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Abstract

Let Ωÿ be the ring of polynomial-valued holomorphic differential forms on complex n-space, referred to in physics

as the superspace ring of rank n. The symmetric group ÿÿ acts diagonally on Ωÿ by permuting commuting and

anticommuting generators simultaneously. We let ÿýÿ ⊆ Ωÿ be the ideal generated byÿÿ-invariants with vanishing

constant term and study the quotient ÿýÿ = Ωÿ/ÿýÿ of superspace by this ideal. We calculate the doubly-graded

Hilbert series of ÿýÿ and prove an ‘operator theorem’, which characterizes the harmonic space ÿÿÿ ⊆ Ωÿ
attached to ÿýÿ in terms of the Vandermonde determinant and certain differential operators. Our methods employ

commutative algebra results that were used in the study of Hessenberg varieties. Our results prove conjectures of

N. Bergeron, Colmenarejo, Li, Machacek, Sulzgruber, Swanson, Wallach and Zabrocki.
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1. Introduction

Let xÿ = (ý1, . . . , ýÿ) be a list of n variables and let C[xÿ] be the polynomial ring in these variables

over C. The symmetric group ÿÿ acts on C[xÿ] by subscript permutation; the fixed subspace C[xÿ]ÿÿ
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2 B. Rhoades and A. T. Wilson

is the algebra of symmetric polynomials. The coinvariant ideal ýÿ ⊆ C[xÿ] is the ideal ýÿ := (C[xÿ]ÿÿ
+ )

generated by the space C[xÿ]ÿÿ
+ of symmetric polynomials with vanishing constant term, and the

coinvariant ring ýÿ := C[xÿ]/ýÿ is the quotient of C[xÿ] by ýÿ.

The gradedÿÿ-module ýÿ is among the most important objects in algebraic combinatorics. E. Artin

proved [4] that the ‘sub-staircase monomials’ {ýÿ1

1
· · · ýÿÿÿ : ÿÿ < ÿ} descend to a basis of ýÿ, so that

ýÿ has Hilbert series

Hilb(ýÿ; ÿ) = [ÿ]!ÿ , (1.1)

where we use the standard q-number and q-factorial notation

[ÿ]ÿ := 1 + ÿ + · · · + ÿÿ−1 =
1 − ÿÿ

1 − ÿ
and [ÿ]!ÿ := [ÿ]ÿ [ÿ − 1]ÿ · · · [1]ÿ . (1.2)

Chevalley showed [10] that ýÿ � C[ÿÿ] carries the regular representation of ÿÿ as an ungraded

ÿÿ-module, and Borel showed [8] that ýÿ = ÿ•(Fl(ÿ)) presents the cohomology of the type A complete

flag variety.

Now let xÿ = (ý1, . . . , ýÿ) and yÿ = (ÿ1, . . . , ÿÿ) be two sets of n commuting variables and consider

the polynomial ring C[xÿ, yÿ] over these variables with the diagonal action of ÿÿ, viz.

ý · ýÿ := ýý (ÿ) ý · ÿÿ := ÿý (ÿ) (ý ∈ ÿÿ, 1 ≤ ÿ ≤ ÿ). (1.3)

Let ÿýÿ ⊆ C[xÿ, yÿ] be the ideal generated by the ÿÿ-invariants with vanishing constant term. Garsia

and Haiman [12, 17] initiated the study of the diagonal coinvariant ring

ÿýÿ := C[xÿ, yÿ]/ÿýÿ. (1.4)

The quotient ÿýÿ is a doubly-graded ÿÿ-module. Haiman used the algebraic geometry of Hilbert

schemes to prove [18] that dim ÿýÿ = (ÿ + 1)ÿ−1 and that, as an ungraded ÿÿ-module, the space ÿýÿ
carries the sign-twisted permutation action of ÿÿ on size n parking functions. Carlsson and Oblomkov

used the Lusztig-Smelt paving of affine Springer fibers to give [9] a monomial basis of ÿýÿ, which

restricts to Artin’s basis of ýÿ when the y-variables are set to zero.

Next, let xÿ = (ý1, . . . , ýÿ) be a list of n commuting variables and let ÿÿ = (ÿ1, . . . , ÿÿ) be a list of n

anticommuting variables. The superspace ring of rank n is the tensor product

Ωÿ = C[xÿ] ⊗ ∧{ÿÿ} (1.5)

of the polynomial ring in the x-variables and the exterior algebra over the ÿ-variables. This ring arises in

physics, where the x-variables correspond to the states of bosons and the ÿ-variables correspond to the

states of fermions; see, for example, [28]. Accordingly, we shall refer to x-degree as bosonic degree and

ÿ-degree as fermionic degree. The ring Ωÿ also arises in differential geometry as the ring of polynomial-

valued holomorphic differential forms on complex n-space (and we would write ýýÿ instead of ÿÿ); this

explains our use of Ω.

The symmetric group ÿÿ acts diagonally on superspace by the rule

ý · ýÿ = ýý (ÿ) ý · ÿÿ = ÿý (ÿ) (ý ∈ ÿÿ, 1 ≤ ÿ ≤ ÿ). (1.6)

Once again, we denote by (Ωÿ)ÿÿ
+ the subalgebra of invariant polynomials with vanishing constant term

and consider the quotient ring

ÿýÿ := Ωÿ/ÿýÿ, (1.7)
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where the supercoinvariant ideal ÿýÿ ⊆ Ωÿ is given by

ÿýÿ := ideal generated by (Ωÿ)ÿÿ
+ ⊆ Ωÿ. (1.8)

Like ÿýÿ, the quotient ÿýÿ is a bigraded ÿÿ-module, this time with respect to bosonic and fermionic

degree.

The study of ÿýÿ was initiated by the Fields Institute Combinatorics Group1 in roughly 2018.

This group conjectured that dim ÿýÿ is the ordered Bell number counting ordered set partitions of

[ÿ] := {1, . . . , ÿ} and that, as an ungradedÿÿ-module, the quotient ÿýÿ carries the permutation action

of ÿÿ on these ordered set partitions, up to sign twist. Furthermore, this group conjectured that the

doubly-graded ÿÿ-structure of ÿýÿ was given by

grFrob(ÿýÿ; ÿ, ÿ) =
ÿ∑
ý=1

ÿÿ−ý · Δ ′
ÿý−1

ÿÿ |ý→0, (1.9)

where q tracks bosonic degree, z tracks fermionic degree, ÿÿ is the elementary symmetric function of

degree n, and Δ ′
ÿý−1

is a primed delta operator acting on the ring Λ of symmetric functions; see [14, 40]

for more details. The identity (1.9) implies that the bigraded Hilbert series of ÿýÿ is given by

Hilb(ÿýÿ; ÿ, ÿ) =
ÿ∑
ý=1

ÿÿ−ý · [ý]!ÿ · Stirÿ (ÿ, ý), (1.10)

where the q-Stirling number Stirÿ (ÿ, ý) is defined by the recursion

Stirÿ (ÿ, ý) = [ý]ÿ · Stirÿ (ÿ − 1, ý) + Stirÿ (ÿ − 1, ý − 1) (1.11)

together with the initial condition

Stirÿ (0, ý) =
{

1 ý = 0

0 otherwise.
(1.12)

Equation (1.10) was conjectured explicitly by Sagan and Swanson [33, Conj. 6.5].

The conjectures (1.9) and (1.10) were publicized at a BIRS meeting in January 2019. This resulted

in great excitement. Haglund, Rhoades and Shimozono [15] had introduced the quotient ring

ýÿ,ý := C[xÿ]/(ýý1 , ýý2 , . . . , ýýÿ , ÿÿ, ÿÿ−1, . . . , ÿÿ−ý+1) (1.13)

and had proven [16] that

grFrob(ýÿ,ý ; ÿ) = (revÿ ◦ ÿ)Δ ′
ÿý−1

ÿÿ |ý=0 . (1.14)

Pawlowski and Rhoades [27] introduced the moduli space ÿÿ,ý of n-tuples of lines (ℓ1, . . . , ℓÿ) in Cý

such that ℓ1 + · · · + ℓý = C
ý and proved the cohomology presentation

ÿ•(ÿÿ,ý ) = ýÿ,ý . (1.15)

The authors [30] introduced the superspace Vandermonde

ÿÿ,ý := ÿÿ ·
(
ýý−1

1 · · · ýý−1
ÿ−ýý

ý−1
ÿ−ý+1ýý−2

ÿ−ý+2 · · · ý
1
ÿ−1ý0

ÿ × ÿ1 · · · ÿÿ−ý
)

(1.16)

1Nantel Bergeron, Laura Colmenarejo, Shu Xiao Li, John Machacek, Robin Sulzgruber, and Mike Zabrocki
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and showed that the subspace ýÿ,ý ⊆ Ωÿ obtained by starting with ÿÿ,ý and closing under the partial

derivative operators ÿ
ÿýÿ

and linearity carries a gradedÿÿ-action with graded character Δ ′
ÿý−1

ÿÿ |ý=0. Of

all of these models, the supercoinvariant ring ÿýÿ has the most intrinsic invariant-theoretic definition

which extends to arbitrary complex reflection groups ÿ ⊆ ÿÿÿ (C) in the most obvious way.

Zabrocki extended the conjecture (1.9) in a different direction by introducing another set of commut-

ing variables yÿ = (ÿ1, . . . , ÿÿ) and considering the triply-graded ÿÿ-module obtained by quotienting

C[xÿ, yÿ] ⊗ ∧{ÿÿ} by the ideal I generated by ÿÿ-invariants with vanishing constant term. Zabrocki

conjectured [40] that

grFrob (C[xÿ, yÿ] ⊗ ∧{ÿÿ}/ý; ÿ, ý, ÿ) =
ÿ∑
ý=1

ÿÿ−ý · Δ ′
ÿý−1

ÿÿ, (1.17)

where q tracks x-degree, t tracks y-degree, and z tracks ÿ-degree. Observe that (1.17) reduces to (1.9)

if the y-variables are set to zero, and Haiman’s theorem [18] when the ÿ-variables are set to zero. The

conjecture (1.17) was the first predicted algebraic model for Δ ′
ÿý−1

ÿÿ; the authors [30] gave a parallel

conjectural model for Δ ′
ÿý−1

ÿÿ involving the superspace Vandermondes ÿÿ,ý . The conjecture (1.17) was

extended to two sets of bosonic variables and two sets of fermionic variables by D’Adderio, Iraci and

Vanden Wyngaerd [11] using Θ-operators on symmetric functions; the case of two sets of fermionic

variables alone was solved by Iraci-Rhoades-Romero [20] and Kim-Rhoades [22]; see [21, 23] for a

connection between this quotient and skein relations on set partitions. F. Bergeron has a substantial

family [5, 6, 7] of conjectures on coinvariant quotients with multiple sets of bosonic and fermionic

variables.

Despite all of this activity, the equations (1.9) and (1.10) on the structure of ÿýÿ remained frustratingly

conjectural. The methods that were used to successfully analyze objects like ýÿ,ý , ÿÿ,ý and ýÿ,ý have

not yet been extended to study ÿýÿ. Swanson and Wallach [36, 37] proved that the sign-isotypic

component of (1.9) is correct and that the fermionic degree ÿ − ý piece of ÿýÿ has top bosonic degree

(ÿ − ý) · (ý − 1) +
(ý
2

)
as predicted by (1.10); this was the only significant progress on ÿýÿ. In fact,

before this paper, even the dimension of ÿýÿ was unknown.

In this paper, we will prove that the formula (1.10) calculates the bigraded Hilbert series of ÿýÿ
(Theorem 5.3). We will also prove (Theorem 5.1) an ‘operator conjecture’ of Swanson and Wallach

[37], which describes the harmonic space ÿÿÿ ⊆ Ωÿ attached to the supercoinvariant ring ÿýÿ using

certain ‘higher Euler operators’ on Ωÿ which act by polarization.2 The space ÿÿÿ is helpful for machine

computations because ÿÿÿ � ÿýÿ as doubly-graded ÿÿ-modules, and yet members of ÿÿÿ are honest

superspace elements ÿ ∈ Ωÿ rather than cosets ÿ + ÿýÿ ∈ ÿýÿ. The ÿÿ-module structure of ÿýÿ,

ungraded or (bi)graded, remains open.

We turn to a description of our methods. The analysis of ýÿ,ý and its variations relied on the

remarkably well-behaved Gröbner theory of its defining ideal (ýý
1
, . . . , ýýÿ , ÿÿ, . . . , ÿÿ−ý+1) ⊆ C[xÿ].

This facilitated multiple provable combinatorial bases [13, 15, 26, 27] of ýÿ,ý from which its structure

as a graded vector space orÿÿ-module could be studied. There exists an extension of Gröbner theory to

the superspace ring Ωÿ, but the Gröbner theory of the supercoinvariant ideal ÿýÿ ⊆ Ωÿ has proven

to be inscrutable. Combinatorially, this has translated into a failure of using straightening arguments

to show that nice potential bases of ÿýÿ span this quotient ring. Indeed, our approach does not prove

the existence of any specific basis of ÿýÿ. For a potential road from our methods to an Artin-like

basis of ÿýÿ conjectured by Sagan and Swanson [33, Conj. 6.7], see Theorem 5.4, Conjecture 5.5 and

Proposition 5.7.

Since the direct analysis of ÿýÿ by means of a basis has proven elusive, we adopt an indirect

approach that stands, in a nutshell, on the elimination of fermionic variables. This allows us to trade

supercommutative algebra problems in Ωÿ for commutative algebra problems in C[xÿ], for which more

tools have been developed.

2This characterization of ÿÿÿ was conjectured earlier in unpublished work of N. Bergeron, L. Colmenarejo, S. X. Li, J.
Machacek, R. Sulzgruber and M. Zabrocki.
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For a given subset ý ⊆ [ÿ], we use a miraculous identity (Lemma 3.3) involving partial deriva-

tives of complete homogeneous symmetric polynomials to deduce the existence of a regular sequence

ýý ,1, . . . , ýý ,ÿ ∈ C[xÿ] (Lemma 3.5) in C[xÿ]. These regular sequences are used to prove (Proposition

3.7) that the bigraded Hilbert series of ÿýÿ is bounded above by the expression (1.10).

Next, we introduce a familyÿý of combinatorially defined differential operators acting on Ωÿ, which

are indexed by subsets ý ⊆ [ÿ]. We prove (Lemma 4.8) that the ÿý exhibit a triangularity property with

respect to the Gale order on subsets ý ⊆ [ÿ] with leading term given by the polynomial3

ÿý :=
∏
ÿ∈ý

ý ÿ

(∏
ÿ > ÿ

(ý ÿ − ýÿ)
)
∈ C[xÿ] . (1.18)

This leads to a general recipe (Theorem 5.4) for constructing bases of ÿýÿ from bases of the various

commutative quotient rings C[xÿ]/(ýÿ : ÿý ) by the colon ideals

(ýÿ : ÿý ) := {ý ∈ C[xÿ] : ý · ÿý ∈ ýÿ}. (1.19)

By identifying (ýÿ : ÿý ) with the ideal (ýý ,1, . . . , ýý ,ÿ) cut out by the regular sequence in C[xÿ] used

to prove the upper bound on Hilb(ÿýÿ; ÿ, ÿ) (Theorem 4.12), we are able to prove both the operator

theorem characterizing the superharmonic space ÿÿÿ (Theorem 5.1) and the formula (1.10) for the

bigraded Hilbert series of ÿýÿ (Theorem 5.3).

The rest of the paper is organized as follows. In Section 2, we give background material on superspace

and commutative algebra. In Section 3, we bound the bigraded Hilbert series of ÿýÿ from above using

regular sequences. In Section 4, we introduce the differential operators ÿý and relate them to the colon

ideals (ýÿ : ÿý ). In Section 5, we prove our main results: the operator theorem and the Hilbert series of

ÿýÿ. We also present a conjecture for an Artin-like basis of C[xÿ]/(ýÿ : ÿý ) and prove this conjecture

in a special case. We close in Section 6 with some open problems.

2. Background

2.1. Superspace

As in the introduction, the superspace ring Ωÿ = C[xÿ] ⊗ ∧{ÿÿ} is the tensor product of a symmetric

algebra of rank n and an exterior algebra of rank n, both over C. A monomial in Ωÿ is a nonzero product

of the generators xÿ = (ý1, . . . , ýÿ) and ÿÿ = (ÿ1, . . . , ÿÿ). A bosonic monomial is a monomial that

only involves the generators xÿ, whereas a fermionic monomial is a monomial that only involves the

generators ÿÿ. For any subset ý ⊆ [ÿ], we let ÿý be the product of the fermionic generators ÿ ÿ indexed

by ÿ ∈ ý in increasing order; we have a direct sum decomposition

Ωÿ =
⊕
ý ⊆[ÿ]

C[xÿ] · ÿý . (2.1)

The Gale order ≤Gale on subsets ý ⊆ [ÿ] of the same cardinality will be used heavily. This partial

order is defined by

{ÿ1 < · · · < ÿÿ } ≤Gale {ÿ1 < · · · < ÿÿ } if ÿÿ ≤ ÿÿ for all ÿ. (2.2)

This order will be used to compare fermionic monomials ÿý in the superspace ring Ωÿ.

The ring Ωÿ may be identified with polynomial valued differential forms on Cÿ; as such, it carries

a plethora of derivative operators. For 1 ≤ ÿ ≤ ÿ, let ÿÿ : C[xÿ] → C[xÿ] be the usual partial

differentiation with respect to ýÿ . By acting on the first tensor factor of Ωÿ = C[xÿ] ⊗ ∧{ÿÿ}, this

3See also Definition 4.6.
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extends to an action ÿÿ : Ωÿ → Ωÿ. For 1 ≤ ÿ ≤ ÿ, let ÿ ÿÿ : ∧{ÿÿ} → ∧{ÿÿ} be the contraction operator

defined on fermionic monomials by

ÿ ÿÿ : ÿ ÿ1 · · · ÿ ÿÿ =

{
(−1)ý−1ÿ ÿ1 · · · ÿ̂ ÿý · · · ÿ ÿÿ if ÿý = ÿ for some ý,

0 otherwise
(2.3)

for any distinct indices 1 ≤ ÿ1, . . . , ÿÿ ≤ ÿ where ·̂ denotes omission. By acting on the second tensor

factor of Ωÿ = C[xÿ] ⊗ ∧{ÿÿ}, we have a fermionic derivative operator ÿ ÿ
ÿ

: Ωÿ → Ωÿ.

We let ý : Ωÿ → Ωÿ be the Euler operator of differential geometry defined by

ý : ÿ ↦→
ÿ∑
ÿ=1

ÿÿ ÿ · ÿÿ (2.4)

for all ÿ ∈ Ωÿ. This operator lowers bosonic degree by 1 while raising fermionic degree by 1. We will

need ‘higher’ versions ý ÿ : Ωÿ → Ωÿ ( ÿ ≥ 1) of these operators given by

ý ÿ : ÿ ↦→
ÿ∑
ÿ=1

ÿ
ÿ

ÿ
ÿ · ÿÿ . (2.5)

The operator ý ÿ decreases bosonic degree by j while raising fermionic degree by 1. We have ý1 = ý. If

ý = { ÿ1 < ÿ2 < · · · } is a set of positive integers, we write

ýý := ý ÿ1 ý ÿ2 · · · (2.6)

for the corresponding product of higher Euler operators.

Considering bosonic and fermionic degree separately, superspace Ωÿ admits a bigrading

Ωÿ =
⊕
ÿ≥0

ÿ⊕
ÿ=0

(Ωÿ)ÿ, ÿ where (Ωÿ)ÿ, ÿ = C[xÿ]ÿ ⊗ ∧ ÿ {ÿÿ}. (2.7)

The diagonal action of the symmetric groupÿÿ on Ωÿ preserves this bigrading. As in the introduction,

we let (Ωÿ)ÿÿ be the fixed subalgebra for this action.

Let ý ⊆ Ωÿ be a bihomogeneous ideal in superspace (such as ÿýÿ). Analysis of the quotient ring

Ωÿ/ý is often complicated by the fact that its elements ÿ + ý are cosets rather than superspace elements

ÿ ∈ Ωÿ. The theory of (superspace) harmonics is a powerful technique for replacing cosets with honest

elements of superspace. We turn to a description of this method.

The partial derivative operators ÿÿ , ÿ ÿ
ÿ

: Ωÿ → Ωÿ satisfy the relations

ÿÿÿ ÿ = ÿ ÿÿÿ ÿÿÿ
ÿ
ÿ = ÿ ÿÿ ÿÿ ÿ ÿÿ ÿ ÿÿ = −ÿ ÿÿ ÿ ÿÿ (2.8)

for all 1 ≤ ÿ, ÿ ≤ ÿ. Since these are the defining relations of Ωÿ, for any superspace element

ÿ = ÿ (ý1, . . . , ýÿ, ÿ1, . . . , ÿÿ) ∈ Ωÿ, we get an operator

ÿ ÿ = ÿ (ÿ1, . . . , ÿÿ, ÿ ÿ1 , . . . , ÿ ÿÿ ) : Ωÿ → Ωÿ (2.9)

by replacing each ýÿ in f with the bosonic derivative ÿÿ and each ÿÿ in f with the fermionic derivative

ÿ ÿÿ . This leads to an action of superspace on itself given by

� : Ωÿ ×Ωÿ → Ωÿ ÿ � ý := (ÿ ÿ ) (ý). (2.10)

The �-action gives Ωÿ-module structure on Ωÿ.
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We use the �-action to construct an inner product on Ωÿ as follows. Let · : Ωÿ → Ωÿ be the

conjugate-linear involution that fixes all bosonic monomials, satisfies ÿÿ1 · · · ÿÿÿ = ÿÿÿ · · · ÿÿ1 for all

fermionic monomials ÿÿ1 · · · ÿÿÿ , and sends any scalar ý ∈ C to its complex conjugate ý. The pairing

〈−,−〉 : Ωÿ ×Ωÿ → Ωÿ 〈 ÿ , ý〉 := constant term of ÿ � ý (2.11)

is easily seen to be an inner product, with the monomials {ýÿ1

1
· · · ýÿÿÿ · ÿý } forming an orthogonal (but

not orthonormal) basis.

Now suppose ý ⊆ Ωÿ is a bihomogeneous ideal defined over R (such as ÿýÿ). We have the equality

ý⊥ = {ý ∈ Ωÿ : ÿ � ý = 0 for all ÿ ∈ ý} (2.12)

of subspaces of Ωÿ, where ý⊥ is calculated with respect to the above inner product. The subspace

ý⊥ ⊆ Ωÿ is the harmonic space attached to I. We have a direct sum decomposition Ωÿ = ý ⊕ ý⊥ and

an isomorphism of bigraded vector spaces Ωÿ/ý � ý⊥. If I is ÿÿ-stable, the isomorphism Ωÿ/ý � ý⊥

is also an isomorphism of bigradedÿÿ-modules. The harmonic model ý⊥ of Ωÿ/ý is useful because its

members are honest superspace elements rather than cosets.

We close this subsection with a combinatorial identity due to Sagan and Swanson that will be

useful in our analysis of ÿýÿ. For a subset ý ⊆ [ÿ], we define the J-staircase to be the sequence

st(ý) = (st(ý)1, . . . , st(ý)ÿ), where

st(ý)1 :=

{
0 1 ∈ ý

1 1 ∉ ý
(2.13)

and

st(ý)ÿ+1 :=

{
st(ý)ÿ ÿ + 1 ∈ ý

st(ý)ÿ + 1 ÿ + 1 ∉ ý.
(2.14)

For example, if ÿ = 7 and ý = {3, 5, 6}, we have st(ý) = (st(ý)1, . . . , st(ý)7) = (1, 2, 2, 3, 3, 3, 4).
Observe that st(∅) = (1, 2, . . . , ÿ) is the usual staircase.

Lemma 2.1. (Sagan-Swanson [33]) We have the polynomial identity

∑
ý ⊆[ÿ]

(
ÿ∏
ÿ=1

[st(ý)ÿ]ÿ

)
· ÿ |ý | =

ÿ∑
ý=1

ÿÿ−ý · [ý]!ÿ · Stirÿ (ÿ, ý). (2.15)

2.2. Commutative algebra

Our overarching strategy for analyzing ÿýÿ is to transfer problems involving the superspace ring Ωÿ to

problems involving the better-understood polynomial ring C[xÿ]. We review the relevant notions from

commutative algebra.

A commutative graded C-algebra ý =
⊕

ÿ≥0 ýÿ is Artinian if A is a finite-dimensional C-vector

space. The Hilbert series of A is

Hilb(ý; ÿ) :=
∑
ÿ≥0

dimC (ýÿ) · ÿÿ , (2.16)

assuming each graded piece ýÿ is finite-dimensional.

A sequence ÿ1, . . . , ÿÿ of n polynomials in C[xÿ] of homogeneous positive degrees is a regular

sequence if, for each 0 ≤ ÿ ≤ ÿ − 1, we have a short exact sequence

0 → C[xÿ]/( ÿ1, . . . , ÿÿ)
× ÿÿ+1−−−−−→ C[xÿ]/( ÿ1, . . . , ÿÿ)

can.−−−−→ C[xÿ]/( ÿ1, . . . , ÿÿ , ÿÿ+1) → 0, (2.17)
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where the first map is induced by multiplication by ÿÿ+1 and the second map is the canonical pro-

jection. If the regular sequence ÿ1, . . . , ÿÿ consists of homogeneous polynomials, the quotient ring

C[xÿ]/( ÿ1, . . . , ÿÿ) is a finite-dimensional graded vector space with Hilbert series

Hilb(C[xÿ]/( ÿ1, . . . , ÿÿ); ÿ) = [deg ÿ1]ÿ · · · [deg ÿÿ]ÿ . (2.18)

An Artinian graded quotient C[xÿ]/ÿ of C[xÿ] is a complete intersection if ÿ = ( ÿ1, . . . , ÿÿ) for some

length n regular sequence ÿ1, . . . , ÿÿ ∈ C[xÿ] of homogeneous polynomials.

The regularity of a sequence ÿ1, . . . , ÿÿ ∈ C[xÿ] of polynomials of homogeneous positive degree can

be interpreted in terms of the variety cut out by ÿ1, . . . , ÿÿ. Given any set ÿ ⊆ C[xÿ] of polynomials,

write

V(ÿ) := {z ∈ Cÿ : ÿ (z) = 0 for all ÿ ∈ ÿ} (2.19)

for the locus of points in Cÿ on which the polynomials in S vanish.

Lemma 2.2. Let ÿ1, . . . , ÿÿ ∈ C[xÿ] be a list of n homogeneous polynomials inC[xÿ] of positive degree.

The sequence ÿ1, . . . , ÿÿ is a regular sequence if and only if the variety V( ÿ1, . . . , ÿÿ) ⊆ Cÿ cut out by

these polynomials consists of the origin {0} alone.

Let ÿ ⊆ C[xÿ] be an ideal and let ÿ ∈ C[xÿ] be a polynomial. The colon ideal (or ideal quotient) is

(ÿ : ÿ ) := {ý ∈ C[xÿ] : ÿ · ý ∈ ÿ} ⊆ C[xÿ] . (2.20)

It is not difficult to check that (ÿ : ÿ ) is an ideal in C[xÿ] which contains ÿ, and that (ÿ : ÿ ) = C[xÿ] if

and only if ÿ ∈ ÿ.

Colon ideals will play a crucial role in our work, and we will need a criterion for determining a

generating set for them. Let ý =
⊕ý

ÿ=0 ýÿ be a finite-dimensional graded C-algebra with ýý ≠ 0. The

algebra A is a Poincaré duality algebra if

• its top component ýý � C is a 1-dimensional complex vector spaces, and

• for any 0 ≤ ÿ ≤ ý, the multiplication map ýÿ ⊗ ýý−ÿ −→ ýý � C is a perfect pairing.

If ý =
⊕ý

ÿ=0 ýý is a Poincaré duality algebra with ý ≠ 0, the maximal degree d is called the socle

degree of A. The following commutative algebra lemma will be remarkably useful to us.

Lemma 2.3. (Abe-Horiguchi-Masuda-Murai-Sato [2, Lem. 2.4]) Suppose ÿ, ÿ′ ⊆ C[xÿ] are homoge-

neous ideals and ÿ ∈ C[xÿ] is a homogeneous polynomial of degree k with ÿ ∉ ÿ. Suppose ÿ′ ⊆ (ÿ : ÿ ).
If C[xÿ]/ÿ′ is a Poincaré duality algebra of socle degree r and C[xÿ]/ÿ is a Poincaré duality algebra

of socle degree ÿ + ý , then ÿ′ = (ÿ : ÿ ).

We remark that [2, Lem. 2.4] was stated over the field R of real numbers, but its proof goes through

without change for arbitrary fields.

The polynomial ring C[xÿ] inherits a theory of harmonics from the superspace ring Ωÿ. Partial

differentiation yields an action � : C[xÿ] × C[xÿ] → C[xÿ] of the polynomial ring C[xÿ] on itself,

which gives rise to an inner product

〈−,−〉 : C[xÿ] × C[xÿ] → C 〈 ÿ , ý〉 = constant term of ÿ � ý. (2.21)

If ý ⊆ C[xÿ] is a homogeneous ideal, we have a direct sum decomposition C[xÿ] = ý ⊕ ý⊥ and an

identification

ý⊥ = {ý ∈ C[xÿ] : ÿ � ý = 0 for all ÿ ∈ ý} (2.22)

of the harmonic space ý⊥ as a subspace of C[xÿ].
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The harmonic theory of the classical coinvariant ideal ýÿ ⊆ C[xÿ] is given as follows. Let ÿÿ ∈ C[xÿ]
be the Vandermonde determinant

ÿÿ :=
∏
ÿ< ÿ

(ý ÿ − ýÿ) ∈ C[xÿ] . (2.23)

Then ý⊥ÿ is a cyclic C[xÿ]-module under the �-action generated by ÿÿ. In symbols, we have

ý⊥ÿ = C[xÿ] � ÿÿ. (2.24)

We write ÿÿ for the subspace ý⊥ÿ = C[xÿ] � ÿÿ ⊆ C[xÿ]; we have an isomorphism ýÿ � ÿÿ of graded

ÿÿ-modules. The annihilator of ÿÿ under the �-action is precisely the coinvariant ideal ýÿ:

annC[xÿ ] (ÿÿ) = { ÿ ∈ C[xÿ] : ÿ � ÿÿ = 0} = ýÿ. (2.25)

3. Upper Bound

3.1. A regular sequence in C[xÿ]

Our first lemma gives a general technique for constructing interesting elements of the supercoinvariant

ideal ÿýÿ.

Lemma 3.1. The supercoinvariant ideal ÿýÿ ⊆ Ωÿ contains the classical coinvariant ideal ýÿ ⊆ C[xÿ]
and is closed under the action of the Euler operator ý : Ωÿ → Ωÿ.

Proof. The operator d commutes with the action of ÿÿ on Ωÿ, so the result follows from the Leibniz

formula

ý ( ÿ ý) = ýÿ · ý ± ÿ · ýý, (3.1)

which holds for any bihomogeneous ÿ , ý ∈ Ωÿ (the sign is + if f has even fermionic degree and −
otherwise) and the relation ý ◦ ý = 0. �

Ideals in Ωÿ that are closed under the action of d are called differential ideals. To the knowledge

of the authors, the supercoinvariant ideal ÿýÿ is the first differential ideal that has received significant

attention in algebraic combinatorics.

The most important elements of ÿýÿ arising from Lemma 3.1 are as follows. Let ℎÿ , ÿÿ ∈ C[xÿ] be

the complete homogeneous and elementary symmetric polynomials

ℎÿ :=
∑

1≤ÿ1≤···≤ÿÿ ≤ÿ
ýÿ1 · · · ýÿÿ ÿÿ :=

∑
1≤ÿ1< · · ·<ÿÿ ≤ÿ

ýÿ1 · · · ýÿÿ . (3.2)

Here and throughout, if ÿ ⊆ [ÿ] is an index set, we use ℎÿ (ÿ) and ÿÿ (ÿ) to denote the complete

homogeneous and elementary symmetric polynomials of degree r in the variables indexed by S. For

example, we have

ℎ2 (134) = ý2
1 + ý1ý3 + ý1ý4 + ý2

3 + ý3ý4 + ý2
4 and ÿ2(134) = ý1ý3 + ý1ý4 + ý3ý4.

For any subset ÿ ⊆ [ÿ], it is well-known that

ℎÿ (ÿ) ∈ ýÿ whenever ÿ > ÿ − |ÿ |. (3.3)
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Indeed, (3.3) follows inductively from the identity ℎÿ (ÿ ∪ ÿ) = ýÿℎÿ−1(ÿ ∪ ÿ) + ℎÿ (ÿ), which holds

whenever ÿ ∉ ÿ. By Lemma 3.1, we have

ýℎÿ (ÿ) ∈ ÿýÿ whenever ÿ > ÿ − |ÿ |. (3.4)

Elements of ÿýÿ of the form (3.3) and (3.4) are the only ones we will need.

For any subset ý ⊆ [ÿ], we construct a sequence (ÿý ,1, ÿý ,2, . . . , ÿý ,ÿ) of superspace elements as

follows. Given ý ⊆ [ÿ], the sequence (ÿý ,1, ÿý ,2, . . . , ÿý ,ÿ) in Ωÿ is defined by

ÿý ,ÿ :=

{
ℎÿ ({ÿ, ÿ + 1, . . . , ÿ}) · ÿý ÿ < min(ý)
ýℎÿ (ý ∪ {ÿ + 1, . . . , ÿ}) · ÿý−max(ý∩{1,...,ÿ }) ÿ ≥ min(ý),

(3.5)

where in the second branch ÿ = ÿ − |ý ∪ {ÿ + 1, . . . , ÿ}| + 1.

The superspace elements ÿý ,ÿ may be visualized (and remembered) as follows. Consider a linear

array of n boxes labeled 1, . . . , ÿ from left to right, where the boxes in positions ÿ ∈ ý are decorated

with a ÿ. We consider moving a pointer from left to right along this array. When ÿ = 7 and ý = {3, 5, 6},
the picture is shown in Figure 1.

• When the pointer is at a position i which is strictly to the left of all of the ÿ decorations, the

corresponding superspace element is ÿý ,ÿ = ℎÿ ({ÿ, ÿ + 1, . . . , ÿ}) · ÿý .

• When the pointer is at a position i which is weakly to the right of at least one ÿ decoration,

the corresponding superspace element is ÿý ,ÿ = ýℎÿ (ý ∪ {ÿ + 1, . . . , ÿ}) · ÿý , where ý consists

of all elements of J except for the closest element ÿ ∈ ý weakly to the right of the pointer and

ÿ = ÿ − |ý ∪ {ÿ + 1, . . . , ÿ}| + 1 is the minimal degree such that ℎÿ (ý ∪ {ÿ + 1, . . . , ÿ}) ∈ ýÿ lies in the

classical coinvariant ideal.

In our example, we have

ÿý ,1 = ℎ1 (1234567) · ÿ356 ÿý ,2 = ℎ2 (234567) · ÿ356 ÿý ,3 = ýℎ3 (34567) · ÿ56 ÿý ,4 = ýℎ4 (3567) · ÿ56

ÿý ,5 = ýℎ4 (3567) · ÿ36 ÿý ,6 = ýℎ4 (3567) · ÿ35 ÿý ,7 = ýℎ5 (356) · ÿ35.

We record some basic observations about the polynomials ÿý ,ÿ .

Lemma 3.2. Let ý ⊆ [ÿ] and let (ÿý ,1, ÿý ,2, . . . , ÿý ,ÿ) be the associated sequence of elements of Ωÿ.

For any 1 ≤ ÿ ≤ ÿ, the superspace element ÿý ,ÿ satisfies the following properties.

1. We have ÿý ,ÿ ∈ ÿýÿ.

2. The superspace element ÿý ,ÿ is bihomogeneous with fermionic degree |ý | and bosonic degree st(ý)ÿ
where st(ý) = (st(ý)1, . . . , st(ý)ÿ) is the J-staircase.

3. The element ÿý ,ÿ lies in the subspace
⊕

ý ≤Galeÿ
C[xÿ] · ÿÿ of Ωÿ spanned by monomials whose

fermionic parts are greater than or equal to J in Gale order.

Proof. The memberships (3.3) and (3.4) and the construction of ÿý ,ÿ imply (1). Moving the pointer

from ÿ − 1 to i does not change the bosonic degree of ÿý ,ÿ when the box i is decorated with a ÿ, and

increases the bosonic degree of ÿý ,ÿ by 1 otherwise, so (2) also holds by construction. To see why (3)

is true, observe that the only surviving fermionic monomials ÿÿ in the expression

ýℎÿ (ý ∪ {ÿ + 1, . . . , ÿ})·ÿý−max(ý∩{1,...,ÿ }) =∑
ý∈ý∪{ÿ+1,...,ÿ}

ÿýℎÿ (ý ∪ {ÿ + 1, . . . , ÿ}) · ÿý · ÿý−max(ý∩{1,...,ÿ }) (3.6)

satisfy ý ≤Gale ÿ . �
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Figure 1. The pointer construction for the superspace elements ÿý ,ÿ ∈ Ωÿ and the polynomials ýý ,ÿ ∈
C[xÿ]. Here, ÿ = 7 and ý = {3, 5, 6}. Boxes whose positions in J are indicated with a ÿ. Shaded boxes

indicate the set of bosonic variables involved at each stage; boxes with a ÿ are always shaded. The

degree of the h-polynomial in ÿý ,ÿ and ýý ,ÿ is the number of unshaded boxes, plus one. Once the pointer

crosses the red line (i.e., reaches the minimum element of J), the definition of ÿý ,ÿ and ýý ,ÿ involves

derivatives. The pointer points to shaded boxes to the left of the right line, and an unshaded box or ÿ

box to the right of the red line. The ÿ decoration with an × corresponds to an unused ÿ-variable ÿý in

the case of ÿý ,ÿ , or a partial derivative ÿý in the case of ýý ,ÿ . The × appears on the closest ÿ which is

weakly to the left of the pointer.

We will be interested in the projections of the ÿý ,ÿ to C[xÿ] · ÿý . To this end, define polynomials

(ýý ,1, ýý ,2, . . . , ýý ,ÿ) ∈ C[xÿ] by the rule

ýý ,ÿ =

{
ℎÿ (ÿ, ÿ + 1, . . . , ÿ}) ÿ < min(ý)
ÿý (ℎÿ (ý ∪ {ÿ + 1, . . . , ÿ})) ý = max(ý ∩ {1, . . . , ÿ}),

(3.7)

where (as in the definition of ÿý ,ÿ) in the second branch ÿ := ÿ − |ý ∪ {ÿ + 1, . . . , ÿ}| + 1. As with the

superspace elements ÿý ,ÿ , the polynomials ýý ,ÿ are easily visualized using the pointer construction. The

index s on the partial derivative operator ÿý is the maximal element of j weakly to the left of the pointer.

As the pointer moves from left to right, the degree of the h-polynomial increases and its number of

arguments decreases. When ÿ = 7 and ý = {3, 5, 6}, Figure 1 yields

ýý ,1 = ℎ1 (1234567) ýý ,2 = ℎ2 (234567) ýý ,3 = ÿ3ℎ3 (34567) ýý ,4 = ÿ3ℎ4 (3567)

ýý ,5 = ÿ5ℎ4 (3567) ýý ,6 = ÿ6ℎ4 (3567) ýý ,7 = ÿ6ℎ5 (356).

By Lemma 3.2 (3), we have

ÿý ,ÿ ≡ ±ýý ,ÿ · ÿý mod
⊕
ý<Galeÿ

C[xÿ] · ÿÿ (3.8)

for all subsets ý ⊆ [ÿ] and 1 ≤ ÿ ≤ ÿ. The polynomials ýý ,ÿ ∈ C[xÿ] are the ‘Gale-leading terms’ of the

ÿý ,ÿ ∈ Ωÿ and will give us access to the tools of classical commutative algebra in C[xÿ]. In particular,

we will prove that ýý ,1, . . . , ýý ,ÿ is a regular sequence in C[xÿ] as long as 1 ∉ ý. Our first step in doing

so is an identity involving partial derivatives of homogeneous symmetric polynomials in partial variable

sets.

Lemma 3.3. If ÿ ⊆ [ÿ] is any subset with ÿ, ÿ ∈ ÿ and ý ∉ ÿ, then

ÿÿℎÿ (ÿ) = ÿÿℎÿ (ÿ) + (ýý − ýÿ) · ÿÿℎÿ−1(ÿ ∪ ý) − (ýý − ýÿ) · ÿÿℎÿ−1(ÿ ∪ ý) (3.9)

for all ÿ > 1.

In Lemma 3.3, we allow the possibility ÿ = ÿ, in which case the claimed equation is trivial.
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Proof. The RHS of Equation (3.9) may be expanded and regrouped to give

ÿÿℎÿ (ÿ) + (ýý − ýÿ)ÿÿℎÿ−1(ÿ ∪ ý) − (ýý − ýÿ)ÿÿℎÿ−1(ÿ ∪ ý) =
[ÿÿ (ℎÿ (ÿ) + ýýℎÿ−1(ÿ ∪ ý)) − ÿÿ (ýýℎÿ−1(ÿ ∪ ý))] − [ýÿÿÿℎÿ−1(ÿ ∪ ý)] + [ýÿÿÿℎÿ−1(ÿ ∪ ý)] .

(3.10)

Since ℎÿ (ÿ) + ýýℎÿ−1(ÿ ∪ ý) = ℎÿ (ÿ ∪ ý), the expression in the first set of brackets [ · · · ] on the RHS

of Equation (3.10) equals [ÿÿℎÿ (ÿ ∪ ý) − ÿÿℎÿ (ÿ ∪ ý) + ÿÿℎÿ (ÿ)], the expression in the second set of

brackets equals [ÿÿ (ýÿℎÿ−1(ÿ∪ ý)) − ℎÿ−1 (ÿ∪ ý)], and the expression in the third set of brackets equals

[ÿÿ (ýÿℎÿ−1(ÿ ∪ ý)) − ℎÿ−1(ÿ ∪ ý)]. Plugging all this in yields

[ÿÿ (ℎÿ (ÿ) + ýýℎÿ−1(ÿ ∪ ý)) − ÿÿ (ýýℎÿ−1(ÿ ∪ ý))] − [ýÿÿÿℎÿ−1(ÿ ∪ ý)] + [ýÿÿÿℎÿ−1(ÿ ∪ ý)]
= [ÿÿℎÿ (ÿ ∪ ý) − ÿÿℎÿ (ÿ ∪ ý) + ÿÿℎÿ (ÿ)] − [ÿÿ (ýÿℎÿ−1(ÿ ∪ ý)) −

�
�
�
�
�

ℎÿ−1(ÿ ∪ ý)]
+[ÿÿ (ýÿℎÿ−1(ÿ ∪ ý)) −

�
�
�
�
�

ℎÿ−1(ÿ ∪ ý)] (3.11)

with the indicated cancellations. After performing these cancellations, the RHS of Equation (3.11) may

be regrouped as

[ÿÿℎÿ (ÿ ∪ ý) − ÿÿℎÿ (ÿ ∪ ý) + ÿÿℎÿ (ÿ)] − [ÿÿ (ýÿℎÿ−1(ÿ ∪ ý))] + [ÿÿ (ýÿℎÿ−1(ÿ ∪ ý))]
= ÿÿℎÿ (ÿ) + {ÿÿ (ℎÿ (ÿ ∪ ý) − ýÿℎÿ−1(ÿ ∪ ý))} − {ÿÿ (ℎÿ (ÿ ∪ ý) − ýÿℎÿ−1(ÿ ∪ ý))} . (3.12)

Since the expression ℎÿ (ÿ ∪ ý) − ýÿℎÿ−1(ÿ ∪ ý) = ℎÿ ((ÿ ∪ ý) − ÿ) is independent of ýÿ ,

the partial derivative ÿÿ in the first set of curly braces { · · · } on the RHS of Equation (3.12) vanishes;

the expression in the second set of curly braces vanishes for similar reasons. This completes the proof

of Equation (3.9). �

The polynomial identity in Lemma 3.3 is, to the authors, somewhat miraculous; it would be nice to

have a conceptual understanding of ‘why’ it should be true. We use this identity to show that the ideal

Iý generated by the polynomials ýý ,1, . . . , ýý ,ÿ ∈ C[xÿ] contains certain strategic partial derivatives.

Lemma 3.4. Let ý ⊆ [ÿ] and write Iý = (ýý ,1, . . . , ýý ,ÿ) ⊆ C[xÿ] for the ideal generated by

ýý ,1, . . . , ýý ,ÿ. For any index ÿ ∈ ý, we have ÿ ÿℎÿ−|ý |+1 (ý) ∈ Iý .

Proof. We prove the following claim, which is stronger than the lemma and amenable to induction.

Claim: The polynomials in question lie in the ideal

I ′
ý := (ýý , ÿ0 , ýý , ÿ0+1, . . . , ýý ,ÿ) ⊆ C[ý ÿ0 , ý ÿ0+1, . . . , ýÿ], (3.13)

where ÿ0 = min(ý) is the smallest element of J.

The pointer construction makes it clear that the generators of I ′
ý

do not involve the variables

ý1, ý2, . . . , ý ÿ0−1 and so lie in the polynomial ring C[ý ÿ0 , ý ÿ0+1, . . . , ýÿ] generated by the remaining

variables. We prove the Claim by induction on the number ÿ − ÿ0 + 1 of variables in the ambient ring

of I ′
ý
.

If ý = {ÿ−ÿ +1, . . . , ÿ−1, ÿ} is a terminal subset of [ÿ], the polynomials in the Claim are generators

of the ideal I ′
ý
. Furthermore, for any subset ý ⊆ [ÿ], if ÿ = max(ý) is the largest element of J, then

ÿ ÿℎÿ−|ý |+1 (ý) = ýý ,ÿ is also a generator of I ′
ý
.

By the above paragraph, we may assume that ÿ0 = min(ý) ≠ max(ý) and that there exists an element

ý ∈ [ÿ]−ý with ý > ÿ0. Let ý0 := min{ ÿ0 < ý ≤ ÿ : ý ∉ ý} be the smallest such c and define ÿ ⊆ [ÿ] by

ÿ := { ÿ0, ÿ0 + 1, . . . , ÿ − 1, ÿ} − {ý0}. (3.14)

Observe that the elements ÿ0, ÿ0 + 1, . . . , ý0 − 2, ý0 − 1 of S lie in J. Let ÿ := ÿ − |ÿ | + 1. We apply

Lemma 3.3 iteratively as follows.

https://doi.org/10.1017/fmp.2024.14 Published online by Cambridge University Press



Forum of Mathematics, Pi 13

• Since ÿý0−1ℎÿ (ÿ), ÿý0−1ℎÿ−1(ÿ ∪ ý0), ÿý0−2(ÿ ∪ ý0) ∈ I ′
ý
, Lemma 3.3 with ÿ = ý0 − 2, ÿ = ý0 − 1,

and ý = ý0 implies ÿý0−2ℎÿ (ÿ) ∈ I ′
ý
.

• Since ÿý0−2ℎÿ (ÿ), ÿý0−2ℎÿ−1(ÿ ∪ ý0), ÿý0−3 (ÿ ∪ ý0) ∈ I ′
ý
, Lemma 3.3 with ÿ = ý0 − 3, ÿ = ý0 − 2,

and ý = ý0 implies ÿý0−3ℎÿ (ÿ) ∈ I ′
ý
.

• Since ÿý0−3ℎÿ (ÿ), ÿý0−3ℎÿ−1(ÿ ∪ ý0), ÿý0−4 (ÿ ∪ ý0) ∈ I ′
ý
, Lemma 3.3 with ÿ = ý0 − 3, ÿ = ý0 − 2,

and ý = ý0 implies ÿý0−4ℎÿ (ÿ) ∈ I ′
ý
, and so on.

We see that the polynomials

ý′
ý , ÿ0

:= ÿ ÿ0 ℎÿ (ÿ) ý′
ý , ÿ0+1 := ÿ ÿ0+1ℎÿ (ÿ) . . . ý′

ý ,ý0−1 := ÿý0−1ℎÿ (ÿ) (3.15)

lie in I ′
ý

so that

(ý′
ý , ÿ0

, ý′
ý , ÿ0+1, . . . , ý′

ý ,ý0−1, ýý ,ý0+1, ýý ,ý0+2, . . . , ýý ,ÿ) ⊆ I ′
ý (3.16)

as ideals in C[ý ÿ0 , ý ÿ0+1, . . . , ýÿ]. But the generators on the ideal on the LHS of (3.16) do not involve

the variable ýý0
. In fact, if we consider the variable set

x := (ý ÿ0 , ý ÿ0+1, . . . , ýý0−1, ýý0+1, . . . , ýÿ−1, ýÿ) (3.17)

obtained from our old variable set (ý ÿ0 , ý ÿ0+1, . . . , ýÿ) by removing ýý0
, then

(ý′
ý , ÿ0

, ý′
ý , ÿ0+1, . . . , ý′

ý ,ý0−1, ýý ,ý0+1, ýý ,ý0+2, . . . , ýý ,ÿ) = I ′
ý ′ (3.18)

as ideals in C[x] where ý ′ = (ý − ÿ0) ∪ ý0 is the corresponding cyclic rotation of the set J. Since

the variable set x contains fewer variables than the original set {ý ÿ0 , ý ÿ0+1, . . . , ýÿ}, we are done by

induction. �

An example may help clarify Lemma 3.4 and its proof. Suppose ÿ = 7 and ý = {3, 5, 6}. We have

Iý = (ýý ,1, . . . , ýý ,7), where

ýý ,1 = ℎ1 (1234567) ýý ,2 = ℎ2 (234567) ýý ,3 = ÿ3ℎ3 (34567) ýý ,4 = ÿ3ℎ4 (3567)

ýý ,5 = ÿ5ℎ4 (3567) ýý ,6 = ÿ6ℎ4 (3567) ýý ,7 = ÿ6ℎ5 (356).

Our aim is to show that the ideal Iý contains the elements

ÿ3ℎ5 (356), ÿ5ℎ5 (356), ÿ6ℎ5 (356).

To this end, we reason as follows.

• The element ÿ6ℎ5 (356) = ýý ,7 is a generator of Iý . This was one of the desired memberships.

• Since ÿ3ℎ3(34567) = ýý ,3, ÿ3ℎ4 (3567) = ýý ,4, and ÿ5ℎ4 (3567) = ýý ,5 are elements of Iý ,

Lemma 3.3 with ÿ = {3, 5, 6, 7}, ÿ = 3, ÿ = 5 and ý = 4 implies ÿ3ℎ4 (3567) ∈ Iý .

• Since ÿ3ℎ4(3567), ÿ6ℎ4 (3567) = ýý ,6, and ÿ6ℎ5(356) are elements of Iý , Lemma 3.3 with

ÿ = {3, 5, 6}, ÿ = 3, ÿ = 6 and ý = 7 implies ÿ3ℎ5 (356) ∈ Iý . This was one of the desired mem-

berships.

• Since ÿ5ℎ4 (3567) = ýý ,5, ÿ6ℎ4(3567) = ýý ,6, ÿ6ℎ5(356) ∈ Iý , Lemma 3.3 with ÿ = {3, 5, 6},
ÿ = 5, ÿ = 6 and ý = 7 implies ÿ5ℎ5 (356) ∈ Iý . This was the remaining desired membership.

Observe that we did not use the generators ýý ,1, ýý ,2 ∈ Iý to derive these memberships, so that in fact

we showed membership in the smaller ideal

I ′
ý = (ýý ,3, ýý ,4, ýý ,5, ýý ,6, ýý ,7) ⊆ C[ý3, ý4, ý5, ý6, ý7] .
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Lemma 3.5. Let ý ⊆ [ÿ] with st(ý) = (st(ý)1, . . . , st(ý)ÿ). If 1 ∉ ý, the sequence of polynomials

ýý ,1, . . . , ýý ,ÿ is a regular sequence in C[xÿ] of homogeneous degrees st(ý)1, . . . , st(ý)ÿ.

If 1 ∈ ý, then ýý ,1 = ÿ1ℎ1 (ý1, . . . , ýÿ) = ÿ1(ý1 + · · · + ýÿ) = 1 is a unit in C[xÿ]. Correspondingly,

we have st(ý)1 = 0. Since members of regular sequences are required to be of positive homogeneous

degree, we must exclude this case from Lemma 3.5.

Proof. Since 1 ∉ ý, the sequence st(ý) has positive entries. The assertion on degrees is Lemma 3.2 (2).

As in Lemma 3.4, let Iý = (ýý ,1, . . . , ýý ,ÿ) ⊆ C[xÿ]. By Lemma 2.2, it is enough to show that the

variety V(I) ⊆ Cÿ cut out by I consists of {0} alone. We use elimination to focus on coordinates in Cÿ

indexed by J.

Swanson and Wallach proved [37, Lem. 6.2] that that the polynomials ÿ ÿℎÿ−|ý |+1(ý) for ÿ ∈ ý have

no common zero in Cý . By Lemma 3.4, for any locus point ÿ = (ÿ1, . . . , ÿÿ) ∈ V(Iý ), we must have

ÿ ÿ = 0 for any ÿ ∈ ý. Setting the variables {ý ÿ : ÿ ∈ ý} to zero in the remaining polynomials

ýý ,ÿ |ý ÿ→0 for ÿ∈ý (ÿ ∉ ý) (3.19)

gives a sequence of positive degree homogeneous polynomials in C[ýÿ : ÿ ∉ ý] which are easily seen

to be triangular. We conclude that ÿÿ = 0 for ÿ ∉ ý, so that ÿ = 0 as required. �

Lemma 3.5 implies that the quotient ring C[xÿ]/(ýý ,1, . . . , ýý ,ÿ) has Hilbert series

Hilb(C[xÿ]/(ýý ,1, . . . , ýý ,ÿ); ÿ) = [st(ý)1]ÿ · · · [st(ý)ÿ]ÿ . (3.20)

This formula remains true when 1 ∈ ý, for then ýý ,1 = 1 and C[xÿ]/(ýý ,1, . . . , ýý ,ÿ) = 0. In partic-

ular, there exists a set Bÿ (ý) ⊆ C[xÿ] of homogeneous polynomials with degree generating function

[st(ý)1]ÿ · · · [st(ý)ÿ]ÿ such that Bÿ (ý) descends to a vector space basis of C[xÿ]/(ýý ,1, . . . , ýý ,ÿ).

3.2. An abstract straightening lemma

The proof of Lemma 3.5 relied on a a tricky induction in Lemma 3.4 and miraculous polynomial identity

in Lemma 3.3. Our next result should persuade the reader that Lemma 3.5 was worth the effort.

Lemma 3.6. (Straightening) Let ý ⊆ [ÿ] with st(ý) = (st(ý)1, . . . , st(ý)ÿ). There exists a finite set

Bÿ (ý) ⊆ C[xÿ] of nonzero homogeneous polynomials with degree generating function∑
ÿ∈Bÿ (ý )

ÿdeg(ÿ) = [st(ý)1]ÿ [st(ý)2]ÿ · · · [st(ý)ÿ]ÿ (3.21)

such that for any polynomial ÿ ∈ C[xÿ], we have an expression of the form

ÿ · ÿý =
���

∑
ÿ∈Bÿ (ý )

ý ÿ ,ÿ · ÿ · ÿý
���
+ ý + Σ, (3.22)

where

• the ý ÿ ,ÿ ∈ C are constants which depend on f and m,

• the element ý ∈ ÿýÿ lies in the supercoinvariant ideal, and

• the ‘error term’ Σ lies in
⊕

ý<Galeÿ
C[xÿ] · ÿÿ .

Proof. As explained after Lemma 3.5, there exists a set Bÿ (ý) ⊆ C[xÿ] of homogeneous poly-

nomials with the given degree generating function which descends to a vector space basis of

C[xÿ]/(ýý ,1, . . . , ýý ,ÿ). We prove that Bÿ (ý) satisfies the conditions of the lemma.
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The given polynomial ÿ ∈ C[xÿ] may be written as

ÿ =
���

∑
ÿ∈Bÿ (ý )

ý ÿ ,ÿ · ÿ
���
+

ÿ∑
ÿ=1

ý ÿ · ýý , ÿ (3.23)

for some scalars ý ÿ ,ÿ ∈ C and polynomials ý ÿ ∈ C[xÿ]. Multiplying both sides of Equation (3.23) by

ÿý yields

ÿ · ÿý =
���

∑
ÿ∈Bÿ (ý )

ý ÿ ,ÿ · ÿ · ÿý
���
+

ÿ∑
ÿ=1

ý ÿ · ýý , ÿ · ÿý . (3.24)

Equation (3.8) gives the relation

ÿ · ÿý ≡ ���
∑

ÿ∈Bÿ (ý )
ý ÿ ,ÿ · ÿ · ÿý

���
+

ÿ∑
ÿ=1

±ý ÿ · ÿý , ÿ mod
⊕
ý<Galeÿ

C[xÿ] · ÿÿ (3.25)

modulo the linear subspace
⊕

ý<Galeÿ
C[xÿ] ·ÿÿ of Ωÿ. Finally, Lemma 3.2 (1) implies the membership

ý :=
∑ÿ
ÿ=1 ±ý ÿ · ÿý , ÿ ∈ ÿýÿ, which completes the proof. �

Lemma 3.6 implies that the set Bÿ ⊆ Ωÿ of superspace elements given by

Bÿ :=
⊔
ý ⊆[ÿ]

Bÿ (ý) · ÿý (3.26)

descends to a spanning set in ÿýÿ. Indeed, if this were not the case, let ý ⊆ [ÿ] be a Gale-maximal

subset such that ÿ · ÿý ∈ Ωÿ does not lie in the span of Bÿ modulo ÿýÿ for some ÿ ∈ C[xÿ]. Lemma 3.6

implies that

ÿ · ÿý ≡ ���
∑

ÿ∈Bÿ (ý )
ý ÿ ,ÿ · ÿ · ÿý

���
+ Σ mod ÿýÿ (3.27)

for some constants ý ÿ ,ÿ ∈ C where Σ ∈
⊕

ý<Galeÿ
C[xÿ] · ÿÿ . The term in the parentheses certainly

lies in the span of Bÿ. The Gale-maximality of J implies that Σ lies in the span of Bÿ, as well, giving a

contradiction.

The straightening result of Lemma 3.6 is rather abstract in that it does not give a formula for

the polynomials in Bÿ (ý). While any generic set of polynomials of the appropriate degrees will do,

the authors are unaware of an explicit formula for the set Bÿ (ý). In general, objects related to ÿýÿ
have resisted analysis by Gröbner-theoretic techniques, which is reflected in the abstract statement of

Lemma 3.6.

Lemma 3.6 implies an upper bound for the bigraded Hilbert series of ÿýÿ. Given two polynomials

ÿ (ÿ, ÿ), ý(ÿ, ÿ) in variables ÿ, ÿ, we write ÿ ≤ ý to mean that ý − ÿ is a polynomial in ÿ, ÿ with

nonnegative coefficients.

Proposition 3.7. The bigraded Hilbert series Hilb(ÿýÿ; ÿ, ÿ) is bounded above by

Hilb(ÿýÿ; ÿ, ÿ) ≤
∑
ý ⊆[ÿ]

ÿ |ý |
∑

ÿ ∈Bÿ (ý )
ÿdeg( ÿ ) =

ÿ∑
ý=1

ÿÿ−ý · [ý]!ÿ · Stirÿ (ÿ, ý). (3.28)

Proof. As explained above, Lemma 3.6 implies that Bÿ =
⊔
ý ⊆[ÿ] Bÿ (ý) descends to a spanning set of

ÿýÿ. Since
∑
ÿ∈Bÿ (ý ) ÿdeg(ÿ) = [st(ý)1]ÿ · · · [st(ý)ÿ]ÿ , the result follows from Lemma 2.1. �
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4. Differential operators and colon ideals

The straightening result of Lemma 3.6 led to the upper bound on the dimension of ÿýÿ in Proposition 3.7.

Our next task is to bound this dimension from below. To this end, we define strategic differential

operators ÿý whose action on C[xÿ] has Gale maximum term ÿý . Analysis of this leading term will

lead to finding a lower bound for quotient rings of the form C[xÿ]/(ýÿ : ÿý ), where ýÿ ⊆ C[xÿ] is the

classical coinvariant ideal and the ÿý ∈ C[xÿ] are products of linear forms determined byÿý . It will turn

out (Theorem 4.12) that (ýÿ : ÿý ) is generated by the regular sequence ýý ,1, . . . , ýý ,ÿ of Lemma 3.5.

Together with the triangularity property of the ÿý , this will lead to the required lower bound on ÿýÿ.

4.1. The differential operators ÿý

Let H be the ÿ × ÿ matrix of complete homogeneous symmetric polynomials whose row i, column j

entry is given by

H :=
(
ℎÿ− ÿ (ýÿ , ýÿ+1, . . . , ýÿ)

)
1≤ÿ≤ÿ
1≤ ÿ≤ÿ

. (4.1)

We have ℎ0 = 1 and interpret ℎ ÿ−ÿ = 0 whenever ÿ > ÿ , so the matrix H is lower triangular with 1’s on

the diagonal. We use the matrix H to define a family of differential operators as follows. Given a subset

ÿ ⊆ [ÿ], we introduce the ‘reversal’ notation

ÿ∗ := {ÿ − ý + 1 : ý ∈ ÿ}. (4.2)

Definition 4.1. For any subset ý ⊆ [ÿ], define a differential operator ÿý acting on Ωÿ by

ÿý ( ÿ ) :=
∑

|ý |= |ý |
(−1)

∑
ýΔ [ÿ]−ý , ( [ÿ]−ý )∗ (H) � ýý ( ÿ ), (4.3)

where Δ [ÿ]−ý , ( [ÿ]−ý )∗ (H) ∈ C[xÿ] is the minor of H with row set [ÿ] − ý and column set ([ÿ] − ý)∗.

Since the matrix H is lower triangular, the coefficient of ýý in ÿý is zero unless we have ý∗ ≤Gale ý

in Gale order. As an example, when ÿ = 3, the matrix H is given by

H =
���

1 0 0

ý2 + ý3 1 0

ý2
3

ý3 1

���
and we have the differential operators

ÿ12( ÿ ) = −Δ3,1 (H) � ý12( ÿ ) + Δ3,2 (H) � ý13 ( ÿ ) − Δ3,3 (H) � ý23( ÿ )
ÿ13( ÿ ) = −Δ2,1 (H) � ý12( ÿ ) + Δ2,2 (H) � ý13 ( ÿ ) −

�
�
�
�Δ2,3 (H) � ý23( ÿ )

ÿ23( ÿ ) = −Δ1,1 (H) � ý12( ÿ ) +
�

�
�
�Δ1,2 (H) � ý13 ( ÿ ) −

�
�
�
�Δ1,3 (H) � ý23( ÿ )

acting on superspace elements ÿ ∈ Ω3 where the indicated minors of H vanish for support reasons.

Applying the formula ýÿ ( ÿ ) = (ýÿ
1
� ÿ )ÿ1 + (ýÿ

2
� ÿ )ÿ2 + (ýÿ

3
� ÿ )ÿ3, these operators may be expressed

in the more illuminating form

ÿ12( ÿ ) = (ý1 (ý1 − ý2) (ý1 − ý3)ý2(ý2 − ý3)) � ÿ · ÿ1ÿ2

ÿ13( ÿ ) = (ý2
1ý2

2 + ý2
1ý2ý3 − ý1ý2

2ý3 − ý3
1ý3) � ÿ · ÿ1ÿ2 − (ý1 (ý1 − ý2) (ý1 − ý3)ý3) � ÿ · ÿ1ÿ3

ÿ23( ÿ ) = (ý2
1ý2 − ý1ý2

2) � ÿ · ÿ1ÿ2 + (ý2
1ý3 − ý1ý2

3) � ÿ · ÿ1ÿ3 + (ý2 (ý2 − ý3)ý3) � ÿ · ÿ2ÿ3,

which reveals a triangularity property with respect to the fermionic monomials ÿ1ÿ2, ÿ1ÿ3 and ÿ2ÿ3.

Furthermore, the ‘leading coefficient’ ÿý involved in ÿý has the form ÿý � (−) up to a sign where the
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polynomials ÿý were defined in the introduction. We will show that this is a general phenomenon. Our

first lemma in this direction is a simple result on the application of the ýý operator to polynomials in

C[xÿ]; its proof is left to the reader.

Lemma 4.2. Let ÿ ∈ C[xÿ] be a polynomial and let ý = {ÿ1 < · · · < ÿÿ } and ÿ = {ý1 < · · · < ýÿ } be

two subsets of [ÿ] of the same size. The coefficient of ÿÿ in ýý ( ÿ ) ∈ Ωÿ is the determinant of partial

derivatives

�����������

ÿ
ÿ1
ý1

ÿ · · · ÿ
ÿÿ
ý1

ÿ

...
...

ÿ
ÿ1
ýÿ

ÿ · · · ÿ
ÿÿ
ýÿ

ÿ

�����������
. (4.4)

Definition 4.1 and Lemma 4.2 motivate the following family of polynomials ýý ,ÿ ∈ C[xÿ] indexed

by pairs of subsets ý, ÿ ⊆ [ÿ]. The definition of the ýý ,ÿ also involves the matrix H.

Definition 4.3. Let J and K be two subsets of [ÿ] of the same size. Define a polynomial ýý ,ÿ ∈ C[xÿ]
by

ýý ,ÿ :=
∑

|ý |= |ý |= |ÿ |
(−1)

∑
ýΔ [ÿ]−ý , ( [ÿ]−ý )∗ (H) ·

��ýÿý �� ý∈ÿ,ÿ∈ý , (4.5)

where the row and column indices in the determinant
��ýÿ
ý

��
ý∈ÿ,ÿ∈ý are written in increasing order.

The differential operators ÿý and the polynomials ýý ,ÿ are related by

ÿý ( ÿ ) =
∑

|ÿ |= |ý |

(
ýý ,ÿ � ÿ

)
× ÿÿ (4.6)

for all ÿ ∈ C[xÿ].

Remark 4.4. The polynomial Δ [ÿ]−ý , ( [ÿ]−ý )∗ (H) appearing in Definition 4.3 is (up to variable reversal)

a flagged skew Schur polynomial whose flagging parameter depends on J and whose shape depends on

I and J, as may be seen from the Jacobi-Trudi formula. This is how the ýý ,ÿ were discovered, but their

matrix minor formulation is more convenient for our purposes.

We aim to show that the ýý ,ÿ are triangular with respect to Gale order. As a first step, we express

ýý ,ÿ as a single ÿ × ÿ determinant.

Lemma 4.5. Let ý = { ÿ1 < · · · < ÿÿ } and ÿ = {ý1 < · · · < ýÿ } be two subsets of [ÿ] of the same size.

Write ÿ(ý) = (ÿ(ý)1 < ÿ(ý)2 < · · · ) for the entries in the complement [ÿ] − ý of the set J, written in

increasing order. Define an ÿ × ÿ matrix ýý ,ÿ in block form

ýý ,ÿ =

(
ýý ,ÿ
ÿý ,ÿ

)
, (4.7)

where the top block ýý ,ÿ has size ÿ × ÿ and entries

ýý ,ÿ =
����
ýÿ
ý1

· · · ý1
ý1

...
...

ýÿ
ýÿ

· · · ý1
ýÿ

����
(4.8)
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and the bottom block ÿý ,ÿ has size (ÿ − ÿ) × ÿ and entries

ÿý ,ÿ = (ℎÿ (ý )ÿ− ÿ (ýÿ (ý )ÿ , ýÿ (ý )ÿ+1, . . . , ýÿ))1≤ÿ≤ÿ−ÿ , 1≤ ÿ≤ÿ. (4.9)

We have ýý ,ÿ = ± det(ýý ,ÿ ).

Proof. The determinant det(ýý ,ÿ ) may be evaluated using the rule

det(ýý ,ÿ ) =
∑
ý ⊆[ÿ]
|ý |=ÿ

(−1)
∑
ý−(ÿ+1

2 ) · Δ ý (ýý ,ÿ ) · Δ [ÿ]−ý (ÿý ,ÿ ), (4.10)

where Δ ý (ýý ,ÿ ) is the maximal minor of ýý ,ÿ with column set I and Δ [ÿ]−ý (ÿý ,ÿ ) is the maximal

minor of ÿý ,ÿ with complementary column set [ÿ] − ý. Now compare with the definition of ýý ,ÿ . �

To illustrate Lemma 4.5, we let ÿ = 5, ý = {1, 3}, and write ÿ = {ÿ, ÿ} for 1 ≤ ÿ < ÿ ≤ 5. Lemma

(4.5) expresses ýý ,ÿ = ý13,ÿÿ as the following 5 × 5 determinant:

ý13,ÿÿ = ±

�����������

ý5
ÿ ý4

ÿ ý3
ÿ ý2

ÿ ý1
ÿ

ý5
ÿ

ý4
ÿ

ý3
ÿ

ý2
ÿ

ý1
ÿ

ℎ1 (2345) 1 0 0 0

ℎ3 (45) ℎ2 (45) ℎ1 (45) 1 0

ℎ4 (5) ℎ3 (5) ℎ2(5) ℎ1(5) 1

�����������
.

The determinant in Lemma 4.5 may be evaluated to give the desired triangularity relation for the

polynomials ýý ,ÿ . Lemma 4.5 will also imply that the ýý ,ý are given the polynomials ÿý ∈ C[xÿ]
appearing in the introduction. We reiterate their definition below.

Definition 4.6. For any subset ý ⊆ [ÿ], let ÿý ∈ C[xÿ] be the polynomial

ÿý :=
∏
ÿ∈ý

ý ÿ
���
ÿ∏

ÿ= ÿ+1

(ý ÿ − ýÿ)
���

. (4.11)

Observe that the f -polynomial corresponding to a set J factors ÿý =
∏
ÿ∈ý ÿ{ ÿ } into f -polynomials

corresponding to singletons contained in J. The polynomials ÿý ∈ C[xÿ] will have deep ties to the

supercoinvariant ring ÿýÿ. For later use, we record a criterion for when ÿý lies in the classical coinvariant

ideal ýÿ ⊆ C[xÿ].

Lemma 4.7. Let ý ⊆ [ÿ]. We have ÿý ∈ ýÿ if and only if 1 ∈ ý.

Proof. Suppose 1 ∈ ý, so that ÿ{1} | ÿý . We claim ÿ{1} = ý1 (ý1−ý2) (ý1−ý3) · · · (ý1−ýÿ) ∈ ýÿ. Indeed,

if t is a new variable, then modulo ýÿ we have

1 ≡ 1

(1 − ýý1) (1 − ýý2) · · · (1 − ýýÿ)
mod ýÿ (4.12)

so that

(1 − ýý2) · · · (1 − ýýÿ) ≡
1

1 − ýý1

mod ýÿ, (4.13)

and taking the coefficient of ýý yields

(−1)ýÿý (ý2, . . . , ýÿ) ≡ ýý1 mod ýÿ. (4.14)
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We conclude that

ÿ{1} =
ÿ−1∑
ý=0

(−1)ýÿý (ý2, . . . , ýÿ) · ýÿ−ý1 ≡ ÿ · ýÿ1 ≡ 0 mod ýÿ, (4.15)

where we used the fact that ýÿ
1
∈ ýÿ.

Now suppose 1 ∉ ý. Recall that annC[xÿ ] (ÿÿ) = ýÿ under the �-action of C[xÿ] on itself. Therefore,

to show that ÿý ∉ ýÿ, it is enough to show that ÿý � ÿÿ ≠ 0. Since ÿý =
∏
ÿ∈ý ÿ{ ÿ }, it suffices to show that

ÿý � ÿÿ ≠ 0 when ý = ý0 := {2, 3, . . . , ÿ} is the maximal subset of [ÿ] not containing 1. By definition,

we have

ÿý0
= (ý2ý3 · · · ýÿ) ×

∏
2≤ÿ<ý≤ÿ

(ýÿ − ýý) (4.16)

so that the terms of ÿý0
are (up to a global sign) the terms of ÿÿ in which ý1 does not appear. If we use

� to denote equality up to a nonzero scalar, we therefore have

ÿý0
� ÿÿ � ÿý0

� ÿý0
> 0, (4.17)

where we used the fact that both ÿý0
and ÿÿ are homogeneous of degree

(ÿ
2

)
and the fact that ÿ � ÿ > 0

for any homogeneous nonzero polynomial f. �

The determinant in Lemma 4.5 may be evaluated to give the desired triangularity relation for the

polynomials ýý ,ÿ . Lemma 4.5 will also imply that ýý ,ý = ± ÿý .

Lemma 4.8. We have ýý ,ÿ = 0 unless ý ≥Gale ÿ in Gale order. Furthermore, we have

ýý ,ý = ± ÿý . (4.18)

Proof. We factor
∏
ý∈ÿ ýý out of the upper block ýý ,ÿ of the determinant det(ýý ,ÿ ) = ±ýý ,ÿ in

Lemma 4.5. Next, we apply column operations to eliminate the ℎý (ÿ)’s in the bottom portion ÿý ,ÿ of

this determinant.

Specifically, we focus on each pivot 1 in ÿý ,ÿ from bottom to top. Working to the left from a given

pivot 1, in row i of ÿý ,ÿ , we subtract ýý times column j of ýý ,ÿ from column ÿ − 1, where ýý is

a variable belonging to {ýÿ (ý )ÿ , . . . , ýÿ} − {ýÿ (ý )ÿ+1
, . . . , ýÿ}. Since ℎý (ÿ) = ýýℎý−1 (ÿ) + ℎý (ÿ − ý)

whenever ý ∈ ÿ, this eliminates the ℎý (ÿ)’s from the bottom portion ÿý ,ÿ of our determinant. After

performing these operations, the determinant det(ýý ,ÿ ) is reduced to a single maximal minor of its

(new) upper portion ýý ,ÿ , from which the result follows.

To see how this works in our example ý = {1, 3} and ÿ = {ÿ, ÿ}, we factor out ýÿýÿ from the top

two rows of our determinant to get

�����������

ý5
ÿ ý4

ÿ ý3
ÿ ý2

ÿ ý1
ÿ

ý5
ÿ

ý4
ÿ

ý3
ÿ

ý2
ÿ

ý1
ÿ

ℎ1 (2345) 1 0 0 0

ℎ3 (45) ℎ2 (45) ℎ1 (45) 1 0

ℎ4 (5) ℎ3 (5) ℎ2(5) ℎ1 (5) 1

�����������
= ýÿýÿ

�����������

ý4
ÿ ý3

ÿ ý2
ÿ ý1

ÿ 1

ý4
ÿ

ý3
ÿ

ý2
ÿ

ý1
ÿ

1

ℎ1 (2345) 1 0 0 0

ℎ3 (45) ℎ2 (45) ℎ1 (45) 1 0

ℎ4 (5) ℎ3 (5) ℎ2 (5) ℎ1 (5) 1

�����������
.

Our focus shifts to the bottom three rows. Since the bottom pivot 1 is in column 5, we subtract ý5 times

each column from the previous column, resulting in
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ýÿýÿ

�����������

ý4
ÿ ý3

ÿ ý2
ÿ ý1

ÿ 1

ý4
ÿ

ý3
ÿ

ý2
ÿ

ý1
ÿ

1

ℎ1 (2345) 1 0 0 0

ℎ3(45) ℎ2 (45) ℎ1 (45) 1 0

ℎ4 (5) ℎ3(5) ℎ2 (5) ℎ1 (5) 1

�����������
= ýÿýÿ

�����������

ý4
ÿ − ý3

ÿý5 ý3
ÿ − ý2

ÿý5 ý2
ÿ − ýÿý5 ý1

ÿ − ý5 1

ý4
ÿ
− ý3

ÿ
ý5 ý3

ÿ
− ý2

ÿ
ý5 ý2

ÿ
− ýÿý5 ý1

ÿ
− ý5 1

ℎ1 (234) 1 0 0 0

ℎ3 (4) ℎ2 (4) ℎ1 (4) 1 0

0 0 0 0 1

�����������
.

This has the effect of eliminating the argument ý5 from the h’s. To eliminate the ý4’s from the arguments

of the h’s, we focus on the pivot 1 in row 4, column 4. For each column before column 2, we subtract

ý4 times the subsequent column. The result is

ýÿýÿ

�����������

ý4
ÿ − ý3

ÿý5 − ý3
ÿý4 + ý2

ÿý4ý5 ý3
ÿ − ý2

ÿý5 − ý2
ÿý4 + ýÿý4ý5 ý2

ÿ − ýÿý5 − ýÿý4 + ý4ý5 ý1
ÿ − ý5 1

ý4
ÿ
− ý3

ÿ
ý5 − ý3

ÿ
ý4 + ý2

ÿ
ý4ý5 ý3

ÿ
− ý2

ÿ
ý5 − ý2

ÿ
ý4 + ýÿý4ý5 ý2

ÿ
− ýÿý5 − ýÿý4 + ý4ý5 ý1

ÿ
− ý5 1

ℎ1 (23) 1 0 0 0

0 0 0 1 0

0 0 0 0 1

�����������
.

The entries of this matrix are better written using elementary symmetric polynomials, viz.

ýÿýÿ

�����������

ý4
ÿ − ý3

ÿÿ1(45) + ý2
ÿÿ2(45) ý3

ÿ − ý2
ÿÿ1(45) + ýÿÿ2(45) ý2

ÿ − ýÿÿ1(45) + ÿ2(45) ýÿ − ÿ1(5) 1

ý4
ÿ
− ý3

ÿ
ÿ1(45) + ý2

ÿ
ÿ2(45) ý3

ÿ
− ý2

ÿ
ÿ1(45) + ýÿÿ2(45) ý2

ÿ
− ýÿÿ1 (45) + ÿ2(45) ýÿ − ÿ1(5) 1

ℎ1 (23) 1 0 0 0

0 0 0 1 0

0 0 0 0 1

�����������
.

Continuing to pivot 1 in row 3, column 2, we multiply the second column by −ý2 − ý3 and add it to the

first column. The result is

ýÿýÿ

����������������

ý4
ÿ − ý3

ÿÿ1 (2345) + ý2
ÿÿ2 (2345) − ýÿÿ3 (2345) + ÿ4 (2345) ý3

ÿ − ý2
ÿÿ1 (45) + ýÿÿ2 (45) ý2

ÿ − ýÿÿ1 (45) + ÿ2 (45) ýÿ − ÿ1 (5) 1

ý4
ÿ
− ý3

ÿ
ÿ1 (2345) + ý2

ÿ
ÿ2 (2345) − ýÿÿ3 (2345) + ÿ4 (2345) ý3

ÿ
− ý2

ÿ
ÿ1 (45) + ýÿÿ2 (45) ý2

ÿ
− ýÿÿ1 (45) + ÿ2 (45) ýÿ − ÿ1 (5) 1

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1

����������������

.

which may be expressed as the smaller 2 × 2 determinant

ýÿýÿ

����ý4
ÿ − ý3

ÿÿ1(2345) + ý2
ÿÿ2(2345) − ýÿÿ3(2345) + ÿ4(2345) ýÿ − ÿ1(5)

ý4
ÿ
− ý3

ÿ
ÿ1(2345) + ý2

ÿ
ÿ2(2345) − ýÿÿ3(2345) + ÿ4(2345) ýÿ − ÿ1(5)

���� .
The entries in this smaller determinant factor as

ýÿýÿ

����(ýÿ − ý2) (ýÿ − ý3) (ýÿ − ý4) (ýÿ − ý5) (ýÿ − ý5)
(ýÿ − ý2) (ýÿ − ý3) (ýÿ − ý4) (ýÿ − ý5) (ýÿ − ý5)

���� .
For general ý = { ÿ1 < · · · < ÿÿ } and ÿ = {ý1 < · · · < ýÿ }, this procedure yields the formula

ýý ,ÿ = ±
∏
ý∈ÿ

ýý ·
��∏
ÿ> ÿÿ

(ýýý − ýÿ)
��
1≤ý,ÿ≤ÿ , (4.19)

expressing ýý ,ÿ as an ÿ × ÿ determinant times the variables indexed by K. If ý ý > ÿÿ , the (ý, ÿ)-
entry of the determinant in Equation (4.19) vanishes. If ý �Gale ÿ , this determinant has the block form
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����∗ ∗
0 ∗

���� where the southwest block of zeros intersects the main diagonal, so that ýý ,ÿ = 0. If ý = ÿ , the

determinant in Equation (4.19) is upper triangular, and the product of diagonal entries is as described

in the statement of the lemma. �

4.2. The colon ideal (ýÿ : ÿý ) in C[xÿ]

Thanks to Lemma 4.8, the differential operators ÿý exhibit useful triangularity with respect to the Gale

order on fermionic monomials. In order to consider their fermionic leading term ÿý , we will study the

colon ideals

(ýÿ : ÿý ) := {ý ∈ C[xÿ] : ý · ÿý ∈ ýÿ} ⊆ C[xÿ], (4.20)

where ýÿ ⊆ C[xÿ] is the classical coinvariant ideal.

It will turn out (Theorem 4.12) that the ideal (ýÿ : ÿý ) has two other equivalent definitions. As a first

step to proving this, we introduce the following bigraded subspace of Ωÿ.

Definition 4.9. Let ÿÿ ′
ÿ be the smallest linear subspace of Ωÿ which

• contains the superspace Vandermonde ÿÿ,

• is closed under all bosonic partial derivatives ÿ1, . . . , ÿÿ, and

• is closed under the action of the higher Euler operators ýÿ for ÿ ≥ 1.

Swanson and Wallach showed [37] that ÿÿ ′
ÿ is annihilated by the supercoinvariant ideal ÿýÿ ⊆ Ωÿ

under the �-action, so that ÿÿ ′
ÿ ⊆ ÿÿÿ is a subset of the superharmonic space. We will show (Theorem

5.1) that in fact ÿÿ ′
ÿ = ÿÿÿ. For now, we can use ÿÿ ′

ÿ and our triangularity results (Lemmas 3.2 and

4.8) to show that the polynomials ýý ,1, . . . , ýý ,ÿ from Section 3 lie in (ýÿ : ÿý ).

Lemma 4.10. Let ý ⊆ [ÿ]. For any 1 ≤ ÿ ≤ ÿ, we have ýý ,ÿ ∈ (ýÿ : ÿý ).

Proof. Let ÿý ,ÿ ∈ ÿýÿ be the supercoinvariant ideal element associated to ýý ,ÿ . By Lemma 3.2 (3), we

have

ÿý ,ÿ = ýý ,ÿ · ÿý +
∑

ý<Galeÿ

ýÿ · ÿÿ (4.21)

for some polynomials ýÿ ∈ C[xÿ]. However, Lemma 4.8 implies that

ÿý (ÿÿ) � ( ÿý � ÿÿ) · ÿý +
∑

ÿ<Galeý

ýÿ · ÿÿ (4.22)

for some ýÿ ∈ C[xÿ], where � denotes equality up to a nonzero scalar. Sinceÿý is a linear combination

of ýý operators with coefficients in ÿ1, . . . , ÿÿ, we have

ÿý (ÿÿ) ∈ ÿÿ ′
ÿ ⊆ ÿÿÿ, (4.23)

where the ⊆ is justified by the work of Swanson and Wallach [37]. Since ÿýÿ annihilates ÿÿÿ under the

�-action and ÿý ,ÿ ∈ ÿýÿ, we have

ÿý ,ÿ �ÿý (ÿÿ) = 0. (4.24)

The triangularity relations (4.21) and (4.22) force

(ýý ,ÿ · ÿý ) � ÿÿ = ýý ,ÿ � ( ÿý � ÿÿ) = 0. (4.25)

Since annC[xÿ ] (ÿÿ) = ýÿ, this implies that ýý ,ÿ · ÿý ∈ ýÿ, or equivalently, ýý ,ÿ ∈ (ýÿ : ÿý ). �
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The colon ideals (ýÿ : ÿý ) are connected to a class of permutations in ÿÿ. If 1 ≤ ÿ ≤ ÿ,

a permutation ý ∈ ÿÿ is called j-resentful if ý( ÿ) = ÿ, or the value ý( ÿ) + 1 appears among

ý( ÿ + 1), ý( ÿ + 2), . . . , ý(ÿ).4 The permutation w is j-Nietzschean if it is not j-resentful.5

If ý ⊆ [ÿ] is a subset, a permutation ý ∈ ÿÿ is J-Nietzschean if it is j-Nietzschean for all ÿ ∈ ý. We

write

ýý := {ý ∈ ÿÿ : ý is ý-Nietzschean} (4.26)

for the set of all J-Nietszschean permutations inÿÿ. Nietzschean permutations are counted by a simple

product formula.

Proposition 4.11. Let ý ⊆ [ÿ]. The number of J-Nietzschean permutations in ÿÿ is given by

|ýý | =
ÿ∏
ÿ=1

st(ý)ÿ , (4.27)

where st(ý) = (st(ý)1, . . . , st(ý)ÿ) is the J-staircase.

Proof. We consider decomposing the one-line notation of permutations ý = [ý(1), . . . , ý(ÿ)] ∈ ÿÿ
to the permutation [1] ∈ ÿ1 by iteratively removing the last letter ý(ÿ) and ‘standardizing’ to the

unique order-isomorphic permutation in ÿÿ−1. For example, the permutation [6, 3, 5, 1, 4, 7, 2] ∈ ÿ7

decomposes as follows:

[6, 3, 5, 1, 4, 7, 2]
[5, 2, 4, 1, 3, 6]
[5, 2, 4, 1, 3]
[4, 2, 3, 1]
[3, 1, 2]
[2, 1]
[1]

Reversing this process, we can build up from [1] ∈ ÿ1 to a permutation in ÿÿ by appending a new

letter to the end at each stage. In order for the resulting permutation ý = [ý(1), . . . , ý(ÿ)] ∈ ÿÿ to

be J-Nietzschean, suppose we have a permutation [ÿ(1), . . . , ÿ(ý − 1)] ∈ ÿý−1 at some intermediate

stage and we want to build a permutation in ÿý . We may append any of the numbers in {1, . . . , ý} to

[ÿ(1), . . . , ÿ(ý − 1)], except the following.

• If ý ∈ ý is a Nietzschean position, we cannot append k, since this would ultimately force ý(ý) = ÿ or

force an entry 1 larger than ý(ý) to appear among ý(ý +1), . . . , ý(ÿ), so that w would be k-resentful.

• Whether or not k is a Nietzschean position, we cannot append a value ÿ( ÿ) + 1 for any Nietzschean

position ÿ ∈ ý satisfying ÿ < ý , since this would ultimately force ý( ÿ) + 1 to appear among

ý( ÿ + 1), . . . , ý(ÿ), so that w would be j-resentful. The value ÿ( ÿ) at a Nietzschean position ÿ < ý

inductively satisfies ÿ( ÿ) < ý − 1.

In general, the conditions above imply that the number of choices to append to [ÿ(1), . . . , ÿ(ý − 1)] is

ý + 1 − |{ ÿ ∈ ý : ÿ ≤ ý}|, (4.28)

which yields the claimed product formula. �

4We think of the one-line notation ý = [ý (1) , . . . , ý (ÿ) ] as recording the scores of n musicians performing in a competition;
after their performance, they sit down and join the audience. If the ÿýℎ contestant scores best (i.e., ý ( ÿ) = ÿ) or is beaten by 1
by an later contestant, this creates feelings of resentment (on behalf of the other contestants or the ÿýℎ constant, respectively).

5The creator of The Superman should have some avatar in superspace.
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We will see that |ýý | = dimC[xÿ]/(ýÿ : ÿý ), so J-Nietzschean permutations enumerate bases of

C[xÿ]/(ýÿ : ÿý ). However, the connection between Nietzschean permutations and colon ideals goes

deeper than this. To explain, we recall the powerful theory of orbit harmonics.

For any subset ý ⊆ Cÿ, let I(ý) ⊆ C[xÿ] be the ideal of polynomials which vanish on Z:

I(ý) := { ÿ ∈ C[xÿ] : ÿ (z) = 0 for all z ∈ ý}. (4.29)

The quotient ring C[ý] := C[xÿ]/I(ý) is the coordinate ring of Z and has a natural identification with

the family of polynomial functions ý −→ C. If we assume the locus ý ⊆ Cÿ is finite (as we will from

here on), by Lagrange interpolation any function ý −→ C is the restriction of a polynomial in C[xÿ],
so we may identify C[ý] with the vector space formal C-linear combinations of elements of Z.

The quotient ring C[ý] = C[xÿ]/I(ý) is almost never graded, but there is a way to produce a graded

quotient of C[xÿ] from I(ý). For any nonzero polynomial ÿ ∈ C[xÿ], let ÿ( ÿ ) be the highest degree

homogeneous component of f. That is, if ÿ = ÿý + · · · + ÿ1 + ÿ0 where ÿÿ is homogeneous of degree i

and ÿý ≠ 0, we have ÿ( ÿ ) = ÿý . We define a new ideal gr I(ý) ⊆ C[xÿ] by

gr I(ý) := (ÿ( ÿ ) : ÿ ∈ I(ý), ÿ ≠ 0) ⊆ C[xÿ] . (4.30)

The ideal gr I(ý) is homogeneous by construction. We have an isomorphism of vector spaces

C[ý] = C[xÿ]/I(ý) � C[xÿ]/gr I(ý), (4.31)

where the latter quotient C[xÿ]/gr I(ý) is a graded vector space. The Hilbert series of C[xÿ]/gr I(ý)
may be regarded as a q-enumerator of Z which depends in a subtle way on the embedding of Z insideCÿ.

As an example, if ý = ÿÿ is the set of points in Cÿ of the form [ý(1), . . . , ý(ÿ)] for ý ∈ ÿÿ, then

gr I(ÿÿ) = ýÿ is the classical coinvariant ideal and the coinvariant ring ýÿ = C[xÿ]/ýÿ is obtained in

this way. The following result states that the colon ideals (ýÿ : ÿý ) also arise via orbit harmonics.

Theorem 4.12. For any subset ý ⊆ [ÿ], the following three ideals in C[xÿ] are equal.

1. The colon ideal (ýÿ : ÿý ).
2. The ideal (ýý ,1, . . . , ýý ,ÿ) generated by the homogeneous polynomials ýý ,1, . . . , ýý ,ÿ ∈ C[xÿ].
3. The homogeneous ideal gr I(ýý ) attached to the locus ýý ⊆ Cÿ of J-Nietzschean permutations in

ÿÿ. Here we considerÿÿ ⊆ Cÿ as the set of rearrangements of the specific point (1, 2, . . . , ÿ) ∈ Cÿ.

If Iý ⊆ C[xÿ] denotes this common ideal, the Hilbert series of C[xÿ]/Iý is given by

Hilb (C[xÿ]/Iý ; ÿ) =
ÿ∏
ÿ=1

[st(ý)ÿ]ÿ , (4.32)

where st(ý) = (st(ý)1, . . . , st(ý)ÿ) is the J-staircase.

Proof. Suppose 1 ∈ ý. Lemma 4.7 states that ÿý ∈ ýÿ, so that (ýÿ : ÿý ) = C[xÿ]. Furthermore, we

have ýý ,1 = ÿ1ℎ1 (ý1, . . . , ýÿ) = 1, so that (ýý ,1, . . . , ýý ,ÿ) = C[xÿ]. Finally, since every permutation

ý ∈ ÿÿ is 1-resentful, we have ýý = ∅ so that gr I(ýý ) = C[xÿ]. Since st(ý)1 = 0, we are done in this

case and assume that 1 ∉ ý going forward.

Lemma 4.10 yields the containment of ideals

(ýý ,1, . . . , ýý ,ÿ) ⊆ (ýÿ : ÿý ) (4.33)

so that (2) ⊆ (1). We apply Lemma 2.3 with ÿ = ýÿ, ÿ
′ = (ýý ,1, . . . , ýý ,ÿ), and ÿ = ÿý . We check the

conditions of this lemma.
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• The ideal ýÿ is generated by the regular sequence ÿ1, . . . , ÿÿ ∈ C[xÿ]. The Artinian quotient

C[xÿ]/(ÿ1, . . . , ÿÿ) is a complete intersection, and hence Gorenstein. Artinian Gorenstein graded

quotients of C[xÿ] are Poincaré duality algebras; see, for example, [24, Prop. 2.1]. The socle degree

of ýÿ is
(ÿ
2

)
.6

• Since 1 ∉ ý, Lemma 3.5 implies that ýý ,1, . . . , ýý ,ÿ is a regular sequence, so that the quotient

C[xÿ]/(ýý ,1, . . . , ýý ,ÿ) is also a Poincaré duality algebra. The socle degree of this algebra is deg ýý ,1+
· · · + deg ýý ,ÿ − ÿ = st(ý)1 + · · · + st(ý)ÿ − ÿ.

• Since 1 ∉ ý, Lemma 4.7 implies ÿý ∉ ýÿ. Furthermore, the polynomial ÿý has degree deg ÿý =∑ÿ
ÿ=1(ÿ − st(ý)ÿ).

Since we have

st(ý)1 + · · · + st(ý)ÿ − ÿ +
ÿ∑
ÿ=1

(ÿ − st(ý)ÿ) =
(
ÿ

2

)
, (4.34)

we may apply Lemma 2.3 to conclude

(ýý ,1, . . . , ýý ,ÿ) = (ýÿ : ÿý ) (4.35)

so that (1) = (2). This also implies that the claimed Hilbert series formula holds for Iý = (1) or (2).
For any radical ideals I,J ⊆ C[xÿ], the colon ideal (I : J ) = { ÿ ∈ C[xÿ] : ÿ · J ⊆ I} has the

interpretation

V(I : J ) = V(I) − V(J ) (4.36)

in terms of varieties in Cÿ, where the bar stands for Zariski closure. If V(I) is a finite locus of points,

the bar can be removed.

Write ℜý := ÿÿ −ýý for the resentful complement of the J-Nietzschean permutations inÿÿ. Recall

that we take the specific embedding of ÿÿ ⊂ Cÿ by taking all rearrangements of the coordinates of

(1, 2, . . . , ÿ) ∈ Cÿ. This also embeds ℜý and ýý inside Cÿ.

The (inhomogeneous) polynomial

ÿ̃ý :=
∏
ÿ∈ý

(ý ÿ − ÿ)
∏
ÿ> ÿ

(ý ÿ − ýÿ + 1) (4.37)

vanishes on ℜý . In fact, we have

ýý = ÿÿ − V( ÿ̃ý ) = V( ý̃ÿ) − V( ÿ̃ý ), (4.38)

where ý̃ÿ is the ‘deformed version’ of the classical coinvariant ideal

ý̃ÿ := 〈ÿý (ý1, . . . , ýÿ) − ÿý (1, . . . , ÿ) : 1 ≤ ý ≤ ÿ〉. (4.39)

Since ý̃ÿ is radical and ÿ̃ý has no repeated factors, the Nullstellensatz implies

I(ýý ) = I(V( ý̃ÿ) − V( ÿ̃ý )) = I(V( ý̃ÿ : ÿ̃ý )) =
√
( ý̃ÿ : ÿ̃ý ) = ( ý̃ÿ : ÿ̃ý ), (4.40)

where
√· stands for the radical of an ideal. Taking associated graded ideals gives

gr I(ýý ) = gr ( ý̃ÿ : ÿ̃ý ) ⊆ (gr ý̃ÿ : ÿý ) = (ýÿ : ÿý ), (4.41)

6The ring ýÿ = C[xÿ ]/ýÿ is also a Poincaré duality algebra because it presents the cohomology of a compact smooth complex
projective variety: the flag variety.
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where the containment ⊆ is justified by considering the leading term of a polynomial ý̃ ∈ C[xÿ] such

that ý̃ · ÿ̃ý ∈ ý̃ÿ.

For arbitrary ideals I and polynomials f, the containment gr (I : ÿ ) ⊆ (gr I : ÿ( ÿ )) can certainly be

strict. However, in our setting, Proposition 4.11 and the fact that

dimC[xÿ]/(ýÿ : ÿý ) =
ÿ∏
ÿ=1

st(ý)ÿ = |ýý | (4.42)

imply

|ýý | = dimC[xÿ]/gr I(ýý ) ≤ dimC[xÿ]/(ýÿ : ÿý ) = |ýý |, (4.43)

which forces gr I(ýý ) = (ýÿ : ÿý ) so that (1) = (3) and the theorem is proved. �

5. Operator theorem and Hilbert series

5.1. Operator theorem

We are ready to give our characterization of the harmonic space ÿÿÿ = ÿý⊥ÿ ⊆ Ωÿ. The following result

was conjectured by Swanson and Wallach [37], and was previously conjectured by N. Bergeron, Li,

Machacek, Sulzgruber and Zabrocki (unpublished).

Theorem 5.1. (Operator Theorem) The superharmonic space ÿÿÿ ⊆ Ωÿ is generated as a C[xÿ]-
module under the �-action by ýý (ÿÿ) for subsets ý ⊆ [ÿ − 1]. In symbols, we have

ÿÿÿ =
∑

ý ⊆[ÿ−1]
C[xÿ] � ýý (ÿÿ). (5.1)

The sum appearing in Theorem 5.1 is not direct. Since ýÿ (ÿÿ) = 0 whenever ÿ > ÿ and we have

ýÿý ÿ = −ý ÿýÿ , Theorem 5.1 may be rephrased as follows.

The superharmonic space ÿÿÿ is the smallest linear subspace of Ωÿ which

• contains the Vandermonde determinant ÿÿ,

• is closed under the differentiation operators ÿ1, . . . , ÿÿ acting on the x-variables, and

• is closed under the higher derivative operators ýÿ for ÿ ≥ 1.

Proof. Observe that the sum on the RHS of Equation (5.1) is the space ÿÿ ′
ÿ of Definition 4.9. As

explained after Definition 4.9, Swanson and Wallach proved [37] that ÿÿ ′
ÿ ⊆ ÿÿÿ. Since ÿýÿ � ÿÿÿ,

Corollary 3.7 gives an upper bound on the dimension of ÿÿÿ. In order to show that this containment is

an equality, we use the ÿý operators and the colon ideals (ýÿ : ÿý ) to show that the dimension of ÿÿ ′
ÿ

is sufficiently large.

Let ý ⊆ [ÿ]. Applying the differential operator ÿý to ÿÿ yields an element ÿý (ÿÿ) ∈ ÿÿ ′
ÿ. We use

our lemmata to derive the following facts about the superspace element ÿý (ÿÿ).
• By Lemma 4.2 and the vanishing assertion of Lemma 4.8, the coefficient of ÿÿ in ÿý (ÿÿ) is zero

unless ÿ ≤Gale ý.

• By Lemma 4.2 and the product formula in Lemma 4.8, the coefficient of ÿý in ÿý (ÿÿ) is ± ÿý � ÿÿ.

For any element ÿ ∈ Ωÿ, the annihilator

annC[xÿ ] ÿ = {ý ∈ C[xÿ] : ý � ÿ = 0} ⊆ C[xÿ] (5.2)

is an ideal in the polynomial ring C[xÿ]. For any subset ý ⊆ [ÿ], we calculate

annC[xÿ ] ( ÿý � ÿÿ) = (annC[xÿ ]ÿÿ : ÿý ) = (ýÿ : ÿý ), (5.3)
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where we used the fact that the annihilator of the Vandermonde ÿÿ is the classical coinvariant ideal ýÿ.

We claim that there exists a set Bÿ (ý) ⊆ C[xÿ] of homogeneous polynomials such that

• the set Bÿ (ý) has degree generating function
∑
ý∈B (ý ) ÿdeg(ý) =

∏ÿ
ÿ=1 [st(ý)ÿ]ÿ and

• the set {ý � ( ÿý � ÿÿ) : ý ∈ Bÿ (ý)} of polynomials in C[xÿ] is linearly independent.

Indeed, Theorem 4.12 implies that there exists a set Bÿ (ý) ⊆ C[xÿ] of homogeneous polynomials with

the given degree generating function which descends to a linearly independent subset ofC[xÿ]/(ýÿ : ÿý ).
Since annC[xÿ ] (ÿÿ) = ýÿ, for any such Bÿ (ý), the set of polynomials {ý � ( ÿý � ÿÿ) : ý ∈ Bÿ (ý)} will

be linearly independent in C[xÿ].
We combine our observations to prove the theorem. Suppose that some linear combination∑

ý ⊆[ÿ]

∑
ýý ∈Bÿ (ý )

ýý ,ýý (ýý · ÿý ) ∈ Ωÿ (5.4)

(where the ýý ,ýý ∈ C are scalars) annihilates the space ÿÿ ′
ÿ as a differential operator:

���
∑
ý ⊆[ÿ]

∑
ýý ∈Bÿ (ý )

ýý ,ýý (ýý · ÿý )
���
� ÿÿ ′

ÿ = 0. (5.5)

By fermionic homogeneity, we may as well assume that

(★) for all ý ⊆ [ÿ] such that there is some ýý ,ýý ≠ 0, the set J has a fixed size.

In particular, for any ÿ ⊆ [ÿ], we have

���
∑
ý ⊆[ÿ]

∑
ýý ∈Bÿ (ý )

ýý ,ýý (ýý · ÿý )
���
�ÿÿ (ÿÿ) = 0. (5.6)

Working toward a contradiction, assume that at least one of the scalars ýý ,ýý ∈ C is nonzero. Choose

ý0 ⊆ [ÿ] minimal under the Gale order such that at least one ýý0 ,ýý0
is nonzero. Letting ÿ = ý0, we have

0 =
���

∑
ý ⊆[ÿ]

∑
ýý ∈Bÿ (ý )

ýý ,ýý (ýý · ÿý )
���
�ÿý0

(ÿÿ) (5.7)

�
���

∑
ýý0

∈Bÿ (ý0)
ýý0 ,ýý0

· ýý0

���
� (coefficient of ÿý0

in ÿý0
(ÿÿ)) (5.8)

=
∑

ýý0
∈Bÿ (ý0)

ýý0 ,ýý0
· ýý0

�
[
± ÿý0

� ÿÿ
]

, (5.9)

where the second equality follows from the homogeneity assumption (★) and our Gale minimality

assumption and � denotes equality up to a nonzero scalar. The linear independence of the set {ýý0
�

( ÿý0
� ÿÿ) : ýý0

∈ Bÿ (ý0)} forces ýý0 ,ýý0
= 0 for all ýý0

∈ Bÿ (ý0), which is a contradiction.

We have the chain of inequalities∑
ý

|Bÿ (ý) | ≤ dim ÿÿ ′
ÿ ≤ dim ÿÿÿ = dim ÿýÿ ≤

∑
ý

|Bÿ (ý) |, (5.10)

where the first inequality comes from the last paragraph, the second inequality follows because

ÿÿ ′
ÿ ⊆ ÿÿÿ, the equality holds because ÿÿÿ is the harmonic space to the quotient ÿýÿ, and the last

inequality holds because of Corollary 3.7. These are all equalities, forcing ÿÿÿ = ÿÿ ′
ÿ. �
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5.2. Hilbert series

Our goal in this subsection is to calculate the Hilbert series of ÿýÿ and describe a method for producing

bases of ÿýÿ. The key to our approach is the following general linear independence criterion.

Lemma 5.2. Suppose that for each ý ⊆ [ÿ], we have a set Cÿ (ý) ⊆ C[xÿ] of homogeneous polynomials

such that Cÿ (ý) descends to a linearly independent subset of C[xÿ]/(ýÿ : ÿý ). Then the set Cÿ ⊆ Ωÿ
given by

Cÿ :=
⊔
ý ⊆[ÿ]

Cÿ (ý) · ÿý (5.11)

descends to a linearly independent subset of ÿýÿ.

The proof of Lemma 5.2 is quite similar to the proof of Theorem 5.1.

Proof. If not, we could find scalars ýý ,ýý ∈ C not all zero so that

∑
ý ⊆[ÿ]

∑
ýý ∈Cÿ (ý )

ýý ,ýý (ýý · ÿý ) = 0 in ÿýÿ (5.12)

or equivalently,

���
∑
ý ⊆[ÿ]

∑
ýý ∈Cÿ (ý )

ýý ,ýý (ýý · ÿý )
���
� ÿÿÿ = 0. (5.13)

If we choose ý0 ⊆ [ÿ] to be Gale-minimal such that ýý0 ,ýý0
≠ 0 for some ýý0

∈ Cÿ (ý0), the relation

���
∑
ý ⊆[ÿ]

∑
ýý ∈Cÿ (ý )

ýý ,ýý (ýý · ÿý )
���
�ÿý0

(ÿÿ) = 0 (5.14)

implies (just as in the proof of Theorem 5.1) that∑
ýý0

∈Cÿ (ý0)
ýý0 ,ýý0

· ýý0
� ( ÿý0

� ÿÿ) = 0, (5.15)

which contradicts the linear independence of Cÿ (ý0) in C[xÿ]/(ýÿ : ÿý0
). �

We have all the tools necessary to calculate the Hilbert series of ÿýÿ. This proves a conjecture

[33, Conj. 6.5] of Sagan and Swanson.

Theorem 5.3. The bigraded Hilbert series of ÿýÿ is

Hilb(ÿýÿ; ÿ, ÿ) =
ÿ∑
ý=1

ÿÿ−ý · [ý]!ÿ · Stirÿ (ÿ, ý). (5.16)

Proof. For all subsets ý ⊆ [ÿ], let ýÿ (ý) ⊆ C[xÿ] be a family of homogeneous polynomials which

descends to a basis ofC[xÿ]/(ýÿ : ÿý ). By Theorem 4.12, the degree generating function for polynomials

in Bÿ (ý) is ∑
ýý ∈Bÿ (ý )

ÿdeg(ýý ) = [st(ý)1]ÿ · · · [st(ý)ÿ]ÿ . (5.17)
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Lemma 5.2 guarantees that Bÿ :=
⊔
ý ⊆[ÿ] Bÿ (ý) · ÿý descends to a linearly independent subset of ÿýÿ.

However, Lemma 2.1 shows that

Hilb(ÿýÿ; ÿ, ÿ) ≥
∑
ý ⊆[ÿ]

���
∑

ýý ∈Bÿ (ý )
ÿdeg(ýý )���

· ÿ |ý |

=

ÿ∑
ý=1

ÿÿ−ý · [ý]!ÿ · Stirÿ (ÿ, ý) ≥ Hilb(ÿýÿ; ÿ, ÿ), (5.18)

where the inequality is a consequence of Proposition 3.7. This forces the linearly independent subset

Bÿ ⊆ ÿýÿ to be a basis and the inequalities to be equalities. �

We present a recipe for building bases of ÿýÿ from bases of the various commutative quotients

C[xÿ]/(ýÿ : ÿý ). We also show how bases of the quotients C[xÿ]/(ýÿ : ÿý ) induce bases of the

superharmonic space ÿÿÿ. Since Ωÿ = ÿÿÿ ⊕ ÿýÿ, bases of ÿÿÿ automatically descend to bases of

ÿýÿ = Ωÿ/ÿýÿ. Working in ÿÿÿ can be useful for machine computations since we do not need to

consider cosets ÿ + ÿýÿ ∈ ÿýÿ.

Theorem 5.4. Suppose that, for every subset ý ⊆ [ÿ], we have a set Bÿ (ý) ⊆ C[xÿ] of polynomials. Let

Bÿ :=
⊔
ý ⊆[ÿ]

Bÿ (ý) · ÿý . (5.19)

The following are equivalent.

1. For all ý ⊆ [ÿ], the set Bÿ (ý) descends to a basis of the quotient ring C[xÿ]/(ýÿ : ÿý ).
2. We have a basis of the superharmonic space ÿÿÿ given by

⊔
ý ⊆[ÿ]

{(ÿý · ÿý �ÿý (ÿÿ)) �ÿý (ÿÿ) : ÿý ∈ Bÿ (ý)} . (5.20)

Either of (1) or (2) implies the following.

1. The set Bÿ descends to a basis of ÿýÿ.

Proof. The proof of Theorem 5.3 shows that (1) implies (3), so it is enough to verify that (1) and (2)

are equivalent.

We define a map Ψ of vector spaces

Ψ :
⊕
ý ⊆[ÿ]

C[xÿ]/(ýÿ : ÿý ) −→ ÿÿÿ (5.21)

by the formula

Ψ : (ℎý )ý ⊆[ÿ] ↦−→
∑
ý ⊆[ÿ]

(ℎý · ÿý �ÿý (ÿÿ)) �ÿý (ÿÿ). (5.22)

Since the coefficient of ÿý in ÿý (ÿÿ) is ±( ÿý � ÿÿ), we have

[(ýÿ : ÿý ) · ÿý ] �ÿý (ÿÿ) = 0 (5.23)

so that Ψ is well-defined.
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We claim that Ψ is a bijection. Theorems 4.12 and 5.3 imply that the domain and codomain of Ψ

have the same dimension, so it is enough to show that Ψ is a surjection. Indeed, Lemma 4.8 implies

ÿý (ÿÿ) = ( ÿý � ÿÿ) · ÿý + Σ, where Σ ∈
⊕

ÿ<Galeý
C[xÿ] · ÿÿ . As a consequence, we have

(C[xÿ] · ÿý ) �ÿý (ÿÿ) = C[xÿ] � ( ÿý � ÿÿ) (5.24)

for each ý ⊆ [ÿ]. However, Theorem 4.12 implies that C[xÿ]/(ýÿ : ÿý ) is Artinian Gorenstein with

socle spanned by ÿý � ÿÿ. It follows that

C[xÿ] � ( ÿý � ÿÿ) = (ýÿ : ÿý )⊥ (5.25)

as ideals in C[xÿ]. Working modulo the subspace
⊕

ÿ<Galeý
C[xÿ] · ÿÿ , we have

[(C[xÿ] · ÿý ) �ÿý (ÿÿ)] �ÿý (ÿÿ) = (ýÿ : ÿý )⊥ �ÿý (ÿÿ)

≡ C[xÿ] �ÿý (ÿÿ) mod
⊕
ÿ<Galeý

C[xÿ] · ÿÿ . (5.26)

The surjectivity of Ψ follows from induction on Gale order and Theorem 5.1. �

5.3. Superspace Artin monomials

Theorem 5.4 gives a recipe for finding bases Bÿ of ÿýÿ from bases Bÿ (ý) of the commutative quotients

C[xÿ]/(ýÿ : ÿý ). Although a generic set Bÿ (ý) ⊆ C[xÿ] of polynomials of the appropriate degrees

will descend to a basis of C[xÿ]/(ýÿ : ÿý ), the complexity of the ideals (ýÿ : ÿý ) ⊆ C[xÿ] has so far

obstructed progress on finding non-generic bases Bÿ (ý) of C[xÿ]/(ýÿ : ÿý ). We present a conjecture in

this direction.

Define the set of J-Artin monomials by

Aÿ (ý) :=
{
ý
ÿ1

1
· · · ýÿÿÿ : ÿÿ < st(ý)ÿ

}
. (5.27)

That is, the set Aÿ (ý) consists of monomials in C[xÿ] whose exponent sequences fit below the J-

staircase. We have Aÿ (ý) = ∅ whenever 1 ∈ ý. If ý = ∅, then Aÿ (∅) = {ýÿ1

1
· · · ýÿÿÿ : ÿÿ < ÿ} was

proven by E. Artin [4] to descend to a basis of ýÿ.

Conjecture 5.5. For any subset ý ⊆ [ÿ], the J-Artin monomials Aÿ (ý) descend to a basis of

C[xÿ]/(ýÿ : ÿý ).

Artin’s result [4] proves Conjecture 5.5 when ý = ∅. By Theorem 5.4, if Conjecture 5.5 is true,

then

Aÿ =
⊔
ý ⊆[ÿ]

Aÿ (ý) · ÿý (5.28)

would descend to a basis for ÿýÿ. This would prove a conjecture [33, Conj. 6.7] of Sagan and Swanson.7

Thanks to Theorem 4.12, for any given J it would suffice to prove that Aÿ (ý) is linearly independent in

or spans C[xÿ]/(ýÿ : ÿý ).
We will give evidence for Conjecture 5.5 by showing that it holds when ý = {ÿ + 1, . . . , ÿ − 1, ÿ} is

Gale-maximal. This requires a preparatory lemma on certain ideals Jÿ , ý,ÿ ⊆ C[xÿ] generated by partial

derivatives of h-polynomials.

7While this paper was under review, Conjecture 5.5 was proven by Angarone, Commins, Karn, Murai and Rhoades [3] using
derivation modules of free hyperplane arrangements.
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Lemma 5.6. Let ÿ ≥ 1, let 1 ≤ ý ≤ ÿ + 1, and consider the ideal

Jÿ , ý,ÿ :=
(
ÿ1ℎÿ , ÿ2ℎÿ , . . . , ÿý−1ℎÿ , ÿýℎÿ+1, . . . , ÿÿ−1ℎÿ+1, ÿÿℎÿ+1

)
⊆ C[xÿ] (5.29)

generated by n partial derivatives of homogeneous symmetric polynomials in the full variable set xÿ.

The set of monomials

Mÿ , ý,ÿ :=
{
ý
ÿ1

1
· · · ýÿÿÿ : ÿÿ < ÿ − 1 for ÿ < ý and ÿÿ < ÿ for ÿ ≥ ý

}
(5.30)

descends to a basis for Jÿ , ý,ÿ.

Lemma 5.6 says that C[xÿ]/Jÿ , ý,ÿ shares the same monomial basis as the quotient by variable

powers C[xÿ]/(ýÿ−1
1

, . . . , ýÿ−1
ý−1

, ýÿý , . . . , ýÿÿ). Since Jÿ , ý,ÿ has inscrutable Gröbner theory, our proof of

Lemma 5.6 relies on exact sequences. Harada, Horiguchi, Murai, Precup and Tymoczko used a similar

style of argument to prove an analogous result [19, Thm. 7.1] on an Artin-like basis for the cohomology

rings of regular nilpotent Hessenberg varieties.

Proof. If ÿ = 1 and ý > 1, then ÿ1ℎ1 = ÿ1(ý1 + · · · + ýÿ) = 1 ∈ Jÿ , ý,ÿ so that Jÿ , ý,ÿ = C[xÿ] is the unit

ideal. Since M1, ý,ÿ = ∅, the result is true in this case. We assume that ÿ > 1 or ÿ = 1 and ý = 1 going

forward.

We leave it to the reader to verify the formula

ý1ÿ1ℎÿ + · · · + ýý−1ÿý−1ℎÿ + ÿýℎÿ+1 + · · · + ÿÿℎÿ+1 = ÿ · ℎÿ , (5.31)

where ÿ = ÿ +ÿ− ý+1. Since 1 ≤ ý ≤ ÿ+1 and ÿ ≥ 1, we have ÿ > 0, and Equation (5.31) implies that

ℎÿ ∈ Jÿ , ý,ÿ. (5.32)

In particular, if we let ÿ = [ÿ] − {ý}, we have

ÿýℎÿ+1 = ÿý
(
ýýℎÿ + ℎÿ+1(ÿ)

)
= ℎÿ + ýý · ÿýℎÿ ∈ Jÿ , ý,ÿ (5.33)

so that Jÿ , ý+1,ÿ ⊆ Jÿ , ý,ÿ and V(Jÿ , ý,ÿ) ⊆ V(Jÿ , ý+1,ÿ). Swanson and Wallach [37, Lem. 6.2] showed

that V(Jÿ ,ÿ+1,ÿ) = {0}, so that V(Jÿ , ý,ÿ) = {0} (our assumptions on r and p guarantee that the

generators of Jÿ , ý,ÿ have positive degree). Lemma 2.2 shows that the generating set of Jÿ , ý,ÿ is a

regular sequence, so that

Hilb
(
C[xÿ]/Jÿ , ý,ÿ; ÿ

)
= [ÿ − 1] ý−1

ÿ · [ÿ]ÿ−ý+1
ÿ . (5.34)

The memberships (5.32) and (5.33) imply that ýý · ÿýℎÿ ∈ Jÿ , ý,ÿ, so that ýý · Jÿ , ý+1,ÿ ⊆ Jÿ , ý,ÿ.

We therefore have an exact sequence

C[xÿ]
Jÿ , ý+1,ÿ

× ýý−−−−−→ C[xÿ]
Jÿ , ý,ÿ

can.−−−−→ C[xÿ]
Jÿ , ý,ÿ + (ýý)

→ 0, (5.35)

where the first map is induced by multiplication by ýý and the second map is the canonical projection.

The next step is to identify the target of the second map in this sequence in terms of a smaller variable set.

Let x̄ÿ−1 = (ý1, . . . , ýý−1, ýý+1, . . . , ýÿ) be the variable set xÿ with ýý removed. Let

ÿ : C[xÿ] � C[x̄ÿ−1] (5.36)
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be the surjection defined by ÿ(ýÿ) = ýÿ for ÿ ≠ ý and ÿ(ýý) = 0. Let J̄ÿ , ý,ÿ−1 ⊆ C[x̄ÿ−1] be the ideal

with the same generating set as Jÿ , ý,ÿ−1, but in the variable set x̄ÿ−1. Writing ÿ = [ÿ] − {ý}, for any

ý > 0 and any ÿ ≠ ý, we have the evaluation

ÿ : ÿÿℎý ↦→ [ÿÿℎý]ýý → 0 =
[
ÿÿ (ýý · ℎý−1 + ℎý (ÿ))

]
ýý → 0

=
[
ýý · ÿÿ (ℎý−1 + ℎý (ÿ))

]
ýý → 0

= ÿÿℎý (ÿ). (5.37)

Furthermore, we have

ÿ : ÿýℎý ↦→
[
ÿýℎý

]
ýý → 0

=
[
ÿý (ýý · ℎý−1 + ℎý (ÿ))

]
ýý → 0

= ℎý−1 (ÿ). (5.38)

Comparing the generators of Jÿ , ý,ÿ with those of J̄ÿ , ý,ÿ−1 and using ℎÿ (ÿ) ∈ J̄ÿ , ý,ÿ−1, we conclude

that

ÿ
(
Jÿ , ý,ÿ + (ýý)

)
= J̄ÿ , ý,ÿ−1 (5.39)

so that the exact sequence (5.35) induces a new exact sequence

C[xÿ]
Jÿ , ý+1,ÿ

× ýý−−−−−→ C[xÿ]
Jÿ , ý,ÿ

ÿ
−−→ C[x̄ÿ−1]

J̄ÿ , ý,ÿ−1

→ 0, (5.40)

where the surjection ÿ is induced by ÿ. The Hilbert series formula (5.34) implies that the dimensions

of the vector spaces on either side of (5.40) add to the dimension of the vector space in the middle, so

the first map in (5.40) is injective, and we have a short exact sequence

0 → C[xÿ]
Jÿ , ý+1,ÿ

× ýý−−−−−→ C[xÿ]
Jÿ , ý,ÿ

ÿ
−−→ C[x̄ÿ−1]

J̄ÿ , ý,ÿ−1

→ 0. (5.41)

By induction, we may assume that Mÿ , ý+1,ÿ descends to a basis of C[xÿ]/Jÿ , ý+1,ÿ and that

M̄ÿ , ý,ÿ−1 :=
{
ý
ÿ1

1
· · · ýÿý−1

ý−1
ý
ÿý+1

ý+1
· · · ýÿÿÿ : ÿÿ < ÿ − 1 for ÿ < ý and ÿÿ < ÿ for ÿ > ý

}
(5.42)

descends to a basis of C[x̄ÿ−1]/J̄ÿ , ý,ÿ−1. The exactness of (5.41) and the observation

Mÿ , ý,ÿ = ýý ·Mÿ , ý+1,ÿ � M̄ÿ , ý,ÿ−1 (5.43)

guarantee that Mÿ , ý,ÿ descends to a basis for C[xÿ]/Jÿ , ý,ÿ, which completes the proof. �

Proposition 5.7. Conjecture 5.5 is true when ý = {ÿ + 1, . . . , ÿ − 1, ÿ} is a Gale-maximal subset of [ÿ].

Proof. By Theorem 4.12, the generators of (ýÿ : ÿý ) ⊆ C[xÿ] are

ℎ1 (ý1, . . . , ýÿ), ℎ2 (ý1, . . . , ýÿ), . . . ℎÿ (ýÿ , . . . , ýÿ),
ÿÿ+1ℎÿ+1(ýÿ+1, . . . , ýÿ), ÿÿ+2ℎÿ+1(ýÿ+1, . . . , ýÿ), . . . ÿÿℎÿ+1(ýÿ+1, . . . , ýÿ). (5.44)

Since ℎý (ýý , . . . , ýÿ) = ýý
ý
+Σ, whereΣ is a linear combination of terms which are > ýý

ý
in lexicographial

order, we see thatC[xÿ]/(ýÿ : ÿý ) is spanned by monomials of the form ý
ÿ1

1
· · · ýÿÿÿ where ÿÿ < ÿ for ÿ ≤ ÿ .

The generators ÿÿℎÿ+1(ýÿ+1, . . . , ýÿ) of (ýÿ : ÿý ) and Lemma 5.6 (applied over the set {ýÿ+1, . . . , ýÿ} of

variables indexed by J) imply that Aÿ (ý) descends to a spanning set of C[xÿ]/(ýÿ : ÿý ). This spanning

set must be a basis by Theorem 4.12. �

Given Proposition 5.7, a natural strategy for proving Conjecture 5.5 would be to induct on the position

of J in Gale order. The base case of J Gale-maximal is handled by Proposition 5.7. If ÿ ∉ ý and ÿ +1 ∈ ý,
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we have ýÿ · ý <Gale ý, where ýÿ = (ÿ, ÿ+1) is the adjacent transposition inÿÿ. Furthermore, the property

(ÿ : ÿ ý) = ((ÿ : ÿ ) : ý) of colon ideals gives rise to a natural injection

0 → C[xÿ]
(ýÿ : ÿýÿ ·ý )

ÿ
−−→ C[xÿ]

(ýÿ : ÿý )
, (5.45)

where ÿ( ÿ ) := (ýÿ − ýÿ+1) × ýÿ · ÿ is defined by swapping the variables ýÿ ↔ ýÿ+1 and multiplying by

ýÿ −ýÿ+1. Unfortunately, the map ÿ does not relate to the structure of monomials in Aÿ (ýÿ · ý) and Aÿ (ý)
in an obvious way; this has made Conjecture 5.5 resistant to inductive attack.

6. Conclusion

The most glaring open problem of our work is to enhance the Hilbert series result of Theorem 5.3 and

prove the Fields Conjecture 1.9 on the bigradedÿÿ-structure of ÿýÿ. One way to achieve this would be

to show that the composite linear map

ÿ :

ÿ⊕
ý=1

ýÿ,ý ↩→ Ωÿ � ÿýÿ (6.1)

is bijective, where ýÿ,ý ⊆ Ωÿ are the spaces constructed by the authors [30] and described in the

introduction. Thanks to Theorem 5.3 and [30], we know that the domain and target of ÿ have the same

vector space dimension, so we are asking that ÿ have a generic property. Unfortunately, much like in the

case of Conjecture 5.5, proving that ÿ satisfies this generic property has exhibited resistance to direct

attack.

Various ideas in this paper have made appearances in the theory of Hessenberg varieties. Lemma 2.3

on the realization of colon ideals (ÿ : ÿ ) by complete intersections was used by Abe, Horiguchi, Ma-

suda, Murai and Sato [2] to relate the cohomology rings of Hessenberg varieties to derivation modules

of hyperplane arrangements associated to down-closed sets in positive root posets. The polynomials

ÿý ∈ C[xÿ] appearing in this paper factor into products
∏
ÿ∈ý ÿ{ ÿ } labeled by singletons. In turn,

the polynomials ÿ{ ÿ } labeled by singletons resemble members of a family ÿ ÿ ,ÿ ∈ C[xÿ] of polyno-

mials appearing in the work of Abe, Harada, Horiguchi and Masuda [1]. The polynomials ÿ ÿ ,ÿ were

used to present the cohomology of regular nilpotent Hessenberg varieties using a GKM-style exci-

sion which bears combinatorial resemblance to removing J-resentful permutations from ÿÿ to arrive

at J-Nietzschean permutations. An Artin-like basis of these cohomology rings was proven by Harada,

Horiguchi, Murai, Precup and Tymoczko [19]; we use similar techniques in the proof of Lemma 5.6 to

show in Proposition 5.7 that the Artin monomials attached to terminal subsets ý = {ÿ, ÿ+1, . . . , ÿ} ⊆ [ÿ]
descend to a basis of the quotient rings C[xÿ]/(ýÿ : ÿý ). Given these technical parallels, the authors

suspect that there is a deeper connection between the supercoinvariant ring ÿýÿ and Hessenberg theory.

We present a conjecture in this direction as follows.

Recall that a finite-dimensional graded C-algebra ý =
⊕ý

ÿ=0 ýÿ with ýý ≠ 0 satisfies Poincaré

Duality if ýý � C is 1-dimensional and if the multiplication ýÿ ⊗ ýý−ÿ → ýý � C is a perfect paring

for all 0 ≤ ÿ ≤ ý. If A satisfies Poincaré Duality, an element ℓ ∈ ý1 of homogeneous degree 1 is a

Lefschetz element if, for all ÿ < ý/2, the map

ℓý−2ÿ × (−) : ýÿ −→ ýý−ÿ (6.2)

of multiplication by ℓý−2ÿ is a bijection. If a Lefschetz element ℓ ∈ ý1 exists, the algebra A is said to

satisfy the Hard Lefschetz property.

Algebras A which satisfy PD and HL arise naturally in geometry. If X is a smooth closed complex

projective variety, its cohomology ring ý = ÿ•(ÿ) satisfies PD and HL (here we double the grading

by setting ýÿ := ÿ2ÿ (ÿ)). For example, the coinvariant ring ýÿ = C[xÿ]/ýÿ = ÿ•(Fl(ÿ)) satisfies PD
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and HL. Maeno, Numata and Wachi proved [25] that a linear form ℓ = ý1ý1 + · · · + ýÿýÿ is a Lefschetz

element of ýÿ if and only if the coefficients ý1, . . . , ýÿ ∈ C are distinct.

Even if a variety X is not smooth, its cohomology ring ÿ•(ÿ) can still satisfy PD and HL. Abe,

Horiguchi, Masuda, Murai and Sato proved [2, Thm. 12.1] that ÿ•(ÿ) satisfies PD and HL when

X is a regular nilpotent Hessenberg variety, despite the fact that these varieties are usually singular.

Furthermore, a graded algebra ý =
⊕ý

ÿ=0 ýÿ can still satisfy PD and HL, and so behave like the

cohomology ring of a hypothetical smooth compact variety X. As we have seen, the quotients C[xÿ]/
(ýÿ : ÿý ) satisfy PD since they are complete intersections. For the next conjecture, we adopt the

convention that the zero ring 0 = ÿ•(∅) satisfies HL.

Conjecture 6.1. For any ý ⊆ [ÿ], the quotient ring C[xÿ]/(ýÿ : ÿý ) satisfies the Hard Lefschetz

property.

Conjecture 6.1 has been tested for ÿ ≤ 7. Computational data suggests that the linear forms

ℓ = ý1ý1 + · · · + ýÿýÿ continue to serve as Lefschetz elements, provided ý1, . . . , ýÿ ∈ C are distinct. We

suspect that the Hodge-Riemann relations hold for C[xÿ]/(ýÿ : ÿý ), as well (see [2, Sec. 12]).

One of the most aesthetically pleasing aspects of ÿýÿ is its direct extension to general complex

reflection groups. An element ý ∈ ÿÿÿ (C) is a pseudoreflection if g is conjugate to a diagonal matrix

of the form diag(ÿ, 1, . . . , 1), where ÿ ∈ C× is a root-of-unity of finite order. A finite subgroup

ÿ ⊆ ÿÿÿ (C) is a complex reflection group if G is generated by pseudoreflections.

The natural action of a complex reflection group ÿ ⊆ ÿÿÿ (C) on Cÿ induces actions of G on

C[xÿ] and Ωÿ by linear substitutions. Chevalley proved [10] that the invariant subring C[xÿ]ÿ admits

a set ÿ1, . . . , ÿÿ of algebraically independent homogeneous generators of positive degrees, so that

C[xÿ]ÿ = C[ ÿ1, . . . , ÿÿ] is itself a polynomial ring. Although the ÿÿ are not unique, their degrees

ý1, . . . , ýÿ are uniquely determined by G. Solomon [34] proved that the superspace invariants (Ωÿ)ÿ
are a free C[xÿ]ÿ-module and described a basis for this module as follows.

Theorem 6.2. (Solomon [34]) Let ÿ1, . . . , ÿÿ ∈ C[xÿ]ÿÿ be any list of algebraically independent

homogeneous generators of C[xÿ]ÿÿ . The space (Ωÿ)ÿÿ is a free module over C[xÿ]ÿÿ with basis

{ýÿÿ1 · · · ýÿÿÿ : 0 ≤ ÿ ≤ ÿ, 1 ≤ ÿ1 < · · · < ÿÿ ≤ ÿ}. (6.3)

Solomon’s Theorem 6.2 describes the space (Ωÿ)ÿ of G-invariants as a C[xÿ]ÿ-module. Any funda-

mental system of invariants ÿ1, . . . , ÿÿ ∈ C[xÿ]ÿ gives rise to a generating set for the G-supercoinvariant

ideal ÿýÿ generated by (Ωÿ)ÿ+ . We have ÿýÿ = ( ÿ1, . . . , ÿÿ, ýÿ1, . . . , ýÿÿ) and may use this presentation

to study the quotient ÿýÿ := Ωÿ/ÿýÿ as a bigraded G-module.

Solomon used Theorem 6.2 to give a uniform proof of the product formula∑
ý∈ÿ

ýdim Fix(ý) = (ý + ý1 − 1) · · · (ý + ýÿ − 1), (6.4)

where Fix(ý) = {ÿ ∈ Cÿ : ý · ÿ = ÿ} is the fixed subspace of Cÿ attached to g. In type A, this is

equivalent to the factorization

ÿ∑
ý=0

ý(ÿ, ý) · ýý = ý (ý + 1) · · · (ý + ÿ − 1), (6.5)

where ý(ÿ, ý) is the Stirling number of the first kind counting permutations ý ∈ ÿÿ with k cycles.

However, the algebra of ÿýÿ = Ωÿ/ÿýÿ is governed by ordered set partitions, which relate to Stirling

numbers of the second kind.

Ordered set partitions of [ÿ] are in bijective correspondence with faces in the type A Coxeter

complex. All available data in types BCD suggest that the fermionic degree k piece of ÿýÿ := Ωÿ/ÿýÿ

has dimension equal to the number of codimension k faces in the corresponding Coxeter complex
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(in type A this is a consequence of Theorem 5.3). We also have agreement in type H3. However, in type

F4, these quantities disagree. The bigraded Hilbert series of ÿýF4
is given by

Hilb(ÿýF4
; ÿ, ÿ) =(

1 + 4ÿ + 9ÿ2 + 16ÿ3 + 25ÿ4 + 36ÿ5 + 48ÿ6 + 60ÿ7 + 71ÿ8 + 80ÿ9 + 87ÿ10 + 92ÿ11 + 94ÿ12+
92ÿ13 + 87ÿ14 + 80ÿ15 + 71ÿ16 + 60ÿ17 + 48ÿ18 + 36ÿ19 + 25ÿ20 + 16ÿ21 + 9ÿ224 + ÿ23 + ÿ24

)
· ÿ0+

(
4 + 15ÿ + 32ÿ2 + 55ÿ3 + 84ÿ4 + 118ÿ5 + 152ÿ6 + 182ÿ7 + 204ÿ8 + 215ÿ9 + 216ÿ10 + 207ÿ11+

188ÿ12 + 161ÿ13 + 132ÿ14 + 105ÿ15 + 80ÿ16 + 58ÿ17 + 40ÿ18 + 26ÿ19 + 16ÿ20 + 9ÿ21 + 4ÿ22 + ÿ23

)
· ÿ1+

(
6 + 20ÿ + 39ÿ2 + 64ÿ3 + 95ÿ4 + 128ÿ5 + 154ÿ6 + 168ÿ7 + 164ÿ8 + 140ÿ9+

122ÿ10 + 100ÿ11 + 75ÿ12 + 52ÿ13 + 34ÿ14 + 20ÿ15 + 10ÿ16 + 4ÿ17 + ÿ18

)
· ÿ2

+
(

4 + 10ÿ + 16ÿ2 + 25ÿ3 + 36ÿ4 + 43ÿ5+
44ÿ6 + 36ÿ7 + 16ÿ8 + 9ÿ9 + 4ÿ10 + ÿ11

)
· ÿ3 + ÿ4, (6.6)

and this expression has ÿ → 1 specialization

Hilb(ÿýF4
; 1, ÿ) = 1152 · ÿ0 + 2304 · ÿ1 + 1396 · ÿ2 + 244 · ÿ3 + ÿ4. (6.7)

This coefficient sequence is almost the same as the reversed f -vector (1152, 2304, 1392, 240, 1) of the

type F4 Coxeter complex, but the coefficients of ÿ2 and ÿ3 are too large by 4. Finding a precise invariant-

theoretic description of the Hilbert series of ÿýÿ would likely be very interesting.
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