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Abstract—In recent years, there has been a surge in malware
attacks across critical infrastructures, requiring further research
and development of appropriate response and remediation strate-
gies in malware detection and classification. Several works have
used machine learning models for malware classification into
categories, and deep neural networks have shown promising
results. However, these models have shown its vulnerabilities
against intentionally crafted adversarial attacks, which yield
misclassification of a malicious file. Our paper explores such
adversarial vulnerabilities of neural network based malware
classification systems in the dynamic and online analysis envi-
ronments. To evaluate our approach, we trained Feed Forward
Neural Networks (FFNN) to classify malware categories based
on features obtained from dynamic and online analysis envi-
ronments. We use the state-of-the-art method, SHapley Additive
exPlanations (SHAP), for the feature attribution for malware
classification, to inform the adversarial attackers about the
features with significant importance in classification decisions.
Using the explainability-informed features, we perform targeted
misclassification adversarial white-box evasion attacks using the
Fast Gradient Sign Method (FGSM) and Projected Gradient
Descent (PGD) attacks against the trained classifier. Our results
demonstrated a high evasion rate for some instances of attacks,
showing a clear vulnerability of a malware classifier for such
attacks. We offer recommendations for a balanced approach
and a benchmark for much-needed future research into evasion
attacks against malware classifiers, and develop more robust and
trustworthy solutions.

Index Terms—Explainability, Adversarial, Dynamic Analysis,
Online Analysis, White-box attacks, Machine learning, Robust,
Trustworthy

I. INTRODUCTION

Malware poses a significant cybersecurity threat, demanding

an effective classification system for swift remediation. The

process of addressing malware that has invaded a computer

system broadly involves detecting it, classifying it, and then

addressing the malware based on this classification. Detection

refers to identifying the presence or absence of malware.

Detection problems are sometimes referred to as binary clas-

sifications. This study distinguishes detection from classifica-

tion, which aims to discern between various types of malware

samples. Classification categorizes malware into families or

categories, with “family” referring to variants that share com-

mon characteristics, and “category” grouping malware based

on their objectives (e.g., ransomware encrypting systems or

files).

Different types of malware necessitate tailored response

plans, with adware requiring different treatment from trojans

or ransomware. Machine learning-based classification methods

have emerged to address this need [1]. These methods are

broadly categorized into static [2], dynamic [3], and online

analysis [4]. Static analysis inspects dormant malicious files

but is susceptible to obfuscation. Dynamic analysis executes

malware in a controlled, simulated environment, while online

analysis monitors systems in real time, preventing malware

from detecting it is in a sandbox and remaining dormant. How-

ever, conducting online analysis can be resource-intensive,

especially in preventing malware from accessing the internet

in online environments. Despite the importance of accurate

malware classification, researchers often overlook the vulner-

ability of models to adversarial examples crafted to deceive

trained models [5]–[11]. Addressing this vulnerability is cru-

cial for ensuring the reliability and robustness of classification

systems, particularly in dynamic and online malware analysis

where research is limited.

Explainable AI methods focus on feature attribution, elu-

cidating model decisions and enhancing user trust. These

explanations play a vital role in identifying crucial features

for malware classification, empowering security analysts in

countering threats. However, they can also inform the genera-

tion of adversarial evasion attacks as well [12]. By indicating

which features are important to model decision-making, an

adversary is able to create adversarial samples that are more

effective at fooling the classifier into misclassification, thereby

intentionally evading proper classification.

White-box and black-box evasion attacks represent two

distinct approaches to crafting adversarial examples to deceive

machine learning models. In a white-box attack, the attacker

has full access to the target model’s architecture, parame-

ters, and training data, enabling them to directly manipulate

the model’s input features to generate adversarial examples.

Conversely, black-box attacks occur when the attacker has

limited or no access to the target model’s internal structure

or training data. In such cases, the attacker interacts with

the model by querying it with inputs and observing the

corresponding outputs. Despite their differences, both types

of attacks aim to exploit vulnerabilities in machine learning

models to undermine their performance and reliability.

This paper utilizes SHapley Additive exPlanations (SHAP)

to interpret black-box model decisions, informing targeted

malware misclassification attacks. A Feed Forward Neural

Network (FFNN) based malware classifier is trained for both
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TABLE I: Related works compared. A
√

indicates that a specific paper has this attribute, and a blank cell shows that this

attribute or model does not exist.

Paper Target Model
Analysis Domain Platform

Detection Category Classification Family Classification Dynamic Online Android Windows

Stokes et al. (2018) [13] FFNN
√ √ √

Kucuk et al. (2020) [14] Random Forest
√ √ √

Ahmed et al. (2022) [15] Ensemble
√ √ √

Rafiq et al. (2023) [16] AutoML
√ √ √

Our Approach FFNN
√ √ √ √ √

dynamic and online malware datasets, with DeepSHAP [17]

providing global interpretations. These explanations informed

the white-box Fast Gradient Sign Method (FGSM) and Pro-

jected Gradient Descent (PGD) attacks where we selected

the Ransomware and Adware classes as our targets for the

dynamic analysis and the Ransomware and PUA classes for

the online analysis. In some instances of our attacks, we

observed almost perfect evasion from the malware classifier,

highlighting a clear vulnerability in this deep-learning model.

The main contributions of this work include:

• We evaluate the effectiveness of deep learning models

for classifying malware categories in both dynamic and

online malware analysis datasets.

• We extend this analysis by explaining model predictions

on a global level using SHapley Additive exPlanations

(SHAP).

• We use these SHAP explanations to inform white-box

evasion attacks on the deep learning models for targeted

misclassification.

The paper is organized as follows. Section II reviews related

works in evasion attacks conducted in the sphere of dynamic

analysis. Section III outlines the methodology and introduces

the dynamic and online datasets. Results, model explanations,

and evasion attacks for each dataset are presented in Section

IV. The paper concludes with a summary and discussion of

future work in Section V.

II. RELATED WORK

The field of adversarial attacks in dynamic malware analysis

is relatively new in academia, with limited prior research

available. Existing studies primarily focus on targeted mis-

classification, which involves deliberately choosing incorrect

labels and crafting adversarial examples to deceive classi-

fiers into classifying them as such. This is not the same as

untargeted misclassifications, where adversarial examples are

crafted to cause models to misclassify input without aiming at

specific classes with the aim of decreasing accuracy and trust

in a model’s ability to classify correctly. Table I summarizes

relevant work, outlining features such as the domain, type of

analysis, targeted models, and malware platform.

For instance, [13] utilized the Jacobian method to inform

targeted misclassification attacks on an FFNN model detecting

Windows malware. Similarly, [15] conducted evasion attacks

on an ensemble model detecting Android ransomware, em-

ploying information gain to guide the attacks. [16] and [14]

also explored evasion attacks on machine learning models

detecting Android malware and Windows malware families,

respectively, with the latter being one of the few to delve into

targeted misclassification using a Random Forest model.

Notably, none of the mentioned works specifically address

targeted misclassification on deep-learning classifier models

for dynamic or online malware categories, highlighting a gap

in the literature that our work aims to fill. We propose using

black-box models to classify malware categories in dynamic

and online datasets, followed by using the SHAP explainability

method to guide adversarial attacks and deceive the model into

misclassifying samples as targeted categories.

III. METHODOLOGY

Our methodology can be divided into three major parts:

1) Data collection for online and dynamic malware analysis;

2) Training the malware classifier for each dataset; and 3)

Targeted adversarial attacks on the trained malware classifiers.

This section discusses our methodology for training our dy-

namic analysis, online analysis classifier model, and approach

to adversarial attacks for targeted misclassification.

A. Dynamic Analysis

For the dynamic malware analysis, we utilized the And-

Mal2020 dataset from the Canadian Center for Cybersecurity

[18], containing 12 different Android malware classes. Each

sample comprises 141 features across six categories: memory,

API calls, network, battery, log writing, and total processes.

The class distribution in this dynamic malware dataset is

highly imbalanced, as seen in Table II. We attempted to

address this imbalance by excluding minority classes and

adjusting class weights; however, the SMOTE (Synthetic Mi-

nority Oversampling Technique) proved effective as it bal-

anced the dataset by generating synthetic samples between real

examples. This resulted in 7261 samples per class, totalling

87132 samples. To train the classifier on this dynamic analysis

dataset, we employed an FFNN, aiming for simplicity and

establishing a baseline for future evasion attacks. The FFNN

architecture included six hidden layers, two fully connected

layers, and one dropout layer. The training was conducted on

80% of the dataset for 135 epochs with a batch size of 10

while using the remaining 20% for testing and validation.

B. Online Analysis

For online analysis, we utilized the RaDaR dataset from

the Indian Institute Technology Madras [19], capturing Win-

dows malware behavior on a real-time physical testbed. This

dataset enables analysis of modern malware that is capable
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TABLE II: All Classes of Dynamic Data Set

Category Number of Samples

Riskware 7261

Adware 5838

Trojan 4412

Ransomware 1861

Trojan Spy 1801

Trojan SMS 1028

Trojan Dropper 837

PUA 665

Backdoor 591

Scareware 462

FileInfector 129

Trojan Banker 118

TABLE III: All Classes of Online Data Set

Category Number of Snapshots

Cryptominer 158158

Deceptor 99099

Ransomware 13013

PUA 3003

Backdoor 1001

of detecting sandbox environments and remaining dormant.

However, this level of analysis requires significant resources

compared to dynamic analysis, with increased computation

times due to larger data volumes. This dataset comprises five

malware classes and 55 hardware-level features. To address the

class imbalance evident in Table III, SMOTE was employed,

resulting in 158158 samples per class, totalling 790790 sam-

ples. While we initially considered Long Short-Term Memory

(LSTM) models for their time-series data advantages, we opted

for FFNNs to maintain consistency across analyses. The FFNN

architecture included five hidden layers with ReLU activation,

two fully connected layers, one dropout layer, and Softmax

activation for the output layer. Training utilized 80% of the

data for 100 epochs with a batch size of 50, with testing on

the remaining 20%.

C. Adversarial Approach

For targeted adversarial attacks on the trained classifiers,

we chose the Fast Gradient Sign Method (FGSM) [20] and

Projected Gradient Descent (PGD) [21] attacks, both white-

box attacks requiring knowledge of the target model archi-

tecture. These attacks were conducted as benchmarks for

future research in dynamic and online malware classification,

addressing the lack of existing work in targeted misclassifi-

cation of black-box classified dynamic and online malware

samples. Our attacks aim to generate adversarial examples that

are misclassified as specific malware categories to assess the

robustness of the models for classifying a particular malware

class.

To inform the attacks, we first needed to have SHAP identify

which features were important to model decision-making. As

opposed to the related works that focused on targeting a

transparent model, our work targeted a black-box model that

needs post-hoc explanations to identify which features would

be most effective in perturbing. We used SHAP’s DeepEx-

plainer [17] to compute the SHAP values we used to inform

Algorithm 1: Algorithm for Adversarial Attack

Input : Classifier model C, test malware data X ,

number of features to perturb

num features, SHAP values shap values

Output: Attack success rate for FGSM and PGD

1. Wrap the Classifier model C with an ART estimator;

2. Configure attack parameters for targeted

misclassification;

3. Specify the target class for each adversarial

example;

4. Identify the most important features from

shap values;

5. Generate adversarial examples using FGSM and

PGD;

6. Evaluate the classifier on adversarial examples;

7. Calculate success rates of evasion for FGSM and

PGD;

TABLE IV: Performance Metrics for Dynamic Analysis and

Class-Specific Metrics

Accuracy (%) Precision (%) Recall (%) F1 (%)

FFNN without SMOTE 81.52 81.63 81.52 81.58

FFNN with SMOTE 91.01 91.06 91.01 91.03

Ransomware with Smote 86.09 82.84 86.09 84.43

Adware with Smote 83.61 80.61 83.61 82.08

the attacks. We used a subsample of 1000 samples from the

dynamic test data set and 10000 samples from the online test

data set. This under-sampling is necessary due to the resource-

intensive nature of computing SHAP values balanced with

the need to create effective adversarial examples. Our work

thus properly balances the level of analysis achieved from

the online analysis with the more resource-efficient dynamic

analysis.

We performed a grid search to find the optimal set of hy-

perparameters for our misclassification attack. For adversarial

evasion attacks in dynamic analysis, optimal hyperparameters

for FGSM included an epsilon (ϵ) of 1.0 and a step size of

0.8 with the L2 norm bound on the perturbation. At the same

time, optimal hyperparameters for PGD were an epsilon (ϵ)

of 1.0, step size of 0.8, and maximum iterations of 50 with

the L-Infinity norm bound for perturbation. In online analysis,

optimal FGSM parameters were epsilon 1.0 and step size 0.5

with the L2 norm bound, while optimal PGD parameters were

epsilon 1.0, step size 0.5, and maximum iterations 50 with the

L-infinity norm bound. The evaluation focused on the success

rate of attacks which we formally define as:

SuccessRate =
Adversarial Examples Classified as Target Class

Total Number of Adversarial Examples Generated

Our methodology for generating adversarial examples and

assessing their success is outlined in Algorithm 1.

IV. RESULTS AND DISCUSSION

A. Evaluation of Performance Metrics for classifier models

The first part of our work is to train the classifier models on

dynamic and online datasets. Table IV provides performance
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Fig. 1: Performance of models in Dynamic and Online Analysis

TABLE V: Performance Metrics for Online Analysis and

Class-Specific Metrics

Accuracy (%) Precision (%) Recall (%) F1 (%)

FFNN without SMOTE 77.59 78.37 77.59 77.98

FFNN with SMOTE 78.55 79.94 78.55 79.24

Ransomware with Smote 92.88 100.00 92.88 96.31

PUA with Smote 84.07 100.00 84.07 91.35

metrics for overall model performance in dynamic analysis and

for our target classes for attack: Ransomware and Adware. The

comparison with and without SMOTE intervention indicates a

notable performance increase with synthetic samples. The F1-

score close to 91% for overall performance in Table IV proves

FFNN works well for all our scenarios. Despite Ransomware

being a top majority class in the unaltered dataset, its rela-

tively poor performance suggests potential overlap between

SMOTE’s synthetic samples for minority classes and the

decision boundary of majority classes, but we have concluded

that using SMOTE is still viable due to the increased overall

classifier performance.

Performance metrics for overall model performance for the

online analysis before and after SMOTE intervention can be

found in Table V. Ransomware and PUA are our target classes

for attacks, and the classifier’s performance in classifying

these two classes is shown in Table V. The FFNN model

had an F1 score of 79.24%. This was likely because of not

maintaining the time-series nature of the data and because

of SMOTE’s synthetic samples, as evidenced by the majority

classes being outperformed by the minority classes in Figure

1. A marginal increase in performance is observed when

using SMOTE. This decision to use SMOTE was motivated

by the desire to maintain consistency with the methodology

employed for dynamic analysis. Consequently, both the model

and the dataset influenced by SMOTE were utilized for the

generation of explanations and adversarial examples. This

decision also aligns with how real-world professionals may

choose to manage the imbalanced class distribution. After

training the model, we explained the model’s predictions by

applying SHAP.

B. Global Explanation

With a reduced sample size, SHAP’s DeepExplainer com-

puted SHAP values in 70 seconds the dynamic data set and

about 15 minutes for the online data set. The summary plots

in Figure 2 illustrate feature importance across categories

for both data sets. The x-axis shows the average magnitude

impact on model output, with features arranged by their

effects’ magnitudes. Notably, the top features for the model

trained on the dynamic data set were mostly API calls or

Memory features, emphasizing their significance. We used

the top 20 identified features for each respective data set to

inform the targeted evasion attacks. We selected the Adware

and Ransomware categories for the dynamic analysis and

the PUA and Ransomware categories for the online analysis

because they pose the highest potential damage if an adversary

successfully misclassifies their malware. Misclassification as

a less or more dangerous category than a sample’s ground

truth could significantly undermine the effectiveness of the

remediation plan.

C. Targeted Misclassification

For the dynamic analysis, the computation time for the

FGSM attack was instantaneous because it is not iterative like

the PGD attack, which required approximately 5 minutes for

each iteration of our algorithm to fully generate the adversarial

examples. Figure 3 shows the success rate. On targeting
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Fig. 2: A stacked bar graph depicting the top 20 online features identified by SHAP in model decision making

Adware, the PGD attack reached an acceptable success rate

at just 9 out of 141 features, while the success rate of the

FGSM attack peaked at around 40% at 17 features being

perturbed. For targeting Ransomware, the PGD attack required

all 20 features to be perturbed to reach a success rate of

80%, while the FGSM attack peaked at just above 30% and

then degraded in performance drastically, making this category

comparatively worse at being targeted than Adware since it

took more features for PGD and the FGSM’s peak success

rate was less. When comparing the attacks just targeting the

Ransomware class, the FGSM attack vastly under-performs

compared to the PGD attack, and Figure 5 shows that this may

be because it’s targeting the incorrect class. For an untargeted

misclassification problem, these results would still be promis-

ing as the model’s ability to correctly classify any samples

has greatly decreased, as seen in how the expected darker

colouring of the diagonal in Figure 1 is not present at all,

indicating the classifier’s decreased ability to correctly predict

a sample’s true label. This work, however, is concerned with

successful targeting of a selected class. The more complex,

iterative PGD attack is capable of targeted misclassification,

as Figure 5 shows a distinct, vertical line on the ”predicted

Ransomware” column. There’s a less dark vertical line on

the ”predicted Trojan Spy” column, making this the reason

why the the PGD attack targeting Ransomware had a poorer

performance than the PGD attack targeting the Adware.

Similar to the attacks targeting the Ransomware category,

the PGD attack when targeting the Adware class is much more

effective than the FGSM attack, with Figure 4 revealing this

is also due to an error in targeting the incorrect class. The

”predicted Adware” column shows that this FGSM attack is

somewhat working, but it is not overwhelmingly effective like

the PGD attack. We hypothesize that if more features were

selected to be perturbed the PGD attack targeting Ransomware

could at some point reach a comparable success rate as the one

targeting Adware, as seen in the general upward trend of the

success rate. However, we believe perturbing any more than 20

features could affect the malware’s ability to function. Future

work should investigate this.

For the online analysis, the FGSM computation time was

likewise instantaneous; however, the PGD attack required

approximately 30 minutes for a given iteration of our algorithm

to fully generate the adversarial examples. Figure 6 shows

the success rate. Similar to the dynamic analysis, for both

targeted misclassifications, the more complex iterative PGD

attack was more effective in creating examples that fooled the

classifier than the simpler FGSM attack. Unlike the dynamic

analysis, the success rate fluctuates in a more volatile fashion

for the first few features. For targeting both selected categories,

the PGD attack reached an acceptable success rate around
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Fig. 3: Success rates for FGSM and PGD attacks in targeting dynamic Adware and Ransomware categories

Fig. 4: Confusion matrices for FGSM and PGD attacks in targeting dynamic Adware

Fig. 5: Confusion matrices for FGSM and PGD attacks in targeting dynamic Ransomware
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Fig. 6: Success rates for FGSM and PGD attacks in targeting online PUA and Ransomware categories

Fig. 7: Confusion matrices for FGSM and PGD attacks in targeting online PUA

16 out of 55 features, with the FGSM attack doing better

in successfully targeting Ransomware over PUA. Figures 7

and 8 show the confusion matrices generated by the attacks

for the feature amount that resulted in the highest success

rate, revealing that for both the PUA and the Ransomware

targeted attacks using FGSM the adversarial examples seem

to be properly targeting the respective categories, but it’s not

as effective as the PGD attacks. These FGSM attacks would be

effective in untargeted misclassification as these Figures show

the diagonal from Figure 1 has been disrupted. It should be

noted that the PGD attacks show a lot of misclassification of

samples as other classes. Perhaps this is due to inefficiencies

within the classifier, as seen how there were so many samples

in Figure 1 were already misclassified.

Comparing the two levels of analysis, we have concluded

that it is easier to create successful and properly effective

targeted misclassification attacks for the dynamic model that

did well, than it is for the online model which had trouble

properly categorizing the malware from the beginning. The

success rates for the attacks on the dynamic model were

consistently less volatile than the attacks on the online model.

These effective attacks were also the result of using consider-

ably less samples to train the attacks for the dynamic model

than what was necessary for the online model. It was much

faster to perform the FGSM attack than the PGD attack for

both levels of analysis because of the PGD attack’s iterative

nature. The attacks on the online model were more successful

in producing untargeted misclassification. This is noteworthy

and should be investigated further.

V. CONCLUSION AND FUTURE WORK

In this paper, we trained an FFNN malware classifier model

for a dynamic and online analysis data set to classify mal-

ware categories. The imbalanced class distribution of dynamic

dataset was partially overcome with the use of SMOTE,

which slightly degraded model performance but not to an

unacceptable degree. Future authors can also extend this work

by investigating models that are adept at handling time-series

data, explaining those models with methods more well-suited

to time-series data, and investigating the performance of these

models on different data sets. We used SHAP to explain

these black-box models and then used those explanations to

inform targeted misclassification white-box evasion attacks.

We performed evasion attacks by targeting 3 different malware

classes in particular: Ransomware, Adware and PUA, while

using FGSM and PGD as algorithms for crafting attacks. We

compared the performance of models on performing attacks

different malware classes using the different number of fea-

tures informed by SHAP. Our results showed the success rate

of targeted misclassification attack is close to 100% in some
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Fig. 8: Confusion matrices for FGSM and PGD attacks in targeting online Ransomware

of the attack instances, demonstrating the serious vulnerability

of the classifier model.

In future research, we will extend this work by launching

black-box attacks to generate adversarial examples, and map

the changes made to the features to an actual malware. Future

work should also investigate the possibility and use cases

of untargeted misclassification, since the FGSM attacks we

devised for this work were so effective in degrading model

performance. Our findings can also contribute to creating more

robust models through adversarial training, which would en-

hance real-world malware remediation, aiding cyber-analysts

and strategists in efficiently categorizing and coordinating

responses to malware threats.
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