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Abstract

Let Q,, be the ring of polynomial-valued holomorphic differential forms on complex n-space, referred to in physics
as the superspace ring of rank n. The symmetric group S,, acts diagonally on €, by permuting commuting and
anticommuting generators simultaneously. We let ST,, C Q, be the ideal generated by S;,-invariants with vanishing
constant term and study the quotient SR, = Q,,/SI, of superspace by this ideal. We calculate the doubly-graded
Hilbert series of SR,, and prove an ‘operator theorem’, which characterizes the harmonic space SH, € Q,
attached to SR, in terms of the Vandermonde determinant and certain differential operators. Our methods employ
commutative algebra results that were used in the study of Hessenberg varieties. Our results prove conjectures of
N. Bergeron, Colmenarejo, Li, Machacek, Sulzgruber, Swanson, Wallach and Zabrocki.
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1. Introduction
Let x,, = (x1,...,x,) be a list of n variables and let C[x,,] be the polynomial ring in these variables

over C. The symmetric group &, acts on C[x,,] by subscript permutation; the fixed subspace C[x,,]®"
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2 B. Rhoades and A. T. Wilson

is the algebra of symmetric polynomials. The coinvariant ideal I,, C C[X,] is the ideal I, := ((C[xn]f")
generated by the space (C[x,,]f" of symmetric polynomials with vanishing constant term, and the
coinvariant ring R,, := C[x,]/I, is the quotient of C[x,,] by I,,.

The graded &,,-module R, is among the most important objects in algebraic combinatorics. E. Artin
proved [4] that the ‘sub-staircase monomials’ {xI“‘ <oexgm o oa; < i} descend to a basis of Ry, so that
R, has Hilbert series

Hilb(R,; ¢) = [n]!y, (1.1)

where we use the standard g-number and g-factorial notation

n

n—lzl_q
l-¢g

[n]g =1+g+---+q and [n]lg = [nlg[n—1]g4---[1]4. (1.2)

Chevalley showed [10] that R, = C[S,] carries the regular representation of &, as an ungraded
&,,-module, and Borel showed [8] that R,, = H* (Fl(n)) presents the cohomology of the type A complete
flag variety.

Now let x,, = (x1,...,x,) andy, = (y1,...,yn) be two sets of n commuting variables and consider
the polynomial ring C[x,,, y,] over these variables with the diagonal action of S,,, viz.

W Xi = Xy (i) W Vi = Yw() weG,, 1<i<n). (1.3)

Let DI, € C[x,,y.] be the ideal generated by the S,,-invariants with vanishing constant term. Garsia
and Haiman [12, 17] initiated the study of the diagonal coinvariant ring

DR, :=C[x,,y.]/DI,. (L.4)

The quotient DR, is a doubly-graded &,,-module. Haiman used the algebraic geometry of Hilbert
schemes to prove [18] that dim DR,, = (n + 1)"‘1 and that, as an ungraded &,,-module, the space DR,
carries the sign-twisted permutation action of S,, on size n parking functions. Carlsson and Oblomkov
used the Lusztig-Smelt paving of affine Springer fibers to give [9] a monomial basis of DR,,, which
restricts to Artin’s basis of R, when the y-variables are set to zero.

Next, let x,, = (x1,...,X;) be alist of n commuting variables and let 8,, = (61, ...,60,) be alist of n
anticommuting variables. The superspace ring of rank n is the tensor product

Q, =C[x,] ® A{0,} (1.5)

of the polynomial ring in the x-variables and the exterior algebra over the 8-variables. This ring arises in
physics, where the x-variables correspond to the states of bosons and the 8-variables correspond to the
states of fermions; see, for example, [28]. Accordingly, we shall refer to x-degree as bosonic degree and
0-degree as fermionic degree. The ring Q,, also arises in differential geometry as the ring of polynomial-
valued holomorphic differential forms on complex n-space (and we would write dx; instead of 6;); this
explains our use of Q.

The symmetric group S, acts diagonally on superspace by the rule

W Xi = X (i) w-8; =0y (weG,, 1<i<n). (1.6)

Once again, we denote by (£, f’” the subalgebra of invariant polynomials with vanishing constant term
and consider the quotient ring

SR, := Q,/SI,, (1.7)
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where the supercoinvariant ideal S1,, C €, is given by
S1I,, := ideal generated by (Qn)f” CQ,. (1.8)

Like DR,, the quotient SR,, is a bigraded &,,-module, this time with respect to bosonic and fermionic
degree.

The study of SR, was initiated by the Fields Institute Combinatorics Group! in roughly 2018.
This group conjectured that dim SR,, is the ordered Bell number counting ordered set partitions of
[n] :={1,...,n} and that, as an ungraded &,-module, the quotient SR,, carries the permutation action
of &,, on these ordered set partitions, up to sign twist. Furthermore, this group conjectured that the
doubly-graded &,,-structure of SR,, was given by

grFrob(SRy3q,2) = Y 2K Al en 0, (1.9)
k=1

where ¢ tracks bosonic degree, z tracks fermionic degree, e, is the elementary symmetric function of

degree n,and A;, | is a primed delta operator acting on the ring A of symmetric functions; see [14, 40]

for more details. The identity (1.9) implies that the bigraded Hilbert series of SR, is given by
Hilb(SR,,; ¢, 2) = Z 'K [k, - Stirg (n, k), (1.10)
k=1

where the g-Stirling number Stir, (7, k) is defined by the recursion
Stiry (n, k) = [k]q - Stirg(n — 1, k) + Stirg(n — 1,k — 1) (1.11)
together with the initial condition

1 k=0
Stir, (0, k) = 1.12
ta ©0.%) {0 otherwise. ( )

Equation (1.10) was conjectured explicitly by Sagan and Swanson [33, Conj. 6.5].
The conjectures (1.9) and (1.10) were publicized at a BIRS meeting in January 2019. This resulted
in great excitement. Haglund, Rhoades and Shimozono [15] had introduced the quotient ring

Ruk = C[Xn]/(x]f,xlzc, ... ,xfl, €nyCrls.vvsCn i+l) (1.13)

and had proven [16] that
grFrob(Ry 13 q) = (revy o w)A,, _ en |i=0 - (1.14)
Pawlowski and Rhoades [27] introduced the moduli space X,,  of n-tuples of lines ({y, ..., ¢,) in ck

such that £ + - - - + £; = C* and proved the cohomology presentation
H*(Xnx) = Ruk. (1.15)

The authors [30] introduced the superspace Vandermonde

o [vk-1 k-1 k-1 k=2 1 0
Onk = &n (xl K-k Xn-k+1%n—k+2 Xy 1Xn X 01 gn—k) (1.16)

INantel Bergeron, Laura Colmenarejo, Shu Xiao Li, John Machacek, Robin Sulzgruber, and Mike Zabrocki
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and showed that the subspace V,,  C €, obtained by starting with 6, x and closing under the partial
derivative operators aix,- and linearity carries a graded ©,-action with graded character A}, ey |=0. Of
all of these models, the supercoinvariant ring SR,, has the most intrinsic invariant-theoretic definition
which extends to arbitrary complex reflection groups G € G L, (C) in the most obvious way.

Zabrocki extended the conjecture (1.9) in a different direction by introducing another set of commut-
ing variables y,, = (y1,...,y,) and considering the triply-graded &,,-module obtained by quotienting
ClXu,¥n] ® A{60,,} by the ideal I generated by &, -invariants with vanishing constant term. Zabrocki

conjectured [40] that

n
ngrOb (C[Xn’ Yn] ® /\{en}/l’ LI7 t’ Z) = Z nk : Aék_len’ (117)
k=1

where ¢ tracks x-degree, t tracks y-degree, and z tracks 6-degree. Observe that (1.17) reduces to (1.9)
if the y-variables are set to zero, and Haiman’s theorem [18] when the 8-variables are set to zero. The
conjecture (1.17) was the first predicted algebraic model for A;, _ e,; the authors [30] gave a parallel
conjectural model for A, e, involving the superspace Vandermondes 6, x. The conjecture (1.17) was
extended to two sets of bosonic variables and two sets of fermionic variables by D’Adderio, Iraci and
Vanden Wyngaerd [ 1] using ®-operators on symmetric functions; the case of two sets of fermionic
variables alone was solved by Iraci-Rhoades-Romero [20] and Kim-Rhoades [22]; see [21, 23] for a
connection between this quotient and skein relations on set partitions. F. Bergeron has a substantial
family [5, 6, 7] of conjectures on coinvariant quotients with multiple sets of bosonic and fermionic
variables.

Despite all of this activity, the equations (1.9) and (1.10) on the structure of SR, remained frustratingly
conjectural. The methods that were used to successfully analyze objects like R, k, X x and V,, x have
not yet been extended to study SR,. Swanson and Wallach [36, 37] proved that the sign-isotypic
component of (1.9) is correct and that the fermionic degree n — k piece of SR,, has top bosonic degree
(n—k)-(k-1)+ (];) as predicted by (1.10); this was the only significant progress on SR,,. In fact,
before this paper, even the dimension of SR, was unknown.

In this paper, we will prove that the formula (1.10) calculates the bigraded Hilbert series of SR,
(Theorem 5.3). We will also prove (Theorem 5.1) an ‘operator conjecture’ of Swanson and Wallach
[37], which describes the harmonic space SH,, C €, attached to the supercoinvariant ring SR, using
certain ‘higher Euler operators’ on Q,, which act by polarization.? The space SH,, is helpful for machine
computations because SH, = SR,, as doubly-graded &,,-modules, and yet members of SH,, are honest
superspace elements f € €, rather than cosets f + SI, € SR,. The &,-module structure of SR,
ungraded or (bi)graded, remains open.

We turn to a description of our methods. The analysis of R, x and its variations relied on the
remarkably well-behaved Grobner theory of its defining ideal (xf, . ,xfl, €nr.-senr+1) C C[x,].
This facilitated multiple provable combinatorial bases [13, 15, 26, 27] of R, x from which its structure
as a graded vector space or S,-module could be studied. There exists an extension of Grobner theory to
the superspace ring Q,,, but the Grobner theory of the supercoinvariant ideal SI,, € Q, has proven
to be inscrutable. Combinatorially, this has translated into a failure of using straightening arguments
to show that nice potential bases of SR, span this quotient ring. Indeed, our approach does not prove
the existence of any specific basis of SR,. For a potential road from our methods to an Artin-like
basis of SR,, conjectured by Sagan and Swanson [33, Conj. 6.7], see Theorem 5.4, Conjecture 5.5 and
Proposition 5.7.

Since the direct analysis of SR, by means of a basis has proven elusive, we adopt an indirect
approach that stands, in a nutshell, on the elimination of fermionic variables. This allows us to trade
supercommutative algebra problems in €,, for commutative algebra problems in C[x,], for which more
tools have been developed.

2This characterization of SH,, was conjectured earlier in unpublished work of N. Bergeron, L. Colmenarejo, S. X. Li, J.
Machacek, R. Sulzgruber and M. Zabrocki.
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For a given subset J C [n], we use a miraculous identity (Lemma 3.3) involving partial deriva-
tives of complete homogeneous symmetric polynomials to deduce the existence of a regular sequence
DPils--->sPrn € C[X,] (Lemma 3.5) in C[x,]. These regular sequences are used to prove (Proposition
3.7) that the bigraded Hilbert series of SR, is bounded above by the expression (1.10).

Next, we introduce a family D; of combinatorially defined differential operators acting on ,,, which
are indexed by subsets J C [n]. We prove (Lemma 4.8) that the D exhibit a triangularity property with
respect to the Gale order on subsets J C [n] with leading term given by the polynomial?

fr= l_[xj (n(xj - X;)

JjeJ i>j

€ C[x,]. (1.18)

This leads to a general recipe (Theorem 5.4) for constructing bases of SR,, from bases of the various
commutative quotient rings C[x,]/(I,, : f7) by the colon ideals

(In: f1)={g€Clx,] : g- fr € I,}. (1.19)

By identifying (I, : f7) with the ideal (py 1,..., ps.n) cut out by the regular sequence in C[x,] used
to prove the upper bound on Hilb(SR,; g, z) (Theorem 4.12), we are able to prove both the operator
theorem characterizing the superharmonic space SH, (Theorem 5.1) and the formula (1.10) for the
bigraded Hilbert series of SR,, (Theorem 5.3).

The rest of the paper is organized as follows. In Section 2, we give background material on superspace
and commutative algebra. In Section 3, we bound the bigraded Hilbert series of SR,, from above using
regular sequences. In Section 4, we introduce the differential operators D; and relate them to the colon
ideals (I, : fy). In Section 5, we prove our main results: the operator theorem and the Hilbert series of
SR,,. We also present a conjecture for an Artin-like basis of C[x,]/(I, : f7) and prove this conjecture
in a special case. We close in Section 6 with some open problems.

2. Background
2.1. Superspace

As in the introduction, the superspace ring Q,, = C[x,] ® A{6,} is the tensor product of a symmetric
algebra of rank # and an exterior algebra of rank n, both over C. A monomial in Q,, is a nonzero product
of the generators x,, = (x1,...,x,) and 8,, = (01,...,60,). A bosonic monomial is a monomial that
only involves the generators X,,, whereas a fermionic monomial is a monomial that only involves the
generators 6,,. For any subset J C [n], we let 6, be the product of the fermionic generators 6; indexed
by j € J in increasing order; we have a direct sum decomposition

Q, = EB C[x,] - 6. Q2.1
]

Jcn

The Gale order <gale on subsets J C [n] of the same cardinality will be used heavily. This partial
order is defined by

{a; <+ <a;} <Gae {b1 <--- < b, }ifa; < b; foralli. 2.2)

This order will be used to compare fermionic monomials 6 in the superspace ring ,,.

The ring ,, may be identified with polynomial valued differential forms on C"; as such, it carries
a plethora of derivative operators. For 1 < i < n, let §; : C[x,] — C[x,] be the usual partial
differentiation with respect to x;. By acting on the first tensor factor of Q, = C[x,] ® A{6,}, this

3See also Definition 4.6.
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6 B. Rhoades and A. T. Wilson

extends to an action 9; : Q, — Q,.For1 <i < n, let 61.9 : A{0,} — A{6,} be the contraction operator
defined on fermionic monomials by

-1, ..., ---9, if j, =i for some s,
(9['0 . 9]1 .. 9],, — ( ) J1 Js Jr Js . (23)
0 otherwise
for any distinct indices 1 < jj,...,j, < n where™ denotes omission. By acting on the second tensor

factor of Q, = C[x,] ® A{6,}, we have a fermionic derivative operator (9i9 1 Q, > Q,.
We let d : Q, — Q, be the Euler operator of differential geometry defined by

d:fHZﬁif-H,- (2.4)
i=1

for all f € Q,,. This operator lowers bosonic degree by 1 while raising fermionic degree by 1. We will
need ‘higher’ versions d; : Q, — Q, (j > 1) of these operators given by

d‘i:fHZ(?ijfﬂi. 2.5)
i=1

The operator d; decreases bosonic degree by j while raising fermionic degree by 1. We have d; = d. If
J ={j1 < j2» <---}isasetof positive integers, we write

dj Z=dj]dj2"' (26)

for the corresponding product of higher Euler operators.
Considering bosonic and fermionic degree separately, superspace €2, admits a bigrading

Q=P P@); where (@) ;= Clxali @ A/ {6}, @)

i>0 j=0

The diagonal action of the symmetric group &,, on Q,, preserves this bigrading. As in the introduction,
we let (Q,,)®" be the fixed subalgebra for this action.

Let I € Q, be a bihomogeneous ideal in superspace (such as S7,). Analysis of the quotient ring
Q,, /1 is often complicated by the fact that its elements f + I are cosets rather than superspace elements
f € Q,,. The theory of (superspace) harmonics is a powerful technique for replacing cosets with honest
elements of superspace. We turn to a description of this method.

The partial derivative operators 0;, 6;’ 1 Q, — Q, satisfy the relations

00y = 0,00  8;0) =078,  00] =-0]8 (2.8)
for all 1 < i,j < n. Since these are the defining relations of Q,, for any superspace element
f=f (1, x,,01,...,0,) € Q,, we get an operator

Of = f(O1...,0n.00,....07) : @ > Q, 2.9)

by replacing each x; in f with the bosonic derivative d; and each 6; in f with the fermionic derivative
Bl.g. This leads to an action of superspace on itself given by

0:QyxQy — Qy fog=(0/)(g)- (2.10)

The ©-action gives Q,-module structure on €Q,,.
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We use the @-action to construct an inner product on Q,, as follows. Let = : Q,, — Q, be the

conjugate-linear involution that fixes all bosonic monomials, satisfies 6;, ---6; = 6; ---6; for all
fermionic monomials 6;, - - - 6;_, and sends any scalar ¢ € C to its complex conjugate c. The pairing
(=, =) 1 Q, xQ, - Q, (f,g) :=constanttermof f © g (2.11)

is easily seen to be an inner product, with the monomials {xf‘ -+ xpy™ - @7} forming an orthogonal (but
not orthonormal) basis.
Now suppose I C Q,, is a bihomogeneous ideal defined over R (such as S1,;). We have the equality

I*={geQ,: fog=0forall f eI} (2.12)

of subspaces of Q,, where I+ is calculated with respect to the above inner product. The subspace
I+ C Q, is the harmonic space attached to I. We have a direct sum decomposition Q,, = I & I+ and
an isomorphism of bigraded vector spaces Q,, /1 = I'*. If I is G,-stable, the isomorphism Q,,/I = [+
is also an isomorphism of bigraded S,-modules. The harmonic model I* of Q,,/I is useful because its
members are honest superspace elements rather than cosets.

We close this subsection with a combinatorial identity due to Sagan and Swanson that will be
useful in our analysis of SR,,. For a subset J C [n], we define the J-staircase to be the sequence
st(J) = (st(J)1, . ..,st(J),), where

0 1eJ
t(J) = 2.13
st(J) {1 e (2.13)
and
t(J); i+lel
(U o= W iwLe (2.14)
st(J);+1 i+1¢lJ.

For example, if n = 7 and J = {3,5,6}, we have st(J) = (st(J),...,st(J);) = (1,2,2,3,3,3,4).
Observe that st(@) = (1,2, ..., n) is the usual staircase.

Lemma 2.1. (Sagan-Swanson [33]) We have the polynomial identity

Z (ﬁ[st(])i]q) Ml = zn:z"—" - [k]!, - Stiry (n, k). (2.15)
k=1

Jc[n] \i=l

2.2. Commutative algebra

Our overarching strategy for analyzing SR, is to transfer problems involving the superspace ring Q,, to
problems involving the better-understood polynomial ring C[x,]. We review the relevant notions from
commutative algebra.

A commutative graded C-algebra A = P
space. The Hilbert series of A is

>0 Ai is Artinian if A is a finite-dimensional C-vector

Hilb(A; ¢) = ) dimc(A)) - ¢', (2.16)

i20

assuming each graded piece A; is finite-dimensional.
A sequence fi,..., f, of n polynomials in C[x,] of homogeneous positive degrees is a regular
sequence if, for each 0 < i < n — 1, we have a short exact sequence

0 = Clxu 1/ (firee s )~y CI%u 1/ (frae oo s ) 25 %]/ (fir- s o fiat) = 0, (2.17)
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where the first map is induced by multiplication by f;+; and the second map is the canonical pro-

jection. If the regular sequence fi,..., f,, consists of homogeneous polynomials, the quotient ring
Clx,1/(f1,- -, fn) is a finite-dimensional graded vector space with Hilbert series

Hilb(C[x,]/(fi,. .., fn);q) = [deg fl]q < [deg fn]q (2.18)
An Artinian graded quotient C[x,,]/a of C[x, ] is a complete intersection if a = (f1, ..., f,) for some
length n regular sequence fi, ..., f; € C[x,] of homogeneous polynomials.

The regularity of a sequence f1, . .., fn € C[x,] of polynomials of homogeneous positive degree can
be interpreted in terms of the variety cut out by fi,..., f,. Given any set S C C[x,] of polynomials,
write

V(S):={zeC" : f(z) =0forall f € §} (2.19)

for the locus of points in C" on which the polynomials in S vanish.

Lemma2.2. Let fi, ..., fn € C[x,] be alist of n homogeneous polynomials in C[X,,] of positive degree.
The sequence fi,..., fu is a regular sequence if and only if the variety V(fi, ..., fn) € C" cut out by
these polynomials consists of the origin {0} alone.

Let a C C[x,] be an ideal and let f € C[x,,] be a polynomial. The colon ideal (or ideal quotient) is
(a:f):={geC[x,] : f-ge€a} CC[x,]. (2.20)

It is not difficult to check that (a : f) is an ideal in C[x,] which contains a, and that (a : f) = C[x,] if
and only if f € a.

Colon ideals will play a crucial role in our work, and we will need a criterion for determining a
generating set for them. Let A = EB?:O A; be a finite-dimensional graded C-algebra with A; # 0. The
algebra A is a Poincaré duality algebra if

e its top component Ay = C is a 1-dimensional complex vector spaces, and
e forany O < i < d, the multiplication map A; ® Ag_; — Ay = Cis a perfect pairing.

IfA-= EB?:O Ay is a Poincaré duality algebra with d # 0, the maximal degree d is called the socle
degree of A. The following commutative algebra lemma will be remarkably useful to us.

Lemma 2.3. (Abe-Horiguchi-Masuda-Murai-Sato [2, Lem. 2.4]) Suppose a,a’ C C[x,] are homoge-
neous ideals and f € C[X,] is a homogeneous polynomial of degree k with f ¢ a. Suppose a’ C (a : f).
If C[x,]/a’ is a Poincaré duality algebra of socle degree r and C[x,]/a is a Poincaré duality algebra
of socle degree r + k, then a’ = (a : f).

We remark that [2, Lem. 2.4] was stated over the field R of real numbers, but its proof goes through
without change for arbitrary fields.

The polynomial ring C[x,] inherits a theory of harmonics from the superspace ring Q,,. Partial
differentiation yields an action © : C[x,] X C[x,] — C[x,] of the polynomial ring C[x,,] on itself,
which gives rise to an inner product

(-,—):C[x,] xC[x,] = C (f,g) = constant term of f © g. (2.21)

If I € C[x,] is a homogeneous ideal, we have a direct sum decomposition C[x,,] = I & I* and an
identification

I*={geC[x,] : fog=0forall f e} (2.22)

of the harmonic space I+ as a subspace of C[x,,].
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The harmonic theory of the classical coinvariant ideal 7,, C C[x,,] is given as follows. Let §,, € C[x,]
be the Vandermonde determinant

S = ]_[(xj —x;) € C[x,]. (2.23)

i<j
Then I;} is a cyclic C[x,]-module under the ®-action generated by &,,. In symbols, we have
Iy = C[x,] @ dp. (2.24)

We write H,, for the subspace I;- = C[x,] © 6, € C[x,]; we have an isomorphism R,, = H,, of graded
&;,-modules. The annihilator of §,, under the ®-action is precisely the coinvariant ideal /,,:

annc[y,](6,) = {f €C[x,] : f©,=0}=1,. (2.25)

3. Upper Bound
3.1. A regular sequence in C[x,]

Our first lemma gives a general technique for constructing interesting elements of the supercoinvariant
ideal S17,,.

Lemma 3.1. The supercoinvariant ideal S1I,, C Q,, contains the classical coinvariant ideal I, C C[x,]
and is closed under the action of the Euler operator d : Q,, — Q,,.

Proof. The operator d commutes with the action of S, on Q,, so the result follows from the Leibniz
formula

d(fg)=df -g+ f-dg, 3.1

which holds for any bihomogeneous f,g € €, (the sign is + if f has even fermionic degree and —
otherwise) and the relation d o d = 0. O

Ideals in €2, that are closed under the action of d are called differential ideals. To the knowledge
of the authors, the supercoinvariant ideal S7,, is the first differential ideal that has received significant
attention in algebraic combinatorics.

The most important elements of S1,, arising from Lemma 3.1 are as follows. Let £, e, € C[x,] be
the complete homogeneous and elementary symmetric polynomials

h, = Z Xiy X, e, = Z Xiy =X (3.2)

1<ij<---<ir<n 1<i|<--<ip<n
Here and throughout, if S C [n] is an index set, we use £, (S) and e,(S) to denote the complete
homogeneous and elementary symmetric polynomials of degree r in the variables indexed by S. For
example, we have
hy(134) = x% +X1X3 + X1 X4 +x§ + X3X4 +xzz1 and ep(134) = x1x3 +X1x4 + X3Xx4.

For any subset S C [n], it is well-known that

h,.(S) € I, wheneverr >n—|S|. 3.3)
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Indeed, (3.3) follows inductively from the identity A, (S U i) = x;h,-1(S U i) + h,(S), which holds
whenever i ¢ S. By Lemma 3.1, we have

dh,(S) € SI,, wheneverr > n—|S|. (3.4)

Elements of ST, of the form (3.3) and (3.4) are the only ones we will need.
For any subset J C [n], we construct a sequence (¢j.1,47.2,---,q7.n) Of superspace elements as
follows. Given J C [n], the sequence (¢7.1,972,---,q7.n) in Q, is defined by

hi({i,i+1,...,n}) -0y i < min(J)
qj,i:= ) . . (3.5
dh, (JU{i+1,...,n}) - 05 _max(gn{l,....i}) I =min(J),

where in the second branchr =n—[JU {i +1,...,n}| + 1.

The superspace elements ¢ ; may be visualized (and remembered) as follows. Consider a linear
array of n boxes labeled 1,...,n from left to right, where the boxes in positions j € J are decorated
with a 8. We consider moving a pointer from left to right along this array. When n = 7 and J = {3, 5, 6},
the picture is shown in Figure 1.

e When the pointer is at a position i which is strictly to the left of all of the 6 decorations, the
corresponding superspace elementis gy ; = h;({i,i+1,...,n}) - 0.

e When the pointer is at a position i which is weakly to the right of at least one 6 decoration,
the corresponding superspace element is g;; = dh,(J U {i +1,...,n}) - 65, where J consists
of all elements of J except for the closest element j € J weakly to the right of the pointer and
r=n—|JU{i+1,...,n} +1isthe minimal degree such that 4. (JU{i+1,...,n}) € I, lies in the
classical coinvariant ideal.

In our example, we have
qy,1 = hi1(1234567) - 0356 qg2 = h2(234567) - 0356 g3 = dh3(34567) - 056 g4 = dha(3567) - 056
qy,5 = dh4(3567) - 036 qg,6 = dhs(3567) - 635 qj7=dhs(356)-0ss.

We record some basic observations about the polynomials g ;.

Lemma 3.2. Let J C [n] and let (q7.1,972,---,q7.n) be the associated sequence of elements of Qy,.
Forany 1 <i < n, the superspace element q ; satisfies the following properties.

1. We have q;; € SI,.

2. The superspace element q ; ; is bihomogeneous with fermionic degree |J| and bosonic degree st(J);
where st(J) = (st(J)1,...,st(J),) is the J-staircase.

3. The element qj ; lies in the subspace ®JSGaIeK Clx,] - 0k of Q. spanned by monomials whose
Sfermionic parts are greater than or equal to J in Gale order.

Proof. The memberships (3.3) and (3.4) and the construction of ¢y ; imply (1). Moving the pointer
from i — 1 to i does not change the bosonic degree of ¢ ; when the box i is decorated with a 6, and
increases the bosonic degree of g, ; by 1 otherwise, so (2) also holds by construction. To see why (3)
is true, observe that the only surviving fermionic monomials 6k in the expression

dhr(‘]u{i"'1,~-~,n})'6J—max(Jﬁ{l ..... i}) =

Okhy(JULi+1,...,n}) - Ok - 1 _max(In(l,....i}) (3.6)
keJU{i+l,..., n}

satisfy J <gale K. O
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L[ el [ol6] | L[ el [ol6] | [ [616] | [ 1616] |
12134567 12134567 12134567 12134567
l ) l
L1 o] Dol | L1 o] oD | L1 o] oD |
12134567 12134567 12134567

Figure 1. The pointer construction for the superspace elements q; ; € Q, and the polynomials py ; €
C[x,]. Here, n =7 and J = {3, 5, 6}. Boxes whose positions in J are indicated with a 6. Shaded boxes
indicate the set of bosonic variables involved at each stage; boxes with a 6 are always shaded. The
degree of the h-polynomial in q s ; and p ; is the number of unshaded boxes, plus one. Once the pointer
crosses the red line (i.e., reaches the minimum element of J), the definition of q; ; and pj ; involves
derivatives. The pointer points to shaded boxes to the left of the right line, and an unshaded box or 6
box to the right of the red line. The 6 decoration with an X corresponds to an unused 8-variable 0 in
the case of qy i, or a partial derivative O in the case of py ;. The X appears on the closest 8 which is

weakly to the left of the pointer.

We will be interested in the projections of the g, ; to C[x,] - 8,. To this end, define polynomials

(pr1spPs2s---sPi.n) € C[Xx,] by the rule
hi(i,i+1,...,n}) i < min(J)
PJi= . . (3.7)
Os(hy(JU{i+1,...,n})) s=max(JN{l,...,i}),
where (as in the definition of g ;) in the second branch r :=n — |J U {i + 1,...,n}| + 1. As with the

superspace elements ¢ ;, the polynomials p; ; are easily visualized using the pointer construction. The
index s on the partial derivative operator J; is the maximal element of j weakly to the left of the pointer.
As the pointer moves from left to right, the degree of the A-polynomial increases and its number of

arguments decreases. When n =7 and J = {3, 5, 6}, Figure | yields
pPJ1= h1(1234567) Pi2= h2(234567) P33 = 83h3(34567) Pr4a= 33/’!4(3567)
pJs=05hs(3567) pye=06ha(3567) py7=30hs5(356).
By Lemma 3.2 (3), we have

mod Cl[x,] - 0k
J<GaleK

qi1,i=%£pyi- 0

(3.8)

for all subsets J C [n] and 1 < i < n. The polynomials p;; € C[x,] are the ‘Gale-leading terms’ of the
q7.i € &, and will give us access to the tools of classical commutative algebra in C[x,]. In particular,

we will prove that p; 1, ...

, DJ.n is aregular sequence in C[x,] as long as 1 ¢ J. Our first step in doing

so is an identity involving partial derivatives of homogeneous symmetric polynomials in partial variable

sets.

Lemma 3.3. If S C [n] is any subset with a,b € S and c & S, then
0ahr(S) = Ophr(S) + (xc = xp) - Ophr—1(SUC) = (Xc = X4) - Oahr—1(S U C)

forallr > 1.

In Lemma 3.3, we allow the possibility a = b, in which case the claimed equation is trivial.
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Proof. The RHS of Equation (3.9) may be expanded and regrouped to give

Ophy (S) + (x¢c —xp)0phr1(SUC) = (x¢c —x4)0qhy1(SU ) =

[ab(hr(S) +xchr—l(S U C)) - aa(xchr—l(s U C))] - [xbabhr—l(S U C)] + [xaaahr—l(s U C)]
(3.10)

Since h, (S) + xch,—1 (S U c) = h, (S U c), the expression in the first set of brackets [ - - - | on the RHS
of Equation (3.10) equals [Oph, (S U ¢) — dghr (S U ¢) + 94 h,-(S)], the expression in the second set of
brackets equals [9p (xphy—1(SUCc)) — hr—1(SUc)], and the expression in the third set of brackets equals
[04(xahr—1(SUC)) — hy—1(S U c)]. Plugging all this in yields

[0p (hr (S) +xchr1(SUC)) = Ba(xchr—1(SU )] = [xp0phr-1(SU )] + [x404hr-1(S U €)]
= [Ophr(SUC) = 0ah-(SU ) + 0,0, (S)] = [0 (xphr—1(S U C)) — hpe A50T)]
+[0q (xahr-1(S VU ¢)) — h+£507)] (3.11)

with the indicated cancellations. After performing these cancellations, the RHS of Equation (3.11) may
be regrouped as

[6bhr (S U C) - aahr(S U C) + aahr(S)] - [610 (xbhrfl (S U C))] + [aa(xahrfl (S U C))]
= 0ghy (S) +{0p(h (SU ) —xphp—1(SUC))} = {0a(hr (SUC) = xahr—1 (SUC))}. (3.12)
Since the expression h,(S U ¢) — xph—1(S U c¢) = h.((SUc) — b) is independent of xp,
the partial derivative 9, in the first set of curly braces { - - - } on the RHS of Equation (3.12) vanishes;

the expression in the second set of curly braces vanishes for similar reasons. This completes the proof
of Equation (3.9). O

The polynomial identity in Lemma 3.3 is, to the authors, somewhat miraculous; it would be nice to
have a conceptual understanding of ‘why’ it should be true. We use this identity to show that the ideal
Z; generated by the polynomials py 1,...,ps.n € C[X,] contains certain strategic partial derivatives.

Lemma 3.4. Let J C [n] and write Z; = (ps.1,...,p1.n) S C[Xn] for the ideal generated by
PJ,1s---»PJn Foranyindex j € J, we have 0;h,_y+1(J) € ;.

Proof. We prove the following claim, which is stronger than the lemma and amenable to induction.

Claim: The polynomials in question lie in the ideal

I} = (pf,jo’ PJ,jo+ls -+ ’PJ,n) c C[-xj()vxj()+17 e 7-xn]v (313)

where jo = min(J) is the smallest element of J.
The pointer construction makes it clear that the generators of Z) do not involve the variables

X1,X2,...,Xj,—1 and so lie in the polynomial ring C[xjy,xy+1,...,X,] generated by the remaining
variables. We prove the Claim by induction on the number n — jj + 1 of variables in the ambient ring
of 77.

IfJ={n-r+1,...,n—1,n}is aterminal subset of [n], the polynomials in the Claim are generators

of the ideal 7. Furthermore, for any subset J C [n], if j = max(J) is the largest element of J, then
Ojhn-17141(J) = py n is also a generator of 7.

By the above paragraph, we may assume that jo = min(J) # max(J) and that there exists an element
¢ € [n]—-J withc > jj.Letco ;= min{jp < ¢ < n : ¢ ¢ J} be the smallest such ¢ and define S C [n] by

S = {jo,j()+1,...,l’l—1,}1}—{6‘0}. (314)

Observe that the elements jo, jo+ 1,...,c0 —2,co — 1 of S lie in J. Let r := n — |S| + 1. We apply
Lemma 3.3 iteratively as follows.

https://doi.org/10.1017/fmp.2024.14 Published online by Cambridge University Press



Forum of Mathematics, Pi 13

o Since dcy—11(S), Ocg—1hr-1(S U c0), 0gy—2(S U cp) € T, Lemma 3.3 witha = ¢g —2,b = ¢o — 1,
and ¢ = cq implies d.,-2h,(S) € Z}.

o Since O¢y—2h,(S), Ocg—2hr-1(S U ¢0), 0¢y-3(S U cp) € 7, Lemma 3.3 witha = cog —3,b = co - 2,
and ¢ = co implies d.,-3h,(S) € Z}.

e Since 0¢y-31,(S), Ocy-3hr-1(S U €0), 0cy-4(S U co) € L%, Lemma 3.3 witha = cg—3,b = co - 2,
and ¢ = ¢ implies 0¢,-4h,(S) € 7', and so on.

We see that the polynomials
p/J,jo = 0jyhr(S) p’J’jOJrl =0jps1hr (S) ... p’J’CO_1 = Ocg—1h (S) (3.15)
lie in 7)) so that
(P, jgs P josts -+ -3 P co—12 Pdscotls Pdcgw2s -+ Pan) € I (3.16)

as ideals in C[x}y, Xj,+1, ..., Xn]. But the generators on the ideal on the LHS of (3.16) do not involve
the variable x,. In fact, if we consider the variable set

X = (xj07‘xj()+17 e ’xC()—l»xCo+17 e ,xn—l,xn) (317)

obtained from our old variable set (xjy, X jy+1, . . ., X») by removing x,, then
(p‘,],j()?p‘,]’jo_‘_la R p}’CO_l’ pJ,C0+1’ pJ,C()+27 e 7pj,n) = I}’ (318)
as ideals in C[x] where J' = (J — jo) U ¢o is the corresponding cyclic rotation of the set J. Since
the variable set x contains fewer variables than the original set {x;y, X o+1,...,X,}, we are done by
induction. o

An example may help clarify Lemma 3.4 and its proof. Suppose n = 7 and J = {3,5,6}. We have
Iy =(ps1,-..,p1,7), Where

PJ1= h] (1234567) Pi2 = h2(234567) PI3 = 63}13(34567) Pi4s= 63h4(3567)

PJ5 = 05h4(3567) pye=06hs(3567) py7=06hs5(356).
Our aim is to show that the ideal Z; contains the elements
03h5(356), 9shs5(356), Oehs(356).

To this end, we reason as follows.

e The element 0s/15(356) = py 7 is a generator of Z;. This was one of the desired memberships.

e Since 33h3(34567) = py.3,03h4(3567) = pya4, and 05ha(3567) = py 5 are elements of Zj,
Lemma 3.3 with § = {3,5,6,7},a =3,b =5 and ¢ = 4 implies 03h4(3567) € Z;.

o Since 03h4(3567),0ch4(3567) = pje, and Oghs5(356) are elements of Z;, Lemma 3.3 with
S=1{3,5,6},a=3,b=06and c = 7 implies d3h5(356) € Z,. This was one of the desired mem-
berships.

e Since 95h4(3567) = py5,06ha(3567) = pye,06hs(356) € Z;, Lemma 3.3 with S = {3,5,6},
a=15,b=06and ¢ =7 implies dsh5(356) € Z;. This was the remaining desired membership.

Observe that we did not use the generators py 1, ps.2 € Zy to derive these memberships, so that in fact
we showed membership in the smaller ideal

4
T;=(ps3P1.4P1.5P1.6-P7.7) S Clx3,x4, 5, X6, %7].
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Lemma 3.5. Let J C [n] with st(J) = (st(J)1,...,st(J),). If 1 ¢ J, the sequence of polynomials
Dils--->PJ.nisaregular sequence in C[X,] of homogeneous degrees st(J)1, . . ., st(J)n.

Ifled,thenpy i =01hi(x1,...,x,) =01 (x1 + -+ +x,) = 11is aunit in C[x,]. Correspondingly,
we have st(J); = 0. Since members of regular sequences are required to be of positive homogeneous
degree, we must exclude this case from Lemma 3.5.

Proof. Since 1 ¢ J, the sequence st(J) has positive entries. The assertion on degrees is Lemma 3.2 (2).
Asin Lemma 3.4, let Zy = (ps.1,...,ps.n) € C[X,]. By Lemma 2.2, it is enough to show that the
variety V(Z) € C" cut out by Z consists of {0} alone. We use elimination to focus on coordinates in C"
indexed by J.

Swanson and Wallach proved [37, Lem. 6.2] that that the polynomials d;h,,_|7}+1(J) for j € J have
no common zero in C/. By Lemma 3.4, for any locus point @ = (ay,...,a,) € V(Z;), we must have
aj = 0forany j € J. Setting the variables {x; : j € J} to zero in the remaining polynomials

P1.i lxj—0for jes (i¢l) (3.19)
gives a sequence of positive degree homogeneous polynomials in C[x; : i ¢ J] which are easily seen
to be triangular. We conclude that a; = 0 for i ¢ J, so that a = 0 as required. O

Lemma 3.5 implies that the quotient ring C[x,,]/(ps 1, ..., ps.») has Hilbert series
Hilb(C[xn]/(ps15-- s Prn)iq@) = [st(Dilg -+ [st(Unlg- (3.20)
This formula remains true when 1 € J, for then py = 1 and C[x,]/(ps.1,...,ps.n) = 0. In partic-

ular, there exists a set 5,(J) € C[x,] of homogeneous polynomials with degree generating function
[st(I)ilg - - - [st(J)n]q such that B, (J) descends to a vector space basis of C[X,]/(ps,1,...,PJ.n)-

3.2. An abstract straightening lemma

The proof of Lemma 3.5 relied on a a tricky induction in Lemma 3.4 and miraculous polynomial identity
in Lemma 3.3. Our next result should persuade the reader that Lemma 3.5 was worth the effort.

Lemma 3.6. (Straightening) Let J C [n] with st(J) = (st(J)1,...,st(J),). There exists a finite set
B, (J) € C[x,] of nonzero homogeneous polynomials with degree generating function

Z qdeg(m) = [st(Dilg [st(D)aly - - [st(D)nly (3.21)

meB, (J)

such that for any polynomial f € C[X,], we have an expression of the form

f-0;= Z Crm-m-0y|+g+Z, (3.22)
meB, (J)

where

e the ¢y, € Care constants which depend on f and m,
o the element g € SI, lies in the supercoinvariant ideal, and
o the ‘error term’ X lies in @J<GaleK Cl[xn] - Ok.

Proof. As explained after Lemma 3.5, there exists a set B,(J) € C[x,] of homogeneous poly-
nomials with the given degree generating function which descends to a vector space basis of
Clxnl/(ps.as---»Py.n)- We prove that B, (J) satisfies the conditions of the lemma.
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The given polynomial f € C[x,| may be written as

f=l D crmem +Zn:Aj-p,,j (3.23)

mebB, (J) Jj=1

for some scalars cf ,, € C and polynomials A; € C[x,]. Multiplying both sides of Equation (3.23) by
0 yields

n

Feor=| D> crmom-05|+ > Ajprj-6y. (3.24)
meB, (J) Jj=1

Equation (3.8) gives the relation

f-6;= Z Cram-m-0; +Z¢Aj-q,,j mod @ C[Xn] - Ok (3.25)
meB, (J) J=1 J <Gale K

modulo the linear subspace (P ; <cuk © [x,] -0k of Q. Finally, Lemma 3.2 (1) implies the membership
g =27 ¥A; - qy,j € Sy, which completes the proof. |

Lemma 3.6 implies that the set B, C Q,, of superspace elements given by

B, = |_| Ba(J) -6, (3.26)

JC[n]

descends to a spanning set in SR,,. Indeed, if this were not the case, let J C [n] be a Gale-maximal
subset such that f - 6; € Q, does not lie in the span of B,, modulo S7,, for some f € C[x,]. Lemma 3.6
implies that

F05=| Y cpmom-0y|+X  mod SI, (3.27)
meB, (J)

for some constants ¢ ,, € C where X € (P J<cuK C[x,] - k. The term in the parentheses certainly
lies in the span of B,,. The Gale-maximality of J implies that Z lies in the span of B,,, as well, giving a
contradiction.

The straightening result of Lemma 3.6 is rather abstract in that it does not give a formula for
the polynomials in B,(J). While any generic set of polynomials of the appropriate degrees will do,
the authors are unaware of an explicit formula for the set 5,,(J). In general, objects related to SR,
have resisted analysis by Grobner-theoretic techniques, which is reflected in the abstract statement of
Lemma 3.6.

Lemma 3.6 implies an upper bound for the bigraded Hilbert series of SR,,. Given two polynomials
f(q,z),g(q,z) in variables ¢, z, we write f < g to mean that g — f is a polynomial in ¢,z with
nonnegative coefficients.

Proposition 3.7. The bigraded Hilbert series Hilb(SRy,; q, 7) is bounded above by

n
Hilb(SR,: q,z) < Z M1 Z qdeg(f):Zzn_k-[k]!q~Stirq(n,k). (3.28)
JC[n] feBy(J) k=1

Proof. As explained above, Lemma 3.6 implies that B,, = || c[,) Bn(J) descends to a spanning set of
SRy. Since 3,e, (1) gdeetm) = [st(Ilg - - - [st(S)nlg, the result follows from Lemma 2.1. O
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4. Differential operators and colon ideals

The straightening result of Lemma 3.6 led to the upper bound on the dimension of SR,, in Proposition 3.7.
Our next task is to bound this dimension from below. To this end, we define strategic differential
operators D; whose action on C[x,] has Gale maximum term ;. Analysis of this leading term will
lead to finding a lower bound for quotient rings of the form C[x,]/(, : f7), where I,, C C[x,] is the
classical coinvariant ideal and the f; € C[x,] are products of linear forms determined by D . It will turn
out (Theorem 4.12) that (I, : fy) is generated by the regular sequence py.1,...,ps.» of Lemma 3.5.
Together with the triangularity property of the Dy, this will lead to the required lower bound on SR,,.

4.1. The differential operators Dy

Let H be the n X n matrix of complete homogeneous symmetric polynomials whose row #, column j
entry is given by

H = (hizj(Xis Xists - -, Xn)) 1<i<n - 4.1
1<j<n

We have ho = 1 and interpret h;_; = 0 whenever i > j, so the matrix H is lower triangular with 1’s on
the diagonal. We use the matrix H to define a family of differential operators as follows. Given a subset

K C [n], we introduce the ‘reversal’ notation
K'={n-k+1:keKk}. 4.2)

Definition 4.1. For any subset J C [n], define a differential operator D; acting on Q,, by

()= Y (“DE A s (mony (H) © di (£), (4.3)
=171

where A[,1-7 ([n]-1): (H) € C[x,] is the minor of H with row set [n] — J and column set ([n] — 1)*.

Since the matrix H is lower triangular, the coefficient of d; in D is zero unless we have I* <gue J
in Gale order. As an example, when n = 3, the matrix H is given by

1 00
H = X2 + X3 10
x% x3 1

and we have the differential operators

Di2(f) = =A3,1(H) © di2(f) + Az 2(H) © di3(f) — Az3(H) © das(f)
Di3(f) = =A2,1(H) ©di2(f) + Ar22(H) © di3(f) — AastH) © daz(f)
D3(f) = —AL1(H) © dia(f) + AsatH) © di3(f) — AastH) © doz(f)
acting on superspace elements f € Q3 where the indicated minors of H vanish for support reasons.
Applying the formula d; (f) = (x’i o f)o; + (xé o f)o,+ (xg O f)03, these operators may be expressed
in the more illuminating form
Di2(f) = (x1(x1 = x2) (x1 = x3)x2(x2 = x3)) © f - 616
Di3(f) = (x7x3 +X{xox3 — X1x3X3 — X7x3) © f - 0162 — (x1(x1 — X2) (X1 — X3)x3) © f - 0163
Dos(f) = (xfx2 —x1%3) © f - 0162 + (x1x3 — x1x3) © f - 0165 + (x2(x2 — X3)x3) O f - 6263,

which reveals a triangularity property with respect to the fermionic monomials 66, 6163 and 6,65.
Furthermore, the ‘leading coefficient’ 8; involved in D, has the form f; © (-) up to a sign where the
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polynomials f; were defined in the introduction. We will show that this is a general phenomenon. Our
first lemma in this direction is a simple result on the application of the d; operator to polynomials in
C[x,]; its proof is left to the reader.

Lemma 4.2. Let f € C[x,] be a polynomial and let I = {i; < --- <i,}and K = {k; < --- < k,} be
two subsets of [n] of the same size. The coefficient of Ok in d;(f) € Q, is the determinant of partial
derivatives

5£‘.f alirlf
(4.4)

b o 9

Definition 4.1 and Lemma 4.2 motivate the following family of polynomials &, x € C[x,] indexed
by pairs of subsets J, K C [n]. The definition of the &, g also involves the matrix H.

Definition 4.3. Let J and K be two subsets of [n] of the same size. Define a polynomial &, x € C[x,]
by

8k = Z (=DEA =g (in)-1) (H) - i | ke ier 4.5)
[I=|J|=IK]|

where the row and column indices in the determinant |x}€| keK,icI are written in increasing order.

The differential operators D; and the polynomials & x are related by

D,(f)= ), Brkof)xok (4.6)

IK|=1J]
for all f € C[x,].

Remark 4.4. The polynomial A ,)_7 ({n]-1)-(H) appearing in Definition 4.3 is (up to variable reversal)
a flagged skew Schur polynomial whose flagging parameter depends on J and whose shape depends on
I and J, as may be seen from the Jacobi-Trudi formula. This is how the &7 x were discovered, but their
matrix minor formulation is more convenient for our purposes.

We aim to show that the §; x are triangular with respect to Gale order. As a first step, we express
7.k as asingle n X n determinant.

Lemma4.5. Let J = {j; <--- < j,}and K = {k| < -+ < k;} be two subsets of [n] of the same size.
Write b(J) = (b(J); < b(J); < ---) for the entries in the complement [n] — J of the set J, written in
increasing order. Define an n X n matrix Ay g in block form

By k
Ajk = SR 4.7
J.K (CJ,K) 4.7
where the top block By x has size r X n and entries

le DY xk]
BJ,K = . (48)
X

n PEEEEY
kr kr
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and the bottom block Cj g has size (n — r) X n and entries

Cr.x = (Mp(1)—j (Xb(1)is Xb(J)it1s - - -2 Xn) N <i<n—r, 1<j<n- 4.9)
We have Fj x = +det(Ay k).
Proof. The determinant det(A; k) may be evaluated using the rule
r+l
det(As k)= . (-DE"C) Af(B) k) - Ay (Cr k), (4.10)
I<[n]

[1|=r

where Ay (By k) is the maximal minor of By x with column set / and A,1-;(Cy k) is the maximal
minor of C; g with complementary column set [n] — /. Now compare with the definition of §; x. O

To illustrate Lemma 4.5, we let n = 5, J = {1, 3}, and write K = {a,b} for1 < a < b < 5. Lemma
(4.5) expresses 7.k = &13,ap as the following 5 X 5 determinant:

X XXy xpoxg
X, XX, XX,
Fizap = +|1(2345) 1 0 0 0.
h3(45) hy(45) hi(45) 1 0
ha(5)  h3(5) ha(5) hi(5) 1

The determinant in Lemma 4.5 may be evaluated to give the desired triangularity relation for the
polynomials &y x. Lemma 4.5 will also imply that the &, ; are given the polynomials f; € C[x,]
appearing in the introduction. We reiterate their definition below.

Definition 4.6. For any subset J C [n], let f; € C[x,] be the polynomial

fj ZZI—[)C]' ﬁ(xj—xi) . (4]])

jeJ i=j+1

Observe that the f-polynomial corresponding to a set J factors f; = [];c; f{;} into f-polynomials
corresponding to singletons contained in J. The polynomials f; € C[x,] will have deep ties to the

supercoinvariant ring SR,,. For later use, we record a criterion for when f7 lies in the classical coinvariant
ideal I,, € C[x,].

Lemma 4.7. Let J C [n]. We have f; € I, ifand only if 1 € J.

Proof. Suppose 1 € J,sothat fi1y | f7. We claim f{1) = x1(x1 —x2)(x1 —x3) - - - (x1 —Xp) € I,,. Indeed,
if t is a new variable, then modulo /,, we have

1= (1—tx1)(l—t)162)-~~(l—txn) mod I, (4.12)
so that
(I =txp) - (1 —txp) = T mod I,,, (4.13)
and taking the coefficient of ¢ yields
(-D%eq(x2,...,x,) =x§ mod I,. (4.14)
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We conclude that
n—1
fuy = Z(—l)ded(xz, o xp) X = x"=0 mod I, (4.15)
d=0

where we used the fact that x' € I,.

Now suppose 1 ¢ J. Recall that annc[y,1(6,) = I,, under the ®-action of C[x,] on itself. Therefore,
to show that f; ¢ I, itis enough to show that f; ©6, # 0. Since f; =[], f{;}, it suffices to show that
fr ©6, # 0when J = Jy :={2,3,...,n} is the maximal subset of [n] not containing 1. By definition,
we have

fry = (x2x3 - xp) X l_[ (xr —x5) (4.16)

2<r<s<n

so that the terms of fj, are (up to a global sign) the terms of ¢,, in which x; does not appear. If we use
= to denote equality up to a nonzero scalar, we therefore have

J1, ©6n = f1,© f1, > 0, (4.17)

where we used the fact that both f;, and ¢,, are homogeneous of degree ('21) and the factthat f© f > 0
for any homogeneous nonzero polynomial f. O

The determinant in Lemma 4.5 may be evaluated to give the desired triangularity relation for the
polynomials &7 k. Lemma 4.5 will also imply that §; 5 = +f.

Lemma 4.8. We have &7k = 0 unless J 2gqe K in Gale order. Furthermore, we have

&0 =%£fs. (4.18)

Proof. We factor [];cx xx out of the upper block By x of the determinant det(Ay x) = =& x in
Lemma 4.5. Next, we apply column operations to eliminate the s4(S)’s in the bottom portion C; g of
this determinant.

Specifically, we focus on each pivot 1 in C; g from bottom to top. Working to the left from a given
pivot 1, in row i of C; k, we subtract x. times column j of Ay x from column j — 1, where x. is
a variable belonging to {xp(s);» - Xn} = {Xp()s - - - Xn ). Since hg(S) = xchg-1(S) + ha(S - ¢)
whenever ¢ € S, this eliminates the /,4(S)’s from the bottom portion C; g of our determinant. After
performing these operations, the determinant det(A; k) is reduced to a single maximal minor of its
(new) upper portion B g, from which the result follows.

To see how this works in our example J = {1,3} and K = {a, b}, we factor out x,x; from the top
two rows of our determinant to get

x> x4 x3 x2 xl x4 x3 x2 xlo1

xi x2 xz xlzj x}’ xi xz xi x}? 1
hi1(2345) 1 0 0  O|=xqxp|h1(2345) 1 0 0 0.
h3(45) hp(45) hy(45) 1 0 h3(45) hp(45) hy(45) 1 O
ha(5)  h3(5) ha(5) mi(5) 1 ha(5)  h3(5) ha(5) hi(5) 1

Our focus shifts to the bottom three rows. Since the bottom pivot 1 is in column 5, we subtract x5 times
each column from the previous column, resulting in
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xi xz xi xé 1 xi - x2x5 x‘; —lex5 xi — XgX5 xtll —x5 1
x‘g xz xi x}? 1 x‘g - xl37X5 xz —xi)g xi — XpX5 )cll7 —x5 1
XaXp |h1(2345) 1 0 0 0] =x4xp| h1(234) 1 0 0 0f.
h3(45) hp(45) hy(45) 1 0 h3(4) hy(4) hi(4) 1 0
ha(5)  h3(5) hp(5) m(5) 1 0 0 0 0 1

This has the effect of eliminating the argument x5 from the %’s. To eliminate the x4’s from the arguments
of the A’s, we focus on the pivot 1 in row 4, column 4. For each column before column 2, we subtract
X4 times the subsequent column. The result is

xi — xg)C5 - XZX4 +X3X4X5 xg — XZX5 - X§X4 + XgX4X5 xi — XgX5 — XgX4 + X4X5 x; —x5 1
4 3 3 2 3 2 2 2 1
Xy, — XpX5 — XpXg +be4X5 Xy, — XpX5 — Xp X4 + XpX4X5 X, — XpX5 — XpX4 + X4X5 Xy, — X5 1
XaXb hy(23) 1 0 0 0.
0 0 0 1 0
0 0 0 0 1

The entries of this matrix are better written using elementary symmetric polynomials, viz.

vt —x3e1(45) + x2e2(45) x3 — x2e1(45) +x4e2(45) X2 —x4e1(45) + e2(45) x4 —e1(5) 1
x2 —x2e1(45) +x12)e2(45) xz —xie1(45) + xpe;(45) xl% —xpe(45) +ex(45) xp — e (5) 1

XaXb h1(23) 1 0 0o 0.
0 0 0 1 0
0 0 0 0 1

Continuing to pivot 1 in row 3, column 2, we multiply the second column by —x; — x3 and add it to the

first column. The result is

xh — x3e1(2345) + x2e2(2345) — x4€3(2345) + €4 (2345) x2 — x2e1(45) + xqae2(45) X% — xqe1(45) +e2(45) x4 —e1(5) 1

X} — x7 e1(2345) + x7 €2(2345) — xpe3(2345) +€4(2345) x} — x7e1(45) + xpe2(45) x7 — xper(45) +e2(45) xp —e1(5) |

XaXp 0 1 0 0 0f-
0 0 0 1 0]
0 0 0 0 1

which may be expressed as the smaller 2 X 2 determinant

x — x3e1(2345) +x2e5(2345) — x4e3(2345) + €4(2345) x4 — e1(5)

4
a
XaXp .
X} — x3e1(2345) + x7.e2(2345) — xpe3(2345) + €4(2345) xp, — e1(5)

The entries in this smaller determinant factor as

(xa _x2)(xa —X3)(}Ca _x4)(xa —X5) (xa —X5)
(xp = x2) (xp — x3) (xp — Xx4) (xp — x5) (xXp — X5)

XaXb

For general J = {j; <--- < j,}and K = {k; < --- < k. }, this procedure yields the formula

Frx == ka |Mis g, ok, =30 ey (4.19)
€

expressing & x as an r X r determinant times the variables indexed by K. If k, > j,, the (p, q)-
entry of the determinant in Equation (4.19) vanishes. If J £gale K, this determinant has the block form
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'; :‘ where the southwest block of zeros intersects the main diagonal, so that §; x = 0. If J = K, the

determinant in Equation (4.19) is upper triangular, and the product of diagonal entries is as described
in the statement of the lemma. O

4.2. The colon ideal (I, : fy) in C[x,]

Thanks to Lemma 4.8, the differential operators D exhibit useful triangularity with respect to the Gale
order on fermionic monomials. In order to consider their fermionic leading term 6, we will study the
colon ideals

(In: f1):={g €C[x4] : g f7 € In} € C[x4], (4.20)

where I, C C[x,] is the classical coinvariant ideal.
It will turn out (Theorem 4.12) that the ideal (Z,, : f;) has two other equivalent definitions. As a first
step to proving this, we introduce the following bigraded subspace of ,,.

Definition 4.9. Let SH;, be the smallest linear subspace of €2,, which

e contains the superspace Vandermonde 6,
e is closed under all bosonic partial derivatives 0y, ..., d,, and
e is closed under the action of the higher Euler operators d; fori > 1.

Swanson and Wallach showed [37] that SH;, is annihilated by the supercoinvariant ideal SI,, C €,
under the ®-action, so that SH;, € SH, is a subset of the superharmonic space. We will show (Theorem
5.1) that in fact SH;, = SH,. For now, we can use SH;, and our triangularity results (Lemmas 3.2 and
4.8) to show that the polynomials py 1, ..., py., from Section 3 lie in (I, : fy).

Lemma 4.10. Let J C [n]. Forany 1 <i < n, we have py; € (In : fr).

Proof. Let q;; € SI, be the supercoinvariant ideal element associated to p; ;. By Lemma 3.2 (3), we
have

Qri=pri-0r+ ), AL-6L (4.21)
J <Gale L

for some polynomials Ay, € C[x,]. However, Lemma 4.8 implies that

Dy (62) = (f1©062) - 05+ ), Bi -0k (4.22)
K<Gu]el

for some Bx € C[x,], where = denotes equality up to a nonzero scalar. Since D is a linear combination
of dj operators with coefficients in 9y, . . ., d,, we have

D;(6,) € SH., C SH,, (4.23)

where the C is justified by the work of Swanson and Wallach [37]. Since SI,, annihilates SH,, under the
©-action and g7 ; € SI,, we have

q75.i ©D5(6,) =0. (4.24)
The triangularity relations (4.21) and (4.22) force

(P1,i f1)©6,=psiO(f5 ©6,)=0. (4.25)

Since annc[y, | (6,) = I, this implies that p; ; - f; € I, or equivalently, py; € (I, : fr). O
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The colon ideals (I, : fy) are connected to a class of permutations in S,. If 1 < j < n,
a permutation w € S, is called j-resentful if w(j) = n, or the value w(j) + 1 appears among

w(j+1),w(j+2),...,w(n).* The permutation w is j-Nietzschean if it is not j-resentful.>
If J C [n] is a subset, a permutation w € S,, is J-Nietzschean if it is j-Nietzschean for all j € J. We
write
Ny :={w € S, : wis J-Nietzschean} (4.26)

for the set of all J-Nietszschean permutations in &,,. Nietzschean permutations are counted by a simple
product formula.

Proposition 4.11. Let J C [n]. The number of J-Nietzschean permutations in S,, is given by

n

191 = [ [ st 4.27)

i=1
where st(J) = (st(J)1, ..., st(J),) is the J-staircase.

Proof. We consider decomposing the one-line notation of permutations w = [w(1),...,w(n)] € S,
to the permutation [1] € &; by iteratively removing the last letter w(n) and ‘standardizing’ to the
unique order-isomorphic permutation in &,,_;. For example, the permutation [6,3,5,1,4,7,2] € S,
decomposes as follows:

[6,3,5,1,4,7,2]
[5,2,4,1,3,6]
[5,2,4,1,3]
[4,2,3,1]
[3,1,2]
[2,1]

(1]

Reversing this process, we can build up from [1] € &S, to a permutation in S,, by appending a new
letter to the end at each stage. In order for the resulting permutation w = [w(1),...,w(n)] € &, to
be J-Nietzschean, suppose we have a permutation [v(1),...,v(k — 1)] € ©;_; at some intermediate
stage and we want to build a permutation in S;. We may append any of the numbers in {1,...,k} to

[v(1),...,v(k —1)], except the following.

e If k € J is a Nietzschean position, we cannot append k, since this would ultimately force w(k) = n or
force an entry 1 larger than w (k) to appear among w(k +1), ..., w(n), so that w would be k-resentful.

e Whether or not k is a Nietzschean position, we cannot append a value v(j) + 1 for any Nietzschean
position j € J satisfying j < k, since this would ultimately force w(j) + 1 to appear among
w(j+1),...,w(n), so that w would be j-resentful. The value v(j) at a Nietzschean position j < k
inductively satisfies v(j) < k — 1.

In general, the conditions above imply that the number of choices to append to [v(1),...,v(k —1)] is
k+1-|{jed:j<k}, (4.28)

which yields the claimed product formula. O
4We think of the one-line notation w = [w (1), ..., w (n)] as recording the scores of n musicians performing in a competition;

after their performance, they sit down and join the audience. If the j th contestant scores best (i.e., w (j) = n) or is beaten by 1
by an later contestant, this creates feelings of resentment (on behalf of the other contestants or the j** constant, respectively).
5The creator of The Superman should have some avatar in superspace.
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We will see that | ;| = dimC[x,]/(I, : fr), so J-Nietzschean permutations enumerate bases of
C[x,1/(I, : fr). However, the connection between Nietzschean permutations and colon ideals goes
deeper than this. To explain, we recall the powerful theory of orbit harmonics.

For any subset Z C C", let I(Z) C C[x,] be the ideal of polynomials which vanish on Z:

I(Z2) ={f €C[x,] : f(z)=0forallz e Z}. (4.29)

The quotient ring C[Z] := C[x,]/I(Z) is the coordinate ring of Z and has a natural identification with
the family of polynomial functions Z — C. If we assume the locus Z € C" is finite (as we will from
here on), by Lagrange interpolation any function Z — C is the restriction of a polynomial in C[x,],
so we may identify C[Z] with the vector space formal C-linear combinations of elements of Z.

The quotient ring C[Z] = C[x,,]/I(Z) is almost never graded, but there is a way to produce a graded
quotient of C[x,,] from I(Z). For any nonzero polynomial f € C[x,], let 7(f) be the highest degree
homogeneous component of f. That is, if f = fz+--- + fi + fo where f; is homogeneous of degree i
and fy # 0, we have 7(f) = f;. We define a new ideal grI(Z) ¢ C[x,] by

et l(Z) == (v(f) : fel(Z), f+0)CC[x,]. (4.30)
The ideal gr I(Z) is homogeneous by construction. We have an isomorphism of vector spaces
Cl[Z] = C[x,]/1(Z) = C[x,]/gr1(Z), (431

where the latter quotient C[x,,]/grI(Z) is a graded vector space. The Hilbert series of C[x,]/grI(Z)
may be regarded as a g-enumerator of Z which depends in a subtle way on the embedding of Z inside C".

As an example, if Z = &, is the set of points in C" of the form [w(1),...,w(n)] forw € &, then
grI(S,,) = I, is the classical coinvariant ideal and the coinvariant ring R,, = C[x,]/I, is obtained in
this way. The following result states that the colon ideals (1, : f7) also arise via orbit harmonics.

Theorem 4.12. For any subset J C [n], the following three ideals in C[x,| are equal.

1. The colon ideal (I, : fy).

2. Theideal (py.1,...,pr.n) generated by the homogeneous polynomials py 1,...,psn € C[X,].

3. The homogeneous ideal gr1(N ;) attached to the locus Ny C C" of J-Nietzschean permutations in
S,,. Here we consider S, C C" as the set of rearrangements of the specific point (1,2,...,n) € C".

If Z; C C[x,] denotes this common ideal, the Hilbert series of C[x,]/Zy is given by

n

Hilb (C[x,1/Z,39) = | [[st()ily (4.32)

i=1
where st(J) = (st(J)q, ..., st(J),) is the J-staircase.

Proof. Suppose 1 € J. Lemma 4.7 states that f; € I, so that (I, : f;) = C[x,]. Furthermore, we
have py1 = 01hi(x1,...,x,) = 1,s0that (ps1,...,ps.n) = C[x,]. Finally, since every permutation
w € G, is 1-resentful, we have :t; = @ so that grI(N,) = C[x,]. Since st(J); = 0, we are done in this
case and assume that 1 ¢ J going forward.

Lemma 4.10 yields the containment of ideals

(Pr1se-spPin) S Un: fr) (4.33)

so that (2) € (1). We apply Lemma 2.3 witha = I,,,a" = (ps.1,...,ps.n), and f = f;. We check the
conditions of this lemma.
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e The ideal I,, is generated by the regular sequence ey,...,e, € C[x,]. The Artinian quotient
Clx,]/(e1,...,en) is a complete intersection, and hence Gorenstein. Artinian Gorenstein graded
quotients of C[x,,] are Poincaré duality algebras; see, for example, [24, Prop. 2.1]. The socle degree
of I is (3).°

e Since 1 ¢ J, Lemma 3.5 implies that py 1,...,ps » is a regular sequence, so that the quotient
Clxnl/(ps.1s- -5 pr.n)isalsoaPoincaré duality algebra. The socle degree of this algebraisdeg py 1+
ce+degpya—n=st(J)+---+st(J), —n.

e Since 1 ¢ J, Lemma 4.7 implies f; ¢ I,. Furthermore, the polynomial f; has degree deg f; =
I G = st

Since we have
st(D)+---+st(J), —n+ Z(i —st(J);) = (;) (4.34)
i=1

we may apply Lemma 2.3 to conclude

(P11s--spin) =Un: fr) (4.35)

so that (1) = (2). This also implies that the claimed Hilbert series formula holds for Z; = (1) or (2).
For any radical ideals Z, 7 C C[x,], the colon ideal (Z : J) = {f € C[x,] : f-J C Z} has the
interpretation

V(IZ:7)=V(@)-V(T) (4.36)

in terms of varieties in C", where the bar stands for Zariski closure. If V(Z) is a finite locus of points,
the bar can be removed.

Write R; := S, — N, for the resentful complement of the J-Nietzschean permutations in S,,. Recall
that we take the specific embedding of &S, ¢ C" by taking all rearrangements of the coordinates of
(1,2,...,n) € C". This also embeds R, and N, inside C".

The (inhomogeneous) polynomial

fr=]]ei-m] e -x+1 (4.37)
jeJ i>j
vanishes on R . In fact, we have
Ny =6, - V(fy) =V -V(f1), (4.38)

where I, is the ‘deformed version’ of the classical coinvariant ideal
Ioi=(eq(x1, ..., xpn) —eq(l,...,n) : 1 <d < n). (4.39)
Since I, is radical and f; has no repeated factors, the Nullstellensatz implies
I(R,) = (VL) = V() =XV : f1) =T 2 f1) = Un 2 fr)s (4.40)
where +/- stands for the radical of an ideal. Taking associated graded ideals gives

grdRy) =gr (T, : fy) S (grln: fr) =T f1), 4.41)

SThe ring R,, = C[x,,]/1, is also a Poincaré duality algebra because it presents the cohomology of a compact smooth complex
projective variety: the flag variety.
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where the containment C is justified by considering the leading term of a polynomial § € C[x,] such
that g - fy € I,.

For arbitrary ideals Z and polynomials f, the containment gr (Z : f) € (grZ : 7(f)) can certainly be
strict. However, in our setting, Proposition 4.11 and the fact that

n

dim C[x,] /(I : f2) = [ [st(); = 9| (4.42)
i=1
imply
[Rs] =dimC[x,]/grI(N,) < dimC[x,]/ (L, : f1) = Ry, (4.43)
which forces grI(M;) = (I, : fy) so that (1) = (3) and the theorem is proved. ]

5. Operator theorem and Hilbert series
5.1. Operator theorem

We are ready to give our characterization of the harmonic space SH,, = SI;- C Q,,. The following result
was conjectured by Swanson and Wallach [37], and was previously conjectured by N. Bergeron, Li,
Machacek, Sulzgruber and Zabrocki (unpublished).

Theorem 5.1. (Operator Theorem) The superharmonic space SH, C Q, is generated as a C[x,]-
module under the ©-action by dj(6,) for subsets I C [n — 1]. In symbols, we have

SHy= ) Clxal ©dr(s). (5.1)
I1c[n-1]

The sum appearing in Theorem 5.1 is not direct. Since d;(6,) = 0 whenever i > n and we have
did; = —djd;, Theorem 5.1 may be rephrased as follows.

The superharmonic space SH,, is the smallest linear subspace of Q, which

e contains the Vandermonde determinant ¢,,,
e is closed under the differentiation operators 9, . . ., d, acting on the x-variables, and
o is closed under the higher derivative operators d; fori > 1.

Proof. Observe that the sum on the RHS of Equation (5.1) is the space SH,, of Definition 4.9. As
explained after Definition 4.9, Swanson and Wallach proved [37] that SH, € SH,,. Since SR, = SH,,,
Corollary 3.7 gives an upper bound on the dimension of SH,,. In order to show that this containment is
an equality, we use the D; operators and the colon ideals (/,, : fr) to show that the dimension of SH;,
is sufficiently large.

Let J C [n]. Applying the differential operator D to ¢, yields an element D, (6,) € SH,,. We use
our lemmata to derive the following facts about the superspace element Dy (6,,).

e By Lemma 4.2 and the vanishing assertion of Lemma 4.8, the coefficient of 8 in Dy (d,) is zero
unless K <gae J.
e By Lemma 4.2 and the product formula in Lemma 4.8, the coefficient of 6; in Dy (5,) is + f; © &,.

For any element f € Q,,, the annihilator
annc(x,]f = {g € C[x,] : g© f =0} € C[x,] (52)

is an ideal in the polynomial ring C[x,]. For any subset J C [n], we calculate

anncix,|(fs © 6,) = (annc(x, 16, : f1) = (In : fi1), (5.3)
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where we used the fact that the annihilator of the Vandermonde §,, is the classical coinvariant ideal I,,.
We claim that there exists a set 5,,(J) € C[x,] of homogeneous polynomials such that

o the set B, (/) has degree generating function X, ¢/ gie(®) = [T~ [st(J)i]4 and
e theset {g© (fy ©6,) : g € B,(J)} of polynomials in C[x,] is linearly independent.

Indeed, Theorem 4.12 implies that there exists a set B,,(J) € C[x,] of homogeneous polynomials with
the given degree generating function which descends to a linearly independent subset of C[x,,]/(1,, : f7)-
Since annc(y,1(6,) = I, for any such B, (J), the set of polynomials {g © (f; ©6,) : g € B,(J)} will
be linearly independent in C[x,].

We combine our observations to prove the theorem. Suppose that some linear combination

D, a0 eQ, (5.4)
Jcln] greBn(J)

(where the c; , € C are scalars) annihilates the space SH,, as a differential operator:

cr.a,(8761) O SH, = 0. (5.5)
Jcn] greBn(J)

By fermionic homogeneity, we may as well assume that
() for all J C [n] such that there is some ¢y ¢, # 0, the set J has a fixed size.

In particular, for any K C [n], we have

Z cr.g,(8701) |0 Dk (0,) =0. (5.6)
Jcln] gs€Bu(J)

Working toward a contradiction, assume that at least one of the scalars ¢ 4, € C is nonzero. Choose
Jo € [n] minimal under the Gale order such that at least one ¢ j, ¢, is nonzero. Letting K = Jo, we have

0= Z Z €y,0,(87-67) 0Dy (6,) 5.7
Jc[n] gseBn(J)

Clo.gs, * 840 | © (coeflicient of 6, in Dy, (6,)) (5.8)
8Jp €Bn (Jo)

= D Chgs 8 © 211,084, (5.9)
8y €85, (Jo)

where the second equality follows from the homogeneity assumption (x) and our Gale minimality
assumption and = denotes equality up to a nonzero scalar. The linear independence of the set {g,, ©
(f1o ©0n) * &gy € Bu(Jo)} forces ¢y, q, = 0forall g4, € B,(Jo), which is a contradiction.

We have the chain of inequalities

D 1Bu(d)] < dim SH}, < dim SH,, = dim SR, < > [Ba ()], (5.10)
J J

where the first inequality comes from the last paragraph, the second inequality follows because
SH) C SH,, the equality holds because SH, is the harmonic space to the quotient SR, and the last
inequality holds because of Corollary 3.7. These are all equalities, forcing SH,, = SH;,. O
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5.2. Hilbert series

Our goal in this subsection is to calculate the Hilbert series of SR, and describe a method for producing
bases of SR,,. The key to our approach is the following general linear independence criterion.

Lemma 5.2. Suppose that for each J C [n], we have a set C,,(J) C C[x,] of homogeneous polynomials
such that C,,(J) descends to a linearly independent subset of C[x,]/(I, : fr). Then the set C, C Q,
given by

|_| Ca(J) -6y (5.11)

JC[n]

descends to a linearly independent subset of SR;,.

The proof of Lemma 5.2 is quite similar to the proof of Theorem 5.1.

Proof. If not, we could find scalars ¢y ¢, € Cnot all zero so that

Z Z o, (gs-60,)=0 inSR, (5.12)

J<[n] greCn(J)

or equivalently,

D> cre(gs-6s) |0 SH, =0. (5.13)
Jcln] greCn(J)

If we choose Jo C [n] to be Gale-minimal such that ¢ g, # O for some g, € Cx(Jo), the relation

Z Z cr.e,(87-601)|0Ds(6,) =0 (5.14)

Jcn] greCn(J)

implies (just as in the proof of Theorem 5.1) that

Z Cho.g1y " 8J0 ) (fJo ©6,) =0, (5.15)
84 €Cn (Jo)
which contradicts the linear independence of C,, (Jo) in C[x,]/ (I, : f),)- |

We have all the tools necessary to calculate the Hilbert series of SR,,. This proves a conjecture
[33, Conj. 6.5] of Sagan and Swanson.

Theorem 5.3. The bigraded Hilbert series of SR, is
Hilb(SR,; ¢,2) = Zz"—k - [k - Stir (n, k). (5.16)
k=1

Proof. For all subsets J C [n], let B,(J) € C[x,] be a family of homogeneous polynomials which
descends to abasis of C[x,,]/(I, : fy). By Theorem 4.12, the degree generating function for polynomials
in B,(J) is

Z qdeg(gf) = [st()1]g - [st(D)nly- (5.17)

8J €B, (-1)

https://doi.org/10.1017/fmp.2024.14 Published online by Cambridge University Press



28 B. Rhoades and A. T. Wilson

Lemma 5.2 guarantees that B,, := | ], ¢, Bn(J) - 6 descends to a linearly independent subset of SR,,.
However, Lemma 2.1 shows that

Hilb(SR,: ¢, 2) > Z Z goeeten | 1]
]Q[n] gJEBn(J)

=Y "% . [k]!, - Stir,(n, k) > Hilb(SR,; ¢, 2), (5.18)
k=1

where the inequality is a consequence of Proposition 3.7. This forces the linearly independent subset
B, C SR, to be a basis and the inequalities to be equalities. O

We present a recipe for building bases of SR,, from bases of the various commutative quotients
Clx,1/(I, : fr). We also show how bases of the quotients C[x,]/(I,, : fy) induce bases of the
superharmonic space SH,,. Since Q,, = SH, & SI,, bases of SH,, automatically descend to bases of
SR, = Q,/SI,. Working in SH,, can be useful for machine computations since we do not need to
consider cosets f + SI,, € SR,,.

Theorem 5.4. Suppose that, for every subset J C [n], we have a set B,,(J) C C[x,] of polynomials. Let

By = |_| Bu(J) - 6;. (5.19)

Jc[n]
The following are equivalent.

1. Forall J C [n], the set IB,,(J) descends to a basis of the quotient ring C[x,1/(I, : fr).
2. We have a basis of the superharmonic space SH,, given by

|| b0, 0Ds(50) 0Dy (8n) : by € Bu(D)}- (5.20)
JC[n]

Either of (1) or (2) implies the following.
1. The set B, descends to a basis of SR,,.

Proof. The proof of Theorem 5.3 shows that (1) implies (3), so it is enough to verify that (1) and (2)
are equivalent.
We define a map ¥ of vector spaces

¥ @ Clxn]/(In : f7) — SH, (5.21)
Jc[n]
by the formula
W () ey D, (07 © Dy(6n) © Dy (60)- (5.22)
Jcl[n]

Since the coeflicient of 8; in Dy (6,,) is £(f; © §,), we have
[(Ln: fr) - 60,1 ©Dy(0n) =0 (5.23)

so that ¥ is well-defined.
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We claim that W is a bijection. Theorems 4.12 and 5.3 imply that the domain and codomain of ¥
have the same dimension, so it is enough to show that ¥ is a surjection. Indeed, Lemma 4.8 implies
Dy (6n) =(fy ©6,) - 05 +Z, where X € @K<Gale-l C[xy] - Ok . As a consequence, we have

(Cl[x,] - 07) © Dy () =C[x,] © (f7 ©6n) (5.24)

for each J C [n]. However, Theorem 4.12 implies that C[x,]/(I,, : fr) is Artinian Gorenstein with
socle spanned by f; © J,,. It follows that

C[Xn] o (fJ ®6n) = (In : f])_L (5.25)

as ideals in C[x,]. Working modulo the subspace (P <cued C[xn] - 0k, we have
[(C[Xn] ' GJ) O b](én)] O] DJ(én) = (In : fJ)L O QJ(én)

= C[x,] ©D,(6,) mod P Clxal-0k. (5.26)

K <galeJ

The surjectivity of ¥ follows from induction on Gale order and Theorem 5.1. O

5.3. Superspace Artin monomials

Theorem 5.4 gives a recipe for finding bases B,, of SR,, from bases B, (J) of the commutative quotients
Clxn]/(I,; : fr). Although a generic set B,,(J) C C[x,] of polynomials of the appropriate degrees
will descend to a basis of C[x,]/(I, : fr), the complexity of the ideals (I,, : fy) € C[x,] has so far
obstructed progress on finding non-generic bases B,,(J) of C[x,]/(I, : fr). We present a conjecture in
this direction.

Define the set of J-Artin monomials by

A, (J) = {xla‘ cexgn ap < st(J)}. (5.27)

That is, the set 4,,(J) consists of monomials in C[x,] whose exponent sequences fit below the J-
staircase. We have A, (J) = @ whenever 1 € J. If J = @, then A,(@) = {xf‘ coextnosogp < i} was
proven by E. Artin [4] to descend to a basis of R,,.

Conjecture 5.5. For any subset J C [n], the J-Artin monomials A,(J) descend to a basis of

Clxnl/Un : fi)-

Artin’s result [4] proves Conjecture 5.5 when J = @. By Theorem 5.4, if Conjecture 5.5 is true,
then

Av= | | Au(D) -0, (5.28)

JC[n]

would descend to a basis for SR,,. This would prove a conjecture [33, Conj. 6.7] of Sagan and Swanson.”
Thanks to Theorem 4.12, for any given J it would suffice to prove that .4, (J) is linearly independent in
or spans C[x,1/(1, : fr).

We will give evidence for Conjecture 5.5 by showing that it holds when J = {r + 1,...,n— 1,n} is
Gale-maximal. This requires a preparatory lemma on certain ideals ., ,, » € C[x,] generated by partial
derivatives of h-polynomials.

7While this paper was under review, Conjecture 5.5 was proven by Angarone, Commins, Karn, Murai and Rhoades [3] using
derivation modules of free hyperplane arrangements.
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Lemma 5.6. Letr > 1, let 1 < p < n+ 1, and consider the ideal
jr,p,n = (alhra aZhr, cees ap—lhr, aphr+lv RN an—lhr+l, 6nhr+l) c C[Xn] (529)

generated by n partial derivatives of homogeneous symmetric polynomials in the full variable set X,,.
The set of monomials

M, pni= {xlf] ---xZ" cbi<r—1fori<pandb; <rfori> p} (5.30)

descends to a basis for J p n.

Lemma 5.6 says that C[x,]/J p.,» shares the same monomial basis as the quotient by variable
powers C[x,]/ (xlr_l, . ,x; jll,x;, ...,x}). Since J, p n has inscrutable Grobner theory, our proof of
Lemma 5.6 relies on exact sequences. Harada, Horiguchi, Murai, Precup and Tymoczko used a similar
style of argument to prove an analogous result [ 19, Thm. 7.1] on an Artin-like basis for the cohomology

rings of regular nilpotent Hessenberg varieties.

Proof. Ifr =1and p > 1,then 1hy = 01 (x1 +---+x,) =1 € J; p , sothat 7, ,, , = C[X,] is the unit
ideal. Since M ,, , = @, the result is true in this case. We assume that » > 1 orr = 1 and p = 1 going
forward.

We leave it to the reader to verify the formula

X10thy + - +xp_10p_1hy +Ophpy1 + -+ 0nhpy1 =C - by, (5.31)
where C =r+n—p+1.Since ]l < p <n+1landr > 1, we have C > 0, and Equation (5.31) implies that
he € Jr pon- (5.32)

In particular, if we let S = [n] — {p}, we have
Aphrsr = 0p (Xphy + hrs1 (S)) = hy +xp - Ophy € Ty poa (5.33)
so that Jr p+1,n S Tr,p.n and V(Jr p.n) € V(Tr p+1.n). Swanson and Wallach [37, Lem. 6.2] showed
that V(J; n+1,n) = {0}, so that V(J, p ») = {0} (our assumptions on r and p guarantee that the

generators of J, , , have positive degree). Lemma 2.2 shows that the generating set of 7, , , is a
regular sequence, so that

Hilb (C[x,]/ Ty pnq) = [r = 127" - [r]07P* (5.34)

The memberships (5.32) and (5.33) imply that x,, - dph € T p.n,so that xp, - T psi,n S Tr.pon-
We therefore have an exact sequence

C[Xn] X Xp C[Xn] can. C[Xn]

— 0, (5.35)
L7r,p+1,n jr,p,n jr,p,n + (xp)

where the first map is induced by multiplication by x,, and the second map is the canonical projection.
The next step is to identify the target of the second map in this sequence in terms of a smaller variable set.
LetX,—1 = (X1,...,Xp—1,Xp+1,. . ., Xp) be the variable set x,, with x,, removed. Let

7 : C[x,] » C[X,_1] (5.36)
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be the surjection defined by 7 (x;) = x; fori # p and 7(x,) = 0. Let J; p.n—1 S C[X,_1] be the ideal
with the same generating set as 7, . ,—1, but in the variable set X,,_1. Writing S = [n] — {p}, for any
d > 0 and any i # p, we have the evaluation

. (9ihd [ [aihd]x,,—>0 = [ai(xp ’ hd_l + hd(S))]XP_’O
= [xp -0i(hg_1 + hd(S))]xp_m = 0;iha(S). (5.37)

Furthermore, we have

m:Ophg [aphd]xﬁ0 = [0p(xp - ha-1 + hd(S))]xﬁo = hag_1(S). (5.38)

Comparing the generators of 7, ,, , with those of jr,,,’n_l and using A, (S) € jr,p,n_l, we conclude
that

T (jr,p,n + (xp)) = jr,p,n—l (539)
so that the exact sequence (5.35) induces a new exact sequence

Clxn] xx» C[x,] v C[X,-1]
—> —=
jr,p+l,n jr,p,n jr,p,n—l

— 0, (5.40)

where the surjection ¢ is induced by 7. The Hilbert series formula (5.34) implies that the dimensions
of the vector spaces on either side of (5.40) add to the dimension of the vector space in the middle, so
the first map in (5.40) is injective, and we have a short exact sequence

Clxa]l xxp C[Xn]_f_)c[in—l]_)

0— e
jr,p+],n jr,p,n jr,p,n—l

0. (5.41)

By induction, we may assume that M, ;.1 , descends to a basis of C[x,]/J;, p+1,» and that

My pnor = a0 by <r =1 fori < pand by <rfori>pf  (542)

descends to a basis of C[X,-1]/J;. p.n—1. The exactness of (5.41) and the observation

Mr,p,n =Xp - Mr,p+1,n u Mr,p,n—l (5.43)
guarantee that M, ,, , descends to a basis for C[X,]/J,.p », which completes the proof. ]
Proposition 5.7. Conjecture 5.5 is true when J = {r + 1, ...,n—1,n} is a Gale-maximal subset of [n].

Proof. By Theorem 4.12, the generators of (I, : fy) € C[x,] are

hl(xla"',xn)’ hz('x17""x1’l)’ e hr('xl","'$xl’l)’
Orsthrst (Xrsts oo X0), Or2hrt (X5 oo 3 X0)s oot Ophp1 (Xpg, .0 X)), (5.44)

Since hy(xg,...,xn) = xﬁ +X, where X is a linear combination of terms which are > xf; in lexicographial
order, we see that C[x,,]/(I,, : fr) is spanned by monomials of the form xf‘ .- -xﬁ” where b; < ifori <r.
The generators 9; Ay +1 (X415 - - ., Xn) of (I, : fy) and Lemma 5.6 (applied over the set {x;41,...,x,} of
variables indexed by J) imply that .A,,(J) descends to a spanning set of C[x,]/(I, : f7). This spanning
set must be a basis by Theorem 4.12. O

Given Proposition 5.7, a natural strategy for proving Conjecture 5.5 would be to induct on the position
of J in Gale order. The base case of J Gale-maximal is handled by Proposition 5.7.If i ¢ Jandi+1 € J,
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we have s; - J <gale J, Where s; = (i, i+ 1) is the adjacent transposition in S,,. Furthermore, the property
(a: fg)=((a:f):g)of colon ideals gives rise to a natural injection

Chxl o Clu]
(In:fsi-J) (In:fj)’

00—

(5.45)

where ¢(f) := (x; — x;41) X §; - f is defined by swapping the variables x; <> x;;; and multiplying by
x; —x;+1. Unfortunately, the map ¢ does not relate to the structure of monomials in A4, (s; - J) and A,,(J)
in an obvious way; this has made Conjecture 5.5 resistant to inductive attack.

6. Conclusion

The most glaring open problem of our work is to enhance the Hilbert series result of Theorem 5.3 and
prove the Fields Conjecture 1.9 on the bigraded &,,-structure of SR,,. One way to achieve this would be
to show that the composite linear map

n
¢! @Vn,k < Q, —» SR, 6.1)
k=1

is bijective, where V,, x C Q, are the spaces constructed by the authors [30] and described in the
introduction. Thanks to Theorem 5.3 and [30], we know that the domain and target of ¢ have the same
vector space dimension, so we are asking that ¢ have a generic property. Unfortunately, much like in the
case of Conjecture 5.5, proving that ¢ satisfies this generic property has exhibited resistance to direct
attack.

Various ideas in this paper have made appearances in the theory of Hessenberg varieties. Lemma 2.3
on the realization of colon ideals (a : f) by complete intersections was used by Abe, Horiguchi, Ma-
suda, Murai and Sato [2] to relate the cohomology rings of Hessenberg varieties to derivation modules
of hyperplane arrangements associated to down-closed sets in positive root posets. The polynomials
f1 € C[x,] appearing in this paper factor into products [];c; f{;) labeled by singletons. In turn,
the polynomials fy;, labeled by singletons resemble members of a family f;; € C[x,] of polyno-
mials appearing in the work of Abe, Harada, Horiguchi and Masuda [1]. The polynomials f;; were
used to present the cohomology of regular nilpotent Hessenberg varieties using a GKM-style exci-
sion which bears combinatorial resemblance to removing J-resentful permutations from &,, to arrive
at J-Nietzschean permutations. An Artin-like basis of these cohomology rings was proven by Harada,
Horiguchi, Murai, Precup and Tymoczko [19]; we use similar techniques in the proof of Lemma 5.6 to
show in Proposition 5.7 that the Artin monomials attached to terminal subsets J = {r,r+1,...,n} C [n]
descend to a basis of the quotient rings C[x,]/(Z, : f7). Given these technical parallels, the authors
suspect that there is a deeper connection between the supercoinvariant ring SR,, and Hessenberg theory.
We present a conjecture in this direction as follows.

Recall that a finite-dimensional graded C-algebra A = EB:.J:O A; with Ay # 0 satisfies Poincaré
Duality if Ay = Cis 1-dimensional and if the multiplication A; ® Ay—; — Ag = Cis a perfect paring
for all 0 < i < d. If A satisfies Poincaré Duality, an element £ € A; of homogeneous degree 1 is a
Lefschetz element if, for all i < d /2, the map

472 % (=) T Ay — Ay (6.2)
of multiplication by £47% is a bijection. If a Lefschetz element £ € A exists, the algebra A is said to
satisfy the Hard Lefschetz property.

Algebras A which satisfy PD and HL arise naturally in geometry. If X is a smooth closed complex

projective variety, its cohomology ring A = H*(X) satisfies PD and HL (here we double the grading
by setting A; := H*(X)). For example, the coinvariant ring R,, = C[x,]/I, = H*(Fl(n)) satisfies PD
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and HL. Maeno, Numata and Wachi proved [25] that a linear form £ = c1x1 + - - - + ¢, X, is a Lefschetz
element of R,, if and only if the coefficients c1, ..., ¢, € C are distinct.

Even if a variety X is not smooth, its cohomology ring H*(X) can still satisfy PD and HL. Abe,
Horiguchi, Masuda, Murai and Sato proved [2, Thm. 12.1] that H*(X) satisfies PD and HL when
X is a regular nilpotent Hessenberg variety, despite the fact that these varieties are usually singular.
Furthermore, a graded algebra A = EB?:O A; can still satisfy PD and HL, and so behave like the
cohomology ring of a hypothetical smooth compact variety X. As we have seen, the quotients C[x,]/
(I, : fy) satisfy PD since they are complete intersections. For the next conjecture, we adopt the
convention that the zero ring 0 = H*(@) satisfies HL.

Conjecture 6.1. For any J C [n], the quotient ring C[x,]|/(I, : fy) satisfies the Hard Lefschet
property.

Conjecture 6.1 has been tested for n < 7. Computational data suggests that the linear forms
€ = c1x1 + -+ + cpx, continue to serve as Lefschetz elements, provided c1, ..., c, € C are distinct. We
suspect that the Hodge-Riemann relations hold for C[x,]/ (I, : fr), as well (see [2, Sec. 12]).

One of the most aesthetically pleasing aspects of SR, is its direct extension to general complex
reflection groups. An element g € GL,,(C) is a pseudoreflection if g is conjugate to a diagonal matrix
of the form diag(Z,1,...,1), where ¢ € C* is a root-of-unity of finite order. A finite subgroup
G C GL,(C) is a complex reflection group if G is generated by pseudoreflections.

The natural action of a complex reflection group G € GL,(C) on C" induces actions of G on
C[x,] and Q,, by linear substitutions. Chevalley proved [10] that the invariant subring C[x,]¢ admits

a set fi,..., fn of algebraically independent homogeneous generators of positive degrees, so that
C[x,]¢ = C[fi,..., fu] is itself a polynomial ring. Although the f; are not unique, their degrees
di,...,d, are uniquely determined by G. Solomon [34] proved that the superspace invariants (€,,)¢

are a free C[x, ]°-module and described a basis for this module as follows.

Theorem 6.2. (Solomon [34]) Let fi,...,f, € C[x,]®" be any list of algebraically independent
homogeneous generators of C[x,]%". The space (Q,)®" is a free module over C[x,|®" with basis

{dfs,--+dfi, :0<r<n, 1 <ij<---<i, <n}. (6.3)
Solomon’s Theorem 6.2 describes the space (Q,,)¢ of G-invariants as a C[x,,]©-module. Any funda-
mental system of invariants fi, . .., f, € C[x,]¢ givesrise to a generating set for the G-supercoinvariant
ideal SI generated by (,)¢. We have SIg = (fi,. .., fu.df1,...,df,) and may use this presentation
to study the quotient SR := Q,,/SI; as a bigraded G-module.

Solomon used Theorem 6.2 to give a uniform proof of the product formula

Z (MEX(S) — (p gy — 1) (14 dy — 1), (6.4)
geG

where Fix(g) = {v € C" : g-v = v} is the fixed subspace of C" attached to g. In type A, this is
equivalent to the factorization

n

Zc(n,k)-tk=t(t+1)---(t+n—1), (6.5)

k=0

where c¢(n, k) is the Stirling number of the first kind counting permutations w € S, with k cycles.
However, the algebra of SR,, = Q,,/SI,, is governed by ordered set partitions, which relate to Stirling
numbers of the second kind.

Ordered set partitions of [n] are in bijective correspondence with faces in the type A Coxeter
complex. All available data in types BCD suggest that the fermionic degree k piece of SRg = Q,/SIg
has dimension equal to the number of codimension k faces in the corresponding Coxeter complex
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(in type A this is a consequence of Theorem 5.3). We also have agreement in type H3. However, in type
F4, these quantities disagree. The bigraded Hilbert series of SR, is given by

Hilb(SRF,;q,2) =

1+4g +9¢% +16¢° +25¢* + 369 + 48¢° +60g” + 714" +80¢° + 87¢'* +92¢'! +94¢'2+ | 04
92" +87¢" +80g" +71¢'° + 60q'7 + 484" +36¢"° +25¢* + 16¢*' +9¢7*4 + ¢* + ¢**

4+ 15q +32¢% +55¢° + 84¢* + 118¢° + 152¢° + 182¢7 + 2044 + 215¢° + 2164'° + 207¢' '+ |

S
188912 + 16113 + 1324 + 105¢'5 + 80¢'° + 58417 + 409'8 + 26¢'° + 16¢% + 9¢>! +4¢% + ¢ | '

6 +20g +39¢% + 64q> +95¢* + 128¢° + 154¢° + 168¢" + 1644¢® + 140¢°+| ,
122¢'% +100g"" +75¢'% + 52¢"3 + 34¢'* +204'% + 10¢'0 + 4¢'7 + ¢'®

4+ 10g + 16¢> +25¢° + 36¢* + 434>+
4445 + 364" + 1648 +9¢° + 4¢'0 + ¢!

(©6)

and this expression has ¢ — 1 specialization
Hilb(SRg,; 1,2) = 1152 - 20 + 2304 - ' + 1396 - 22 + 244 - 23 + *. 6.7)

This coefficient sequence is almost the same as the reversed f-vector (1152,2304, 1392, 240, 1) of the
type F4 Coxeter complex, but the coefficients of z> and z* are too large by 4. Finding a precise invariant-
theoretic description of the Hilbert series of SR would likely be very interesting.
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