International Journal of Information Security (2024) 23:3283-3310
https://doi.org/10.1007/510207-024-00881-5

REGULAR CONTRIBUTION l‘)

Check for
updates

The ACACp model for mutable activity control and chain of
dependencies in smart and connected systems

Tanjila Mawla' - Maanak Gupta' - Safwa Ameer? - Ravi Sandhu?

Published online: 20 July 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract

With the integration of connected devices, artificial intelligence, and heterogeneous networks in IoT-driven cyber-physical
systems, our society is evolving as a smart, automated, and connected community. In such dynamic and distributed envi-
ronments, various operations are carried out considering different contextual factors to support the automation of connected
devices and systems. These devices often perform long-lived operations or tasks (referred to as activities) to fulfill larger goals
in the connected environment. These activities are usually mutable (change states) and interdependent. They can influence the
execution of other activities in the ecosystem, requiring active and real-time monitoring of the entire connected environment.
Traditional access control models are designed to take authorization decisions at the time of access request and do not fit
well in dynamic and connected environments, which require continuous active checks on dependent and mutable activities.
Recently, a vision for activity-centric access control (ACAC) was proposed to enable security modeling and enforcement
from the perspective and abstraction of interdependent activities. The proposed ACAC incorporates four decision parameters:
Authorizations (A), oBligations (B), Conditions (C), and activity Dependencies (D) for an object agnostic continuous access
control in smart systems. In this paper, we take a step further towards maturing ACAC by focusing on the mutability of activ-
ities (the ability of changing states of activities), activity dependencies (D) and developing a family of formal mathematically
grounded models, referred to as ACACp. We propose six practically suitable sub-models for ACACp to support the state
transition of a mutable activity incorporating the dependent activities’ state-check and state-update procedures. These formal
models consider the real-time mutability of activities as a critical factor in resolving active dependencies among various activ-
ities in the ecosystem. Activity dependencies can form a chain where it is possible to have dependencies of dependencies. In
ACAC, we also consider the chain of dependencies while handling the mutability of an activity. We highlight the challenges
(such as multiple dependency paths, race conditions, circular dependencies, and deadlocks) while dealing with a chain of
dependencies, and provide solutions to resolve these challenges. We also present a proof of concept implementation of our
proposed ACACp models with performance analysis for a smart farming use case. This paper addresses the formal models’
intended behavior while supporting activities’ dependencies. Specifically, it focuses on developing and categorizing mathe-
matically grounded activity dependencies into various ACAC sub-models without formal policy specification and analysis of
theoretical complexities, which are intentionally kept out of the scope of this work.

Keywords Active access control - Activity control - Dependency - Mutability of activities - Smart and connected systems -
Object agnostic - Chain of dependencies

B Tanjila Mawla
tmawla42 @tntech.edu

Maanak Gupta

mgupta@tntech.edu

X Department of Computer Science, Tennessee Tech University,
Safwa Ameer Cookeville, TN, USA

safwa.ameer @gmail.com
2 Institute for Cyber Security (ICS) and NSF C-SPECC Center,

Ravi Sandhu University of Texas at San Antonio, San Antonio, TX, USA

ravi.sandhu@utsa.edu

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10207-024-00881-5&domain=pdf

3284

T. Mawla et al.

1 Introduction

Internet-of-Things (IoT) is a rapidly growing technology
integrating billions of connected devices and artificial intel-
ligence over heterogeneous networks, facilitating smart and
collaborative ecosystems such as smart farming, smart man-
ufacturing, smart cars, and e-health monitoring. In such
dynamic and distributed environments, data-driven appli-
cations are widely used. Thousands of devices collect and
utilize data from users, devices, and environments to support
automation collaboratively. The ultimate goal of a futuristic
community is to establish an autonomous smart ecosystem
for human-driven domains where everything is connected,
continuously communicating, sharing information, and trig-
gering actions.

However, ensuring efficiency and accuracy for such sys-
tems while addressing growing security and privacy issues
raises serious challenges in these smart communities’ opera-
tional and administrative aspects. With increasing number of
connected and interacting devices, the attack surface in such
systems is continuously expanding. While cybersecurity is
a top national priority and much progress has been made
to ensure protection from cyber-attacks, IoT-driven smart
systems security raises a host of new challenges. The con-
vergence of the physical and cyber world introduces new
automated attack dimensions which are hard to analyze,
and engender substantial risk in maintaining the integrity
of physical and cyber resources. Significant challenges to
secure connected and IoT-driven systems include threat
modeling, proposing mathematically grounded fundamen-
tal security approaches, continuous vulnerability assessment,
and designing adaptable autonomous defense mechanisms
to thwart rapidly evolving cyber-physical threats in this
growing, connected, collaborative, and distributed ecosys-
tem. These systems demand real-time active monitoring of
operations and activities with the contextual information of
multiple device states and environmental conditions for con-
tinuous authorization and system security. Access control
solutions are extensively used to secure computer systems
from unwanted and unauthorized access. Several traditional
and extended access control solutions using discretionary,
mandatory, role-based, or attribute-based approaches have
been proposed to offer security needs for smart and con-
nected systems [1-13]. However, traditional access control
systems fall short in terms of dynamicity, scalability, muta-
bility, and real-time monitoring needs of smart ecosystems.
As we approach towards a fully automated, coordinated,
data-driven, and highly connected future community sup-
porting multi-domain/administered distributed collaborative
devices, we need active access control models which can
adapt to the dynamic context of the ecosystem, continuously
monitor the changing access permissions and activities, and

@ Springer

handle device failures while ensuring safety and security of
the system.

In response, recently, Gupta and Sandhu [14] proposed a
novel activity-centric access control (ACAC) paradigm sup-
porting activity as the fundamental abstraction for the active
run-time management of security in smart and collabora-
tive systems. Intuitively an activity is a long-lived continuous
event performed by a device in an automated system. Fur-
ther, these activities change states as they progress and are
also inter-dependent, i.e. an activity can control the execu-
tion of other activities in the ecosystem. In addition, these
activities have chain of dependencies, meaning, an activity
A is dependent on activity B, which in-turn is dependent on
activity C, referred as dependencies of dependencies. Our
previous work [15] proposed the integration of four decision
parameters Authorizations (A), oBligations (B), Conditions
(C) and Dependencies (D) in ACAC, as discussed in Sect. 2.
Further, since smart systems have thousands of connected
devices and frequent device failures, it is inefficient for a
subject to decide (while making an access request) which
particular device will perform the requested activity. In such
cases, it is critical to shift to an object-agnostic model, where
the system decides which object is best to perform the activ-
ity, considering dependencies and other decision factors. This
object-agnostic approach is very relevant in dynamic and
scalable smart ecosystems where devices are randomly added
or removed as the system scales. The goal is to approach
security modeling and enforcement from the perspective (and
abstraction) of activities and their dependencies in connected
systems.

In this work, we propose a formal mathematically grounded
family of ACAC models for activity dependencies (D),
referred to as ACACp. We also show how these models
can accommodate the chain of dependent activities providing
solutions to some open problems. The main contributions of
this paper are as follows.

— We motivate the need for object-agnostic access control
which supports the mutability of dependent activities.
We highlight the limitations of the existing access con-
trol models and distinguish ACAC in terms of dynamic
activity dependencies, scalability, and activity mutability.

— We investigate the activity dependencies (D) component
of the ACAC model. Toward this, we propose a family
of six ACACp sub-models that cover pre-, post-, and
ongoing dependencies.

— We provide formal definitions for ACACp sub-models
and illustrate their intended behavior under different
dependencies.

! Since, an activity is typically performed by an IoT device in smart
ecosystems, we treat the terms object and device as equivalent in
activity-centric access control.

The ACACp model for mutable activity control...

3285

— We investigate and analyze the chain of dependencies for
a requested activity in different stages of its life cycle.
We highlight the challenges of resolving the chain of
dependencies and propose solutions.

— We demonstrate ACACp sub-models with use case sce-
narios (including chain of dependencies) and present a
proof of concept implementation to illustrate its applica-
tion using commercially available technologies.

The rest of the paper is as follows. Section2 motivates
the need for activity-centric model, discusses the relevant
background, and highlights the limitations of existing access
control models. Section3 presents our proposed family of
ACACp models with example use cases. Section 4 illustrates
the challenges while resolving a chain of dependencies and
shows how a combination of ACACp sub-models are used
to resolve a chain of dependencies. Section 5 provides a pro-
totype implementation of ACACp models and evaluates the
performance with comprehensive smart farming use case.
Section 6 discusses relevant literature on access control mod-
els and background. Section 7 concludes the paper.

2 Motivation for activity-centric "Active"
access control

In smart and connected ecosystems, an activity is referred to
as a long-lived continuous task that is performed by a device.
At any given moment, thousands of activities and operations
could be carried out depending on the workflow needs while
considering related and different contextual factors. Activi-
ties in such systems are inter-dependent and can constrain the
execution of each other. By an "Active" access control model
for activity control, we refer to a security approach enforcing
access control requirements where the system administrator
or an automated system constantly monitors workflow needs,
the state of the activity, and the decision (to initiate, con-
tinue, hold or revoke an activity) parameters. These decision
parameters consist of authorizations, obligations, conditions,
and dependencies on other activities. A user, device, or envi-
ronmental event can request an activity based on the system
workflow and efficiency needs. In general, the most suitable
device can be assigned based on the decision parameters to
satisfy the activity request.

In the example scenario shown in Fig.1, an activity
ploughing field is requested by a user farm manager. The
system finds the most suitable device, which in our case is
the autonomous tractor, to perform this requested activity.
The corresponding operation, furn-on (calculated by the sys-
tem based on the requested activity and selected device), is
performed (if all decision parameters are satisfied) on behalf
of the requesting source to initiate the activity ploughing field.
However, whether the request is allowed or denied depends

o

&
L

& 111
$EY

fease

Farm Manager
(Source)
|, start Ploughing Field

o
NS

(Requested Activity)

lTurn on

7z —

LAty
\\\&@@'

Autonomous Tractor

Water Spray
Thermal Imaging

Ongoing-dependent Activities

Weed-killer
Spray

Sowing Seeds

Staking Boundaries
Absorbing Material

Pre-dependent Activities

]
I

Pesticide Spray

Post-dependent Activities

Fig. 1 The sets of pre-, ongoing and post-dependent activities with
respect to arequested activity ploughing field. Each yellow box indicates
an activity

on the contextual information, including resolving the depen-
dencies on various other activities in the system. As shown
in the figure, there could be three sets of dependent activities;
pre-dependent , ongoing-dependent, and post-dependent.
Pre-dependent activities are checked before allowing the
requested activity, ongoing-dependent activities are checked
to ensure whether the execution of the requested activity
can be continued or not (if dependencies are violated), and
post-dependent activities are checked after the requested
activity is revoked, on hold or finished. In this example, the
requested activity ploughing field can be allowed only if the
pre-dependent activities (staking Boundaries, mixing water
absorbing material) are in their desired states. The continuity
of the execution of the requested activity depends on the state
of ongoing-dependent activities (water spray and thermal
imaging). Finally, different post-dependent activities (weed-
killer spray, sowing seeds, pesticide spray) are checked after
the ploughing field activity is finished. The activities are
mutable in nature, and can change their states (discussed in
Sect. 3) to fulfill the dependency requirements. For example,
an activity control policy can be that the water spray must
be inactive while ploughing field is running. In such case, if
water spray is running, it needs to transition to the finished or
revoked state to ensure that it will be inactive immediately (if
there is no post-dependent activity) to continue the activity
ploughing field. In smart physical systems like smart farm-
ing that are either fully automated or semi-automated, the
execution of dependent and composite activities necessitates
minimal human intervention while maintaining the princi-
ple of least privilege. To maintain the system’s performance,
both safety and security are major concerns for smart and

@ Springer

3286

T. Mawla et al.

ACAG,

Consolidated model

ACAG,

« Constraints

* Pre-, ongoingor post-
conditions

* Obligations

ACAC,
* Activity dependencies on
multiple devices
* Mutability of activities

ACAC,
* Activities
* Activity dependencies on single device
* Authorizations

Fig. 2 A Framework for a Hierarchy of ACAC models [15]. ACACy,
ACAC, and ACAC; models incrementally add features and create a
final consolidated ACAC3 model

automated systems [16]. Several research works have been
done where safety and security are analyzed to design intelli-
gent and smart infrastructures such as smart grid [17], smart
city [18], smart vehicles [19]. The current goal of building
a smart community with technological advancement intro-
duces various safety concerns that depend on what type of
technologies are used and where it is being applied. While
constructing an individual system activity irrespective of the
other system activities, the goal of the system may have con-
flicts which in turn can create inherent loss or damage to the
entire ecosystem. We are concerned about the safety of indi-
vidual operation that is performed by IoT devices. Our goal
is to build a safe system considering the probable interde-
pendencies between the states of the different activities so
that the system does not leave any gap between connected
and dependent activities. For instance, protecting the system
from breaking the order of activities, executing conflicting
activities concurrently, and handling emergency activities
hold major concerns from the safety aspect. In our proposed
approach, the safe system we aim to build requires proper
handling of activities throughout the life-cycle of an activ-
ity considering the environmental situation and relationships
with other activities. Clearly, this approach requires contin-
uous monitoring and real-time active dependency checks,
making the ACAC novel and relevant for smart and collabo-
rative ecosystems.

Recently, Mawla et al [15] proposed the components of
the ACAC model and an incremental approach in a hier-
archical framework to fully mature activity-centric access
control. Instead of a monolithic model, different features are
gradually added to a family of ACAC models, as illustrated
in Fig.2. The fundamental concept of activity and activity
dependencies on a single device is captured in ACACy. In
ACAC], activity dependencies on multiple devices and the
mutability of activities are addressed. Note that, the activity
dependencies on single or multiple devices are immaterial

@ Springer

as ACAC is an object-agnostic model and considers secu-
rity modeling at the activity abstraction. Therefore, both
scenarios can be captured in ACAC; and the most suitable
device is automatically decided by the system based on dif-
ferent factors. ACAC, adds static and dynamic constraints
on activities, conditions (including system or environmen-
tal, e.g., weather, location), usage count, and obligations
(required actions by the source). ACACs3 is built on top of all
ACAC models, which is the consolidated and detailed model
to implement activity decision control in smart systems.
Clearly, ACAC3; will eventually cover the Authorizations
(A), oBligations (B), Conditions (C) and Dependencies
(D), as decision parameters, and can also be referred as
ACACAaBCD-

However, in this paper, we focus on the activity depen-
dencies (D) component of ACAC. We develop formal math-
ematically grounded models for ACACp, which support the
activity dependencies on multiple devices and the mutability
of activities. We investigate the dependencies of dependen-
cies to generate more fine-grained access control model. We
also present a prototype implementation of our proposed
family of ACACp models and evaluate them using a com-
prehensive smart farming use case scenario with multiple
activity requests and activity dependencies along with chain
of dependencies.

2.1 Threat model

Figure3 represents the threat model of our proposed
ACACp model. We follow the threat modeling steps pro-
posed by OWASP [20]. This model is proposed based on
activity dependencies in smart IoT-based systems where
safety and security are the major concerns during the automa-
tion of different activities. Note that, the model acknowledges
the presence of both immutable and mutable activities. Exist-
ing threats can exploit the vulnerabilities while the system
wants to control the mutable activities according to the
workflow preserving the safety of the system. In smart and
connected systems, attacks can occur intentionally or acci-
dentally by exploiting known and unknown vulnerabilities.
Adpversaries can be insiders or outsiders. Our primary empha-
sis is on insider threats that arise from unexpected behaviors,
which can compromise system safety, violate workflows,
and hinder efficiency. In complex systems with multiple
devices performing various activities, a requester may not
have knowledge of all the activities occurring. Consequently,
simply checking authorization is insufficient for making
activity decisions, as authorized users may still be restricted
by activity dependencies. By considering these dependen-
cies, we ensure the safety and security of the the system
from conflicting activities, disruptions to the execution order,
and violations of usage rules. Additionally, this approach
enables the execution of emergency and high-priority activ-

The ACACp model for mutable activity control...

3287

Objectives

Scope

e To develop secured and efficiently working access
control model for smart systems.
Automate the execution of activities in smart systems.
Control mutable activities.

Smart systems, e.g., smart farming, smart home,
smart manufacturing.

Threats

Insider threats from unexpected behaviors of activities.
Execution of conflicting activities.

Breaking the execution order of activities.

System damage by reducing workflow efficiency.

Mitigation
Check dependencies of activities.
Check and update pre-, ongoing and post-dependent
activities.
e Explore the chain of dependencies for each activity.
e Resolve challenges of chain of dependencies

Validation

[e Proof of Implementation]

Fig.3 Threat model for the proposed ACACp model

ities. In our approach, denoted as ACACp, we assume that
all sources are authorized for the requested activity, with a
focus on verifying activity dependencies. We also take into
account resolving the dependency chains to fulfill activity
requests efficiently and in a secured way considering existing
threats. However, we acknowledge the challenges involved
in resolving these dependency chains and propose mitiga-
tion techniques. Our implementation serves as proof of the
robustness of the ACACp model.

2.2 Distinction from existing access control

In access control literature, different models (beyond classi-
cal DAC, MAC, and RBAC) have been proposed considering
various decision parameters. Detailed in work by Mawla et
al. [15], in this subsection, we review some of the closely
related models with the ACAC model, Task-based Autho-
rization Controls (TBAC) [21], Usage Control (UCON)
[22], Activity-Centric Access Control for social computing
(ACON) [23], Attribute-based Access Control (ABAC) [8,
24-26], and highlight key distinguishing features.

Table 1 summarizes the distinguishing features which are
most relevant in terms of the notion of activity and activity-
dependencies between ACAC and other models. The first
column in the table contains the name of the models. The
rest of the columns mention the key distinguishing features
(we selected five, but could be more) among these mod-
els and if the models support these keys (Yes) or not (No).
The key factors are abstraction of activity, dynamic activ-
ity dependencies (meaning activities are inter-dependent and
dynamically calculated based on different factors), object-
agnostic (refers that corresponding object for an activity
will be decided by the system rather than by the requesting
source at the time of request), dependent activity muta-

bility (the property of changing dependent activity states),
and ongoing monitoring of the system context (the system
context information such as dependencies, usage, environ-
mental conditions, etc., are continuously evaluated to support
context-based access decisions).

Distinction from UCON: The proposed ACACapcD
model is inspired by the UCON [22, 27] model. However,
there are significant distinctions between UCONapc and
ACACppcp models. UCON supports attributes’ mutabil-
ity which is different from activity mutability supported by
ACAC. UCON, primarily designed for digital rights manage-
ment, does not have a notion of activity (which is a prolonged
state of a device). In addition, UCON defines the object on
which the operation is requested, which is different than
ACACAaBCD, which is an object-agnostic model. Further, the
chain of dependencies supported in ACACapcp is not con-
sidered in UCON. The dependencies in ACAC can be on the
same or different objects. Where the activity is actually exe-
cuting or which source started the activity is irrelevant. The
abstraction of activity in ACAC makes it easier to manage
connected systems in terms of activities rather than objects
and operations supported by UCON.

This comparison overview between ACAC and other
related models strengthens the fact that how our proposed
ACAC model distinctly supports ‘active’ decision control
and enforcement considering dynamic situations and scala-
bility in distributed loT-based smart systems with thousands
of connected devices performing multiple activities in a
dynamic environment.

@ Springer

3288 T. Mawla et al.
Table 1 Comparison of Features Proposed in ACAC Model
Authorizations Obligations
Access Con- | Abstraction | Dynamic ac- | Object- Dependent | Ongoing (A) (B) ACTMITY
trol Models | of activity | tivity depen- | agnostic activity monitoring
dencies mutability of system

context Requests . Activity
| TBAC | Yes | No | No | No | No | Pty S:ct:‘s’g] heproed
| UCON | No No | No | No | Yes |
| ACON | Yes | No | No | No | No |
| ABAC | No No | No | No | No | — B b
| ACAC | YES | YES | YES | YES | YES | C°’(‘g')"°"s "e(D) Altributes

3 Towards ACAC formal models

An activity is a prolonged event that is initiated by a source
and occurs on an object for a certain period of time. The
authors in [14, 15] motivated and proposed the activity-
centric access control (ACAC) model components as shown
in Fig.4 and described as follows. A source (S) can be a
device, sensor, user, or an event in the system that requests an
activity. An activity (ACT) is a long continuous task occur-
ring for a period of time. An object (O) is an entity that
performs the activity, such as an [oT device. To start an activ-
ity, a source will perform an operation (OP) on the object.
When a source requests to initiate an activity, the decision
depends on four components: authorizations (A), obligations
(B), conditions (C), and activity dependencies (D) in the sys-
tem. Authorizations define the right of a source to initiate an
operation on an object. Source and object attributes take part
in the authorizations. Obligations are the required tasks that
must be fulfilled by the same requesting source or a different
source in the system. Conditions are system or environmental
factors related to satisfying the requested activity. Depen-
dency on activities reflects relationships between single or
multiple device activities in a system. For example, in smart
manufacturing, a robotic arm is requested to initiate painting
a box. If the robotic arm is currently washing the product, it
cannot be allowed immediately to paint the box. Here paint-
ing and washing are dependent activities. Our ultimate goal
is to build an active security model for smart and collabora-
tive systems utilizing all these components. However, with
evolving different business needs and complexities, system
designers and security administrators should be flexible in
implementing some or all of these factors.

Accordingly, we define a family of four basic ACAC
sub-models as ACAC,p, ACACg, ACACc, and ACACp
for the proposed consolidated ACAC model, referred as
ACACaBcD. Each one of ACACp, ACACg, ACACc, and
ACACp is a family of models. ACACp defines a family of
models that define the authorization factor in a variety of
ways to accommodate different application requirements. It
considers the authorization factor only when deciding on an
activity. ACACp handles the obligations factor, ACACc con-
siders the impact of system and environmental conditions on
an activity. ACACp incorporates the dependencies between

@ Springer

Policies

Fig. 4 ACAC Model Components: The source requests an activity.
The activity decision components Authorizations (A), Obligations (B),
Conditions (C) and Dependencies (D) on other activities are evaluated
to allow or deny a requested activity. If allowed, the source performs
an operation on the object to initiate the requested activity. Source and
object attributes take part in the authorization. Policies are associated
with the activity decision process [15]

Policy Association

ACAC ACAC ACAC

AB BC AC

— \\\/'\<
— >
3 -

ACAC ACAC

A B ACACC D

ACAC

Fig.5 The Combination of ACACpcp Core Models. The combination
of the core models is created from the basic models (ACACa, ACACg,
ACACc, and ACACp)

different activities in all stages of the life cycle of a requested
activity by checking and updating the current states of the
dependent activities.

Our proposed ACACapcp model provides the active deci-
sion control by incorporating all of these decision factors
[15]. Active decision control is defined as based on the
real-time working environment considering authorizations,
obligations, conditions, and dependencies on activities [15].
Considering the complexity, in Fig. 5, we show how the com-
bination of ACACapcp core models are created from the
basic models (ACACa, ACACg, ACACc, and ACACp). We
put the basic models at the bottom level, which includes
individual models for each decision component (A-B-C-D).
At the next two levels, models are composed of two and
three models, respectively, from the immediate lower levels.
As shown in Fig.5, ACACagpcp is the final comprehensive
model which combines the four sub-models. In order to con-
sider the active security needs, in this paper, our focus is
to develop formal sub-models for the dependency (D) fac-
tor considering the relationship of activities, referred to as

The ACACp model for mutable activity control...

3289

Postupdate

onupdate

Preupdate
and initiate

Requesting

Revoke
continuity

Deny
initiation

Postupdate

Postupdate'
and resume

Fig.6 State transition of an activity with required updates in the activ-
ity life-cycle. The blue shapes indicate activity states and the arrows
pointing from one state to another indicate the activity transition from
one state to another with necessary updates

continuity

ACACp models. To our understanding and literature review,
previous access control models have not considered these
run-time dependencies as an active security factor, which is
critical in smart connected and collaborative systems. The
ACACp is mapped to ACAC; model in the incrementally
developed framework discussed by Mawla et al. [15]. In our
future work, we will develop the holistic ACACapcp model
considering the ACACp, ACACg, ACACc, and ACACp
basic models.

3.1 Mutability of activities

One of the ACAC model’s unique characteristics is that
the activities in the system are mutable. Mutable activities
can update their states (as discussed by Mawlaetal. [15]) as a
consequence of the decision process of initiation, continuity,
holding, completion, or revocation of an activity. In our mod-
els, mutability reflects the process of changing the state of
mutable activities. In case of immutable activity, no outside
factor can change the activity state, and activity will complete
its task while transitioning within its pre-defined course of
states. Figure 6 includes the states that an activity can have
and shows the transitions between different states. An activity
is in inactive state if it is not requested yet. When the activity
is requested, the activity is in dormant state, and depen-
dencies on other activities are assessed to see if the activity
is allowed to be initiated. The dependent activities can be
mutable and must change their states (if required) to allow
the requested activity. In that case, the required pre-updates
(updates before initiating an activity) on the dependent activ-
ities take place. Thus, the requested activity is invoked and
goes to the running state. If the required pre-updates or any
required condition cannot be fulfilled, the requested activity
is denied and go to the aborted state. In the running state
of activity, there can be required ongoing updates (updates
during the execution of an activity to continue the execu-
tion) on the dependent activities. From the running state,

an activity can be on hold, finished, or revoked. Hold state
indicates a temporary suspension of the running activity due
to any contextual conditions. Any required post update takes
place after the activity goes to the hold state. From hold state
the activity can resume and goes to the running state again.
Otherwise, it can be revoked or finished based on the con-
textual conditions. The activity goes to a revoked state from
the running state if the ongoing required updates (or ongo-
ing conditions) are not fulfilled. Finished state indicates that
the activity is completed and already served its purpose. Note
that, from finished and revoked states, the requested activ-
ity goes back to the inactive state after the post-dependency
check and update (if required). In Fig.6, the names of the
states are more intuitive which helps in a better understanding
of an activity’s life-cycle than shown in [15]. The transitions
between activity states reflect the mutability of activities. Itis
a significant and distinguishable factor of ACAC compared
with other access control models. In next subsection, we for-
mally propose sub-models for ACACp which considers the
mutability of activities.

3.2 Chain of dependencies

A chain of dependencies refers to a series of dependen-
cies where the dependency extends further down the line.
In this paper, our goal is to inspect and analyze the depen-
dent activities and control the mutability of these activities’
states corresponding to a requested activity and its state tran-
sitions. In case the dependent activities, in-turn, have some
dependencies, i.e. "dependencies of dependencies", we must
ensure all the dependent activities are in their desired states
before taking any decision on the requested activity. In such
a scenario of a dependency chain, the system will wait to
reach an independent activity (an activity that does not have
any dependency) before any decision is made. We refer the
requested activity as the "root" of the dependency chain and
any dependent activity which depends on another activity for
the state change is referred to as the "parent" of that depen-
dent activity.

Figure7 shows an example of a dependency chain cor-
responding to a requested activity "Sowing Seeds". This is
requested by a Farm-manager and the system finds a "Seed-
Drill" available to start "Sowing Seeds". Further, before
allowing "Sowing Seeds" to start, we find two pre-dependent
activities ("Water Pumping" and "Water Spraying") which
are shown in the first level of dependency in the colored
portion of the chain of dependent activities. The next level of
dependent activities require to be in the desired states accord-
ing to the current and desired states of the parent dependent
activities. For instance, in the figure, "Nitrogen Spraying" is a
dependent activity according to the current and desired state
of "Water Spraying". In such scenarios with "dependencies
of dependencies", we only can update the state of the parent

@ Springer

3290

T. Mawla et al.

Fig.7 Example of Chain of
Dependencies. Yellow boxes
represent activities. White box
in "Requested Activity" includes
the requesting source and a
suitable object to perform
activity sowing seeds while the
white boxes in Chain of
Dependent Activities include
the current and desired states of
each dependent activity. The
arrows pointing from one
activity to another indicate that
the parent activity depends on
the child activity to change its
state from the current to the
desired

Sowing Seeds

Source: Farm-manager
Object: Seed-Drill

Requested Activity

.

Water Pumping

Current State: running
Desired State: inactive

Water Spraying

Current State: inactive
Desired State: running

Yy

Nitrogen Spraying

Pesticide Spraying Soil Nutrient Spraying

Current State: inactive
Desired State: inactive

Current State: running
Desired State: inactive

4 Current State: running
Desired State: inactive
s

Mixing Sawdust to soil

CUI’I"Ent State: 'runn{ng
Desired State: inactive

Chain of Dependent Activities

Table 2 Family of ACACp sub-models. The sub-models are created
based on when the decision is made on the requested activity (indicated
by preD and onD) and whether at each phase the model supports state-
update of the dependent activities or not (indicated by 0, 1, 2, 3). ‘Yes’
indicates that the scenario is practical and ‘No’ indicates otherwise

Immutable (0) | Pre-update (1) | Ongoing- Post-
update (2) | update (3)
preD| Yes Yes No Yes
onD | Yes No Yes Yes

dependent activity when all dependent activities are in their
desired states. This requires the system to find the chain of
dependencies and update accordingly. In Section 4, we delve
into the issue of the chain of dependencies. Throughout this
section, we thoroughly examine the associated challenges
and propose potential solutions to tackle this problem.

3.3 ACACp formal models

Dependencies on activities (D) are created due to the rela-
tionships among activities. The activities can be on the same
or different devices. As characterized by Gupta and Sandhu
[14], related activities can be characterized as ordered, con-
current, temporary, precedent, dependent, conditional, and
incompatible. In this paper, we are not trying to develop a
policy language for ACACapcp. Instead, we focus on for-
malizing the ACACp models, which support the mutability
of activities for active access control.

Table 2 shows the criteria for defining ACACp sub-
models. The models are classified based on two parameters:
(a) When the dependencies on related activities are checked

@ Springer

to take any decision on the requested activity. Decisions can
be made pre i.e., before allowing the requested activity to
start (referred to as preD) or ongoing, meaning while the
requested activity is running (referred to as onD); (b) At
which phase does the model support changing the states of
dependent activities. The dependent activities can be either
immutable or mutable, however, for immutable activities,
the model cannot update the states and may result in activity
request denial. We denote the case as ‘0’ when the current
and the desire states of the dependent activities are checked
without supporting the updates on dependent activities. On
the other hand, if the model supports changing the states of
dependent activities, then state updates are possible before
(pre), during (ongoing), or after (post) the requested activ-
ity is performed. These cases are denoted as ‘1°, ‘2°, and
‘3’, respectively. In all cases, the dependent activities can be
both immutable and mutable, however, updates on depen-
dent activities can be possible in ‘1°, ‘2°, and ‘3’ for mutable
activities.

In Table 2, cases marked as ‘Yes’ indicate the more prac-
tical scenarios considering when a decision is made, and
when dependent activities change state. Cases marked by
‘No’ indicate that such scenarios are not practically useful.
If the decision is taken before allowing the requested activ-
ity, updates on the dependent activities can occur before (pre)
and after (post) the requested activity is performed. Without
ongoing-decision, there is no need to have ongoing-update
as a part of mutability, and is thus marked as ‘No’. For exam-
ple, dependent activity B must be started before allowing
requested activity A to start, and B should be revoked after
A is finished. This case can be handled using pre and post

The ACACp model for mutable activity control...

3291

preD, preD; onD, onD;

preD, onD,

(a) Sub-models for preD (b) Sub-models for onD

Fig.8 Categorization of ACACp sub-models

update of B as a consequence of the initiation of A, and
does not require ongoing-updates on B. However, if the deci-
sion is taken while the requested activity is ongoing, updates
on the dependent activities can occur during (ongoing) and
after (post) the requested activity is performed. In case of an
ongoing-decision, the activity is already initiated. Thus, onD
does not consider the pre-updates on the dependent activities
and is marked as ‘No’ for pre-update (1) of the onD case. The
six ‘Yes’s in Table 2 define six basic ACACp sub-models,
which will be formalized in the following sections.

Different sub-model combinations of ACACp will be
required for different type (pre, ongoing or post) of updates
to solve all the recursive dependencies, as each sub-model
defines a specific type of update. Further, the dependent activ-
ities can be on the same or different device on which the
activity is requested. Moreover, the dependent activity may
be initiated by different objects in the system. In our model,
the system chooses the object which can fulfil the activity, as
will be discussed in the following sections.

In Fig. 8, we show how the family of ACACp model is
categorized into different sub-models. The ‘0’ cases for both
preD and onD models only support checking the current and
desired states of the activities, without any state updates. The
‘1°,2’,and ‘3’ cases supporting mutability add update proce-
dures for the dependent mutable activities, and thus, inherit
the basic components from the corresponding ‘0’ cases. It
should be noted that if the dependent activity is immutable,
no state updates are allowed, and will result in activity request
denial if the current and the desired states do not match. We
formally discuss the components for each sub-model in the
following subsection.

In real-world use-cases, the activity-centric approach may
need a combination of two or more ACACp sub-models
checking pre-, ongoing, and post-dependencies. However,
for clarity, we will formalize the behavior of the sub-models
individually, and in our prototype implementation in Sect. 5,
we experiment with a more holistic multi-model comprehen-
sive use case scenario.

Table 3 elaborates the basic sets and functions we use in
the formal definitions (1-6) and Algorithms (1,2,3). S, O,
and O P are the finite sets of sources, objects, and operations

in the system [in Fig. 4, source is shown in a circle in the left
part, and operation and object are shown respectively in ellip-
tical and circle shape in the green part]. ACT is a finite set of
activities that can be performed in the system. ACTg, ACTp,
ACTp,p are the finite sets of requested activities, dependent
activities, and dependent of dependent activities respectively
which are equivalent to the set of activities, ACT, formally
we can say ACTgr = ACTp = ACTpy,p = ACT. ST is the
finite set of the activity states which is defined in the system
as {inactive, dormant, aborted, running, hold, revoked,
finished}. STcg and STpr are the finite set of current and
desired states which are equivalent to the set, ST, formally
we can say STcg = STpgr = ST. The function getObject
maps a requested activity to the most suitable object to per-
form the activity in the system. This function can be called
using a requested activity act € ACT and provides the most
suitable object 0 € O. get Operation function determines
the corresponding operation to start the requested activity
on the chosen object by the system. get DA function maps
a requested activity and its corresponding object to a set of
dependent activities (ACTp). The dependent activities for
a particular requested activity can vary depending on the
corresponding object. getCurrentSt function maps an activ-
ity to a current state. assignedDesiredSt function maps a
dependent activity to an empty set or a desired state. This
function is used to store a currently assigned desired state
for a dependent activity. getBinarySemaphoreValue func-
tion is used to provide the currently assigned value (0 or 1)
for a dependent activity meaning that this activity is locked
(cannot change the state) or unlocked by another activity.
hasConflictingDesiredSt function maps a dependent activity
to TRUE or FALSE meaning whether that dependent activity
has conflicting (multiple) desired states or not. get DoD A
function takes the input of a dependent activity, the cur-
rent and desired state of this activity, and provides a set
of activities which we call dependent of dependent activi-
ties. We refer ‘Do D’ subscript to "dependent of dependent".
To get the desired state of a dependent of dependent activ-
ity, we use the function get Desired DoD A St which maps a
dependent activity, its current and desired state and a depen-
dent of this dependent activity to a desired state. Apart
from the basic sets and function in Table 3, we use two
more functions from the algorithms (elaborated in Sect.4)
in the model definitions. One is RECURSIVE-CHECK-OF-
DEPENDENCIES-WITH-CONFLICT-DETECTION(da,

da_current_st, da_desired_st), which is a function in
Algorithm 1 that recursively checks if an activity, da
has dependencies to transition from da_current_st to
da_desired_st and for each activity, it detects whether
the activity has conflicting desired states (multiple desired
states) or not and stores the information. Another function is
RECURSIVE-UPDATE(da, da_current_st, da_desired
_st)function from Algorithm 2 which recursively handles the

@ Springer

3292

T. Mawla et al.

Table 3 Introduction to basic sets and functions used in the definitions and algorithm

Basic Sets Description

S, O, OP, ACT Finite sets of sources, objects, operations, and activities in the system,
respectively.

ACTg, ACTp Sets of requested and dependent activities such that ACTg = ACTp =
ACT.

| ACTpop | Set of dependent of dependent activities, where ACTpop = ACT .

ST Finite set of states of activities, where ST = {inactive, dormant,
aborted, running, hold, revoked, finished}.

STcr, STpr Finite sets of current and desired states of an activity, where STcg =

STpr = ST.

Common Functions for Definitions

Description

getObject : ACTp — O

Mapping requested activity to an object.

getOperation : ACTgp x O — OP

Mapping a requested activity and an appropriate object to an operation
to execute the activity.

getDA : ACTg x O — 24CTp

Mapping a requested activity and an object to a set of dependent activi-
ties.

Common Functions for Definitions and Algorithms

Description

getCurrentSt : ACT — STcg

Mapping an activity to its current state.

Algorithm Functions

Description

assignedDesiredSt : ACTp — {0, STpr}

Mapping a dependent activity to a currently assigned desired state or an
empty set (meaning there is no desired state assigned yet).

getBinarySemaphoreValue : ACTp — {0, 1}

Mapping from ACTp to {0, 1}, O and 1 respectively indicate that the
input dependent activity is currently locked and unlocked.

hasConflictingDesiredSt : ACTp — {TRUE, FALSE}

TRUE indicates the input dependent activity has conflicting (multiple)
desired states and FALSE indicates it has no conflicting desired state.

getDoDA ACTp x STegp X STpr — 2ACTpop

Mapping a dependent activity, the current state of the dependent activity
and a desired state of the dependent activity to a set of dependent of
dependent activities.

STpr

getDesiredDoDASt : ACTp x STcr x STpr x ACTp,p —>

Mapping a dependent activity, the current state of dependent activity,
desired state of dependent activity, and a dependent of dependent activ-
ity to a desired state.

state check and update process for all dependencies (includ-
ing chain of dependencies) of a dependent activity, da.

3.3.1 ACACpyep - pre-dependency models

ACACep models utilize the dependencies related to the
decision process before the initiation of the requested
activity. ACACpep has three sub-models (stated in Fig.8a
ACACpep, model checks the pre-dependencies that are
required to allow the requested activity. ACACpep, model
does not support mutability (i.e. cannot update depen-
dent activity states). ACACpep, model allows pre-updates
on the dependent activities that require to be in specific
states to allow the requested activity. ACACprep does not
have ongoing-update model since ongoing-update without

@ Springer

ongoing-decision does not need to be considered as a part of
mutability. Post-updates on dependent activities as a conse-
quence of the pre-decision process are handled in ACACpyep,
model. The following three definitions formalize ACACpep
models. We elaborate the basic sets and functions in Table 3
and use the necessary sets and functions in these definitions
from the table.

Definition 1. ACACpp,: Pre-dependency checking
model for pre-dependent activities. ACACpep, model
checks the current and desired states of the pre-dependent
activities before allowing a requested activity. This model
does not have any update procedure for state change and can-
not support mutability of dependent activities. ACACpep,
consists of the following components (shown in Fig.4), and
explained later:

The ACACp model for mutable activity control...

3293

- S,0,0P,ACT,ACTgr, ACTp, ST, STcr, STpr are
finite sets of sources, objects, operations, activities, requested
activities, dependent activities, activities’ states, current
states and desired states respectively [elaborated in Table 3].
A source s € S requests to perform an activity act € ACT,
defined as request(s, act). To satisfy this activity request
(formally stated as, request (s, act) = True), the system will
first specify an appropriate object 0 € O, and perform an
operation op € O P (Note that, whether source s is allowed
to perform an operation op on an object o is determined
by the authorization model ACACy). Then, the system will
check activity dependencies based on the corresponding to
the requested activity and the object, using the get D A func-
tion.

— getDesired PreDASt: ACTr x ACTp —> STpr
> [mapping a requested activity, and a dependent activ-
ity to a desired state.]|

— preD(act: ACT, o: O) —> {True, False}, defined
as /\(daegetDA(act’U))getCurrentSt(da) = getDesired
PreDASt(act, da)

— allowed(s:S, o: O,o0p: OP, act: ACT) = preD(act,
0)

ACACep, model consists of sources (S), objects (O),
operations (O P), activities (ACT), requested activities
(ACTg),dependent activities (AC Tp), finite set of activities’
states (ST), activities’ current states (S7¢gr) and activi-
ties” desired states (STpg). The function get Object maps a
requested activity to the most suitable object 0 € O to per-
form the activity in the system. get Operation determines
the corresponding operation to start an activity on the chosen
object, 0. More than one combination of activity and object
can be mapped to an operation. The function get DA com-
putes the set of dependent activities, decided based on the
activity act € ACT and the corresponding object 0 € O.
Note that the dependencies are dynamic, and can change
based on conditions (C) and contextual factors. This is a
many-to-one mapping function where each combination of
activity and object can be mapped to a set of activities. The
function get CurrentSt is used to get the current state of an
activity and get Desired Pre DA St is used to determine the
desired states of pre-dependent activities (activities that need
to be checked before starting activity act). getCurrent St
and get Desired Pre D ASt are many-to one mapping func-
tions.

preD is a functional predicate that takes the requested
activity and the corresponding object (since dependencies
can change based on which object is performing the activity)
as inputs, and return True or False by comparing the cur-
rent and desired states of all pre-dependent activities. T rue
indicates that all dependent activities’ current states are in

the desired states. False indicates that at least one depen-
dent activity is not in the desired state to allow the requested
activity to be initiated. To allow the request, formally stated
asrequest(s,act) =True,the allowed(s, o, op, act) func-
tion (which decides s can perform operation op to start the
activity act on the object o) should evaluate to True. The
allowed function returns True if preD evaluates to True.
Note that, we use the implies (=) connective where the
right hand side of the connective is necessary but not suffi-
cient since authorization (A), oBligations (B) and conditions
(C) also be checked for the left hand side to be True. There
is no update procedure in this model.

Example 1. In smart manufacturing, a robot is trying
to make a forceGeneration activity request, stated as
request(robot, forceGeneration).

— S={robot}

— 0 ={motor}

— OP = {turnOn, turnOff}

— ACT = {forceGeneration, vibrationMonitoring}

— ST = {inactive, dormant, aborted, running, hold,
revoked, finished}

— getObject(forceGeneration) = motor

— getOperation(forceGeneration, motor) =turnOn

— getDA(forceGeneration, motor)={vibrationMoni
toring}

— getCurrentSt(vibrationMonitoring) = running

— getDesired PreDASt(forceGeneration, vibration
Monitoring) = running

— preD(forceGeneration, motor) = True

— allowed(robot, motor, turnOn, forceGeneration)
= preD(forceGeneration, motor)

In this example, to satisfy the request made by the
source robot, we get the corresponding object motor
and operation turnOn for the requested activity. The set
of dependent activities for forceGeneration consists of
vibrationMonitoring. The desired state of vibrationMo
nitoring is running. In this instance, the current state is
same as the desired state for the only dependent activity.
Thus, preD(forceGeneration, motor) is T rue as the nec-
essary condition (comparing the current and desired states of
the dependent activity) in pre D(forceGeneration, motor)
is fulfilled. The allowed function also returns 7True which
decides that source robot is allowed to perform the opera-
tion, furn On on the object motor to initiate the requested
activity, forceGeneration.

Definition 2. ACACep,: Pre-update model for pre-
dependent activities. ACACpep, model adds state update
procedure for the pre-dependent activities (dependent activi-
ties that are required to be in desired state before initiation of
the requested activity). These pre-dependent activities may,
in-turn, be dependent on other activities. For example, start-

@ Springer

3294

T. Mawla et al.

ing the requested activity A depends on starting the dependent
activity B. Activity B can’t start until activity C has already
started. In such situations, we have to update the states of
the pre-dependent activities in a recursive way, where we
explore the "dependencies of dependencies" until we find a
dependent activity that does not have any dependent activity
before changing its state or all dependent activities need to be
already in their desired states. Algorithm 1 includes a func-
tion named RECURSIVE-CHECK-OF-DEPENDENCIES-
WITH-CONFLICT-DETECTION where a dependent activ-
ity, the current and desired state of that activity are passed
as parameters. We check if this dependent activity has any
conflicting (multiple) desired states or not and store this
information. Note that, this function is recursive and we
recursively detect the conflicting desired states for all "depen-
dencies of dependencies" along with the dependent activity
(explained in Sect.4). In Algorithm 2 in Sect.4, we have
a function named RECURSIVE-UPDATE. In this function,
we pass the parameters for a dependent activity, its current
state and a desired state of this dependent activity. This func-
tion returns the desired state after checking and updating
(if necessary) all the "dependencies of dependencies". We
explain Algorithm 2 in Sect.4 describing the way it works
with the recursive update procedure of "chain of dependen-
cies". Conceptually, ACACpep, model is an extension to
ACACpep, as itadds the pre-update procedure when allowed
function returns False. Thus, to satisfy the activity request
request(s : S,act : ACT) = True, ACACyep, model
allows updating the states of the pre-dependent activities
using the following preUpdate(act) function defined as.

— preUpdate(act, 0): > [Function Definition]
(Vda € getDA(act, 0)).
[RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-
CONFLICT-DETECTION(da,get Current St(da),
getDesired PreDASt(act, da))

getCurrentSt(da) # get Desired Pre DASt(act, da)
= getCurrentSt(da) = RECURSIVE-UPDATE(da,
getCurrentSt(da), get Desired PreDASt(act, da)) |

— preUpdate(act, 0) = allowed(s, o, op, act) == False
> [Function Call]

ACACep, model introduces the preUpdate function
to update the states of the pre-dependent activities that
are required to be in specific states for the initiation
of the requested activity act on the object o. In this
function, we iterate a loop for all the dependent activ-
ities where the current state of each dependent activity
is updated to the desired state if it is not in the desired
state at the time of the request. Before updating the cur-
rent state of each dependent activity, we check whether

@ Springer

the dependent activity (including its dependencies) in the
loop has conflicting desired states or not utilizing the func-
tion, RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-
CONFLICT-DETECTION in Algorithm 1. After that, we call
the RECURSIVE-UPDATE function in Algorithm 2 by the
dependent activity, its current state, and the desired state and
resolve the state-updates for "chain of dependencies" where
it is required. This function returns the desired state and we
update the current state to the desired state. preUpdate func-
tion is called when the allowed function returns False as the
current states of all the dependent activities are not in their
desired states. For simplicity, issues like who will update the
state of the activity and underlying technical implementation
of the update procedure is left unspecified in this paper.

Example 2. In smart home, the house Owner is trying to
make the request for the activity, playing News. The request
is stated as request (house Owner, playing News).

— S ={houseOwner}

- O0={TV, googleHome}

— OP = {turnOn, turnOff}

— ACT = {playingSong, playingNews}

— ST = {inactive, dormant, aborted, running, hold,
revoked, finished}

— getObject(playingNews)=TV

— getOperation(playingNews, TV)=turnOn

— getDA(playingNews, TV) = {playingSong}

— getCurrentSt(playingSong) = running

— getDesired Pre DASt(playingNews, playingSong)
=inactive

— preD(playingNews, TV) = False

— allowed(houseOwner, TV, turnOn, playing News)
= preD(playingNews, TV)

— preUpdate(playingNews) = preD(playingNews,
TV) == False

In Example 2, to satisfy request(house Owner, playing
News), we get the corresponding object 7V and the oper-
ation turnOn. The set of dependent activities (provided
by getDA(playingNews, TV)) for playingNews con-
sists of playingSong. In this instance, the current state
of playingSong is running, which is not the same as
the desired state inactive. Thus, preD 1is false, and so
is the allowed function. Therefore, the model updates
the current state of playingSong to inactive using the
preUpdate(playing News) function. Once updated, the req
uest request(house Owner, playing News) is allowed.

Definition 3. ACAC,,ep,: Post-update model for depen-
dent activities with pre-check. ACAC,p, model adds
the post-update procedure which updates the states of the
dependent activities after the requested activity is finished,
revoked or on hold. Updating the states of these depen-

The ACACp model for mutable activity control...

3295

dent activities accumulate the consequence of the requested
activity. In pre-check, we check the pre-dependent activi-
ties that need to change their states after the completion or
revocation of the requested activity. For example, a depen-
dent activity B have already started to help executing the
requested activity A. After A is finished, activity B is no
longer needed. Thus, we make sure there are no unnecessary
activities going on after the purpose is completed. In such
cases, combination of pre-update and post-update models is
more appropriate. However, we consider post-update as a
separate procedure. Conceptually, ACACep, model is an
extension to ACACpep, Which adds the post-update proce-
dure.

— getDesired PostDASt: ACTg x ACTp —> STpr
> [mapping a requested activity which has either been
on ‘hold’, ‘finished’ or ‘revoked’, and a post-dependent
activity to a desired state]

— postD(act: ACT, o: O) —> {True, False}, defined
as /\(daEgetDA(act’O))getCurrentSt(da) = getDesired
PostDASt(act, da)

— postUpdate(act, 0): > [Function Definition]
(Vda € getDA(act, 0)).
[RECURSIVE-CHECK-OF-DEPENDENCIES-WITH
-CONFLICT-DETECTION(da,get Current St (da),

getDesired Post DASt(act, da))

getCurrentSt(da) # get Desired Post DASt(act, da)
= getCurrentSt(da) = RECURSIVE-UPDATE(da,
getCurrentSt(da), getDesired Post DASt(act, da))
1
— postUpdate(act, 0) = postD(act, o) == False
> [Function call]

ACACpep; model includes the postUpdate function to
update the states of the dependent activities after the
requested activity act is performed. The get Desired Post
DASt is a many-to-one function to get the desired states of
the post-dependent activities. It maps the requested activity
and a dependent activity to a desired state. Then the post D
function is evaluated checking the current and desired states
of the post-dependent activities. In postUpdate function,
conflicting desired states are checked for all the post-
dependent activities calling the RECURSIVE-CHECK-OF-
DEPENDENCIES-WITH-CONFLICT-DETECTION func-
tion from Algorithm 1 followed by updating their current
states to their corresponding desired states utilizing the
RECURSIVE-UPDATE function from Algorithm 2. This
postUpdate function is called when postD returns False
(which means that the current states of all dependent activi-
ties are not in their desired states).

Example 3. In smart industry, a productionWorker
is requesting hydrotreating activity, formally stated as
request(productionWorker, hydrotreating).

— S={productionWorker}

— O = {tankPump, hydrotreater}

— OP = {turnOn}

— ACT = {o0ilPumping, hydrotreating}

— ST = {inactive, dormant, aborted, running, hold,
revoked, finished}

— getOperation(hydrotreating, hydrotreater) =
turnOn

— getDA(hydrotreating, hydrotreater) =
{oil Pumping}

— getCurrentSt(oil Pumping) = inactive

— getDesired Post DASt(hydrotreating, oil Pumping)
=running

— postD(hydrotreating, hydrotreater) = False

— postUpdate(hydrotreating) = post D(hydrotreating,
hydrotreater) == False

In Example 3, the requested activity is hydrotreating. This
request was allowed and has just finished. Now, we need to
update the post-dependent activities of hydrotreating. We
get the set of dependent activities for hydrotreating (using
getDA(hydrotreating, hydrotreater) function) which con-
sists of one activity, oil Pumping (assuming oil Pumping
already served its purpose of activating hydrotreating). The
current and desired states of oil Pumping are not same in
this instance. Thus, the post D function returns False. We
call postUpdate(hydrotreating) function where the current
state of oil Pumping is updated to the desired state.

3.3.2 ACACypp - ongoing-dependency models

ACAC,,p models consider the dependencies on activi-
ties while the requested activity is ongoing. The ongoing
decisions can be continue, hold or, revoke the requested activ-
ity, and can impact dependent activities. Execution of the
requested activity can be continued if the ongoing dependent
activities are in the desired states. If the dependent activities
are mutable, their current states can be updated for the con-
tinuity of the requested activity. Otherwise, the execution of
the requested activity will be revoked. Besides that, hold-
ing the requested activity can accumulate any emergence or
contextual situations. ACAC,,p has three sub-models (stated
in Fig. 8b) based on if states of dependent activities can be
updated and which phase the updates can occur as shown
in Table 2. ACAC,,p, model checks the current and desired
states of the ongoing dependent activities. ACAC,np, model
does not support mutability. ACACy,p, allows updates on the
states of the ongoing dependent activities as a consequence of
the ongoing-decisions. ACAC,,p, model checks and updates

@ Springer

3296

T. Mawla et al.

the post-dependent activity states that are related to the
ongoing activity and decisions. ACACqy,p does not have
the ACAC,np, model since the requested activity is already
allowed and there is no reason to consider the pre-updates
after allowing the activity. Since the ongoing dependent
activities are checked during the execution of the requested
activity, how frequently the dependencies are checked is
unspecified, and left for the implementation details.

Definition 4. ACAC,,p,: Ongoing-dependency check-
ing model for ongoing dependent activities
ACAC,;p, model checks the dependencies on activities
while the requested activity is running to decide continu-
ity or revocation of the ongoing activity. There is no update
procedure in this model. We need this model only to check if
all the ongoing dependent activities are in their desired states
or not. The model consists of the following components:

A source s € S requests to perform an activity act €
ACT, defined as request(s, act). Since, ACACoy,p, model
checks the ongoing dependencies on activities, the requested
activity is assumed to be initially allowed.

— allowed(s: S,0: O,0p: OP,act: ACT) = True

— getDesiredOnDASt: ACTg x ACTp —> STpg
> [mapping a requested ‘running’ activity, and an
ongoing-dependent activity to a desired state.]

— onD(act: ACT, o: O) —> {True, False}, defined
as /\(daEgetDA(act’O))getCurrentSt(da) = getDesired
OnDASt(act, da)

— stopped(act: ACT, 0: O) = onD(act, 0) == False

> [Function call]

ACAC,,p, model consists of sources (5), objects (O), oper-
ations (O P), activities (ACT), requested activities (ACTg),
dependent activities (ACTp), finite set of activities’ states
(ST), activities’ current states (ST¢r) and activities’ desired
states (STpg) [explained in Table 3]. get Object function
provides the corresponding object the activity is running on.
getOperation function provides the operation op that is
performed on object o to initiate the requested activity, act.
The allowed function is True since the requested activity
is already assumed to be running currently, and the check is
only made for ongoing decision.

get D A function computes the set of dependent activities
for the ongoing activity, act € ACT. get Desired OnDASt
is used to get the desired states of the ongoing-dependent
activities. This function maps the requested ‘running’ activity
and a dependent activity to a desired state. on D is a functional
predicate which takes input of the requested activity and
corresponding object (since dependencies can change based
on the object which is performing the activity), and com-
pares the current and desired states of all ongoing-dependent
activities (and returns True or False) to make a decision.

@ Springer

Ongoing dependencies are checked throughout the execution
of the activity act using the on D function. If on D returns
False, the activity will be revoked which is handled using
the stopped function. We do not have any update procedure
in this model.

Example 4. In smart farming, activity cooling is requested
by the farmManager (formally stated as request(farm
Manager, cooling)) and is assumed to be allowed. In the
ongoing check, our model ensures the corresponding depen-
dencies are fulfilled.

- S={farmManager}

— O ={cooler, aerial Drone}

— OP ={turnOff, turnOn}

— ACT = {thermallmaging, cooling}

— ST = {inactive, dormant, aborted, running, hold,
revoked, finished}

— getObject(cooling) = cooler

— getOperation(cooling, cooler) = turnOn

— getDA(cooling, cooler) = {thermallmaging}

— getCurrentSt(thermallmaging) = inactive

— getDesiredOnDASt(cooling, thermallmaging)
=running

— onD(cooling, cooler) = False

— stopped(cooling, cooler)

In this example, thermallmaging is an immutable and
ongoing-dependent activity for cooling to obtain the cur-
rent temperature and relevant status of the environment.
The desired state of thermallmaging is running to con-
tinue cooling. As the current state of thermallmaging is
inactive (and cannot be changed) which is different from
the desired state, cooling will be revoked.

Definition 5. ACAC,,p,: Ongoing-update model for
ongoing dependent activities
ACAC,np, model adds the update procedure to change the
states (if not in desired state) of the ongoing dependent activ-
ities of a requested activity. The updates are required to allow
the requested activity to continue. For example, A is the
requested activity which is executing and B is the depen-
dent activity that should be running to continue activity A.
In this model, we can update the state of activity B from
inactive to running to allow the activity A to continue.
ACACnp, model includes a function onUpdate for such
ongoing updates. This model is an extension to ACACyp,
adding the ongoing update procedure.

— onUpdate(act, 0): > [Function Definition]
(Vda € getDA(act, 0)).
[RECURSIVE-CHECK-OF-DEPENDENCIES-WITH

-CONFLICT-DETECTION(da, getCurrent St(da),

The ACACp model for mutable activity control...

3297

getDesiredOnDASt(act, da))

getCurrentSt(da) # get Desired OnDASt(act, da)
= getCurrentSt(da) = RECURSIVE-UPDATE(da,
getCurrentSt(da), get Desired OnD ASt(act, da))]

— onUpdate(act, 0) = onD(act, o) == False
> [Function Call]

For the requested activity to continue, ongoing-dependent
activities may require state change.

In onUpdate(a) function, we iterate a loop for each ongo-
ing dependent activity, check if the dependent activities and
the dependent of dependent activities have conflicting (multi-
ple) desired states or not (calling RECURSIVE-CHECK-OF-
DEPENDENCIES-WITH-CONFLICT-DETECTION func-
tion from Algorithm 1) followed by updating their current
states by calling the RECURSIVE-UPDATE function in
Algorithm 2 (with checking and updating the states of "chain
of dependencies"). This onUpdate function is called when
onD returns False suggesting that not every dependent
activity is in desired state.

Example 5. In smart farming, an ongoing activity is
cooling the greenhouse requested by the source farmMan
ager (formally stated asrequest (farmManager, cooling)).

- S={farmManager}

— O ={airCooler, humidifier}

— OP = {turnOn, turnOff}

— ACT = {cooling, humidifying}

— ST = {inactive, dormant, aborted, running, hold,
revoked, finished}

— getObject(cooling) = airCooler

— getOperation(cooling, airCooler) = turnOn

— getDA(cooling, airCooler) = {humidifying}

— getCurrentSt(humidifying) = inactive

— getDesiredOnDASt(cooling, humidifying)
=running

— onUpdate(cooling) = onD(cooling, airCooler) ==
False

In example 5, the ongoing activity is cooling the environ-
ment of a greenhouse using the object airCooler. While
cooling, if the humidity is low the humidifier should be
running to continue cooling. In that case, humidifying
is an ongoing dependent activity for cooling. We call the
onUpdate(cooling) function and update the current state of
humidifying from inactive to the running state as the on D
function returns False. This will ensure that the cooling con-
tinues while humidi fying is running.

Definition 6. ACAC,,p,: Post-update model for depen-
dent activities with ongoing-check

ACAC,;p; model adds the update procedure for the
dependent activities which may need state change when the

requested activity is finished, on hold, or revoked, requiring
ongoing check. For instance, A is arequested activity and B is
adependent activity which needs to be started while A is run-
ning. After A is revoked, B should be stopped immediately.
This is a post-update on B based on the decision taken on
activity A while running (ongoing check). ACACy,p, model
is an extension to ACAC,,p, adding the post-update proce-
dures.

— getDesired PostDASt: ACTgr x ACTp —> STpg
> [mapping a requested activity which has been ‘fin-
ished’, ‘revoked’, or on ‘hold’, and a post-dependent
activity to a desired state]

— postD(act: ACT, o: O) —> {True, False}, defined
as \(acget D A(act,0)8€tCurrent St(da) = get Desired
PostDASt(act, da)

— postUpdate(act, 0):
(Vda € getDA(act, 0)).
[RECURSIVE-CHECK-OF-DEPENDENCIES-WITH
-CONFLICT-DETECTION(da,get Current St(da),
getDesired Post DASt(act, da))

getCurrentSt(da) # get Desired Post DASt(act, da)
= getCurrentSt(da) = RECURSIVE-UPDATE(da,
getCurrentSt(da), get Desired Post DASt(act,da)) |

> [Function Definition]

— postUpdate(act, o) = postD(act, 0) == False
> [Function call]

In this model, get Desired Post D ASt function provides the
desired state of a post-dependent activity. This function takes
arequested activity and one of its dependent activity as input
and returns a desired state for this dependent activity. post D
function checks the current and desired states of the post-
dependent activities and returns 7True or False based on
the outcome of the comparison between current and desired
states of all post-dependent activities. In postUpdate func-
tion, the current states of all the dependent activities are
updated (to desired states) if they are not in the desired
states (i.e., if postD returns False). Before updating the
states, we check if the dependent activity da or any of
its dependent activity has conflicting desired states or not.
We call the RECURSIVE-CHECK-OF-DEPENDENCIES-
WITH-CONFLICT-DETECTION function from Algorithm
1 (explained in Sect.4) by passing a post-dependent activity,
its current state and its desired state. After that, we call the
RECURSIVE-UPDATE function in Algorithm 2 by passing a
post-dependent activity, its current state, and its desired state
and it returns the desired state after checking and updating
the "chain of dependencies".

Example 6. In smarthome, floorCleaning was requested
by the source floorWorker, stated as request(floor
Worker, floorCleaning).

@ Springer

3298

T. Mawla et al.

S ={floorWorker, sensor}

O = {vacuumCleaner, roboticArm}

— OP = {turnOn, turnOff}

— ACT = {movingObject, floorCleaning}

— ST = {inactive, dormant, aborted, running, hold,
revoked, finished}

— getObject(floorCleaning) = vacuumCleaner

— getOperation(floorCleaning, vacuumCleaner) =
turnOn

— getDA(floorCleaning,
= {movingObjects}

— getCurrent St(moving Objects) = running

— getDesired Post DASt(floorCleaning,
moving Objects) = inactive

— postUpdate(floorClea

ning)=> post D(floorCleaning,vacuumCleaner)==

False

vacuumCleaner)

In Example 6, we assume the activity floorCleaning
has been just finished which was running on the object,
vacuumCleaner. For the continuity of this activity,
moving Objects by robotic Arm was running. The purpose
of movingObjects is done after floorCleaning is fin-
ished. Thus, moving Objects needs to be in inactive state
as a post-dependent activity. We update the state using the
postUpdate(floor Cleaning) function.

4 Challenges of resolving chain of
dependencies

Chain of dependencies refers to "dependencies of dependen-
cies" where one activity relies on another activity for the
state transition, which in turn relies on some other activity
and these sequence continues until there exists one indepen-
dent activity which is not dependent on others for its state
transition. In large, complex and dynamic environments, the
proliferation of activities is inevitable. The dynamic nature
of the activities evolving over time and changing the states
based on conditions may often pose challenges in managing
the policies with manual specifications. Due to the activities
having the mutability characteristic, it is essential to keep the
dependent activities and chain of dependent activities sepa-
rate from the specification expressions.

In case of manual specification of the policies, the admin-
istrators must ensure that there is no conflicting and deadlock
situations created. In this regards, the administrators can use
the applications or existing tools to check if the chain of
dependencies can form a deadlock by using different com-
bination of current and desired states of the parent and child
dependent activities. The administrators also need to check
whether an activity is reachable to the desired state while hav-
ing parallel request processing and non-deterministic order of

@ Springer

dependency check and updates. To accommodate the manual
specification and address the deployability concern, develop-
ing tools and frameworks using algorithms for determining
the reachability and existence of deadlocks can help the
administrator avoid assigning the conflicting dependencies.
In such scenarios, depending on the designer’s choice and
fulfillment of the system requirements, the dependencies are
required to be assigned creating no conflicts. In existing lit-
erature, the state of the art works on reachability analysis
[28] of different critical components such as attributes can
be helpful as resources for the administrators.

The request processing time increases with number of
dependencies checked and updated. In real-time environ-
ment, the dynamic nature of activities and hundreds or
thousands of requests being processed simultaneously can
impact the request processing time. In parallel execution of
the activities, depending on the priority of activities, few
activities may need to wait for other activities to be finished.
In addition to that, duration of activities based on the sys-
tem requirements and other parameters can also impact the
request processing time. However, the duration is dependent
on the system requirements. In the specification context, the
administrators need to avoid the complexities while assign-
ing dependent activities to ensure the system never reach to
an unsolvable state due to conflicts and deadlocks. In this
section, we discuss the challenges associated with resolving
a chain of dependencies. that increase the complexity and
reduce flexibility to update the states of dependent activities.
In the following subsections, we discuss these challenges.

4.1 Multiple dependency paths: non-deterministic
or deterministic?

Arequested activity may depend on a single or multiple activ-
ities in any phase of its life cycle. Multiple dependency paths
(as shown in Fig. 9a and 9b) can lead to increased complexity

(a) Multiple dependency (b) Multiple dependency
paths without common paths with a common
dependent activities dependent activity

Fig.9 Chain of dependencies with multiple dependency paths. The cir-
cles represent activities while the arrows indicate that the parent activity
(e.g. acty) depends on the child activity (e.g. acty) to change its state

The ACACp model for mutable activity control...

3299

in determining the path which the system should take first. On
a different note, the order of dependency checks and updates
(if required) can raise the question of whether the selection of
order should be deterministic or non-deterministic. We define
the deterministic and non-deterministic order of dependency
check and update and later in this section, we explain which
strategy is chosen for the selection of dependency path.

— Deterministic order of dependency check and update:
In a deterministic order for checking and updating the
dependent activity states across multiple dependency
paths, we can enforce a very specific selection criteria
based on which order of dependency checks among a
finite number of dependent activities is determined. In
Fig.9a and 9b, we show two examples of activity depen-
dency chains where act; has three dependent activities,
thus it has multiple dependency paths. In Fig. 9b, actg is
a common dependency for both act, and act3. For exam-
ple, we can say that the current state of acte is "running"
and to resolve acty, actg has to be in the "inactive" state.
Moreover, acty needs actg to stay in the "inactive" state.
On the other hand, to resolve acts, the desired state of actg
is "finished". Conceptually, according to the life cycle of
an activity, it goes to an "inactive" state from "finished"
state after a certain time if there are no further depen-
dencies (post-dependent activities). We consider such a
scenario for acte in Fig.9b. If we choose one of these
two dependency paths, act; —> act3 —> acts —> actg
and act; — act3 —> acte —> acts starting from act;
followed by acts, actg will get the state "finished" and
it will go to the "inactive" state since there are no other
dependencies required to be checked for actg. As a conse-
quence, acty can be resolved as it can have the actg in the
desired state "inactive" while checking its dependencies.
This dependency check and update process is determinis-
tic as we select the starting path comparing two different
states of a common dependent activity. This selection
also results in the expected outcome by resolving the
chain of dependencies. However, this deterministic solu-
tion can be difficult to apply to accomplish the ultimate
goal where there exists a large number of activities with
multiple dependency paths including common dependent
activities with different desired states.

— Non-deterministic order of dependency check and
update: The non-deterministic approach for depen-
dency check and update refers to the strategy where the
sequence of activity dependency checks and updates is
not fixed as well as unpredictable if an activity has mul-
tiple dependency paths. Evaluation of dependencies and
update process can vary in the order each time the depen-
dencies are checked for a specific activity. In Fig. 9a and
9b, act; has three dependent activities, thus it has mul-

tiple dependency paths. In a non-deterministic selection
of dependency path, the criteria to select the order of
checking and updating the states of dependent activities
(if required) is not predefined by the system. It can be
randomly chosen and the external system does not have
access to know the selection process.

In Fig.9a and 9b, we show six activities in the cir-
cles named act;, actp, act3, acty, acts, and actg. act; is the
requested activity, thus we can refer to it as the root of the
dependency chain. Both the (a) and (b) in Fig. 9 include act;,
acts, and acty as dependent activities of act; . For instance, we
can think of these three activities as pre-dependent activities
of act; which means we need these three activities in their
respective desired states before starting act;y. The difference
between (a) and (b) in Fig.9 is the parent activities of acte.
In Fig.9a, act3 depends on actg along with acts whereas in
Fig. 9b both the act; and act3 depend on actg for their state
change into the respective desired states. In the first Fig. 9a,
there is no common dependency which means every depen-
dent activity has only one parent activity in the dependency
chain. On the contrary, in 9b, actg is a common dependent
activity for both act, and actz. For the first instance in 9a,
there is no complex situation while resolving the chain of
dependencies since all the dependent activities can change
their current state to the desired state (if required) for their
corresponding parent activities. Thus, the order of evaluat-
ing the dependencies and the update process does not matter
in this scenario. Therefore, whether we choose deterministic
or non-deterministic approach for dependency checks and
update for dependency chains does not matter where there
are no common dependencies between two or more parent
activities.

In Fig. 9b, in the dependency chain of the requested activ-
ity (acty), actp, and act3, both depend on actg in order to
change their current state to the respective desired states. In
this instance, there can be one of the two possible cases;
requiring the same desired state of acts for both of these
activities (actp and actz) or requiring different desired states
of actg for each activity. There does not exist any conflict if
acte requires to be in the same desired state in order to change
states (to their desired ones) of act, and act3. However, con-
flict will arise when act; and acts require two different desired
states for actg. We refer to these different desired states as
"conflicting desired states". In scenarios where a dependent
activity has conflicting desired states, we may choose deter-
ministic order of dependency check and update that can
provide an ultimate result where the root activity (act; in
Fig.9b) can certainly make its transition to the desired state.
However, we cannot guarantee the expected outcome for
the root activity of the dependency chain even if we take
a deterministic solution. For example, we can compare the

@ Springer

3300

T. Mawla et al.

conflicting desired states of the common dependent activity
(acte) and take the most preceding state among those differ-
ent desired states so that the common dependent activity can
get a scope to transition to the next desired states. We need
to backtrack to determine the order of the paths from the
root activity to the common dependent activity with the most
preceding desired state. However, we may not be able to get
the desired outcome in this deterministic solution if the com-
mon dependent activity (acte) needs to remain in a specific
state (e.g. "inactive") to change the current state of one the
parent activities (e.g. acty). Moreover, acty needs to hold the
specific desired state to change its state first, and then act;
(root activity) can change its state. On the other hand, act3
needs to change the state of actg to "running” state in order
to change the state of its parent activity (root activity "act;").
In this case, acty will be able to hold (which we also refer
to "lock") actg in the desired state of "inactive", thus act3
cannot change it to the "running" state. This is a policy con-
flict that cannot be solved either we choose a deterministic or
non-deterministic approach and it certainly cannot provide
any desired outcome for the root activity (acty). This is a pol-
icy design issue that should be handled while designing the
policy and must be avoided to resolve a chain of dependency
with multiple dependency paths problems.

When deciding about the deterministic approach to
resolve the chain of dependencies, it becomes more complex
when there are multiple levels of dependencies including
activities with multiple desired states. Finding the spe-
cific order for every single activity chain is not flexible
and scalable. Therefore, the system may choose the order
of dependency check and update and we can leave it as
a non-deterministic approach. However, choosing a non-
deterministic order may sometimes lead to a race condition
state. In the following section, we will address this problem
and provide a solution for it.

4.1.1 Race condition problem with non-deterministic order
of dependency check and updates with multiple
desired states

In non-deterministic execution order, we need to make sure
that the state of acommon dependent activity with conflicting
desired states cannot be overwritten or updated when its par-
ent activity (in the selected path from multiple dependency
paths using non-deterministic order) needs the common
dependent activity in a specific state. Since an activity is
a long continuous event, there may exist a scenario where
the dependent activity fulfills the requirement and later, it
can change the state according to the system context and
design. Here, the race condition refers to "racing" to mod-
ify the common dependent activity’s state by multiple parent
activities. We need to make sure the system does not allow
a parent activity to change the common dependent activity’s

@ Springer

state while another parent activity wants it to stay in another
conflicting state. This race condition formulates a problem
of how the system can handle the situation where a parent
activity holds a dependent activity with conflicting (multiple)
desired states in a specific state for a certain duration and this
state cannot be overwritten by any other activity at the same
time. We propose a solution using the following steps.

— Initially, we check whether there exist conflicting desired
states (multiple) for the dependent activities in a chain of
dependencies. We store this information for future usage
(referred to as Algorithm 1).

— We introduce a recursive update process for dependent
activities (in Algorithm 2) where it completes the updates
if the dependent activities fulfill the requirements of
desired states. If there are conflicting desired states for a
dependent activity, we use the locking mechanism (Algo-
rithm 3) for the dependent activity. The lock remains until
the parent activity’s purpose is served.

Algorithm 1 is utilized to determine whether a dependent
activity possesses conflicting desired states, where multi-
ple parent activities require different desired states for the
dependent activity. This algorithm consists of two functions:
RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-CON
FLICT-DETECTION(da, da_current_state, da_desired
_state) and DETECT-CONFLICTING-DESIRED-STATE
(da,da_desired_state).Inthe RECURSIVE-CHECK-OF-
DEPENDENCIES-WITH-CONFLICT-DETECTION(da,
da_current_state, da_desired_state) function, da repre-
sents the dependent activity for which conflicting desired
states are detected, with da_current_state representing its
current state and da_desired_state denoting the desired
state of the dependent activity. The function DETECT-
CONFLICTING-DESIRED-STATE(da,da_desired_state)
is employed to identify conflicting desired states. It takes the
dependent activity da and the currently examined desired
state (da_desired_state) as inputs. In this function, line 1
checks if a desired state is already assigned to da using the
assignedDesiredState(da) function. If the function returns
an empty set (), we assign the currently examined desired
state, da_desired_state, as the result. At this stage, as no
other desired state has been checked for da, we can infer that
no conflicting desired state exists for da and assign "FALSE"
as the result of hasConflictingDesiredState(da). However, if
there is a difference between the currently examined desired
state da_desired_state and the assigned Desired State
(assignedDesiredState(da)), we conclude that the dependent
activity da possesses conflicting desired states and assign
"TRUE" as the result of hasConflictingDesiredState(da).
After executing line 1 (calling DETECT-CONFLICTING-
DESIRED-STATE(da, da_desired_state)), we identify

The ACACp model for mutable activity control...

3301

Algorithm 1 Detecting Conflicting Desired States of Dependent Activities

RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-CONFLICT-DETECTION(da, da_current_st, da_desired_st):
Description: detects conflicting desired states for a chain of dependent activities.

Input: da: a dependent activity

da_current_st: the current state of the dependent activity da

da_desired_st: the desired state of the dependent activity, da.

: DETECT-CONFLICTING-DESIRED-STATE (da, da_desired_st)

: DoDA = getDoDA(da, da_current_st,da_desired_st)
. if (DoDA # ()
: then

RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-CONFLICT-DETECTION(doda,get Current St(doda),
getDesired DoDASt(da, da_current_st,da_desired_st, doda))

: end for

1

2

3

4

5: for (each doda € DoDA) do
6

7

8

9: end if

DETECT-CONFLICTING-DESIRED-STATE (da, da_desired_st):

Description: detects conflicting desired states and stores the information for a dependent activity.

Input: da: a dependent activity

da_desired_st: the desired state of the dependent activity da
1: if (assigned DesiredSt(da) == ()
2: then assigned DesiredSt(da) = da_desired_st

3: hasConflictingDesiredSt(da) = FALSE

4: else if da_desired_st # assigned DesiredSt(da)
5: then hasConflictingDesiredSt(da) = TRUE

6: end if

conflicting desired states for "dependencies of dependen-
cies." In line 2, we obtain the set of dependent of depen-
dent activities, DoDA, for the dependent activity da.
Line 3 checks if this set is empty. If DoDA is not
empty, we recursively call the RECURSIVE-CHECK-OF-
DEPENDENCIES-WITH-CONFLICT-DETECTION func-
tion for each "dependent of dependent" activity to detect
conflicting desired states for these activities.

Algorithm 2 is implemented to handle the recursive pro-
cess of checking and updating the states of dependent
activities within a dependency chain. We choose a recur-
sive structure for this algorithm to ensure that we address
the "dependencies of dependencies" before updating the
state of a dependent activity. The function RECURSIVE-
UPDATE(da, da_current_st, da_desired_st) is defined,
where da represents a dependent activity, da_current_st
denotes its current state, and da_desired_st denotes the
desired state for da. In line 1, we obtain the set of depen-
dent activities (Do D A) that are required for da to transition
fromda_current_st toda_desired_st.If DoDA is empty,
it implies that there are no dependencies that need to be
checked for this specific state transition of da. Line 2 veri-
fies whether Do D A is empty or not. If the condition is true,
we return da_desired_st from the function (line 3). Other-
wise (line 5), we proceed to explore each activity (doda) in
DoD A. Within lines 6-7, we check whether the current state

and desired state of each doda in DoDA are not the same
and whether doda has any conflicting state. This information
has already been stored using Algorithm 1 for all activities
in the dependency chain. If the condition in lines 6-7 is met,
we update the state of doda by calling the RECURSIVE-
UPDATE function, providing doda, its current state, and
desired state as parameters (lines 8-10). This recursive call is
necessary to check if doda has any further dependent activ-
ities and to compare their current and desired states before
returning the desired state. We include an additional check
to verify if the current and desired states of doda are not
equal and if doda has any conflicting states (lines 11-12).
If these conditions are satisfied, we call ACQUIRE-LOCK
function defined in Algorithm 3 (line 14-15). Algorithm 3
will check if the activity, doda is locked or unlocked. Then
we update the current state of this activity by calling the
function RECURSIVE-UPDATE (line 16-17).

Algorithm 3 is inspired by the Binary Semaphore [29] or
Mutex Lock mechanisms in operating systems. The binary
Semaphore mechanism is used to synchronize between
two values, 0 and 1, and allows only a single unit to
the critical section (to get access to shared resources). We
use a similar locking mechanism using a function named
"get BinarySemaphoreValue(doda)" where doda is a
dependent of dependent activity and the value returned
from this function is 0 or 1. When the value returned from

@ Springer

3302

T. Mawla et al.

Algorithm 2 Recursive Update of States for Chain of Dependent Activities

RECURSIVE-UPDATE(da, da_current_st, da_desired_st):

Description: Recursively updates the states of dependent activities while exploring the dependencies of dependencies and updating them first.

Input: da: a dependent activity

da_current_st: the current state of the dependent activity da

da_desired_st: the desired state of the dependent activity, da.
Output: Returns a desired state for the dependent activity, da.

1: DoDA = getDoDA(da,da_current_st,da_desired_st)

2: if (DoDA == ()

3: then return da_desired_st;

4: else

5: for (each doda € DoDA) do

6: if (getCurrentSt(doda) # get Desired DoD ASt(da, da_current_st,da_desired_st, doda)

7: A hasConflictingDesiredSt(doda) == FALSE)

8: then

9: getCurrentSt(doda) = RECURSIVE_UPDATE(doda, getCurrentSt(doda),

10: getDesired DoDASt(da, da_current_st,da_desired_st, doda))

11: else if (getCurrent St(doda) # get Desired DoDASt(da, da_current_st,da_desired_st,doda)

12: A hasConflictingDesiredSt(doda) == TRUE)

13: then

14: ACQUIRE-LOCK(da, da_current_st,da_desired_st,doda, get BinarySemaphoreV alue(doda),
15: getDesired DoDASt(da, da_current_st,da_desired_st,doda))

16: getCurrentSt(doda) = RECURSIVE_UPDATE(doda, getCurrentSt(doda),

17: getDesired DoDASt(da, da_current_st,da_desired_st,doda)) > RELEASE-LOCK (doda) will be called when

the purpose of locking doda is done for da
18: end if
19: end for
20: return da_desired_st
21: end if

"get BinarySemaphoreValue(doda)" is 1, this indicates
that doda is currently not locked by a parent activity. When
the value returned from "getBinarySemaphoreValue
(doda)" is 0, this indicates doda is currently locked by
a parent activity. Therefore, it cannot change its current
state to fulfill the requirement of any other parent activ-
ity. In the function ACQUIRE-LOCK(da, da_current_st,

da_desired_st,doda, get BinarySemaphoreValue(doda),

getDesired DoDASt(da,da_current_st,da_desired_st,

doda)), da is the dependent activity which is currently try-
ing to change the current state of doda to the desired state in
order to transition from da_current_st to da_desired_st.
In this algorithm, we check if doda is currently locked
(get BinarySemaphoreV alue(doda) == 0) or unlocked
(getBinarySemaphoreValue(doda)==1).Ifitis unlocked,
we change the value of get BinarySemaphoreV alue(doda)
to 0 which indicates it is locked by da (line 1-2). If
doda is locked by some other activity (line 3), da must
wait for doda to be unlocked until we get the value
1 from getBinarySemaphoreValue(doda) (line 5-7).
wait For(doda) indicates, the parent activity da will wait
for doda to be unlocked. Once the previous parent activ-
ity releases the lock using RELEASE-LOCK(doda) and
changes the value of get BinarySemaphoreV alue(doda)

@ Springer

to 1, the currently waiting dependent activity da again calls
the ACQUIRE-LOCK function and updates the value of
getBinarySemaphoreValue(doda) (locks doda) (line 8-
9).

4.2 Circular dependencies and deadlock

In our proposed ACACp model, there can be circular depen-
dencies that create a deadlock situation. In a circular set of
dependencies, the chain of dependencies is created in a circu-
lar fashion (shown in Fig. 10). In this figure, the dependency
path is act; —> act, —> act3 —> act;. In this circular set
of activities, act; depends on act; to find act, in the desired
state "finished". act, depends on act3 and requires act3 to be
"finished". actz requires act; to be "running" before it goes
to "finished" state. This circular wait for each activity is in a
deadlock and no activity ultimately gets their desired state.
There are certain ways to handle this type of deadlock situ-
ations. We discuss the deadlock handling techniques in the
next subsection.

The ACACp model for mutable activity control...

3303

Algorithm 3 Locking Mechanisms for Activities with Conflicting Desired States

ACQUIRE-LOCK(da, da_current_st,da_desired_st , doda, get BinarySemaphoreV alue(doda)

getDesired DoDASt(da, da_current_st,da_desired_st, doda)):

Description: Lock a dependent of dependent activity if it is unlocked and wait for the release of lock if it is locked.

Input: da: a dependent activity,

da_current_st: the current state of the dependent activity da,

da_desired_st: the desired state of the dependent activity, da.

doda: a dependent of dependent activity.

getBinarySemaphoreV alue(doda): the binary semaphore value of doda which can be 0 or 1 in turn.

getDesired DoDASt(da, da_current_st,da_desired_st, doda): the desired state of doda corresponding to the

parent activity da’s state transition from da_current_st to da_desired_st.

if(get BinarySemaphoreValue(doda)==1)
: then get BinarySemaphoreValue(doda) = 0,
: else if (get BinarySemaphoreValue(doda)==0)
: then

waitFor(doda)
: end while

: ACQUIRE-LOCK(da, da_current_st,da_desired_st, doda, get BinarySemaphoreV alue(doda),

1:
2
3
4
5: while (get BinarySemaphoreV alue(doda)==0) do
6
7
8
9

: getDesiredDoDASt(da, da_current_st,da_desired_st, doda))

10: end if
RELEASE-LOCK(doda):
Description: releases the lock for a dependent of dependent activity.
Input: doda: a dependent activity

1: getBinarySemaphoreValue(doda) = 1;

4.2.1 Deadlock detection and solutions

The system may fall into a deadlock if the system admin-
istrator fails to prevent it from assigning the dependencies
that create a circle. The deadlock due to a circular set
of dependent activities can be detected before the update
process starts. We can detect this deadlock with a typical
Depth First Search (DFS) algorithm. This kind of dead-
lock situation needs to be carefully analyzed by the system
designer. Upon identifying a circular dependency in the sys-
tem, the administrator plays a crucial role in breaking the
cycle within the dependency chain. It becomes imperative
for the administrator to thoroughly examine the activities
involved in the cycle and pinpoint a low-priority activity that
can be strategically removed. If the administrator success-
fully accomplishes this task, the deadlock can be effectively
eliminated, ensuring the system’s smooth operation with-
out violating the safety rules. Therefore, careful analysis
and decision-making by the administrator are instrumental
in resolving such deadlock scenarios, ultimately optimizing

the system’s performance and preventing potential disrup-
tions. Maximum timeout mechanisms can also be applied
for a requested activity where the request is denied after a
certain period of time. Deadlock detection and recovery are
challenging for a chain of dependent activities since this is
a design choice and policy engineering problem. Deadlock
prevention is a more suitable deadlock handling method for a
chain of dependent activities in such smart systems referred
to by our proposed ACAC model.

4.3 Combination of ACACp sub-models while
resolving chain of dependencies

As described in Sect. 3, different sub-models, denoted as
ACACp sub-models, support the mutability of activities at
various stages of their life cycle. Throughout the paper, we
discuss a set of several states {inactive, dormant, aborted,
running, hold, revoked, finished} that a requested activ-
ity can pass through from its initiation to completion. To
fulfill the request for an activity, the states of dependent activ-

@ Springer

3304

T. Mawla et al.

Current state: dormant
Desired state: running

Current state: running
Desired state: finished

Current state: running
Desired state: finished

Fig.10 Circular dependencies of activities. The circles denote activities
and the arrows denote that the parent activity depends on the child
activity

ities are examined and updated, if necessary, to enable the
transition of the requested activity from one state to another.
For instance, when transitioning from the inactive to run-
ning state, the ACACpep, model is employed to verify and
modify the states of the dependent activities required to ini-
tiate the requested activity. During the running state of the
requested activity, the ACAC,np, model is utilized for con-
ducting ongoing checks and updates. Consequently, it can be
inferred that a combination of different ACACp sub-models
supports the successful execution of a requested activity from
start to finish.

A "chain of dependent activities," also known as "depen-
dencies of dependencies", requires checks for current and
desired states of the dependent activities and updates to
the current states to accommodate state transitions of par-
ent activities. As illustrated in Fig.7 in Sect.3, consider
the example where the activity "Water Spraying" requires
"Nitrogen Spraying" to be in an inactive state while it is
currently in a running state. Similarly, the state transition
of "Mixing Sawdust to soil" from running to inactive is
required. Suppose "Nitrogen Spraying" first transitions to
a finished state before reaching the inactive state. Since it
has no post-dependent activities, it will go to inactive state.
In this scenario, "Mixing Sawdust to soil" is checked and
updated when "Nitrogen Spraying" is ongoing, and a decision
is made to finish the ongoing activity. Based on the definitions
of our ACACp models, ACAC,np, model can be utilized to
check and update the "Mixing Sawdust to soil" activity, while
ACAC,p, model ensures there are no post-dependent activ-
ities. Hence, combination of ACACp sub-models proves to
be an effective approach for resolving the chain of depen-
dencies.

@ Springer

5 Prototype implementation

In this section, we present a prototype implementation of
a combination of ACACp sub-models in a smart farming
use case (as shown in Fig. 1). The code is written in Python
3 using PyCharm on Hp Envy x360 convertible with Intel
core i7 processor and 12 GB of RAM. The implementa-
tion shows the need for different ACACp sub-models to
incorporate the dependencies (D) in the activity request deci-
sion. In a fully deployed ACAC model, all four decision
parameters (Authorizations (A), Obligations (B), Conditions
(C), and Dependencies (D)) will be considered. However,
since our paper focuses on the ACACp models for activity
dependencies, we evaluate these sub-models, assuming other
parameters are satisfied. We have simulated the devices and
activities in the system; however, this does not undermine
the plausibility, use, and advantage of our proposed ACACp
model, as further elaborated in the following discussion.

5.1 Description of the use case

A smart farming ecosystem consists of connected smart
devices that perform multiple activities concurrently. There
are inter-dependencies among activities that may constrain
the execution of other activities. This requires checking and
updating the states of dependent activities to make any activ-
ity request decision. In Table 4, we include four activity
requests in the first column. Each request has two parameters;
the first and second parameter indicates the requesting source
and the requested activity, respectively. The second, third,
and fourth columns include pre-, ongoing, and post- depen-
dent activities, respectively. We also mention the desired
states (such as running or inactive) of dependent activities
after the colon ‘:’. Since the current states of the activities
depend on the real-time system context, these are not speci-
fied. Further, we implement an activity request with its chain
of dependencies. In Table 5, we include the dependencies
of dependencies corresponding to the first request shown in
Table 4. The first column indicates the name of the dependent
activities, the second and third columns indicate its current
and desired states respectively. The fourth column includes
the dependent of dependent activities corresponding to the
transition from the current state to the desired state of the
parent dependent activities mentioned in the first column. We
also mention the corresponding desired states of the depen-
dent of dependent activities followed by a colon “:’.

5.2 Use case implementation

To implement the use case and satisfy the activity requests
in Table 4, we configure five JSON files as follows,
request.json (have the activity requests with a source
and requested activity), activity.json (includes the

The ACACp model for mutable activity control...

3305

Table 4 Description of activity requests and dependencies

Requests Pre-dependent activities Ongoing-dependent activities Post-dependent activities
request(fieldWorker, | mixingAMS : finished — waterSpray : inactive — waterSpray : inactive
sprayingWeedKiller) |- thermallmaging : running — thermallmaging : running — pullingWeedsUp : running

— weedScanning : running

request(farmer, sow-
ingSeeds)

— fieldPloughing : inactive

— pesticideSpray : running
— thermallmaging : running
— airCooling : running

N/A

coolingGreenhouse)

request(farmManager; |- stakingBoundaries : finished — waterSpray : inactive — sprayingWeedKiller : run-
\fieldPloughing) — mixingWaterAbsorbingMaterial :|— thermallmaging : running ning
running — sowingSeeds : running
— pesticideSpray : running
request(fieldOwner, |~ thermallmaging : running — humidifying : running N/A

Table 5 Chain of dependencies for the dependent activities in the first request from Table 4

Dependent activity Current state

Desired state

Dependent of dependent activity: desired State

mixingAMS running finished Dash mixingVinegar: running
pullingWeedsUp inactive running Dash pesticideSpray: running
mixingVinegar inactive running Dash mixingWater: running

current states of all the activities), object . json (holds the
objects the activities can be performed on), operation
. Json (contains the operation to perform an activity on a
specific object for all the activities), and activityDepe
ndencies. json (provides the sets of pre-, ongoing- and
post-dependent activities with their desires states and against
particular object for each requested activity). activity.
json file is dynamically updated according to the changes
made in the current states of dependent activities. Further, we
configure another JSON file named dependenciesOfdep
endencies to implement this use case with chain of depen-
dencies where pre-, ongoing and post-dependent activities
(for a particular activity request) also have dependent activi-
ties to make their transition from the current state to a desired
states while satisfying the requested activity’s requirements.
As mentioned in Table 4, for the request(fieldWorker,
sprayingWeedKiller), we have all three of pre-, ongoing and
post-dependent activities with desired states. The current
states we get from our activity. json file is compared
to the desired states. For this pre-dependency check, our
implementation procedure supports ACACprep, sub-model.
The activity mixingAMS (mixingAMS is the short form
of mixingAmmoniumSulfate) is initially in running state
which needs to update its state to the desired state finished.
This update occurs in the enforcement point as supported
by the ACACep, sub-model. In a similar way, the ongo-
ing dependent activities are checked, and the current state

Table 6 Execution time for pre-, ongoing, and post-check. NDC
denotes Number of Dependent Activities Checked and NDU denotes
Number of Dependent Activities Updated against total number of
requests

Pre-Check | Ongoing-Check | Post-Check
Number of Requests NDC[NDU| Time [NDC|NDU| Time [NDC[NDU]| Time |
\ 10 | 20 | 10 [38.84| 30 | 10 [42.83| 20 | 20 |15.21]
| 20 | 30 | 10 [5333] 60 | 30 |57.64] 20 | 20 |22.09]
\ 30 | 50 | 0 [101.33] 80 | 0 [87.24| 50 | 10 [25.44]
\ 40 | 60 | 10 [110.16] 90 | 10 |124.3] 50 | 30 |60.76|

of waterSpray is updated from running to inactive. In this
ongoing check, the sub-models ACACoup, (for checking the
states of ongoing dependent activities) and ACACo,p, (for
updating the current states of the ongoing-dependent activi-
ties) are applicable. In post-check, a post-dependent activity,
pullingWeedsUp needs to change its state (from inactive to
running) where the sub-model ACACy,p, fits the best. In
summary, this use case implementation shows the combi-
nation of ACACpep,, ACACprep; ACAConp,, ACAConp,,
and ACAC,,p, for satisfying the request(fieldWorker, spray-
ingWeedKiller). Similarly, for the other requests, the same
procedure repeats for pre-, ongoing, post-check and thus,
reflecting the applicability of our proposed ACACp sub-
models.

To implement this use case with a chain of dependen-
cies, we consider the first request from Table 4 which is
request (fieldWorker, sprayingWeedKiller). As mentioned

@ Springer

3306

T. Mawla et al.

Table 7 Execution time for pre-, ongoing, and post-check with resolv-
ing chain of Dependencies. NDC denotes Number of Dependent
Activities Checked and NDU denotes Number of Dependent Activi-
ties Updated against total number of requests

‘ Pre-Check ‘ Ongoing-Check ‘ Post-Check ‘
Number of Requests NDC|NDU| Time [NDC|NDU| Time [NDC[NDU|Time |
\ 10 | 40 | 30 [45.89| 30 | 30 [32.35| 30 | 10 |40.14]
\ 20 | 80 | 60 [79.06 | 60 | 60 [59.93| 80 | 60 |71.56]
\ 30 | 120 | 90 [116.16] 90 | 90 [84.56] 120 | 90 [99.97|
\ 40 | 160 | 120 [194.32] 120 | 120 |94.81| 160 | 120 |138.1]

in Table 5, we have the dependent of dependent activi-
ties corresponding to the transition (from current state to
desired state) of parent dependent activities. To implement
this request with the chain of dependencies, we configure
a JSON file dependenciesOfdependencies. json.
In pre-, ongoing, and post-check of request(fieldWorker,
sprayingWeedKiller), the dependencies of dependencies are
checked and the updates are resolved recursively where all
the required updates are performed for the dependencies
before its parent activity transitions to the desired state. For
instance, before updating the state of pullingWeedsUp from
inactive to running in the post-check, we check the depen-
dencies of dependencies and update their states accordingly
if required, (pesticideSpray updates its state from inactive
to running for the particular required transition of pulling-
WeedsUp). The dependent activities which are not mentioned
in Table 7 do not have other dependent activities (DoD). In
general, the dependencies that are checked when a parent
activity’s current state is inactive and needs to transition to
a running state, are called pre-dependent activities. Simi-
larly, ongoing dependencies are checked while the parent
activity’s current state is running and needs the transition
to any succeeding state (such as finished, or hold). Ongoing
dependencies are also checked regularly to see whether the
execution could continue or be revoked. The post-dependent
activities are checked when parent activity’s required state
transitions are finished or revoked to inactive, or hold to run-
ning, finished or, revoked.

The sequence of the implementation process is shown
in Fig.11. We have three phases (shown in different col-
ors) of checking and updating the dependent activity states
while satisfying the requests, referred as pre-check, ongo-
ing check, and post-check. When a source requests an
activity, it is checked at the policy decision and enforce-
ment point, the suitable object and operation are selected
(mentioned as getObject(activity) and getOperation(activity,
object)) from the object and operation finder mod-
ules, respectively, which check the object . json and the
operation. json files. In pre-check phase, the activity
dependency module provides the pre-dependent activities
using the activityDependencies.json. In the pol-
icy decision and enforcement point, for each pre-dependent

@ Springer

activity, current and desired states are checked and updated
(if required and depending on mutability).

In our implementation without dependencies of depen-
dencies (Table 4), the dependent activities directly update
their current states without checking further dependen-
cies. On the other side, the implementation with depen-
dencies of dependencies (first request from Table 4 and
chain of dependencies of this requested activity in Table
5), in RECURSIVE-UPDATE function call (mentioned as
RECURSIVE-UPDATE(dependent activity, current state of
dependent activity, desired state of dependent activity)), fur-
ther dependency check (using dependenciesOfdepen
dencies. json file) and the recursive update take place.
The request is allowed or denied based on the fulfillment
of the dependencies. The activity starts to run at this point.
In ongoing phase, the ongoing dependent activity states are
checked and updated. We assume the requested activity is fin-
ished after resolving the ongoing dependencies. Similarly,
post-dependent activity states are checked and updated in
the post-check after the activity is revoked or finished. The
requested activity changes its current state (from finished or
revoked to inactive) at this point.

5.3 Performance evaluation

We evaluated the implementation of our proposed ACACp
model in different processing stages (pre-, ongoing, and
post-check). We evaluate our prototype for the four activ-
ity requests stated in our use case by sending each activity
request ten times simultaneously (assuming ten different
sources request for ten different activities) and adding new
requests in the same proportion.

Table 6 shows the execution time (in milliseconds) against
the total number of requests for pre-check, ongoing check
and post-check respectively. The first column indicates the
number of requests. The first and second sub-columns in
each of the second, third and fourth columns indicate the
number of dependent activities checked (NDC) and the num-
ber of dependent activities updated (NDU) for the number
of requests indicated in the first column, respectively in
pre-check, ongoing-check and post-check. It must be noted
that, in pre-check, the current state of a requested activity
is updated from inactive to running if it is allowed after
checking and updating the current states of the pre-dependent
activities. In this case, we start the timer when the request is
made and calculate the execution time until it updates the
current state if the activity is allowed. In ongoing-check,
after checking and updating the ongoing dependent activi-
ties, we assume the requested activity is finished and, thus,
update its current state from running to finished. The execu-
tion time is then evaluated for the duration of the dependency
checking and updating the ongoing dependent activity states
(if required) and changing the current state of the ongoing

The ACACp model for mutable activity control... 3307
Fig. 11 Sequence diagram for e iy Do 4 poli Obiect Find Overation s Activity Depend
ACACp Implementation QUCY Lecls 10N ant r OCY ject Finder peration Finder ivity Dependency
D lmp Requestor Enforcement Point Module Module Module
T T T T
. | ! | 1
o - | PRE-CHECK |
request o » : .
[source, activity) getObject{activity) : !
return object : |
+ 1 I
|

getOperation(activity, object)

getDA(activity, object)

return operation ‘
L

T

1

T

return pre-dependent activities

>

request allow/deny
*-—

request allowed

Check and update the states of
pre-dependent activities

e Activity Starts

ONGOING CHECK

1
I
I
I
|
I
|
I
I
+

return ¢ngoing-dependent activities

>

Check and update the states of
ongoing dependent activities

|

|

1

1

1

|

i
|getDA(activity, object) :
|

I

T

|

:

b Activity finished or revoked :
|

|

| getDA(activity, object)

1
I
I
|
: POST-CHECK

return:post-dependenr activities

LJ
1

requested activity from running to finished. The execution
time for post-check indicates the duration of checking and
updating (if required) the post-dependent activities. In our
implementation (without chain of dependencies), the exe-
cution time of pre- and ongoing checks is more than the
execution time of post-check since they perform more depen-
dent activities’ states update. It should be noted that the
number of updates on dependent activities may reduce as
more activities are requested since it is possible that the ear-
lier activity requests have already updated the states, and no
more state change is needed for future requests.

Figure 12 compares the execution time against the num-
ber of requests considered for pre-, ongoing, and post-check
(indicated by blue, red, and green lines, respectively). The fig-
ure shows that the execution time increases with the increase
in the number of dependent activities checked and updated.
We observe that the maximum calculated time is for the forty
simultaneous activity requests in the ongoing check case.
Since in our use case, this scenario has the maximum num-
ber of dependent activities checked along with updates to the
current states of requested activities (assuming activities fin-
ished their execution). Clearly, the number of dependencies
for a particular requested activity and the number of state
updates impact the processing time of an activity request.

In implementing the request processing of the chain of
dependencies for the first request in Table 4, we evaluate the
performance by sending the same request 10, 20, 30, and

I
= Check and update the states of ; .
post-dependent activities :

1
1
!

40 times. Each time, the dependencies of dependencies are
checked, and their states are updated if required. This process
is done in a recursive manner to ensure that dependencies are
resolved before the parent activity’s state changes. Table 7
shows the execution time (in milliseconds) against the total
number of requests (in a similar way as done in Table 6).
Figure 13 compares the execution time against the number of
requests, similarly shown in Fig. 12. Here, we observe that
execution time increases with the increase in total number of
dependency checks and dependency updates. Since NDC and
NDU are the highest in number in pre-check, the execution
time is also high in pre-check.

We understand that the processing time will increase with
hundreds of devices and activities running simultaneously in
areal-world environment. However, in this implementation,
we reflect on the plausibility and applicability of consider-
ing dependencies as a critical component to support activity
control in smart systems.

6 Related work

With the advancement of technologies and growth in IoT
devices, the possibility of violation of security mechanisms
increases. Various research works, including [30, 31] inves-
tigate security and privacy issues existing in smart and
connected systems. Yao et al. describe security and privacy

@ Springer

3308

T. Mawla et al.

Activities Checked

NDC = ber of Depend

NDU = Number of Dependent Activities Updated
NDC=90

—8— PRE-CHECK
~®— ONGOING CHECK
—8— POST-CHECK

120
100 A
80

60

Execution Time (in milliseconds)

20 A

10 15 20 25 30 35 40
Number of Activity Requests
Fig. 12 Performance evaluation of the implementation without chain
of dependencies by comparing the execution time (in y-axis) against
the number of requests (in x-axis) considered for pre-, ongoing, and
post-check (indicated by blue, red, and green lines, respectively). NDC

denotes the number of dependent activities checked and NDU denotes
the number of dependent activities updated

NDC = Number of Dependent Activities Checked
NDU = Number of Dependent Activities Updated

—e— PRE-CHECK
180 { —#— ONGOING CHECK
—e— POST-CHECK

NDC=160
NDU=120

-

N

o
L

NDC=120
NDU=40

=
N
o

NDC=80 *
NDC=120
NDU=120

Execution Time (in milliseconds)
[«
o

NDC=40
NDU=30
NDC=30
NDU=10

=
o
L

'
o

& fibc=30
NDU=30

20

5 10 15 20 25 30 35 40 45
Number of Activity Requests

Fig. 13 Performance evaluation of the implementation with chain of
dependencies by comparing the execution time (in y-axis) against the
number of requests (in x-axis) considered for pre-, ongoing, and post-
check (indicated by blue, red, and green lines, respectively). NDC
denotes the number of dependent activities checked and NDU denotes
the number of dependent activities updated

challenges in different working stages of physical objects in
10T [30]. Access control solutions have also been proposed
for the smart and automated systems, including fine-grained
attribute-based access control (ABAC) [9, 26, 32-34].

An attribute-based access control solution for industrial
IoT proposed by Bhatt et al. [8] implement their model in
Amazon Web Services IoT. Ameer et al. proposed ABAC for
secured smart home IoT [32]. These authors introduce and

@ Springer

compare HABAC,, (an attribute-based access control model
for smart-home IoT) with the EGRBAC (extended general-
ized role-based access control). The configurations for the
role-based approach are mapped with the attribute-based
models using user/session, environment, device, operation,
and more than one type of attribute. Recently, Sikder et al.
introduced a mechanism KRATOS+ for multi-user multi-
device access management in Smart home system [35]. They
implement the idea using four components; user interac-
tion module, backend server, policy manager, and policy
execution module. In the user interaction module, the pri-
ority management data and device policies are collected.
This work presents the policy negotiation algorithm and
maps the policy to a rule. However, this work is very spe-
cific to multi-user shared device environments such as smart
homes.

Relationship-based access control (ReBAC) models [36—
38] have been used to incorporate relations between enti-
ties as an access parameter. Multilevel relationships are
expressed using ABAC models according to this research.
Bayreuther and others recently proposed a task planning for a
humanoid robot [39], which converges to the activity-centric
access control [14, 15] and usage control [22] showing a
structure to incorporate policies, objects, modeling frame-
work, architecture and enforcement of the access control
system. The authors discuss a decentralized architecture
for the policies and task modeling and gain the enforce-
ment of activity-centric and usage-based access control for
robot task planning. However, this work lacks the idea of
leveraging both models, which is critical for a smart envi-
ronment. Mawla et al. proposed [15] a framework for the
activity-centric access control model components to check
an activity request. These components fit well to address sce-
narios that consider activity dependencies and other decision
factors.

Furthermore, several blockchain-based access control
solutions are proposed by researchers [40-43]. Tan et al.
propose a blockchain-based access control for the Green
Internet of Things (GIoT) for the purpose of saving energy.
In this approach, the permission data and identity data are
immutable. If we compare this solution to our approach,
ACAC is more suitable for scenarios with a large number
of devices, a dynamic environment, and supporting depen-
dencies among different activities in smart and collaborative
systems. A deep learning-based access control (DLBAC)
is proposed by Nobi et al. [44] addresses major limita-
tions of classical access control approaches such as RBAC
and ABAC models. This work is significant since it fully
automates access control using deep learning. However, it
has not been used for large-scale, complex, and dynamic
environments due to a lack of accurate access control
decisions.

The ACACp model for mutable activity control...

3309

7 Conclusion

In this work, we present a novel activity-centric access con-
trol (ACAC) approach for smart and connected systems.
Considering activity as the prime notion and abstraction to
control, we propose an active and object-agnostic access con-
trol model, which captures the real-time and holistic context
of the system to make an activity request decision. Focus-
ing on the dependencies (D) among activities as one of the
critical parameters, we formally develop a family of ACACp
models supporting activity mutability. We also investigate
the chain of dependencies (where dependent activities also
can have dependencies) while changing the state of a mutable
activity. Resolving chain of dependencies to accommodate
the mutability of an activity may be challenging in terms
of multiple dependency paths, race conditions and deadlock
situations. We explain these challenges and propose poten-
tial solutions to deal with those. We also present a prototype
implementation of ACACp sub-models with a comprehen-
sive smart farming use case reflecting the use of combinations
of ACACp sub-models and chain of dependencies. Perfor-
mance is evaluated by the execution time to process many
requests with different numbers of pre-, ongoing, and post-
dependent activities’ checks and updates.

In the future, we aim to extend this work to a fully mature
ACAC model integrating all four authorizations (A), obliga-
tions (B), conditions (C), and dependencies (D) parameters.
Moreover, our future direction includes developing a for-
mal policy specification language incorporating the chain of
dependencies along with other components and analyzing
the reachability of incompatible activities as well. Further, a
detailed performance evaluation in a real environment having
different decision parameters will re-enforce the applicabil-
ity of the ACAC model in large-scale smart systems.

Acknowledgements This research is partially supported by the NSF
grants 2230609 and CREST-PRF 2112590.

Declarations

Conflictofinterest All authors certify that they have no affiliations with
or involvement in any organization or entity with any financial interest
or non-financial interest in the subject matter or materials discussed in
this manuscript.

Compliance with Ethical Standards All authors confirm that the princi-
ples of ethical and professional conduct have been followed and declare
that they have no Conflict of interest. In addition to that, the research
work articulated in this manuscript does not contain any studies with
human participants or animals performed by any of the authors.

Research Data Policy and Data Availability Statements The dataset
generated and/or analyzed during the current study is available from
the corresponding author on reasonable request.

References

1. Ameer, S., Benson, J., Sandhu, R.: The EGRBAC Model for Smart
Home IoT. In: IEEE 21st International Conference on Information
Reuse and Integration for Data Science (IRI), 457-462, (2020)

2. Schuster, R., Shmatikov, V., Tromer, E.: Situational access control
in the internet of things. In: ACM SIGSAC Conference on Com-
puter and Communications Security, pages 1056-1073, (2018)

3. Gusmeroli, S., Piccione, S., Rotondi, D.: A capability-based secu-
rity approach to manage access control in the internet of things.
Math. Comput. Model. 58(5-6), 1189-1205 (2013)

4. Gupta, D., et al.: Access control model for Google cloud IoT. In:
IEEE Conference on Big Data Security on Cloud, 198-208, (2020)

5. Gupta, M., Benson, J., Patwa, F., Sandhu, R.: Secure V2V and V2I
communication in intelligent transportation using cloudlets. IEEE
Trans. Serv. Comput. (2020)

6. Ameer, S., Sandhu, R.: The HABAC Model for Smart Home IoT
and Comparison to EGRBAC. In: ACM Workshop on Secure and
Trustworthy Cyber-Physical Systems, 39-48, (2021)

7. Lee, A.T,, et al.: PARBAC: priority-attribute-based RBAC model
for azure IoT cloud. IEEE Internet Things J. 7(4), 2890-2900,
(2020)

8. Bhatt, S., Pham, T.K., Gupta, M., Benson, J., Park, J., Sandhu,
R.: Attribute-based access control for AWS internet of things and
secure industries of the future. IEEE Access 9, 107200-107223
(2021)

9. Gupta, M., Benson, J., Patwa, F., Sandhu, R.: Dynamic groups and
attribute-based access control for next-generation smart cars. In:
Proc. of the ACM Conference on Data and Application Security
and Privacy, 61-72, (2019)

10. Xu, R., Chen, Y., Blasch, E., Chen, G.: A federated capability-
based access control mechanism for internet of things (iots). In:
Sensors and Systems for Space Applications XI, volume 10641,
page 106410U. Int. Soc. Opt. Photonics (2018)

11. Park, J., Sandhu, R., Gupta, M., Bhatt, S.: Activity control design
principles: next generation access control for smart and collabora-
tive systems. IEEE Access 9, 151004-151022 (2021)

12. Cathey, G., Benson, J., Gupta, M., Sandhu, R.: Edge Centric Secure
Data Sharing with Digital Twins in Smart Ecosystems. In: IEEE
TPS-ISA, (2021)

13. Colombo, P., Ferrari, E., Tiimer, E.D.: Regulating data sharing
across MQTT environments. JINCA 174, 102907 (2021)

14. Gupta, M., Sandhu, R.: Towards activity-centric access control for
smart collaborative ecosystems. In: Proceedings of the 26th ACM
Symposium on Access Control Models and Technologies, 155—
164, (2021)

15. Mawla, T., Gupta, M., Sandhu, R.: BlueSky: Activity Control: A
Vision for "Active" Security Models for Smart Collaborative Sys-
tems. In: Proceedings of the 27th ACM on symposium on access
control models and technologies, 207-216, (2022)

16. Nicklas, J.-P., Mamrot, M., Winzer, P., Lichte, D., Marchlewitz, S.,
Wolf, K.-D.: Use case based approach for an integrated consider-
ation of safety and security aspects for smart home applications.
In: 2016 11th System of Systems Engineering Conference (SoSE),
1-6. IEEE, (2016)

17. Khoussi, S., Mattas, A.: A brief introduction to smart grid safety
and security. In: Handbook of system safety and security, 225-252.
Elsevier, (2017)

18. Lacinak, M., Ristvej, J.: Smart city, safety and security. Procedia
Eng. 192, 522-527 (2017)

19. Tokody, D., Albini, A., Ady, L., Rajnai, Z., Pongracz, F.: Safety
and security through the design of autonomous intelligent vehicle
systems and intelligent infrastructure in the smart city. Interdisci-
plinary Description of Complex Systems: INDECS, 16(3-A):384—
396, (2018)

@ Springer

3310

T. Mawla et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

Threat Modeling | OWASP Foundation — owasp.org. https:/
owasp.org/www-community/Threat_Modeling. [Accessed 02-11-
2023]

Thomas, R.K., Sandhu, R.S.: Task-based authorization controls
(TBAC): A family of models for active and enterprise-oriented
authorization management. In: Database security XI, 166-181.
Springer, (1998)

Park, J., Sandhu, R.: The UCONapc usage control model. ACM
Trans. Inf. Syst. Secur. (TISSEC) 7(1), 128-174 (2004)

Park, J., Sandhu, R., Cheng, Y.: ACON: Activity-centric access
control for social computing. In: IEEE ARES, 242-247, (2011)
Jin, X., Krishnan, R., Sandhu, R.: A unified attribute-based access
control model covering DAC, MAC and RBAC. In: IFIP Annual
Conference on Data and Applications Security and Privacy, 41-55.
Springer, (2012)

Gupta, M., others: An Attribute-Based Access Control for Cloud
Enabled Industrial Smart Vehicles. IEEE Trans. Ind. Inf. (2020)
Bhatt, S., Sandhu, R.: ABAC-CC: Attribute-based access control
and communication control for internet of things. In: Proceedings
of the 25th ACM Symposium on Access Control Models and Tech-
nologies, 203-212, (2020)

Sandhu, R., Park, J.: Usage control: A vision for next generation
access control. In: International Workshop on Mathematical Meth-
ods, Models, and Architectures for Computer Network Security,
17-31. Springer, (2003)

Gupta, M., Sandhu, R., Mawla, T., Benson, J.: Reachability anal-
ysis for attributes in ABAC with group hierarchy. IEEE Trans.
Dependable Secure Comput. 20(1), 841-858 (2022)

Cho, M.-H., Lee, C.-H.: A low-power real-time operating system
for ARC (actual remote control) wearable device. IEEE Trans. Con-
sum. Electron. 56(3), 1602—-1609 (2010)

Yao, X., Farha, F,, Li, R., Psychoula, I., Chen, L., Ning, H.: Security
and privacy issues of physical objects in the IoT: Challenges and
opportunities. Digital Communications and Networks, (2021)
Babun, L., etal.: A survey on IoT platforms: Communication, secu-
rity, and privacy perspectives. Comput. Netw. 192, 108040 (2021)
Ameer, S., Benson, J., Sandhu, R.: An attribute-based approach
toward a secured smart-home IoT access control and a comparison
with a role-based approach. Information 13(2), 60 (2022)

Chen, Y.,Meng, L., Zhou, H., Xue, G.: A blockchain-based medical
data sharing mechanism with attribute-based access control and
privacy protection. Wirel. Commun. Mob. Comput. (2021)

@ Springer

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

Zhang, Y., Yutaka, M., Sasabe, M., Kasahara, S.: Attribute-based
access control for smart cities: a smart-contract-driven framework.
IEEE Internet Things J. 8(8), 6372-6384 (2020)

Sikder, A.K., et al.: Who’s Controlling My Device? Multi-User
Multi-Device-Aware Access Control System for Shared Smart
Home Environment. ACM Trans. Internet of Things (2022)
Clark, S., et al.: ReLOG: A Unified Framework for Relationship-
Based Access Control over Graph Databases. In: IFIP Annual
Conference on Data and Applications Security and Privacy, 303—
315. Springer, (2022)

Chakraborty, S., Sandhu, R.: On feasibility of attribute-aware
relationship-based access control policy mining. In: IFIP Annual
Conference on Data and Applications Security and Privacy, 393—
405. Springer, (2021)

Arora, C.: Higher-Order (Temporal) Relationship-Based Access
Control. Master’s thesis, Science, (2022)

Bayreuther, S., Jacob, F., Grotz, M., Kartmann, R., et al.: BlueSky:
Combining Task Planning and Activity-Centric Access Control for
Assistive Humanoid Robots. In: Proc. of the 27th ACM SACMAT,
185-194, (2022)

Tan, L., Shi, N., Keping, Yu., Aloqaily, M., Jararweh, Y.:
A blockchain-empowered access control framework for smart
devices in green internet of things. ACM Trans. Internet Technol.
(TOIT) 21(3), 1-20 (2021)

Han, D., etal.: A blockchain-based auditable access control system
for private data in service-centric IoT environments. IEEE Trans.
Ind. Inf. (2021)

Qin, X., et al.: LBAC: A lightweight blockchain-based access con-
trol scheme for the internet of things. Inf. Sci. 554, 222-235 (2021)
Algarni, S., et al.: Blockchain-based secured access control in an
10T system. Appl. Sci. 11(4), 1772 (2021)

Nobi, M.N, et al.: Toward Deep Learning Based Access Control.
In: Proc. of the ACM CODASPY, 143-154, (2022)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

https://owasp.org/www-community/Threat_Modeling
https://owasp.org/www-community/Threat_Modeling

	The ACACD model for mutable activity control and chain of dependencies in smart and connected systems
	Abstract
	1 Introduction
	2 Motivation for activity-centric "Active" access control
	2.1 Threat model
	2.2 Distinction from existing access control

	3 Towards ACAC formal models
	3.1 Mutability of activities
	3.2 Chain of dependencies
	3.3 ACACD formal models
	3.3.1 ACACpreD - pre-dependency models
	3.3.2 ACAConD - ongoing-dependency models

	4 Challenges of resolving chain of dependencies
	4.1 Multiple dependency paths: non-deterministic or deterministic?
	4.1.1 Race condition problem with non-deterministic order of dependency check and updates with multiple desired states

	4.2 Circular dependencies and deadlock
	4.2.1 Deadlock detection and solutions

	4.3 Combination of ACACD sub-models while resolving chain of dependencies

	5 Prototype implementation
	5.1 Description of the use case
	5.2 Use case implementation
	5.3 Performance evaluation

	6 Related work
	7 Conclusion
	Acknowledgements
	References

