x, ]| /I(P,), i.e.

Lyj :=Image(F[Xuxnl <k = F[Xnxn] = F[Xnxnl/I(Pn)). (4.8)
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Lemma 3.15 implies that
Ly = spang{m(R) + I(P,) : R arook placement with |R| < k}. 4.9)

As explained in the proof of Theorem 3.16, under the correspondence F[S,,] = F[P,] = F[X;xn]/I(Py)
we have the identification

Lock (G, F) = Ly (4.10)

with the G, X S,,-module of k-local statistics S,, — F. Lemma 3.15 and the chain (4.7) of isomorphisms
give rise to the further identification

Loci (G, F) = Lic = (F[Xpxnl/In)<k (4.11)

of S, X S,,-modules.
By the last paragraph, we are reduced to establishing the isomorphism

Locy (G, F) = @ Endg(V?) (4.12)

Arn
A1 =n—k

of ungraded S,, X S,-modules. Embed S,,_; C S,, by acting on the first n — k letters, let

Maki= ), weF[S,] (4.13)

weS,_k

be the group algebra element which symmetrizes over these letters, and let J;, C F[S,,] be the two-
sided ideal generated by 77,,_«. The correspondence between functions f : S, — F and group algebra
elements },,cg, f(w) - w gives rise to an identification

Lock (G, F) = Jx (4.14)

of ungraded S,, X S,-modules. Indeed, the group algebra element 1,_x € F[S,,] corresponds to the
indicator permutation statistic 1g : S,, — F indexed by the rook placement

R={n—-k+1l,n—-k+1),...,(n=-1,n-1),(n,n)}.

Multiplying 77,,— on the left and right by permutations of &,, corresponds to interchanging rows and
columns in the rook placement Ry; any rook placement with k rooks may be obtained in this way.
Thanks to the identification (4.14), we are reduced to showing

Ji = @ Endp(V?) (4.15)

Arn
A1 >n—k

as S, X &,-modules. The image W(J;) of the ideal J; C F[S,] under the Artin-Wedderburn iso-
morphism (4.5) is an ideal in the direct sum P, Endg (V1) of matrix rings. Since each summand
Endz (V1) is simple, there is a set P(k) of partitions of n such that

W) = @ Endg(V4). (4.16)

A€ P(k)
The definitions of ¥ and J; imply that

P(k) ={A+n : gu_g-V*#0}. (4.17)
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It remains to show that P(k) = {1+ n : A1 > n — k}. To this end, observe that for any S,-module
W, the image 1,,—x - W may be characterized as the trivial component

s triv
i W = (ResZ W) (4.18)
of the restriction of W from &,, to S,,_x. In particular, for A + n we have
s 2 triv
1eP(k) o (Rese"_kV ) 0. (4.19)

By the Branching Rule for symmetric group representations (see e.g. [17, Thm. 2.8.3]), the restriction
Resg" »V’l has a nonzero trivial component if and only if 4; > n — k. This proves the isomorphism

4. 12r)lié‘nd the theorem. O

The ring F[X,x,] carries a natural involution o : x; ; +— x;; which transposes the matrix X,x, of
variables. This induces a homogeneous involution on the quotient ring F[X,,x, |/, also denoted o. The
proof technique of Theorem 4.2 applies to show that in the isomorphism

(Flxwanl Ik = P viev? (4.20)
/11/1:|—n’lk
of S, X S,-modules, the action of o on the left hand side intertwines with the automorphism (w, u) —
(u, w) of the group S, X S,,.
Recall from the introduction that @, x is the character of S, givenby @, x = X3, f*- x*, where the
sum is over partitions A + n whose first row has length k. As an immediate application of Theorem 4.2,
we get an explicit S,-module with character a,, .

Corollary 4.3. The class function o,  : &, — F is the character of the restriction of the degree n — k
part of F[X,x,]/1I, to either factor of S, X &,,. In symbols, we have

G, x5, S, X6,
ke = ReSS" 17" (X (F [l 1)nk) = RES IS ™" (X (EXn 1/ T)or) (4.21)

where yy : S, X S, — F denotes the character of an F[S,, X S,,]-module V.

The space (F[Xuxn]/In)n-k is the cleanest representation-theoretic model for @,  known to the
author. There is another model for o, ; involving quotient spaces. For any d, we have an action of S,, on
Locy(S,,F) given by (w - f)(v) := f(w™!v) for w,v € &, and f € Locy(S,, F). The isomorphism
(4.12) implies that the sum @, k + @y k+1 + - - - + @n p 18 the character of Loc,_x (S, F). Therefore, the
quotient module Loc,_x (S,, F)/Loc,_k-1(S,, F) has character ay, k.

Sums of the characters a, ¢ also arise in the context of Schur-Weyl duality. Let F = C, let V = c4,
and let V" =V ® --- ® V be the n-fold tensor power of V. The vector space V®" carries a diagonal
action of GL(V), viz.

g-(V® Q) =(g-v)®---®(g-vp) (g€ GL(V), vi,...,vy €V). (4.22)

Let Endgr(v)(V®") be the algebra of linear maps ¢ : V& — V" which commute with the action of
GL(V). We have an algebra homomorphism @ : C[&,,] — Endg (v)(V®") induced by

D(W) - (VI® ®Vy) 1= Vyoi(1) @+ @ Vyymi(y) (we&,, vi,...,vy €V). (4.23)

Schur-Weyl duality asserts that the homomorphism @ is surjective, but when d < n the kernel of @ is
nonzero. In fact, the character of the &,-module Endg,(v)(V®") is given by

XEndg (v (Ven) = sign ® (a/n,] +app+--+ a',,,d) 4.24)
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where sign is the degree 1 sign character. In other words, we have XEndg, .y, (ven) = X X <d foxt
where the sum is over partitions A + n whose first column has length at most d. By Corollary 4.3, we
have an isomorphism of &,,-modules

Endgrv) (Vo") =, sign® ) (Clxuxnl /1) (4.25)
k>n-d

It may be interesting to give a formula for this isomorphism.
By Corollary 4.3, finding an explicit family of linear injections

(F[ann]/ln)d—l ® (F[ann]/ln)dﬂ — (F[ann]/ln)d ® (]F[ann]/ln)d (O <d<n- 1) (426)

which commute with either the row or column action of &,, on X, x, would prove the Novak-Rhoades
conjecture [14] and imply Chen’s conjecture [4]. In fact, computations suggest that such an injection
can be found which commutes with both row and column permutation.

Conjecture 4.4. Given any degree d > 0, let S, X S,, act on (F[X,x,]/I)a by independent row and
column permutation. For all 0 < d < n — 1 there exists a linear injection

("2 (F[ann]/ln)dfl ® (F[ann]/ln)dﬂ — (F[ann]/ln)d ® (F[ann] /In)d

which commutes with the diagonal action of S, X &,, defined by

(w,v) - (f®g):=((w,v)- ) ®((w,v)-g)
for (w,v) € G, X S, and f, g € F[X,,xn|/In-

Conjecture 4.4 would imply both the Novak-Rhoades conjecture [14] and Chen’s conjecture [4]. The
existence of a map ¢ as in Conjecture 4.4 has been checked for n < 15.

5. Conclusion

This paper established a connection between the algebra of F[X;,x, ]/, and the combinatorics of S,,.
It may be interesting to find analogous results for other combinatorial structures. As motivation, Béna,

Lackner, and Sagan [3] conjectured that the sequence (i, 1,. . .,in k) given by
ink =|{we6&, : lis(w) =k, w?=1} (5.1
which counts involutions in &,, with longest increasing subsequence of length & is log-concave. Novak
and the author made (unpublished) the stronger conjecture [14] that the sequence (ty 1, . .,tn.n) Of
characters
lnk = Z X’l (5.2)
Arn
/l] =k

is log-concave with respect to the Kronecker product (where a class function is ‘non-negative’ if it is
a genuine character). On the commutative algebra side, adding the differences x; ; — x;; to the ideal
I, € F[x,xn| gives a candidate quotient ring which could be used to study these conjectures.

A key tool for understanding the structure of F[X,x, ]/, was the orbit harmonics method applied to
the locus P, C F™" of permutation matrices; it was proven that I, = gr I(P,,). It may be interesting to
compute gr I(M,,) for other matrix loci M,, € F"*", Four suggestions in this direction are as follows.

1. The set M,, = 1,, of symmetric permutation matrices corresponding to involutions in &,,. The ideal
grI(Z,) could have application to the Béna-Lackner-Sagan conjecture [3] and the Kronecker
log-concavity of the character sequence (¢ 1, - - ., tnn)-



22 Brendon Rhoades

2. The set M,, = G of elements of a complex reflection group. The Hilbert series of F[x,,x,]/grI(G)
should be generating functions for a ‘longest increasing subsequence’ statistic on G.!

3. The set M,, = A, of n X n alternating sign matrices. A standard monomial basis of
F[X,xn]/grI(A,) could give a clues about a Schensted correspondence for ASMs.

It may also be interesting to consider loci of rectangular m X n matrices for which m # n. For
example, fixing sequences A = (4y,...,4,) and u = (uy, ..., ), one could consider the contingency
table locus of Zsp-matrices with column sums A and row sums . Fulton’s matrix-ball construction
[6] generalizes Viennot shadow lines from permutation matrices to contingency tables; perhaps the
matrix-ball construction is also related to standard monomial theory.

The genesis of this paper was an email from Pierre Briaud and Morten @ygarden to the author
regarding a problem in cryptography. We close by describing this problem and its relationship to our
work.

Let g be a prime power and let F,, be the finite field with g elements. Given a known matrix A € F;™"
and a known vector v € FZ, the Permuted Kernel Problem [1, Def. 1] seeks to recover an unknown
permutation w € S, of the coordinates of v which lies in the right kernel of A. The parameters g, m,
and n are chosen so that n! ~ ¢" and there exists a unique such w € &,, with high probability. The PKP
amounts to solving a polynomial system in the n> variables X,,x,, over the field F, consisting of

1. the polynomials which express x,,x,, as a permutation matrix, and
2. the m polynomials coming from the vector equation A - X;,x,, - v=0.

In cryptography, one wants to know the difficulty in solving this system using Grobner methods.? This
paper analyzed the system of polynomials coming from (1) alone; we hope that this will lead to a better
understanding of the more cryptographically relevant system (1) U (2). The Hilbert series of a quotient
similar to that by (1) U (2) was studied by Briaud and @ygarden in [2] when the linear system analogous
to (2) is sufficiently generic.
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