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Abstract—As the focus on security of Artificial Intelligence
(AI) is becoming paramount, research on crafting and inserting
optimal adversarial perturbations has become increasingly crit-
ical. In the malware domain, this adversarial sample generation
relies heavily on the accuracy and placement of crafted per-
turbation with a goal to evade a trained classifier. This work
focuses on applying explainability techniques to enhance the
adversarial evasion attack on a machine-learning-based Windows
PE malware detector. The explainable tool identifies the regions
of PE malware files that have the most significant impact on
the decision-making process of a given malware detector, and
therefore, the same regions can be leveraged to inject the
adversarial perturbation for maximum efficiency. Profiling all the
PE malware file regions based on their impact on the malware
detector’s decision enables the derivation of an efficient strategy
for identifying the optimal location for perturbation injection.
The strategy should incorporate the region’s significance in
influencing the malware detector’s decision and the sensitivity
of the PE malware file’s integrity towards modifying that region.

To assess the utility of explainable AI in crafting an ad-
versarial sample of Windows PE malware, we utilize DeepEx-
plainer module of SHAP (SHapley Additive exPlanations) for
determining the contribution of each region of PE malware to
its detection by a CNN-based malware detector, MalConv. The
analysis includes both local and global explanations for the given
malware samples. We performed the functionality-preserving
adversarial perturbation injection in different regions of PE
malware wherever possible while performing non-functionality-
preserving operations in a few remaining regions. This approach
allows us to examine the relationship between SHAP values
and the evasion rate of the adversarial attack. Furthermore, we
analyzed the significance of SHAP values at a more granular
level by subdividing each section of Windows PE into small
subsections. We then performed an adversarial evasion attack on
the subsections based on the corresponding SHAP values of the
byte sequences. Our experimental evaluation shows a significant
improvement in the success and efficiency of adversarial evasion
attacks when injecting the perturbation in PE malware locations
based on SHAP values compared to random PE locations.

Index Terms—Adversarial Evasion Attack, Windows PE Mal-
ware, Machine Learning Malware Detector, Explainability, SHAP

I. INTRODUCTION

Windows PE malware binary has been a prime target for
Adversarial Evasion (AE) attacks in the malware domain,
and the reason can be attributed to the abundance or the
discrepancies of PE file formats [1], [2]. The AE attack on
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a malware detector is carried out by modifying a malicious
binary file in a way that it gets recognized as a benign file by
a target malware detector. To formally define an AE attack,
let’s consider a machine-learning-based malware detector C'
and a PE malware binary B such that C'(B) = Y4, where
Y rai 1s the real label of B. Now, the adversarial evasion attack
introduces the perturbation ¢ to a malware binary B in such a
way that C'(B+0) = Ygen, where Yp,, is a new adversarial
label of B and Yasq; # YBen. A major challenge in carrying
out AE attacks in the malware domain arises due to the
strict semantic constraints of binary executable. Unlike other
domains, a single random perturbation in a binary executable
can break its executability and functionality [3]. Therefore, a
successful AE attack on a malware domain should generate the
perturbations that not only evades the target malware detector
but also preserves the malware file’s integrity and behaviour.
Given the absolute requirement of preserving the malware’s
functionality and executability during AE attacks, early re-
search [4], [5] in this domain concentrated on crafting the
evasive malware with the utmost caution, refraining from
altering the structure of malware. Many studies [6], [7] con-
fined their efforts to craft adversarial evasion only on feature
space (feature level) rather than shifting to the problem space,
thereby limiting the practical applicability of their work. Here,
The problem space refers to the PE file where it exists in
its standard defined format, whereas the feature space can
be static or dynamic features obtained from some malware
analysis techniques. Recent works explored the feasibility of
injecting the adversarial perturbations across different regions
within Windows PE malware, including the header [8], [9],
slack spaces [10], codecaves [11] and other regions while
keeping the malware file intact. Most lately, a novel approach
proposed by Aryal et al. [12] inserted the adversarial per-
turbations within different sections of PE malware files while
preserving the integrity of malware. This approach injects code
caves within any sections of the PE malware file to make
space for adversarial perturbations, without altering the mal-
ware’s integrity. As the various locations to inject perturbation
evolve across the PE malware structure, the research focus is
transitioning towards optimizing the efficiency of injected per-
turbation. The goal is to craft a functionality-preserved evasive
adversarial malware with minimal perturbation injection.
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A promising approach to increase the efficiency of adver-
sarial perturbation being injected in Windows PE malware
is through the utilization of explainable Al. Explainability
techniques are inherently employed for understanding and in-
terpreting the models, leading to enhanced trustworthiness and
transparency of black-box machine learning models [13]-[15].
In a prior study, Rosenberg et al. [7] used explainability to
perform adversarial attacks on feature space and were limited
due to the practicality issues of mapping feature space modifi-
cations to problem space. Another work by Demetrio et al. [8]
used integrated gradients for feature attribution, discovering
the high efficiency of perturbation in the PE header regions.
However, the study lacked comprehensive analysis on utilizing
the explainability of a model for enhancing adversarial evasion
attacks. Their analysis is primarily confined to the PE header
region, overlooking the potential impact of explainability in
other regions of the PE malware. Furthermore, this work could
not address the different levels of granularity that can be used
to inject perturbations within the PE regions with the use
of explainability. To address these limitations, we propose
an "Explainability Guided Adversarial Evasion Attacks on
Malware Detectors”.

In this paper, we explore the potential of explainability
techniques to strategize efficient AE attacks by leveraging
the reasoning behind a machine learning’s decision on the
Windows PE malware detector. For this study, we target a
widely used CNN-based malware detector, MalConv [16], as a
malware detector trained on Windows PE malware and benign
files. Our approach involves calculating the SHAP values for
each byte of a PE binary malware and aggregating these SHAP
values corresponding to different PE regions to determine the
collective contribution of individual PE regions. We assess the
impact of perturbation in different regions coupling to the
corresponding SHAP values. Additionally, we divide larger
Windows PE malware sections into smaller subsections and
aggregate the respective SHAP values to enable more precise
control over the placement of adversarial perturbation. The
major contributions of this work are listed below:

o Explain the contributions of each byte of Windows PE
malware binary towards its detection by a CNN model using
SHAP values and map it to the regions of the PE structure;

o Evaluate and compare local and aggregated global SHAP
values of different regions in the PE malware structure;

« Perform adversarial evasion attack by injecting perturbations
in regions of the PE malware and correlate the results with
the corresponding SHAP values;

« Divide larger PE malware sections into smaller subsections
and compute their corresponding SHAP values to evaluate
an adversarial injection strategy at a more fine-grained level.

The rest of the paper is organized as follows. Section II
presents the background information on PE structure, malware
detection, adversarial malware and explainability. Section III
discusses our proposed methodology for computing and an-
alyzing SHAP values, leading to adversarial evasion attacks.
Section IV discuss experimental evaluation and analysis of the
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Fig. 1. Structure of Windows PE Malware
results, followed by summary in Section V.

II. BACKGROUND
A. Windows PE Structure

The understanding of Windows Portable Executable (PE)
structure plays a crucial role in adversarial malware not only
because of the idiosyncratic nature of different parts but also
because of differences in sensitivity to the modification. The
Windows PE format is a standard format supported by the
Windows operating systems [17]. The structure of the PE file,
as shown in Figure 1, is composed of linear data streams
divided into different regions. The structure starts with the
DOS header, which was initially used in the DOS operating
system used for backward compatibility. The following 4-byte
PE signature identifies the file as a PE format image file. The
COFF header contains information like supported architec-
ture, size of section table, and characteristics flags denoting
the attributes of a file. The Optional Header holds details
about image files and contains important fields like MajorOp-
eratingSystemVersion, MinorOperatingSystemVersion, SizeOf-
Code, AddressOfEntryPoint, BaseOfCode, SizeofStackCommit,
SizeOfHeapCommit etc. The end portion of Optional Header
has Data Directories, which holds a relative virtual address
and the size of a table or string used by Windows. The Section
Header contains details of individual sections, including its
Name, VirtualSize, VirtualAddress, size, pointers and charac-
teristics flags. Finally, the sections do the job of organizing the
executable files logically. Each section has its own purpose,
like . text section contains executable code, . data contains
initialized code, etc. To be consistent, in this paper we use “PE
region” to refer to the regions in the PE file such as DOS
header COFF header, Optional Header etc., and the term
“Section” refers to the PE sections such as .text, .data,
.rdata etc. The term “Location” refers to the position of
malware bytes within a PE file.

B. Malware Detection

Malware detection is a broad domain, however, we focus
on widely used CNN-based end-to-end detection tailored for
Windows PE Malware. Our target model of adversarial attack
in this work is MalConv model [16] , an academic standard to
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carry out adversarial attacks in the malware domain. MalConv
learns to discriminate malware by taking the whole executable
in the form of byte streams without undergoing any feature
extraction process. Motivated to address the high amount of
positional variation present in the executable files, Raff et al.
came up with the MalConv convolution network architecture,
as presented in Figure 2. The combination of convolutional
activation with max-pooling followed by fully connected lay-
ers allows the model to produce activation regardless of the
location of the feature in the file. The input size to the model
is fixed to 22! bytes or 2MB. If the malware size is smaller,
then it is padded to reach the threshold size, and in case of a
larger file size, it’s trimmed to take only the first 22! bytes. The
architecture maps the raw bytes to a fixed-length feature vector
using an embedding layer before performing the convolution
operation.

C. Adversarial Malware

Since our work aims to increase the efficiency of adversarial
evasion attacks using explainability, it’s critical to understand
the current state in adversarial malware research. After the
early research [4], [18] that explored the possibility of adver-
sarial attacks against malware detectors, numerous works have
successfully crafted the adversarial attacks against malware
detectors in problem space. The adversarial attacks in the
malware domain can be distinguished from different bases
depending on the perturbation generation algorithms used,
target models, access to the target model, adversarial goals,
adversary’s capabilities, etc. However, within the domain of
PE adversarial malware, two significant distinctions stand out:
(a) the location for perturbation injection within PE malware,
and (b) the preservation of file integrity. The location of
perturbations during an adversarial evasion attack plays a
critical role in preserving/breaking the file integrity, attack
efficiency, and detection by malware detectors.

The locations exploited by adversarial attackers to inject
adversarial perturbation inside a PE file are represented in
Figure 3 by Regions A-D. Majority of the existing attacks
in PE malware are append attacks (denoted by Region D
in Figure 3), which appends the perturbation at the end of
the file [4], [5], [19]. Despite the ability to not interfere
with the integrity of malware files, perturbation at the end
of the file has some challenges. For fixed-input malware
detectors like MalConv [16], append attacks are ineffective [8],
[11] for malware larger than 2MB. Attackers have leveraged
slack space (Region C in Figure 3), i.e. the unused spaces
within a PE file not containing any meaningful data, to inject
the perturbations [10]. The adversarial injections in these
spaces are more efficient than append attacks but are not

MS-DOS Header

PE Header
Region A

Headers

Section Header ]

/ Section 1
2]
=
o
J
(%}
\ Section n

| Region D ]

Fig. 3. Adversarial attacks on different PE malware regions

guaranteed to be present in enough volume for every malware.
Other approaches have found headers to be the most efficient
location for adversarial perturbation [8], [9], while some have
found the injected code cave to edge ahead of the existing
approaches [11]. Recent work [12] on intra-section code cave
injection has shown higher success rates in attacking different
regions of PE malware files. Analyzing existing literature, we
can conjecture the trade-offs between the adversarial attack
success, efficiency and the integrity of the malware detector.

D. Explainability

Explainability is a powerful tool for answering a black-box
machine learning system’s questions of How? and Why?. It
comprises of the processes and methods that help humans
comprehend and trust the outputs of ML algorithms. As
machine learning advances in making high-stakes decisions,
clarifying the rationale behind the decisions is crucial rather
than accepting them as a black-box decision. It is easier to
interpret the output of fundamental ML models, but the growth
of complex/deep models has presented a trade-off between the
accuracy and interpretability of the model’s output. Among
numerous available explainable approaches, we are interested
in exploring SHapley Additive exPlanation(SHAP) approach
for model interpretation [20]. SHAP assigns each feature
an importance value by creating an explanation model for
a model’s prediction. The simpler explanation model makes
an interpretable approximation of the complex model whose
decision needs to be explained. Explanation models work
by simplifying the original input z to 2z’ with a mapping
function z = h,(2’). The additive feature attribution methods
contain an explanation model that is a linear function of binary
variables and is defined as:

M
g(z) =0+ diz (1)
=1

where 2’ € {0,1}, M is the total number of simplified input
features and ¢; € R.

SHAP values provide unique additive feature importance
measures obtained from the Shapley values [21] of a condi-
tional expectation function of the original model. Our model
of interest in this work is the Deep SHAP module of SHAP
that combines Shapley values with DeepLIFT [22]. DeepLIFT
uses a linear composition rule equivalent to linearizing the
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non-linear components of neural networks. With DeepLIFT
being an additive feature attribution method satisfying local
accuracy and missingness properties and Shapley values sat-
isfying consistency properties, DeepLIFT leads to DeepSHAP
through compositional approximation of SHAP values [20].
Deep SHAP combines SHAP values for small components to
the SHAP values of the entire network by recursively passing
DeepLIFT’s multipliers defined in terms of SHAP values.
While dealing with simple network components like the linear
or max-pooling layer with a single input, their SHAP values
can be quickly computed, allowing a speedy approximation.
Deep SHAP eliminates the need to simplify components by
deriving a simplification from the SHAP values calculated for
each component.

III. EXPLAINABILITY GUIDED ADVERSARIAL EVASION
ATTACKS

Our approach for explainability guided adversarial evasion
attack on Windows PE malware detector, shown in Figure 4,
can be divided into three major parts: (1) calculation of SHAP
values for a given Windows PE malware byte stream, (2)
utilizing the calculated SHAP values to strategize the selection
of a target PE section for adversarial perturbation injection,
and (3) crafting adversarial perturbation. Algorithm 1 presents
the flow of our approach from SHAP computation to adver-
sarial perturbation creation. Our methodology is applicable to
any machine learning-based malware detector, although our
implementation specifically targets the MalConv model.

A. SHAP values for Windows PE malware byte stream

The proposed approach starts with calculating SHAP values
for the bytes sequence of a PE malware file as shown in
Algorithm 1. The PE malware is presented as a sequence
of bytes, B = {b1,ba, -+ ,bg, - ,bg} with d — k padding
bytes as our target model, MalConv [16] takes a fixed sized
input of 2,000,000 bytes. We use DeepExplainer (enhanced
version of DeepLIFT) module of the SHAP library [20] to
approximate the conditional expectations of SHAP values
using background samples. We modified the SHAP library
to make it compatible with our target MalConv model for
AE attack. The presence of an embedding layer that converts
discrete bytes to continuous values stops the gradient from
passing through this layer. To overcome this limitation, we

Algorithm 1 Explainability aided adversarial evasion attack

1: Input: Malware PE file with a byte streams B =
{b1,b2, -+ , b, -+ ,bg} where d is total bytes which is
2000000 and d — k is appended bytes;

2: Output: Modified malware file B’ that can evade Mal-
Conv malware detector

3: Compute SHAP values for each binary byte in B using
SHAP’s DeepExplainer module , SHAP(b;)

4: Partition the malware binary stream B as per Windows
PE file structure: Region(B) = { Rios, Rpe, -+ ) Rsee(n) }»
where each region corresponds to structural components
like DOS Header, PE Signature, and so on.

5: Aggregate the SHAP values by PE region:

SHAP g (R) = Z SHAP (b;)

6: Based on aggregated SHAP values and the nature of the
PE region towards modification(manually selected), target
region T" for adversarial perturbation is chosen.

7: At target region T, perturbation ¢ is generated using
gradient descent until evasion or threshold condition, given
B' = B+ is a valid malware.

computed SHAP values with respect to embedding output
in place of an actual input byte stream. Additionally, the
SHAP library was modified to handle multiple sigmoid layers
present in MalConv. The DeepExplainer module computes
SHAP values for every corresponding binary byte of PE
malware represented by the function SH AP (b;). These values
of individual bytes provides insights into the contribution of
each byte towards the detection of malware by MalConv.

B. Utilizing SHAP values to strategize the AE attack

The computed SHAP values {s1, 2, -+ , Sq} corresponding
to each input PE malware bytes can not be directly used
without mapping to Windows PE structure since different
regions/sections have different sensitivity to modification. The
goal of injecting the perturbation is not only limited to evading
a malware detector but also preserving the functionality of a
malware file. The first step towards making meaningful strat-
egy is by mapping SHAP values {s1, s2,- - , 54} of malware
binary bytes to Windows PE file structure divided into different
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Region(B)= { Raos, Rpe, - -+ , Rec(n) }» presented in Step 3 of
Algorithm 1. Each PE region is assigned an aggregated SHAP
value of all the bytes in that region. The PE regions are placed
in the descending order of aggregated SHAP value so that
the region with maximum impact takes the first place while
the one with minimum impact takes the last position in the
list. At this point, the straightforward approach is to inject the
perturbation in the region with the highest aggregated SHAP
value, however, this approach is more complex and sensitive
than simply injecting the perturbation based on the SHAP
values order.

Aggregated SHAP values provide a baseline order of the PE
regions to choose a target for perturbation injection. However,
in addition to SHAP values, other factors that affect the parsing
of PE executable file format need to be adequately considered
to preserve the file’s integrity [1]. One of the first targets
is the DOS header, since the only significance of this part
of the header is backward compatibility and has no use in
modern systems except for the magic number and the value at
offset Ox3c. However, other than the DOS header, the header
regions of Windows PE are very sensitive to modifications and
can easily lead to breaking the malware file’s executability.
The other target region for perturbation is widely adopted
append attacks, where the perturbation is appended at the
end of the file without impacting the malware’s behaviour.
Recent research has explored the possibility of injecting the
perturbation in different sections of Windows PE malware
without impacting the file. Work by Aryal et al. [12] have
already shown successful attacks while injecting perturbation
in the .text, .data, .rdata and other sections of PE
file. Therefore, we also use the SHAP values to inject the
perturbation in these sections. We chose the section with the
highest SHAP value, i.e., the highest contribution, as a target
section for an efficient adversarial evasion attack.

We do not limit the utilization of SHAP value just for
choosing the target section but to choose the most impact-
ful subsection inside the target section. As an example, the
average size of .text section on our PE malware dataset is
found to be 97,000 bytes, which is 10% of the total malware
size but a larger perturbation space. To devise a suitable target
location for perturbation within an ample section space, we
divided each PE section into smaller fixed-size subsections and
aggregate the shape values for each corresponding subsection.
The smaller subsections with larger SHAP values is chosen
as a target region for injecting the perturbation. This approach
gives us finer control over the perturbation location even within
the same section of the PE malware, enabling more efficient
adversarial evasion attacks on Windows PE malware.

C. Crafting adversarial perturbation

At this stage, we execute the attack process on the target
region provided by the previous stage. However, due to its
nature, each PE region has its own requirement to perform
the functionality-preserving attack. Only specific bytes are
modified for attacks in the DOS header; for the append attack,
the length of perturbations is provided. To inject the perturba-
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tions inside the PE sections, the code caves and code loaders
are injected [12] to the PE file. The target regions can now
hold any perturbation without altering the integrity of the PE
malware file. To generate adversarial perturbation, we adopted
Kolosnjaji et al’s [4] approach of gradient descent. The
approach first computes the embedding representation of input
malware bytes(B) as Z < ¢(b). The non-differentiability
of our target MalConv model is resolved by computing the
negative gradient of the loss function with respect to embed-
ding representation(Z) given by, w; = —V, (b;) € R®. The
approach will select the closest byte in the embedding space
that will maximally increase the probability of misclassifying
malware by the malware detector.

IV. EXPERIMENTS AND EVALUATION

Our experimental setup consists of 6000 Windows PE
malware from VirusTotal [23], out of which 5000 malware
are used to train the MalConv model and the rest 1000 for
validation and evaluation purposes. We verified the malware
files to determine if they were encrypted by calculating the
entropy of .text section. We found only 2% of malware
to have entropy greater than 7.2, indicating that they might
be encrypted. We reached end-to-end Windows PE malware
detection accuracy of 96% with the MalConv model, which is
used as a target model to compute SHAP values leading to ad-
versarial evasion attacks. We used 100 malware as background
data for SHAP’s DeepExplainer module and computed SHAP
values for 500 malware. We used pefile [24] python library
to gain insights into PE malware file structure. The following
research question guided our evaluation.

« RQ1 - Local vs. Global explanation: Can a global ex-
planation profile the SHAP values of a local PE malware
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sample and help create an adversarial evasion against
MalConv?

« RQ2 - SHAP value vs. Evasion rate: How do the SHAP
values of different PE regions relate to the adversarial
evasion rate?

e RQ3 - Granular SHAP analysis within the same
section: Do the adversarial injection targets in different
locations within the same section of PE malware impact
attack results?

A. Local vs. Global explanation

As discussed, we calculated the local SHAP for a single
instance of PE malware and global SHAP averaged over 500
malware as shown in Figures 5 and 6 respectively. These
figures show the SHAP value for each byte of PE malware
binary for its entire 2000000 input bytes in the order of their
position in the file. The local and global explanations exhibit
a similar pattern of SHAP values as they progress through the
PE malware bytes. SHAP values for both the local and global
SHAP plots in Figures 5 and 6 show significantly higher values
at initial regions and attenuate as they progress through the file.
However, we can see some spikes in SHAP value across the
byte sequence in regions in later part as well. The SHAP value
spikes in different locations of the file of various lengths vary
in each PE malware file, evident from the non-identical sized

spike in Global SHAP (Figure 6) compared to local SHAP
(Figure 5). These results show that the distinct regions of the
PE malware binary have different contributions towards being
detected, and the contribution of areas also varies as per the
individual malware file.

To further assess the distribution of SHAP values in byte
streams of Windows PE malware, we plotted the aggregated
SHAP value across different regions of the Windows PE mal-
ware structure. Figure 7 shows aggregated SHAP values across
different regions of a single local instance of Windows PE
malware. In contrast, Figure 8 shows the average aggregated
SHAP of different PE malware regions across malware sam-
ples. The green bars in figures represent positive contribution
towards malware detection, while the red bars represent the
negative contribution. In Figure 7, it can noticed that the DOS
header, Optional Header, .text , .rdata, .data sections
and the end of file contents contribute towards the detection
and the rest towards making malware detected as ‘benign’. In
both plots, we should not forget that the aggregated SHAP
value results from different-sized PE regions. The aggregated
SHAP contribution of the DOS header is the result of 64
bytes while the SHAP value of . text section is from 97,000
bytes on average. Our results in the next section explain the
efficiency of attacks in different regions.
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TABLE I
AGGREGATED SHAP VALUE VS. EVASION RATE ON CRAFTING ADVERSARIAL SAMPLE WITH DIFFERENT PE TARGET REGION

Target Region Average Size of Aggregated SHAP value iteration = 20 iteration = 40
Section | Perturbation Mean Abs. Mean Evasion Rate | Confidence | Evasion Rate | Confidence
DOS Header 64 64 -0.0035 | 0.0251 9.23% 0.84 8.06% 0.85
PE Signature 4 4 0 0.0291 2.75% 0.96 2.75% 0.96
COFF File Header | 20 20 -0.0474 | 0.2909 3.93% 0.93 3.93% 0.93
Optional Header 223 223 -0.1636 | 1.5982 75.05% 0.47 75.64% 0.46
Data Directories 127 127 0.0903 0.4953 19.45% 0.84 18.27% 0.84
Section Headers 127 127 0.0013 0.0113 2.75% 0.96 2.75% 0.96
text 96992 3822 0.0004 0.1008 22.92% 0.82 21.13% 0.84
.data 41110 3550 0.0115 0.21 16.67% 0.86 15.76% 0.87
.rdata 18537 3172 -0.0003 | 0.1473 41.37% 0.65 42.81% 0.64
.ISIC 63611 3607 0.0023 0.0704 30.27% 0.75 28.65% 0.76
.reloc 13006 2627 0.001 0.1054 37.42% 0.67 37.42% 0.68
After End Of File - 3863 -0.0002 | 0.0404 7.07% 0.93 7.66% 0.93
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Fig. 9. Plotting SHAP values vs. Evasion rate scaled for 100 bytes for
different PE regions

We made some contrasting observations in the Local and

Global explanation plots of SHAP values in Figure 7 and 8.
The aggregated SHAP values of the PE malware section from
the local instance are inconsistent with the global averaged
SHAP values. As an example, . rsrc section has a positive
SHAP value in the local instance (Figure 7) while having a
negative value in global averaged SHAP for entire malware.
This behaviour is due to variations in the size of malware
and its sections. A particular PE region could be at different
locations in individual PE files.
Answer to RQ1: As observed, each PE malware file differs
in the size and location of its regions; a global averaged
explanation for PE regions can not be created against the
CNN-based malware detector, MalConv. The contrasting
observation of SHAP values for individual regions in Figure
7 and 8 demonstrates that each malware needs a local
explanation to profile the SHAP values of its PE regions
precisely.

B. SHAP value vs. Evasion rate

Here, we inject perturbation in different regions of Win-
dows PE malware, aiming to examine the correlation between
the corresponding SHAP values and the effectiveness of the
adversarial evasion attack against the MalConv. While the
functionality-preserving attack focuses solely on injecting the
perturbation into the DOS Header, .text, .data, .rdata,

.rsrc sections, and at the end of the PE malware file, in
order to extract the precise relation between SHAP values
and evasion rate, we conducted adversarial injections across
all the feasible regions of PE malware. We understand that
injecting the perturbation into the PE signature, COFF file
header, Optional header, Data directories and Section headers
compromises the integrity of the file in adversarial malware
samples. Since we have to analyze relatively small header
regions of the PE file, we limit the perturbation size to 4096
bytes for each PE region across the malware samples.

Table I shows results for evasion rates and average confi-
dence of MalConv on PE malware samples after injecting the
average size perturbation. We compared by running gradient
descent for up to 40 iterations, and Table I shows the result for
20 and 40 iterations. However, it is observed that there is no
significant change in either the evasion rate or the average
confidence while increasing the iterations from 20 to 40.
We made another intriguing observation while linking SHAP
values with the evasion rate. It is found that the perturbations
in the PE regions with negative SHAP values can evade the
malware detector at a similar rate to those perturbations in
PE regions with positive SHAP values. By calculating the
absolute mean of SHAP values for each region in the PE
malware structure, we were able to establish a more discrete
relationship with the evasion rate. Since the gradient descent
optimizes each perturbation equally, the distinction between
positive and negative impact (SHAP values) became irrelevant.
Instead, only the magnitude of contribution (SHAP value) to
the decision-making process is relevant. From the Table I, it
is evident that the absolute mean SHAP values align more
closely with the evasion rate as compared to the mean SHAP
values.

As shown in Table I, we observed the evasion rate as high
as 75.64% on injecting only 223 byte average perturbation.
Specifically, the perturbations injected in .text, .data,
.rdata, .rsrc and .reloc sections also resulted a signi-
fication evasion rates of approximately 22%, 16%, 42%, 30%
and 37%, respectively. On the other hand, we can clearly see
the evasion rate is negligible for adversarial injections in PE
Signature, COFF File header, Section Header and after end
of the file region. Since different regions mentioned in Table I
vary largely in terms of perturbation size and SHAP value,
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Fig. 10. SHAP values within each Windows PE malware region across its length

TABLE 11
RESULTS FROM ADVERSARIAL INJECTION ATTACK ON THE GRANULAR FIRST SUBSECTION, SUBSECTION WITH LEAST SHAP AND THE SUBSECTION
WITH HIGHEST SHAP

Target First subsection Lowest Agg SHAP subsection Highest Agg SHAP subsection
Section | abs(SHAP) | Evasion Rate | Avg. Conf. | abs(SHAP) | Evasion Rate | Avg. Conf. | abs(SHAP) | Evasion Rate | Avg. Conf.
.text 0.181 27.45% 0.7883 0.0258 17.65% 0.8518 0.5251 57.35% 0.5924
.data 0.2275 31.25% 0.7525 0.0459 10.16% 0.897 0.9983 35.94% 0.7241
.rdata 0.3652 38.78% 0.6889 0.031 12.24% 0.8748 0.7893 48.98% 0.5983
.ISIC 0.0953 23.14% 0.82 0.0182 18.78% 0.8329 0.4263 37.99% 0.6923

it does not provide a clear picture of attack efficiency for
different PE malware regions. To better observe the attack
efficiency and establish distinct relationship between SHAP
values and evasion rate, we plotted a graph for aggregated
absolute SHAP value versus the evasion rate, with both scaled
to 100 bytes perturbation, as shown in Figure 9. The figure
clearly shows a significantly higher efficiency of evasion in
PE file header regions than in the rest of the PE body.
The observation demonstrates a positive correlation between
absolute SHAP values and the evasion rate.

Answer to RQ2: The absolute SHAP value of the PE
malware region exhibits approximately a positive correlation
with the evasion rate as observed in Figure 9. Specifically,
the higher the absolute SHAP for a PE region, the higher

the evasion rate upon injecting adversarial perturbation.

C. Breaking SHAP aggregation within a PE malware section

The disparity observed in the SHAP values among different
regions within the PE malware file encouraged us to evaluate
the variation of SHAP values even within the same PE
malware region. The diversity shown in the subplots in Figure
10, demonstrates the SHAP values change within the same
region to a large extent. We can easily see the places with
significantly higher SHAP values than the other places in each
subplot of Figure 10. This part of the evaluation is to quantify
the difference in the success of AE attacks while choosing
different perturbation locations within the same PE section
based on the SHAP value.

We subdivide the larger PE sections (over 10,000 bytes)
of PE malware into smaller subsections, each of 4096 bytes.
Now, we inject perturbation into three different subsections
individually in each section of a PE malware file: (1) the
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first subsection, (2) the subsection with the lowest aggre-
gated absolute SHAP, and (3) the subsection with the high-
est aggregated absolute SHAP. Table II presents the results
on injecting perturbation to different subsections inside the
.text, .data, .rdata and .rsrc section of PE file.
It is noted that the evasion rate on injecting perturbation in
the first 4096 bytes of .text is 27.45%, which dips to
17.65% on using the subsection with the lowest SHAP while
increasing up to 57.35% on using the subsection with the
highest SHAP. The difference in results varies from 10.16%
to 35.94% in .data, from 12.24% to 48.98% in .rdata
and from 18.78% to 37.99% in .rsrc sections while taking
the lowest and highest SHAP aggregating subsections as a
target for adversarial perturbation. A similar difference is also
observed in the average confidence of the PE malware file
while injecting perturbation in different subsections based on
the SHAP value.

Answer to RQ3: The selection of subsections within the
same sections of Windows PE malware for perturbation
injections makes a significant difference in the adversarial
evasion success. It is observed that the evasion rate taking
a massive leap while choosing the subsection with higher
aggregated SHAP values than those with lower aggregate
SHAP values.

V. CONCLUSION

This study focuses on the use of explainability of machine
learning-based malware detectors in crafting evasive adversar-
ial PE malware samples. Leveraging a CNN-based MalConv
malware detector, we demonstrated how the attributions pro-
vided by explainable algorithms, such as the SHAP, to various
regions of Windows PE malware files, could be exploited
to devise strategies for effectively injecting perturbations.
Through our analysis, we extracted the relationship between
the aggregated SHAP values and success of AE attacks. By
discovering the most impactful regions within the PE file for
perturbation injection, our findings highlight the significance
of explainability in augmenting the sophistication and efficacy
of adversarial evasion techniques for Windows PE malware
detection. To gain a more fine-grained analysis, we divided PE
sections into smaller subsections to inject perturbations based
on the preference decided by SHAP value. In future research,
we aim to broaden the scope of explainability by exploring
its application in conducting black box attacks, leveraging the
concept of transferability. Moreover, we will explore additional
efficient explainable tools to enhance adversarial attacks within
the adversarial malware domain.
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