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Abstract—As the focus on security of Artificial Intelligence
(AI) is becoming paramount, research on crafting and inserting
optimal adversarial perturbations has become increasingly crit-
ical. In the malware domain, this adversarial sample generation
relies heavily on the accuracy and placement of crafted per-
turbation with a goal to evade a trained classifier. This work
focuses on applying explainability techniques to enhance the
adversarial evasion attack on a machine-learning-based Windows
PE malware detector. The explainable tool identifies the regions
of PE malware files that have the most significant impact on
the decision-making process of a given malware detector, and
therefore, the same regions can be leveraged to inject the
adversarial perturbation for maximum efficiency. Profiling all the
PE malware file regions based on their impact on the malware
detector’s decision enables the derivation of an efficient strategy
for identifying the optimal location for perturbation injection.
The strategy should incorporate the region’s significance in
influencing the malware detector’s decision and the sensitivity
of the PE malware file’s integrity towards modifying that region.

To assess the utility of explainable AI in crafting an ad-
versarial sample of Windows PE malware, we utilize DeepEx-
plainer module of SHAP (SHapley Additive exPlanations) for
determining the contribution of each region of PE malware to
its detection by a CNN-based malware detector, MalConv. The
analysis includes both local and global explanations for the given
malware samples. We performed the functionality-preserving
adversarial perturbation injection in different regions of PE
malware wherever possible while performing non-functionality-
preserving operations in a few remaining regions. This approach
allows us to examine the relationship between SHAP values
and the evasion rate of the adversarial attack. Furthermore, we
analyzed the significance of SHAP values at a more granular
level by subdividing each section of Windows PE into small
subsections. We then performed an adversarial evasion attack on
the subsections based on the corresponding SHAP values of the
byte sequences. Our experimental evaluation shows a significant
improvement in the success and efficiency of adversarial evasion
attacks when injecting the perturbation in PE malware locations
based on SHAP values compared to random PE locations.

Index Terms—Adversarial Evasion Attack, Windows PE Mal-
ware, Machine Learning Malware Detector, Explainability, SHAP

I. INTRODUCTION

Windows PE malware binary has been a prime target for

Adversarial Evasion (AE) attacks in the malware domain,

and the reason can be attributed to the abundance or the

discrepancies of PE file formats [1], [2]. The AE attack on

a malware detector is carried out by modifying a malicious

binary file in a way that it gets recognized as a benign file by

a target malware detector. To formally define an AE attack,

let’s consider a machine-learning-based malware detector C

and a PE malware binary B such that C(B) = YMal, where

YMal is the real label of B. Now, the adversarial evasion attack

introduces the perturbation δ to a malware binary B in such a

way that C(B+ δ) = YBen, where YBen is a new adversarial

label of B and YMal 6= YBen. A major challenge in carrying

out AE attacks in the malware domain arises due to the

strict semantic constraints of binary executable. Unlike other

domains, a single random perturbation in a binary executable

can break its executability and functionality [3]. Therefore, a

successful AE attack on a malware domain should generate the

perturbations that not only evades the target malware detector

but also preserves the malware file’s integrity and behaviour.

Given the absolute requirement of preserving the malware’s

functionality and executability during AE attacks, early re-

search [4], [5] in this domain concentrated on crafting the

evasive malware with the utmost caution, refraining from

altering the structure of malware. Many studies [6], [7] con-

fined their efforts to craft adversarial evasion only on feature

space (feature level) rather than shifting to the problem space,

thereby limiting the practical applicability of their work. Here,

The problem space refers to the PE file where it exists in

its standard defined format, whereas the feature space can

be static or dynamic features obtained from some malware

analysis techniques. Recent works explored the feasibility of

injecting the adversarial perturbations across different regions

within Windows PE malware, including the header [8], [9],

slack spaces [10], codecaves [11] and other regions while

keeping the malware file intact. Most lately, a novel approach

proposed by Aryal et al. [12] inserted the adversarial per-

turbations within different sections of PE malware files while

preserving the integrity of malware. This approach injects code

caves within any sections of the PE malware file to make

space for adversarial perturbations, without altering the mal-

ware’s integrity. As the various locations to inject perturbation

evolve across the PE malware structure, the research focus is

transitioning towards optimizing the efficiency of injected per-

turbation. The goal is to craft a functionality-preserved evasive

adversarial malware with minimal perturbation injection.
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A promising approach to increase the efficiency of adver-

sarial perturbation being injected in Windows PE malware

is through the utilization of explainable AI. Explainability

techniques are inherently employed for understanding and in-

terpreting the models, leading to enhanced trustworthiness and

transparency of black-box machine learning models [13]–[15].

In a prior study, Rosenberg et al. [7] used explainability to

perform adversarial attacks on feature space and were limited

due to the practicality issues of mapping feature space modifi-

cations to problem space. Another work by Demetrio et al. [8]

used integrated gradients for feature attribution, discovering

the high efficiency of perturbation in the PE header regions.

However, the study lacked comprehensive analysis on utilizing

the explainability of a model for enhancing adversarial evasion

attacks. Their analysis is primarily confined to the PE header

region, overlooking the potential impact of explainability in

other regions of the PE malware. Furthermore, this work could

not address the different levels of granularity that can be used

to inject perturbations within the PE regions with the use

of explainability. To address these limitations, we propose

an ”Explainability Guided Adversarial Evasion Attacks on

Malware Detectors”.

In this paper, we explore the potential of explainability

techniques to strategize efficient AE attacks by leveraging

the reasoning behind a machine learning’s decision on the

Windows PE malware detector. For this study, we target a

widely used CNN-based malware detector, MalConv [16], as a

malware detector trained on Windows PE malware and benign

files. Our approach involves calculating the SHAP values for

each byte of a PE binary malware and aggregating these SHAP

values corresponding to different PE regions to determine the

collective contribution of individual PE regions. We assess the

impact of perturbation in different regions coupling to the

corresponding SHAP values. Additionally, we divide larger

Windows PE malware sections into smaller subsections and

aggregate the respective SHAP values to enable more precise

control over the placement of adversarial perturbation. The

major contributions of this work are listed below:

• Explain the contributions of each byte of Windows PE

malware binary towards its detection by a CNN model using

SHAP values and map it to the regions of the PE structure;

• Evaluate and compare local and aggregated global SHAP

values of different regions in the PE malware structure;

• Perform adversarial evasion attack by injecting perturbations

in regions of the PE malware and correlate the results with

the corresponding SHAP values;

• Divide larger PE malware sections into smaller subsections

and compute their corresponding SHAP values to evaluate

an adversarial injection strategy at a more fine-grained level.

The rest of the paper is organized as follows. Section II

presents the background information on PE structure, malware

detection, adversarial malware and explainability. Section III

discusses our proposed methodology for computing and an-

alyzing SHAP values, leading to adversarial evasion attacks.

Section IV discuss experimental evaluation and analysis of the
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Fig. 1. Structure of Windows PE Malware

results, followed by summary in Section V.

II. BACKGROUND

A. Windows PE Structure

The understanding of Windows Portable Executable (PE)

structure plays a crucial role in adversarial malware not only

because of the idiosyncratic nature of different parts but also

because of differences in sensitivity to the modification. The

Windows PE format is a standard format supported by the

Windows operating systems [17]. The structure of the PE file,

as shown in Figure 1, is composed of linear data streams

divided into different regions. The structure starts with the

DOS header, which was initially used in the DOS operating

system used for backward compatibility. The following 4-byte

PE signature identifies the file as a PE format image file. The

COFF header contains information like supported architec-

ture, size of section table, and characteristics flags denoting

the attributes of a file. The Optional Header holds details

about image files and contains important fields like MajorOp-

eratingSystemVersion, MinorOperatingSystemVersion, SizeOf-

Code, AddressOfEntryPoint, BaseOfCode, SizeofStackCommit,

SizeOfHeapCommit etc. The end portion of Optional Header

has Data Directories, which holds a relative virtual address

and the size of a table or string used by Windows. The Section

Header contains details of individual sections, including its

Name, VirtualSize, VirtualAddress, size, pointers and charac-

teristics flags. Finally, the sections do the job of organizing the

executable files logically. Each section has its own purpose,

like .text section contains executable code, .data contains

initialized code, etc. To be consistent, in this paper we use “PE

region” to refer to the regions in the PE file such as DOS

header COFF header, Optional Header etc., and the term

“Section” refers to the PE sections such as .text, .data,

.rdata etc. The term “Location” refers to the position of

malware bytes within a PE file.

B. Malware Detection

Malware detection is a broad domain, however, we focus

on widely used CNN-based end-to-end detection tailored for

Windows PE Malware. Our target model of adversarial attack

in this work is MalConv model [16] , an academic standard to
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Fig. 2. Architecture of MalConv [16] malware detector

carry out adversarial attacks in the malware domain. MalConv

learns to discriminate malware by taking the whole executable

in the form of byte streams without undergoing any feature

extraction process. Motivated to address the high amount of

positional variation present in the executable files, Raff et al.

came up with the MalConv convolution network architecture,

as presented in Figure 2. The combination of convolutional

activation with max-pooling followed by fully connected lay-

ers allows the model to produce activation regardless of the

location of the feature in the file. The input size to the model

is fixed to 221 bytes or 2MB. If the malware size is smaller,

then it is padded to reach the threshold size, and in case of a

larger file size, it’s trimmed to take only the first 221 bytes. The

architecture maps the raw bytes to a fixed-length feature vector

using an embedding layer before performing the convolution

operation.

C. Adversarial Malware

Since our work aims to increase the efficiency of adversarial

evasion attacks using explainability, it’s critical to understand

the current state in adversarial malware research. After the

early research [4], [18] that explored the possibility of adver-

sarial attacks against malware detectors, numerous works have

successfully crafted the adversarial attacks against malware

detectors in problem space. The adversarial attacks in the

malware domain can be distinguished from different bases

depending on the perturbation generation algorithms used,

target models, access to the target model, adversarial goals,

adversary’s capabilities, etc. However, within the domain of

PE adversarial malware, two significant distinctions stand out:

(a) the location for perturbation injection within PE malware,

and (b) the preservation of file integrity. The location of

perturbations during an adversarial evasion attack plays a

critical role in preserving/breaking the file integrity, attack

efficiency, and detection by malware detectors.

The locations exploited by adversarial attackers to inject

adversarial perturbation inside a PE file are represented in

Figure 3 by Regions A-D. Majority of the existing attacks

in PE malware are append attacks (denoted by Region D

in Figure 3), which appends the perturbation at the end of

the file [4], [5], [19]. Despite the ability to not interfere

with the integrity of malware files, perturbation at the end

of the file has some challenges. For fixed-input malware

detectors like MalConv [16], append attacks are ineffective [8],

[11] for malware larger than 2MB. Attackers have leveraged

slack space (Region C in Figure 3), i.e. the unused spaces

within a PE file not containing any meaningful data, to inject

the perturbations [10]. The adversarial injections in these

spaces are more efficient than append attacks but are not
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Fig. 3. Adversarial attacks on different PE malware regions

guaranteed to be present in enough volume for every malware.

Other approaches have found headers to be the most efficient

location for adversarial perturbation [8], [9], while some have

found the injected code cave to edge ahead of the existing

approaches [11]. Recent work [12] on intra-section code cave

injection has shown higher success rates in attacking different

regions of PE malware files. Analyzing existing literature, we

can conjecture the trade-offs between the adversarial attack

success, efficiency and the integrity of the malware detector.

D. Explainability

Explainability is a powerful tool for answering a black-box

machine learning system’s questions of How? and Why?. It

comprises of the processes and methods that help humans

comprehend and trust the outputs of ML algorithms. As

machine learning advances in making high-stakes decisions,

clarifying the rationale behind the decisions is crucial rather

than accepting them as a black-box decision. It is easier to

interpret the output of fundamental ML models, but the growth

of complex/deep models has presented a trade-off between the

accuracy and interpretability of the model’s output. Among

numerous available explainable approaches, we are interested

in exploring SHapley Additive exPlanation(SHAP) approach

for model interpretation [20]. SHAP assigns each feature

an importance value by creating an explanation model for

a model’s prediction. The simpler explanation model makes

an interpretable approximation of the complex model whose

decision needs to be explained. Explanation models work

by simplifying the original input x to x′ with a mapping

function x = hx(x
′). The additive feature attribution methods

contain an explanation model that is a linear function of binary

variables and is defined as:

g (z′) = φ0 +
M∑

i=1

φiz
′

i (1)

where z′ ∈ {0, 1}M , M is the total number of simplified input

features and φi ∈ R.

SHAP values provide unique additive feature importance

measures obtained from the Shapley values [21] of a condi-

tional expectation function of the original model. Our model

of interest in this work is the Deep SHAP module of SHAP

that combines Shapley values with DeepLIFT [22]. DeepLIFT

uses a linear composition rule equivalent to linearizing the
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non-linear components of neural networks. With DeepLIFT

being an additive feature attribution method satisfying local

accuracy and missingness properties and Shapley values sat-

isfying consistency properties, DeepLIFT leads to DeepSHAP

through compositional approximation of SHAP values [20].

Deep SHAP combines SHAP values for small components to

the SHAP values of the entire network by recursively passing

DeepLIFT’s multipliers defined in terms of SHAP values.

While dealing with simple network components like the linear

or max-pooling layer with a single input, their SHAP values

can be quickly computed, allowing a speedy approximation.

Deep SHAP eliminates the need to simplify components by

deriving a simplification from the SHAP values calculated for

each component.

III. EXPLAINABILITY GUIDED ADVERSARIAL EVASION

ATTACKS

Our approach for explainability guided adversarial evasion

attack on Windows PE malware detector, shown in Figure 4,

can be divided into three major parts: (1) calculation of SHAP

values for a given Windows PE malware byte stream, (2)

utilizing the calculated SHAP values to strategize the selection

of a target PE section for adversarial perturbation injection,

and (3) crafting adversarial perturbation. Algorithm 1 presents

the flow of our approach from SHAP computation to adver-

sarial perturbation creation. Our methodology is applicable to

any machine learning-based malware detector, although our

implementation specifically targets the MalConv model.

A. SHAP values for Windows PE malware byte stream

The proposed approach starts with calculating SHAP values

for the bytes sequence of a PE malware file as shown in

Algorithm 1. The PE malware is presented as a sequence

of bytes, B = {b1, b2, · · · , bk, · · · , bd} with d − k padding

bytes as our target model, MalConv [16] takes a fixed sized

input of 2,000,000 bytes. We use DeepExplainer (enhanced

version of DeepLIFT) module of the SHAP library [20] to

approximate the conditional expectations of SHAP values

using background samples. We modified the SHAP library

to make it compatible with our target MalConv model for

AE attack. The presence of an embedding layer that converts

discrete bytes to continuous values stops the gradient from

passing through this layer. To overcome this limitation, we

Algorithm 1 Explainability aided adversarial evasion attack

1: Input: Malware PE file with a byte streams B =

{b1, b2, · · · , bk, · · · , bd} where d is total bytes which is

2000000 and d− k is appended bytes;

2: Output: Modified malware file B
′

that can evade Mal-

Conv malware detector

3: Compute SHAP values for each binary byte in B using

SHAP’s DeepExplainer module , SHAP (bi)
4: Partition the malware binary stream B as per Windows

PE file structure: Region(B) = {Rdos, Rpe, · · · , Rsec(n)},
where each region corresponds to structural components

like DOS Header, PE Signature, and so on.

5: Aggregate the SHAP values by PE region:

SHAPAgg (R) =
∑

bi∈R

SHAP (bi)

6: Based on aggregated SHAP values and the nature of the

PE region towards modification(manually selected), target

region T for adversarial perturbation is chosen.

7: At target region T , perturbation δ is generated using

gradient descent until evasion or threshold condition, given

B
′

= B + δ is a valid malware.

computed SHAP values with respect to embedding output

in place of an actual input byte stream. Additionally, the

SHAP library was modified to handle multiple sigmoid layers

present in MalConv. The DeepExplainer module computes

SHAP values for every corresponding binary byte of PE

malware represented by the function SHAP (bi). These values

of individual bytes provides insights into the contribution of

each byte towards the detection of malware by MalConv.

B. Utilizing SHAP values to strategize the AE attack

The computed SHAP values {s1, s2, · · · , sd} corresponding

to each input PE malware bytes can not be directly used

without mapping to Windows PE structure since different

regions/sections have different sensitivity to modification. The

goal of injecting the perturbation is not only limited to evading

a malware detector but also preserving the functionality of a

malware file. The first step towards making meaningful strat-

egy is by mapping SHAP values {s1, s2, · · · , sd} of malware

binary bytes to Windows PE file structure divided into different
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Region(B)= {Rdos, Rpe, · · · , Rsec(n)}, presented in Step 3 of

Algorithm 1. Each PE region is assigned an aggregated SHAP

value of all the bytes in that region. The PE regions are placed

in the descending order of aggregated SHAP value so that

the region with maximum impact takes the first place while

the one with minimum impact takes the last position in the

list. At this point, the straightforward approach is to inject the

perturbation in the region with the highest aggregated SHAP

value, however, this approach is more complex and sensitive

than simply injecting the perturbation based on the SHAP

values order.

Aggregated SHAP values provide a baseline order of the PE

regions to choose a target for perturbation injection. However,

in addition to SHAP values, other factors that affect the parsing

of PE executable file format need to be adequately considered

to preserve the file’s integrity [1]. One of the first targets

is the DOS header, since the only significance of this part

of the header is backward compatibility and has no use in

modern systems except for the magic number and the value at

offset 0x3c. However, other than the DOS header, the header

regions of Windows PE are very sensitive to modifications and

can easily lead to breaking the malware file’s executability.

The other target region for perturbation is widely adopted

append attacks, where the perturbation is appended at the

end of the file without impacting the malware’s behaviour.

Recent research has explored the possibility of injecting the

perturbation in different sections of Windows PE malware

without impacting the file. Work by Aryal et al. [12] have

already shown successful attacks while injecting perturbation

in the .text, .data, .rdata and other sections of PE

file. Therefore, we also use the SHAP values to inject the

perturbation in these sections. We chose the section with the

highest SHAP value, i.e., the highest contribution, as a target

section for an efficient adversarial evasion attack.

We do not limit the utilization of SHAP value just for

choosing the target section but to choose the most impact-

ful subsection inside the target section. As an example, the

average size of .text section on our PE malware dataset is

found to be 97,000 bytes, which is 10% of the total malware

size but a larger perturbation space. To devise a suitable target

location for perturbation within an ample section space, we

divided each PE section into smaller fixed-size subsections and

aggregate the shape values for each corresponding subsection.

The smaller subsections with larger SHAP values is chosen

as a target region for injecting the perturbation. This approach

gives us finer control over the perturbation location even within

the same section of the PE malware, enabling more efficient

adversarial evasion attacks on Windows PE malware.

C. Crafting adversarial perturbation

At this stage, we execute the attack process on the target

region provided by the previous stage. However, due to its

nature, each PE region has its own requirement to perform

the functionality-preserving attack. Only specific bytes are

modified for attacks in the DOS header; for the append attack,

the length of perturbations is provided. To inject the perturba-

Fig. 5. Local SHAP values for an instance of Windows PE Malware

Fig. 6. Global average SHAP values for 500 Windows PE malware

tions inside the PE sections, the code caves and code loaders

are injected [12] to the PE file. The target regions can now

hold any perturbation without altering the integrity of the PE

malware file. To generate adversarial perturbation, we adopted

Kolosnjaji et al.’s [4] approach of gradient descent. The

approach first computes the embedding representation of input

malware bytes(B) as Z ← φ(b). The non-differentiability

of our target MalConv model is resolved by computing the

negative gradient of the loss function with respect to embed-

ding representation(Z) given by, wi = −∇φ (bi) ∈ R
8. The

approach will select the closest byte in the embedding space

that will maximally increase the probability of misclassifying

malware by the malware detector.

IV. EXPERIMENTS AND EVALUATION

Our experimental setup consists of 6000 Windows PE

malware from VirusTotal [23], out of which 5000 malware

are used to train the MalConv model and the rest 1000 for

validation and evaluation purposes. We verified the malware

files to determine if they were encrypted by calculating the

entropy of .text section. We found only 2% of malware

to have entropy greater than 7.2, indicating that they might

be encrypted. We reached end-to-end Windows PE malware

detection accuracy of 96% with the MalConv model, which is

used as a target model to compute SHAP values leading to ad-

versarial evasion attacks. We used 100 malware as background

data for SHAP’s DeepExplainer module and computed SHAP

values for 500 malware. We used pefile [24] python library

to gain insights into PE malware file structure. The following

research question guided our evaluation.

• RQ1 - Local vs. Global explanation: Can a global ex-

planation profile the SHAP values of a local PE malware
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Fig. 7. Local Interpretation SHAP values mapped to different Windows PE malware regions

Fig. 8. Global Interpretation Average SHAP values mapped to different Windows PE malware regions

sample and help create an adversarial evasion against

MalConv?

• RQ2 - SHAP value vs. Evasion rate: How do the SHAP

values of different PE regions relate to the adversarial

evasion rate?

• RQ3 - Granular SHAP analysis within the same

section: Do the adversarial injection targets in different

locations within the same section of PE malware impact

attack results?

A. Local vs. Global explanation

As discussed, we calculated the local SHAP for a single

instance of PE malware and global SHAP averaged over 500

malware as shown in Figures 5 and 6 respectively. These

figures show the SHAP value for each byte of PE malware

binary for its entire 2000000 input bytes in the order of their

position in the file. The local and global explanations exhibit

a similar pattern of SHAP values as they progress through the

PE malware bytes. SHAP values for both the local and global

SHAP plots in Figures 5 and 6 show significantly higher values

at initial regions and attenuate as they progress through the file.

However, we can see some spikes in SHAP value across the

byte sequence in regions in later part as well. The SHAP value

spikes in different locations of the file of various lengths vary

in each PE malware file, evident from the non-identical sized

spike in Global SHAP (Figure 6) compared to local SHAP

(Figure 5). These results show that the distinct regions of the

PE malware binary have different contributions towards being

detected, and the contribution of areas also varies as per the

individual malware file.

To further assess the distribution of SHAP values in byte

streams of Windows PE malware, we plotted the aggregated

SHAP value across different regions of the Windows PE mal-

ware structure. Figure 7 shows aggregated SHAP values across

different regions of a single local instance of Windows PE

malware. In contrast, Figure 8 shows the average aggregated

SHAP of different PE malware regions across malware sam-

ples. The green bars in figures represent positive contribution

towards malware detection, while the red bars represent the

negative contribution. In Figure 7, it can noticed that the DOS

header, Optional Header, .text , .rdata, .data sections

and the end of file contents contribute towards the detection

and the rest towards making malware detected as ‘benign’. In

both plots, we should not forget that the aggregated SHAP

value results from different-sized PE regions. The aggregated

SHAP contribution of the DOS header is the result of 64

bytes while the SHAP value of .text section is from 97,000

bytes on average. Our results in the next section explain the

efficiency of attacks in different regions.
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TABLE I
AGGREGATED SHAP VALUE VS. EVASION RATE ON CRAFTING ADVERSARIAL SAMPLE WITH DIFFERENT PE TARGET REGION

Target Region
Average Size of Aggregated SHAP value iteration = 20 iteration = 40

Section Perturbation Mean Abs. Mean Evasion Rate Confidence Evasion Rate Confidence

DOS Header 64 64 -0.0035 0.0251 9.23% 0.84 8.06% 0.85

PE Signature 4 4 0 0.0291 2.75% 0.96 2.75% 0.96

COFF File Header 20 20 -0.0474 0.2909 3.93% 0.93 3.93% 0.93

Optional Header 223 223 -0.1636 1.5982 75.05% 0.47 75.64% 0.46

Data Directories 127 127 0.0903 0.4953 19.45% 0.84 18.27% 0.84

Section Headers 127 127 0.0013 0.0113 2.75% 0.96 2.75% 0.96

.text 96992 3822 0.0004 0.1008 22.92% 0.82 21.13% 0.84

.data 41110 3550 0.0115 0.21 16.67% 0.86 15.76% 0.87

.rdata 18537 3172 -0.0003 0.1473 41.37% 0.65 42.81% 0.64

.rsrc 63611 3607 0.0023 0.0704 30.27% 0.75 28.65% 0.76

.reloc 13006 2627 0.001 0.1054 37.42% 0.67 37.42% 0.68

After End Of File - 3863 -0.0002 0.0404 7.07% 0.93 7.66% 0.93

Fig. 9. Plotting SHAP values vs. Evasion rate scaled for 100 bytes for
different PE regions

We made some contrasting observations in the Local and

Global explanation plots of SHAP values in Figure 7 and 8.

The aggregated SHAP values of the PE malware section from

the local instance are inconsistent with the global averaged

SHAP values. As an example, .rsrc section has a positive

SHAP value in the local instance (Figure 7) while having a

negative value in global averaged SHAP for entire malware.

This behaviour is due to variations in the size of malware

and its sections. A particular PE region could be at different

locations in individual PE files.

Answer to RQ1: As observed, each PE malware file differs

in the size and location of its regions; a global averaged

explanation for PE regions can not be created against the

CNN-based malware detector, MalConv. The contrasting

observation of SHAP values for individual regions in Figure

7 and 8 demonstrates that each malware needs a local

explanation to profile the SHAP values of its PE regions

precisely.

B. SHAP value vs. Evasion rate

Here, we inject perturbation in different regions of Win-

dows PE malware, aiming to examine the correlation between

the corresponding SHAP values and the effectiveness of the

adversarial evasion attack against the MalConv. While the

functionality-preserving attack focuses solely on injecting the

perturbation into the DOS Header, .text, .data, .rdata,

.rsrc sections, and at the end of the PE malware file, in

order to extract the precise relation between SHAP values

and evasion rate, we conducted adversarial injections across

all the feasible regions of PE malware. We understand that

injecting the perturbation into the PE signature, COFF file

header, Optional header, Data directories and Section headers

compromises the integrity of the file in adversarial malware

samples. Since we have to analyze relatively small header

regions of the PE file, we limit the perturbation size to 4096

bytes for each PE region across the malware samples.

Table I shows results for evasion rates and average confi-

dence of MalConv on PE malware samples after injecting the

average size perturbation. We compared by running gradient

descent for up to 40 iterations, and Table I shows the result for

20 and 40 iterations. However, it is observed that there is no

significant change in either the evasion rate or the average

confidence while increasing the iterations from 20 to 40.

We made another intriguing observation while linking SHAP

values with the evasion rate. It is found that the perturbations

in the PE regions with negative SHAP values can evade the

malware detector at a similar rate to those perturbations in

PE regions with positive SHAP values. By calculating the

absolute mean of SHAP values for each region in the PE

malware structure, we were able to establish a more discrete

relationship with the evasion rate. Since the gradient descent

optimizes each perturbation equally, the distinction between

positive and negative impact (SHAP values) became irrelevant.

Instead, only the magnitude of contribution (SHAP value) to

the decision-making process is relevant. From the Table I, it

is evident that the absolute mean SHAP values align more

closely with the evasion rate as compared to the mean SHAP

values.

As shown in Table I, we observed the evasion rate as high

as 75.64% on injecting only 223 byte average perturbation.

Specifically, the perturbations injected in .text, .data,

.rdata, .rsrc and .reloc sections also resulted a signi-

fication evasion rates of approximately 22%, 16%, 42%, 30%

and 37%, respectively. On the other hand, we can clearly see

the evasion rate is negligible for adversarial injections in PE

Signature, COFF File header, Section Header and after end

of the file region. Since different regions mentioned in Table I

vary largely in terms of perturbation size and SHAP value,
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Fig. 10. SHAP values within each Windows PE malware region across its length

TABLE II
RESULTS FROM ADVERSARIAL INJECTION ATTACK ON THE GRANULAR FIRST SUBSECTION, SUBSECTION WITH LEAST SHAP AND THE SUBSECTION

WITH HIGHEST SHAP

Target

Section

First subsection Lowest Agg SHAP subsection Highest Agg SHAP subsection

abs(SHAP) Evasion Rate Avg. Conf. abs(SHAP) Evasion Rate Avg. Conf. abs(SHAP) Evasion Rate Avg. Conf.

.text 0.181 27.45% 0.7883 0.0258 17.65% 0.8518 0.5251 57.35% 0.5924

.data 0.2275 31.25% 0.7525 0.0459 10.16% 0.897 0.9983 35.94% 0.7241

.rdata 0.3652 38.78% 0.6889 0.031 12.24% 0.8748 0.7893 48.98% 0.5983

.rsrc 0.0953 23.14% 0.82 0.0182 18.78% 0.8329 0.4263 37.99% 0.6923

it does not provide a clear picture of attack efficiency for

different PE malware regions. To better observe the attack

efficiency and establish distinct relationship between SHAP

values and evasion rate, we plotted a graph for aggregated

absolute SHAP value versus the evasion rate, with both scaled

to 100 bytes perturbation, as shown in Figure 9. The figure

clearly shows a significantly higher efficiency of evasion in

PE file header regions than in the rest of the PE body.

The observation demonstrates a positive correlation between

absolute SHAP values and the evasion rate.

Answer to RQ2: The absolute SHAP value of the PE

malware region exhibits approximately a positive correlation

with the evasion rate as observed in Figure 9. Specifically,

the higher the absolute SHAP for a PE region, the higher

the evasion rate upon injecting adversarial perturbation.

C. Breaking SHAP aggregation within a PE malware section

The disparity observed in the SHAP values among different

regions within the PE malware file encouraged us to evaluate

the variation of SHAP values even within the same PE

malware region. The diversity shown in the subplots in Figure

10, demonstrates the SHAP values change within the same

region to a large extent. We can easily see the places with

significantly higher SHAP values than the other places in each

subplot of Figure 10. This part of the evaluation is to quantify

the difference in the success of AE attacks while choosing

different perturbation locations within the same PE section

based on the SHAP value.

We subdivide the larger PE sections (over 10,000 bytes)

of PE malware into smaller subsections, each of 4096 bytes.

Now, we inject perturbation into three different subsections

individually in each section of a PE malware file: (1) the
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first subsection, (2) the subsection with the lowest aggre-

gated absolute SHAP, and (3) the subsection with the high-

est aggregated absolute SHAP. Table II presents the results

on injecting perturbation to different subsections inside the

.text, .data, .rdata and .rsrc section of PE file.

It is noted that the evasion rate on injecting perturbation in

the first 4096 bytes of .text is 27.45%, which dips to

17.65% on using the subsection with the lowest SHAP while

increasing up to 57.35% on using the subsection with the

highest SHAP. The difference in results varies from 10.16%

to 35.94% in .data, from 12.24% to 48.98% in .rdata

and from 18.78% to 37.99% in .rsrc sections while taking

the lowest and highest SHAP aggregating subsections as a

target for adversarial perturbation. A similar difference is also

observed in the average confidence of the PE malware file

while injecting perturbation in different subsections based on

the SHAP value.

Answer to RQ3: The selection of subsections within the

same sections of Windows PE malware for perturbation

injections makes a significant difference in the adversarial

evasion success. It is observed that the evasion rate taking

a massive leap while choosing the subsection with higher

aggregated SHAP values than those with lower aggregate

SHAP values.

V. CONCLUSION

This study focuses on the use of explainability of machine

learning-based malware detectors in crafting evasive adversar-

ial PE malware samples. Leveraging a CNN-based MalConv

malware detector, we demonstrated how the attributions pro-

vided by explainable algorithms, such as the SHAP, to various

regions of Windows PE malware files, could be exploited

to devise strategies for effectively injecting perturbations.

Through our analysis, we extracted the relationship between

the aggregated SHAP values and success of AE attacks. By

discovering the most impactful regions within the PE file for

perturbation injection, our findings highlight the significance

of explainability in augmenting the sophistication and efficacy

of adversarial evasion techniques for Windows PE malware

detection. To gain a more fine-grained analysis, we divided PE

sections into smaller subsections to inject perturbations based

on the preference decided by SHAP value. In future research,

we aim to broaden the scope of explainability by exploring

its application in conducting black box attacks, leveraging the

concept of transferability. Moreover, we will explore additional

efficient explainable tools to enhance adversarial attacks within

the adversarial malware domain.
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