
Explainable Deep Learning Models for

Dynamic and Online Malware Classification

Quincy Card, Daniel Simpson, Kshitiz Aryal, Maanak Gupta

Department of Computer Science

Tennessee Tech University

Cookeville, TN USA

qacard42@tntech.edu, dnsimpson42@tntech.edu, karyal42@tntech.edu, mgupta@tntech.edu

Sheikh Rabiul Islam

Department of Computer Science

Rutgers University

Camden, NJ USA

sheikh.islam@rutgers.edu

Abstract—In recent years, there has been a significant surge
in malware attacks, necessitating more advanced preventive
measures and remedial strategies. While several successful AI-
based malware classification approaches exist—categorized into
static, dynamic, or online analysis—most successful AI models
lack easily interpretable decisions and explanations for their
processes. Our paper aims to delve into explainable malware clas-
sification across various execution environments (such as dynamic
and online), thoroughly analyzing their respective strengths,
weaknesses, and commonalities. To evaluate our approach, we
train Feed Forward Neural Networks (FFNN) and Convolutional
Neural Networks (CNN) to classify malware based on features
obtained from dynamic and online analysis environments. The
feature attribution for malware classification is performed by
explainability tools, SHAP, LIME and Permutation Importance.
We perform a detailed evaluation of the calculated global and
local explanations from the experiments, discuss limitations
and, ultimately, offer recommendations for achieving a balanced
approach.

Index Terms—Explainable AI, Explainable malware analy-
sis, Interpretability, Explainability, SHAP, LIME, Permutation
Importance, Dynamic malware classification, Online malware
classification, Feature attribution

I. INTRODUCTION

Malware poses a significant cybersecurity threat, requir-

ing effective classification for remediation [1], [2]. Machine

learning-based approaches [3] aim to categorize malware types

for tailored response plans. Malware analysis is typically cat-

egorized into static, dynamic, and online approaches [4]–[8].

Static analysis examines resting malicious files, while dynamic

analysis executes malware in a simulated environment. Online

analysis, on the other hand, monitors systems in real-time,

allowing access to internet resources. Both physical test beds

[9] and cloud environments [6] are used for this purpose,

although costs can be prohibitive.

Despite the importance of accurate malware classification,

understanding the classification processes is equally crucial.

Deep learning models, often used for their accuracy, can

be challenging to interpret due to their complexity [10].

Explainable AI/ML methods aim to address this challenge

by elucidating decisions and identifying significant features

contributing to model outcomes. This enhances user trust and

aids security analysts in countering malware threats [11].

In this work, we employ explainable techniques to attribute

features in deep learning models used for dynamic and online

malware classification. We first train Feed Forward Neural

Network (FFNN) and Convolutional Neural Network (CNN)

models on dynamic and online analysis features to create

malware detectors. In the subsequent phase, we utilize Shap-

ley Additive exPlanations (SHAP) [12], Local Interpretable

Model-Agnostic Explanations (LIME) [13], and Permutation

Importance to interpret black-box model decisions. SHAP

assigns feature contributions using cooperative game theory,

LIME constructs local interpretable models around specific

predictions, and Permutation Importance [14] assesses feature

impact through value shuffling for global explanations. We

leverage DeepSHAP [12] for both global and local interpre-

tations, complemented by Permutation Importance for global

insights and LIME for local insights. Our contributions in-

clude:

• We evaluate the effectiveness of deep learning models for

classifying malware categories from both a dynamic and

an online data set.

• We extend this analysis by explaining model predictions

on a global level with SHAP and Permutation Importance,

and on a local level with LIME and SHAP.

The paper is organized as follows. Section II reviews related

works in (a) dynamic analysis, (b) online analysis, and (c)

explainability techniques for interpreting model predictions.

Section III outlines the methodology and introduces the dy-

namic and online datasets. Results and model explanations for

each dataset are presented in Section IV. The paper concludes

with a summary and discussion of future work in Section V.

II. RELATED WORKS

This section provides a review of dynamic and online

analyses, concluding with a discussion on explainable AI.

Table I compares relevant works across attributes like domain,

analysis level, models, features, explainability techniques,

and malware platform. It is important to clarify terms often

conflated in the literature. Detection involves determining

malware’s presence or absence, similar to binary classification.

This work distinguishes detection from classification, where

the goal is to differentiate malware samples. Classification

groups malware by family or category, with family denoting

182

2024 IEEE International Conference on Smart Computing (SMARTCOMP)

2693-8340/24/$31.00 ©2024 IEEE
DOI 10.1109/SMARTCOMP61445.2024.00045

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

m
ar

t C
om

pu
tin

g
(S

M
AR

TC
OM

P)
 |

 9
79

-8
-3

50
3-

49
94

-8
/2

4/
$3

1.
00

 ©
20

24
 IE

EE
 |

 D
OI

: 1
0.

11
09

/S
M

AR
TC

OM
P6

14
45

.2
02

4.
00

04
5

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:18:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Related works compared. A
√

indicates that a specific paper has this feature or model, and a blank cell shows that

this attribute or model does not exist.

Analysis Domain Features Models Used XAI Technique Platform

Paper

D
et

ec
ti

o
n

C
at

eg
o
ry

C
la

ss
ifi

ca
ti

o
n

F
am

il
y

C
la

ss
ifi

ca
ti

o
n

D
y
n
am

ic
A

n
al

y
si

s

O
n
li

n
e

A
n
al

y
si

s

P
er

fo
rm

an
ce

M
et

ri
cs

A
P

I
C

al
ls

S
y
st

em
C

al
ls

G
ra

y
sc

al
e

Im
ag

es

O
th

er
s

L
o
g
is

ti
c

R
eg

re
ss

io
n

D
ec

is
io

n
T

re
e

R
an

d
o
m

F
o
re

st

L
ig

h
tG

B
M

X
G

B
o
o
st

S
u
p
p
o
rt

V
ec

to
r

M
ac

h
in

e

D
ee

p
L

ea
rn

in
g

S
H

A
P

L
IM

E

L
R

P

G
ra

d
-C

A
M

H
ea

tm
ap

In
te

g
ra

te
d

G
ra

d
ie

n
ts

P
er

m
u
ta

ti
o
n

Im
p
o
rt

an
ce

L
in

u
x

A
n
d
ro

id

W
in

d
o
w

s

Schofield et al. (2021) [15]
√ √ √ √ √ √ √

Keyes et al. (2021) [5]
√ √ √ √ √ √ √

Pirch et al. (2021) [16]
√ √ √ √ √ √

Alenezi et al. (2021) [17]
√ √ √ √ √ √ √ √

Kimmel et al. (2021) [18]
√ √ √ √ √ √ √

Prasse et al. (2021) [19]
√ √ √ √ √ √ √ √

Karn et al. (2021) [20]
√ √ √ √ √ √ √ √ √

Ullah et al. (2022) [21]
√ √ √ √ √ √ √ √ √ √

Naeem et al. (2022) [22]
√ √ √ √ √ √ √ √ √ √ √

Brown et al. (2022) [23]
√ √ √ √ √

Manthena et al. (2023) [6]
√ √ √ √ √ √ √ √

Our Approach
√ √ √ √ √ √ √ √ √ √ √

variants sharing traits and category grouping malware by

objectives (e.g., ransomware encrypting systems or files).

A. Dynamic Analysis

Several studies focus on dynamic malware analysis in

traditional host-based environments. [5] conducted Android

malware classification using diverse input features, including

memory, API calls, network data, battery status, log writing

and process count. Transparent models like Naive Bayes and

Decision Tree were employed, as a well as black-box SVM

model. [15] classified Windows malware categories using API

calls and various transparent and deep learning models, such

as a CNN. Despite advancements over static analysis, these

approaches also face challenges in analyzing modern advanced

malware that may detect they are in a closed environment and

evade analysis, prompting the need for online malware analysis

methods.

B. Online Analysis

Several studies focus on online malware analysis, addressing

the limitations of dynamic analysis by continuously monitor-

ing systems and utilizing various runtime features for machine

learning models. In [18], performance metrics were employed

to detect malware with six ML classifiers, including a CNN.

[23] categorized Linux malware in a cloud environment using

the LightGBM model trained on system call n-grams. These

studies share the characteristic of conducting online analysis in

a cloud environment, chosen for its relative resource efficiency

as compared to traditional host-based environments. Almost all

of the previously mentioned works used some black-box model

but lacked the necessary post-hoc explanations. Notably, our

work stands out by combining dynamic and online analysis in

a non-cloud, host-based environment, along with explainability

methods for interpreting deep learning models in malware

classification.

C. Explainable AI

Some machine learning models, termed ”transparent mod-

els,” operate without the need for external or post-hoc explana-

tion methods. Typically, these models, such as tree-based mod-

els, offer easy visualization through their tree structure. Con-

versely, approaches like SVM or neural networks are labeled

as black-box methods, where the internal mechanisms are not

readily visible or understandable, necessitating additional post-

hoc explanations. These explanations can be categorized based

on their locality and model-specificity. Local explanations

focus on understanding the model’s predictions within specific

examples, such as classifying individual pixels in an image.

In contrast, global explanations provide insights into general

patterns, feature importance, and model structure without

examining specific inputs [24]. There may be scenarios where

only a global or local explanation suffices, but generally,

both levels of locality are essential for model interpretability.

Model-specific techniques are tailored to a particular model

type, such as saliency maps for CNNs, while model-agnostic

techniques are applicable across different architectures.

Several studies address machine learning model inter-

pretability in malware analysis. In [16], an interpretable CNN

model predicted tags for dynamic malware family catego-

rization, with Layer-wise Relevance Propagation (LRP) used

for explanation. [22] developed a dynamic Android malware

classification method, employing models such as Random

Forest, Decision Tree, SVM, CNN, and Logistic Regression

on grayscale images, explained through local, model-specific

methods like Grad-CAM and heatmaps. [17] and [21] explored

SHAP for explaining malware classification, focusing on dy-

namic Android malware classification and transformers-based

transfer learning, respectively. [19] classified online Windows

malware using models like Random Forest, LSTM, CNN, and

Transformer, explained by Integrated Gradients for global and

local insights. [6] focued on real-time cloud-based malware

detection, explaining predictions with SHAP for various black-

box models. Karn et al. [20] explain online malware detection,

183

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:18:22 UTC from IEEE Xplore. Restrictions apply.

TABLE II: All classes of Dynamic data set

Category Number of Samples

Riskware 7261

Adware 5838

Trojan 4412

Ransomware 1861

Trojan Spy 1801

Trojan SMS 1028

Trojan Dropper 837

PUA 665

Backdoor 591

Scareware 462

FileInfector 129

Trojan Banker 118

particularly cryptominer detection using SHAP for XGBoost

predictions and LIME for other models. While these studies

emphasize online analysis and explainability, none specifically

address explaining both dynamic and online malware category

classification in a traditional host-based environment.

III. METHODOLOGY

In this section, we discuss the methodology we use for our

dynamic analysis, our online analysis, how we evaluate our

models, and our approach to explainability.

A. Dynamic Analysis

We utilized the AndMal2020 dataset from the Canadian

Center for Cybersecurity [25], comprising 12 Android mal-

ware categories with 141 features across 6 types. Addressing

highly imbalanced class distribution shown in Table II, we

employed SMOTE (Synthetic Minority Oversampling Tech-

nique) to balance the dataset. For analysis, we trained both

FFNN and CNN models. The FFNN included 6 hidden layers

with ReLU activation and Softmax output layer, trained on

80% of the data for 135 epochs with a batch size of 10. The

CNN architecture featured convolution, max pooling layers,

and two fully connected layers with dropout, trained on 80%

of the data for 75 epochs with a batch size of 10.

B. Online Analysis

We used the RaDaR dataset from the Indian Institute

of Technology Madras [9], capturing real-time behavior of

Windows malware on a physical testbed. This dataset fa-

cilitates analysis of modern malware capable of detecting

sandbox environments and remaining dormant. However, the

extensive resources required for this analysis, along with the

larger data volume generated, result in increased computation

times for classification and explainability methods. The dataset

comprises five malware categories, with 55 features focusing

on malware behavior at the hardware level. Like dynamic

analysis, the online analysis dataset is highly imbalanced, as

seen in Table III, which is addressed using SMOTE to create

synthetic samples. Initially considering a Long Short-Term

Memory (LSTM) model for its advantages in handling time-

series data, we found SHAP less compatible with LSTM’s

data shape. Hence, we opted for models consistent across both

analysis levels. Future work should explore models adept at

TABLE III: All classes of Online data set

Category Number of Snapshots

Cryptominer 158158

Deceptor 99099

Ransomware 13013

PUA 3003

Backdoor 1001

TABLE IV: Performance Metrics for Dynamic Analysis and

Riskware-Specific Metrics

Accuracy (%) Precision (%) Recall (%) F1 (%)

FFNN without SMOTE 80.76 81.23 80.76 81.00

FFNN with SMOTE 90.57 91.00 90.57 90.63

CNN without SMOTE 81.68 81.79 81.68 81.74

CNN with SMOTE 90.04 90.03 90.04 90.03

Riskware - FNN with SMOTE 78.53 100.00 78.53 87.97

Riskware - CNN with SMOTE 81.90 100.00 81.90 90.04

handling time-series data and suitable explanation methods.

For the CNN, the most effective hyperparameters included

a convolution layer followed by max pooling, another con-

volution layer, max pooling, and two fully connected layers.

ReLU activation was used for all hidden layers, and Softmax

for the output layer. The model was trained on 80% of the

dataset for 75 epochs with a batch size of 50. Similarly, the

FFNN comprised 5 hidden layers, with ReLU activation, 2

fully connected layers, 1 dropout layer, and Softmax activation

for the output layer. Trained on 80% of the dataset for 100

epochs with a batch size of 50, both models were tested on

the remaining 20% of the online dataset.

C. Explainability Approach

We chose SHAP as our primary explanation method due

to its robust and well-documented Python library. SHAP

quantifies feature contributions through Shapley values, pro-

viding a mathematical framework to explain model predictions

[12]. SHAP offers model-specific explanation methods, such

as DeepExplainer for deep learning models, and provides

explanations at both global and local levels. After model

training, we generate an explainer using SHAP’s DeepEx-

plainer, computing SHAP values for 1000 samples from the

test datasets of both dynamic and online analyses. This under-

sampling is necessary due to the resource-intensive nature of

computing SHAP values, especially for complex architectures

like CNNs.

LIME and Permutation Importance serve as supplementary

explanation methods. LIME offers local explanations, while

Permutation Importance provides global explanations. We

chose these methods to ensure robust interpretations of the

models and to verify the efficiency of SHAP under random

sampling. For Permutation Importance, we permuted each fea-

ture 30 times for both dynamic and online datasets. For local

explanations, we randomly selected misclassified observations

from the subsample and generated graphs using SHAP and

LIME.

184

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:18:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Performance of models in Online Analysis

Fig. 2: Performance of models in Dynamic Analysis

Fig. 3: A stacked bar graph depicting the top 10 online features identified by SHAP in model decision making

185

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:18:22 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: A stacked bar graph depicting the top 10 online features identified by SHAP in model decision making

TABLE V: Performance Metrics for Online Analysis and

Deceptor-Specific Metrics

Accuracy (%) Precision (%) Recall (%) F1 (%)

FFNN without SMOTE 77.45 77.15 77.45 77.30

FFNN with SMOTE 78.43 79.16 78.43 78.79

CNN without SMOTE 79.72 80.50 79.72 80.11

CNN with SMOTE 85.60 85.65 85.60 85.63

Deceptor - FNN with SMOTE 58.90 100.00 58.90 74.14

Deceptor - CNN with SMOTE 65.78 100.00 65.78 79.36

TABLE VI: Top 10 Dynamic Features Identified by Permuta-

tion Importance

FFNN Features (Importance) CNN Features (Importance)

MemPssClean (0.236) APCtxtregRece (0.178)

MemPrivateClean (0.191) APregConObsrv (0.158)

APregConObsrv (0.140) MemPssClean (0.155)

APCtxtregRece (0.115) MemPrivateClean (0.132)

Batteryservice (0.110) APfindLibrary (0.105)

MemDeathRecpent (0.108) MemDeathRecpent (0.103)

APCtxtIregRece (0.103) API sessions (0.083)

APActstartAct (0.102) APActstartAct (0.078)

API sessions (0.086) MemParcelCount (0.072)

APfindLibrary (0.079) MemHeapAlloc (0.069)

TABLE VII: Top 10 Online Features Identified by Permutation

Importance

FFNN Features (Importance) CNN Features (Importance)

L1D P Miss Oc (0.150) ICache Misses (0.188)

DTLBLoadMissWD (0.113) DTLBLoadMissWD (0.181)

DTLBStoreMissW (0.112) ITLBMissW (0.143)

DTLBLoadMiss W (0.097) L2ReqAll (0.138)

ITLBMissW (0.096) M Ld LLCH.XS N (0.132)

L2ReqPFms (0.090) L1D P Miss Oc (0.131)

Core cyc (0.086) L1D Rep (0.130)

L1D Rep (0.080) Ref cyc (0.103)

DTLBLoadMissWC (0.077) L2ReqPFms (0.098)

BrMispRetd All (0.069) L1D Rep (0.097)

IV. RESULTS AND DISCUSSION

A. Evaluation of Performance Metrics

Table IV provides performance metrics for overall model

performance in dynamic analysis, including a breakdown for

one of the worst-performing classes. Utilizing the F1 score, a

comprehensive evaluation beyond accuracy, the FFNN model

achieved 90.63%, while the CNN model reached 90.03%. The

comparison with and without SMOTE intervention indicates a

notable performance increase with synthetic samples. Despite

Riskware being the majority class in the unaltered dataset,

its relative poor performance suggests potential overlap be-

tween SMOTE’s synthetic samples for minority classes and

the decision boundary of majority classes. Figure 2 suggests

misclassification of majority class samples as minority classes,

but the overall model improvement with SMOTE justifies this

cost.

Table V presents performance metrics for the online analysis

before and after SMOTE intervention. The FFNN achieved an

F1 score of 78.79%, while the CNN achieved 85.63%. The

CNN outperformed the FFNN, possibly due to its complexity,

yet both models underperformed compared to those in the

dynamic analysis. This could be attributed to the loss of

time-series data and the introduction of synthetic samples via

SMOTE, as depicted in Figure 1. We focused our explanation

analysis on the Riskware class for the dynamic dataset and the

Deceptor class for the online dataset due to their low F1 scores,

indicating the need for further investigation. More analyses for

other classes are available on our GitHub repository1.

B. Global Explanation

With reduced sample sizes, SHAP’s DeepExplainer com-

puted SHAP values in about 6 minutes for the CNN and 16

seconds for the FFNN on the dynamic dataset. The summary

plots in Figure 3 illustrate feature importance, with features

arranged by their effects’ magnitudes across all classes. No-

tably, API calls and Memory features were top features for

1GitHub: https://github.com/SecurityCard/explainability-graphs.git

186

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:18:22 UTC from IEEE Xplore. Restrictions apply.

(a) CNN (b) FFNN

Fig. 5: Waterfall plots - Local interpretations of misclassified Riskware sample of dynamic data set

0.050.25 0.20 0.15 0.10 0.00 0.05

Predicted: PUA, Actual: Riskware

APloadClass_t-0 < = 0.00

APsetWbContDbgY_t-0 < = 0.00

APgetNetworkid_t-0 < = 0.00

APloadDex_t-0 < = 0.00

APgetLatitude_t-0 < = 0.00

APfindRsrcs_t-0 < = 0.00

APevalJscript_t-0 < = 0.00

APDBList_t-0 < = 0.00

APisDbgConnec_t-0 < = 0.00

APkillProc_t-0 < = 0.00

(a) CNN

APloadClass <= 0.00

0.3 0.2 0.1 0.0

Predicted: PUA, Actual: Riskware

APgetAccByType <= 0.00

APgetIpAddress <= 0.00

APloadDex <= 0.00

APgetLongitude <= 0.00

APkillBKGDProc <= 0.00

APdeleteDB <= 0.00

APDBList <= 0.00

APsetWbContDbgY <= 0.00

APMediRecstart <= 0.00

(b) FFNN

Fig. 6: LIME plots - Local interpretations of misclassified Riskware sample of dynamic data set

both models, with API sessions particularly significant for

the CNN model. Permutation Importance, validating SHAP’s

effectiveness, identified top features after permutation. The

FFNN runtime was just under an hour, and for the CNN, two

hours. Table VI lists top features and their mean importance

when permuted, with 10 features shared with SHAP for the

FFNN and 7 for the CNN, confirming a balanced trade-off

between computation time and SHAP accuracy.

For the online dataset, DeepExplainer computed SHAP

values in about 92 seconds for the CNN and 4 seconds for the

FFNN. Permutation Importance took 40 minutes for the FFNN

and an hour for the CNN. Figure 4 and Table VII reveal that

among the globally identified top 10 features by Permutation

Importance, 5 are within the top 10 identified by SHAP for

the FFNN, and 6 for the CNN, indicating a balanced trade-off

between computational accuracy and resource costs. Addition-

ally, 4 features were shared among those identified by SHAP

for both models, suggesting robustness in the online analysis

models. However, this might not be as pronounced as in the

dynamic analysis due to limitations with SHAP’s handling

of time-series-based neural networks. In real-world scenarios,

our methodology of employing diverse explainability methods

on an under-sampled dataset remains effective. The model-

agnostic nature of our chosen explainability techniques allows

for flexible and generalizable application across various model

architectures tailored to specific use cases. Additionally, our

187

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:18:22 UTC from IEEE Xplore. Restrictions apply.

(a) CNN (b) FFNN

Fig. 7: Waterfall plots - Local interpretations of misclassified Deceptor sample of online data set

(a) CNN (b) FFNN

Fig. 8: LIME plots - Local interpretations of misclassified Deceptor sample of online data set

under-sampling approach mitigates the anticipated increase in

dataset size often encountered in real-world implementations.

C. Local Explanation

For local explanations, SHAP generated waterfall plots,

focusing on misclassified samples for the classes with the

lowest F1 score. Figure 5 displays the waterfall plots for a

dynamic sample misclassified by both models, showcasing

SHAP values for each feature. Positive contributions (in pink)

push the probability towards the predicted class, while negative

contributions (in blue) push it away. The sum of SHAP

values for each sample represents the difference between

the base value E[f(x)] at the bottom and the final output

value f(x) at the top. For Figure 5, the final output values

indicate probabilities for the predicted class (PUA) and not

the actual class (Riskware), being 0.124 and 0.037 for the

CNN and FFNN, respectively. These scores while still positive,

indicating the result of being classified as PUA, are not

large quantities, meaning the classifier decision is not as

certain. Once again the majority of the features are either

of the Memory or the API types, with the respective model

explanations even sharing two features, which are also globally

important to model predictions. Figure 6 shows LIME graphs

for the same misclassified sample, providing different feature

importance compared to SHAP. Green bars (right-directed)

indicate positive contributions towards the predicted class,

while red bars (left-directed) suggest negative contributions

for all classes not predicted. The LIME explanations indicate

most of the decision to misclassify was due to negative feature

contribution, supporting our conclusion from the waterfall plot

analysis about the classifier decision not being certain. The top

10 features identified by LIME are all of the API type. This

further indicates that it may be possible to increase model

performance by removing the features that are less relevant

to model decision making, which has significant implications

for future research and for increasing the effectiveness of

188

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:18:22 UTC from IEEE Xplore. Restrictions apply.

real-world remediation strategies. Our methodology enhances

efficiency in malware classification by pinpointing crucial

analysis areas and fostering trust in black-box model decisions,

which would otherwise be inscrutable. This enables focused

analysis and improves overall classification efficacy.

For online analysis, Figure 7 displays waterfall plots for

a misclassified Deceptor sample, showing similar character-

istics to dynamic local explanations with classifier decision

not being as certain and many features having equal and

opposite contributions to each other. Figure 8 depicts LIME

graphs for the same misclassified sample, with shared top two

features providing strong negative impacts on classifying this

sample as not the other classes. By combining the locality

specific explainability methods of Permutation Importance and

LIME to the both global and local method of SHAP, we

have effectively reached an even deeper understanding and

interpretation of these black-box models for both dynamic

and online malware classification. This method of combining

different explanaibility methods has significant implications

for future works that even just choose to hone in on dynamic

or online malware category classification.

V. CONCLUSION AND FUTURE WORK

This paper applies FFNN and CNN models to dynamic and

online malware datasets for classification, using SHAP, LIME,

and Permutation Importance for explanations. This approach

balances resource costs and analysis depth. Despite class im-

balance in the dynamic dataset, SMOTE partially mitigates this

issue, though with potential performance degradation. Another

limitation arises from explainability methods unsuitable for

time-series data. Future research should explore this limitation

and evaluate model performance on diverse datasets.

Future work aims to investigate adversarial attacks’ potential

exploitation by malicious users to misclassify malware cate-

gories. By focusing on features of highest importance iden-

tified by explainability methods, our findings can contribute

to creating more efficient datasets, facilitating real-world mal-

ware remediation and aiding cyber-analysts in coordinating

responses to threats.

ACKNOWLEDGMENT

This work is supported by the NSF Scholarship for Service

Program Award 2043324, 2025682 and 2230609.

REFERENCES

[1] K. Aryal, M. Gupta, and M. Abdelsalam, “Analysis of label-flip poison-
ing attack on machine learning based malware detector,” in 2022 IEEE

International Conference on Big Data (Big Data). IEEE, 2022, pp.
4236–4245.

[2] K. Aryal, M. Gupta, M. Abdelsalam, and M. Saleh, “Intra-section code
cave injection for adversarial evasion attacks on windows pe malware
file,” arXiv preprint arXiv:2403.06428, 2024.

[3] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,
“Malware detection with deep neural network using process behavior,”
in 2016 IEEE 40th Annual Computer Software and Applications Con-

ference (COMPSAC), vol. 2, 2016, pp. 577–582.
[4] A. Rahali, A. H. Lashkari, G. Kaur, L. Taheri, F. Gagnon, and

F. Massicotte, “DIDroid: Android malware classification and charac-
terization using deep image learning,” in 10th International Conference

on Communication and Network Security (ICCNS2020), Tokyo, Japan,
November 2020, pp. 70–82.

[5] D. S. Keyes, B. Li, G. Kaur, A. H. Lashkari, F. Gagnon, and F. Massi-
cotte, “Entroplyzer: Android malware classification and characterization
using entropy analysis of dynamic characteristics,” in 2021 Reconciling

Data Analytics, Automation, Privacy, and Security: A Big Data Chal-

lenge (RDAAPS), 2021, pp. 1–12.
[6] H. Manthena, J. Kimmel, M. Abdelsalam, and M. Gupta, “Analyzing

and explaining black-box models for online malware detection,” IEEE

Access, vol. 11, pp. 25 237–25 252, 2023.
[7] A. Brown, M. Gupta, and M. Abdelsalam, “Automated machine learning

for deep learning based malware detection,” Computers & Security,
2024.

[8] K. Aryal, M. Gupta, and M. Abdelsalam, “A survey on adversarial
attacks for malware analysis,” arXiv preprint arXiv:2111.08223, 2022.

[9] S. Karapoola, N. Singh, C. Rebeiro, and K. V., “RaDaR: A real-
world dataset for ai powered run-time detection of cyber-attacks,” in
Proceedings of the 31st ACM International Conference on Information

& Knowledge Management, 2022, pp. 3222–3232.
[10] P. Hall and N. Gill, An Introduction to Machine Learning Interpretabil-

ity. O’Reilly Media, Incorporated, 2019.
[11] A. Blanco-Justicia and J. Domingo-Ferrer, “Machine learning explain-

ability through comprehensible decision trees,” in International Cross-

Domain Conference for Machine Learning and Knowledge Extraction.
Springer, 2019, pp. 15–26.

[12] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” in Advances in Neural Information Processing Systems,
vol. 30, 2017.

[13] M. T. Ribeiro, S. Singh, and C. Guestrin, “’why should i trust you?’
explaining the predictions of any classifier,” in Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and

Data Mining, 2016, pp. 1135–1144.
[14] L. Breiman, “Random forests,” Machine Learning, vol. 45, no. 1, p.

5–32, 2001.
[15] M. Schofield, G. Alicioglu, R. Binaco, P. Turner, C. Thatcher, A. Lam,

and B. Sun, “Convolutional neural network for malware classification
based on api call sequence,” in 8th International Conference on Artificial

Intelligence and Applications (AIAP), 2021, pp. 85–98.
[16] L. Pirch, A. Warnecke, C. Wressnegger, and K. Rieck, “TagVet: Vetting

malware tags using explainable machine learning,” in Proceedings of

the 14th European Workshop on Systems Security, 2021, pp. 34–40.
[17] R. Alenezi and S. A. Ludwig, “Explainability of cybersecurity threats

data using shap,” in 2021 IEEE Symposium Series on Computational

Intelligence (SSCI), 2021, pp. 01–10.
[18] J. C. Kimmell, M. Abdelsalam, and M. Gupta, “Analyzing machine

learning approaches for online malware detection in cloud,” in 2021

IEEE International Conference on Smart Computing, 2021, pp. 189–
196.

[19] P. Prasse, J. Brabec, J. Kohout, M. Kopp, L. Bajer, and T. Scheffer,
“Learning explainable representations of malware behavior,” in Machine

Learning and Knowledge Discovery in Databases. Applied Data Science

Track, 2021, p. 53–68.
[20] R. R. Karn, P. Kudva, H. Huang, S. Suneja, and I. M. Elfadel,

“Cryptomining detection in container clouds using system calls and
explainable machine learning,” IEEE Transactions on Parallel and

Distributed Systems, vol. 32, no. 3, pp. 674–691, 2021.
[21] F. Ullah, A. Alsirhani, M. M. Alshahrani, A. Alomari, H. Naeem, and

S. A. Shah, “Explainable malware detection system using transformers-
based transfer learning and multi-model visual representation,” Sensors,
vol. 22, no. 18, p. 6766, 2022.

[22] H. Naeem, B. M. Alshammari, and F. Ullah, “Explainable artificial
intelligence-based iot device malware detection mechanism using image
visualization and fine-tuned cnn-based transfer learning model,” Com-

putational Intelligence and Neuroscience, vol. 2022, 2022.
[23] P. Brown, A. Brown, M. Gupta, and M. Abdelsalam, “Online malware

classification with system-wide system calls in cloud iaas,” in 2022 IEEE

23rd International Conference on Information Reuse and Integration for

Data Science (IRI), 2022, pp. 146–151.
[24] Y. Lin and X. Chang, “Towards interpreting ml-based automated mal-

ware detection models: A survey,” arXiv preprint arXiv:2101.06232,
2021.

[25] Canadian Center for Cyber Security. (2020) CCCS-CIC-AndMal2020.
[Online]. Available: https://www.unb.ca/cic/datasets/andmal2020.html

189

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:18:22 UTC from IEEE Xplore. Restrictions apply.

