
Specification and Enforcement of Activity Dependency Policies using XACML

Tanjila Mawla1,∗, Maanak Gupta1, and Ravi Sandhu2

1Tennessee Tech University, Cookeville, Tennessee, USA
2University of Texas at San Antonio, San Antonio, Texas, USA

tmawla42@tntech.edu, mgupta@tntech.edu, ravi.sandhu@utsa.edu

*corresponding author

Abstract—The evolving smart and interconnected systems are

designed to operate with minimal human intervention. Devices

within these smart systems often engage in prolonged oper-

ations based on sensor data and contextual factors. Recently,

an Activity-Centric Access Control (ACAC) model has been

introduced to regulate these prolonged operations, referred to

as activities, which undergo state changes over extended dura-

tion of time. Dependencies among different activities can in-

fluence and restrict the execution of one another, necessitating

active and real-time monitoring of the dependencies between

activities to prevent security violation. In the ACAC model,

the activity dependencies, denoted as "D", is considered as a

decision parameter for controlling a requested activity. These

dependencies must be evaluated throughout all phases of an

activity’s life cycle.

To ensure the consistency of access control rules across

diverse domains and applications, a standard policy language

is essential. We propose a policy framework adapting the

widely-used eXtensible Access Control Markup Language

(XACML) , referred to as XACMLAD, to specify the activity

dependency policies. This work involves extending the syntax

and semantics of XACML by introducing new elements to

check dependent activities’ states and handle state updates on

dependent activities. In addition to the language extension,

we present the enforcement architecture and data flow model

of evaluating policies for activity dependencies. The integra-

tion of the proposed XACMLAD policy framework and the

enforcement of the policies supports dependency evaluation,

necessary updates and continuous enforcement of policies to

control an activity throughout its life cycle. We implement

the enforcement architecture exploiting the XACMLAD policy

framework and discuss the performance evaluation results.

Keywords–Activity-dependencies; XACML; policy; policy en-

forcement architecture; request, decision

1. INTRODUCTION

Security stands as a paramount element and a central focus

for the creators and developers of systems and applications.

Establishing a well-suited architecture for policy manage-

ment is essential to ensure the integrity of interconnected

systems. Going beyond conventional access control methods,

security systems must be adaptable and foster interoperability

across trusted domains [1]. Decisions regarding access to

a system’s resources by any requesting entity hinge upon

criteria determined by business needs, requirements, and the

designer’s preferences. While traditional access control models

concentrate on invariant attributes and their values to deter-

mine access requests’ decision, modern smart systems with

connected devices’ operations still require context-based, fine-

grained, flexible and comprehensive access control models.

To address this, Gupta and Sandhu [2] proposed the need for

Activity-Centric Access Control (ACAC) model, followed by

a mathematically grounded formal model by Mawla et al. to

control long-lived activities that are performed by connected

devices [3], [4]. The authors outlined access control decision

components for such device activities including Authorizations

(A), Obligations (B), Conditions (D) and Dependencies (D)

on other activities. Since, activity performed by a device is

a long-lived operation, to control such activities, the system

needs continuous policy enforcement incorporating the deci-

sion parameters of an activity control.

XACML (eXtensible Access Control Markup Language) [5]

stands out as a reliable standard for enforcing access control

policies in distributed yet interconnected systems. Traditional

access control models such as discretionary [6] , mandatory [7]

and role-based (RBAC) [8] access control policies have been

specified using XACML syntax. The flexibility of attribute-

based access control (ABAC) [9], [10] can be adapted by

the policy enforcement using XACML. Continuous policy

enforcement for grid computing [11], usage control (UCON)

[12]–[14] using XACML have been proposed in literature.

These works reflect the extensions for XACML elements to

accommodate access control policies for different security

models.

The aim of this paper is to create a policy framework referred

as XACMLAD for specifying the policy language to control

smart system activities based on the activity dependencies [3].

The dependencies (D) on activities is one of the decision

parameters for activity control which needs to be evaluated

at every phase of an activity’s life cycle [3]. Thus, continuous

enforcement of activity dependencies policies is essential. The

dependent activities must be in the desired states while a

decision is made on the requested activity. If the current state

of the dependent activities does not match with the desired

state, the current state of a mutable activity will have to

be updated before allowing the access. The update cannot

be occurred if the dependent activity is immutable. In that

case, the access will be denied. Such update on dependent

activities’ states are not trivial as it may require check if

there is any dependent of dependent activities leading to a

chain of dependencies created where all dependent activities

429

2024 10th International Symposium on System Security, Safety, and Reliability (ISSSR)

2835-2823/24/$31.00 ©2024 IEEE
DOI 10.1109/ISSSR61934.2024.00063

in the chain must have the desired states. The dependency

evaluation along with updating current states require a formal

language to specify the policies. We have analyzed the syntax

and semantics of XACML 3.0 [5] policy specification and

the related and nested entities of XACML 3.0 [15] which we

adapt for the policy specification of activity dependencies and

continuous activity control. We also propose a new element for

the state update actions by elaborating the necessary XACML

syntax. We use the data flow model proposed in [5] making

it compatible to the data flow of activity dependency policy

evaluation during an activity access control.

Rest of this paper is organized as follows. Section 2 provides

the background of Activity-Centric Access Control (ACAC),

activity dependencies and a review on XACML construct.

Section 3 presents several state-of-the art works in continuous

policy evaluation and XACML implementation. Section 4

explains the policies which we cover in proposed XACMLAD

policy framework. Further, the XACMLAD approach with

XACML extension is described Section 5. Section 6 presents

the architecture and data flow model of the policy evaluation

using XACMLAD syntax. Section 7 shows the prototype

implementation and the performance analysis of the proposed

XACMLAD policy framework enforcement. Lastly, Section 8

summarizes the work and provides the future work direction.

2. BACKGROUND

2.1 Activity-Centric Access Control

Today’s smart systems (such as smart farming, smart manu-

facturing, etc.) are expected to work with less human inter-

vention using the sensor data, evaluation of the environmental

conditions and dependencies between multiple devices’ op-

erations. To meet these challenges, the activity-centric access

control (ACAC) is introduced. Activity-Centric Access Control

(ACAC) [2]–[4] is a novel approach for controlling smart

system devices’ activities that are executed for a long duration

of time based on the systems’ needs. ACAC combines the

following aspects for access control decision: 1) considering

dependencies among activities as a pivotal factor in activity

control, and 2) ensuring continuous and active run-time en-

forcement of activity control parameters. In smart systems,

such as smart farming, activities like plowing fields, pumping

water, and spraying water are carried out by intelligent devices

such as smart tractors, solar-powered smart pumps, and aerial

drones, respectively. The proposed ACAC model encounters

the following decision components to control activities at

different decision time.

• Authorization (A). Only authorized source requester can

get access to the requested activity.

• Obligations(B). Obligations are required one time actions

that must be performed by the requesting source or

any other subjects before an access being allowed to a

requested activity.

• Conditions (C). Environmental conditions must be eval-

uated before an access decision on an activity. For

example, comparing the attribute values collected from

the sensor data to pre-determined values should result in

boolean "True" value in order to be satisfied as conditions.

• Dependencies (D) on activities. The relations (such as

order of activities, concurrency) between the requested

activity and other activities create dependencies that must

be checked to ensure that the dependent activities have

the desired current states while taking any decision (start,

continue, hold) on the requested activity. We elaborate on

this parameter in the next subsection.

2.2 Dependencies of Activities

In smart systems, the activities that have relationships with

other activities in terms of execution order, concurrency,

incompatibility, must ensure that these relations are maintained

whenever access decisions on these activities are taken. For

instance, when an activity is requested, two other activities

need to be finished to ensure that the sequence of execution is

maintained. These dependencies are checked in three different

phases of the requested activity - pre, ongoing and post. Note

that, each activity belongs to one of the states from inactive,

dormant, aborted, running, revoked, hold or finished [3].

Once an activity is requested, the pre-dependent activities need

to be in their desired states before allowing the requested

activity to start. The continuity of the requested activity’s exe-

cution depends on the fulfillment of the ongoing-dependencies.

After a requested activity is finished or revoked (due to

ongoing dependency violation), the post-dependent activities

are evaluated. In these three cases, if the desired states of the

dependent activities do not match with their current states,

the activities must change their states to the desired ones to

accommodate access decision on the requested activity. The

dependent activities may depend on some other activities while

changing their current state to the desired states and can form

a chain of dependencies. In each level of the chain, the parent

activity only can change the state if the child (dependent)

activities are in their desired states. These recursive evaluation

and update procedure as activity control parameter makes

the ACAC model apart from other existing access control

models. In this work, we specify activity dependency policies

for evaluation, assuming the other decision parameters are

checked and satisfied.

2.3 XACML Review

XACML (eXtensible Access Control Markup Language) [5]

is a reliable and adaptable standard in terms of access control

and security policy management. Access control in various

applications and services, especially in distributed and web-

based environments, can be flexible and extensible using

XACML. XACML is developed and maintained by the OASIS

(Organization for the Advancement of Structured Information

Standards) consortium [16].

According to the XACML policy specification language, poli-

cies are defined in XML format and specify rules for making

access control decisions. A rule set or policy defines the

structural organization of XACML. Rules may have a single

condition or a set of conditions under which circumstances

430

Listing 1. XACML Policy Construct

< P o l i c y S e t P o l i c y S e t I d = " "
Po l i cyCombin ingAlg Id = " ">
< P o l i c y P o l i c y I d = " "

RuleCombiningAlgId = " ">
< T a r g e t >

< S u b j e c t s > . . . < / S u b j e c t s >
< R e s o u r c e s > . . . < / R e s o u r c e s >
< A c t i o n s > . . . < / A c t i o n s >

< / T a r g e t >
<Rule R u l e I d = " "

E f f e c t = " ">
< T a r g e t > . . . < / T a r g e t >
< C o n d i t i o n >

<Apply F u n c t i o n I d =" "> . . .
< / Apply>

< / C o n d i t i o n >
< / Rule >
< O b l i g a t i o n s >

< O b l i g a t i o n O b l i g a t i o n I d = " "
F u l f i l l m e n t O n = " ">

< / O b l i g a t i o n >
< / O b l i g a t i o n s >

< / P o l i c y >
< / P o l i c y S e t >

the decision from the rules will be applicable to the request.

In order to conclude with a final decision for the request,

XACML supports combining algorithms that determine how

multiple rules or policies are combined. The common combin-

ing algorithms are deny-overrides (if any decision is “Deny”,

the result is “Deny”), permit-overrides (if any decision is

“Permit”, the result is “Permit”), and first-applicable. For the

‘first-applicable’, the policy evaluates the rules in the order that

they are listed. In case of a specific rule, the outcome of the

policy evaluation shall be ‘Permit’, ‘Deny’, or ‘Indeterminate’,

whichever is included as the effect of the rule if the target

and the condition match. If a rule in the listed order does

not match, the policy evaluation continues to the following

rule. Obligations specify actions that must be performed after

a final decision is provided for the policy evaluated, while

advice provides suggestions that can influence the decision

without being binding. Obligations are listed, including a

‘Fulfillment on’ variable where the value can be ‘Permit’ or

‘Deny’ meaning that obligations must be fulfilled based on the

policy decision of either permit or deny.

Listing 1 shows the XACML construct where a

<PolicySet> is defined with a ‘PolicySetId’

and a policy combining algorithm which is identified by

the value of ‘PolicyCombiningAlgId’. The decision

provided by a policy set is the result of combining the

decisions from the child policies. A policy set contains

several policies specified with the <Policy> tag, each

of which defines the combining algorithm with a distinct

‘PolicyId’ and a ‘RuleCombiningAlgId’. Each

policy includes a <Target> element that specifies the

subjects, resources, and actions to which the policy applies.

Moreover, a <Policy> contains particular rules, which are

defined by a ‘RuleId’ and an ‘Effect’ representing

the result of the rule if the target of the rule matches with

the request and the condition inside the <Rule> element is

satisfied.

XACML has an extensive set of functions. Functions are capa-

ble of operating on any set of attribute values and returning any

type of value that the system supports. Additionally, functions

can be nested, allowing for the creation of functions that takes

the output of other functions as input in a complex hierarchy.

<Apply> element refers to the application of a function to

its arguments, thus encoding the call of the function denoted

with ‘FunctionId’. The <Obligations> element of-

fers further granularity, allowing the specification of single

or multiple <Obligation> elements, each specified with

‘ObligationId’ and the ‘FulfillmentOn’ attribute,

to define the conditions triggering obligation fulfillment.

3. RELATED WORK

Several works [17]–[21] have been conducted on the the

specification of the security policies across different domains

utilizing the XACML [5] standard language. This section

discusses literature related to continuous policy enforcement

and the utilization of XACML in IoT (Internet of Things)

and connected environments. Ashutosh et al. [18] introduce

a data flow model based on Attribute-Based Access Con-

trol (ABAC), naming it eXtensible Access Control Markup

Language for Mobility (XACML4M). Their model addresses

research questions related to connected vehicle requirements,

including Signal Access Control (SAC), Time-Based Access

Control (TBAC), Location-Based Access Control (LBAC), and

Frequency-Based Access Control (FBAC). The authors modify

the standard XACML language by altering the data model,

adding new data types to XACML policy, and introducing new

components (e.g., Vehicle Data Environment (VDE) integrated

with Policy Enforcement Point (PEP), time period data type,

GeoLocation Provider, Polling Frequency Provider, Access

Log Service) to the data flow model. However, practical

implementation is hindered by lack of access to a real vehicle,

limiting a comprehensive understanding of real-world effects.

Dallel et al. [21] propose a new XACML-based Access Control

and Delegation (XACML-based ACD) mechanism, extending

the XACML architecture by incorporating a Delegation Deci-

sion Point (DDP) to manage delegation control in smart build-

ing emergency situations. In order to solve security concerns

originating from smart devices’ interactions with the physical

world and data processing, Fysarakis et al. introduce a Cross-

domain Service Access Control for devices (XSACd) in [22].

This framework combines Devices Profile for Web Services

(DPWS) for smart homes with XACML fine-grained access

control. With an emphasis on the authorization elements of the

smart devices, the platform-agnostic XSACd entities provide

the smooth integration of access control across heterogeneous

devices in smart residential settings with less user intervention.

Several works have investigated continuous policy enforce-

ment using Usage Control (UCON) [13], [14], [23], [24].

Hafner et al. [24] demonstrate the continuity of access de-

cisions supported by policies and the decision engine in their

SECTET-Framework for a healthcare system based on UCON

431

Figure 1. Activity-Centric Access Control (ACAC) with actions on a requested activity.

[25]. Colombo and co-authors [13] identify limitations in

the current XACML standard in facilitating continuous usage

control. They propose a U-XACML architecture, extending the

syntax and semantics of XACML to incorporate continuity of

access control and attribute mutability. Further, Lazouski et

al. [14] propose the U-XACML architecture with a mutable

attribute retrieval model and a proof-of-concept implementa-

tion. While their work mentions the update of mutable attribute

values in obligations, it lacks proper specification of the update

procedure. In our work, we enforce activity continuity, clearly

define extension of XACML syntax and semantics for the

activity update procedure, and present experimental results

showcasing improved time efficiency.

4. ACTIVITY EXECUTION CYCLE AND DEPENDENCY POLI-

CIES

Figure 1 illustrates the progress of an activity within it’s

life cycle. The green dotted boxes in the figure indicate the

different states of an activity, namely ‘inactive’, ‘dormant’,

‘aborted’, ‘running’, ‘hold’, ‘revoked’, and ‘finished’. Each

activity is associated with one of these states at any given

time, as proposed in [3]. The blue boxes indicate the requested

actions by a requester (an user or system) and performed after

evaluating the decision parameters. The black vertical line

indicates the activity state transition point after the decision

parameters are evaluated.

When an activity is in ‘inactive’ state, a source initiates a

startActivity request, which transitions the activity to the

‘dormant’ state. The figure includes the ‘Pre-Decision’ phase,

encompassing decisions to either allow or deny the requested

activity to start. This determination relies on the source’s

authorization, conditions, obligations, and the fulfillment of

dependencies on other activities, including necessary pre-

updates on pre-dependent activities. If the pre-decision is

‘deny’, the activity is aborted, else, the activity begins and

transitions to ‘running’ state. While the activity is in ‘running’

state, the ongoing decisions to continue, revoke, hold, or finish

the activity are evaluated. The system continuously checks the

activity while in the ‘running’ state. If the ongoing decision

parameters are not satisfied, a ‘revoke’ decision will be made,

and the activity changes to ‘revoked’ state.

During the execution of a requested activity A, another activity

B with higher precedence may be requested by a source

that could disrupt the ongoing requested activity. In such a

scenario, a holdActivity request can be made by the system

on activity A to allow activity B to complete its execution. The

finishActivity action is executed on the running requested

activity without any activity dependency check. Following

the completion of this action, the activity transitions to the

‘finished’ state.

4.1 Running Policy Example

Let us consider the following access control policies that are

explained in natural language. Since an activity transitions

from one state to another based on requested actions and

evaluation of the decision parameters, it is essential to have

policies based on which these actions are allowed or denied.

In addition, the transition of a requested activity followed by

an action performed and a decision taken on it, needs policy

specification. In this paper, we work on the policy specification

for activity dependency evaluation at different phase of an

activity’s life cycle assuming other parameters (authorization,

obligation and condition) are checked and satisfied. Enforce-

ment of these policies accommodate the continuous policy

evaluation for long-lived activities.

• Start activity without pre-dependent activities or with

all pre-dependent activities in their desired states

with or without state-updates: An activity requested

by an authorized user is allowed to be executed when

all pre-dependent activities are in their desired states. For

example, activity ‘plowing field’ must be in the ‘finished’

state before ‘sowing the seeds’ is started. The current state

of the ’plowing field’ needs to be updated to ‘finished’

if it is in a ‘running’ state, when ‘sowing the seeds’ is

requested to be started.

• Continue activity without ongoing-dependent activi-

ties or with all ongoing-dependent activities in their

desired states with or without state-updates: During

the execution of an activity, it is imperative to evaluate its

ongoing dependent activities to ascertain their adherence

to the desired states. This evaluation should occur at

defined intervals, preferably at small time intervals, say

432

every 5 or 10 milliseconds. If the ongoing dependent

activities are not in their desired states and are unable

to update their states, the requested and running activity

will be revoked from execution.

• Activity control post update: After a requested activity

is finished, the post-dependent activities are evaluated to

check whether they are in their desired states or not. If any

post-dependent activity is not in the desired state, post-

update takes place on this particular dependent activity.

5. XACMLAD FRAMEWORK: SYNTAX AND SEMANTICS

Our goal is to express the policy language for the specification

of activity-dependency policies to control a requested activity.

We propose a XACMLAD policy framework which adapts

existing XACML as well as proposes new XACML elements

to accommodate the policy specification for activity depen-

dency evaluation. We choose to utilize the XACML language

since it is known for its widespread adoption in access control

and ability to express application-independent language. The

ability of XACML to support different domain requirements

through arbitrary attributes encourages us to use it to define

the dependencies on activities and write the policies for their

evaluation. Figure 2 shows the constructs of our proposed

XACMLAD policy framework used for the definition and

evaluation of policies.

We will first mention some assumptions before discussion

about the proposed extension of XACML in XACMLAD

construct. In the ACAC model [3], [4], the most suitable object

is selected by the system when an activity is requested. The

operation that triggers the object to start the requested activity

is also retrieved from the system. The authorization of the

source requester to access the requested activity and perform

the corresponding operation on the object is checked according

to the system security measures. In this paper, we assume the

source requester is already authorized to access the requested

activity and perform the corresponding operation. In addition,

we assume the dependencies on other activities throughout all

phases of the requested activity’s life cycle (discussed in [3])

are pre-defined without depending on a specific object.

The system must ensure that the dependent activities are in

their desired states to allow an action on the requested activity.

While specifying the dependency policies using XACML, we

express policies for the possible actions that can be requested

on an activity (note that, a requested activity is recognized as

the resource in a XACMLAD request). The requested actions

can be startActivity, holdActivity and finishActivity.

We express the policies mentioned in Section 4 using the

XACMLAD policy framework with the construct shown in

Figure 2. We also have continueActivity as an internal

requested action on an activity to ensure that the policies are

evaluated for ongoing-dependent activities to make a decision

to continue or revoke the requested activity. If the matched

action is ‘startActivity’ for a policy specified within the

policy set, all rules within that specific policy will be evaluated

sequentially as listed until a decision found from any rule,

since ‘first-applicable’ rule combining algorithm is used.

Figure 2. XACMLAD Constructs for Activity Dependencies Evaluation.

The rules within both the policies with matched action

startActivity and continueActivity are similar but ap-

plicable to different sets of dependent activities (pre- and

ongoing dependent activity sets, respectively). Note that,

continueActivity action is not directly requested by any

requester. Rather this action is performed as an obligation

after startActivity action is permitted. We configure the rules

with permit effect for the cases; (i) having no dependency;

(ii) having dependent activities in their desired states; (iii)

having dependent activities with update needed on mutable

dependent activities with no dependent of dependent activities;

and (iv) having dependent activities with update needed on

mutable dependent activities with all dependent of dependent

activities in their desired states. The only rule with deny

effect is configured where the update on dependent activities

is needed, but at least one of them is immutable and un-

able to change the state at the policy evaluation time. The

current XACML language does not include the rules with

any provisional action that is needed before allowing the

requested action. Within the <Rule> element, we propose a

<ProvisionalActions> element which includes single or several

<provisionalAction> element including a <Condition> element

as shown in Figure 2. The provisional action needed before

allowing the requested actions to start or continue an activity is

to update the states of the dependent activities. The condition

is checked to ensure that these dependent activities are not

in their desired states and are mutable at the evaluation time.

Following the traditional XACML approach, we propose the

XACML language extension for the provisional actions which

shows similar XML-based language used in XACML. The

<ProvisionalActions> element is a hierarchical element which

aggregates a number of <ProvisionalAction> and <Condition>

elements.

To represent the update on states of dependent activities as a

requirement of allowing a requested action, we define a new

433

element <ProvisionalActions> which consists of a collection

of single <ProvisionalAction> elements:

<xs : element name = “ProvisionalActions"

type="XACMLAD:ProvisionalActionsType"/>

<xs : complexType name = "ProvisionalActionsType">

<xs : sequence>

<xs : element ref = "XACMLAD:ProvisionalAction"

maxOccurs = "unbounded"/>

</xs : sequence>

...

</xs : complexType>

<ProvisionalAction> element defines each update on

the states of dependent activities. The time of updates

is defined by the value (pre, ongoing or post) of the

attribute, ‘FulfillmentPhase’. The value of the attribute

‘ProvisionalAction’ is always "Update" in our policies, since

we use the element only for state update purpose.

<xs : element name = "ProvisionalAction"

type="XACMLAD:ProvisionalType"/>

<xs : complexType name="ProvisionalActionType">

<xs : attribute name="FulfillmentPhase" type="xs : string"

use="required"

<xs : attribute name="ProvisionalAction" type="xs : string"

use="required"/>

<xs : element name = "Condition"

maxOccurs = "unbounded"/>

...

</xs : complexType>

The existing <Condition> element in XACML is used within

<ProvisionalAction> element to provide the flexibility of

checking the conditions before performing a provisional

action. In <ProvisionalActions> element, we also use the

<ForAll> element to iterate over all items of a set of dependent

activities and <ProvisionalAction> is exploited for each update

performed on each dependent activity based on the condition

written within the <Condition> element. The <ForAll> ele-

ment is not shown in Figure 2. However, we use this element

utilizing the structure of the XACML nested entity [15].

6. XACMLAD ENFORCEMENT ARCHITECTURE

In this section, we discuss the architecture and data flow

which supports the enforcement of the XACMLAD policy

framework. The proposed policy enforcement architecture

starts with the interception of the request from the requester.

The requested action on an activity can be startActivity,

continueActivity or finishActivity. continueActivity is

not requested by a requester, rather it is an action while

evaluating the policies during an activity’s runtime. After the

request is intercepted, the decision is determined by evaluating

the security policies in XACMLAD. Figure 3 shows the

components of the policy enforcement architecture and the

data flow from the request interception to providing the re-

sponse, along with the fulfillment of obligations after response

generation. The policy enforcement architecture consists of the

following components:

• Policy Administration Point (PAP) creates and manages

the policies and policy sets utilizing the XACMLAD policy

framework (shown in Figure 2) and makes them available

to the Policy Retrieval Point (PRP).

• Policy Retrieval Point (PRP) gets the policies and pol-

icy sets from the Policy Administration Point (PAP) and

provides the necessary policies to the Policy Decision

Point (PDP) which matches to the requested action in the

XACMLAD request.

• Policy Decision Point (PDP) is responsible for the evalua-

tion of the policies based on the request and the necessary

information such as the current state of the requested and

dependent activities, whether they are immutable or mutable

and the dependencies including the chain of dependencies

related to the requests.

• Policy Enforcement Point (PEP) intercepts the request

from the requester and provides the response to the requester

based on the decision (permit or deny) generated by the PDP.

• Context Handler (CH) constructs the request context from

the native request provided by the PEP and notifies the PDP

about the request with the necessary request information.

• Policy Information Point (PIP) stores the information

that is needed for the policy evaluation by the PDP. PDP

queries all the information needed for the policy evaluation

to the context handler, and the context handler collects

the information from PIP and sends it to the PDP for

evaluation purposes. The PIP stores the information about

the current state and mutability property of all activities, the

dependencies of activities and chain of dependencies.

• Obligation Service fulfills the obligations provided by the

PEP after making the activity permit or deny decisions.

In XACMLAD enforcement architecture, obligation service

performs two types of obligations: i) updating the current

state of the requested activity and ii) calling another policy

such as the policy for continueActivity.

Adapting to the XACML [5] data flow model, Figure 3

illustrates the XACMLAD framework data flow sequence. The

data flow towards enforcement of the architecture is described

as follows:

1) The PAP creates the XACMLAD policies. PAP makes

the XACMLAD policies available to the Policy Retrieval

Point (PRP). PRP configures and loads the policies and

finds the appropriate policy when it is requested by PDP.

2) The PEP intercepts the request from the requester.

3) PEP sends the native request to the context handler.

4) The context handler (CH) notifies the PDP about the cur-

rent request along with sending the request information.

5) The PDP retrieves the corresponding policy from the PRP

from the policy set available in the PRP. Each policy

is associated with a requested action in XACMLAD

framework.

6) PDP requests the necessary information associated with

the retrieved policy to the CH. The necessary information

434

Figure 3. XACMLAD Enforcement Architecture and Data Flow.

includes the activity information such as the current state

of an activity and whether it is immutable or mutable.

Also, PDP asks for the information of the activity depen-

dencies including the chain of dependencies needed for

the policy evaluation.

7) CH requests the PIP to provide the required information.

8) The context handler collects it from the PIP to send back

the information to the PDP.

9) PDP collects the information from context handler for

policy evaluation.

10) Further, PDP evaluates the policy and prepares a decision

for the requested action. At this phase, if there is any

provisional action (update on dependent activities) needed

to evaluate to a decision, PDP will perform it based on

the information it has. The PDP sends the permit or deny

decision after the policy evaluation as a response context

to the context handler.

11) The context handler prepares the final response, including

the permit or deny decision, and sends the response to

PEP.

12) PEP sends the obligations based on the decision in the

response to the obligation service to let it fulfill the

necessary obligations.

13) If an obligation requires calling another policy, the obli-

gation service makes a request containing the requested

action and sends the request to the context handler.

Further, steps 4-13 repeat.

14) PEP sends the final response to the requester.

7. IMPLEMENTATION OF XACMLAD POLICIES

We develop a policy engine for the implementation of the

XACMLAD policy framework using Python programming

language. The integration of the policy engine with the real

systems depends on the designer’s choice and the requirements

of the system. For instance, the system administrator may

decide to deploy the policy engine to a server and make the

system interact with the server by sending the access request

through an API call. In this scenario, the standard API request-

response communication protocols can be utilized.

In our proposed framework, we use the original XACML

constructs along with new elements as discussed in Section

5. The overall policy structure in XACMLAD that utilizes

XACML syntax for the activity dependency evaluation is

shown in Figure 4. We have listed the policies with their

rules and obligations. For the sake of understanding, we

only illustrate the relevant XACML elements to specify the

XACMLAD policies.

The obligations are used in two different purposes, both

reflecting the tasks that need to be performed by the obligation

service based on the final decision (permit or deny) by the

PDP. The obligations include i) updating the current state

of the requested activity based on the decision (reflected by

‘FulfillOn’ attribute value), and ii) calling a policy. Each policy

is defined using the ‘PolicyId’ attribute. The policies called by

obligation service include the policy defined with ‘PolicyId’

value "continueActivityPolicy", to determine if the ongoing-

dependencies are fulfilled to continue the activity execution. In

our implementation, we can set-up the number of times and in

what interval the evaluation of "continueActivityPolicy" will

be performed until the activity is revoked or finished. Also,

the policy with ‘PolicyId’ value "postUpdatePolicy" is called

after finishActivity action is permitted.

We have a policy set which applies the policy combining

algorithm "only-one-applicable" meaning that only one policy

from the policy set needs to be evaluated to "Permit" or

"Deny" decision. The appropriate policy is captured matching

the target action by comparing the value of the attribute

‘action-id’, to the value of ‘action-id’ retrieved from the

original XACMLAD request. The policies defined by the ‘Pol-

icyId’ values "startActivityPolicy", "continueActivityPolicy"

and "postUpdatePolicy" include similar rules for dependency

evaluation and update procedure of dependent activities’ states

as required. However, their evaluation time and obligations

are different. We describe the rules included in the policy

435

<PolicySet PolicySetId="1" PolicyCombiningAlgId= "only-one-applicable">
<Policy PolicyId = "startActivityPolicy" RuleCombiningAlgId="first-applicable">
<Target><AccessSubject...><Resource...><Action><ActionMatch>< /Target>
<Rule RuleId="startActivityNoPreDep" Effect = "Permit"><Condition...></Rule>
<Rule RuleId="startActivityWithPreDepNoUpdate" Effect = "Permit"><Condition...></Rule>
<Rule RuleId="startActivityWithImmutablePreDepWithUpdateNeeded" Effect = "Deny"><Condition...></Rule>
<Rule RuleId="startActivityWithPreDepUpdateNoDepOfDep" Effect = "Permit">
<ProvisionalActions>...</ProvisionalActions></Rule>

<Rule RuleId="startActivityWithPreDepUpdateWithDepOfDepNoUpdateNeeded" Effect = "Permit">
<ProvisionalActions>...</ProvisionalActions></Rule>

<ObligationExpressions>
<ObligationExpression ObligationId="updateRequestedActivityState" FulfillOn="Permit">...< /ObligationExpression>
<ObligationExpression ObligationId="call-continueActivityPolicy" FulfillOn="Permit">...< /ObligationExpression>
<ObligationExpression ObligationId="updateRequestedActivityState" FulfillOn="Deny">...< /ObligationExpression>

</ObligationExpressions></Policy>
<Policy PolicyId = "continueActivityPolicy" RuleCombiningAlgId="first-applicable">
<Target><AccessSubject...><Resource...><Action><ActionMatch>< /Target>
<Rule RuleId="continueActivityNoOnDep" Effect = "Permit"><Condition...></Rule>
<Rule RuleId="continueActivityWithOnDepNoUpdate" Effect = "Permit"><Condition...></Rule>
<Rule RuleId="ongoingActivityWithImmutableOnDepWithUpdateNeeded" Effect = "Deny"><Condition...></Rule>
<Rule RuleId="continueActivityWithOnDepUpdateNoDepOfDep" Effect = "Permit">
<ProvisionalActions>...</ProvisionalActions></Rule>

<Rule RuleId="continueActivityWithOnDepUpdateWithDepOfDepNoUpdateNeeded" Effect = "Permit">
<ProvisionalActions>...</ProvisionalActions></Rule>

<ObligationExpressions>
<ObligationExpression ObligationId="call-continueActivityPolicy" FulfillOn="Permit">...</ObligationExpression>
<ObligationExpression ObligationId="updateRequestedActivityState" FulfillOn="Deny">...</ObligationExpression>

</ObligationExpressions></Policy>
<Policy PolicyId = "finishActivityPolicy" RuleCombiningAlgId="permit-overrides">
<Target><AccessSubject...><Resource...><Action><ActionMatch>< /Target>
<Rule RuleId="finishActivityNoDependency" Effect = "Permit"><Condition></Condition></Rule>
<ObligationExpressions>
<ObligationExpressionObligationId="updateRequestedActivityState" FulfillOn="Permit">...</ObligationExpression>
<ObligationExpression ObligationId="call-postUpdatePolicy" FulfillOn="Permit">...</ObligationExpression>

</ObligationExpressions></Policy>
<Policy PolicyId = "postUpdatePolicy" RuleCombiningAlgId="first-applicable">
<Target><AccessSubject...><Resource...><Action><ActionMatch>< /Target>
<Rule RuleId="postUpdateNoPostDep" Effect = "Permit"><Condition...></Rule>
<Rule RuleId="postUpdateWithPostDepNoUpdate" Effect = "Permit"><Condition...></Rule>
<Rule RuleId="postUpdateWithPostDepUpdateNoDepOfDep" Effect = "Permit">
<ProvisionalActions...></Rule>

<Rule RuleId="postUpdateWithPostDepUpdateWithDepOfDepNoUpdateNeeded" Effect = "Permit">
<ProvisionalActions...></Rule>

<ObligationExpressions>
<ObligationExpression ObligationId="updateRequestedActivityState"FulfillOn="Permit">...< /ObligationExpression>

</ObligationExpressions></Policy>
</PolicySet>

Figure 4. Activity Dependency Evaluation and Update Policies using XACMLADSyntax

436

Figure 5. Sequence Diagram of the implementation of XACMLAD policy framework.

for ‘PolicyId’ value "startActivityPolicy" which needs to be

evaluated when the target ‘action-id’ value is "startActivity".

The policies capture the following requirements:

– All policies in the policy set follow the rule combining

algorithm of "first-applicable" which denotes that the rule in

the rule list whose condition is satisfied first is the ultimate

rule providing the result of the policy evaluation.

– The rule specified with ‘RuleId’= "startActivityNoPreDep"

is applicable if the requested activity does not have any

pre-dependent activities resulting in "Permit" effect. The

conditions are written and enclosed inside the <Condition>

element.

– The rule specified with ‘RuleId’= "startActivityWithPreDep-

NoUpdate" is applicable when the requested activity has

pre-dependent activities and all of them are in their desired

states requiring no state update. The result of the evaluation

is "Permit" in this rule.

– The rule specified with ‘RuleId’= "startActivityWithPre-

DepUpdateNoDepOfDep" is applicable when the requested

activity has pre-dependent activities but all of them are not in

their desired states. Thus, one or more pre-dependent activ-

ities need update from the current to the desired state. This

rule is only applicable if their is no chain of dependencies

for the pre-dependent activities which need to update their

states. This rule’s final effect is "Permit".

– The rule specified with ‘RuleId’= "startActivityWithPre-

DepUpdateWithDepOfDepNoUpdateNeeded" is applicable

if one or more pre-dependent activities need to update

their states while having all of their dependent activities

(dependent of dependent activities in a dependency chain)

currently in the desired states. This rule’s effect is "Permit".

– The rule specified with ‘RuleId’= "startActivityWithIm-

mutableDepWithUpdateNeeded" is applicable if one or

more pre-dependent activities or dependent of dependent

activities in the dependency chain do not have same current

and desired states while they are immutable at this moment

of rule-checking. This immutability and need of update

conflict with each other resulting the policy evaluation to

a "Deny" Decision.

The policy with ‘PolicyId’ value "continueActivityPolicy"

evaluates ongoing dependent activities to provide the deci-

sion for the action continueActivity. The "finishActivity-

Policy" always evaluates to "Permit" if the requester of the

finishActivity action is authorized to perform the action

on the requested activity and the environmental conditions

are met. This authorization process and environmental con-

ditions check are out of scope of the paper. It is assumed

that the requester is already authorized and all conditions

are also satisfied. The policy with ‘PolicyId’ value "postUp-

datePolicy" evaluates the post-dependent activities after the

finishActivity action is performed. This policy is called as

an obligation after finishActivity action is permitted. This

"postUpdatePolicy" has an obligation to update the requested

activity’s state from "finished" to "inactive". The obligations

for updating the current state of the requested activity are

identified by the value "updateRequestedActivityState" for

437

‘ObligationId’. The values provided for the current state

will be different at different phase. For clarification, after

"startActivityPolicy" evaluates to "Permit", current state of the

requested activity will be changed to "running". Similarly, if

the "continueActivityPolicy" evaluates to "Deny", current state

of the requested activity (which is running) will be updated

to "revoked". This way, the framework is able to enforce the

continuous policy enforcement.

7.1 Prototype Implementation

The prototype implementation evaluates the activity depen-

dency (D) decision parameter specified by XACMLAD policy

framework. For the proof-of-concept purpose, we assume that

other decision parameters are already evaluated and satisfied

for the access decision.

We implement the functionalities of PEP, Context Handler

(CH), PDP, PRP, PIP, PAP and the Obligation Service as shown

in the enforcement architecture Figure 3 using Python pro-

gramming language. The JavaScript Object Notation (JSON)

profile of XACML [26] currently handles the request and

responses only. Considering the shortcoming of the JSON

profile, we first write the XACMLAD policies, convert the

policies to JSON format using Python xmlToDict1 library and

write the dictionaries in JSON files.

PIP stores the necessary information about activity, dependen-

cies of activities including chain of dependencies and provides

to the context handler. Our policies are designed in a way

that we do not write separate rules for the evaluation of

each dependency. Rather we query for the dependencies, if

PIP holds any, PDP is given those dependencies which are

collected and sent by the CH. This gives the flexibility of

changing the dependency requirements in any system.

In our implementation, we develop a python API (Application

Programming Interface) in the PEP to intercept the activity

action request that appears in form of HTTP request. We

created a python API using Python Flask2 framework. The

purpose is to get the request from any external service over

HTTP protocol. However, we agree that the request-response

architecture may vary depending on the application domain

and the designer choice. We use Postman3 to make the request

to the API endpoint which resides in our python application.

The requester uses the postman service to request an action

(such as startActivity, finishActivity) on an activity. The

python API in the PEP only accepts GET request and provides

response in the JSON format using a response schema created

in the implementation project. PEP communicates with the

other modules to get the response for the request and sends

the response for requested actions back to Postman. The

continuity of an activity can also be evaluated reflecting the

real environment where, for a specific duration of an activity,

the continuity can be checked in certain intervals until the

activity being revoked or finished.

1https://www.askpython.com/python-modules/xmltodict-module
2https://pypi.org/project/Flask/
3https://www.postman.com/

Figure 6. Execution time against the number of requests for

startActivity action.

Figure 5 shows a sequence diagram for the implementation

of the XACMLAD policy framework for activity control.

A startActivity action is requested by the requester using

postman and intercepted by the API residing in PEP. PEP

sends the XACML request to the CH. CH notifies PDP about

the request information, PDP retrieves the matched policy

for the requested action from the request information and

queries the information about the requested activity and its

dependencies to the context handler (CH). CH collects the nec-

essary information from PIP and sends the information to PDP.

Further, PDP evaluates the associated policy and sends the

decision to Context Handler. CH sends the XACML response

to PEP for startActivity action. PEP calls the obligation

service to execute the obligations associated with the decision.

If the decision is "permit", the obligation service changes the

current state of the requested activity to "running". Further, the

obligation service sends a request for continueActivity action

to the context handler. The "Process request" term indicated

by the blue-colored portion repeats. "continueActivityPolicy"

evaluation for continueActivity action is repeated until the

running and requested activity is revoked or finished. Later,

a finishActivity action request is sent to the PEP and the

response is provided after the obligations are fulfilled. The

obligations after finishing the activity includes changing the

current state of the requested activity to "finished" and calling

"postUpdatePolicy". For the evaluation of the "postUpdatePol-

icy", again "Process request" repeats and a final XACML

Response is provided to the requester.

7.2 Performance Evaluation

We evaluated the performance of our XACMLAD policy

framework implementation of using the server hosted in a local

machine. The machine configuration includes the operating

system of ‘Windows 11’, programming language support of

‘Python 3.9’ and memory of ‘Intel Core i7’ with 1.7GHz

processor and 16GB RAM.

We calculated the time consumption for the execution of a

438

Figure 7. Execution time against number of requests (full activity cycle).

number of startActivity requests on different activities. We

initiate the request using postman where we ran a collection of

10, 20, 30, 40 and 50 requests for startActivity action. PEP

intercepts the request through the Python API and completes

the evaluation process following the data flow model. In Figure

6, we show the execution time to perform startActivity ac-

tion on different number of requested activities. The execution

time increases with the number of requests. We obtained that

approximately 513 ms time is required for starting 50 new

activities. The average time consumption per activity start is

10.26 ms. This result of execution time per startActivity
access to an activity is comparable to the average time (21.5

ms and 45.3 ms) per access evaluation in literature [14],

[23]. Our enforcement model performs significantly better in

terms of time-efficiency. Since activity is a long continuous

operation performed for a duration of time, we also measured

the execution time of the full activity cycle. The continu-

ous dependency evaluation process takes variable amount of

time based on the time interval of re-evaluation of ongoing-

dependent activities and the duration of continuity of the

activity. We also measured the response time from starting

the startActivity action request to the finishActivity action

request on different number of activities. Note that, postman

can run a collection of requests sequentially which we used to

measure the time for getting response including startActivity
and finishActivity action request. On the other hand, the

evaluation of ongoing-dependent activities and the required

update processing is set up to be executed 10 times and 20

times with 5ms and 10ms intervals.

In Figure 7, we show the execution time for full activity life

cycle (start to finish) with continueActivity action performed

10 and 20 times with 5 ms and 10 ms intervals. For continuity

re-evaluation 10 times with 5 ms intervals, the average time

for a full activity cycle is 112.5 ms while with 10 ms intervals

this average execution time is 120 ms. We also observe

that with continueActivity action performed 20 times, the

average execution time for full activity life cycle (start to

finish) are 122.5 ms (with 5ms intervals) and 132.5 ms (with

10ms intervals). We conjecture from this observation that

the number of time continuity evaluation performed can be

increased according to the system needs while getting only

milliseconds of time-difference.

We understand that real world smart systems involve hundreds

and thousands of devices and activities that are interconnected.

An extensive performance analysis with higher loads of ac-

tivities and their dependencies is necessary while we believe

that our proof-of-concept implementation is able to showcase

the practical viability by implementing the policy enforcement

architecture for the extended XACML policy expressions.

8. CONCLUSION AND FUTURE WORK

This paper introduces a XACMLAD policy framework for

specifying and implementing activity dependency policies for

activity centric access control. We use a widely adopted

XACML policy language and extend its elements to express

policies for the evaluation of dependent activity and updat-

ing the states based on the conditions. We also provide a

XACMLAD policy enforcement architecture and the data flow

model to enforce the policies for activity dependency evalua-

tion for activity access decision. The enforcement architecture

is constructed based on the data flow model outlined in the

standard XACML 3.0. We use the data flow while incorporat-

ing an indirect communication between the Policy Decision

Point (PDP) and Policy Administration Point (PAP) using a

Policy Retrieval Point (PRP) component to identify the appro-

priately matched policy. In implementation of the enforcement

architecture, we employ policies written in XACMLAD. Our

policies demonstrate expressive capabilities which along with

the simplicity of the enforcement architecture contributes

significantly to continuous policy evaluation in activity control.

We also measure the performance of the implementation

by sending requests (for actions on activities) over HTTP

protocol. The experimental results exhibit promising time-

efficient performance with varying numbers of requests.

In our research, we conduct policy evaluation for two levels of

activity dependencies within the dependency chain. It would

be critical to enhance the XACMLAD policy framework to

handle any number of dependent-activity levels. Our work

covers the policy evaluation that includes state update actions

based on conditions. The current XACML profile lacks con-

structs for recursive policy evaluation and does not provide

syntax for state update actions. We leave the refinement of

XACMLAD semantics for recursive updates in the dependency

chain as a future direction for improvement. We believe

that enhancing the XACMLAD framework in this way will

effectively address the dependency of activities across large

number of levels in the dependency chain.

ACKNOWLEDGEMENT

This work is partially supported by NSF grants 2230609 and

1736209.

REFERENCES

[1] Markus Lorch, Seth Proctor, Rebekah Lepro, Dennis Ka-

fura, and Sumit Shah. First experiences using XACML

439

for access control in distributed systems. In Proc. of the

ACM workshop on XML security, pages 25–37, 2003.

[2] Maanak Gupta and Ravi Sandhu. Towards activity-

centric access control for smart collaborative ecosystems.

In Proceedings of the 26th ACM Symposium on Access

Control Models and Technologies, pages 155–164, 2021.

[3] Tanjila Mawla, Maanak Gupta, Safwa Ameer, and Ravi

Sandhu. The ACAC_D Model for Mutable Activity

Control and Chain of Dependencies in Smart and Collab-

orative Systems. arXiv preprint arXiv:2308.01783, 2023.

[4] Tanjila Mawla, Maanak Gupta, and Ravi Sandhu.

BlueSky: Activity Control: A Vision for Active Security

Models for Smart Collaborative Systems. In Proceedings

of the 27th ACM on Symposium on Access Control

Models and Technologies, pages 207–216, 2022.

[5] eXtensible Access Control Markup Language

(XACML) Version 3.0 — docs.oasis-open.org.

https://docs.oasis-open.org/xacml/3.0/xacml-3.

0-core-spec-os-en.html. [Accessed 27-12-2023].

[6] Jonathan D Moffett. Specification of management poli-

cies and discretionary access control. Network and

distributed systems management, pages 455–480, 1994.

[7] Yanfang Fan, Zhen Han, Jiqiang Liu, and Yong Zhao. A

mandatory access control model with enhanced flexibil-

ity. In International conference on multimedia informa-

tion networking and security, volume 1, pages 120–124.

IEEE, 2009.

[8] David F Ferraiolo, Ravi Sandhu, Serban Gavrila,

D Richard Kuhn, and Ramaswamy Chandramouli. Pro-

posed NIST standard for role-based access control. ACM

Transactions on Information and System Security (TIS-

SEC), 4(3):224–274, 2001.

[9] Vincent C Hu, David Ferraiolo, Rick Kuhn, Arthur R

Friedman, Alan J Lang, Margaret M Cogdell, Adam

Schnitzer, Kenneth Sandlin, Robert Miller, Karen Scar-

fone, et al. Guide to attribute based access control

(ABAC) definition and considerations (draft). NIST

special publication, 800(162):1–54, 2013.

[10] Maanak Gupta, Ravi Sandhu, Tanjila Mawla, and James

Benson. Reachability analysis for attributes in ABAC

with group hierarchy. IEEE Transactions on Dependable

and Secure Computing, 20(1):841–858, 2022.

[11] Jun Feng, Glenn Wasson, and Marty Humphrey. Re-

source usage policy expression and enforcement in grid

computing. In 8th IEEE/ACM International Conference

on Grid Computing, pages 66–73, 2007.

[12] Basel Katt, Xinwen Zhang, Ruth Breu, Michael Hafner,

and Jean-Pierre Seifert. A general obligation model

and continuity: enhanced policy enforcement engine for

usage control. In Proceedings of the ACM symposium on

Access control models and technologies, 2008.

[13] Maurizio Colombo, Aliaksandr Lazouski, Fabio Mar-

tinelli, and Paolo Mori. A proposal on enhancing

XACML with continuous usage control features. In

Grids, P2P and Services Computing, pages 133–146.

Springer, 2010.

[14] Aliaksandr Lazouski, Fabio Martinelli, and Paolo Mori.

A prototype for enforcing usage control policies based

on XACML. In Int. Conference on Trust, Privacy and

Security in Digital Business. Springer, 2012.

[15] XACML v3.0 Related and Nested Entities Profile

Version 1.0 — docs.oasis-open.org. https:

//docs.oasis-open.org/xacml/xacml-3.0-related-entities/

v1.0/cs02/xacml-3.0-related-entities-v1.0-cs02.html.

[Accessed 22-12-2023].

[16] OASIS eXtensible Access Control Markup Language

(XACML) TC | OASIS — oasis-open.org.

https://www.oasis-open.org/committees/tc_home.php?

wg_abbrev=xacml. [Accessed 27-12-2023].

[17] Khaled Riad and Jieren Cheng. Adaptive XACML access

policies for heterogeneous distributed IoT environments.

Information Sciences, 548:135–152, 2021.

[18] Ashish Ashutosh, Armin Gerl, Simon Wagner, Lionel

Brunie, and Harald Kosch. XACML for Mobility

(XACML4M)—An Access Control Framework for Con-

nected Vehicles. Sensors, 23(4):1763, 2023.

[19] Tien Tuan Anh Dinh, Wang Wenqiang, and Anwitaman

Datta. City on the sky: extending xacml for flexible,

secure data sharing on the cloud. Journal of Grid

Computing, 10:151–172, 2012.

[20] Azzam Mourad and Hussein Jebbaoui. SBA-XACML:

Set-based approach providing efficient policy decision

process for accessing Web services. Expert systems with

applications, 42(1):165–178, 2015.

[21] Olfa Dallel, Souheil Ben Ayed, and Jamel Bel Hadj

Taher. Secure iot-based emergency management system

for smart buildings. In IEEE Wireless Communications

and Networking Conference (WCNC), pages 1–7, 2021.

[22] Konstantinos Fysarakis, Othonas Soultatos, Charalampos

Manifavas, Ioannis Papaefstathiou, and Ioannis Askoxy-

lakis. XSACd—Cross-domain resource sharing and ac-

cess control for smart environments. Future Generation

Computer Systems, 80:572–582, 2018.

[23] Xinwen Zhang, Masayuki Nakae, Michael J Covington,

and Ravi Sandhu. Toward a usage-based security frame-

work for collaborative computing systems. ACM Trans-

actions on Information and System Security (TISSEC),

11(1):1–36, 2008.

[24] Michael Hafner, Mukhtiar Memon, and Muhammad

Alam. Modeling and enforcing advanced access control

policies in healthcare systems with sectet. In Models in

Software Engineering: Workshops and Symposia at MoD-

ELS 2007, Nashville, TN, USA, September 30-October

5, 2007, Reports and Revised Selected Papers 10, pages

132–144. Springer, 2008.

[25] Jaehong Park and Ravi Sandhu. The UCONABC usage

control model. ACM transactions on information and

system security (TISSEC), 7(1):128–174, 2004.

[26] JSON Profile of XACML 3.0 Version 1.1 —

docs.oasis-open.org. https://docs.oasis-open.org/xacml/

xacml-json-http/v1.1/os/xacml-json-http-v1.1-os.html.

[Accessed 27-12-2023].

440

