2024 1EEE International Conference on Big Data (BigData) | 979-8-3503-6248-0/24/$31.00 ©2024 IEEE | DOI: 10.1109/BigData62323.2024.10826102

2024 IEEE International Conference on Big Data (Big Data)

Not All Malware are Born Equally: An Empirical
Analysis of Adversarial Evasion Attacks in Relation
to Malware Types and PE Files Structure

Prabhath Mummaneni*, Kshitiz AryalT, Mahmoud Abdelsalam*, Maanak GuptaT
*Department of Computer Science, North Carolina A&T State University, Greensboro, North Carolina, USA
TDepartment of Computer Science, Tennessee Tech University, Cookeville, Tennessee, USA
Email: *pmummaneni @aggies.ncat.edu, Tkaryal42@tntech.edu, *mabdelsalam 1 @ncat.edu, ngupta@tntech.edu

Abstract—Malware white-box evasion attack is a serious threat
to machine learning-based malware classification models, where
an attacker carefully inserts perturbations into a malware
executable at a test time to evade a target model. Previous
research introduced different white-box evasion attacks, namely
padding and slack attacks, to craft malware adversarial samples
and evaluated them based on the perturbation size and their
evasion rate against a target model. However, there is a lack
of insights into how the malware file structure and type affect
the adversarial malware sample generation and their respective
evasion rate. In this work, we provide a comprehensive empirical
analysis by factoring in the malware structure and the type. Our
analysis quantifies slack space availability in various sections,
exploring how the slack space can influence the robustness of
detection techniques. We further assess the relationship between
malware type and evasion rate to understand how different types
of malware respond to evasion attacks. Additionally, we explore
the connection between each malware type and the corresponding
slack space availability, analyzing how these structural factors
influence the evasion rates during adversarial attacks. In our
experiments, adversarial malware samples were generated using
two different algorithms: gradient descent and iterative gradient
sign method. This detailed analysis enhances our understanding
of evasion dynamics of adversarial attacks across malware types
and different structural characteristics of binary malware files.

Index Terms—Adversarial Malware Analysis; Windows Mal-
ware Detection; Append and Slack Attack; Malware PE File
Structure

I. INTRODUCTION

Artificial Intelligence (AI) and Deep Learning (DL) have
seen significant growth in recent years, becoming a corner-
stone in the cybersecurity domain [1], [2]. In the field of mal-
ware, deep learning models have emerged as powerful tools
for detection and classification. In particular, MalConv [3]
is a notable end-to-end CNN model due to its ability to
ingest entire executable files and effectively classify them as
malicious or benign.

This advancement has also spurred the development of
sophisticated adversarial attacks designed to target deep learn-
ing models by exploiting their inherent sensitivity to input
perturbations. Among these adversarial attacks, optimization
algorithms, like Gradient Descent (GRAD), are known to be
most effective. In addition, a significant advancement in this

field came with the introduction of the Fast Gradient Sign
Method (FGSM) by Goodfellow et al. [4]. Building upon
FGSM, the Iterative Gradient Sign Method (IGSM) was de-
veloped by Madry et al. [5], offering a more refined approach
to generating adversarial examples. Goodfellow et al. and
Madry et al. demonstrated that using FGSM and IGSM causes
DL models to misclassify images by adding carefully crafted
minimal adversarial noise. However, a similar straightforward
addition of perturbations to malware executables can lead to
the breaking of the malware functionality.

To address this issue, research works [6] proposed ap-
proaches that limit the injection of perturbation within the
executable files to specific areas, keeping their functionality
intact while evading the malware detector. For instance, Kruek
et al. [7] applied IGSM in the field of adversarial malware
analysis and introduced techniques known as the Append and
Slack attacks. Append attack, also known as padding attack,
pads perturbation at the end of the file, while slack attack
adds perturbations in the empty slack spaces inside the PE
file sections. The majority of research works have focused on
crafting perturbations to enhance the evasion rate (ER) without
detailed consideration of the characteristics of the malware
being perturbed. We believe factoring in the characteristics of
each malware binary can provide a more comprehensive un-
derstanding of generating adversarial malware samples, which
leads to more successful evasion attacks.

In our work, we have considered three factors throughout
the adversarial analysis of binary malware: the amount of
perturbations appended at the end of the file, the slack space
availability across various sections of the PE file and the
malware type. Throughout this paper, we will be referencing
malware “’type” or “family” interchangeably, but both mean the
same meaning as classification based on their characterization.
Our exploration into these factors raised several pertinent
research questions.

RQ1. How does increasing padding size affect the evasion rate
of malware? Does the choice of adversarial algorithm
influence this behavior?

RQ2. Does the availability of slack space consistently enhance
malware detection evasion? How does the choice of

5620

Authgrizeg! fisensgd4se) imited tayINDIHDYINSTEOF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

adversarial algorithm impact this relationship, and does
the location of slack space within the malware affect its
evasion effectiveness? Additionally, how does the effec-
tiveness of slack space compare to padding in evading
malware detection?

Does the type of malware influence its evasion capabili-
ties? How do different malware types respond to various
adversarial techniques and algorithms? Additionally, what
are the characteristics of each malware family regarding
slack space, and how does slack space affect each family’s
evasion effectiveness?

RQ3.

To answer these, we have conducted a series of experiments
comprising three adversarial evasion attacks, namely append,
slack, and hybrid attack, which combines the strategies of both
append and slack attacks, using both GRAD and IGSM algo-
rithms. All of our attacks target the MalConv [3] model, a well-
known end-to-end benchmark model for malware detection in
the adversarial domain.

The remainder of this paper is organized as follows. Section
II provides the background and related work. Section III out-
lines the methodology including MalConv (the target model),
IGSM and GRAD (adversarial algorithms used), the malware
dataset, and the experimental setup. Section IV explains the
how different attacks are performed. Section V analyzes the
results of the experiments and conducts a discussion pointing
towards the answers to the research questions. Finally, Sec-
tion VI provides potential future direction and concludes the
work.

II. BACKGROUND AND RELATED WORK
A. Machine Learning-based Malware Detection

Conventional detection methods such as signature and
behavior-based approaches often require ”human-in-the-loop”
(i.e. analysts), which hinders the malware analysis process
significantly. Evidently, with the creation of three to four new
malware variants per second [8], such methods struggle to
keep up with the diversity and complexity of the malware
threat, particularly in the case of zero-day, polymorphic, and
metamorphic malware.

The rapid emergence of new malware necessitates a shift
towards more advanced and adaptable detection methods. As
such, ML-based approaches have been used in the malware
domain for static, dynamic and real-time online analysis. In
the case of static file detection, ML models are trained on
features like hash value, particular string information, opcodes,
n-bytes, file system, registry key changes, process operations,
network activities and have achieved 99% accuracy using ML
classifiers [9], [10], [11], [12], [13], [14].

Beyond traditional machine learning techniques, deep learn-
ing models like Convolutional Neural Networks (CNNs) and
Recurrent Neural Networks (RNNs) have become pivotal in
advancing malware detection. These models are adept at
extracting complex patterns from large datasets, crucial for
identifying sophisticated, polymorphic, and zero-day malware.
With their ability to automatically learn and generalize from

5621

raw data, deep learning approaches offer a dynamic solution
to the limitations of earlier methods, enhancing the detection
accuracy and reducing false positives in the ever-evolving
landscape of cyber threats [15], [16], [17], [18].

B. Adversarial Machine Learning

Machine learning (ML) has seen remarkable growth, sig-
nificantly impacting various sectors. Yet, the effectiveness
of ML models solely depends on a critical assumption that
train data and test data belong to the same distribution.
In real-world situations, we can’t guarantee the data comes
from a similar distribution, particularly when attackers can
intentionally tweak the test or train data to fool the model.
These attacks, referred to as adversarial attacks, have become
a severe threat in the ML landscape.

The majority of adversarial attacks comprise either data
poisoning attacks at training or evasion attacks during model
testing. Data poisoning attacks are hard to achieve due to the
improbable possibility of attackers’ access to training data.
On the other hand, evasion attacks can always evade the target
model by intentionally tweaking data at the testing/deployment
phase. For example, Goodfellow et al. [4] demonstrated how
GoogLeNet [19], after being trained on the ImageNet dataset
[20], incorrectly identifies a panda as a gibbon when small
calculated perturbations are added to the image.

In this paper, we focus on evasion adversarial attacks,
where the perturbation is carefully crafted and inserted into
a malware file, leading to a change of classification from
malicious to benign by the target model.

C. Adversarial Malware Analysis

Adversarial attacks have been a rising threat in the do-
main of malware analysis, especially for Windows malware
binaries. Consequentially, more research has been focusing on
adversarial malware analysis. Kolosnjaji et al. [21] applied
gradient-based methods to manipulate malware executables
and create an adversarial malware sample. They appended
padding bytes to the malware binary, allowing these files to
bypass deep learning-based malware detectors while retaining
their malicious functionality. Their approach demonstrated the
effectiveness of gradient-informed modifications in evading
detection. They randomly sampled just 200 samples and
achieved an evasion success of 60%.

Kreuk et al. [7] expanded the realm of malware adversarial
attacks by adopting IGSM to the context of malware binaries.
They explored two key strategies: appending additional bytes
to the end of malware files and refining mid-file perturbation
insertion using IGSM. These methods showcased the potential
for both appending bytes and intelligently inserting pertur-
bations to increase the likelihood of evading deep learning-
based detection systems. Further, Suciu et al. [22] analyzed
adversarial examples in malware detection. They examined
various attack methods, including appending different types of
adversarial noise to the end of malware files and altering the
slack regions (i.e. empty spaces within or between the sections
of an executable). Their research compared the effectiveness

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

Byte value

Temporal max
pooling

Fully connected|

Softmax

b Convolutional
layer

b,
B e

D+t

Convolutional
layer

b,

Fig. 1. MalConv Architecture[3]

of these methods, such as using random noise, IGSM mod-
ifications, and benign byte appendages. They have randomly
sampled 400 Malware samples and performed append attacks,
achieving a maximum accuracy of 71% by padding 10000
Bytes. For the slack regions-based attacks, they have achieved
a maximum accuracy of 28%. The most recent work in this
field is by Kun et al.[23], who developed the FGAM method
to optimize the number of alterations in malware and deter-
mine the optimal stopping point for introducing perturbations,
ensuring the generated adversarial malware remains effective
and efficient.

Previous research focused on enhancing the ER by improv-
ing the quality of perturbations inserted, using various tech-
niques, such as random noise, benign bytes, and algorithms
like GRAD and IGSM. It also focused on where to insert such
perturbations, mainly appending them at the end or within the
slack spaces.

Unlike previous works, we focus on analyzing the structure
and characteristics of the malware executable rather than just
the adversarial techniques. As such, we conduct a comprehen-
sive analysis of evasion attacks, focusing on the role of slack
space in malware executables. We also include an in-depth
exploration of adversarial evasion across various malware

types.

III. METHODOLOGY
A. MalConv Detector

MalConv is an end-to-end deep learning model specifically
designed for malware detection. Proposed by Raff et al. [3],
MalConv stands out for its innovative approach to ingesting
an entire PE file (and padding/trimming it to 2MB) and
processing raw byte sequences. Its architecture is primarily
characterized by the presence of an embedding layer, which
is crucial for converting raw byte values into a meaningful
vector representation. Beyond the embedding layer, MalConv’s
architecture as shown in Figure 1 includes convolutional layers
that are instrumental in extracting local patterns and features
from the embedded byte sequences, which are crucial for
identifying malicious signatures. The model culminates in a
fully connected output layer, which integrates these extracted
features to make the final classification decision between
benign and malicious files. The effectiveness of MalConv is
attributed to its ability to capture intricate patterns within
executables, which might be overlooked by conventional mal-
ware detection methods that rely on hand-crafted features.
This capability makes it a powerful tool for identifying both
known and unknown malware variants. As MalConv became
a well-known standard as an end-to-end malware detector

5622
Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

in academic research, we chose it as a target model for
conducting our experiments.

B. Adversarial Algorithms

Gradient Decent (GRAD): Gradient descent is an optimiza-
tion approach that iteratively adjusts variables to minimize a
target function. This quality makes it an invaluable tool in
adversarial contexts, particularly for crafting subtle modifica-
tions for adversarial malware examples. Unlike brute force
methods that make blatant changes, gradient descent fine-tunes
the parameters, ensuring efficacy. Its special prowess lies in its
ability to identify and exploit the weakest link in a system’s
defence by making calculated, incremental adjustments. In the
adversarial landscape, this translates to a higher likelihood
of evading detection, making gradient descent a technique of
choice for sophisticated cyber threats.

Iterative Gradient Sign Method (IGSM): IGSM [24] is a
technique that builds upon the foundations of the Fast Gradient
Sign Method (FGSM). The FGSM introduced a method of
generating adversarial examples by applying a single-step per-
turbation in the direction of the gradient of the loss function.
This approach effectively utilized a linear approximation to
alter input data, nudging it towards increasing the loss, thereby
challenging the model’s accuracy. The FGSM’s simplicity and
efficiency in creating adversarial samples made it a pivotal tool
in understanding neural network vulnerabilities. However, the
FGSM’s straightforward approach also presented limitations,
particularly in its ability to generate finely tuned-adversarial
examples. This shortcoming stemmed from its one-step nature,
which often resulted in either insufficiently subtle or overly
aggressive perturbations. To address these drawbacks, the
IGSM was introduced. IGSM enhances FGSM’s methodology
by introducing an iterative process where smaller, controlled
perturbations are applied multiple times. This allows for a
more gradual and adjustable manipulation of the input data,
ensuring that the adversarial examples remain within a defined
e-boundary of the original image.

C. Adversarial Techniques

Unlike images, adding perturbations to malware is not

straightforward since the malware’s functionality has to be
maintained. As such, append and slack attacks were introduced
in previous works, aiming to create adversarial malware sam-
ples without compromising their functionalities. Further, we
also analyze the combination of the append and slack attacks,
namely a hybrid attack. Figure 2 shows the locations within
the PE executable where the perturbations are inserted for each
of the three adversarial techniques. Each adversarial technique
is discussed as follows.
Append Attack: The append attack, depicted in Figure 2-A,
involves appending additional non-malicious bytes to the end
of a malware file. This technique doesn’t alter the malware’s
functionality but can significantly impact how detection mod-
els based on feature extraction, such as MalConv, perceive
the file. Kolosnjaji et al. [21] introduced this approach in the
malware binary.

MS-DOS MS-DOS MS-DOS
MZ Header MZ Header MZ Header
MS-DOS MS-DOS MS-DOS
Stud Program Stud Program Stud Program
PE File PE File PE File
Signature Signature Signature
PE File PE File PE File
COFF Header COFF Header COFF Header
PE File PE File PE File

Optional Header

Optional Header

Optional Header

- «
.text Section Header .text Section Header .text Section Header g
- 1
.bss Section Header .bss Section Header .bss Section Header K
.rdata Section Header .rdata Section Header .rdata Section Header g
g
o7}
—
. . . S
z
.debug Section Header .debug Section Header .debug Section Header 5
<
.text Section .text Section .text Section
A A A A S A
A AN, S| E 3
.data Section .data Section .data Section
AN AN AN {:?
4 4 4 4 L 4 4 L 2 ;;;;;f’;;;;;;& 4
: : .-
. ©
2
. . 2
.debug Section .debug Section .debug Section
77 7 7 7 7 7 7 7 F
R A A A A A g

A. Padding Attack B. Slack Attack C. Hybrid Attack

Fig. 2. Adversarial techniques within PE files.

Slack Attack: It is an adversarial evasion attack (shown in
Figure 2-B) that exploits the unused or residual space in a file
executable, commonly known as ‘slack space’. Windows bina-
ries are saved in physical memory in clusters. The last cluster
might not be completely occupied, raising the possibility of
empty space. These empty spaces are called slack spaces and
are identified when the physical size is greater than the virtual
size. The slack attack involves embedding adversarial data
within this slack space. Using these unutilized areas allows
one to insert harmful content into a system without altering
the file’s apparent size or structure. In our study, we utilized
all available slack space to demonstrate the full extent of this
attack vector. This attack was first analyzed by Kreuk et al.
[7]

Hybrid Attack: In the context of adversarial malware
evasion, it is important to note that each technique possesses
its own distinct set of limitations. An append attack entails
the addition of extraneous data to the end of a file. However,
this method may not consistently result in successful evasion,
as it lacks a comprehensive integration with the underlying
content of the file. It also raises suspicions by the malware
detectors, as it is relatively easy to look for out-of-place extra
bytes at the end of the file. The utilization of slack space
for perturbations, although less conspicuous, is commonly
constrained by the quantity of unutilized space available,
frequently leading to minimal perturbations that may not
adequately deceive advanced detection systems, in our case,
MalConv. Therefore, to better analyze the patterns and the
behavior of the factors in our consideration, we have combined
these two attacks by inserting perturbations both at the end
of the file (append) and the mid-file injection (slackspace) to
form a hybrid attack as shown in Figure 2-C. The hybrid has

5623

all the factors pertaining to both attacks and compliments each
other’s drawbacks, resulting in better malware evasion. This
can be further evidenced in Section IV.

D. Windows PE File Structure & Malware Dataset

PE File Format: Adversarial malware generation requires
careful modification of the malware executable. As such, it
is imperative to understand the malware file format. The
executable file format for the Windows operating system is
Windows PE file format. The PE file (shown in Figure 2) is
a linear stream of data, starting with the MS-DOS header.
MS-DOS stub program is followed by a PE file signature, the
COFF file header, and an optional header. This is followed
by a sectional header, which contains metadata of sections
like physical address, virtual size, virtual address, etc. All
executable code and the entry point are present in the .text
section. The .bss section holds uninitialized data for appli-
cations, encompassing all statically declared variables. The
.rdata section is designated for read-only data, such as
constants, strings, and debug directory details. The actual data
related to the file is stored in the . data section. Additionally,
the . rsrc section is reserved for storing resource information
pertinent to the module. In this paper, we only discuss the PE
file format since we are focusing on Windows malware.
Malware Dataset: The dataset comprises of 13,971 lat-
est Windows malware samples collected from VirusTotal!, a
widely recognized and trusted public database for malware
analysis. VirusTotal is a remarkable resource known for its
extensive and diverse sample collection.

Out of these 13,971 samples, only 8,107 of them are
classified as malware against the MalConv model with a
threshold of 0.5. Since only 8k binaries are only detected as
malicious by Malconv model, we have performed adversarial
activities on these 8k files only. These 8k files are classified
using VirusTotal API and are classified into 12 different
malware types with 6 types consisting of almost 500 samples.

E. Analysis Setup and Evaluation

In conducting this comprehensive analysis of malware and
adversarial techniques, we employed the SECML Malware?
library implementation of adversarial algorithms (IGSM, Gra-
dient Decent) and utilized SECML’s pre-trained model of
MalConv as the target. To efficiently process and execute
our experiments, we utilized the powerful Lambda-workstation
with 3x NVIDIA RTX 4090 24GB GPUs 3.

For the evaluation of our experiments, we focused on a key
metric called Evasion Rate (ER). The ER serves as a primary
indicator of the effectiveness of our adversarial strategies. It
is calculated as the percentage of malware samples that suc-
cessfully evade detection after being altered by our adversarial
techniques, as follows:

No. of Malware Samples Evaded

x 100
Total Number of Malware Samples

VirusTotal. https://www.virustotal.com/
2SECML Malware. https:/github.com/pralab/secml_malware
3Lambda-Workstation. https://lambdalabs.com/gpu-workstations/vector

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

50

S 4242

aldatatatal

39
% 38 38 38

40

30

20

Evasion Rate(%)

10

OO 0.10.20.3040.506070809 1
Epsilon(e)

Fig. 3. ER Across Different Epsilon under Append!CSM

Further in the analysis, while talking ER for a selection like
ER of malware having 1000-2000 bytes of slackspace or ER
for a Worm family, we are considering the total number of
malware samples belonging to the selection. In our analysis,
we discuss ER with respect to slack spaces and append
bytes for various malware families/types under the IGSM and
GRAD adversarial algorithms.

IV. EXPERIMENTS OVERVIEW

A. Adversarial Hyperparameter Exploration

Every optimization technique has hyperparameters that need
to be tuned to achieve a high success rate for the end goal. This
section presents the experiments to optimize hyperparameters
and the final optimal values achieved to achieve maximum ER.

1) Epsilon (¢): With FGSM being the core of IGSM,
Epsilon (¢) plays a pivotal role in the Fast Gradient Sign
Method (FGSM) by dictating the magnitude of adversarial per-
turbations. The influence of e on the perturbation is quantified
by the formula:

perturbation = perturbation + e x sign(V,J (0, x,y))

In this formula, V,J(0,z,y) represents the gradient of
the loss with respect to the input data, § denotes the model
parameters, x is the input, and y is the target label. The
term sign(V,J(0,z,y)) computes the sign of the gradient,
indicating the direction in which the input should be modified
to maximize the loss. The product e x sign(V,J(0,z,y))
represents the actual perturbation applied to the input data.
A larger value of ¢ results in a larger step in the direction of
the gradient sign.

Our experimental approach to finding the optimal e value is
focused on evasion effectiveness. We explored e values from
0.1 to 1.0, in increments of 0.05, to understand how varying
levels of perturbation intensity impact ER.

The results, visualized in Figure 3, demonstrated a peak
ER at € 0.4. This suggests an optimal balance at this
value, where the perturbations were significant enough to
deceive the detection model yet subtle enough to avoid being
conspicuous. All subsequent experimental results provided
herein are obtained with an epsilon value of 0.4.

5624

50

49 43 43 43 43 43 43 43 43

40
30
20

Evasion Rate(%)

10

0012345678910
Iterations

Fig. 4. ER Across Different Iterations under Append©SM

2) Iterations: The concept of iterations takes on significant
importance in adversarial machine learning, particularly in
the context of IGSM. In this setting, ’iterations’ refer to the
number of times an adversarial perturbation is applied and
adjusted in an attempt to deceive the target model.

To investigate the influence of iterations on the effectiveness
of the IGSM attack, we conducted a detailed experiment. The
primary goal was to determine the optimal number of iterations
that maximized the ER against MalConv. For consistency
and comparability, we employed an append attack strategy
with a fixed padding length of 1024 bytes. Our experiment
varied the number of iterations from a baseline of 1 iteration,
incrementing up to the 10" iteration.

The empirical results, as illustrated in Figure 4, revealed
a pattern where the ER stabilized at 43% for iteration counts
from 3 to 10. This plateau suggests that increasing the number
of iterations beyond a certain point (in this case, 3 iterations)
does not significantly enhance the attack’s efficacy. This find-
ing provides crucial insights into the diminishing returns of
additional iterations in IGSM.

B. Experimental Approach for Append, Slack, and Hybrid
Attacks

In this subsection, we discuss various details and parameters
that contribute to and shape the experiments conducted using
append, slack, and hybrid attacks. All the following exper-
iments are conducted on the 8k files that were detected as
malicious by the target MalConv model.

1) Append Attack: To assess how different padding sizes
influenced the evasion rate (ER), we conducted experiments
by appending varying padding sizes ranging from 512 bytes
to 4,096 bytes in increments of 512 bytes while maintaining
a consistent experimental setup across all samples for reliable
comparison. To understand the impact of the adversarial al-
gorithm, we repeated the same experiments using GRAD and
IGSM.

2) Slack Attack: A key factor in our analysis is the avail-
ability of slack space in the malware files and its impact on
detection evasion. To find the slack space available in the
malware files, we have used pefile [25] python library to
identify the sections of the PE file and used the following
equation to calculate slack space in each section of the file.

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

50

45 45 45 45 45 45 45
45 O
40
—~ —@— Append'®M Attack
I 35 —B— Hybrid'S™ Attack
~ —— Append®RAP Attack
Q 30 —k— Hybrid®AP Attack
<
& 25
g
% 20
S
m 15
10
5
NN D O G Q v D O
N v) > O { Nel O
° \/9 \t" 41,9 qj? rbﬂQ q;? »,9
Padding Size (Byte)
Fig. 5. Evasion rate using different padding lengths for Append!CSM,

Hybrid'SM, Append®RAP, and Hybrid®RAP attacks. Zero padding size repre-
sents no perturbation added, hence 0% evasion rate. Note that hybrid attacks
utilize the entire slack spaces available within the malware, resulting in evasion
success rate even with zero padding.

Slackspace = Size of Raw Data — Virtual Size

Once the slack spaces were identified, we utilized all the
available slack space across all the sections to insert the
perturbations. To optimize the perturbations, we have used
both IGSM and GRAD adversarial algorithms.

3) Hybrid Attack: As mentioned earlier, the hybrid attack
combines the strategies of both append and slack attacks.
In this attack, we utilized all the available slackspace and
the same padding range, increasing from 512 to 4096 Bytes.
Similar to the other two attacks, we carried this attack under
IGSM and GRAD.

V. ANALYSIS AND DISCUSSION
A. Impact of Padding Length (RQI1)

As shown in Figure 5, when the padding size was increased
from 512 to 1,024 bytes, the ER saw a notable jump from 19%
to 43% and 10% to 12% using IGSM and GRAD respectively
under the append attack. However, further increases in padding
size reveal a critical threshold at 1024 padding bytes, with
an evasion rate (ER) of 43% and 12% using IGSM and
GRAD, respectively. This contrasts with the earlier work by
Suciu et al.[22], who achieved nearly a 70% ER by padding
10,000 bytes. Their higher evasion rate can be attributed to the
similarity between the datasets used for training and testing,
resulting in stronger gradients to craft adversarial malware
samples. Additionally, our analysis considered 8,107 latest
malware files, rather than sampling 400 files.

The hybrid attack utilizing both the slack space and ap-
pended perturbations started at 16% and 14% using IGSM
and GRAD, respectively, with 0 bytes of padding. But with
the introduction of 512 bytes padding, the ER increased to
21% using IGSM and 19% using GRAD. A further increase

5625

padding
68

2407

916
slack hybrid
22 9

274

Fig. 6. Count of malware evaded using IGSM algorithm, grouped based on
the type of adversarial attack used.

in the padding bytes showed a plateau at max ER of 45% with
1024 Bytes of padding. Similarly, the Gradient decent method
achieves an ER of 21%. Hybrid attack has consistently shown
a better ER over append attack at all the padding lengths due
to the added benefits of slack perturbations. Further, the IGSM
approach exhibits a significantly higher evasion success than
the Grad across all padding sizes. Notably, both adversarial
algorithms (IGSM and GRAD) and both adversarial tech-
niques (Append and Hybrid) reached their respective efficacy
thresholds at a padding size of 1,024 bytes.

Finally, to answer RQ1, the evasion rate initially increases as
the padding size is increased. However, it reaches a threshold
at a padding length of 1024 bytes. Beyond this point, further
increasing the padding size does not enhance the evasion rate.
This behavior is consistent across all variants of attack. Thus,
the type of adversarial algorithm does not significantly affect
the pattern of padding size on the evasion rate. Since we
have achieved the maximum evasion rate at 1024 Bytes, we
will only reference the padding length of 1024 Bytes in the
analysis.

B. Impact of Malware Structure (RQ2)

Out of the 8,107 samples that were studied, 1,246 samples
using IGSM and 1058 samples using GRAD were successfully
evaded under slack attack, giving them an ER of approximately
16% and 14% respectively. The Slack!®M (16%) has under
performed in comparison to PaddingIGSM1024 (43%), but on
the contrary Slack®R*AP (14%) has a better performance than
PaddingIGSM1024 (12%)

On the other hand, the hybrid attack of append and slack
yielded ER of 45% and 21% using IGSM and GRAD, respec-
tively. The difference between the evasion rate is only 2%
compared to Append'®M,,,; this points to the very limited
advantage of slackspaces when combined with padding bytes.
Overall, the hybrid attack with padding of 1,024 bytes using
IGSM has achieved the highest ER in our analysis.

Further, to understand the sole contribution of slack space
and padding, we have drawn a Venn diagram that constitutes
the count of malware evaded by using IGSM in Fig 6.
Overall, from the set of malware evaded, we observed that only
4%(305) samples were evaded specifically due to the contri-
bution of slackspace. On the other hand, 30%(2484) malware
samples are evaded due to the contribution of padding. A

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

Slack Space No. of No. of Malware Evaded (ER %) Section No. Of No. of Malware Evaded (ER %)
(Byte) Malware | Slack™™ T Slack®®AD T Hybrid"®™ | Hybrid“®*? Name | malware | Slack'™®™™ T Slack®FAD [Hybrid'®™ | Hybrid®KAP
0 4,492 0 (0%) 0 (0%) 1,825 (40%) 453 (10%) .data 1364 622 (46%) 591 (44%) 804 (59%) 660 (49%)
1-1,000 1138 274 (24%) | 265 (23%) | 507 (44%) 280 (24%) idata 776 330 (43%) | 288 (38%) | 458 (60%) 347 (45%)
1,001-2,000 1101 394 (35%) 323 (29%) 535 (48%) 380 (34%) rdata 2115 861 (41%) 754 (36%) 1178 (56%) 828 (40%)
2,001-3,000 359 60 (16%) | 52 (14%) | 132 (36%) 65 (18%) reloc 836 347 (42%) | 292 (35%) | 576 (69%) | 347 (42%)
2’821'41;0? 1§7 56) (;‘4%) ‘2{8 (37%) 21 gggﬂ) ‘2‘2 (38%) IsTe 2477 880 (36%) | 725 (30%) | 1164 (47%) | 793 (33%)
,001-5,000 135 50 (37%) 1 (15%)) (17%)) 3 3 3%
50016000 | 112 | 34G0%) | 2905% | 4166%) | 30 Qo) Towl | 3615 | 1246 3% | 1058 00w | 1781 o) | 1192 33
6,001-7,000 288 87 (30%) | 33 (11%) 117 (40%) 75 (26%) “BLE 7
7,001-8,000 42 10 (23%) 10 (23%) 17 (40%) 11(26%) IGSM GRAD 1GSM
8,001-9,000 26 6 (23%) 6 (23%) 10 (38%) 7 (26%) EVASION RATE USING SLACK , SLACK , HYBRID , AND
9,001-10,000 12 8 (66%) 8 (66%) 11 (91%) 8 (66%) HYBRIDORAD ATTACKS, MALWARE IS GROUPED BASED ON THE
>10,000 275 267 (97710“)A 131633 1(95%) 269 (97%) 264 (96%) AVAILABILITY OF SLACKSPACE IN THE SECTION.

ER USING SLACK'CSM | S| AckORAD HypRrID!GSM | AND HYBRIDCRAD
ATTACKS. MALWARE IS GROUPED BY THE SIZE OF SLACK SPACES
AVAILABLE.

total of 916 malware samples were evaded by all three types
of attacks, indicating that these samples can be successfully
evaded regardless of the adversarial attack method employed.
Slackspace can be a useful maneuver to evade detection. Still,
padding can also evade almost all the malware samples evaded
by Slackspace and has a higher success rate in evading other
malware samples.

To gain deeper insights into how different sizes of
slackspace available impact ER, we grouped the malware
samples based on their overall slack space availability in
increments of 1,000 bytes. Table 1 presents the results of this
categorization. The ER of Slack!®M across all the ranges is
higher than SlackCRAP attack.

From Table 1, the evasion rate has increased with the
increased available slack space until 2,000 bytes. Thereafter,
the evasion rate fluctuates as the slack space increases. The
most significant evasion rates are observed in larger slack
spaces, peaking at > 95% for spaces over 10,000 bytes.
This is evident across all four attacks presented in the table,
indicating a complex dynamic relation with slack space where
the amount of slack space is a crucial determinant of evasion
success. Still, the increased available resources don’t always
guarantee success in evasion.

To understand the granular role of slackspace based on
their host PE sections, we have grouped the malware by the
Slackspace availability in each PE section. Although there are
many sections, we have considered very prominent and well-
known ones. From Table 2, the .text section showcased
the most instances, with slackspaces, followed by .rsrc and
.rdata. Coming to the ER, the .data section has show-
cased the highest ER in three attacks except for the Hybrid'®SM
attack, where .reloc has the upper hand. Contrary to the
high availability of slackspaces in the .text section, it has
not reciprocated the same upperhand regarding the ER. By
this, the section containing the slack space does affect the
evasion rate, irrespective of higher availability in a particular
section.

In conclusion, to answer RQ2, padding is a significantly
more successful strategy in comparison to slack space. The
slackspace doesn’t constantly enhance the evasion rate. In-
stead, the evasion rate varies up and down, pointing to a
complex relationship between slackspace and the evasion rate.
Coming to the impact of the adversarial algorithm in this
relationship, as shown in Table 1, both IGSM and GRAD show

5626

random fluctuations, pointing that the choice of adversarial
algorithm doesn’t affect the relationship between slackspace
and ER. However, IGSM has a slightly higher ER when
compared to the ER of GRAD-based attacks. Finally, the
section containing the slackspace also plays a role in affecting
the evasion rate. In our analysis, the perturbations in the slack
space of .data section showcased the highest evasion rate.

C. Impact of Malware Type (RQ3)

To understand the role of malware type, we have grouped
the malware by its type/behavior. There are 12 malware
families in our dataset (excluding 2 families, which had only
1 sample each). Table 3 has all the ER related to six different
approaches (3 attacks x 2 adversarial algorithms) across all
the malware families. To analyze the structure of each malware
type, we have added the details of slackspace availability for
each section in Table 4. To study each malware type by the
amount of slack space, Table 5 presents the details on how
each malware type behaves in different slack space ranges.
Using these three tables, we discuss the behavior of each type
in detail.

Worm: In our dataset, the worm is the most prevalent,
represented by 2,753 samples. The structural characteristics
of the Worm, as revealed by Tables 4 and 5A, show that
1,775 samples are devoid of slack space. Out of the 978(35%)
malware samples with slack space, 824 samples showed slack
presence in the .text section, and 687 samples showed slack
presence in the .rsrc section. A slack attack using IGSM
resulted in a 10% ER with 265 samples being evaded, while
GRAD achieved 8%. The granular data from Table 5A reveal
that ER peaks within the 3,001 to 4,000 slack bytes range,
highlighting the best spot for evasion attack. Past this point, we
observe a decline in evasion success, suggesting a diminishing
return on evasion effectiveness as slack space increases. For
padding attacks, the worm showed an ER of 37% and 6%
for appendgp4 attack using IGSM and gradient techniques,
respectively, as presented in Table 3. Although the ER of 37%
is significant, it is less than the overall ER of 43% under
the append;gp4'®™. Coming to the hybrid attack, Padding in
combination with slack space has no impact on the ER using
IGSM and very little impact using GRAD. Although slack
spaces are available in 35% of the worm’s files, only 10%
were successfully evaded under Slack'®M | Overall, We can
observe that an append attack is more effective than a slack
attack.

Virus: The structural analysis of the Virus across 2,027
samples in our dataset, as revealed by Table 4, indicates

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

Malware No.Of Slack(%) Appendy24(%) Hybridz4(%)
Type Malware IGSM GRAD IGSM GRAD IGSM GRAD
Worm 2753 265 (10%) 204 (8%) 995 (37%) 147 (6%) 1004 (37%) | 282 (11%)
Virus 2027 458 (23%) | 429 (22%) | 826 (41%) | 237 (12%) | 890 (44%) 520 (26%)
Trojan 1002 239 (24%) | 143 (15%) | 471 (48%) | 117 (12%) | 505 (51%) | 252 (26%)
Dropper 899 58 (7%) 39 (5%) 208 (24%) 25 (3%) 242 (27%) 57 (T%)
Adware 509 38 (8%) 38 (8%) 461 (91%) | 195 (39%) | 469 (93%) 230 (46%)
Downloader 466 129 (28%) 138 (30%) | 254 (55%) 116 (25%) 270 (58%) 169 (37%)
Ransomware 149 22 (15%) 33 (23%) 32 (22%) 0 (0%) 37 (25%) 31 (21%)
Miner 139 5 (4%) 5 (4%) 60 (44%) 3 (3%) 64 (47%) 8 (6%)
Spyware 79 8 (11%) 8 (11%) 71 (90%) 57 (73%) 73 (93%) 65 (83%)
PUA 33 10 (31%) 6 (19%) 20 (61%) 4 (13%) 23 (70%) 10 (31%)
Hacktool 28 5 (18%) 6 (22%) 15 (54%) 7 (25%) 15 (54%) 9 (33%)
Banker 21 9 (43%) 9 (43%) 10 (48%) 4 (20%) 12 (58%) 11 (53%)
TABLE 3

ER(%) BY MALWARE TYPE FOR SLACK, APPEND|(24, AND HYBRID {4 ATTACKS USING IGSM AND GRADIENT TECHNIQUES.

Malware No.of Count of Malware with Slack Regions in
Type Malware | .data | .idata | .rdata | .reloc | .rsrc | .text
worm 2753 293 228 311 75 687 824
virus 2027 758 367 878 357 612 | 1042
trojan 1002 137 75 273 99 405 402
dropper 899 57 52 301 148 352 343
adware 509 13 10 68 42 72 73
downloader 466 55 7 168 51 142 180
ransomware 149 17 12 52 32 107 58
miner 139 17 22 15 9 55 55
spyware 79 0 0 7 10 7 10
pua 33 4 2 12 4 12 12
hacktool 28 6 0 14 3 14 15
banker 21 7 1 16 6 12 17
ABLE

NO. OF MALWARE WITH SLACK SPACE IN VARIOUS SECTIONS BY TYPE

the presence of slack space in almost all the file sections.
The ER for the Virus, as depicted in Table 3, is intriguing
to observe that the ER (%) is notably higher, at 23% with
IGSM and 22% with GRAD, when compared to others. This
anomaly can be attributed to the structural characteristics of
the Virus, particularly the high prevalence of substantial slack
space within each file section. A more detailed breakdown
of these evasion rates based on slack space, as illustrated in
Table 5B, reveals that the majority of virus samples exhibited
slack space presence in the lower ranges. Notably, the evasion
rates are also high within these lower ranges, with 67% of
evasion rates under the Hybrid;p,'%M attack falling within
the range of 1000-2000 bytes.

Although the following range of 2000-3000 bytes has
around 140 virus samples, only 2 of them are successfully
evaded, indicating the short-range threshold at 1000-2000
bytes. In the next ranges, the ER has soared and reached
99% evasion in very high slack space ranges, as shown in
5B. Further analysis revealed that these samples contain slack
space ranging from 50,000 to 75,000 bytes The ER for the
Virus family under appendjgy4 attack is 41% using IGSM
and 15% using GRAD, showing their increased susceptibility
to these perturbation techniques. This behavior is further
emphasized in the hybrid attack scenario, with ER of 44%
using IGSM and 26% using GRAD. Overall, the virus family
exhibits a high evasion rate against both Append and Slack
attacks targeted against MalConv.

Trojan: Despite 55% of the Trojan samples exhibiting slack
space, as shown in Table 5C, their ER for slack attacks are
moderate - 24% using IGSM and 15% under the Grad attack,
as depicted in Table 3. ER of Trojan increases with the amount
of available slack space to the range of 5000-6000 Bytes.

5627

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT.

Remarkably, Trojans with over 10,000 Bytes of slack space
demonstrate a near-perfect ER of 98% in slack attacks, which
on further investigation showcased slackspace more than 3
Billion Bytes. On the other hand, the response to padding
attacks is more pronounced. With IGSM, the Trojan family
shows a significant ER of 48%. This positive response is
further amplified in hybrid attacks, where the ER climbs to
51%, as indicated in Table 3. This increase suggests that while
slack space provides a foundation for evasion, the addition of
padding offers a more substantial boost to the Trojan’s ability
to evade detection.

Dropper: The structural analysis of the Dropper family, based
on Tables 4 and 5D, indicates Dropper malware group is
lean in design and conservative in its use of slack space.
Table 4 reveals the variation slack space across different
sections of the dropper, with the highest counts observed in
the .rsrc and .text sections. Table 5D further shows that 507
out of the 899 Dropper samples showcase 0 bytes of slack
space, and the droppers with slack space beyond 2, 000 bytes
are exceptionally low. Although the smaller size can be an
advantage for droppers to evade detection, the limited slack
space larger than 2,000 bytes poses a major challenge from
an adversarial perspective as evidenced by the ER from the
Table 3. The slack attack yielded a maximum ER of 7% with
IGSM on 58 samples, while the GRAD attack yielded ER of
5%. In Table 4, the number of the .data and .idata sections with
slack regions are almost equal to the number of files evaded
with slack attack. This points us to the possibility of .data and
.data playing a crucial role towards evasion. Further, when
droppers are subjected to append;y4 attack, it yielded an ER
of 24% using IGSM and 3% using GRAD. As you can see
from Table 3, the dropper family has the second lowest ER;
this shows that the Dropper family is more resilient to padding
than compared to other. Due to its resiliency to padding and
low slack space availability, dropper yielded the second lowest
ER under hybrid attack with 27% using IGSM and 7% under
gradient attack.

Adware: Padding attacks are highly effective against adware
as shown in Table 3, the ER for the append;oy4 attack using
IGSM is a remarkable 91%. When examining the Adware
family’s interaction with slack space (Table SE), it’s evident
that only a small fraction, about 70 samples, exhibit slack
presence. In line with this observation, the ER for Adware

Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

Slack Space A. Worm B. Virus C. Trojan
(Byte) No.Of Slack(%) Hybrid;24(%) No.Of Slack(%) Hybrid;24(%) No.Of Slack(%) Hybrid;24(%)
yte Malware IGSM GRAD IGSM GRAD Malware GRAD IGSM GRAD Malware IGSM GRAD IGSM GRAD
0 775 0 (0%) 0(0%) | 559 (32%) | 39 (3%) 870 0 (0%) 0 (0%) 286 (33%) | 31 (4%) 51 0 (0%) 0 (0%) | 220 (49%) | 78 (18%)
L0000 | 183 | 31 (21%) | 3(6%) | 0 () | o) || ama | 228 (o) | 200 () | si6 (o7 | 25 (sathy | vt | 70 (0% | o7 27y | 7o (34%) | 9 (25%)
2]001-3, 000 155 2 2170/3 21 §143/)(> 52 234%2; 31 ((ZO‘;C)) 140 2 <(2%)0) 1 ((1%)0) '33 (<28%0)) 4 ((30%)0) 47 25 5340/3 24 EJMZ) 32 5690/3 24 Eoz%g
3,001-4, 000 81 48 (60%) | 41 (51%) | 57 (71%) | 41 (51%) 13 1 (8%) 1 (8%) 1 (8%) 1 (8%) 7 5 (72%) | 4(58%) | 7(100%) | 5 (72%)
4,001-5,000 114 44 (39%) | 14 (13%) | 53 (47%) | 16 (15%) 6 2 (34%) 1 (17%) 3 (50%) 1 (17%) 9 2(23%) | 2(23%) | 2(23%) | 2 (23%)
5,001-6,000 74 28 (38%) | 23 (32%) | 33 (45%) | 23 (32%) 2 0 (0%) 1 (50%) 1 (50%) 1 (50%) 3 2(67%) | 2 (67%) | 3 (100%) | 2 (67%)
6,001-7,000 120 24 (20%) | 25 (21%) | 70 (59%) | 41 (35%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 136 57 (42%) | 3 (3%) 38 (28%) | 28 (21%)
7,001-8, 8 4 (50% 5 (62 21 2 (109 2 (10% 2 (10% 2 (10% 4 2 (50% 2 (5 3 (75 2 (50%
Soovwe | 5| o0 | 1600 | blom | Towo | n | ibog | hog | slen |G |2 | 1600 | 1Gow | Towo | oo
9,’[]01-1[i,(]l)(J 4 0 (0%) 0 (0%) 3 (75%) 0 (0%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%)
> 10,000 15 9 (60%) 8 (54%) 10 (67%) 9 (60%) 206 205 (100%) | 202 (99%) | 205 (100%) | 202 (99%) 40 39 (98%) | 39 (98%) | 40 (100%) | 39 (98%)
D. Dropper E. Adware F. Downloader
0 507 0 (0%) 0(0%) | 95 (19%) | 17 (4%) 123 0 (0%) 0 (0%) 210 (97%) | 191 (46%) 258 0 (0%) 0 (0%) | 122 (48%) | 29 (12%)
1-1,000 218 43 (20%) | 23 (11%) | 116 (54%) | 24 (12%) 28 15 (54%) 15 (54%) 20 (72%) 15 (54%) 134 88 (66%) | 95 (T1%) | 95 (71%) | 96 (72%)
doorsom | 1 | Taooy | o on) | 3oy | oom) | 4 | Tomn | Town | aeow | vose | 8 | sowe | s | 160w | 5o
,001-3, o o o o o 50% 5% o o 50% Q
3,001-4,000 1 1(100%) | 1 (100%) | 1 (100%) | 1 (100%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 0 (0%) 0 (0%) 0 (0%) 0 (0%)
4,001-5, 2 0 % 4 2 (5 4 (1 : 5 4 (1
smoge | 4| sod) nef) en) dem | o) oen | g | Gen | sem | L)l s | g | 2amg
6,001-7, 000 3 1(34%) | 1(34%) | 3 (100%) | 1 (34%) 1 1 (100%) 0 (0%) 1 (100%) 1 (100%) 1 0 (0%) 0 (0%) 0 (0%) 0 (0%)
,001-8,] % 0. 1 % 0 5 1(20% % 5 (100% 0
je | 2| ee) ter ey sem | L) e) chd | cen | e’) c) uem) el | siag) te
9,001-10, 000 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 8 8 (100%) 8 (100%) 8 (100%) 8 (100%) 0 0 (0%) 0 (0%) (ll%) 0 (0%)
> 10,000 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 1 (100%) 1 (100%) 1 (100%) 1 (100%) 5 5 (100%) | 5 (100%) | 5 (100%) | 5 (100%)
TABLE 5

MALWARE FAMILY EVASION RATE BASED ON SLACK SPACE AVAILABLE

under slack attack is 8% for both IGSM and GRAD attacks.
Since the majority of Adware samples lack significant slack
space, AE attack relies on padding for evasion. This is
reinforced in the hybrid attack scenario, which mirrors the
results seen in padding-only attacks.

Downloader: Table 3 reveals that the Downloader family
responds differently to IGSM and GRAD attacks in a slack
attack scenario. With an ER of 28% for IGSM and a slightly
higher 30% for GRAD, it suggests that Downloader malware
is more sensitive to the Gradient Descent method’s one-to-
one perturbation optimization approach. The append attack
results show the converse result between the two methods, as
IGSM outperforms with 55% of ER where GRAD manages
only 25%. In the hybrid attack scenario, combining slack with
padding, IGSM achieved an ER of 58%, marginally higher
than its performance in the append-only attack. However, for
GRAD, the ER jumps to 37%, up from 25% in the append-only
scenario. This notable increase for GRAD is inline with the
higher evasion for slack attack under GRAD than compared
to IGSM.

Rest of the Malware types: Ransomware, with 149 samples,
shows an ER of 15% using IGSM and 23% with GRAD in
slack attacks. Although more than 125 of 149 samples exhibit
slackspace, the ER of slack attack is not high. Similarly,
the effectiveness of padding is also very low as evidenced
by the ER of 22% using IGSM and 0% using GRAD tech-
niques under append attack. Interestingly, ransomware with
the GRAD technique yielded a higher ER under slack attack
while yielding 0% ER under append attack. This gets more
interesting when we observe the hybrid ER reduce to 21% as
slack attack alone evaded 23% of the malware. This shows the
performance of slack attack is better on using GRAD while
padding attack is better for IGSM in ransomware.

Miner malware shows contrasting results as its ER is only
4% in slack attacks, it escalates to 44% in append attacks
using IGSM. This low ER under slack attack can be attributed
to the lack of slack space in most of the samples as seen in
Table 4. Spyware, consisting of 79 samples, demonstrates a
notably high ER in append attacks, reaching 90% with IGSM
and 73% using GRAD. Despite this, its ER in slack attacks is

5628

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT.

only 11% (as seen in Table 3), which could be attributed to
its limited slack space as depicted in Table 4.

For PUA, Hacktool, and Banker, the ER in slack attacks
vary, with PUA at 31% (IGSM) and 19% (GRAD), Hacktool
at 18% and 22%, and Banker at 43% for both techniques.
While coming to append attack all the three malware types
has ER around 50%. This has been further amplified in the
hybrid attack with PUA achieving a maximum ER of 70%.

Finally, to answer RQ3, Table 3 clearly shows the varying
evasion rates across malware types. By this, we can say that the
malware type affects the ER. As discussed, each malware type
has a different response to different adversarial techniques. For
instance, Adware has only 9% evasion rate under Slack'0SM,
whereas it has a 91% and 93% evasion rate under Append'&SM
and Hybrid'®M attacks, respectively showing an upper hand
for the Append attack. On the contrary, Ransomware has a
higher ER under Slack®RAP compared to Append'®SM.

Each malware type has a different structure to fulfill its
functionalities. For instance, the Virus has shown a lot of
slack space availability in various sections, thereby increasing
its evasion rate (ER) under slack attacks. In contrast, worms,
being very concise, have shown a very low evasion rate.
The range of slack space in which each family achieves
maximum evasion has not been consistent, further indicating
the influence of structural characteristics. Thus, the structural
characteristics and available slack space within each malware
type significantly influence their evasion rates.

VI. CONCLUSION AND FUTURE WORK

This study explores the domain of adversarial malware,
using raw executable files as input and employing existing
benchmark adversarial sample generation techniques to evade
a CNN-based malware classifier, MalConv. We focus our
adversarial attack analysis on different malware types and
their structure. Our analysis started by analysing the impact
of padding on the evasion rate. Initially, the evasion rate
increased, but soon, the Malconv showed resistance to padding
beyond 1024 bytes. This behaviour has been consistent across
both the padding and hybrid attacks. The peak evasion rate
achieved by the padding attack alone is 43%. Among two
traditional methods, the padding and the slack attack, the

Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

padding attack demonstrated a higher evasion success under
IGSM. However, the Hybrid attack, which combines padding
and slack attacks by complementing each other’s drawbacks,
consistently outperformed the individual methods. The anal-
ysis also noted that IGSM achieved better performance with
minimal alterations, as low as three modifications.

Coming to the factors in the scope of the analysis, the
relationship between slackspace and the ER is complex. Ini-
tially, the ER increased but eventually fluctuated, reaching
a peak of 97% at very high slack spaces. Apart from the
quantity of slack space, the section containing the slack space
is also an important factor. In our analysis, we identified
that the .data section played an important role towards the
ER. Regarding the type of malware, each malware type has
showcased various ERs, highlighting the impact of malware
type on the ER. Each malware type has a different structure
in relation to slackspace, and this structure also plays a key
role in evasion in Slackspace-based attacks. One important
observation highlighting the impact of malware type is that
considering each type of malware with a similar range of slack
space, each malware type has shown a different ER.

To mitigate evasion attacks, adversarial training can be em-
ployed, which strengthens malware detection models by train-
ing them with adversarial examples[26]. Additionally, random-
ized smoothing, particularly through byte ablation techniques,
can enhance robustness by blurring decision boundaries and
reducing the model’s sensitivity to adversarial perturbations
[27]. Finally, input preprocessing, such as marking all slack
bytes to 0, can limit the attack surface available for adversar-
ial manipulations, further reducing the effectiveness of such
attacks. These combined approaches offer a more resilient
defense against malware adversarial attacks.

However, it is important to note that the distribution of
malware across types in the dataset was not uniform, and
the study was limited to only 10-12 types. Future work could
extend this research to explore the behavioral patterns of a
broader range of malware types. Additionally, while these
results provide valuable insights into the susceptibility of Mal-
Conv to adversarial attacks, they are specific to this particular
model. Extending this research to a black-box environment
would be crucial in real-world scenarios, where the target
models are often unknown. Furthermore, the current research
focused on adding perturbations only in available slack spaces.
Future efforts could explore the potential of exploiting other
regions, such as within the sections of PE files, to further
enhance the sophistication and effectiveness of adversarial
attacks in malware detection.

VII. ACKNOWLEDGMENT

This work is partially supported by NSF grants 2416992,
2230610 at North Carolina A&T State University and
2416990, 2230609 at Tennessee Tech University.

REFERENCES

[1] H. Sarker et al., “Ai-driven cybersecurity: an overview, security intelli-
gence modeling and research directions,” SN Computer Science, vol. 2,
no. 3, p. 173, 2021.

5629

[2]
[3]
[4]
[5]
[6]
[7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

S. Samtani et al., “Trailblazing the artificial intelligence for cybersecu-
rity discipline: A multi-disciplinary research roadmap,” pp. 1-19, 2020.
E. Raff et al., “Malware detection by eating a whole exe,” in Workshops
at the thirty-second AAAI conference on artificial intelligence, 2018.

I. J. Goodfellow et al., “Explaining and harnessing adversarial exam-
ples,” arXiv preprint arXiv:1412.6572, 2014.

A. Madry, “Towards deep learning models resistant to adversarial
attacks,” arXiv preprint arXiv:1706.06083, 2017.

K. Aryal et al., “A survey on adversarial attacks for malware analysis.
arxiv 2021,” arXiv preprint arXiv:2111.08223.

F. Kreuk et al., “Deceiving end-to-end deep learning malware detectors
using adversarial examples,” arXiv preprint arXiv:1802.04528, 2018.
“New malware variants every second,” 2023. [Online]. Avail-
able: https://www.av-test.org/fileadmin/pdf/reports/AV-TEST_HYAS_
Protect_Evaluation_February_2023.pdf

D. Kim et al., “Static detection of malware and benign executable
using machine learning algorithm,” in INTERNET 2016: The Eighth
International Conference on Evolving Internet, 2016, pp. 14-19.

Y. Nagano and R. Uda, “Static analysis with paragraph vector for
malware detection,” in Proceedings of the 11th International Conference
on Ubiquitous Information Management and Communication, 2017, pp.
1-7.

R. Searles et al., “Parallelization of machine learning applied to call
graphs of binaries for malware detection,” in 2017 25th Euromicro
International Conference on Parallel, Distributed and Network-based
Processing (PDP). 1EEE, 2017, pp. 69-77.

A. N. Jahromi et al., “An improved two-hidden-layer extreme learning
machine for malware hunting,” Computers & Security, vol. 89, p.
101655, 2020.

C. Yiicel and A. Koltuksuz, “Imaging and evaluating the memory access
for malware,” Forensic Science International: Digital Investigation,
vol. 32, p. 200903, 2020.

Q. K. A. Mirza et al., “Cloudintell: An intelligent malware detection
system,” Future Generation Computer Systems, vol. 86, pp. 1042-1053,
2018.

R. Vinayakumar ef al., “Robust intelligent malware detection using deep
learning,” IEEE access, vol. 7, pp. 46717-46 738, 2019.

A. McDole et al., “Deep learning techniques for behavioral malware
analysis in cloud iaas,” Malware analysis using artificial intelligence
and deep learning, pp. 269-285, 2021.

McDole et al., “Analyzing cnn based behavioural malware detection
techniques on cloud iaas,” in Cloud Computing—CLOUD 2020: 13th
International Conference, Held as Part of the Services Conference
Federation, SCF 2020, Honolulu, HI, USA, September 18-20, 2020,
Proceedings 13. Springer, 2020, pp. 64-79.

J. C. Kimmel et al., “Recurrent neural networks based online behavioural
malware detection techniques for cloud infrastructure,” IEEE Access,
vol. 9, pp. 68066-68 080, 2021.

C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of
the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1-9.

J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE conference on computer vision and pattern recognition.
ITeee, 2009, pp. 248-255.

B. Kolosnjaji et al., “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in 2018 26th European
signal processing conference (EUSIPCO). 1EEE, 2018, pp. 533-537.
O. Suciu et al., “Exploring adversarial examples in malware detection,”
in 2019 IEEE Security and Privacy Workshops (SPW). 1EEE, 2019,
pp. 8-14.

K. Li et al., “Fgam: Fast adversarial malware generation method based
on gradient sign,” arXiv preprint arXiv:2305.12770, 2023.

A. Kurakin et al., “Adversarial examples in the physical world,” in
Artificial intelligence safety and security. ~Chapman and Hall/CRC,
2018, pp. 99-112.

E. Carrera, “pefile: Python module to read and work with pe (portable
executable) files,” https://github.com/erocarrera/pefile, 2023.

K. Lucas et al., “Adversarial training for {Raw-Binary} malware clas-
sifiers,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 1163-1180.

D. Gibert et al., “A robust defense against adversarial attacks on
deep learning-based malware detectors via (de) randomized smoothing,”
CoRR, 2024.

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

