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Abstract—In recent years, there has been a significant surge
in malware attacks, necessitating more advanced preventive
measures and remedial strategies. While several successful Al-
based malware classification approaches exist—categorized into
static, dynamic, or online analysis—most successful AI models
lack easily interpretable decisions and explanations for their
processes. Our paper aims to delve into explainable malware clas-
sification across various execution environments (such as dynamic
and online), thoroughly analyzing their respective strengths,
weaknesses, and commonalities. To evaluate our approach, we
train Feed Forward Neural Networks (FFNN) and Convolutional
Neural Networks (CNN) to classify malware based on features
obtained from dynamic and online analysis environments. The
feature attribution for malware classification is performed by
explainability tools, SHAP, LIME and Permutation Importance.
We perform a detailed evaluation of the calculated global and
local explanations from the experiments, discuss limitations
and, ultimately, offer recommendations for achieving a balanced
approach.

Index Terms—Explainable AI, Explainable malware analy-
sis, Interpretability, Explainability, SHAP, LIME, Permutation
Importance, Dynamic malware classification, Online malware
classification, Feature attribution

I. INTRODUCTION

Malware poses a significant cybersecurity threat, requir-
ing effective classification for remediation [1], [2]. Machine
learning-based approaches [3] aim to categorize malware types
for tailored response plans. Malware analysis is typically cat-
egorized into static, dynamic, and online approaches [4]-[8].
Static analysis examines resting malicious files, while dynamic
analysis executes malware in a simulated environment. Online
analysis, on the other hand, monitors systems in real-time,
allowing access to internet resources. Both physical test beds
[9] and cloud environments [6] are used for this purpose,
although costs can be prohibitive.

Despite the importance of accurate malware classification,
understanding the classification processes is equally crucial.
Deep learning models, often used for their accuracy, can
be challenging to interpret due to their complexity [10].
Explainable AI/ML methods aim to address this challenge
by elucidating decisions and identifying significant features
contributing to model outcomes. This enhances user trust and
aids security analysts in countering malware threats [11].
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In this work, we employ explainable techniques to attribute
features in deep learning models used for dynamic and online
malware classification. We first train Feed Forward Neural
Network (FFNN) and Convolutional Neural Network (CNN)
models on dynamic and online analysis features to create
malware detectors. In the subsequent phase, we utilize Shap-
ley Additive exPlanations (SHAP) [12], Local Interpretable
Model-Agnostic Explanations (LIME) [13], and Permutation
Importance to interpret black-box model decisions. SHAP
assigns feature contributions using cooperative game theory,
LIME constructs local interpretable models around specific
predictions, and Permutation Importance [14] assesses feature
impact through value shuffling for global explanations. We
leverage DeepSHAP [12] for both global and local interpre-
tations, complemented by Permutation Importance for global
insights and LIME for local insights. Our contributions in-
clude:

« We evaluate the effectiveness of deep learning models for
classifying malware categories from both a dynamic and
an online data set.

o We extend this analysis by explaining model predictions
on a global level with SHAP and Permutation Importance,
and on a local level with LIME and SHAP.

The paper is organized as follows. Section II reviews related
works in (a) dynamic analysis, (b) online analysis, and (c)
explainability techniques for interpreting model predictions.
Section III outlines the methodology and introduces the dy-
namic and online datasets. Results and model explanations for
each dataset are presented in Section IV. The paper concludes
with a summary and discussion of future work in Section V.

II. RELATED WORKS

This section provides a review of dynamic and online
analyses, concluding with a discussion on explainable Al.
Table I compares relevant works across attributes like domain,
analysis level, models, features, explainability techniques,
and malware platform. It is important to clarify terms often
conflated in the literature. Detection involves determining
malware’s presence or absence, similar to binary classification.
This work distinguishes detection from classification, where
the goal is to differentiate malware samples. Classification
groups malware by family or category, with family denoting
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TABLE I: Related works compared. A / indicates that a specific paper has this feature or model, and a blank cell shows that

this attribute or model does not exist.
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variants sharing traits and category grouping malware by C. Explainable Al
objectives (e.g., ransomware encrypting systems or files). . .
! (cg YPUng sy ) Some machine learning models, termed transparent mod-
els,” operate without the need for external or post-hoc explana-
A. Dynamic Analysis tion methods. Typically, these models, such as tree-based mod-
) ) o els, offer easy visualization through their tree structure. Con-
Sf:\_/eral studies focus on dynamic malware analysis I versely, approaches like SVM or neural networks are labeled
traditional host-based environments. [5] conducted Android as black-box methods, where the internal mechanisms are not
malware classification using diverse input features, 1nclu.d¥ng readily visible or understandable, necessitating additional post-
memory, API calls, network data, battery status, log writing  hoc explanations. These explanations can be categorized based
and process count. Transparent models like Naive Bayes and on their locality and model-specificity. Local explanations
Decision Tree were employed, as a well as black-box SVM focus on understanding the model’s predictions within specific
model. [15] qlaSSIﬁed Windows malware cate_gorles using API examples, such as classifying individual pixels in an image.
calls and vanous.transparent and deep learn.mg modt.:ls, such In contrast, global explanations provide insights into general
as a CNN. Despite advancements over static analysis, these  patterns, feature importance, and model structure without
approaches also face challenges in analyzing modern advanced  examining specific inputs [24]. There may be scenarios where
malware that may detect they are in a closed environment and only a global or local explanation suffices, but generally,
evade analysis, prompting the need for online malware analysis  poth levels of locality are essential for model interpretability.
methods. Model-specific techniques are tailored to a particular model
type, such as saliency maps for CNNs, while model-agnostic
B. Online Analysis techniques are gpphcable across d?fferent ar.chltectures. .
Several studies address machine learning model inter-
Several studies focus on online malware analysis, addressing pretability in malware analysis. In [16], an interpretable CNN
the limitations of dynamic analysis by continuously monitor- model predicted tags for dynamic malware family catego-
ing systems and utilizing various runtime features for machine rization, with Layer-wise Relevance Propagation (LRP) used
learning models. In [18], performance metrics were employed for explanation. [22] developed a dynamic Android malware
to detect malware with six ML classifiers, including a CNN. classification method, employing models such as Random
[23] categorized Linux malware in a cloud environment using Forest, Decision Tree, SVM, CNN, and Logistic Regression
the LightGBM model trained on system call n-grams. These on grayscale images, explained through local, model-specific
studies share the characteristic of conducting online analysis in methods like Grad-CAM and heatmaps. [17] and [21] explored
a cloud environment, chosen for its relative resource efficiency SHAP for explaining malware classification, focusing on dy-
as compared to traditional host-based environments. Almost all namic Android malware classification and transformers-based
of the previously mentioned works used some black-box model transfer learning, respectively. [19] classified online Windows
but lacked the necessary post-hoc explanations. Notably, our ~ malware using models like Random Forest, LSTM, CNN, and
work stands out by combining dynamic and online analysis in Transformer, explained by Integrated Gradients for global and
a non-cloud, host-based environment, along with explainability local insights. [6] focued on real-time cloud-based malware
methods for interpreting deep learning models in malware detection, explaining predictions with SHAP for various black-
classification. box models. Karn et al. [20] explain online malware detection,
183
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TABLE II: All classes of Dynamic data set

Category Number of Samples
Riskware 7261
Adware 5838
Trojan 4412
Ransomware 1861
Trojan_Spy 1801
Trojan_SMS 1028
Trojan_Dropper 837
PUA 665
Backdoor 591
Scareware 462
FileInfector 129
Trojan_Banker 118

particularly cryptominer detection using SHAP for XGBoost
predictions and LIME for other models. While these studies
emphasize online analysis and explainability, none specifically
address explaining both dynamic and online malware category
classification in a traditional host-based environment.

III. METHODOLOGY

In this section, we discuss the methodology we use for our
dynamic analysis, our online analysis, how we evaluate our
models, and our approach to explainability.

A. Dynamic Analysis

We utilized the AndMal2020 dataset from the Canadian
Center for Cybersecurity [25], comprising 12 Android mal-
ware categories with 141 features across 6 types. Addressing
highly imbalanced class distribution shown in Table II, we
employed SMOTE (Synthetic Minority Oversampling Tech-
nique) to balance the dataset. For analysis, we trained both
FFNN and CNN models. The FENN included 6 hidden layers
with ReLU activation and Softmax output layer, trained on
80% of the data for 135 epochs with a batch size of 10. The
CNN architecture featured convolution, max pooling layers,
and two fully connected layers with dropout, trained on 80%
of the data for 75 epochs with a batch size of 10.

B. Online Analysis

We used the RaDaR dataset from the Indian Institute
of Technology Madras [9], capturing real-time behavior of
Windows malware on a physical testbed. This dataset fa-
cilitates analysis of modern malware capable of detecting
sandbox environments and remaining dormant. However, the
extensive resources required for this analysis, along with the
larger data volume generated, result in increased computation
times for classification and explainability methods. The dataset
comprises five malware categories, with 55 features focusing
on malware behavior at the hardware level. Like dynamic
analysis, the online analysis dataset is highly imbalanced, as
seen in Table III, which is addressed using SMOTE to create
synthetic samples. Initially considering a Long Short-Term
Memory (LSTM) model for its advantages in handling time-
series data, we found SHAP less compatible with LSTM’s
data shape. Hence, we opted for models consistent across both
analysis levels. Future work should explore models adept at

TABLE III: All classes of Online data set

Category Number of Snapshots
Cryptominer 158158
Deceptor 99099
Ransomware 13013
PUA 3003
Backdoor 1001

TABLE IV: Performance Metrics for Dynamic Analysis and
Riskware-Specific Metrics

Accuracy (%) | Precision (%) | Recall (%) | F1 (%)

FENN without SMOTE 80.76 81.23 80.76 81.00
FFNN with SMOTE 90.57 91.00 90.57 90.63
CNN without SMOTE 81.68 81.79 81.68 81.74
CNN with SMOTE 90.04 90.03 90.04 90.03
Riskware - FNN with SMOTE 78.53 100.00 78.53 87.97
Riskware - CNN with SMOTE 81.90 100.00 81.90 90.04

handling time-series data and suitable explanation methods.
For the CNN, the most effective hyperparameters included
a convolution layer followed by max pooling, another con-
volution layer, max pooling, and two fully connected layers.
ReLU activation was used for all hidden layers, and Softmax
for the output layer. The model was trained on 80% of the
dataset for 75 epochs with a batch size of 50. Similarly, the
FFNN comprised 5 hidden layers, with ReLU activation, 2
fully connected layers, 1 dropout layer, and Softmax activation
for the output layer. Trained on 80% of the dataset for 100
epochs with a batch size of 50, both models were tested on
the remaining 20% of the online dataset.

C. Explainability Approach

We chose SHAP as our primary explanation method due
to its robust and well-documented Python library. SHAP
quantifies feature contributions through Shapley values, pro-
viding a mathematical framework to explain model predictions
[12]. SHAP offers model-specific explanation methods, such
as DeepExplainer for deep learning models, and provides
explanations at both global and local levels. After model
training, we generate an explainer using SHAP’s DeepEx-
plainer, computing SHAP values for 1000 samples from the
test datasets of both dynamic and online analyses. This under-
sampling is necessary due to the resource-intensive nature of
computing SHAP values, especially for complex architectures
like CNNs.

LIME and Permutation Importance serve as supplementary
explanation methods. LIME offers local explanations, while
Permutation Importance provides global explanations. We
chose these methods to ensure robust interpretations of the
models and to verify the efficiency of SHAP under random
sampling. For Permutation Importance, we permuted each fea-
ture 30 times for both dynamic and online datasets. For local
explanations, we randomly selected misclassified observations
from the subsample and generated graphs using SHAP and
LIME.
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Fig. 2: Performance of models in Dynamic Analysis
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Fig. 3: A stacked bar graph depicting the top 10 online features identified by SHAP in model decision making
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Fig. 4: A stacked bar graph depicting the top 10 online features identified by SHAP in model decision making

TABLE V: Performance Metrics for Online Analysis

Deceptor-Specific Metrics

and

IV. RESULTS AND DISCUSSION
A. Evaluation of Performance Metrics

Table IV provides performance metrics for overall model

A % Precisi: o Recall (% F1 (% . . . . .
FFNN without SMOTE CC[;T;ZYS( - rec%‘ﬂr;( . e;;_4§ - 77,(38) performance in dynamic analysis, including a breakdown for
FFNN with SMOTE 78.43 79.16 78.43 78.79 _ 1 11171
N e I G Lheind it o one of the \X./OI'St perfotmmg classes. Utilizing the F1 score, a
CNN with SMOTE 85.60 85.65 8560 | 85.63 comprehensive evaluation beyond accuracy, the FFNN model
D tor - FNN with SMOTE 58.90 100.00 58.90 74.14 . .
Decesior —CNN with SMOTE | 6378 10000 ST 3% achieved 90.63%, while the CNN model reached 90.03%. The

TABLE VI: Top 10 Dynamic Features Identified by Permuta-

tion Importance

FFNN Features (Importance)

CNN Features (Importance)

MemPssClean (0.236)

APCtxtregRece (0.178)

MemPrivateClean (0.191)

APregConObsrv (0.158)

APregConObsrv (0.140)

MemPssClean (0.155)

APCtxtregRece (0.115)

MemPrivateClean (0.132)

Batteryservice (0.110)

APfindLibrary (0.105)

MemDeathRecpent (0.108)

MemDeathRecpent (0.103)

APCtxtIregRece (0.103)

API__sessions (0.083)

APActstartAct (0.102)

APActstartAct (0.078)

API__sessions (0.086)

MemParcelCount (0.072)

APfindLibrary (0.079)

MemHeapAlloc (0.069)

TABLE VII: Top 10 Online Features Identified by Permutation

Importance

FFNN Features (Importance)

CNN Features (Importance)

L1D_P_Miss_Oc (0.150)

ICache_Misses (0.188)

DTLBLoadMissWD (0.113)

DTLBLoadMissWD (0.181)

DTLBStoreMissW (0.112)

TTLBMissw (0.143)

DTLBLoadMiss_W (0.097)

L2ReqAll (0.138)

TTLBMissW (0.096)

M_Ld_LLCH.XS_N (0.132)

L2ReqPFms (0.090)

LID_P_Miss_Oc (0.131)

Core_cyc (0.086)

LID_Rep (0.130)

LID_Rep (0.080)

Ref_cyc (0.103)

DTLBLoadMissWC (0.077)

L2ReqPFms (0.098)

BrMispRetd_All (0.069)

LID_Rep (0.097)

comparison with and without SMOTE intervention indicates a
notable performance increase with synthetic samples. Despite
Riskware being the majority class in the unaltered dataset,
its relative poor performance suggests potential overlap be-
tween SMOTE’s synthetic samples for minority classes and
the decision boundary of majority classes. Figure 2 suggests
misclassification of majority class samples as minority classes,
but the overall model improvement with SMOTE justifies this
cost.

Table V presents performance metrics for the online analysis
before and after SMOTE intervention. The FFNN achieved an
F1 score of 78.79%, while the CNN achieved 85.63%. The
CNN outperformed the FFNN, possibly due to its complexity,
yet both models underperformed compared to those in the
dynamic analysis. This could be attributed to the loss of
time-series data and the introduction of synthetic samples via
SMOTE, as depicted in Figure 1. We focused our explanation
analysis on the Riskware class for the dynamic dataset and the
Deceptor class for the online dataset due to their low F1 scores,
indicating the need for further investigation. More analyses for
other classes are available on our GitHub repository’.

B. Global Explanation

With reduced sample sizes, SHAP’s DeepExplainer com-
puted SHAP values in about 6 minutes for the CNN and 16
seconds for the FFNN on the dynamic dataset. The summary
plots in Figure 3 illustrate feature importance, with features
arranged by their effects’ magnitudes across all classes. No-
tably, API calls and Memory features were top features for

IGitHub: https://github.com/SecurityCard/explainability-graphs.git
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Fig. 5: Waterfall plots - Local interpretations of misclassified Riskware sample of dynamic data set
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Fig. 6: LIME plots - Local interpretations of misclassified Riskware sample of dynamic data set

both models, with API__sessions particularly significant for
the CNN model. Permutation Importance, validating SHAP’s
effectiveness, identified top features after permutation. The
FFNN runtime was just under an hour, and for the CNN, two
hours. Table VI lists top features and their mean importance
when permuted, with 10 features shared with SHAP for the
FFNN and 7 for the CNN, confirming a balanced trade-off
between computation time and SHAP accuracy.

For the online dataset, DeepExplainer computed SHAP
values in about 92 seconds for the CNN and 4 seconds for the
FFNN. Permutation Importance took 40 minutes for the FFNN
and an hour for the CNN. Figure 4 and Table VII reveal that
among the globally identified top 10 features by Permutation

Importance, 5 are within the top 10 identified by SHAP for
the FENN, and 6 for the CNN, indicating a balanced trade-off
between computational accuracy and resource costs. Addition-
ally, 4 features were shared among those identified by SHAP
for both models, suggesting robustness in the online analysis
models. However, this might not be as pronounced as in the
dynamic analysis due to limitations with SHAP’s handling
of time-series-based neural networks. In real-world scenarios,
our methodology of employing diverse explainability methods
on an under-sampled dataset remains effective. The model-
agnostic nature of our chosen explainability techniques allows
for flexible and generalizable application across various model
architectures tailored to specific use cases. Additionally, our
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Fig. 8: LIME plots - Local interpretations of misclassified Deceptor sample of online data set

under-sampling approach mitigates the anticipated increase in
dataset size often encountered in real-world implementations.

C. Local Explanation

For local explanations, SHAP generated waterfall plots,
focusing on misclassified samples for the classes with the
lowest F1 score. Figure 5 displays the waterfall plots for a
dynamic sample misclassified by both models, showcasing
SHAP values for each feature. Positive contributions (in pink)
push the probability towards the predicted class, while negative
contributions (in blue) push it away. The sum of SHAP
values for each sample represents the difference between
the base value E[f(x)] at the bottom and the final output
value f(z) at the top. For Figure 5, the final output values
indicate probabilities for the predicted class (PUA) and not
the actual class (Riskware), being 0.124 and 0.037 for the
CNN and FFNN, respectively. These scores while still positive,
indicating the result of being classified as PUA, are not

large quantities, meaning the classifier decision is not as
certain. Once again the majority of the features are either
of the Memory or the API types, with the respective model
explanations even sharing two features, which are also globally
important to model predictions. Figure 6 shows LIME graphs
for the same misclassified sample, providing different feature
importance compared to SHAP. Green bars (right-directed)
indicate positive contributions towards the predicted class,
while red bars (left-directed) suggest negative contributions
for all classes not predicted. The LIME explanations indicate
most of the decision to misclassify was due to negative feature
contribution, supporting our conclusion from the waterfall plot
analysis about the classifier decision not being certain. The top
10 features identified by LIME are all of the API type. This
further indicates that it may be possible to increase model
performance by removing the features that are less relevant
to model decision making, which has significant implications
for future research and for increasing the effectiveness of
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real-world remediation strategies. Our methodology enhances
efficiency in malware classification by pinpointing crucial
analysis areas and fostering trust in black-box model decisions,
which would otherwise be inscrutable. This enables focused
analysis and improves overall classification efficacy.

For online analysis, Figure 7 displays waterfall plots for
a misclassified Deceptor sample, showing similar character-
istics to dynamic local explanations with classifier decision
not being as certain and many features having equal and
opposite contributions to each other. Figure 8 depicts LIME
graphs for the same misclassified sample, with shared top two
features providing strong negative impacts on classifying this
sample as not the other classes. By combining the locality
specific explainability methods of Permutation Importance and
LIME to the both global and local method of SHAP, we
have effectively reached an even deeper understanding and
interpretation of these black-box models for both dynamic
and online malware classification. This method of combining
different explanaibility methods has significant implications
for future works that even just choose to hone in on dynamic
or online malware category classification.

V. CONCLUSION AND FUTURE WORK

This paper applies FFNN and CNN models to dynamic and
online malware datasets for classification, using SHAP, LIME,
and Permutation Importance for explanations. This approach
balances resource costs and analysis depth. Despite class im-
balance in the dynamic dataset, SMOTE partially mitigates this
issue, though with potential performance degradation. Another
limitation arises from explainability methods unsuitable for
time-series data. Future research should explore this limitation
and evaluate model performance on diverse datasets.

Future work aims to investigate adversarial attacks’ potential
exploitation by malicious users to misclassify malware cate-
gories. By focusing on features of highest importance iden-
tified by explainability methods, our findings can contribute
to creating more efficient datasets, facilitating real-world mal-
ware remediation and aiding cyber-analysts in coordinating
responses to threats.
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