2024 33rd International Conference on Computer Communications and Networks (ICCCN) | 979-8-3503-8461-1/24/$31.00 ©2024 IEEE | DOI: 10.1109/ICCCN61486.2024.10637629

Explainability-Informed Targeted
Malware Misclassification

Quincy Card, Kshitiz Aryal, Maanak Gupta
Department of Computer Science
Tennessee Tech University, Cookeville, TN USA
qacard42 @tntech.edu, karyal42@tntech.edu, mgupta@tntech.edu

Abstract—In recent years, there has been a surge in malware
attacks across critical infrastructures, requiring further research
and development of appropriate response and remediation strate-
gies in malware detection and classification. Several works have
used machine learning models for malware classification into
categories, and deep neural networks have shown promising
results. However, these models have shown its vulnerabilities
against intentionally crafted adversarial attacks, which yield
misclassification of a malicious file. Our paper explores such
adversarial vulnerabilities of neural network based malware
classification systems in the dynamic and online analysis envi-
ronments. To evaluate our approach, we trained Feed Forward
Neural Networks (FFNN) to classify malware categories based
on features obtained from dynamic and online analysis envi-
ronments. We use the state-of-the-art method, SHapley Additive
exPlanations (SHAP), for the feature attribution for malware
classification, to inform the adversarial attackers about the
features with significant importance in classification decisions.
Using the explainability-informed features, we perform targeted
misclassification adversarial white-box evasion attacks using the
Fast Gradient Sign Method (FGSM) and Projected Gradient
Descent (PGD) attacks against the trained classifier. Our results
demonstrated a high evasion rate for some instances of attacks,
showing a clear vulnerability of a malware classifier for such
attacks. We offer recommendations for a balanced approach
and a benchmark for much-needed future research into evasion
attacks against malware classifiers, and develop more robust and
trustworthy solutions.

Index Terms—Explainability, Adversarial, Dynamic Analysis,
Online Analysis, White-box attacks, Machine learning, Robust,
Trustworthy

I. INTRODUCTION

Malware poses a significant cybersecurity threat, demanding
an effective classification system for swift remediation. The
process of addressing malware that has invaded a computer
system broadly involves detecting it, classifying it, and then
addressing the malware based on this classification. Detection
refers to identifying the presence or absence of malware.
Detection problems are sometimes referred to as binary clas-
sifications. This study distinguishes detection from classifica-
tion, which aims to discern between various types of malware
samples. Classification categorizes malware into families or
categories, with “family” referring to variants that share com-
mon characteristics, and “category” grouping malware based
on their objectives (e.g., ransomware encrypting systems or
files).

Different types of malware necessitate tailored response
plans, with adware requiring different treatment from trojans

or ransomware. Machine learning-based classification methods
have emerged to address this need [1]. These methods are
broadly categorized into static [2], dynamic [3], and online
analysis [4]. Static analysis inspects dormant malicious files
but is susceptible to obfuscation. Dynamic analysis executes
malware in a controlled, simulated environment, while online
analysis monitors systems in real time, preventing malware
from detecting it is in a sandbox and remaining dormant. How-
ever, conducting online analysis can be resource-intensive,
especially in preventing malware from accessing the internet
in online environments. Despite the importance of accurate
malware classification, researchers often overlook the vulner-
ability of models to adversarial examples crafted to deceive
trained models [5]-[11]. Addressing this vulnerability is cru-
cial for ensuring the reliability and robustness of classification
systems, particularly in dynamic and online malware analysis
where research is limited.

Explainable AI methods focus on feature attribution, elu-
cidating model decisions and enhancing user trust. These
explanations play a vital role in identifying crucial features
for malware classification, empowering security analysts in
countering threats. However, they can also inform the genera-
tion of adversarial evasion attacks as well [12]. By indicating
which features are important to model decision-making, an
adversary is able to create adversarial samples that are more
effective at fooling the classifier into misclassification, thereby
intentionally evading proper classification.

White-box and black-box evasion attacks represent two
distinct approaches to crafting adversarial examples to deceive
machine learning models. In a white-box attack, the attacker
has full access to the target model’s architecture, parame-
ters, and training data, enabling them to directly manipulate
the model’s input features to generate adversarial examples.
Conversely, black-box attacks occur when the attacker has
limited or no access to the target model’s internal structure
or training data. In such cases, the attacker interacts with
the model by querying it with inputs and observing the
corresponding outputs. Despite their differences, both types
of attacks aim to exploit vulnerabilities in machine learning
models to undermine their performance and reliability.

This paper utilizes SHapley Additive exPlanations (SHAP)
to interpret black-box model decisions, informing targeted
malware misclassification attacks. A Feed Forward Neural
Network (FFNN) based malware classifier is trained for both
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TABLE I: Related works compared. A / indicates that a specific paper has this attribute, and a blank cell shows that this

attribute or model does not exist.

Paper Target Model - Ar.lalys@s - - - DF) main - Platfom_l
Detection | Category Classification | Family Classification | Dynamic | Online | Android | Windows
Stokes et al. (2018) [13] FFNN VA vV v/
Kucuk et al. (2020) [14] | Random Forest N N N
Ahmed et al. (2022) [15] Ensemble v vV v/
Rafiq et al. (2023) [16] AutoML v v V4
Our Approach FFNN N N N N N

dynamic and online malware datasets, with DeepSHAP [17]
providing global interpretations. These explanations informed
the white-box Fast Gradient Sign Method (FGSM) and Pro-
jected Gradient Descent (PGD) attacks where we selected
the Ransomware and Adware classes as our targets for the
dynamic analysis and the Ransomware and PUA classes for
the online analysis. In some instances of our attacks, we
observed almost perfect evasion from the malware classifier,
highlighting a clear vulnerability in this deep-learning model.
The main contributions of this work include:

o We evaluate the effectiveness of deep learning models
for classifying malware categories in both dynamic and
online malware analysis datasets.

o We extend this analysis by explaining model predictions
on a global level using SHapley Additive exPlanations
(SHAP).

o« We use these SHAP explanations to inform white-box
evasion attacks on the deep learning models for targeted
misclassification.

The paper is organized as follows. Section II reviews related
works in evasion attacks conducted in the sphere of dynamic
analysis. Section III outlines the methodology and introduces
the dynamic and online datasets. Results, model explanations,
and evasion attacks for each dataset are presented in Section
IV. The paper concludes with a summary and discussion of
future work in Section V.

II. RELATED WORK

The field of adversarial attacks in dynamic malware analysis
is relatively new in academia, with limited prior research
available. Existing studies primarily focus on targeted mis-
classification, which involves deliberately choosing incorrect
labels and crafting adversarial examples to deceive classi-
fiers into classifying them as such. This is not the same as
untargeted misclassifications, where adversarial examples are
crafted to cause models to misclassify input without aiming at
specific classes with the aim of decreasing accuracy and trust
in a model’s ability to classify correctly. Table I summarizes
relevant work, outlining features such as the domain, type of
analysis, targeted models, and malware platform.

For instance, [13] utilized the Jacobian method to inform
targeted misclassification attacks on an FFNN model detecting
Windows malware. Similarly, [15] conducted evasion attacks
on an ensemble model detecting Android ransomware, em-
ploying information gain to guide the attacks. [16] and [14]
also explored evasion attacks on machine learning models

detecting Android malware and Windows malware families,
respectively, with the latter being one of the few to delve into
targeted misclassification using a Random Forest model.

Notably, none of the mentioned works specifically address
targeted misclassification on deep-learning classifier models
for dynamic or online malware categories, highlighting a gap
in the literature that our work aims to fill. We propose using
black-box models to classify malware categories in dynamic
and online datasets, followed by using the SHAP explainability
method to guide adversarial attacks and deceive the model into
misclassifying samples as targeted categories.

III. METHODOLOGY

Our methodology can be divided into three major parts:
1) Data collection for online and dynamic malware analysis;
2) Training the malware classifier for each dataset; and 3)
Targeted adversarial attacks on the trained malware classifiers.
This section discusses our methodology for training our dy-
namic analysis, online analysis classifier model, and approach
to adversarial attacks for targeted misclassification.

A. Dynamic Analysis

For the dynamic malware analysis, we utilized the And-
Mal2020 dataset from the Canadian Center for Cybersecurity
[18], containing 12 different Android malware classes. Each
sample comprises 141 features across six categories: memory,
API calls, network, battery, log writing, and fotal processes.
The class distribution in this dynamic malware dataset is
highly imbalanced, as seen in Table II. We attempted to
address this imbalance by excluding minority classes and
adjusting class weights; however, the SMOTE (Synthetic Mi-
nority Oversampling Technique) proved effective as it bal-
anced the dataset by generating synthetic samples between real
examples. This resulted in 7261 samples per class, totalling
87132 samples. To train the classifier on this dynamic analysis
dataset, we employed an FFNN, aiming for simplicity and
establishing a baseline for future evasion attacks. The FFNN
architecture included six hidden layers, two fully connected
layers, and one dropout layer. The training was conducted on
80% of the dataset for 135 epochs with a batch size of 10
while using the remaining 20% for testing and validation.

B. Online Analysis

For online analysis, we utilized the RaDaR dataset from
the Indian Institute Technology Madras [19], capturing Win-
dows malware behavior on a real-time physical testbed. This
dataset enables analysis of modern malware that is capable

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:22:24 UTC from IEEE Xplore. Restrictions apply.



TABLE II: All Classes of Dynamic Data Set

Category Number of Samples
Riskware 7261
Adware 5838
Trojan 4412
Ransomware 1861
Trojan_Spy 1801
Trojan_SMS 1028
Trojan_Dropper 837
PUA 665
Backdoor 591
Scareware 462
Filelnfector 129
Trojan_Banker 118

TABLE III: All Classes of Online Data Set

Category Number of Snapshots
Cryptominer 158158
Deceptor 99099
Ransomware 13013
PUA 3003
Backdoor 1001

of detecting sandbox environments and remaining dormant.
However, this level of analysis requires significant resources
compared to dynamic analysis, with increased computation
times due to larger data volumes. This dataset comprises five
malware classes and 55 hardware-level features. To address the
class imbalance evident in Table III, SMOTE was employed,
resulting in 158158 samples per class, totalling 790790 sam-
ples. While we initially considered Long Short-Term Memory
(LSTM) models for their time-series data advantages, we opted
for FFNNSs to maintain consistency across analyses. The FFNN
architecture included five hidden layers with ReLU activation,
two fully connected layers, one dropout layer, and Softmax
activation for the output layer. Training utilized 80% of the
data for 100 epochs with a batch size of 50, with testing on
the remaining 20%.

C. Adversarial Approach

For targeted adversarial attacks on the trained classifiers,
we chose the Fast Gradient Sign Method (FGSM) [20] and
Projected Gradient Descent (PGD) [21] attacks, both white-
box attacks requiring knowledge of the target model archi-
tecture. These attacks were conducted as benchmarks for
future research in dynamic and online malware classification,
addressing the lack of existing work in targeted misclassifi-
cation of black-box classified dynamic and online malware
samples. Our attacks aim to generate adversarial examples that
are misclassified as specific malware categories to assess the
robustness of the models for classifying a particular malware
class.

To inform the attacks, we first needed to have SHAP identify
which features were important to model decision-making. As
opposed to the related works that focused on targeting a
transparent model, our work targeted a black-box model that
needs post-hoc explanations to identify which features would
be most effective in perturbing. We used SHAP’s DeepEx-
plainer [17] to compute the SHAP values we used to inform

Algorithm 1: Algorithm for Adversarial Attack
Input

: Classifier model C, test malware data X,
number of features to perturb
num_features, SHAP values shap_values

Output: Attack success rate for FGSM and PGD

1. Wrap the Classifier model C' with an ART estimator;

2. Configure attack parameters for targeted
misclassification;

3. Specify the target class for each adversarial
example;

4. Identify the most important features from
shap_values;

5. Generate adversarial examples using FGSM and
PGD;

6. Evaluate the classifier on adversarial examples;

7. Calculate success rates of evasion for FGSM and
PGD;

TABLE IV: Performance Metrics for Dynamic Analysis and
Class-Specific Metrics

Accuracy (%) | Precision (%) | Recall (%) | F1 (%)

FFNN without SMOTE 81.52 81.63 81.52 81.58
FFNN with SMOTE 91.01 91.06 91.01 91.03
Ransomware with Smote 86.09 82.84 86.09 84.43
Adware with Smote 83.61 80.61 83.61 82.08

the attacks. We used a subsample of 1000 samples from the
dynamic test data set and 10000 samples from the online test
data set. This under-sampling is necessary due to the resource-
intensive nature of computing SHAP values balanced with
the need to create effective adversarial examples. Our work
thus properly balances the level of analysis achieved from
the online analysis with the more resource-efficient dynamic
analysis.

We performed a grid search to find the optimal set of hy-
perparameters for our misclassification attack. For adversarial
evasion attacks in dynamic analysis, optimal hyperparameters
for FGSM included an epsilon (¢) of 7.0 and a step size of
0.8 with the L2 norm bound on the perturbation. At the same
time, optimal hyperparameters for PGD were an epsilon (€)
of 1.0, step size of 0.8, and maximum iterations of 50 with
the L-Infinity norm bound for perturbation. In online analysis,
optimal FGSM parameters were epsilon /.0 and step size 0.5
with the L2 norm bound, while optimal PGD parameters were
epsilon 1.0, step size 0.5, and maximum iterations 50 with the
L-infinity norm bound. The evaluation focused on the success
rate of attacks which we formally define as:

Adversarial Examples Classified as Target Class

Success Rate = Total Number of Adversarial Examples Generated

Our methodology for generating adversarial examples and
assessing their success is outlined in Algorithm 1.

IV. RESULTS AND DISCUSSION
A. Evaluation of Performance Metrics for classifier models

The first part of our work is to train the classifier models on
dynamic and online datasets. Table IV provides performance
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Fig. 1: Performance of models in Dynamic and Online Analysis

TABLE V: Performance Metrics for Online Analysis and
Class-Specific Metrics

Accuracy (%) | Precision (%) | Recall (%) | F1 (%)

FENN without SMOTE 77.59 78.37 77.59 77.98
FFNN with SMOTE 78.55 79.94 78.55 79.24
Ransomware with Smote 92.88 100.00 92.88 96.31
PUA with Smote 84.07 100.00 84.07 91.35

metrics for overall model performance in dynamic analysis and
for our target classes for attack: Ransomware and Adware. The
comparison with and without SMOTE intervention indicates a
notable performance increase with synthetic samples. The F1-
score close to 91% for overall performance in Table IV proves
FFNN works well for all our scenarios. Despite Ransomware
being a top majority class in the unaltered dataset, its rela-
tively poor performance suggests potential overlap between
SMOTE’s synthetic samples for minority classes and the
decision boundary of majority classes, but we have concluded
that using SMOTE is still viable due to the increased overall
classifier performance.

Performance metrics for overall model performance for the
online analysis before and after SMOTE intervention can be
found in Table V. Ransomware and PUA are our target classes
for attacks, and the classifier’s performance in classifying
these two classes is shown in Table V. The FFNN model
had an F1 score of 79.24%. This was likely because of not
maintaining the time-series nature of the data and because
of SMOTE’s synthetic samples, as evidenced by the majority
classes being outperformed by the minority classes in Figure
1. A marginal increase in performance is observed when
using SMOTE. This decision to use SMOTE was motivated
by the desire to maintain consistency with the methodology
employed for dynamic analysis. Consequently, both the model

and the dataset influenced by SMOTE were utilized for the
generation of explanations and adversarial examples. This
decision also aligns with how real-world professionals may
choose to manage the imbalanced class distribution. After
training the model, we explained the model’s predictions by
applying SHAP.

B. Global Explanation

With a reduced sample size, SHAP’s DeepExplainer com-
puted SHAP values in 70 seconds the dynamic data set and
about 15 minutes for the online data set. The summary plots
in Figure 2 illustrate feature importance across categories
for both data sets. The x-axis shows the average magnitude
impact on model output, with features arranged by their
effects’ magnitudes. Notably, the top features for the model
trained on the dynamic data set were mostly API calls or
Memory features, emphasizing their significance. We used
the top 20 identified features for each respective data set to
inform the targeted evasion attacks. We selected the Adware
and Ransomware categories for the dynamic analysis and
the PUA and Ransomware categories for the online analysis
because they pose the highest potential damage if an adversary
successfully misclassifies their malware. Misclassification as
a less or more dangerous category than a sample’s ground
truth could significantly undermine the effectiveness of the
remediation plan.

C. Targeted Misclassification

For the dynamic analysis, the computation time for the
FGSM attack was instantaneous because it is not iterative like
the PGD attack, which required approximately 5 minutes for
each iteration of our algorithm to fully generate the adversarial
examples. Figure 3 shows the success rate. On targeting
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Fig. 2: A stacked bar graph depicting the top 20 online features identified by SHAP in model decision making

Adware, the PGD attack reached an acceptable success rate
at just 9 out of 141 features, while the success rate of the
FGSM attack peaked at around 40% at 17 features being
perturbed. For targeting Ransomware, the PGD attack required
all 20 features to be perturbed to reach a success rate of
80%, while the FGSM attack peaked at just above 30% and
then degraded in performance drastically, making this category
comparatively worse at being targeted than Adware since it
took more features for PGD and the FGSM’s peak success
rate was less. When comparing the attacks just targeting the
Ransomware class, the FGSM attack vastly under-performs
compared to the PGD attack, and Figure 5 shows that this may
be because it’s targeting the incorrect class. For an untargeted
misclassification problem, these results would still be promis-
ing as the model’s ability to correctly classify any samples
has greatly decreased, as seen in how the expected darker
colouring of the diagonal in Figure 1 is not present at all,
indicating the classifier’s decreased ability to correctly predict
a sample’s true label. This work, however, is concerned with
successful targeting of a selected class. The more complex,
iterative PGD attack is capable of targeted misclassification,
as Figure 5 shows a distinct, vertical line on the “predicted
Ransomware” column. There’s a less dark vertical line on
the “predicted Trojan_Spy” column, making this the reason
why the the PGD attack targeting Ransomware had a poorer

performance than the PGD attack targeting the Adware.

Similar to the attacks targeting the Ransomware category,
the PGD attack when targeting the Adware class is much more
effective than the FGSM attack, with Figure 4 revealing this
is also due to an error in targeting the incorrect class. The
“predicted Adware” column shows that this FGSM attack is
somewhat working, but it is not overwhelmingly effective like
the PGD attack. We hypothesize that if more features were
selected to be perturbed the PGD attack targeting Ransomware
could at some point reach a comparable success rate as the one
targeting Adware, as seen in the general upward trend of the
success rate. However, we believe perturbing any more than 20
features could affect the malware’s ability to function. Future
work should investigate this.

For the online analysis, the FGSM computation time was
likewise instantaneous; however, the PGD attack required
approximately 30 minutes for a given iteration of our algorithm
to fully generate the adversarial examples. Figure 6 shows
the success rate. Similar to the dynamic analysis, for both
targeted misclassifications, the more complex iterative PGD
attack was more effective in creating examples that fooled the
classifier than the simpler FGSM attack. Unlike the dynamic
analysis, the success rate fluctuates in a more volatile fashion
for the first few features. For targeting both selected categories,
the PGD attack reached an acceptable success rate around
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Fig. 7: Confusion matrices for FGSM and PGD attacks in targeting online PUA

16 out of 55 features, with the FGSM attack doing better
in successfully targeting Ransomware over PUA. Figures 7
and 8 show the confusion matrices generated by the attacks
for the feature amount that resulted in the highest success
rate, revealing that for both the PUA and the Ransomware
targeted attacks using FGSM the adversarial examples seem
to be properly targeting the respective categories, but it’s not
as effective as the PGD attacks. These FGSM attacks would be
effective in untargeted misclassification as these Figures show
the diagonal from Figure 1 has been disrupted. It should be
noted that the PGD attacks show a lot of misclassification of
samples as other classes. Perhaps this is due to inefficiencies
within the classifier, as seen how there were so many samples
in Figure 1 were already misclassified.

Comparing the two levels of analysis, we have concluded
that it is easier to create successful and properly effective
targeted misclassification attacks for the dynamic model that
did well, than it is for the online model which had trouble
properly categorizing the malware from the beginning. The
success rates for the attacks on the dynamic model were
consistently less volatile than the attacks on the online model.
These effective attacks were also the result of using consider-
ably less samples to train the attacks for the dynamic model
than what was necessary for the online model. It was much
faster to perform the FGSM attack than the PGD attack for

both levels of analysis because of the PGD attack’s iterative
nature. The attacks on the online model were more successful
in producing untargeted misclassification. This is noteworthy
and should be investigated further.

V. CONCLUSION AND FUTURE WORK

In this paper, we trained an FFNN malware classifier model
for a dynamic and online analysis data set to classify mal-
ware categories. The imbalanced class distribution of dynamic
dataset was partially overcome with the use of SMOTE,
which slightly degraded model performance but not to an
unacceptable degree. Future authors can also extend this work
by investigating models that are adept at handling time-series
data, explaining those models with methods more well-suited
to time-series data, and investigating the performance of these
models on different data sets. We used SHAP to explain
these black-box models and then used those explanations to
inform targeted misclassification white-box evasion attacks.
We performed evasion attacks by targeting 3 different malware
classes in particular: Ransomware, Adware and PUA, while
using FGSM and PGD as algorithms for crafting attacks. We
compared the performance of models on performing attacks
different malware classes using the different number of fea-
tures informed by SHAP. Our results showed the success rate
of targeted misclassification attack is close to 100% in some

Authorized licensed use limited to: Tennessee Technological University. Downloaded on August 26,2024 at 16:22:24 UTC from IEEE Xplore. Restrictions apply.



FGSM - 16 Top Features

2000
backdoor 4 12 476 3 623
< cryptominer 4249 276 164 227 ik |- 1500
Ke)
3 deceptor {111 523 113 139 BELI 1 1000
=)
= 4167 221 109 168 PLY
pua ) 500
ransomware - 53 144 47 30 &y

of . el of U0 (€
ac“diow\:&\e"eo‘ S
0%y® i

Predicted Label

PGD - 16 Top Features

2000
backdoor 4 5 19
< Cryptominer 4 14 14 1500
Ke)
(0]
é deceptor 4 9 9 600
=)
= {14 7
Pee 500
ransomware 4 7 6

\! \! 2 (2
o0 \(\e X0 (VY e\
A0 7 20 (\SO((\\N
o

Predicted Label

Fig. 8: Confusion matrices for FGSM and PGD attacks in targeting online Ransomware

of the attack instances, demonstrating the serious vulnerability
of the classifier model.

In future research, we will extend this work by launching
black-box attacks to generate adversarial examples, and map
the changes made to the features to an actual malware. Future
work should also investigate the possibility and use cases
of untargeted misclassification, since the FGSM attacks we
devised for this work were so effective in degrading model
performance. Our findings can also contribute to creating more
robust models through adversarial training, which would en-
hance real-world malware remediation, aiding cyber-analysts
and strategists in efficiently categorizing and coordinating
responses to malware threats.
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