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Abstract

With the integration of connected devices, artificial intelligence, and heterogeneous networks in IoT-driven cyber-physical

systems, our society is evolving as a smart, automated, and connected community. In such dynamic and distributed envi-

ronments, various operations are carried out considering different contextual factors to support the automation of connected

devices and systems. These devices often perform long-lived operations or tasks (referred to as activities) to fulfill larger goals

in the connected environment. These activities are usually mutable (change states) and interdependent. They can influence the

execution of other activities in the ecosystem, requiring active and real-time monitoring of the entire connected environment.

Traditional access control models are designed to take authorization decisions at the time of access request and do not fit

well in dynamic and connected environments, which require continuous active checks on dependent and mutable activities.

Recently, a vision for activity-centric access control (ACAC) was proposed to enable security modeling and enforcement

from the perspective and abstraction of interdependent activities. The proposed ACAC incorporates four decision parameters:

Authorizations (A), oBligations (B), Conditions (C), and activity Dependencies (D) for an object agnostic continuous access

control in smart systems. In this paper, we take a step further towards maturing ACAC by focusing on the mutability of activ-

ities (the ability of changing states of activities), activity dependencies (D) and developing a family of formal mathematically

grounded models, referred to as ACACD. We propose six practically suitable sub-models for ACACD to support the state

transition of a mutable activity incorporating the dependent activities’ state-check and state-update procedures. These formal

models consider the real-time mutability of activities as a critical factor in resolving active dependencies among various activ-

ities in the ecosystem. Activity dependencies can form a chain where it is possible to have dependencies of dependencies. In

ACAC, we also consider the chain of dependencies while handling the mutability of an activity. We highlight the challenges

(such as multiple dependency paths, race conditions, circular dependencies, and deadlocks) while dealing with a chain of

dependencies, and provide solutions to resolve these challenges. We also present a proof of concept implementation of our

proposed ACACD models with performance analysis for a smart farming use case. This paper addresses the formal models’

intended behavior while supporting activities’ dependencies. Specifically, it focuses on developing and categorizing mathe-

matically grounded activity dependencies into various ACAC sub-models without formal policy specification and analysis of

theoretical complexities, which are intentionally kept out of the scope of this work.
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1 Introduction

Internet-of-Things (IoT) is a rapidly growing technology

integrating billions of connected devices and artificial intel-

ligence over heterogeneous networks, facilitating smart and

collaborative ecosystems such as smart farming, smart man-

ufacturing, smart cars, and e-health monitoring. In such

dynamic and distributed environments, data-driven appli-

cations are widely used. Thousands of devices collect and

utilize data from users, devices, and environments to support

automation collaboratively. The ultimate goal of a futuristic

community is to establish an autonomous smart ecosystem

for human-driven domains where everything is connected,

continuously communicating, sharing information, and trig-

gering actions.

However, ensuring efficiency and accuracy for such sys-

tems while addressing growing security and privacy issues

raises serious challenges in these smart communities’ opera-

tional and administrative aspects. With increasing number of

connected and interacting devices, the attack surface in such

systems is continuously expanding. While cybersecurity is

a top national priority and much progress has been made

to ensure protection from cyber-attacks, IoT-driven smart

systems security raises a host of new challenges. The con-

vergence of the physical and cyber world introduces new

automated attack dimensions which are hard to analyze,

and engender substantial risk in maintaining the integrity

of physical and cyber resources. Significant challenges to

secure connected and IoT-driven systems include threat

modeling, proposing mathematically grounded fundamen-

tal security approaches, continuous vulnerability assessment,

and designing adaptable autonomous defense mechanisms

to thwart rapidly evolving cyber-physical threats in this

growing, connected, collaborative, and distributed ecosys-

tem. These systems demand real-time active monitoring of

operations and activities with the contextual information of

multiple device states and environmental conditions for con-

tinuous authorization and system security. Access control

solutions are extensively used to secure computer systems

from unwanted and unauthorized access. Several traditional

and extended access control solutions using discretionary,

mandatory, role-based, or attribute-based approaches have

been proposed to offer security needs for smart and con-

nected systems [1–13]. However, traditional access control

systems fall short in terms of dynamicity, scalability, muta-

bility, and real-time monitoring needs of smart ecosystems.

As we approach towards a fully automated, coordinated,

data-driven, and highly connected future community sup-

porting multi-domain/administered distributed collaborative

devices, we need active access control models which can

adapt to the dynamic context of the ecosystem, continuously

monitor the changing access permissions and activities, and

handle device failures while ensuring safety and security of

the system.

In response, recently, Gupta and Sandhu [14] proposed a

novel activity-centric access control (ACAC) paradigm sup-

porting activity as the fundamental abstraction for the active

run-time management of security in smart and collabora-

tive systems. Intuitively an activity is a long-lived continuous

event performed by a device in an automated system. Fur-

ther, these activities change states as they progress and are

also inter-dependent, i.e. an activity can control the execu-

tion of other activities in the ecosystem. In addition, these

activities have chain of dependencies, meaning, an activity

A is dependent on activity B, which in-turn is dependent on

activity C, referred as dependencies of dependencies. Our

previous work [15] proposed the integration of four decision

parameters Authorizations (A), oBligations (B), Conditions

(C) and Dependencies (D) in ACAC, as discussed in Sect. 2.

Further, since smart systems have thousands of connected

devices and frequent device failures, it is inefficient for a

subject to decide (while making an access request) which

particular device will perform the requested activity. In such

cases, it is critical to shift to an object-agnostic model, where

the system decides which object1 is best to perform the activ-

ity, considering dependencies and other decision factors. This

object-agnostic approach is very relevant in dynamic and

scalable smart ecosystems where devices are randomly added

or removed as the system scales. The goal is to approach

security modeling and enforcement from the perspective (and

abstraction) of activities and their dependencies in connected

systems.

In this work, we propose a formal mathematically grounded

family of ACAC models for activity dependencies (D),

referred to as ACACD. We also show how these models

can accommodate the chain of dependent activities providing

solutions to some open problems. The main contributions of

this paper are as follows.

– We motivate the need for object-agnostic access control

which supports the mutability of dependent activities.

We highlight the limitations of the existing access con-

trol models and distinguish ACAC in terms of dynamic

activity dependencies, scalability, and activity mutability.

– We investigate the activity dependencies (D) component

of the ACAC model. Toward this, we propose a family

of six ACACD sub-models that cover pre-, post-, and

ongoing dependencies.

– We provide formal definitions for ACACD sub-models

and illustrate their intended behavior under different

dependencies.

1 Since, an activity is typically performed by an IoT device in smart

ecosystems, we treat the terms object and device as equivalent in

activity-centric access control.
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– We investigate and analyze the chain of dependencies for

a requested activity in different stages of its life cycle.

We highlight the challenges of resolving the chain of

dependencies and propose solutions.

– We demonstrate ACACD sub-models with use case sce-

narios (including chain of dependencies) and present a

proof of concept implementation to illustrate its applica-

tion using commercially available technologies.

The rest of the paper is as follows. Section 2 motivates

the need for activity-centric model, discusses the relevant

background, and highlights the limitations of existing access

control models. Section 3 presents our proposed family of

ACACD models with example use cases. Section 4 illustrates

the challenges while resolving a chain of dependencies and

shows how a combination of ACACD sub-models are used

to resolve a chain of dependencies. Section 5 provides a pro-

totype implementation of ACACD models and evaluates the

performance with comprehensive smart farming use case.

Section 6 discusses relevant literature on access control mod-

els and background. Section 7 concludes the paper.

2 Motivation for activity-centric "Active"
access control

In smart and connected ecosystems, an activity is referred to

as a long-lived continuous task that is performed by a device.

At any given moment, thousands of activities and operations

could be carried out depending on the workflow needs while

considering related and different contextual factors. Activi-

ties in such systems are inter-dependent and can constrain the

execution of each other. By an "Active" access control model

for activity control, we refer to a security approach enforcing

access control requirements where the system administrator

or an automated system constantly monitors workflow needs,

the state of the activity, and the decision (to initiate, con-

tinue, hold or revoke an activity) parameters. These decision

parameters consist of authorizations, obligations, conditions,

and dependencies on other activities. A user, device, or envi-

ronmental event can request an activity based on the system

workflow and efficiency needs. In general, the most suitable

device can be assigned based on the decision parameters to

satisfy the activity request.

In the example scenario shown in Fig. 1, an activity

ploughing field is requested by a user farm manager. The

system finds the most suitable device, which in our case is

the autonomous tractor, to perform this requested activity.

The corresponding operation, turn-on (calculated by the sys-

tem based on the requested activity and selected device), is

performed (if all decision parameters are satisfied) on behalf

of the requesting source to initiate the activity ploughing field.

However, whether the request is allowed or denied depends

Fig. 1 The sets of pre-, ongoing and post-dependent activities with

respect to a requested activity ploughing field. Each yellow box indicates

an activity

on the contextual information, including resolving the depen-

dencies on various other activities in the system. As shown

in the figure, there could be three sets of dependent activities;

pre-dependent , ongoing-dependent, and post-dependent.

Pre-dependent activities are checked before allowing the

requested activity, ongoing-dependent activities are checked

to ensure whether the execution of the requested activity

can be continued or not (if dependencies are violated), and

post-dependent activities are checked after the requested

activity is revoked, on hold or finished. In this example, the

requested activity ploughing field can be allowed only if the

pre-dependent activities (staking Boundaries, mixing water

absorbing material) are in their desired states. The continuity

of the execution of the requested activity depends on the state

of ongoing-dependent activities (water spray and thermal

imaging). Finally, different post-dependent activities (weed-

killer spray, sowing seeds, pesticide spray) are checked after

the ploughing field activity is finished. The activities are

mutable in nature, and can change their states (discussed in

Sect. 3) to fulfill the dependency requirements. For example,

an activity control policy can be that the water spray must

be inactive while ploughing field is running. In such case, if

water spray is running, it needs to transition to the finished or

revoked state to ensure that it will be inactive immediately (if

there is no post-dependent activity) to continue the activity

ploughing field. In smart physical systems like smart farm-

ing that are either fully automated or semi-automated, the

execution of dependent and composite activities necessitates

minimal human intervention while maintaining the princi-

ple of least privilege. To maintain the system’s performance,

both safety and security are major concerns for smart and
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Fig. 2 A Framework for a Hierarchy of ACAC models [15]. ACAC0,

ACAC1, and ACAC2 models incrementally add features and create a

final consolidated ACAC3 model

automated systems [16]. Several research works have been

done where safety and security are analyzed to design intelli-

gent and smart infrastructures such as smart grid [17], smart

city [18], smart vehicles [19]. The current goal of building

a smart community with technological advancement intro-

duces various safety concerns that depend on what type of

technologies are used and where it is being applied. While

constructing an individual system activity irrespective of the

other system activities, the goal of the system may have con-

flicts which in turn can create inherent loss or damage to the

entire ecosystem. We are concerned about the safety of indi-

vidual operation that is performed by IoT devices. Our goal

is to build a safe system considering the probable interde-

pendencies between the states of the different activities so

that the system does not leave any gap between connected

and dependent activities. For instance, protecting the system

from breaking the order of activities, executing conflicting

activities concurrently, and handling emergency activities

hold major concerns from the safety aspect. In our proposed

approach, the safe system we aim to build requires proper

handling of activities throughout the life-cycle of an activ-

ity considering the environmental situation and relationships

with other activities. Clearly, this approach requires contin-

uous monitoring and real-time active dependency checks,

making the ACAC novel and relevant for smart and collabo-

rative ecosystems.

Recently, Mawla et al [15] proposed the components of

the ACAC model and an incremental approach in a hier-

archical framework to fully mature activity-centric access

control. Instead of a monolithic model, different features are

gradually added to a family of ACAC models, as illustrated

in Fig. 2. The fundamental concept of activity and activity

dependencies on a single device is captured in ACAC0. In

ACAC1, activity dependencies on multiple devices and the

mutability of activities are addressed. Note that, the activity

dependencies on single or multiple devices are immaterial

as ACAC is an object-agnostic model and considers secu-

rity modeling at the activity abstraction. Therefore, both

scenarios can be captured in ACAC1 and the most suitable

device is automatically decided by the system based on dif-

ferent factors. ACAC2 adds static and dynamic constraints

on activities, conditions (including system or environmen-

tal, e.g., weather, location), usage count, and obligations

(required actions by the source). ACAC3 is built on top of all

ACAC models, which is the consolidated and detailed model

to implement activity decision control in smart systems.

Clearly, ACAC3 will eventually cover the Authorizations

(A), oBligations (B), Conditions (C) and Dependencies

(D), as decision parameters, and can also be referred as

ACACABCD.

However, in this paper, we focus on the activity depen-

dencies (D) component of ACAC. We develop formal math-

ematically grounded models for ACACD, which support the

activity dependencies on multiple devices and the mutability

of activities. We investigate the dependencies of dependen-

cies to generate more fine-grained access control model. We

also present a prototype implementation of our proposed

family of ACACD models and evaluate them using a com-

prehensive smart farming use case scenario with multiple

activity requests and activity dependencies along with chain

of dependencies.

2.1 Threat model

Figure 3 represents the threat model of our proposed

ACACD model. We follow the threat modeling steps pro-

posed by OWASP [20]. This model is proposed based on

activity dependencies in smart IoT-based systems where

safety and security are the major concerns during the automa-

tion of different activities. Note that, the model acknowledges

the presence of both immutable and mutable activities. Exist-

ing threats can exploit the vulnerabilities while the system

wants to control the mutable activities according to the

workflow preserving the safety of the system. In smart and

connected systems, attacks can occur intentionally or acci-

dentally by exploiting known and unknown vulnerabilities.

Adversaries can be insiders or outsiders. Our primary empha-

sis is on insider threats that arise from unexpected behaviors,

which can compromise system safety, violate workflows,

and hinder efficiency. In complex systems with multiple

devices performing various activities, a requester may not

have knowledge of all the activities occurring. Consequently,

simply checking authorization is insufficient for making

activity decisions, as authorized users may still be restricted

by activity dependencies. By considering these dependen-

cies, we ensure the safety and security of the the system

from conflicting activities, disruptions to the execution order,

and violations of usage rules. Additionally, this approach

enables the execution of emergency and high-priority activ-
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Fig. 3 Threat model for the proposed ACACD model

ities. In our approach, denoted as ACACD, we assume that

all sources are authorized for the requested activity, with a

focus on verifying activity dependencies. We also take into

account resolving the dependency chains to fulfill activity

requests efficiently and in a secured way considering existing

threats. However, we acknowledge the challenges involved

in resolving these dependency chains and propose mitiga-

tion techniques. Our implementation serves as proof of the

robustness of the ACACD model.

2.2 Distinction from existing access control

In access control literature, different models (beyond classi-

cal DAC, MAC, and RBAC) have been proposed considering

various decision parameters. Detailed in work by Mawla et

al. [15], in this subsection, we review some of the closely

related models with the ACAC model, Task-based Autho-

rization Controls (TBAC) [21], Usage Control (UCON)

[22], Activity-Centric Access Control for social computing

(ACON) [23], Attribute-based Access Control (ABAC) [8,

24–26], and highlight key distinguishing features.

Table 1 summarizes the distinguishing features which are

most relevant in terms of the notion of activity and activity-

dependencies between ACAC and other models. The first

column in the table contains the name of the models. The

rest of the columns mention the key distinguishing features

(we selected five, but could be more) among these mod-

els and if the models support these keys (Yes) or not (No).

The key factors are abstraction of activity, dynamic activ-

ity dependencies (meaning activities are inter-dependent and

dynamically calculated based on different factors), object-

agnostic (refers that corresponding object for an activity

will be decided by the system rather than by the requesting

source at the time of request), dependent activity muta-

bility (the property of changing dependent activity states),

and ongoing monitoring of the system context (the system

context information such as dependencies, usage, environ-

mental conditions, etc., are continuously evaluated to support

context-based access decisions).

Distinction from UCON: The proposed ACACABCD

model is inspired by the UCON [22, 27] model. However,

there are significant distinctions between UCONABC and

ACACABCD models. UCON supports attributes’ mutabil-

ity which is different from activity mutability supported by

ACAC. UCON, primarily designed for digital rights manage-

ment, does not have a notion of activity (which is a prolonged

state of a device). In addition, UCON defines the object on

which the operation is requested, which is different than

ACACABCD, which is an object-agnostic model. Further, the

chain of dependencies supported in ACACABCD is not con-

sidered in UCON. The dependencies in ACAC can be on the

same or different objects. Where the activity is actually exe-

cuting or which source started the activity is irrelevant. The

abstraction of activity in ACAC makes it easier to manage

connected systems in terms of activities rather than objects

and operations supported by UCON.

This comparison overview between ACAC and other

related models strengthens the fact that how our proposed

ACAC model distinctly supports ‘active’ decision control

and enforcement considering dynamic situations and scala-

bility in distributed IoT-based smart systems with thousands

of connected devices performing multiple activities in a

dynamic environment.
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Table 1 Comparison of Features Proposed in ACAC Model

Access Con-

trol Models

Abstraction

of activity

Dynamic ac-

tivity depen-

dencies

Object-

agnostic

Dependent

activity

mutability

Ongoing

monitoring

of system

context

TBAC Yes No No No No

UCON No No No No Yes

ACON Yes No No No No

ABAC No No No No No

ACAC YES YES YES YES YES

3 Towards ACAC formal models

An activity is a prolonged event that is initiated by a source

and occurs on an object for a certain period of time. The

authors in [14, 15] motivated and proposed the activity-

centric access control (ACAC) model components as shown

in Fig. 4 and described as follows. A source (S) can be a

device, sensor, user, or an event in the system that requests an

activity. An activity (ACT) is a long continuous task occur-

ring for a period of time. An object (O) is an entity that

performs the activity, such as an IoT device. To start an activ-

ity, a source will perform an operation (OP) on the object.

When a source requests to initiate an activity, the decision

depends on four components: authorizations (A), obligations

(B), conditions (C), and activity dependencies (D) in the sys-

tem. Authorizations define the right of a source to initiate an

operation on an object. Source and object attributes take part

in the authorizations. Obligations are the required tasks that

must be fulfilled by the same requesting source or a different

source in the system. Conditions are system or environmental

factors related to satisfying the requested activity. Depen-

dency on activities reflects relationships between single or

multiple device activities in a system. For example, in smart

manufacturing, a robotic arm is requested to initiate painting

a box. If the robotic arm is currently washing the product, it

cannot be allowed immediately to paint the box. Here paint-

ing and washing are dependent activities. Our ultimate goal

is to build an active security model for smart and collabora-

tive systems utilizing all these components. However, with

evolving different business needs and complexities, system

designers and security administrators should be flexible in

implementing some or all of these factors.

Accordingly, we define a family of four basic ACAC

sub-models as ACACA, ACACB, ACACC, and ACACD

for the proposed consolidated ACAC model, referred as

ACACABCD. Each one of ACACA, ACACB, ACACC, and

ACACD is a family of models. ACACA defines a family of

models that define the authorization factor in a variety of

ways to accommodate different application requirements. It

considers the authorization factor only when deciding on an

activity. ACACB handles the obligations factor, ACACC con-

siders the impact of system and environmental conditions on

an activity. ACACD incorporates the dependencies between

Fig. 4 ACAC Model Components: The source requests an activity.

The activity decision components Authorizations (A), Obligations (B),

Conditions (C) and Dependencies (D) on other activities are evaluated

to allow or deny a requested activity. If allowed, the source performs

an operation on the object to initiate the requested activity. Source and

object attributes take part in the authorization. Policies are associated

with the activity decision process [15]

Fig. 5 The Combination of ACACABCD Core Models. The combination

of the core models is created from the basic models (ACACA, ACACB,

ACACC, and ACACD)

different activities in all stages of the life cycle of a requested

activity by checking and updating the current states of the

dependent activities.

Our proposed ACACABCD model provides the active deci-

sion control by incorporating all of these decision factors

[15]. Active decision control is defined as based on the

real-time working environment considering authorizations,

obligations, conditions, and dependencies on activities [15].

Considering the complexity, in Fig. 5, we show how the com-

bination of ACACABCD core models are created from the

basic models (ACACA, ACACB, ACACC, and ACACD). We

put the basic models at the bottom level, which includes

individual models for each decision component (A-B-C-D).

At the next two levels, models are composed of two and

three models, respectively, from the immediate lower levels.

As shown in Fig. 5, ACACABCD is the final comprehensive

model which combines the four sub-models. In order to con-

sider the active security needs, in this paper, our focus is

to develop formal sub-models for the dependency (D) fac-

tor considering the relationship of activities, referred to as
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Fig. 6 State transition of an activity with required updates in the activ-

ity life-cycle. The blue shapes indicate activity states and the arrows

pointing from one state to another indicate the activity transition from

one state to another with necessary updates

ACACD models. To our understanding and literature review,

previous access control models have not considered these

run-time dependencies as an active security factor, which is

critical in smart connected and collaborative systems. The

ACACD is mapped to ACAC1 model in the incrementally

developed framework discussed by Mawla et al. [15]. In our

future work, we will develop the holistic ACACABCD model

considering the ACACA, ACACB, ACACC, and ACACD

basic models.

3.1 Mutability of activities

One of the ACAC model’s unique characteristics is that

the activities in the system are mutable. Mutable activities

can update their states (as discussed by Mawla et al. [15]) as a

consequence of the decision process of initiation, continuity,

holding, completion, or revocation of an activity. In our mod-

els, mutability reflects the process of changing the state of

mutable activities. In case of immutable activity, no outside

factor can change the activity state, and activity will complete

its task while transitioning within its pre-defined course of

states. Figure 6 includes the states that an activity can have

and shows the transitions between different states. An activity

is in inactive state if it is not requested yet. When the activity

is requested, the activity is in dormant state, and depen-

dencies on other activities are assessed to see if the activity

is allowed to be initiated. The dependent activities can be

mutable and must change their states (if required) to allow

the requested activity. In that case, the required pre-updates

(updates before initiating an activity) on the dependent activ-

ities take place. Thus, the requested activity is invoked and

goes to the running state. If the required pre-updates or any

required condition cannot be fulfilled, the requested activity

is denied and go to the aborted state. In the running state

of activity, there can be required ongoing updates (updates

during the execution of an activity to continue the execu-

tion) on the dependent activities. From the running state,

an activity can be on hold, finished, or revoked. Hold state

indicates a temporary suspension of the running activity due

to any contextual conditions. Any required post update takes

place after the activity goes to the hold state. From hold state

the activity can resume and goes to the running state again.

Otherwise, it can be revoked or finished based on the con-

textual conditions. The activity goes to a revoked state from

the running state if the ongoing required updates (or ongo-

ing conditions) are not fulfilled. Finished state indicates that

the activity is completed and already served its purpose. Note

that, from finished and revoked states, the requested activ-

ity goes back to the inactive state after the post-dependency

check and update (if required). In Fig. 6, the names of the

states are more intuitive which helps in a better understanding

of an activity’s life-cycle than shown in [15]. The transitions

between activity states reflect the mutability of activities. It is

a significant and distinguishable factor of ACAC compared

with other access control models. In next subsection, we for-

mally propose sub-models for ACACD which considers the

mutability of activities.

3.2 Chain of dependencies

A chain of dependencies refers to a series of dependen-

cies where the dependency extends further down the line.

In this paper, our goal is to inspect and analyze the depen-

dent activities and control the mutability of these activities’

states corresponding to a requested activity and its state tran-

sitions. In case the dependent activities, in-turn, have some

dependencies, i.e. "dependencies of dependencies", we must

ensure all the dependent activities are in their desired states

before taking any decision on the requested activity. In such

a scenario of a dependency chain, the system will wait to

reach an independent activity (an activity that does not have

any dependency) before any decision is made. We refer the

requested activity as the "root" of the dependency chain and

any dependent activity which depends on another activity for

the state change is referred to as the "parent" of that depen-

dent activity.

Figure 7 shows an example of a dependency chain cor-

responding to a requested activity "Sowing Seeds". This is

requested by a Farm-manager and the system finds a "Seed-

Drill" available to start "Sowing Seeds". Further, before

allowing "Sowing Seeds" to start, we find two pre-dependent

activities ("Water Pumping" and "Water Spraying") which

are shown in the first level of dependency in the colored

portion of the chain of dependent activities. The next level of

dependent activities require to be in the desired states accord-

ing to the current and desired states of the parent dependent

activities. For instance, in the figure, "Nitrogen Spraying" is a

dependent activity according to the current and desired state

of "Water Spraying". In such scenarios with "dependencies

of dependencies", we only can update the state of the parent
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Fig. 7 Example of Chain of

Dependencies. Yellow boxes

represent activities. White box

in "Requested Activity" includes

the requesting source and a

suitable object to perform

activity sowing seeds while the

white boxes in Chain of

Dependent Activities include

the current and desired states of

each dependent activity. The

arrows pointing from one

activity to another indicate that

the parent activity depends on

the child activity to change its

state from the current to the

desired

Table 2 Family of ACACD sub-models. The sub-models are created

based on when the decision is made on the requested activity (indicated

by preD and onD) and whether at each phase the model supports state-

update of the dependent activities or not (indicated by 0, 1, 2, 3). ‘Yes’

indicates that the scenario is practical and ‘No’ indicates otherwise

Immutable (0) Pre-update (1) Ongoing-

update (2)

Post-

update (3)

preD Yes Yes No Yes

onD Yes No Yes Yes

dependent activity when all dependent activities are in their

desired states. This requires the system to find the chain of

dependencies and update accordingly. In Section 4, we delve

into the issue of the chain of dependencies. Throughout this

section, we thoroughly examine the associated challenges

and propose potential solutions to tackle this problem.

3.3 ACACD formal models

Dependencies on activities (D) are created due to the rela-

tionships among activities. The activities can be on the same

or different devices. As characterized by Gupta and Sandhu

[14], related activities can be characterized as ordered, con-

current, temporary, precedent, dependent, conditional, and

incompatible. In this paper, we are not trying to develop a

policy language for ACACABCD. Instead, we focus on for-

malizing the ACACD models, which support the mutability

of activities for active access control.

Table 2 shows the criteria for defining ACACD sub-

models. The models are classified based on two parameters:

(a) When the dependencies on related activities are checked

to take any decision on the requested activity. Decisions can

be made pre i.e., before allowing the requested activity to

start (referred to as preD) or ongoing, meaning while the

requested activity is running (referred to as onD); (b) At

which phase does the model support changing the states of

dependent activities. The dependent activities can be either

immutable or mutable, however, for immutable activities,

the model cannot update the states and may result in activity

request denial. We denote the case as ‘0’ when the current

and the desire states of the dependent activities are checked

without supporting the updates on dependent activities. On

the other hand, if the model supports changing the states of

dependent activities, then state updates are possible before

(pre), during (ongoing), or after (post) the requested activ-

ity is performed. These cases are denoted as ‘1’, ‘2’, and

‘3’, respectively. In all cases, the dependent activities can be

both immutable and mutable, however, updates on depen-

dent activities can be possible in ‘1’, ‘2’, and ‘3’ for mutable

activities.

In Table 2, cases marked as ‘Yes’ indicate the more prac-

tical scenarios considering when a decision is made, and

when dependent activities change state. Cases marked by

‘No’ indicate that such scenarios are not practically useful.

If the decision is taken before allowing the requested activ-

ity, updates on the dependent activities can occur before (pre)

and after (post) the requested activity is performed. Without

ongoing-decision, there is no need to have ongoing-update

as a part of mutability, and is thus marked as ‘No’. For exam-

ple, dependent activity B must be started before allowing

requested activity A to start, and B should be revoked after

A is finished. This case can be handled using pre and post
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Fig. 8 Categorization of ACACD sub-models

update of B as a consequence of the initiation of A, and

does not require ongoing-updates on B. However, if the deci-

sion is taken while the requested activity is ongoing, updates

on the dependent activities can occur during (ongoing) and

after (post) the requested activity is performed. In case of an

ongoing-decision, the activity is already initiated. Thus, onD

does not consider the pre-updates on the dependent activities

and is marked as ‘No’ for pre-update (1) of the onD case. The

six ‘Yes’s in Table 2 define six basic ACACD sub-models,

which will be formalized in the following sections.

Different sub-model combinations of ACACD will be

required for different type (pre, ongoing or post) of updates

to solve all the recursive dependencies, as each sub-model

defines a specific type of update. Further, the dependent activ-

ities can be on the same or different device on which the

activity is requested. Moreover, the dependent activity may

be initiated by different objects in the system. In our model,

the system chooses the object which can fulfil the activity, as

will be discussed in the following sections.

In Fig. 8, we show how the family of ACACD model is

categorized into different sub-models. The ‘0’ cases for both

preD and onD models only support checking the current and

desired states of the activities, without any state updates. The

‘1’, ‘2’, and ‘3’ cases supporting mutability add update proce-

dures for the dependent mutable activities, and thus, inherit

the basic components from the corresponding ‘0’ cases. It

should be noted that if the dependent activity is immutable,

no state updates are allowed, and will result in activity request

denial if the current and the desired states do not match. We

formally discuss the components for each sub-model in the

following subsection.

In real-world use-cases, the activity-centric approach may

need a combination of two or more ACACD sub-models

checking pre-, ongoing, and post-dependencies. However,

for clarity, we will formalize the behavior of the sub-models

individually, and in our prototype implementation in Sect. 5,

we experiment with a more holistic multi-model comprehen-

sive use case scenario.

Table 3 elaborates the basic sets and functions we use in

the formal definitions (1-6) and Algorithms (1,2,3). S, O ,

and O P are the finite sets of sources, objects, and operations

in the system [in Fig. 4, source is shown in a circle in the left

part, and operation and object are shown respectively in ellip-

tical and circle shape in the green part]. ACT is a finite set of

activities that can be performed in the system. ACTR , ACTD ,

ACTDoD are the finite sets of requested activities, dependent

activities, and dependent of dependent activities respectively

which are equivalent to the set of activities, ACT , formally

we can say ACTR = ACTD = ACTDoD = ACT . ST is the

finite set of the activity states which is defined in the system

as {inactive, dormant , aborted, running, hold, revoked,

f inished}. STC R and STDR are the finite set of current and

desired states which are equivalent to the set, ST , formally

we can say STC R = STDR = ST . The function get Object

maps a requested activity to the most suitable object to per-

form the activity in the system. This function can be called

using a requested activity act ∈ ACT and provides the most

suitable object o ∈ O . get Operation function determines

the corresponding operation to start the requested activity

on the chosen object by the system. get D A function maps

a requested activity and its corresponding object to a set of

dependent activities (ACTD). The dependent activities for

a particular requested activity can vary depending on the

corresponding object. getCurrentSt function maps an activ-

ity to a current state. assignedDesiredSt function maps a

dependent activity to an empty set or a desired state. This

function is used to store a currently assigned desired state

for a dependent activity. getBinarySemaphoreValue func-

tion is used to provide the currently assigned value (0 or 1)

for a dependent activity meaning that this activity is locked

(cannot change the state) or unlocked by another activity.

hasConflictingDesiredSt function maps a dependent activity

to TRUE or FALSE meaning whether that dependent activity

has conflicting (multiple) desired states or not. get DoD A

function takes the input of a dependent activity, the cur-

rent and desired state of this activity, and provides a set

of activities which we call dependent of dependent activi-

ties. We refer ‘DoD’ subscript to "dependent of dependent".

To get the desired state of a dependent of dependent activ-

ity, we use the function get Desired DoD ASt which maps a

dependent activity, its current and desired state and a depen-

dent of this dependent activity to a desired state. Apart

from the basic sets and function in Table 3, we use two

more functions from the algorithms (elaborated in Sect. 4)

in the model definitions. One is RECURSIVE-CHECK-OF-

DEPENDENCIES-WITH-CONFLICT-DETECTION(da,

da_current_st , da_desired_st), which is a function in

Algorithm 1 that recursively checks if an activity, da

has dependencies to transition from da_current_st to

da_desired_st and for each activity, it detects whether

the activity has conflicting desired states (multiple desired

states) or not and stores the information. Another function is

RECURSIVE-UPDATE(da, da_current_st , da_desired

_st) function from Algorithm 2 which recursively handles the
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Table 3 Introduction to basic sets and functions used in the definitions and algorithm

state check and update process for all dependencies (includ-

ing chain of dependencies) of a dependent activity, da.

3.3.1 ACACpreD - pre-dependency models

ACACpreD models utilize the dependencies related to the

decision process before the initiation of the requested

activity. ACACpreD has three sub-models (stated in Fig. 8a

ACACpreD0 model checks the pre-dependencies that are

required to allow the requested activity. ACACpreD0 model

does not support mutability (i.e. cannot update depen-

dent activity states). ACACpreD1 model allows pre-updates

on the dependent activities that require to be in specific

states to allow the requested activity. ACACpreD does not

have ongoing-update model since ongoing-update without

ongoing-decision does not need to be considered as a part of

mutability. Post-updates on dependent activities as a conse-

quence of the pre-decision process are handled in ACACpreD3

model. The following three definitions formalize ACACpreD

models. We elaborate the basic sets and functions in Table 3

and use the necessary sets and functions in these definitions

from the table.

Definition 1. ACACpreD0 : Pre-dependency checking

model for pre-dependent activities. ACACpreD0 model

checks the current and desired states of the pre-dependent

activities before allowing a requested activity. This model

does not have any update procedure for state change and can-

not support mutability of dependent activities. ACACpreD0

consists of the following components (shown in Fig. 4), and

explained later:
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– S, O, O P, ACT , ACTR, ACTD , ST , STC R , STDR are

finite sets of sources, objects, operations, activities, requested

activities, dependent activities, activities’ states, current

states and desired states respectively [elaborated in Table 3].

A source s ∈ S requests to perform an activity act ∈ ACT ,

defined as request(s, act). To satisfy this activity request

(formally stated as, request(s, act) = T rue), the system will

first specify an appropriate object o ∈ O , and perform an

operation op ∈ O P (Note that, whether source s is allowed

to perform an operation op on an object o is determined

by the authorization model ACACA). Then, the system will

check activity dependencies based on the corresponding to

the requested activity and the object, using the get D A func-

tion.

– get Desired PreD ASt : ACTR × ACTD −→ STDR

� [mapping a requested activity, and a dependent activ-

ity to a desired state.]

– preD(act : ACT , o: O) −→ {True, False}, defined

as
∧

(da∈get D A(act,o))getCurrent St(da) = get Desired

PreD ASt(act, da)

– allowed(s:S, o: O , op: O P , act : ACT ) ⇒ preD(act ,

o)

ACACpreD0 model consists of sources (S), objects (O),

operations (O P), activities (ACT ), requested activities

(ACTR), dependent activities (ACTD), finite set of activities’

states (ST ), activities’ current states (STC R) and activi-

ties’ desired states (STDR). The function get Object maps a

requested activity to the most suitable object o ∈ O to per-

form the activity in the system. get Operation determines

the corresponding operation to start an activity on the chosen

object, o. More than one combination of activity and object

can be mapped to an operation. The function get D A com-

putes the set of dependent activities, decided based on the

activity act ∈ ACT and the corresponding object o ∈ O .

Note that the dependencies are dynamic, and can change

based on conditions (C) and contextual factors. This is a

many-to-one mapping function where each combination of

activity and object can be mapped to a set of activities. The

function getCurrent St is used to get the current state of an

activity and get Desired PreD ASt is used to determine the

desired states of pre-dependent activities (activities that need

to be checked before starting activity act). getCurrent St

and get Desired PreD ASt are many-to one mapping func-

tions.

preD is a functional predicate that takes the requested

activity and the corresponding object (since dependencies

can change based on which object is performing the activity)

as inputs, and return T rue or False by comparing the cur-

rent and desired states of all pre-dependent activities. T rue

indicates that all dependent activities’ current states are in

the desired states. False indicates that at least one depen-

dent activity is not in the desired state to allow the requested

activity to be initiated. To allow the request, formally stated

as request(s, act) = T rue, the allowed(s, o, op, act) func-

tion (which decides s can perform operation op to start the

activity act on the object o) should evaluate to T rue. The

allowed function returns T rue if preD evaluates to T rue.

Note that, we use the implies ( �⇒ ) connective where the

right hand side of the connective is necessary but not suffi-

cient since authorization (A), oBligations (B) and conditions

(C) also be checked for the left hand side to be T rue. There

is no update procedure in this model.

Example 1. In smart manufacturing, a robot is trying

to make a f orceGeneration activity request, stated as

request(robot, f orceGeneration).

– S = {robot}

– O = {motor}

– O P = {turnOn, turnO f f }

– ACT = { f orceGeneration, vibrationMonitoring}

– ST = {inactive, dormant , aborted, running, hold,

revoked, f inished}

– get Object( f orceGeneration) = motor

– get Operation( f orceGeneration, motor ) = turnOn

– get D A( f orceGeneration, motor ) = {vibrationMoni

toring}

– getCurrent St(vibrationMonitoring) = running

– get Desired PreD ASt( f orceGeneration, vibration

Monitoring) = running

– preD( f orceGeneration, motor ) = True

– allowed(robot , motor , turnOn, f orceGeneration)

⇒ preD( f orceGeneration, motor )

In this example, to satisfy the request made by the

source robot , we get the corresponding object motor

and operation turnOn for the requested activity. The set

of dependent activities for f orceGeneration consists of

vibrationMonitoring. The desired state of vibrationMo

nitoring is running. In this instance, the current state is

same as the desired state for the only dependent activity.

Thus, preD( f orceGeneration, motor) is T rue as the nec-

essary condition (comparing the current and desired states of

the dependent activity) in preD( f orceGeneration, motor)

is fulfilled. The allowed function also returns T rue which

decides that source robot is allowed to perform the opera-

tion, turnOn on the object motor to initiate the requested

activity, f orceGeneration.

Definition 2. ACACpreD1 : Pre-update model for pre-

dependent activities. ACACpreD1 model adds state update

procedure for the pre-dependent activities (dependent activi-

ties that are required to be in desired state before initiation of

the requested activity). These pre-dependent activities may,

in-turn, be dependent on other activities. For example, start-
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ing the requested activity A depends on starting the dependent

activity B. Activity B can’t start until activity C has already

started. In such situations, we have to update the states of

the pre-dependent activities in a recursive way, where we

explore the "dependencies of dependencies" until we find a

dependent activity that does not have any dependent activity

before changing its state or all dependent activities need to be

already in their desired states. Algorithm 1 includes a func-

tion named RECURSIVE-CHECK-OF-DEPENDENCIES-

WITH-CONFLICT-DETECTION where a dependent activ-

ity, the current and desired state of that activity are passed

as parameters. We check if this dependent activity has any

conflicting (multiple) desired states or not and store this

information. Note that, this function is recursive and we

recursively detect the conflicting desired states for all "depen-

dencies of dependencies" along with the dependent activity

(explained in Sect. 4). In Algorithm 2 in Sect. 4, we have

a function named RECURSIVE-UPDATE. In this function,

we pass the parameters for a dependent activity, its current

state and a desired state of this dependent activity. This func-

tion returns the desired state after checking and updating

(if necessary) all the "dependencies of dependencies". We

explain Algorithm 2 in Sect. 4 describing the way it works

with the recursive update procedure of "chain of dependen-

cies". Conceptually, ACACpreD1 model is an extension to

ACACpreD0 as it adds the pre-update procedure when allowed

function returns False. Thus, to satisfy the activity request

request(s : S, act : ACT ) = T rue, ACACpreD1 model

allows updating the states of the pre-dependent activities

using the following preUpdate(act) function defined as.

– preUpdate(act , o): � [Function Definition]

(∀da ∈ get D A(act, o)).

[RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-

CONFLICT-DETECTION(da,getCurrent St(da),

get Desired PreD ASt(act , da))

getCurrent St(da) �= get Desired PreD ASt(act , da)

⇒ getCurrent St(da) = RECURSIVE-UPDATE(da,

getCurrent St(da), get Desired PreD ASt(act , da)) ]

– preUpdate(act , o) ⇒ allowed(s, o, op, act) == False

� [Function Call]

ACACpreD1 model introduces the preUpdate function

to update the states of the pre-dependent activities that

are required to be in specific states for the initiation

of the requested activity act on the object o. In this

function, we iterate a loop for all the dependent activ-

ities where the current state of each dependent activity

is updated to the desired state if it is not in the desired

state at the time of the request. Before updating the cur-

rent state of each dependent activity, we check whether

the dependent activity (including its dependencies) in the

loop has conflicting desired states or not utilizing the func-

tion, RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-

CONFLICT-DETECTION in Algorithm 1. After that, we call

the RECURSIVE-UPDATE function in Algorithm 2 by the

dependent activity, its current state, and the desired state and

resolve the state-updates for "chain of dependencies" where

it is required. This function returns the desired state and we

update the current state to the desired state. preUpdate func-

tion is called when the allowed function returns False as the

current states of all the dependent activities are not in their

desired states. For simplicity, issues like who will update the

state of the activity and underlying technical implementation

of the update procedure is left unspecified in this paper.

Example 2. In smart home, the houseOwner is trying to

make the request for the activity, playingNews. The request

is stated as request(houseOwner , playingNews).

– S = {houseOwner}

– O = {T V , googleHome}

– O P = {turnOn, turnO f f }

– ACT = {playingSong, playingNews}

– ST = {inactive, dormant , aborted, running, hold,

revoked, f inished}

– get Object(playingNews) = T V

– get Operation(playingNews, T V ) = turnOn

– get D A(playingNews, T V ) = {playingSong}

– getCurrent St(playingSong) = running

– get Desired PreD ASt(playingNews, playingSong)

= inactive

– preD(playingNews, T V ) = False

– allowed(houseOwner , T V , turnOn, playingNews)

⇒ preD(playingNews, T V )

– preUpdate(playingNews) ⇒ preD(playingNews,

T V ) == False

In Example 2, to satisfy request(houseOwner , playing

News), we get the corresponding object T V and the oper-

ation turnOn. The set of dependent activities (provided

by get D A(playingNews, T V )) for playingNews con-

sists of playingSong. In this instance, the current state

of playingSong is running, which is not the same as

the desired state inactive. Thus, preD is false, and so

is the allowed function. Therefore, the model updates

the current state of playingSong to inactive using the

preUpdate(playingNews) function. Once updated, the req

uest request(houseOwner , playingNews) is allowed.

Definition 3. ACACpreD3 : Post-update model for depen-

dent activities with pre-check. ACACpreD3 model adds

the post-update procedure which updates the states of the

dependent activities after the requested activity is finished,

revoked or on hold. Updating the states of these depen-
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dent activities accumulate the consequence of the requested

activity. In pre-check, we check the pre-dependent activi-

ties that need to change their states after the completion or

revocation of the requested activity. For example, a depen-

dent activity B have already started to help executing the

requested activity A. After A is finished, activity B is no

longer needed. Thus, we make sure there are no unnecessary

activities going on after the purpose is completed. In such

cases, combination of pre-update and post-update models is

more appropriate. However, we consider post-update as a

separate procedure. Conceptually, ACACpreD3 model is an

extension to ACACpreD0 which adds the post-update proce-

dure.

– get Desired Post D ASt : ACTR × ACTD −→ STDR

� [mapping a requested activity which has either been

on ‘hold’, ‘finished’ or ‘revoked’, and a post-dependent

activity to a desired state]

– post D(act : ACT , o: O) −→ {True, False}, defined

as
∧

(da∈get D A(act,o))getCurrent St(da) = get Desired

Post D ASt(act , da)

– postUpdate(act , o): � [Function Definition]

(∀da ∈ get D A(act, o)).

[RECURSIVE-CHECK-OF-DEPENDENCIES-WITH

-CONFLICT-DETECTION(da,getCurrent St(da),

get Desired Post D ASt(act, da))

getCurrent St(da) �= get Desired Post D ASt(act, da)

⇒ getCurrent St(da) = RECURSIVE-UPDATE(da,

getCurrent St(da), get Desired Post D ASt(act, da))

]

– postUpdate(act , o) ⇒ post D(act , o) == False

� [Function call]

ACACpreD3 model includes the postUpdate function to

update the states of the dependent activities after the

requested activity act is performed. The get Desired Post

D ASt is a many-to-one function to get the desired states of

the post-dependent activities. It maps the requested activity

and a dependent activity to a desired state. Then the post D

function is evaluated checking the current and desired states

of the post-dependent activities. In postUpdate function,

conflicting desired states are checked for all the post-

dependent activities calling the RECURSIVE-CHECK-OF-

DEPENDENCIES-WITH-CONFLICT-DETECTION func-

tion from Algorithm 1 followed by updating their current

states to their corresponding desired states utilizing the

RECURSIVE-UPDATE function from Algorithm 2. This

postUpdate function is called when post D returns False

(which means that the current states of all dependent activi-

ties are not in their desired states).

Example 3. In smart industry, a productionW orker

is requesting hydrotreating activity, formally stated as

request(productionW orker , hydrotreating).

– S = {productionW orker}

– O = {tank Pump, hydrotreater}

– O P = {turnOn}

– ACT = {oil Pumping, hydrotreating}

– ST = {inactive, dormant , aborted, running, hold,

revoked, f inished}

– get Operation(hydrotreating, hydrotreater ) =

turnOn

– get D A(hydrotreating, hydrotreater ) =

{oil Pumping}

– getCurrent St(oil Pumping) = inactive

– get Desired Post D ASt(hydrotreating, oil Pumping)

= running

– post D(hydrotreating, hydrotreater ) = False

– postUpdate(hydrotreating)⇒ post D(hydrotreating,

hydrotreater ) == False

In Example 3, the requested activity is hydrotreating. This

request was allowed and has just finished. Now, we need to

update the post-dependent activities of hydrotreating. We

get the set of dependent activities for hydrotreating (using

get D A(hydrotreating, hydrotreater) function) which con-

sists of one activity, oil Pumping (assuming oil Pumping

already served its purpose of activating hydrotreating). The

current and desired states of oil Pumping are not same in

this instance. Thus, the post D function returns False. We

call postUpdate(hydrotreating) function where the current

state of oil Pumping is updated to the desired state.

3.3.2 ACAConD - ongoing-dependency models

ACAConD models consider the dependencies on activi-

ties while the requested activity is ongoing. The ongoing

decisions can be continue, hold or, revoke the requested activ-

ity, and can impact dependent activities. Execution of the

requested activity can be continued if the ongoing dependent

activities are in the desired states. If the dependent activities

are mutable, their current states can be updated for the con-

tinuity of the requested activity. Otherwise, the execution of

the requested activity will be revoked. Besides that, hold-

ing the requested activity can accumulate any emergence or

contextual situations. ACAConD has three sub-models (stated

in Fig. 8b) based on if states of dependent activities can be

updated and which phase the updates can occur as shown

in Table 2. ACAConD0 model checks the current and desired

states of the ongoing dependent activities. ACAConD0 model

does not support mutability. ACAConD2 allows updates on the

states of the ongoing dependent activities as a consequence of

the ongoing-decisions. ACAConD3 model checks and updates
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the post-dependent activity states that are related to the

ongoing activity and decisions. ACAConD does not have

the ACAConD1 model since the requested activity is already

allowed and there is no reason to consider the pre-updates

after allowing the activity. Since the ongoing dependent

activities are checked during the execution of the requested

activity, how frequently the dependencies are checked is

unspecified, and left for the implementation details.

Definition 4. ACAConD0 : Ongoing-dependency check-

ing model for ongoing dependent activities

ACAConD0 model checks the dependencies on activities

while the requested activity is running to decide continu-

ity or revocation of the ongoing activity. There is no update

procedure in this model. We need this model only to check if

all the ongoing dependent activities are in their desired states

or not. The model consists of the following components:

A source s ∈ S requests to perform an activity act ∈

ACT , defined as request(s, act). Since, ACAConD0 model

checks the ongoing dependencies on activities, the requested

activity is assumed to be initially allowed.

– allowed(s: S, o: O , op: O P , act : ACT ) ⇒ True

– get Desired OnD ASt : ACTR × ACTD −→ STDR

� [mapping a requested ‘running’ activity, and an

ongoing-dependent activity to a desired state.]

– onD(act : ACT , o: O) −→ {True, False}, defined

as
∧

(da∈get D A(act,o))getCurrent St(da) = get Desired

OnD ASt(act , da)

– stopped(act : ACT , o: O) ⇒ onD(act , o) == False

� [Function call]

ACAConD0 model consists of sources (S), objects (O), oper-

ations (O P), activities (ACT ), requested activities (ACTR),

dependent activities (ACTD), finite set of activities’ states

(ST ), activities’ current states (STC R) and activities’ desired

states (STDR) [explained in Table 3]. get Object function

provides the corresponding object the activity is running on.

get Operation function provides the operation op that is

performed on object o to initiate the requested activity, act .

The allowed function is T rue since the requested activity

is already assumed to be running currently, and the check is

only made for ongoing decision.

get D A function computes the set of dependent activities

for the ongoing activity, act ∈ ACT . get Desired OnD ASt

is used to get the desired states of the ongoing-dependent

activities. This function maps the requested ‘running’ activity

and a dependent activity to a desired state. onD is a functional

predicate which takes input of the requested activity and

corresponding object (since dependencies can change based

on the object which is performing the activity), and com-

pares the current and desired states of all ongoing-dependent

activities (and returns T rue or False) to make a decision.

Ongoing dependencies are checked throughout the execution

of the activity act using the onD function. If onD returns

False, the activity will be revoked which is handled using

the stopped function. We do not have any update procedure

in this model.

Example 4. In smart farming, activity cooling is requested

by the f arm Manager (formally stated as request( f arm

Manager , cooling)) and is assumed to be allowed. In the

ongoing check, our model ensures the corresponding depen-

dencies are fulfilled.

– S = { f arm Manager}

– O = {cooler , aerial Drone}

– O P = {turnO f f , turnOn}

– ACT = {thermal I maging, cooling}

– ST = {inactive, dormant , aborted, running, hold,

revoked, f inished}

– get Object(cooling) = cooler

– get Operation(cooling, cooler ) = turnOn

– get D A(cooling, cooler ) = {thermal I maging}

– getCurrent St(thermal I maging) = inactive

– get Desired OnD ASt(cooling, thermal I maging)

= running

– onD(cooling, cooler ) = False

– stopped(cooling, cooler )

In this example, thermal I maging is an immutable and

ongoing-dependent activity for cooling to obtain the cur-

rent temperature and relevant status of the environment.

The desired state of thermal I maging is running to con-

tinue cooling. As the current state of thermal I maging is

inactive (and cannot be changed) which is different from

the desired state, cooling will be revoked.

Definition 5. ACAConD2 : Ongoing-update model for

ongoing dependent activities

ACAConD2 model adds the update procedure to change the

states (if not in desired state) of the ongoing dependent activ-

ities of a requested activity. The updates are required to allow

the requested activity to continue. For example, A is the

requested activity which is executing and B is the depen-

dent activity that should be running to continue activity A.

In this model, we can update the state of activity B from

inactive to running to allow the activity A to continue.

ACAConD2 model includes a function onUpdate for such

ongoing updates. This model is an extension to ACAConD0

adding the ongoing update procedure.

– onUpdate(act , o): � [Function Definition]

(∀da ∈ get D A(act, o)).

[RECURSIVE-CHECK-OF-DEPENDENCIES-WITH

-CONFLICT-DETECTION(da, getCurrent St(da),
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get Desired OnD ASt(act , da))

getCurrent St(da) �= get Desired OnD ASt(act , da)

⇒ getCurrent St(da) = RECURSIVE-UPDATE(da,

getCurrent St(da), get Desired OnD ASt(act , da)) ]

– onUpdate(act , o) ⇒ onD(act , o) == False

� [Function Call]

For the requested activity to continue, ongoing-dependent

activities may require state change.

In onUpdate(a) function, we iterate a loop for each ongo-

ing dependent activity, check if the dependent activities and

the dependent of dependent activities have conflicting (multi-

ple) desired states or not (calling RECURSIVE-CHECK-OF-

DEPENDENCIES-WITH-CONFLICT-DETECTION func-

tion from Algorithm 1) followed by updating their current

states by calling the RECURSIVE-UPDATE function in

Algorithm 2 (with checking and updating the states of "chain

of dependencies"). This onUpdate function is called when

onD returns False suggesting that not every dependent

activity is in desired state.

Example 5. In smart farming, an ongoing activity is

cooling the greenhouse requested by the source f arm Man

ager (formally stated as request( f arm Manager , cooling)).

– S = { f arm Manager}

– O = {airCooler , humidi f ier}

– O P = {turnOn, turnO f f }

– ACT = {cooling, humidi f ying}

– ST = {inactive, dormant , aborted, running, hold,

revoked, f inished}

– get Object(cooling) = airCooler

– get Operation(cooling, airCooler ) = turnOn

– get D A(cooling, airCooler ) = {humidi f ying}

– getCurrent St(humidi f ying) = inactive

– get Desired OnD ASt(cooling, humidi f ying)

= running

– onUpdate(cooling) ⇒ onD(cooling, airCooler ) ==

False

In example 5, the ongoing activity is cooling the environ-

ment of a greenhouse using the object airCooler . While

cooling, if the humidity is low the humidi f ier should be

running to continue cooling. In that case, humidi f ying

is an ongoing dependent activity for cooling. We call the

onUpdate(cooling) function and update the current state of

humidi f ying from inactive to the running state as the onD

function returns False. This will ensure that the cooling con-

tinues while humidi f ying is running.

Definition 6. ACAConD3 : Post-update model for depen-

dent activities with ongoing-check

ACAConD3 model adds the update procedure for the

dependent activities which may need state change when the

requested activity is finished, on hold, or revoked, requiring

ongoing check. For instance, A is a requested activity and B is

a dependent activity which needs to be started while A is run-

ning. After A is revoked, B should be stopped immediately.

This is a post-update on B based on the decision taken on

activity A while running (ongoing check). ACAConD3 model

is an extension to ACAConD0 adding the post-update proce-

dures.

– get Desired Post D ASt : ACTR × ACTD −→ STDR

� [mapping a requested activity which has been ‘fin-

ished’, ‘revoked’, or on ‘hold’, and a post-dependent

activity to a desired state]

– post D(act : ACT , o: O) −→ {True, False}, defined

as
∧

(da∈get D A(act,o))getCurrent St(da) = get Desired

Post D ASt(act , da)

– postUpdate(act , o): � [Function Definition]

(∀da ∈ get D A(act, o)).

[RECURSIVE-CHECK-OF-DEPENDENCIES-WITH

-CONFLICT-DETECTION(da,getCurrent St(da),

get Desired Post D ASt(act, da))

getCurrent St(da) �= get Desired Post D ASt(act, da)

⇒ getCurrent St(da) = RECURSIVE-UPDATE(da,

getCurrent St(da), get Desired Post D ASt(act , da)) ]

– postUpdate(act , o) ⇒ post D(act , o) == False

� [Function call]

In this model, get Desired Post D ASt function provides the

desired state of a post-dependent activity. This function takes

a requested activity and one of its dependent activity as input

and returns a desired state for this dependent activity. post D

function checks the current and desired states of the post-

dependent activities and returns T rue or False based on

the outcome of the comparison between current and desired

states of all post-dependent activities. In postUpdate func-

tion, the current states of all the dependent activities are

updated (to desired states) if they are not in the desired

states (i.e., if post D returns False). Before updating the

states, we check if the dependent activity da or any of

its dependent activity has conflicting desired states or not.

We call the RECURSIVE-CHECK-OF-DEPENDENCIES-

WITH-CONFLICT-DETECTION function from Algorithm

1 (explained in Sect. 4) by passing a post-dependent activity,

its current state and its desired state. After that, we call the

RECURSIVE-UPDATE function in Algorithm 2 by passing a

post-dependent activity, its current state, and its desired state

and it returns the desired state after checking and updating

the "chain of dependencies".

Example 6. In smart home, f loorCleaning was requested

by the source f loor W orker , stated as request( f loor

W orker , f loorCleaning).

123



3298 T. Mawla et al.

– S = { f loor W orker , sensor}

– O = {vacuumCleaner , roboticArm}

– O P = {turnOn, turnO f f }

– ACT = {movingObject , f loorCleaning}

– ST = {inactive, dormant , aborted, running, hold,

revoked, f inished}

– get Object( f loorCleaning) = vacuumCleaner

– get Operation( f loorCleaning, vacuumCleaner ) =

turnOn

– get D A( f loorCleaning, vacuumCleaner )

= {movingObjects}

– getCurrent St(movingObjects) = running

– get Desired Post D ASt( f loorCleaning,

movingObjects) = inactive

– postUpdate( f loorClea

ning) ⇒ post D( f loorCleaning, vacuumCleaner ) ==

False

In Example 6, we assume the activity f loorCleaning

has been just finished which was running on the object,

vacuumCleaner . For the continuity of this activity,

movingObjects by roboticArm was running. The purpose

of movingObjects is done after f loorCleaning is fin-

ished. Thus, movingObjects needs to be in inactive state

as a post-dependent activity. We update the state using the

postUpdate( f loorCleaning) function.

4 Challenges of resolving chain of
dependencies

Chain of dependencies refers to "dependencies of dependen-

cies" where one activity relies on another activity for the

state transition, which in turn relies on some other activity

and these sequence continues until there exists one indepen-

dent activity which is not dependent on others for its state

transition. In large, complex and dynamic environments, the

proliferation of activities is inevitable. The dynamic nature

of the activities evolving over time and changing the states

based on conditions may often pose challenges in managing

the policies with manual specifications. Due to the activities

having the mutability characteristic, it is essential to keep the

dependent activities and chain of dependent activities sepa-

rate from the specification expressions.

In case of manual specification of the policies, the admin-

istrators must ensure that there is no conflicting and deadlock

situations created. In this regards, the administrators can use

the applications or existing tools to check if the chain of

dependencies can form a deadlock by using different com-

bination of current and desired states of the parent and child

dependent activities. The administrators also need to check

whether an activity is reachable to the desired state while hav-

ing parallel request processing and non-deterministic order of

dependency check and updates. To accommodate the manual

specification and address the deployability concern, develop-

ing tools and frameworks using algorithms for determining

the reachability and existence of deadlocks can help the

administrator avoid assigning the conflicting dependencies.

In such scenarios, depending on the designer’s choice and

fulfillment of the system requirements, the dependencies are

required to be assigned creating no conflicts. In existing lit-

erature, the state of the art works on reachability analysis

[28] of different critical components such as attributes can

be helpful as resources for the administrators.

The request processing time increases with number of

dependencies checked and updated. In real-time environ-

ment, the dynamic nature of activities and hundreds or

thousands of requests being processed simultaneously can

impact the request processing time. In parallel execution of

the activities, depending on the priority of activities, few

activities may need to wait for other activities to be finished.

In addition to that, duration of activities based on the sys-

tem requirements and other parameters can also impact the

request processing time. However, the duration is dependent

on the system requirements. In the specification context, the

administrators need to avoid the complexities while assign-

ing dependent activities to ensure the system never reach to

an unsolvable state due to conflicts and deadlocks. In this

section, we discuss the challenges associated with resolving

a chain of dependencies. that increase the complexity and

reduce flexibility to update the states of dependent activities.

In the following subsections, we discuss these challenges.

4.1 Multiple dependency paths: non-deterministic
or deterministic?

A requested activity may depend on a single or multiple activ-

ities in any phase of its life cycle. Multiple dependency paths

(as shown in Fig. 9a and 9b) can lead to increased complexity

Fig. 9 Chain of dependencies with multiple dependency paths. The cir-

cles represent activities while the arrows indicate that the parent activity

(e.g. act1) depends on the child activity (e.g. act2) to change its state
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in determining the path which the system should take first. On

a different note, the order of dependency checks and updates

(if required) can raise the question of whether the selection of

order should be deterministic or non-deterministic. We define

the deterministic and non-deterministic order of dependency

check and update and later in this section, we explain which

strategy is chosen for the selection of dependency path.

– Deterministic order of dependency check and update:

In a deterministic order for checking and updating the

dependent activity states across multiple dependency

paths, we can enforce a very specific selection criteria

based on which order of dependency checks among a

finite number of dependent activities is determined. In

Fig. 9a and 9b, we show two examples of activity depen-

dency chains where act1 has three dependent activities,

thus it has multiple dependency paths. In Fig. 9b, act6 is

a common dependency for both act2 and act3. For exam-

ple, we can say that the current state of act6 is "running"

and to resolve act2, act6 has to be in the "inactive" state.

Moreover, act2 needs act6 to stay in the "inactive" state.

On the other hand, to resolve act3, the desired state of act6
is "finished". Conceptually, according to the life cycle of

an activity, it goes to an "inactive" state from "finished"

state after a certain time if there are no further depen-

dencies (post-dependent activities). We consider such a

scenario for act6 in Fig. 9b. If we choose one of these

two dependency paths, act1 −→ act3 −→ act5 −→ act6
and act1 −→ act3 −→ act6 −→ act5 starting from act1
followed by act3, act6 will get the state "finished" and

it will go to the "inactive" state since there are no other

dependencies required to be checked for act6. As a conse-

quence, act2 can be resolved as it can have the act6 in the

desired state "inactive" while checking its dependencies.

This dependency check and update process is determinis-

tic as we select the starting path comparing two different

states of a common dependent activity. This selection

also results in the expected outcome by resolving the

chain of dependencies. However, this deterministic solu-

tion can be difficult to apply to accomplish the ultimate

goal where there exists a large number of activities with

multiple dependency paths including common dependent

activities with different desired states.

– Non-deterministic order of dependency check and

update: The non-deterministic approach for depen-

dency check and update refers to the strategy where the

sequence of activity dependency checks and updates is

not fixed as well as unpredictable if an activity has mul-

tiple dependency paths. Evaluation of dependencies and

update process can vary in the order each time the depen-

dencies are checked for a specific activity. In Fig. 9a and

9b, act1 has three dependent activities, thus it has mul-

tiple dependency paths. In a non-deterministic selection

of dependency path, the criteria to select the order of

checking and updating the states of dependent activities

(if required) is not predefined by the system. It can be

randomly chosen and the external system does not have

access to know the selection process.

In Fig. 9a and 9b, we show six activities in the cir-

cles named act1, act2, act3, act4, act5, and act6. act1 is the

requested activity, thus we can refer to it as the root of the

dependency chain. Both the (a) and (b) in Fig. 9 include act2,

act3, and act4 as dependent activities of act1. For instance, we

can think of these three activities as pre-dependent activities

of act1 which means we need these three activities in their

respective desired states before starting act1. The difference

between (a) and (b) in Fig. 9 is the parent activities of act6.

In Fig. 9a, act3 depends on act6 along with act5 whereas in

Fig. 9b both the act2 and act3 depend on act6 for their state

change into the respective desired states. In the first Fig. 9a,

there is no common dependency which means every depen-

dent activity has only one parent activity in the dependency

chain. On the contrary, in 9b, act6 is a common dependent

activity for both act2 and act3. For the first instance in 9a,

there is no complex situation while resolving the chain of

dependencies since all the dependent activities can change

their current state to the desired state (if required) for their

corresponding parent activities. Thus, the order of evaluat-

ing the dependencies and the update process does not matter

in this scenario. Therefore, whether we choose deterministic

or non-deterministic approach for dependency checks and

update for dependency chains does not matter where there

are no common dependencies between two or more parent

activities.

In Fig. 9b, in the dependency chain of the requested activ-

ity (act1), act2, and act3, both depend on act6 in order to

change their current state to the respective desired states. In

this instance, there can be one of the two possible cases;

requiring the same desired state of act6 for both of these

activities (act2 and act3) or requiring different desired states

of act6 for each activity. There does not exist any conflict if

act6 requires to be in the same desired state in order to change

states (to their desired ones) of act2 and act3. However, con-

flict will arise when act2 and act3 require two different desired

states for act6. We refer to these different desired states as

"conflicting desired states". In scenarios where a dependent

activity has conflicting desired states, we may choose deter-

ministic order of dependency check and update that can

provide an ultimate result where the root activity (act1 in

Fig. 9b) can certainly make its transition to the desired state.

However, we cannot guarantee the expected outcome for

the root activity of the dependency chain even if we take

a deterministic solution. For example, we can compare the
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conflicting desired states of the common dependent activity

(act6) and take the most preceding state among those differ-

ent desired states so that the common dependent activity can

get a scope to transition to the next desired states. We need

to backtrack to determine the order of the paths from the

root activity to the common dependent activity with the most

preceding desired state. However, we may not be able to get

the desired outcome in this deterministic solution if the com-

mon dependent activity (act6) needs to remain in a specific

state (e.g. "inactive") to change the current state of one the

parent activities (e.g. act2). Moreover, act2 needs to hold the

specific desired state to change its state first, and then act1
(root activity) can change its state. On the other hand, act3
needs to change the state of act6 to "running" state in order

to change the state of its parent activity (root activity "act1").

In this case, act2 will be able to hold (which we also refer

to "lock") act6 in the desired state of "inactive", thus act3
cannot change it to the "running" state. This is a policy con-

flict that cannot be solved either we choose a deterministic or

non-deterministic approach and it certainly cannot provide

any desired outcome for the root activity (act1). This is a pol-

icy design issue that should be handled while designing the

policy and must be avoided to resolve a chain of dependency

with multiple dependency paths problems.

When deciding about the deterministic approach to

resolve the chain of dependencies, it becomes more complex

when there are multiple levels of dependencies including

activities with multiple desired states. Finding the spe-

cific order for every single activity chain is not flexible

and scalable. Therefore, the system may choose the order

of dependency check and update and we can leave it as

a non-deterministic approach. However, choosing a non-

deterministic order may sometimes lead to a race condition

state. In the following section, we will address this problem

and provide a solution for it.

4.1.1 Race condition problemwith non-deterministic order

of dependency check and updates with multiple

desired states

In non-deterministic execution order, we need to make sure

that the state of a common dependent activity with conflicting

desired states cannot be overwritten or updated when its par-

ent activity (in the selected path from multiple dependency

paths using non-deterministic order) needs the common

dependent activity in a specific state. Since an activity is

a long continuous event, there may exist a scenario where

the dependent activity fulfills the requirement and later, it

can change the state according to the system context and

design. Here, the race condition refers to "racing" to mod-

ify the common dependent activity’s state by multiple parent

activities. We need to make sure the system does not allow

a parent activity to change the common dependent activity’s

state while another parent activity wants it to stay in another

conflicting state. This race condition formulates a problem

of how the system can handle the situation where a parent

activity holds a dependent activity with conflicting (multiple)

desired states in a specific state for a certain duration and this

state cannot be overwritten by any other activity at the same

time. We propose a solution using the following steps.

– Initially, we check whether there exist conflicting desired

states (multiple) for the dependent activities in a chain of

dependencies. We store this information for future usage

(referred to as Algorithm 1).

– We introduce a recursive update process for dependent

activities (in Algorithm 2) where it completes the updates

if the dependent activities fulfill the requirements of

desired states. If there are conflicting desired states for a

dependent activity, we use the locking mechanism (Algo-

rithm 3) for the dependent activity. The lock remains until

the parent activity’s purpose is served.

Algorithm 1 is utilized to determine whether a dependent

activity possesses conflicting desired states, where multi-

ple parent activities require different desired states for the

dependent activity. This algorithm consists of two functions:

RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-CON

FLICT-DETECTION(da, da_current_state, da_desired

_state) and DETECT-CONFLICTING-DESIRED-STATE

(da, da_desired_state). In the RECURSIVE-CHECK-OF-

DEPENDENCIES-WITH-CONFLICT-DETECTION(da,

da_current_state, da_desired_state) function, da repre-

sents the dependent activity for which conflicting desired

states are detected, with da_current_state representing its

current state and da_desired_state denoting the desired

state of the dependent activity. The function DETECT-

CONFLICTING-DESIRED-STATE(da, da_desired_state)

is employed to identify conflicting desired states. It takes the

dependent activity da and the currently examined desired

state (da_desired_state) as inputs. In this function, line 1

checks if a desired state is already assigned to da using the

assignedDesiredState(da) function. If the function returns

an empty set (∅), we assign the currently examined desired

state, da_desired_state, as the result. At this stage, as no

other desired state has been checked for da, we can infer that

no conflicting desired state exists for da and assign "FALSE"

as the result of hasConflictingDesiredState(da). However, if

there is a difference between the currently examined desired

state da_desired_state and the assigned Desired State

(assignedDesiredState(da)), we conclude that the dependent

activity da possesses conflicting desired states and assign

"TRUE" as the result of hasConflictingDesiredState(da).

After executing line 1 (calling DETECT-CONFLICTING-

DESIRED-STATE(da, da_desired_state)), we identify
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Algorithm 1 Detecting Conflicting Desired States of Dependent Activities

RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-CONFLICT-DETECTION(da, da_current_st, da_desired_st):

Description: detects conflicting desired states for a chain of dependent activities.

Input: da: a dependent activity

da_current_st : the current state of the dependent activity da

da_desired_st : the desired state of the dependent activity, da.

1: DETECT-CONFLICTING-DESIRED-STATE(da, da_desired_st)

2: DoDA = get DoD A(da, da_current_st, da_desired_st)

3: if (DoDA �= ∅)

4: then

5: for (each doda ∈ DoDA) do

6: RECURSIVE-CHECK-OF-DEPENDENCIES-WITH-CONFLICT-DETECTION(doda,getCurrent St(doda),

7: get Desired DoD ASt(da, da_current_st, da_desired_st, doda))

8: end for

9: end if

DETECT-CONFLICTING-DESIRED-STATE(da, da_desired_st):

Description: detects conflicting desired states and stores the information for a dependent activity.

Input: da: a dependent activity

da_desired_st : the desired state of the dependent activity da

1: if (assigned Desired St(da) == ∅)

2: then assigned Desired St(da) = da_desired_st

3: hasConflictingDesiredSt(da) = FALSE

4: else if da_desired_st �= assigned Desired St(da)

5: then hasConflictingDesiredSt(da) = TRUE

6: end if

conflicting desired states for "dependencies of dependen-

cies." In line 2, we obtain the set of dependent of depen-

dent activities, DoD A, for the dependent activity da.

Line 3 checks if this set is empty. If DoD A is not

empty, we recursively call the RECURSIVE-CHECK-OF-

DEPENDENCIES-WITH-CONFLICT-DETECTION func-

tion for each "dependent of dependent" activity to detect

conflicting desired states for these activities.

Algorithm 2 is implemented to handle the recursive pro-

cess of checking and updating the states of dependent

activities within a dependency chain. We choose a recur-

sive structure for this algorithm to ensure that we address

the "dependencies of dependencies" before updating the

state of a dependent activity. The function RECURSIVE-

UPDATE(da, da_current_st , da_desired_st) is defined,

where da represents a dependent activity, da_current_st

denotes its current state, and da_desired_st denotes the

desired state for da. In line 1, we obtain the set of depen-

dent activities (DoD A) that are required for da to transition

from da_current_st to da_desired_st . If DoD A is empty,

it implies that there are no dependencies that need to be

checked for this specific state transition of da. Line 2 veri-

fies whether DoD A is empty or not. If the condition is true,

we return da_desired_st from the function (line 3). Other-

wise (line 5), we proceed to explore each activity (doda) in

DoD A. Within lines 6-7, we check whether the current state

and desired state of each doda in DoD A are not the same

and whether doda has any conflicting state. This information

has already been stored using Algorithm 1 for all activities

in the dependency chain. If the condition in lines 6-7 is met,

we update the state of doda by calling the RECURSIVE-

UPDATE function, providing doda, its current state, and

desired state as parameters (lines 8-10). This recursive call is

necessary to check if doda has any further dependent activ-

ities and to compare their current and desired states before

returning the desired state. We include an additional check

to verify if the current and desired states of doda are not

equal and if doda has any conflicting states (lines 11-12).

If these conditions are satisfied, we call ACQUIRE-LOCK

function defined in Algorithm 3 (line 14-15). Algorithm 3

will check if the activity, doda is locked or unlocked. Then

we update the current state of this activity by calling the

function RECURSIVE-UPDATE (line 16-17).

Algorithm 3 is inspired by the Binary Semaphore [29] or

Mutex Lock mechanisms in operating systems. The binary

Semaphore mechanism is used to synchronize between

two values, 0 and 1, and allows only a single unit to

the critical section (to get access to shared resources). We

use a similar locking mechanism using a function named

"get BinarySemaphoreV alue(doda)" where doda is a

dependent of dependent activity and the value returned

from this function is 0 or 1. When the value returned from
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Algorithm 2 Recursive Update of States for Chain of Dependent Activities

RECURSIVE-UPDATE(da, da_current_st, da_desired_st):

Description: Recursively updates the states of dependent activities while exploring the dependencies of dependencies and updating them first.

Input: da: a dependent activity

da_current_st : the current state of the dependent activity da

da_desired_st : the desired state of the dependent activity, da.

Output: Returns a desired state for the dependent activity, da.

1: DoDA = get DoD A(da, da_current_st, da_desired_st)

2: if (DoDA == ∅)

3: then return da_desired_st;

4: else

5: for (each doda ∈ DoD A) do

6: if (getCurrent St(doda) �= get Desired DoD ASt(da, da_current_st, da_desired_st, doda)

7: ∧ hasConflictingDesiredSt(doda) == FALSE)

8: then

9: getCurrent St(doda) = RECURSIVE_UPDATE(doda, getCurrent St(doda),

10: get Desired DoD ASt(da, da_current_st, da_desired_st, doda))

11: else if (getCurrent St(doda) �= get Desired DoD ASt(da, da_current_st, da_desired_st, doda)

12: ∧ hasConflictingDesiredSt(doda) == TRUE)

13: then

14: ACQUIRE-LOCK(da, da_current_st, da_desired_st, doda, get Binar ySemaphoreV alue(doda),

15: get Desired DoD ASt(da, da_current_st, da_desired_st, doda))

16: getCurrent St(doda) = RECURSIVE_UPDATE(doda, getCurrent St(doda),

17: get Desired DoD ASt(da, da_current_st, da_desired_st, doda)) � RELEASE-LOCK(doda) will be called when

the purpose of locking doda is done for da

18: end if

19: end for

20: return da_desired_st

21: end if

"get BinarySemaphoreV alue(doda)" is 1, this indicates

that doda is currently not locked by a parent activity. When

the value returned from "get BinarySemaphoreV alue

(doda)" is 0, this indicates doda is currently locked by

a parent activity. Therefore, it cannot change its current

state to fulfill the requirement of any other parent activ-

ity. In the function ACQUIRE-LOCK(da, da_current_st ,

da_desired_st , doda, get BinarySemaphoreV alue(doda),

get Desired DoD ASt(da,da_current_st ,da_desired_st ,

doda) ), da is the dependent activity which is currently try-

ing to change the current state of doda to the desired state in

order to transition from da_current_st to da_desired_st .

In this algorithm, we check if doda is currently locked

(get BinarySemaphoreV alue(doda) == 0) or unlocked

(get BinarySemaphoreV alue(doda)== 1). If it is unlocked,

we change the value of get BinarySemaphoreV alue(doda)

to 0 which indicates it is locked by da (line 1-2). If

doda is locked by some other activity (line 3), da must

wait for doda to be unlocked until we get the value

1 from get BinarySemaphoreV alue(doda) (line 5-7).

wait For(doda) indicates, the parent activity da will wait

for doda to be unlocked. Once the previous parent activ-

ity releases the lock using RELEASE-LOCK(doda) and

changes the value of get BinarySemaphoreV alue(doda)

to 1, the currently waiting dependent activity da again calls

the ACQUIRE-LOCK function and updates the value of

get BinarySemaphoreV alue(doda) (locks doda) (line 8-

9).

4.2 Circular dependencies and deadlock

In our proposed ACACD model, there can be circular depen-

dencies that create a deadlock situation. In a circular set of

dependencies, the chain of dependencies is created in a circu-

lar fashion (shown in Fig. 10). In this figure, the dependency

path is act1 −→ act2 −→ act3 −→ act1. In this circular set

of activities, act1 depends on act2 to find act2 in the desired

state "finished". act2 depends on act3 and requires act3 to be

"finished". act3 requires act1 to be "running" before it goes

to "finished" state. This circular wait for each activity is in a

deadlock and no activity ultimately gets their desired state.

There are certain ways to handle this type of deadlock situ-

ations. We discuss the deadlock handling techniques in the

next subsection.
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Algorithm 3 Locking Mechanisms for Activities with Conflicting Desired States

ACQUIRE-LOCK(da, da_current_st, da_desired_st , doda, get Binar ySemaphoreV alue(doda)

get Desired DoD ASt(da, da_current_st, da_desired_st, doda)):

Description: Lock a dependent of dependent activity if it is unlocked and wait for the release of lock if it is locked.

Input: da: a dependent activity,

da_current_st : the current state of the dependent activity da,

da_desired_st : the desired state of the dependent activity, da.

doda: a dependent of dependent activity.

get Binar ySemaphoreV alue(doda): the binary semaphore value of doda which can be 0 or 1 in turn.

get Desired DoD ASt(da, da_current_st, da_desired_st, doda): the desired state of doda corresponding to the

parent activity da’s state transition from da_current_st to da_desired_st .

1: if(get Binar ySemaphoreV alue(doda)==1)

2: then get Binar ySemaphoreV alue(doda) = 0;

3: else if (get Binar ySemaphoreV alue(doda)==0)

4: then

5: while (get Binar ySemaphoreV alue(doda)==0) do

6: waitFor(doda)

7: end while

8: ACQUIRE-LOCK(da, da_current_st, da_desired_st, doda, get Binar ySemaphoreV alue(doda),

9: get Desired DoD ASt(da, da_current_st, da_desired_st, doda))

10: end if

RELEASE-LOCK(doda):

Description: releases the lock for a dependent of dependent activity.

Input: doda: a dependent activity

1: get Binar ySemaphoreV alue(doda) = 1;

4.2.1 Deadlock detection and solutions

The system may fall into a deadlock if the system admin-

istrator fails to prevent it from assigning the dependencies

that create a circle. The deadlock due to a circular set

of dependent activities can be detected before the update

process starts. We can detect this deadlock with a typical

Depth First Search (DFS) algorithm. This kind of dead-

lock situation needs to be carefully analyzed by the system

designer. Upon identifying a circular dependency in the sys-

tem, the administrator plays a crucial role in breaking the

cycle within the dependency chain. It becomes imperative

for the administrator to thoroughly examine the activities

involved in the cycle and pinpoint a low-priority activity that

can be strategically removed. If the administrator success-

fully accomplishes this task, the deadlock can be effectively

eliminated, ensuring the system’s smooth operation with-

out violating the safety rules. Therefore, careful analysis

and decision-making by the administrator are instrumental

in resolving such deadlock scenarios, ultimately optimizing

the system’s performance and preventing potential disrup-

tions. Maximum timeout mechanisms can also be applied

for a requested activity where the request is denied after a

certain period of time. Deadlock detection and recovery are

challenging for a chain of dependent activities since this is

a design choice and policy engineering problem. Deadlock

prevention is a more suitable deadlock handling method for a

chain of dependent activities in such smart systems referred

to by our proposed ACAC model.

4.3 Combination of ACACD sub-models while
resolving chain of dependencies

As described in Sect. 3, different sub-models, denoted as

ACACD sub-models, support the mutability of activities at

various stages of their life cycle. Throughout the paper, we

discuss a set of several states {inactive, dormant , aborted,

running, hold, revoked, f inished} that a requested activ-

ity can pass through from its initiation to completion. To

fulfill the request for an activity, the states of dependent activ-
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Fig. 10 Circular dependencies of activities. The circles denote activities

and the arrows denote that the parent activity depends on the child

activity

ities are examined and updated, if necessary, to enable the

transition of the requested activity from one state to another.

For instance, when transitioning from the inactive to run-

ning state, the ACACpreD1 model is employed to verify and

modify the states of the dependent activities required to ini-

tiate the requested activity. During the running state of the

requested activity, the ACAConD2 model is utilized for con-

ducting ongoing checks and updates. Consequently, it can be

inferred that a combination of different ACACD sub-models

supports the successful execution of a requested activity from

start to finish.

A "chain of dependent activities," also known as "depen-

dencies of dependencies", requires checks for current and

desired states of the dependent activities and updates to

the current states to accommodate state transitions of par-

ent activities. As illustrated in Fig. 7 in Sect. 3, consider

the example where the activity "Water Spraying" requires

"Nitrogen Spraying" to be in an inactive state while it is

currently in a running state. Similarly, the state transition

of "Mixing Sawdust to soil" from running to inactive is

required. Suppose "Nitrogen Spraying" first transitions to

a finished state before reaching the inactive state. Since it

has no post-dependent activities, it will go to inactive state.

In this scenario, "Mixing Sawdust to soil" is checked and

updated when "Nitrogen Spraying" is ongoing, and a decision

is made to finish the ongoing activity. Based on the definitions

of our ACACD models, ACAConD2 model can be utilized to

check and update the "Mixing Sawdust to soil" activity, while

ACAConD3 model ensures there are no post-dependent activ-

ities. Hence, combination of ACACD sub-models proves to

be an effective approach for resolving the chain of depen-

dencies.

5 Prototype implementation

In this section, we present a prototype implementation of

a combination of ACACD sub-models in a smart farming

use case (as shown in Fig. 1). The code is written in Python

3 using PyCharm on Hp Envy x360 convertible with Intel

core i7 processor and 12 GB of RAM. The implementa-

tion shows the need for different ACACD sub-models to

incorporate the dependencies (D) in the activity request deci-

sion. In a fully deployed ACAC model, all four decision

parameters (Authorizations (A), Obligations (B), Conditions

(C), and Dependencies (D)) will be considered. However,

since our paper focuses on the ACACD models for activity

dependencies, we evaluate these sub-models, assuming other

parameters are satisfied. We have simulated the devices and

activities in the system; however, this does not undermine

the plausibility, use, and advantage of our proposed ACACD

model, as further elaborated in the following discussion.

5.1 Description of the use case

A smart farming ecosystem consists of connected smart

devices that perform multiple activities concurrently. There

are inter-dependencies among activities that may constrain

the execution of other activities. This requires checking and

updating the states of dependent activities to make any activ-

ity request decision. In Table 4, we include four activity

requests in the first column. Each request has two parameters;

the first and second parameter indicates the requesting source

and the requested activity, respectively. The second, third,

and fourth columns include pre-, ongoing, and post- depen-

dent activities, respectively. We also mention the desired

states (such as running or inactive) of dependent activities

after the colon ‘:’. Since the current states of the activities

depend on the real-time system context, these are not speci-

fied. Further, we implement an activity request with its chain

of dependencies. In Table 5, we include the dependencies

of dependencies corresponding to the first request shown in

Table 4. The first column indicates the name of the dependent

activities, the second and third columns indicate its current

and desired states respectively. The fourth column includes

the dependent of dependent activities corresponding to the

transition from the current state to the desired state of the

parent dependent activities mentioned in the first column. We

also mention the corresponding desired states of the depen-

dent of dependent activities followed by a colon ‘:’.

5.2 Use case implementation

To implement the use case and satisfy the activity requests

in Table 4, we configure five JSON files as follows,

request.json (have the activity requests with a source

and requested activity), activity.json (includes the
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Table 4 Description of activity requests and dependencies

Requests Pre-dependent activities Ongoing-dependent activities Post-dependent activities

request(fieldWorker,

sprayingWeedKiller)
– mixingAMS : finished

– thermalImaging : running

– waterSpray : inactive

– thermalImaging : running

– waterSpray : inactive

– pullingWeedsUp : running

– weedScanning : running

request(farmer, sow-

ingSeeds)
– fieldPloughing : inactive – pesticideSpray : running

– thermalImaging : running

– airCooling : running

N/A

request(farmManager,

fieldPloughing)
– stakingBoundaries : finished

– mixingWaterAbsorbingMaterial :

running

– waterSpray : inactive

– thermalImaging : running
– sprayingWeedKiller : run-

ning

– sowingSeeds : running

– pesticideSpray : running

request(fieldOwner,

coolingGreenhouse)

– thermalImaging : running – humidifying : running N/A

Table 5 Chain of dependencies for the dependent activities in the first request from Table 4

Dependent activity Current state Desired state Dependent of dependent activity: desired State

mixingAMS running finished Dash mixingVinegar: running

pullingWeedsUp inactive running Dash pesticideSpray: running

mixingVinegar inactive running Dash mixingWater: running

current states of all the activities),object.json (holds the

objects the activities can be performed on), operation

.json (contains the operation to perform an activity on a

specific object for all the activities), and activityDepe

ndencies.json (provides the sets of pre-, ongoing- and

post-dependent activities with their desires states and against

particular object for each requested activity). activity.

json file is dynamically updated according to the changes

made in the current states of dependent activities. Further, we

configure another JSON file nameddependenciesOfdep

endencies to implement this use case with chain of depen-

dencies where pre-, ongoing and post-dependent activities

(for a particular activity request) also have dependent activi-

ties to make their transition from the current state to a desired

states while satisfying the requested activity’s requirements.

As mentioned in Table 4, for the request(fieldWorker,

sprayingWeedKiller), we have all three of pre-, ongoing and

post-dependent activities with desired states. The current

states we get from our activity.json file is compared

to the desired states. For this pre-dependency check, our

implementation procedure supports ACACpreD0 sub-model.

The activity mixingAMS (mixingAMS is the short form

of mixingAmmoniumSulfate) is initially in running state

which needs to update its state to the desired state finished.

This update occurs in the enforcement point as supported

by the ACACpreD1 sub-model. In a similar way, the ongo-

ing dependent activities are checked, and the current state

Table 6 Execution time for pre-, ongoing, and post-check. NDC

denotes Number of Dependent Activities Checked and NDU denotes

Number of Dependent Activities Updated against total number of

requests

Number of Requests

Pre-Check Ongoing-Check Post-Check

NDC NDU Time NDC NDU Time NDC NDU Time

10 20 10 38.84 30 10 42.83 20 20 15.21

20 30 10 53.33 60 30 57.64 20 20 22.09

30 50 0 101.33 80 0 87.24 50 10 25.44

40 60 10 110.16 90 10 124.3 50 30 60.76

of waterSpray is updated from running to inactive. In this

ongoing check, the sub-models ACAConD0 (for checking the

states of ongoing dependent activities) and ACAConD2 (for

updating the current states of the ongoing-dependent activi-

ties) are applicable. In post-check, a post-dependent activity,

pullingWeedsUp needs to change its state (from inactive to

running) where the sub-model ACAConD3 fits the best. In

summary, this use case implementation shows the combi-

nation of ACACpreD0 , ACACpreD1 ACAConD0 , ACAConD2 ,

and ACAConD3 for satisfying the request(fieldWorker, spray-

ingWeedKiller). Similarly, for the other requests, the same

procedure repeats for pre-, ongoing, post-check and thus,

reflecting the applicability of our proposed ACACD sub-

models.

To implement this use case with a chain of dependen-

cies, we consider the first request from Table 4 which is

request (fieldWorker, sprayingWeedKiller). As mentioned
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Table 7 Execution time for pre-, ongoing, and post-check with resolv-

ing chain of Dependencies. NDC denotes Number of Dependent

Activities Checked and NDU denotes Number of Dependent Activi-

ties Updated against total number of requests

Number of Requests

Pre-Check Ongoing-Check Post-Check

NDC NDU Time NDC NDU Time NDC NDU Time

10 40 30 45.89 30 30 32.35 30 10 40.14

20 80 60 79.06 60 60 59.93 80 60 71.56

30 120 90 116.16 90 90 84.56 120 90 99.97

40 160 120 194.32 120 120 94.81 160 120 138.1

in Table 5, we have the dependent of dependent activi-

ties corresponding to the transition (from current state to

desired state) of parent dependent activities. To implement

this request with the chain of dependencies, we configure

a JSON file dependenciesOfdependencies.json.

In pre-, ongoing, and post-check of request(fieldWorker,

sprayingWeedKiller), the dependencies of dependencies are

checked and the updates are resolved recursively where all

the required updates are performed for the dependencies

before its parent activity transitions to the desired state. For

instance, before updating the state of pullingWeedsUp from

inactive to running in the post-check, we check the depen-

dencies of dependencies and update their states accordingly

if required, (pesticideSpray updates its state from inactive

to running for the particular required transition of pulling-

WeedsUp). The dependent activities which are not mentioned

in Table 7 do not have other dependent activities (DoD). In

general, the dependencies that are checked when a parent

activity’s current state is inactive and needs to transition to

a running state, are called pre-dependent activities. Simi-

larly, ongoing dependencies are checked while the parent

activity’s current state is running and needs the transition

to any succeeding state (such as finished, or hold). Ongoing

dependencies are also checked regularly to see whether the

execution could continue or be revoked. The post-dependent

activities are checked when parent activity’s required state

transitions are finished or revoked to inactive, or hold to run-

ning, finished or, revoked.

The sequence of the implementation process is shown

in Fig. 11. We have three phases (shown in different col-

ors) of checking and updating the dependent activity states

while satisfying the requests, referred as pre-check, ongo-

ing check, and post-check. When a source requests an

activity, it is checked at the policy decision and enforce-

ment point, the suitable object and operation are selected

(mentioned as getObject(activity) and getOperation(activity,

object)) from the object and operation finder mod-

ules, respectively, which check the object.json and the

operation.json files. In pre-check phase, the activity

dependency module provides the pre-dependent activities

using the activityDependencies.json. In the pol-

icy decision and enforcement point, for each pre-dependent

activity, current and desired states are checked and updated

(if required and depending on mutability).

In our implementation without dependencies of depen-

dencies (Table 4), the dependent activities directly update

their current states without checking further dependen-

cies. On the other side, the implementation with depen-

dencies of dependencies (first request from Table 4 and

chain of dependencies of this requested activity in Table

5), in RECURSIVE-UPDATE function call (mentioned as

RECURSIVE-UPDATE(dependent activity, current state of

dependent activity, desired state of dependent activity)), fur-

ther dependency check (using dependenciesOfdepen

dencies.json file) and the recursive update take place.

The request is allowed or denied based on the fulfillment

of the dependencies. The activity starts to run at this point.

In ongoing phase, the ongoing dependent activity states are

checked and updated. We assume the requested activity is fin-

ished after resolving the ongoing dependencies. Similarly,

post-dependent activity states are checked and updated in

the post-check after the activity is revoked or finished. The

requested activity changes its current state (from finished or

revoked to inactive) at this point.

5.3 Performance evaluation

We evaluated the implementation of our proposed ACACD

model in different processing stages (pre-, ongoing, and

post-check). We evaluate our prototype for the four activ-

ity requests stated in our use case by sending each activity

request ten times simultaneously (assuming ten different

sources request for ten different activities) and adding new

requests in the same proportion.

Table 6 shows the execution time (in milliseconds) against

the total number of requests for pre-check, ongoing check

and post-check respectively. The first column indicates the

number of requests. The first and second sub-columns in

each of the second, third and fourth columns indicate the

number of dependent activities checked (NDC) and the num-

ber of dependent activities updated (NDU) for the number

of requests indicated in the first column, respectively in

pre-check, ongoing-check and post-check. It must be noted

that, in pre-check, the current state of a requested activity

is updated from inactive to running if it is allowed after

checking and updating the current states of the pre-dependent

activities. In this case, we start the timer when the request is

made and calculate the execution time until it updates the

current state if the activity is allowed. In ongoing-check,

after checking and updating the ongoing dependent activi-

ties, we assume the requested activity is finished and, thus,

update its current state from running to finished. The execu-

tion time is then evaluated for the duration of the dependency

checking and updating the ongoing dependent activity states

(if required) and changing the current state of the ongoing
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Fig. 11 Sequence diagram for

ACACD Implementation

requested activity from running to finished. The execution

time for post-check indicates the duration of checking and

updating (if required) the post-dependent activities. In our

implementation (without chain of dependencies), the exe-

cution time of pre- and ongoing checks is more than the

execution time of post-check since they perform more depen-

dent activities’ states update. It should be noted that the

number of updates on dependent activities may reduce as

more activities are requested since it is possible that the ear-

lier activity requests have already updated the states, and no

more state change is needed for future requests.

Figure 12 compares the execution time against the num-

ber of requests considered for pre-, ongoing, and post-check

(indicated by blue, red, and green lines, respectively). The fig-

ure shows that the execution time increases with the increase

in the number of dependent activities checked and updated.

We observe that the maximum calculated time is for the forty

simultaneous activity requests in the ongoing check case.

Since in our use case, this scenario has the maximum num-

ber of dependent activities checked along with updates to the

current states of requested activities (assuming activities fin-

ished their execution). Clearly, the number of dependencies

for a particular requested activity and the number of state

updates impact the processing time of an activity request.

In implementing the request processing of the chain of

dependencies for the first request in Table 4, we evaluate the

performance by sending the same request 10, 20, 30, and

40 times. Each time, the dependencies of dependencies are

checked, and their states are updated if required. This process

is done in a recursive manner to ensure that dependencies are

resolved before the parent activity’s state changes. Table 7

shows the execution time (in milliseconds) against the total

number of requests (in a similar way as done in Table 6).

Figure 13 compares the execution time against the number of

requests, similarly shown in Fig. 12. Here, we observe that

execution time increases with the increase in total number of

dependency checks and dependency updates. Since NDC and

NDU are the highest in number in pre-check, the execution

time is also high in pre-check.

We understand that the processing time will increase with

hundreds of devices and activities running simultaneously in

a real-world environment. However, in this implementation,

we reflect on the plausibility and applicability of consider-

ing dependencies as a critical component to support activity

control in smart systems.

6 Related work

With the advancement of technologies and growth in IoT

devices, the possibility of violation of security mechanisms

increases. Various research works, including [30, 31] inves-

tigate security and privacy issues existing in smart and

connected systems. Yao et al. describe security and privacy
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Fig. 12 Performance evaluation of the implementation without chain

of dependencies by comparing the execution time (in y-axis) against

the number of requests (in x-axis) considered for pre-, ongoing, and

post-check (indicated by blue, red, and green lines, respectively). NDC

denotes the number of dependent activities checked and NDU denotes

the number of dependent activities updated

Fig. 13 Performance evaluation of the implementation with chain of

dependencies by comparing the execution time (in y-axis) against the

number of requests (in x-axis) considered for pre-, ongoing, and post-

check (indicated by blue, red, and green lines, respectively). NDC

denotes the number of dependent activities checked and NDU denotes

the number of dependent activities updated

challenges in different working stages of physical objects in

IoT [30]. Access control solutions have also been proposed

for the smart and automated systems, including fine-grained

attribute-based access control (ABAC) [9, 26, 32–34].

An attribute-based access control solution for industrial

IoT proposed by Bhatt et al. [8] implement their model in

Amazon Web Services IoT. Ameer et al. proposed ABAC for

secured smart home IoT [32]. These authors introduce and

compare HABACα (an attribute-based access control model

for smart-home IoT) with the EGRBAC (extended general-

ized role-based access control). The configurations for the

role-based approach are mapped with the attribute-based

models using user/session, environment, device, operation,

and more than one type of attribute. Recently, Sikder et al.

introduced a mechanism KRATOS+ for multi-user multi-

device access management in Smart home system [35]. They

implement the idea using four components; user interac-

tion module, backend server, policy manager, and policy

execution module. In the user interaction module, the pri-

ority management data and device policies are collected.

This work presents the policy negotiation algorithm and

maps the policy to a rule. However, this work is very spe-

cific to multi-user shared device environments such as smart

homes.

Relationship-based access control (ReBAC) models [36–

38] have been used to incorporate relations between enti-

ties as an access parameter. Multilevel relationships are

expressed using ABAC models according to this research.

Bayreuther and others recently proposed a task planning for a

humanoid robot [39], which converges to the activity-centric

access control [14, 15] and usage control [22] showing a

structure to incorporate policies, objects, modeling frame-

work, architecture and enforcement of the access control

system. The authors discuss a decentralized architecture

for the policies and task modeling and gain the enforce-

ment of activity-centric and usage-based access control for

robot task planning. However, this work lacks the idea of

leveraging both models, which is critical for a smart envi-

ronment. Mawla et al. proposed [15] a framework for the

activity-centric access control model components to check

an activity request. These components fit well to address sce-

narios that consider activity dependencies and other decision

factors.

Furthermore, several blockchain-based access control

solutions are proposed by researchers [40–43]. Tan et al.

propose a blockchain-based access control for the Green

Internet of Things (GIoT) for the purpose of saving energy.

In this approach, the permission data and identity data are

immutable. If we compare this solution to our approach,

ACAC is more suitable for scenarios with a large number

of devices, a dynamic environment, and supporting depen-

dencies among different activities in smart and collaborative

systems. A deep learning-based access control (DLBAC)

is proposed by Nobi et al. [44] addresses major limita-

tions of classical access control approaches such as RBAC

and ABAC models. This work is significant since it fully

automates access control using deep learning. However, it

has not been used for large-scale, complex, and dynamic

environments due to a lack of accurate access control

decisions.
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7 Conclusion

In this work, we present a novel activity-centric access con-

trol (ACAC) approach for smart and connected systems.

Considering activity as the prime notion and abstraction to

control, we propose an active and object-agnostic access con-

trol model, which captures the real-time and holistic context

of the system to make an activity request decision. Focus-

ing on the dependencies (D) among activities as one of the

critical parameters, we formally develop a family of ACACD

models supporting activity mutability. We also investigate

the chain of dependencies (where dependent activities also

can have dependencies) while changing the state of a mutable

activity. Resolving chain of dependencies to accommodate

the mutability of an activity may be challenging in terms

of multiple dependency paths, race conditions and deadlock

situations. We explain these challenges and propose poten-

tial solutions to deal with those. We also present a prototype

implementation of ACACD sub-models with a comprehen-

sive smart farming use case reflecting the use of combinations

of ACACD sub-models and chain of dependencies. Perfor-

mance is evaluated by the execution time to process many

requests with different numbers of pre-, ongoing, and post-

dependent activities’ checks and updates.

In the future, we aim to extend this work to a fully mature

ACAC model integrating all four authorizations (A), obliga-

tions (B), conditions (C), and dependencies (D) parameters.

Moreover, our future direction includes developing a for-

mal policy specification language incorporating the chain of

dependencies along with other components and analyzing

the reachability of incompatible activities as well. Further, a

detailed performance evaluation in a real environment having

different decision parameters will re-enforce the applicabil-

ity of the ACAC model in large-scale smart systems.
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