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Abstract—The evolving smart and interconnected systems are
designed to operate with minimal human intervention. Devices
within these smart systems often engage in prolonged oper-
ations based on sensor data and contextual factors. Recently,
an Activity-Centric Access Control (ACAC) model has been
introduced to regulate these prolonged operations, referred to
as activities, which undergo state changes over extended dura-
tion of time. Dependencies among different activities can in-
fluence and restrict the execution of one another, necessitating
active and real-time monitoring of the dependencies between
activities to prevent security violation. In the ACAC model,
the activity dependencies, denoted as "D", is considered as a
decision parameter for controlling a requested activity. These
dependencies must be evaluated throughout all phases of an
activity’s life cycle.

To ensure the consistency of access control rules across
diverse domains and applications, a standard policy language
is essential. We propose a policy framework adapting the
widely-used eXtensible Access Control Markup Language
(XACML) , referred to as XACMLap, to specify the activity
dependency policies. This work involves extending the syntax
and semantics of XACML by introducing new elements to
check dependent activities’ states and handle state updates on
dependent activities. In addition to the language extension,
we present the enforcement architecture and data flow model
of evaluating policies for activity dependencies. The integra-
tion of the proposed XACMLp policy framework and the
enforcement of the policies supports dependency evaluation,
necessary updates and continuous enforcement of policies to
control an activity throughout its life cycle. We implement
the enforcement architecture exploiting the XACMLap policy
framework and discuss the performance evaluation results.

Keywords—Activity-dependencies; XACML, policy; policy en-
forcement architecture; request, decision

1. INTRODUCTION

Security stands as a paramount element and a central focus
for the creators and developers of systems and applications.
Establishing a well-suited architecture for policy manage-
ment is essential to ensure the integrity of interconnected
systems. Going beyond conventional access control methods,
security systems must be adaptable and foster interoperability
across trusted domains [1]. Decisions regarding access to
a system’s resources by any requesting entity hinge upon
criteria determined by business needs, requirements, and the
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designer’s preferences. While traditional access control models
concentrate on invariant attributes and their values to deter-
mine access requests’ decision, modern smart systems with
connected devices’ operations still require context-based, fine-
grained, flexible and comprehensive access control models.
To address this, Gupta and Sandhu [2] proposed the need for
Activity-Centric Access Control (ACAC) model, followed by
a mathematically grounded formal model by Mawla et al. to
control long-lived activities that are performed by connected
devices [3], [4]. The authors outlined access control decision
components for such device activities including Authorizations
(A), Obligations (B), Conditions (D) and Dependencies (D)
on other activities. Since, activity performed by a device is
a long-lived operation, to control such activities, the system
needs continuous policy enforcement incorporating the deci-
sion parameters of an activity control.

XACML (eXtensible Access Control Markup Language) [5]
stands out as a reliable standard for enforcing access control
policies in distributed yet interconnected systems. Traditional
access control models such as discretionary [6] , mandatory [7]
and role-based (RBAC) [8] access control policies have been
specified using XACML syntax. The flexibility of attribute-
based access control (ABAC) [9], [10] can be adapted by
the policy enforcement using XACML. Continuous policy
enforcement for grid computing [11], usage control (UCON)
[12]-[14] using XACML have been proposed in literature.
These works reflect the extensions for XACML elements to
accommodate access control policies for different security
models.

The aim of this paper is to create a policy framework referred
as XACMLap for specifying the policy language to control
smart system activities based on the activity dependencies [3].
The dependencies (D) on activities is one of the decision
parameters for activity control which needs to be evaluated
at every phase of an activity’s life cycle [3]. Thus, continuous
enforcement of activity dependencies policies is essential. The
dependent activities must be in the desired states while a
decision is made on the requested activity. If the current state
of the dependent activities does not match with the desired
state, the current state of a mutable activity will have to
be updated before allowing the access. The update cannot
be occurred if the dependent activity is immutable. In that
case, the access will be denied. Such update on dependent
activities” states are not trivial as it may require check if
there is any dependent of dependent activities leading to a
chain of dependencies created where all dependent activities



in the chain must have the desired states. The dependency
evaluation along with updating current states require a formal
language to specify the policies. We have analyzed the syntax
and semantics of XACML 3.0 [5] policy specification and
the related and nested entities of XACML 3.0 [15] which we
adapt for the policy specification of activity dependencies and
continuous activity control. We also propose a new element for
the state update actions by elaborating the necessary XACML
syntax. We use the data flow model proposed in [5] making
it compatible to the data flow of activity dependency policy
evaluation during an activity access control.

Rest of this paper is organized as follows. Section 2 provides
the background of Activity-Centric Access Control (ACAC),
activity dependencies and a review on XACML construct.
Section 3 presents several state-of-the art works in continuous
policy evaluation and XACML implementation. Section 4
explains the policies which we cover in proposed XACMLap
policy framework. Further, the XACMLsp approach with
XACML extension is described Section 5. Section 6 presents
the architecture and data flow model of the policy evaluation
using XACMLAp syntax. Section 7 shows the prototype
implementation and the performance analysis of the proposed
XACMLap policy framework enforcement. Lastly, Section 8
summarizes the work and provides the future work direction.

2. BACKGROUND
2.1 Activity-Centric Access Control

Today’s smart systems (such as smart farming, smart manu-
facturing, etc.) are expected to work with less human inter-
vention using the sensor data, evaluation of the environmental
conditions and dependencies between multiple devices’ op-
erations. To meet these challenges, the activity-centric access
control (ACAC) is introduced. Activity-Centric Access Control
(ACAC) [2]-[4] is a novel approach for controlling smart
system devices’ activities that are executed for a long duration
of time based on the systems’ needs. ACAC combines the
following aspects for access control decision: 1) considering
dependencies among activities as a pivotal factor in activity
control, and 2) ensuring continuous and active run-time en-
forcement of activity control parameters. In smart systems,
such as smart farming, activities like plowing fields, pumping
water, and spraying water are carried out by intelligent devices
such as smart tractors, solar-powered smart pumps, and aerial
drones, respectively. The proposed ACAC model encounters
the following decision components to control activities at
different decision time.

o Authorization (A). Only authorized source requester can
get access to the requested activity.

« Obligations(B). Obligations are required one time actions
that must be performed by the requesting source or
any other subjects before an access being allowed to a
requested activity.

o Conditions (C). Environmental conditions must be eval-
uated before an access decision on an activity. For
example, comparing the attribute values collected from
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the sensor data to pre-determined values should result in
boolean "True" value in order to be satisfied as conditions.

« Dependencies (D) on activities. The relations (such as
order of activities, concurrency) between the requested
activity and other activities create dependencies that must
be checked to ensure that the dependent activities have
the desired current states while taking any decision (start,
continue, hold) on the requested activity. We elaborate on
this parameter in the next subsection.

2.2 Dependencies of Activities

In smart systems, the activities that have relationships with
other activities in terms of execution order, concurrency,
incompatibility, must ensure that these relations are maintained
whenever access decisions on these activities are taken. For
instance, when an activity is requested, two other activities
need to be finished to ensure that the sequence of execution is
maintained. These dependencies are checked in three different
phases of the requested activity - pre, ongoing and post. Note
that, each activity belongs to one of the states from inactive,
dormant, aborted, running, revoked, hold or finished [3].
Once an activity is requested, the pre-dependent activities need
to be in their desired states before allowing the requested
activity to start. The continuity of the requested activity’s exe-
cution depends on the fulfillment of the ongoing-dependencies.
After a requested activity is finished or revoked (due to
ongoing dependency violation), the post-dependent activities
are evaluated. In these three cases, if the desired states of the
dependent activities do not match with their current states,
the activities must change their states to the desired ones to
accommodate access decision on the requested activity. The
dependent activities may depend on some other activities while
changing their current state to the desired states and can form
a chain of dependencies. In each level of the chain, the parent
activity only can change the state if the child (dependent)
activities are in their desired states. These recursive evaluation
and update procedure as activity control parameter makes
the ACAC model apart from other existing access control
models. In this work, we specify activity dependency policies
for evaluation, assuming the other decision parameters are
checked and satisfied.

2.3 XACML Review

XACML (eXtensible Access Control Markup Language) [5]
is a reliable and adaptable standard in terms of access control
and security policy management. Access control in various
applications and services, especially in distributed and web-
based environments, can be flexible and extensible using
XACML. XACML is developed and maintained by the OASIS
(Organization for the Advancement of Structured Information
Standards) consortium [16].

According to the XACML policy specification language, poli-
cies are defined in XML format and specify rules for making
access control decisions. A rule set or policy defines the
structural organization of XACML. Rules may have a single
condition or a set of conditions under which circumstances



Listing 1. XACML Policy Construct

<PolicySet PolicySetld = ""
PolicyCombiningAlgld =
<Policy Policyld = ""
RuleCombiningAlgld = "">
<Target>
<Subjects>...</Subjects>
<Resources>...</Resources>
<Actions>...</Actions>
</Target>
<Rule Ruleld =
Effect = "">
<Target>...</Target>
<Condition>
<Apply Functionld="">...
</ Apply>
</Condition>
</Rule>
<Obligations>
<Obligation Obligationld = ""
FulfillmentOn = "">
</Obligation>
</Obligations>
</Policy>
</PolicySet>

no

>

"o

the decision from the rules will be applicable to the request.
In order to conclude with a final decision for the request,
XACML supports combining algorithms that determine how
multiple rules or policies are combined. The common combin-
ing algorithms are deny-overrides (if any decision is “Deny”,
the result is “Deny”), permit-overrides (if any decision is
“Permit”, the result is “Permit”), and first-applicable. For the
“first-applicable’, the policy evaluates the rules in the order that
they are listed. In case of a specific rule, the outcome of the
policy evaluation shall be ‘Permit’, ‘Deny’, or ‘Indeterminate’,
whichever is included as the effect of the rule if the target
and the condition match. If a rule in the listed order does
not match, the policy evaluation continues to the following
rule. Obligations specify actions that must be performed after
a final decision is provided for the policy evaluated, while
advice provides suggestions that can influence the decision
without being binding. Obligations are listed, including a
‘Fulfillment on’ variable where the value can be ‘Permit’ or
‘Deny’ meaning that obligations must be fulfilled based on the
policy decision of either permit or deny.

Listing 1 shows the XACML construct where a
<PolicySet> is defined with a ‘PolicySetId’
and a policy combining algorithm which is identified by
the value of ‘PolicyCombiningAlgId’. The decision
provided by a policy set is the result of combining the
decisions from the child policies. A policy set contains
several policies specified with the <Policy> tag, each
of which defines the combining algorithm with a distinct
‘PolicyId’ and a ‘RuleCombiningAlgId’. Each
policy includes a <Target> element that specifies the
subjects, resources, and actions to which the policy applies.
Moreover, a <Policy> contains particular rules, which are
defined by a ‘RuleId’ and an ‘Effect’ representing
the result of the rule if the target of the rule matches with
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the request and the condition inside the <Rule> element is
satisfied.

XACML has an extensive set of functions. Functions are capa-
ble of operating on any set of attribute values and returning any
type of value that the system supports. Additionally, functions
can be nested, allowing for the creation of functions that takes
the output of other functions as input in a complex hierarchy.
<Apply> element refers to the application of a function to
its arguments, thus encoding the call of the function denoted
with ‘FunctionId’. The <Obligations> element of-
fers further granularity, allowing the specification of single
or multiple <Obligation> elements, each specified with
‘ObligationId’ and the ‘FulfillmentOn’ attribute,
to define the conditions triggering obligation fulfillment.

3. RELATED WORK

Several works [17]-[21] have been conducted on the the
specification of the security policies across different domains
utilizing the XACML [5] standard language. This section
discusses literature related to continuous policy enforcement
and the utilization of XACML in IoT (Internet of Things)
and connected environments. Ashutosh et al. [18] introduce
a data flow model based on Attribute-Based Access Con-
trol (ABAC), naming it eXtensible Access Control Markup
Language for Mobility (XACML4M). Their model addresses
research questions related to connected vehicle requirements,
including Signal Access Control (SAC), Time-Based Access
Control (TBAC), Location-Based Access Control (LBAC), and
Frequency-Based Access Control (FBAC). The authors modify
the standard XACML language by altering the data model,
adding new data types to XACML policy, and introducing new
components (e.g., Vehicle Data Environment (VDE) integrated
with Policy Enforcement Point (PEP), time period data type,
GeoLocation Provider, Polling Frequency Provider, Access
Log Service) to the data flow model. However, practical
implementation is hindered by lack of access to a real vehicle,
limiting a comprehensive understanding of real-world effects.
Dallel et al. [21] propose a new XACML-based Access Control
and Delegation (XACML-based ACD) mechanism, extending
the XACML architecture by incorporating a Delegation Deci-
sion Point (DDP) to manage delegation control in smart build-
ing emergency situations. In order to solve security concerns
originating from smart devices’ interactions with the physical
world and data processing, Fysarakis et al. introduce a Cross-
domain Service Access Control for devices (XSACA) in [22].
This framework combines Devices Profile for Web Services
(DPWS) for smart homes with XACML fine-grained access
control. With an emphasis on the authorization elements of the
smart devices, the platform-agnostic XSACd entities provide
the smooth integration of access control across heterogeneous
devices in smart residential settings with less user intervention.
Several works have investigated continuous policy enforce-
ment using Usage Control (UCON) [13], [14], [23], [24].
Hafner et al. [24] demonstrate the continuity of access de-
cisions supported by policies and the decision engine in their
SECTET-Framework for a healthcare system based on UCON
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Figure 1. Activity-Centric Access Control (ACAC) with actions on a requested activity.

[25]. Colombo and co-authors [13] identify limitations in
the current XACML standard in facilitating continuous usage
control. They propose a U-XACML architecture, extending the
syntax and semantics of XACML to incorporate continuity of
access control and attribute mutability. Further, Lazouski et
al. [14] propose the U-XACML architecture with a mutable
attribute retrieval model and a proof-of-concept implementa-
tion. While their work mentions the update of mutable attribute
values in obligations, it lacks proper specification of the update
procedure. In our work, we enforce activity continuity, clearly
define extension of XACML syntax and semantics for the
activity update procedure, and present experimental results
showcasing improved time efficiency.

4. ACTIVITY EXECUTION CYCLE AND DEPENDENCY POLI-
CIES

Figure 1 illustrates the progress of an activity within it’s
life cycle. The green dotted boxes in the figure indicate the
different states of an activity, namely ‘inactive’, ‘dormant’,
‘aborted’, ‘running’, ‘hold’, ‘revoked’, and ‘finished’. Each
activity is associated with one of these states at any given
time, as proposed in [3]. The blue boxes indicate the requested
actions by a requester (an user or system) and performed after
evaluating the decision parameters. The black vertical line
indicates the activity state transition point after the decision
parameters are evaluated.

When an activity is in ‘inactive’ state, a source initiates a
startActivity request, which transitions the activity to the
‘dormant’ state. The figure includes the ‘Pre-Decision’ phase,
encompassing decisions to either allow or deny the requested
activity to start. This determination relies on the source’s
authorization, conditions, obligations, and the fulfillment of
dependencies on other activities, including necessary pre-
updates on pre-dependent activities. If the pre-decision is
‘deny’, the activity is aborted, else, the activity begins and
transitions to ‘running’ state. While the activity is in ‘running’
state, the ongoing decisions to continue, revoke, hold, or finish
the activity are evaluated. The system continuously checks the
activity while in the ‘running’ state. If the ongoing decision
parameters are not satisfied, a ‘revoke’ decision will be made,
and the activity changes to ‘revoked’ state.
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During the execution of a requested activity A, another activity
B with higher precedence may be requested by a source
that could disrupt the ongoing requested activity. In such a
scenario, a holdActivity request can be made by the system
on activity A to allow activity B to complete its execution. The
finishActivity action is executed on the running requested
activity without any activity dependency check. Following
the completion of this action, the activity transitions to the
“finished’ state.

4.1 Running Policy Example

Let us consider the following access control policies that are
explained in natural language. Since an activity transitions
from one state to another based on requested actions and
evaluation of the decision parameters, it is essential to have
policies based on which these actions are allowed or denied.
In addition, the transition of a requested activity followed by
an action performed and a decision taken on it, needs policy
specification. In this paper, we work on the policy specification
for activity dependency evaluation at different phase of an
activity’s life cycle assuming other parameters (authorization,
obligation and condition) are checked and satisfied. Enforce-
ment of these policies accommodate the continuous policy
evaluation for long-lived activities.

« Start activity without pre-dependent activities or with
all pre-dependent activities in their desired states
with or without state-updates: An activity requested
by an authorized user is allowed to be executed when
all pre-dependent activities are in their desired states. For
example, activity ‘plowing field” must be in the ‘finished’
state before ‘sowing the seeds’ is started. The current state
of the ’plowing field’ needs to be updated to ‘finished’
if it is in a ‘running’ state, when ‘sowing the seeds’ is
requested to be started.

Continue activity without ongoing-dependent activi-
ties or with all ongoing-dependent activities in their
desired states with or without state-updates: During
the execution of an activity, it is imperative to evaluate its
ongoing dependent activities to ascertain their adherence
to the desired states. This evaluation should occur at
defined intervals, preferably at small time intervals, say



every 5 or 10 milliseconds. If the ongoing dependent
activities are not in their desired states and are unable
to update their states, the requested and running activity
will be revoked from execution.

o Activity control post update: After a requested activity
is finished, the post-dependent activities are evaluated to
check whether they are in their desired states or not. If any
post-dependent activity is not in the desired state, post-
update takes place on this particular dependent activity.

5. XACMLAp FRAMEWORK: SYNTAX AND SEMANTICS

Our goal is to express the policy language for the specification
of activity-dependency policies to control a requested activity.
We propose a XACMLap policy framework which adapts
existing XACML as well as proposes new XACML elements
to accommodate the policy specification for activity depen-
dency evaluation. We choose to utilize the XACML language
since it is known for its widespread adoption in access control
and ability to express application-independent language. The
ability of XACML to support different domain requirements
through arbitrary attributes encourages us to use it to define
the dependencies on activities and write the policies for their
evaluation. Figure 2 shows the constructs of our proposed
XACMLAp policy framework used for the definition and
evaluation of policies.

We will first mention some assumptions before discussion
about the proposed extension of XACML in XACMLap
construct. In the ACAC model [3], [4], the most suitable object
is selected by the system when an activity is requested. The
operation that triggers the object to start the requested activity
is also retrieved from the system. The authorization of the
source requester to access the requested activity and perform
the corresponding operation on the object is checked according
to the system security measures. In this paper, we assume the
source requester is already authorized to access the requested
activity and perform the corresponding operation. In addition,
we assume the dependencies on other activities throughout all
phases of the requested activity’s life cycle (discussed in [3])
are pre-defined without depending on a specific object.

The system must ensure that the dependent activities are in
their desired states to allow an action on the requested activity.
While specifying the dependency policies using XACML, we
express policies for the possible actions that can be requested
on an activity (note that, a requested activity is recognized as
the resource in a XACMLap request). The requested actions
can be startActivity, holdActivity and finishActivity.
We express the policies mentioned in Section 4 using the
XACMLAp policy framework with the construct shown in
Figure 2. We also have continueActivity as an internal
requested action on an activity to ensure that the policies are
evaluated for ongoing-dependent activities to make a decision
to continue or revoke the requested activity. If the matched
action is ‘startActivity’ for a policy specified within the
policy set, all rules within that specific policy will be evaluated
sequentially as listed until a decision found from any rule,
since ‘first-applicable’ rule combining algorithm is used.
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Figure 2. XACMLAp Constructs for Activity Dependencies Evaluation.

The rules within both the policies with matched action
startActivity and continueActivity are similar but ap-
plicable to different sets of dependent activities (pre- and
ongoing dependent activity sets, respectively). Note that,
continueActivity action is not directly requested by any
requester. Rather this action is performed as an obligation
after start Activity action is permitted. We configure the rules
with permit effect for the cases; (i) having no dependencys;
(i) having dependent activities in their desired states; (iii)
having dependent activities with update needed on mutable
dependent activities with no dependent of dependent activities;
and (iv) having dependent activities with update needed on
mutable dependent activities with all dependent of dependent
activities in their desired states. The only rule with deny
effect is configured where the update on dependent activities
is needed, but at least one of them is immutable and un-
able to change the state at the policy evaluation time. The
current XACML language does not include the rules with
any provisional action that is needed before allowing the
requested action. Within the <Rule> element, we propose a
<Provisional Actions> element which includes single or several
<provisional Action> element including a <Condition> element
as shown in Figure 2. The provisional action needed before
allowing the requested actions to start or continue an activity is
to update the states of the dependent activities. The condition
is checked to ensure that these dependent activities are not
in their desired states and are mutable at the evaluation time.
Following the traditional XACML approach, we propose the
XACML language extension for the provisional actions which
shows similar XML-based language used in XACML. The
<Provisional Actions> element is a hierarchical element which
aggregates a number of <Provisional Action> and <Condition>
elements.

To represent the update on states of dependent activities as a
requirement of allowing a requested action, we define a new



element <ProvisionalActions> which consists of a collection
of single <ProvisionalAction> elements:

<xs : element name = “ProvisionalActions"
type="XACML4p:Provisional ActionsType"/>
<xs : complexType name = "ProvisionalActionsType">
<Xs : sequence>
<xs : element ref = "XACMLp:Provisional Action"
maxOccurs = "unbounded"/>
</Xs : sequence>

</xs : complexType>

<ProvisionalAction> element defines each update on
the states of dependent activities. The time of updates
is defined by the value (pre, ongoing or post) of the
attribute, ‘FulfillmentPhase’. The value of the attribute
‘ProvisionalAction’ is always "Update" in our policies, since
we use the element only for state update purpose.

<xs : element name = "ProvisionalAction"
type="XACML4p:Provisional Type"/>
<xs : complexType name="Provisional ActionType">
<xs : attribute name="FulfillmentPhase" type="xs : string"
use="required"
<xs : attribute name="ProvisionalAction" type="xs : string"
use="required"/>
<xs : element name = "Condition"
maxOccurs = "unbounded"/>

</xs : complexType>

The existing <Condition> element in XACML is used within
<ProvisionalAction> element to provide the flexibility of
checking the conditions before performing a provisional
action. In <ProvisionalActions> element, we also use the
<ForAll> element to iterate over all items of a set of dependent
activities and <Provisional Action> is exploited for each update
performed on each dependent activity based on the condition
written within the <Condition> element. The <ForAll> ele-
ment is not shown in Figure 2. However, we use this element
utilizing the structure of the XACML nested entity [15].

6. XACMLAp ENFORCEMENT ARCHITECTURE

In this section, we discuss the architecture and data flow
which supports the enforcement of the XACMLAp policy
framework. The proposed policy enforcement architecture
starts with the interception of the request from the requester.
The requested action on an activity can be startActivity,
continueActivity or finishActivity. continueActivity is
not requested by a requester, rather it is an action while
evaluating the policies during an activity’s runtime. After the
request is intercepted, the decision is determined by evaluating
the security policies in XACMLap. Figure 3 shows the
components of the policy enforcement architecture and the
data flow from the request interception to providing the re-
sponse, along with the fulfillment of obligations after response

434

generation. The policy enforcement architecture consists of the
following components:

o Policy Administration Point (PAP) creates and manages
the policies and policy sets utilizing the XACMLp policy
framework (shown in Figure 2) and makes them available
to the Policy Retrieval Point (PRP).

Policy Retrieval Point (PRP) gets the policies and pol-
icy sets from the Policy Administration Point (PAP) and
provides the necessary policies to the Policy Decision
Point (PDP) which matches to the requested action in the
XACMLAp request.

Policy Decision Point (PDP) is responsible for the evalua-
tion of the policies based on the request and the necessary
information such as the current state of the requested and
dependent activities, whether they are immutable or mutable
and the dependencies including the chain of dependencies
related to the requests.

Policy Enforcement Point (PEP) intercepts the request
from the requester and provides the response to the requester
based on the decision (permit or deny) generated by the PDP.
Context Handler (CH) constructs the request context from
the native request provided by the PEP and notifies the PDP
about the request with the necessary request information.
Policy Information Point (PIP) stores the information
that is needed for the policy evaluation by the PDP. PDP
queries all the information needed for the policy evaluation
to the context handler, and the context handler collects
the information from PIP and sends it to the PDP for
evaluation purposes. The PIP stores the information about
the current state and mutability property of all activities, the
dependencies of activities and chain of dependencies.
Obligation Service fulfills the obligations provided by the
PEP after making the activity permit or deny decisions.
In XACMLAp enforcement architecture, obligation service
performs two types of obligations: i) updating the current
state of the requested activity and ii) calling another policy
such as the policy for continueActivity.

Adapting to the XACML [5] data flow model, Figure 3
illustrates the XACMLap framework data flow sequence. The
data flow towards enforcement of the architecture is described
as follows:

1) The PAP creates the XACMLap policies. PAP makes
the XACMLAp policies available to the Policy Retrieval
Point (PRP). PRP configures and loads the policies and
finds the appropriate policy when it is requested by PDP.

2) The PEP intercepts the request from the requester.

3) PEP sends the native request to the context handler.

4) The context handler (CH) notifies the PDP about the cur-
rent request along with sending the request information.

5) The PDP retrieves the corresponding policy from the PRP
from the policy set available in the PRP. Each policy
is associated with a requested action in XACMLap
framework.

6) PDP requests the necessary information associated with
the retrieved policy to the CH. The necessary information
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includes the activity information such as the current state
of an activity and whether it is immutable or mutable.
Also, PDP asks for the information of the activity depen-
dencies including the chain of dependencies needed for
the policy evaluation.

CH requests the PIP to provide the required information.
The context handler collects it from the PIP to send back
the information to the PDP.

PDP collects the information from context handler for
policy evaluation.

Further, PDP evaluates the policy and prepares a decision
for the requested action. At this phase, if there is any
provisional action (update on dependent activities) needed
to evaluate to a decision, PDP will perform it based on
the information it has. The PDP sends the permit or deny
decision after the policy evaluation as a response context
to the context handler.

The context handler prepares the final response, including
the permit or deny decision, and sends the response to
PEP.

PEP sends the obligations based on the decision in the
response to the obligation service to let it fulfill the
necessary obligations.

If an obligation requires calling another policy, the obli-
gation service makes a request containing the requested
action and sends the request to the context handler.
Further, steps 4-13 repeat.

14) PEP sends the final response to the requester.

7
8)

9)

10)

1)

12)

13)

7. IMPLEMENTATION OF XACMLAp POLICIES

We develop a policy engine for the implementation of the
XACMLAp policy framework using Python programming
language. The integration of the policy engine with the real
systems depends on the designer’s choice and the requirements
of the system. For instance, the system administrator may
decide to deploy the policy engine to a server and make the
system interact with the server by sending the access request
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through an API call. In this scenario, the standard API request-
response communication protocols can be utilized.

In our proposed framework, we use the original XACML
constructs along with new elements as discussed in Section
5. The overall policy structure in XACMLap that utilizes
XACML syntax for the activity dependency evaluation is
shown in Figure 4. We have listed the policies with their
rules and obligations. For the sake of understanding, we
only illustrate the relevant XACML elements to specify the
XACMLap policies.

The obligations are used in two different purposes, both
reflecting the tasks that need to be performed by the obligation
service based on the final decision (permit or deny) by the
PDP. The obligations include i) updating the current state
of the requested activity based on the decision (reflected by
‘FulfillOn’ attribute value), and ii) calling a policy. Each policy
is defined using the ‘Policyld’ attribute. The policies called by
obligation service include the policy defined with ‘Policyld’
value "continueActivityPolicy", to determine if the ongoing-
dependencies are fulfilled to continue the activity execution. In
our implementation, we can set-up the number of times and in
what interval the evaluation of "continueActivityPolicy" will
be performed until the activity is revoked or finished. Also,
the policy with ‘Policyld’ value "postUpdatePolicy" is called
after finishActivity action is permitted.

We have a policy set which applies the policy combining
algorithm "only-one-applicable" meaning that only one policy
from the policy set needs to be evaluated to "Permit" or
"Deny" decision. The appropriate policy is captured matching
the target action by comparing the value of the attribute
‘action-id’, to the value of ‘action-id’ retrieved from the
original XACMLp request. The policies defined by the ‘Pol-
icyld” values "startActivityPolicy", "continueActivityPolicy"
and "postUpdatePolicy" include similar rules for dependency
evaluation and update procedure of dependent activities’ states
as required. However, their evaluation time and obligations
are different. We describe the rules included in the policy



<PolicySet PolicySetld="1" PolicyCombiningAlgld= "only-one-applicable" >
<Policy Policyld = "startActivityPolicy" RuleCombiningAlgld="first-applicable" >
<Target><AccessSubject...><Resource...><Action><ActionMatch>< /Target>
<Rule Ruleld="startActivityNoPreDep" Effect = "Permit"><Condition...></Rule>
<Rule Ruleld="startActivity WithPreDepNoUpdate" Effect = "Permit"><Condition...></Rule>
<Rule Ruleld="startActivity WithimmutablePreDepWithUpdateNeeded" Effect = "Deny"><Condition...>></Rule>
<Rule Ruleld="startActivity WithPreDepUpdateNoDepOfDep" Effect = "Permit">
<Provisional Actions>...</Provisional Actions></Rule>
<Rule Ruleld="startActivity WithPreDepUpdateWithDepOfDepNoUpdateNeeded" Effect = "Permit">
<Provisional Actions>>...</Provisional Actions></Rule>
<ObligationExpressions>
<ObligationExpression Obligationld="updateRequestedActivityState" FulfillOn="Permit">...< /ObligationExpression>
<ObligationExpression Obligationld="call-continueActivityPolicy" FulfillOn="Permit">...< /ObligationExpression>
<ObligationExpression Obligationld="updateRequestedActivityState" FulfillOn="Deny">...< /ObligationExpression>
</ObligationExpressions></Policy>
<Policy Policyld = "continueActivityPolicy" RuleCombiningAlgld="first-applicable">
< Target><AccessSubject...><Resource...><Action><ActionMatch>< /Target>
<Rule Ruleld="continueActivityNoOnDep" Effect = "Permit"><Condition...></Rule>
<Rule Ruleld="continueActivityWithOnDepNoUpdate" Effect = "Permit"><Condition...></Rule>
<Rule Ruleld="ongoingActivity WithimmutableOnDepWithUpdateNeeded" Effect = "Deny"><Condition...>></Rule>
<Rule Ruleld="continueActivity WithOnDepUpdateNoDepOfDep" Effect = "Permit">
<Provisional Actions>>...</Provisional Actions></Rule>
<Rule Ruleld="continueActivity WithOnDepUpdateWithDepOfDepNoUpdateNeeded" Effect = "Permit">
<Provisional Actions>...</Provisional Actions></Rule>
<ObligationExpressions>
<ObligationExpression Obligationld="call-continueActivityPolicy" FulfillOn="Permit">...</ObligationExpression>
<ObligationExpression Obligationld="updateRequestedActivityState" FulfillOn="Deny">...</ObligationExpression>
</ObligationExpressions></Policy >
<Policy Policyld = "finishActivityPolicy" RuleCombiningAlgld="permit-overrides" >
<Target><AccessSubject...><Resource...><Action><ActionMatch>< /Target>
<Rule Ruleld="finishActivityNoDependency" Effect = "Permit"><Condition></Condition></Rule>
<ObligationExpressions >
<ObligationExpressionObligationld="updateRequestedActivityState" FulfillOn="Permit">...</ObligationExpression>
<ObligationExpression Obligationld="call-postUpdatePolicy" FulfillOn="Permit">...</ObligationExpression>
</ObligationExpressions > </Policy >
<Policy Policyld = "postUpdatePolicy" RuleCombiningAlgld="first-applicable" >
<Target><AccessSubject...><Resource...><Action><ActionMatch>< /Target>
<Rule Ruleld="postUpdateNoPostDep" Effect = "Permit"><Condition...></Rule>
<Rule Ruleld="postUpdateWithPostDepNoUpdate" Effect = "Permit"><Condition...></Rule>
<Rule Ruleld="postUpdateWithPostDepUpdateNoDepOfDep" Effect = "Permit">
<Provisional Actions...></Rule>
<Rule Ruleld="postUpdateWithPostDepUpdateWithDepOfDepNoUpdateNeeded" Effect = "Permit">
<ProvisionalActions...></Rule>
<ObligationExpressions >
<ObligationExpression Obligationld="updateRequestedActivityState"FulfillOn="Permit">...< /ObligationExpression>
</ObligationExpressions > </Policy >
</PolicySet>

Figure 4. Activity Dependency Evaluation and Update Policies using XACML A p Syntax
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Figure 5. Sequence Diagram of the implementation of XACMLp policy framework.

for ‘Policyld’ value "startActivityPolicy" which needs to be
evaluated when the target ‘action-id’ value is "startActivity".
The policies capture the following requirements:

— All policies in the policy set follow the rule combining
algorithm of "first-applicable" which denotes that the rule in
the rule list whose condition is satisfied first is the ultimate
rule providing the result of the policy evaluation.

The rule specified with ‘Ruleld’= "startActivityNoPreDep"
is applicable if the requested activity does not have any
pre-dependent activities resulting in "Permit" effect. The
conditions are written and enclosed inside the <Condition>
element.

The rule specified with ‘Ruleld’= "startActivity WithPreDep-
NoUpdate" is applicable when the requested activity has
pre-dependent activities and all of them are in their desired
states requiring no state update. The result of the evaluation
is "Permit" in this rule.

The rule specified with ‘Ruleld’= "startActivityWithPre-
DepUpdateNoDepOfDep" is applicable when the requested
activity has pre-dependent activities but all of them are not in
their desired states. Thus, one or more pre-dependent activ-
ities need update from the current to the desired state. This
rule is only applicable if their is no chain of dependencies
for the pre-dependent activities which need to update their
states. This rule’s final effect is "Permit".

The rule specified with ‘Ruleld’= "startActivityWithPre-
DepUpdateWithDepOfDepNoUpdateNeeded" is applicable
if one or more pre-dependent activities need to update
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their states while having all of their dependent activities
(dependent of dependent activities in a dependency chain)
currently in the desired states. This rule’s effect is "Permit".
— The rule specified with ‘Ruleld’= "startActivityWithIm-
mutableDepWithUpdateNeeded" is applicable if one or
more pre-dependent activities or dependent of dependent
activities in the dependency chain do not have same current
and desired states while they are immutable at this moment
of rule-checking. This immutability and need of update
conflict with each other resulting the policy evaluation to
a "Deny" Decision.
The policy with ‘Policyld’ value "continueActivityPolicy"
evaluates ongoing dependent activities to provide the deci-
sion for the action continueActivity. The "finishActivity-
Policy" always evaluates to "Permit" if the requester of the
finishActivity action is authorized to perform the action
on the requested activity and the environmental conditions
are met. This authorization process and environmental con-
ditions check are out of scope of the paper. It is assumed
that the requester is already authorized and all conditions
are also satisfied. The policy with ‘Policyld’ value "postUp-
datePolicy" evaluates the post-dependent activities after the
finish Activity action is performed. This policy is called as
an obligation after finishActivity action is permitted. This
"postUpdatePolicy" has an obligation to update the requested
activity’s state from "finished" to "inactive". The obligations
for updating the current state of the requested activity are
identified by the value "updateRequestedActivityState" for



‘Obligationld’. The values provided for the current state
will be different at different phase. For clarification, after
"startActivityPolicy" evaluates to "Permit", current state of the
requested activity will be changed to "running". Similarly, if
the "continueActivityPolicy" evaluates to "Deny", current state
of the requested activity (which is running) will be updated
to "revoked". This way, the framework is able to enforce the
continuous policy enforcement.

7.1 Prototype Implementation

The prototype implementation evaluates the activity depen-
dency (D) decision parameter specified by XACMLap policy
framework. For the proof-of-concept purpose, we assume that
other decision parameters are already evaluated and satisfied
for the access decision.

We implement the functionalities of PEP, Context Handler
(CH), PDP, PRP, PIP, PAP and the Obligation Service as shown
in the enforcement architecture Figure 3 using Python pro-
gramming language. The JavaScript Object Notation (JSON)
profile of XACML [26] currently handles the request and
responses only. Considering the shortcoming of the JSON
profile, we first write the XACMLap policies, convert the
policies to JSON format using Python xmlToDict! library and
write the dictionaries in JSON files.

PIP stores the necessary information about activity, dependen-
cies of activities including chain of dependencies and provides
to the context handler. Our policies are designed in a way
that we do not write separate rules for the evaluation of
each dependency. Rather we query for the dependencies, if
PIP holds any, PDP is given those dependencies which are
collected and sent by the CH. This gives the flexibility of
changing the dependency requirements in any system.

In our implementation, we develop a python API (Application
Programming Interface) in the PEP to intercept the activity
action request that appears in form of HTTP request. We
created a python API using Python Flask’> framework. The
purpose is to get the request from any external service over
HTTP protocol. However, we agree that the request-response
architecture may vary depending on the application domain
and the designer choice. We use Postman® to make the request
to the API endpoint which resides in our python application.
The requester uses the postman service to request an action
(such as startActivity, finishActivity) on an activity. The
python API in the PEP only accepts GET request and provides
response in the JSON format using a response schema created
in the implementation project. PEP communicates with the
other modules to get the response for the request and sends
the response for requested actions back to Postman. The
continuity of an activity can also be evaluated reflecting the
real environment where, for a specific duration of an activity,
the continuity can be checked in certain intervals until the
activity being revoked or finished.

Uhttps://www.askpython.com/python-modules/xmltodict-module
Zhttps://pypi.org/project/Flask/
3https://www.postman.com/
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Figure 6. Execution time against the number of requests for
startActivity action.

Figure 5 shows a sequence diagram for the implementation
of the XACMLAp policy framework for activity control.
A startActivity action is requested by the requester using
postman and intercepted by the API residing in PEP. PEP
sends the XACML request to the CH. CH notifies PDP about
the request information, PDP retrieves the matched policy
for the requested action from the request information and
queries the information about the requested activity and its
dependencies to the context handler (CH). CH collects the nec-
essary information from PIP and sends the information to PDP.
Further, PDP evaluates the associated policy and sends the
decision to Context Handler. CH sends the XACML response
to PEP for startActivity action. PEP calls the obligation
service to execute the obligations associated with the decision.
If the decision is "permit", the obligation service changes the
current state of the requested activity to "running". Further, the
obligation service sends a request for continueActivity action
to the context handler. The "Process request” term indicated
by the blue-colored portion repeats. "continueActivityPolicy"
evaluation for continueActivity action is repeated until the
running and requested activity is revoked or finished. Later,
a finishActivity action request is sent to the PEP and the
response is provided after the obligations are fulfilled. The
obligations after finishing the activity includes changing the
current state of the requested activity to "finished" and calling
"postUpdatePolicy". For the evaluation of the "postUpdatePol-
icy", again "Process request" repeats and a final XACML
Response is provided to the requester.

7.2 Performance Evaluation

We evaluated the performance of our XACMLAp policy
framework implementation of using the server hosted in a local
machine. The machine configuration includes the operating
system of ‘Windows 11°, programming language support of
‘Python 3.9’ and memory of ‘Intel Core i7" with 1.7GHz
processor and 16GB RAM.

We calculated the time consumption for the execution of a
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Figure 7. Execution time against number of requests (full activity cycle).

number of startActivity requests on different activities. We
initiate the request using postman where we ran a collection of
10, 20, 30, 40 and 50 requests for startActivity action. PEP
intercepts the request through the Python API and completes
the evaluation process following the data flow model. In Figure
6, we show the execution time to perform startActivity ac-
tion on different number of requested activities. The execution
time increases with the number of requests. We obtained that
approximately 513 ms time is required for starting 50 new
activities. The average time consumption per activity start is
10.26 ms. This result of execution time per startActivity
access to an activity is comparable to the average time (21.5
ms and 45.3 ms) per access evaluation in literature [14],
[23]. Our enforcement model performs significantly better in
terms of time-efficiency. Since activity is a long continuous
operation performed for a duration of time, we also measured
the execution time of the full activity cycle. The continu-
ous dependency evaluation process takes variable amount of
time based on the time interval of re-evaluation of ongoing-
dependent activities and the duration of continuity of the
activity. We also measured the response time from starting
the start Activity action request to the finishActivity action
request on different number of activities. Note that, postman
can run a collection of requests sequentially which we used to
measure the time for getting response including start Activity
and finishActivity action request. On the other hand, the
evaluation of ongoing-dependent activities and the required
update processing is set up to be executed 10 times and 20
times with 5ms and 10ms intervals.

In Figure 7, we show the execution time for full activity life
cycle (start to finish) with continue Activity action performed
10 and 20 times with 5 ms and 10 ms intervals. For continuity
re-evaluation 10 times with 5 ms intervals, the average time
for a full activity cycle is 112.5 ms while with 10 ms intervals
this average execution time is 120 ms. We also observe
that with continueActivity action performed 20 times, the
average execution time for full activity life cycle (start to
finish) are 122.5 ms (with 5ms intervals) and 132.5 ms (with
10ms intervals). We conjecture from this observation that
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the number of time continuity evaluation performed can be
increased according to the system needs while getting only
milliseconds of time-difference.

We understand that real world smart systems involve hundreds
and thousands of devices and activities that are interconnected.
An extensive performance analysis with higher loads of ac-
tivities and their dependencies is necessary while we believe
that our proof-of-concept implementation is able to showcase
the practical viability by implementing the policy enforcement
architecture for the extended XACML policy expressions.

8. CONCLUSION AND FUTURE WORK

This paper introduces a XACMLap policy framework for
specifying and implementing activity dependency policies for
activity centric access control. We use a widely adopted
XACML policy language and extend its elements to express
policies for the evaluation of dependent activity and updat-
ing the states based on the conditions. We also provide a
XACMLAp policy enforcement architecture and the data flow
model to enforce the policies for activity dependency evalua-
tion for activity access decision. The enforcement architecture
is constructed based on the data flow model outlined in the
standard XACML 3.0. We use the data flow while incorporat-
ing an indirect communication between the Policy Decision
Point (PDP) and Policy Administration Point (PAP) using a
Policy Retrieval Point (PRP) component to identify the appro-
priately matched policy. In implementation of the enforcement
architecture, we employ policies written in XACMLp. Our
policies demonstrate expressive capabilities which along with
the simplicity of the enforcement architecture contributes
significantly to continuous policy evaluation in activity control.
We also measure the performance of the implementation
by sending requests (for actions on activities) over HTTP
protocol. The experimental results exhibit promising time-
efficient performance with varying numbers of requests.

In our research, we conduct policy evaluation for two levels of
activity dependencies within the dependency chain. It would
be critical to enhance the XACML4p policy framework to
handle any number of dependent-activity levels. Our work
covers the policy evaluation that includes state update actions
based on conditions. The current XACML profile lacks con-
structs for recursive policy evaluation and does not provide
syntax for state update actions. We leave the refinement of
XACMLp semantics for recursive updates in the dependency
chain as a future direction for improvement. We believe
that enhancing the XACMLap framework in this way will
effectively address the dependency of activities across large
number of levels in the dependency chain.
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