
2024 IEEE International Conference on Big Data (Big Data)

979-8-3503-6248-0/24/$31.00 ©2024 IEEE

5620

Not All Malware are Born Equally: An Empirical

Analysis of Adversarial Evasion Attacks in Relation

to Malware Types and PE Files Structure

Prabhath Mummaneni∗, Kshitiz Aryal†, Mahmoud Abdelsalam∗, Maanak Gupta†

∗Department of Computer Science, North Carolina A&T State University, Greensboro, North Carolina, USA
†Department of Computer Science, Tennessee Tech University, Cookeville, Tennessee, USA

Email: ∗pmummaneni@aggies.ncat.edu, †karyal42@tntech.edu, ∗mabdelsalam1@ncat.edu, †mgupta@tntech.edu

Abstract—Malware white-box evasion attack is a serious threat
to machine learning-based malware classification models, where
an attacker carefully inserts perturbations into a malware
executable at a test time to evade a target model. Previous
research introduced different white-box evasion attacks, namely
padding and slack attacks, to craft malware adversarial samples
and evaluated them based on the perturbation size and their
evasion rate against a target model. However, there is a lack
of insights into how the malware file structure and type affect
the adversarial malware sample generation and their respective
evasion rate. In this work, we provide a comprehensive empirical
analysis by factoring in the malware structure and the type. Our
analysis quantifies slack space availability in various sections,
exploring how the slack space can influence the robustness of
detection techniques. We further assess the relationship between
malware type and evasion rate to understand how different types
of malware respond to evasion attacks. Additionally, we explore
the connection between each malware type and the corresponding
slack space availability, analyzing how these structural factors
influence the evasion rates during adversarial attacks. In our
experiments, adversarial malware samples were generated using
two different algorithms: gradient descent and iterative gradient
sign method. This detailed analysis enhances our understanding
of evasion dynamics of adversarial attacks across malware types
and different structural characteristics of binary malware files.

Index Terms—Adversarial Malware Analysis; Windows Mal-
ware Detection; Append and Slack Attack; Malware PE File
Structure

I. INTRODUCTION

Artificial Intelligence (AI) and Deep Learning (DL) have

seen significant growth in recent years, becoming a corner-

stone in the cybersecurity domain [1], [2]. In the field of mal-

ware, deep learning models have emerged as powerful tools

for detection and classification. In particular, MalConv [3]

is a notable end-to-end CNN model due to its ability to

ingest entire executable files and effectively classify them as

malicious or benign.

This advancement has also spurred the development of

sophisticated adversarial attacks designed to target deep learn-

ing models by exploiting their inherent sensitivity to input

perturbations. Among these adversarial attacks, optimization

algorithms, like Gradient Descent (GRAD), are known to be

most effective. In addition, a significant advancement in this

field came with the introduction of the Fast Gradient Sign

Method (FGSM) by Goodfellow et al. [4]. Building upon

FGSM, the Iterative Gradient Sign Method (IGSM) was de-

veloped by Madry et al. [5], offering a more refined approach

to generating adversarial examples. Goodfellow et al. and

Madry et al. demonstrated that using FGSM and IGSM causes

DL models to misclassify images by adding carefully crafted

minimal adversarial noise. However, a similar straightforward

addition of perturbations to malware executables can lead to

the breaking of the malware functionality.

To address this issue, research works [6] proposed ap-

proaches that limit the injection of perturbation within the

executable files to specific areas, keeping their functionality

intact while evading the malware detector. For instance, Kruek

et al. [7] applied IGSM in the field of adversarial malware

analysis and introduced techniques known as the Append and

Slack attacks. Append attack, also known as padding attack,

pads perturbation at the end of the file, while slack attack

adds perturbations in the empty slack spaces inside the PE

file sections. The majority of research works have focused on

crafting perturbations to enhance the evasion rate (ER) without

detailed consideration of the characteristics of the malware

being perturbed. We believe factoring in the characteristics of

each malware binary can provide a more comprehensive un-

derstanding of generating adversarial malware samples, which

leads to more successful evasion attacks.

In our work, we have considered three factors throughout

the adversarial analysis of binary malware: the amount of

perturbations appended at the end of the file, the slack space

availability across various sections of the PE file and the

malware type. Throughout this paper, we will be referencing

malware ”type” or ”family” interchangeably, but both mean the

same meaning as classification based on their characterization.

Our exploration into these factors raised several pertinent

research questions.

RQ1. How does increasing padding size affect the evasion rate

of malware? Does the choice of adversarial algorithm

influence this behavior?

RQ2. Does the availability of slack space consistently enhance

malware detection evasion? How does the choice of

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

5621

adversarial algorithm impact this relationship, and does

the location of slack space within the malware affect its

evasion effectiveness? Additionally, how does the effec-

tiveness of slack space compare to padding in evading

malware detection?

RQ3. Does the type of malware influence its evasion capabili-

ties? How do different malware types respond to various

adversarial techniques and algorithms? Additionally, what

are the characteristics of each malware family regarding

slack space, and how does slack space affect each family’s

evasion effectiveness?

To answer these, we have conducted a series of experiments

comprising three adversarial evasion attacks, namely append,

slack, and hybrid attack, which combines the strategies of both

append and slack attacks, using both GRAD and IGSM algo-

rithms. All of our attacks target the MalConv [3] model, a well-

known end-to-end benchmark model for malware detection in

the adversarial domain.

The remainder of this paper is organized as follows. Section

II provides the background and related work. Section III out-

lines the methodology including MalConv (the target model),

IGSM and GRAD (adversarial algorithms used), the malware

dataset, and the experimental setup. Section IV explains the

how different attacks are performed. Section V analyzes the

results of the experiments and conducts a discussion pointing

towards the answers to the research questions. Finally, Sec-

tion VI provides potential future direction and concludes the

work.

II. BACKGROUND AND RELATED WORK

A. Machine Learning-based Malware Detection

Conventional detection methods such as signature and

behavior-based approaches often require ”human-in-the-loop”

(i.e. analysts), which hinders the malware analysis process

significantly. Evidently, with the creation of three to four new

malware variants per second [8], such methods struggle to

keep up with the diversity and complexity of the malware

threat, particularly in the case of zero-day, polymorphic, and

metamorphic malware.

The rapid emergence of new malware necessitates a shift

towards more advanced and adaptable detection methods. As

such, ML-based approaches have been used in the malware

domain for static, dynamic and real-time online analysis. In

the case of static file detection, ML models are trained on

features like hash value, particular string information, opcodes,

n-bytes, file system, registry key changes, process operations,

network activities and have achieved 99% accuracy using ML

classifiers [9], [10], [11], [12], [13], [14].

Beyond traditional machine learning techniques, deep learn-

ing models like Convolutional Neural Networks (CNNs) and

Recurrent Neural Networks (RNNs) have become pivotal in

advancing malware detection. These models are adept at

extracting complex patterns from large datasets, crucial for

identifying sophisticated, polymorphic, and zero-day malware.

With their ability to automatically learn and generalize from

raw data, deep learning approaches offer a dynamic solution

to the limitations of earlier methods, enhancing the detection

accuracy and reducing false positives in the ever-evolving

landscape of cyber threats [15], [16], [17], [18].

B. Adversarial Machine Learning

Machine learning (ML) has seen remarkable growth, sig-

nificantly impacting various sectors. Yet, the effectiveness

of ML models solely depends on a critical assumption that

train data and test data belong to the same distribution.

In real-world situations, we can’t guarantee the data comes

from a similar distribution, particularly when attackers can

intentionally tweak the test or train data to fool the model.

These attacks, referred to as adversarial attacks, have become

a severe threat in the ML landscape.

The majority of adversarial attacks comprise either data

poisoning attacks at training or evasion attacks during model

testing. Data poisoning attacks are hard to achieve due to the

improbable possibility of attackers’ access to training data.

On the other hand, evasion attacks can always evade the target

model by intentionally tweaking data at the testing/deployment

phase. For example, Goodfellow et al. [4] demonstrated how

GoogLeNet [19], after being trained on the ImageNet dataset

[20], incorrectly identifies a panda as a gibbon when small

calculated perturbations are added to the image.

In this paper, we focus on evasion adversarial attacks,

where the perturbation is carefully crafted and inserted into

a malware file, leading to a change of classification from

malicious to benign by the target model.

C. Adversarial Malware Analysis

Adversarial attacks have been a rising threat in the do-

main of malware analysis, especially for Windows malware

binaries. Consequentially, more research has been focusing on

adversarial malware analysis. Kolosnjaji et al. [21] applied

gradient-based methods to manipulate malware executables

and create an adversarial malware sample. They appended

padding bytes to the malware binary, allowing these files to

bypass deep learning-based malware detectors while retaining

their malicious functionality. Their approach demonstrated the

effectiveness of gradient-informed modifications in evading

detection. They randomly sampled just 200 samples and

achieved an evasion success of 60%.

Kreuk et al. [7] expanded the realm of malware adversarial

attacks by adopting IGSM to the context of malware binaries.

They explored two key strategies: appending additional bytes

to the end of malware files and refining mid-file perturbation

insertion using IGSM. These methods showcased the potential

for both appending bytes and intelligently inserting pertur-

bations to increase the likelihood of evading deep learning-

based detection systems. Further, Suciu et al. [22] analyzed

adversarial examples in malware detection. They examined

various attack methods, including appending different types of

adversarial noise to the end of malware files and altering the

slack regions (i.e. empty spaces within or between the sections

of an executable). Their research compared the effectiveness

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

5622

Fig. 1. MalConv Architecture[3]

of these methods, such as using random noise, IGSM mod-

ifications, and benign byte appendages. They have randomly

sampled 400 Malware samples and performed append attacks,

achieving a maximum accuracy of 71% by padding 10000

Bytes. For the slack regions-based attacks, they have achieved

a maximum accuracy of 28%. The most recent work in this

field is by Kun et al.[23], who developed the FGAM method

to optimize the number of alterations in malware and deter-

mine the optimal stopping point for introducing perturbations,

ensuring the generated adversarial malware remains effective

and efficient.

Previous research focused on enhancing the ER by improv-

ing the quality of perturbations inserted, using various tech-

niques, such as random noise, benign bytes, and algorithms

like GRAD and IGSM. It also focused on where to insert such

perturbations, mainly appending them at the end or within the

slack spaces.

Unlike previous works, we focus on analyzing the structure

and characteristics of the malware executable rather than just

the adversarial techniques. As such, we conduct a comprehen-

sive analysis of evasion attacks, focusing on the role of slack

space in malware executables. We also include an in-depth

exploration of adversarial evasion across various malware

types.

III. METHODOLOGY

A. MalConv Detector

MalConv is an end-to-end deep learning model specifically

designed for malware detection. Proposed by Raff et al. [3],

MalConv stands out for its innovative approach to ingesting

an entire PE file (and padding/trimming it to 2MB) and

processing raw byte sequences. Its architecture is primarily

characterized by the presence of an embedding layer, which

is crucial for converting raw byte values into a meaningful

vector representation. Beyond the embedding layer, MalConv’s

architecture as shown in Figure 1 includes convolutional layers

that are instrumental in extracting local patterns and features

from the embedded byte sequences, which are crucial for

identifying malicious signatures. The model culminates in a

fully connected output layer, which integrates these extracted

features to make the final classification decision between

benign and malicious files. The effectiveness of MalConv is

attributed to its ability to capture intricate patterns within

executables, which might be overlooked by conventional mal-

ware detection methods that rely on hand-crafted features.

This capability makes it a powerful tool for identifying both

known and unknown malware variants. As MalConv became

a well-known standard as an end-to-end malware detector

in academic research, we chose it as a target model for

conducting our experiments.

B. Adversarial Algorithms

Gradient Decent (GRAD): Gradient descent is an optimiza-

tion approach that iteratively adjusts variables to minimize a

target function. This quality makes it an invaluable tool in

adversarial contexts, particularly for crafting subtle modifica-

tions for adversarial malware examples. Unlike brute force

methods that make blatant changes, gradient descent fine-tunes

the parameters, ensuring efficacy. Its special prowess lies in its

ability to identify and exploit the weakest link in a system’s

defence by making calculated, incremental adjustments. In the

adversarial landscape, this translates to a higher likelihood

of evading detection, making gradient descent a technique of

choice for sophisticated cyber threats.

Iterative Gradient Sign Method (IGSM): IGSM [24] is a

technique that builds upon the foundations of the Fast Gradient

Sign Method (FGSM). The FGSM introduced a method of

generating adversarial examples by applying a single-step per-

turbation in the direction of the gradient of the loss function.

This approach effectively utilized a linear approximation to

alter input data, nudging it towards increasing the loss, thereby

challenging the model’s accuracy. The FGSM’s simplicity and

efficiency in creating adversarial samples made it a pivotal tool

in understanding neural network vulnerabilities. However, the

FGSM’s straightforward approach also presented limitations,

particularly in its ability to generate finely tuned-adversarial

examples. This shortcoming stemmed from its one-step nature,

which often resulted in either insufficiently subtle or overly

aggressive perturbations. To address these drawbacks, the

IGSM was introduced. IGSM enhances FGSM’s methodology

by introducing an iterative process where smaller, controlled

perturbations are applied multiple times. This allows for a

more gradual and adjustable manipulation of the input data,

ensuring that the adversarial examples remain within a defined

ϵ-boundary of the original image.

C. Adversarial Techniques

Unlike images, adding perturbations to malware is not

straightforward since the malware’s functionality has to be

maintained. As such, append and slack attacks were introduced

in previous works, aiming to create adversarial malware sam-

ples without compromising their functionalities. Further, we

also analyze the combination of the append and slack attacks,

namely a hybrid attack. Figure 2 shows the locations within

the PE executable where the perturbations are inserted for each

of the three adversarial techniques. Each adversarial technique

is discussed as follows.

Append Attack: The append attack, depicted in Figure 2-A,

involves appending additional non-malicious bytes to the end

of a malware file. This technique doesn’t alter the malware’s

functionality but can significantly impact how detection mod-

els based on feature extraction, such as MalConv, perceive

the file. Kolosnjaji et al. [21] introduced this approach in the

malware binary.

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

5623

Fig. 2. Adversarial techniques within PE files.

Slack Attack: It is an adversarial evasion attack (shown in

Figure 2-B) that exploits the unused or residual space in a file

executable, commonly known as ‘slack space’. Windows bina-

ries are saved in physical memory in clusters. The last cluster

might not be completely occupied, raising the possibility of

empty space. These empty spaces are called slack spaces and

are identified when the physical size is greater than the virtual

size. The slack attack involves embedding adversarial data

within this slack space. Using these unutilized areas allows

one to insert harmful content into a system without altering

the file’s apparent size or structure. In our study, we utilized

all available slack space to demonstrate the full extent of this

attack vector. This attack was first analyzed by Kreuk et al.

[7]

Hybrid Attack: In the context of adversarial malware

evasion, it is important to note that each technique possesses

its own distinct set of limitations. An append attack entails

the addition of extraneous data to the end of a file. However,

this method may not consistently result in successful evasion,

as it lacks a comprehensive integration with the underlying

content of the file. It also raises suspicions by the malware

detectors, as it is relatively easy to look for out-of-place extra

bytes at the end of the file. The utilization of slack space

for perturbations, although less conspicuous, is commonly

constrained by the quantity of unutilized space available,

frequently leading to minimal perturbations that may not

adequately deceive advanced detection systems, in our case,

MalConv. Therefore, to better analyze the patterns and the

behavior of the factors in our consideration, we have combined

these two attacks by inserting perturbations both at the end

of the file (append) and the mid-file injection (slackspace) to

form a hybrid attack as shown in Figure 2-C. The hybrid has

all the factors pertaining to both attacks and compliments each

other’s drawbacks, resulting in better malware evasion. This

can be further evidenced in Section IV.

D. Windows PE File Structure & Malware Dataset

PE File Format: Adversarial malware generation requires

careful modification of the malware executable. As such, it

is imperative to understand the malware file format. The

executable file format for the Windows operating system is

Windows PE file format. The PE file (shown in Figure 2) is

a linear stream of data, starting with the MS-DOS header.

MS-DOS stub program is followed by a PE file signature, the

COFF file header, and an optional header. This is followed

by a sectional header, which contains metadata of sections

like physical address, virtual size, virtual address, etc. All

executable code and the entry point are present in the .text

section. The .bss section holds uninitialized data for appli-

cations, encompassing all statically declared variables. The

.rdata section is designated for read-only data, such as

constants, strings, and debug directory details. The actual data

related to the file is stored in the .data section. Additionally,

the .rsrc section is reserved for storing resource information

pertinent to the module. In this paper, we only discuss the PE

file format since we are focusing on Windows malware.

Malware Dataset: The dataset comprises of 13, 971 lat-

est Windows malware samples collected from VirusTotal1, a

widely recognized and trusted public database for malware

analysis. VirusTotal is a remarkable resource known for its

extensive and diverse sample collection.

Out of these 13, 971 samples, only 8, 107 of them are

classified as malware against the MalConv model with a

threshold of 0.5. Since only 8k binaries are only detected as

malicious by Malconv model, we have performed adversarial

activities on these 8k files only. These 8k files are classified

using VirusTotal API and are classified into 12 different

malware types with 6 types consisting of almost 500 samples.

E. Analysis Setup and Evaluation

In conducting this comprehensive analysis of malware and

adversarial techniques, we employed the SECML Malware2

library implementation of adversarial algorithms (IGSM, Gra-

dient Decent) and utilized SECML’s pre-trained model of

MalConv as the target. To efficiently process and execute

our experiments, we utilized the powerful Lambda-workstation

with 3x NVIDIA RTX 4090 24GB GPUs 3.

For the evaluation of our experiments, we focused on a key

metric called Evasion Rate (ER). The ER serves as a primary

indicator of the effectiveness of our adversarial strategies. It

is calculated as the percentage of malware samples that suc-

cessfully evade detection after being altered by our adversarial

techniques, as follows:

ER =

(

No. of Malware Samples Evaded

Total Number of Malware Samples

)

× 100

1VirusTotal. https://www.virustotal.com/
2SECML Malware. https://github.com/pralab/secml malware
3Lambda-Workstation. https://lambdalabs.com/gpu-workstations/vector

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

5624

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

5

7

10

16

30

41

43
42 42

41 41 41 41 41
40

39
38 38 38

Epsilon(ϵ)

E
v
as

io
n

R
at

e(
%

)

Fig. 3. ER Across Different Epsilon under AppendIGSM

Further in the analysis, while talking ER for a selection like

ER of malware having 1000-2000 bytes of slackspace or ER

for a Worm family, we are considering the total number of

malware samples belonging to the selection. In our analysis,

we discuss ER with respect to slack spaces and append

bytes for various malware families/types under the IGSM and

GRAD adversarial algorithms.

IV. EXPERIMENTS OVERVIEW

A. Adversarial Hyperparameter Exploration

Every optimization technique has hyperparameters that need

to be tuned to achieve a high success rate for the end goal. This

section presents the experiments to optimize hyperparameters

and the final optimal values achieved to achieve maximum ER.

1) Epsilon (ϵ): With FGSM being the core of IGSM,

Epsilon (ϵ) plays a pivotal role in the Fast Gradient Sign

Method (FGSM) by dictating the magnitude of adversarial per-

turbations. The influence of ϵ on the perturbation is quantified

by the formula:

perturbation = perturbation+ ϵ× sign(∇xJ(¹, x, y))

In this formula, ∇xJ(¹, x, y) represents the gradient of

the loss with respect to the input data, ¹ denotes the model

parameters, x is the input, and y is the target label. The

term sign(∇xJ(¹, x, y)) computes the sign of the gradient,

indicating the direction in which the input should be modified

to maximize the loss. The product ϵ × sign(∇xJ(¹, x, y))
represents the actual perturbation applied to the input data.

A larger value of ϵ results in a larger step in the direction of

the gradient sign.

Our experimental approach to finding the optimal ϵ value is

focused on evasion effectiveness. We explored ϵ values from

0.1 to 1.0, in increments of 0.05, to understand how varying

levels of perturbation intensity impact ER.

The results, visualized in Figure 3, demonstrated a peak

ER at ϵ = 0.4. This suggests an optimal balance at this

value, where the perturbations were significant enough to

deceive the detection model yet subtle enough to avoid being

conspicuous. All subsequent experimental results provided

herein are obtained with an epsilon value of 0.4.

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

12

42
43 43 43 43 43 43 43 43

Iterations

E
v
as

io
n

R
at

e(
%

)

Fig. 4. ER Across Different Iterations under AppendIGSM

2) Iterations: The concept of iterations takes on significant

importance in adversarial machine learning, particularly in

the context of IGSM. In this setting, ’iterations’ refer to the

number of times an adversarial perturbation is applied and

adjusted in an attempt to deceive the target model.

To investigate the influence of iterations on the effectiveness

of the IGSM attack, we conducted a detailed experiment. The

primary goal was to determine the optimal number of iterations

that maximized the ER against MalConv. For consistency

and comparability, we employed an append attack strategy

with a fixed padding length of 1024 bytes. Our experiment

varied the number of iterations from a baseline of 1 iteration,

incrementing up to the 10th iteration.

The empirical results, as illustrated in Figure 4, revealed

a pattern where the ER stabilized at 43% for iteration counts

from 3 to 10. This plateau suggests that increasing the number

of iterations beyond a certain point (in this case, 3 iterations)

does not significantly enhance the attack’s efficacy. This find-

ing provides crucial insights into the diminishing returns of

additional iterations in IGSM.

B. Experimental Approach for Append, Slack, and Hybrid

Attacks

In this subsection, we discuss various details and parameters

that contribute to and shape the experiments conducted using

append, slack, and hybrid attacks. All the following exper-

iments are conducted on the 8k files that were detected as

malicious by the target MalConv model.

1) Append Attack: To assess how different padding sizes

influenced the evasion rate (ER), we conducted experiments

by appending varying padding sizes ranging from 512 bytes

to 4, 096 bytes in increments of 512 bytes while maintaining

a consistent experimental setup across all samples for reliable

comparison. To understand the impact of the adversarial al-

gorithm, we repeated the same experiments using GRAD and

IGSM.

2) Slack Attack: A key factor in our analysis is the avail-

ability of slack space in the malware files and its impact on

detection evasion. To find the slack space available in the

malware files, we have used pefile [25] python library to

identify the sections of the PE file and used the following

equation to calculate slack space in each section of the file.

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

5625

0
51
2

1,
02
4

1,
53
6

2,
04
8

2,
56
0

3,
07
2

3,
58
4

4,
09
60

5

10

15

20

25

30

35

40

45

50

0

19

43 43 43 43 43 43 43

16

21

45 45 45 45 45 45 45

0

10

12 12 12 12 12 12 12

14

19

21 21 21 21 21 21 21

Padding Size (Byte)

E
v
as

io
n

R
at

e
(%

) AppendIGSM Attack

HybridIGSM Attack

AppendGRAD Attack

HybridGRAD Attack

Fig. 5. Evasion rate using different padding lengths for AppendIGSM,
HybridIGSM, AppendGRAD, and HybridGRAD attacks. Zero padding size repre-
sents no perturbation added, hence 0% evasion rate. Note that hybrid attacks
utilize the entire slack spaces available within the malware, resulting in evasion
success rate even with zero padding.

Slackspace = Size of Raw Data − Virtual Size

Once the slack spaces were identified, we utilized all the

available slack space across all the sections to insert the

perturbations. To optimize the perturbations, we have used

both IGSM and GRAD adversarial algorithms.

3) Hybrid Attack: As mentioned earlier, the hybrid attack

combines the strategies of both append and slack attacks.

In this attack, we utilized all the available slackspace and

the same padding range, increasing from 512 to 4096 Bytes.

Similar to the other two attacks, we carried this attack under

IGSM and GRAD.

V. ANALYSIS AND DISCUSSION

A. Impact of Padding Length (RQ1)

As shown in Figure 5, when the padding size was increased

from 512 to 1, 024 bytes, the ER saw a notable jump from 19%
to 43% and 10% to 12% using IGSM and GRAD respectively

under the append attack. However, further increases in padding

size reveal a critical threshold at 1024 padding bytes, with

an evasion rate (ER) of 43% and 12% using IGSM and

GRAD, respectively. This contrasts with the earlier work by

Suciu et al.[22], who achieved nearly a 70% ER by padding

10,000 bytes. Their higher evasion rate can be attributed to the

similarity between the datasets used for training and testing,

resulting in stronger gradients to craft adversarial malware

samples. Additionally, our analysis considered 8,107 latest

malware files, rather than sampling 400 files.

The hybrid attack utilizing both the slack space and ap-

pended perturbations started at 16% and 14% using IGSM

and GRAD, respectively, with 0 bytes of padding. But with

the introduction of 512 bytes padding, the ER increased to

21% using IGSM and 19% using GRAD. A further increase

slack hybrid

padding

22 9

68

274

34 2407

916

Fig. 6. Count of malware evaded using IGSM algorithm, grouped based on
the type of adversarial attack used.

in the padding bytes showed a plateau at max ER of 45% with

1024 Bytes of padding. Similarly, the Gradient decent method

achieves an ER of 21%. Hybrid attack has consistently shown

a better ER over append attack at all the padding lengths due

to the added benefits of slack perturbations. Further, the IGSM

approach exhibits a significantly higher evasion success than

the Grad across all padding sizes. Notably, both adversarial

algorithms (IGSM and GRAD) and both adversarial tech-

niques (Append and Hybrid) reached their respective efficacy

thresholds at a padding size of 1, 024 bytes.

Finally, to answer RQ1, the evasion rate initially increases as

the padding size is increased. However, it reaches a threshold

at a padding length of 1024 bytes. Beyond this point, further

increasing the padding size does not enhance the evasion rate.

This behavior is consistent across all variants of attack. Thus,

the type of adversarial algorithm does not significantly affect

the pattern of padding size on the evasion rate. Since we

have achieved the maximum evasion rate at 1024 Bytes, we

will only reference the padding length of 1024 Bytes in the

analysis.

B. Impact of Malware Structure (RQ2)

Out of the 8, 107 samples that were studied, 1, 246 samples

using IGSM and 1058 samples using GRAD were successfully

evaded under slack attack, giving them an ER of approximately

16% and 14% respectively. The SlackIGSM (16%) has under

performed in comparison to PaddingIGSM
1024 (43%), but on

the contrary SlackGRAD (14%) has a better performance than

PaddingIGSM
1024 (12%).

On the other hand, the hybrid attack of append and slack

yielded ER of 45% and 21% using IGSM and GRAD, respec-

tively. The difference between the evasion rate is only 2%

compared to AppendIGSM
1024; this points to the very limited

advantage of slackspaces when combined with padding bytes.

Overall, the hybrid attack with padding of 1, 024 bytes using

IGSM has achieved the highest ER in our analysis.

Further, to understand the sole contribution of slack space

and padding, we have drawn a Venn diagram that constitutes

the count of malware evaded by using IGSM in Fig 6.

Overall, from the set of malware evaded, we observed that only

4%(305) samples were evaded specifically due to the contri-

bution of slackspace. On the other hand, 30%(2484) malware

samples are evaded due to the contribution of padding. A

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

5626

Slack Space No. of No. of Malware Evaded (ER %)

(Byte) Malware SlackIGSM SlackGRAD HybridIGSM HybridGRAD

0 4,492 0 (0%) 0 (0%) 1,825 (40%) 453 (10%)
1-1,000 1138 274 (24%) 265 (23%) 507 (44%) 280 (24%)

1,001-2,000 1101 394 (35%) 323 (29%) 535 (48%) 380 (34%)
2,001-3,000 359 60 (16%) 52 (14%) 132 (36%) 65 (18%)
3,001-4,000 127 56 (44%) 48 (37%) 81 (63%) 49 (38%)
4,001-5,000 135 50 (37%) 21 (15%) 61 (45%) 23 (17%)
5,001-6,000 112 34 (30%) 29 (25%) 41 (36%) 30 (26%)
6,001-7,000 288 87 (30%) 33 (11%) 117 (40%) 75 (26%)
7,001-8,000 42 10 (23%) 10 (23%) 17 (40%) 11(26%)
8,001-9,000 26 6 (23%) 6 (23%) 10 (38%) 7 (26%)

9,001-10,000 12 8 (66%) 8 (66%) 11 (91%) 8 (66%)
>10,000 275 267 (97%) 263 (95%) 269 (97%) 264 (96%)

TABLE 1
ER USING SLACKIGSM , SLACKGRAD , HYBRIDIGSM , AND HYBRIDGRAD

ATTACKS. MALWARE IS GROUPED BY THE SIZE OF SLACK SPACES

AVAILABLE.

total of 916 malware samples were evaded by all three types

of attacks, indicating that these samples can be successfully

evaded regardless of the adversarial attack method employed.

Slackspace can be a useful maneuver to evade detection. Still,

padding can also evade almost all the malware samples evaded

by Slackspace and has a higher success rate in evading other

malware samples.

To gain deeper insights into how different sizes of

slackspace available impact ER, we grouped the malware

samples based on their overall slack space availability in

increments of 1, 000 bytes. Table 1 presents the results of this

categorization. The ER of SlackIGSM across all the ranges is

higher than SlackGRAD attack.

From Table 1, the evasion rate has increased with the

increased available slack space until 2, 000 bytes. Thereafter,

the evasion rate fluctuates as the slack space increases. The

most significant evasion rates are observed in larger slack

spaces, peaking at > 95% for spaces over 10, 000 bytes.

This is evident across all four attacks presented in the table,

indicating a complex dynamic relation with slack space where

the amount of slack space is a crucial determinant of evasion

success. Still, the increased available resources don’t always

guarantee success in evasion.

To understand the granular role of slackspace based on

their host PE sections, we have grouped the malware by the

Slackspace availability in each PE section. Although there are

many sections, we have considered very prominent and well-

known ones. From Table 2, the .text section showcased

the most instances, with slackspaces, followed by .rsrc and

.rdata. Coming to the ER, the .data section has show-

cased the highest ER in three attacks except for the HybridIGSM

attack, where .reloc has the upper hand. Contrary to the

high availability of slackspaces in the .text section, it has

not reciprocated the same upperhand regarding the ER. By

this, the section containing the slack space does affect the

evasion rate, irrespective of higher availability in a particular

section.

In conclusion, to answer RQ2, padding is a significantly

more successful strategy in comparison to slack space. The

slackspace doesn’t constantly enhance the evasion rate. In-

stead, the evasion rate varies up and down, pointing to a

complex relationship between slackspace and the evasion rate.

Coming to the impact of the adversarial algorithm in this

relationship, as shown in Table 1, both IGSM and GRAD show

Section No. Of No. of Malware Evaded (ER %)

Name malware SlackIGSM SlackGRAD HybridIGSM HybridGRAD

.data 1364 622 (46%) 591 (44%) 804 (59%) 660 (49%)
.idata 776 330 (43%) 288 (38%) 458 (60%) 347 (45%)
.rdata 2115 861 (41%) 754 (36%) 1178 (56%) 828 (40%)
.reloc 836 347 (42%) 292 (35%) 576 (69%) 347 (42%)
.rsrc 2477 880 (36%) 725 (30%) 1164 (47%) 793 (33%)
.text 3031 1157 (39%) 960 (32%) 1597 (53%) 1081 (36%)
Total 3615 1246 (35%) 1058 (30%) 1781 (50%) 1192 (33%)

TABLE 2
EVASION RATE USING SLACKIGSM , SLACKGRAD , HYBRIDIGSM , AND

HYBRIDGRAD ATTACKS, MALWARE IS GROUPED BASED ON THE

AVAILABILITY OF SLACKSPACE IN THE SECTION.

random fluctuations, pointing that the choice of adversarial

algorithm doesn’t affect the relationship between slackspace

and ER. However, IGSM has a slightly higher ER when

compared to the ER of GRAD-based attacks. Finally, the

section containing the slackspace also plays a role in affecting

the evasion rate. In our analysis, the perturbations in the slack

space of .data section showcased the highest evasion rate.

C. Impact of Malware Type (RQ3)

To understand the role of malware type, we have grouped

the malware by its type/behavior. There are 12 malware

families in our dataset (excluding 2 families, which had only

1 sample each). Table 3 has all the ER related to six different

approaches (3 attacks × 2 adversarial algorithms) across all

the malware families. To analyze the structure of each malware

type, we have added the details of slackspace availability for

each section in Table 4. To study each malware type by the

amount of slack space, Table 5 presents the details on how

each malware type behaves in different slack space ranges.

Using these three tables, we discuss the behavior of each type

in detail.

Worm: In our dataset, the worm is the most prevalent,

represented by 2, 753 samples. The structural characteristics

of the Worm, as revealed by Tables 4 and 5A, show that

1, 775 samples are devoid of slack space. Out of the 978(35%)
malware samples with slack space, 824 samples showed slack

presence in the .text section, and 687 samples showed slack

presence in the .rsrc section. A slack attack using IGSM

resulted in a 10% ER with 265 samples being evaded, while

GRAD achieved 8%. The granular data from Table 5A reveal

that ER peaks within the 3, 001 to 4, 000 slack bytes range,

highlighting the best spot for evasion attack. Past this point, we

observe a decline in evasion success, suggesting a diminishing

return on evasion effectiveness as slack space increases. For

padding attacks, the worm showed an ER of 37% and 6%
for append1024 attack using IGSM and gradient techniques,

respectively, as presented in Table 3. Although the ER of 37%
is significant, it is less than the overall ER of 43% under

the append1024
IGSM. Coming to the hybrid attack, Padding in

combination with slack space has no impact on the ER using

IGSM and very little impact using GRAD. Although slack

spaces are available in 35% of the worm’s files, only 10%
were successfully evaded under SlackIGSM. Overall, We can

observe that an append attack is more effective than a slack

attack.

Virus: The structural analysis of the Virus across 2, 027
samples in our dataset, as revealed by Table 4, indicates

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

5627

Malware No.Of Slack(%) Append1024(%) Hybrid1024(%)

Type Malware IGSM GRAD IGSM GRAD IGSM GRAD

Worm 2753 265 (10%) 204 (8%) 995 (37%) 147 (6%) 1004 (37%) 282 (11%)
Virus 2027 458 (23%) 429 (22%) 826 (41%) 237 (12%) 890 (44%) 520 (26%)
Trojan 1002 239 (24%) 143 (15%) 471 (48%) 117 (12%) 505 (51%) 252 (26%)
Dropper 899 58 (7%) 39 (5%) 208 (24%) 25 (3%) 242 (27%) 57 (7%)
Adware 509 38 (8%) 38 (8%) 461 (91%) 195 (39%) 469 (93%) 230 (46%)
Downloader 466 129 (28%) 138 (30%) 254 (55%) 116 (25%) 270 (58%) 169 (37%)
Ransomware 149 22 (15%) 33 (23%) 32 (22%) 0 (0%) 37 (25%) 31 (21%)
Miner 139 5 (4%) 5 (4%) 60 (44%) 3 (3%) 64 (47%) 8 (6%)
Spyware 79 8 (11%) 8 (11%) 71 (90%) 57 (73%) 73 (93%) 65 (83%)
PUA 33 10 (31%) 6 (19%) 20 (61%) 4 (13%) 23 (70%) 10 (31%)
Hacktool 28 5 (18%) 6 (22%) 15 (54%) 7 (25%) 15 (54%) 9 (33%)
Banker 21 9 (43%) 9 (43%) 10 (48%) 4 (20%) 12 (58%) 11 (53%)

TABLE 3
ER(%) BY MALWARE TYPE FOR SLACK, APPEND1024 , AND HYBRID1024 ATTACKS USING IGSM AND GRADIENT TECHNIQUES.

Malware No.of Count of Malware with Slack Regions in
Type Malware .data .idata .rdata .reloc .rsrc .text

worm 2753 293 228 311 75 687 824
virus 2027 758 367 878 357 612 1042
trojan 1002 137 75 273 99 405 402
dropper 899 57 52 301 148 352 343
adware 509 13 10 68 42 72 73
downloader 466 55 7 168 51 142 180
ransomware 149 17 12 52 32 107 58
miner 139 17 22 15 9 55 55
spyware 79 0 0 7 10 7 10
pua 33 4 2 12 4 12 12
hacktool 28 6 0 14 3 14 15
banker 21 7 1 16 6 12 17

TABLE 4
NO. OF MALWARE WITH SLACK SPACE IN VARIOUS SECTIONS BY TYPE

the presence of slack space in almost all the file sections.

The ER for the Virus, as depicted in Table 3, is intriguing

to observe that the ER (%) is notably higher, at 23% with

IGSM and 22% with GRAD, when compared to others. This

anomaly can be attributed to the structural characteristics of

the Virus, particularly the high prevalence of substantial slack

space within each file section. A more detailed breakdown

of these evasion rates based on slack space, as illustrated in

Table 5B, reveals that the majority of virus samples exhibited

slack space presence in the lower ranges. Notably, the evasion

rates are also high within these lower ranges, with 67% of

evasion rates under the Hybrid1024
IGSM attack falling within

the range of 1000-2000 bytes.

Although the following range of 2000-3000 bytes has

around 140 virus samples, only 2 of them are successfully

evaded, indicating the short-range threshold at 1000-2000
bytes. In the next ranges, the ER has soared and reached

99% evasion in very high slack space ranges, as shown in

5B. Further analysis revealed that these samples contain slack

space ranging from 50,000 to 75,000 bytes The ER for the

Virus family under append1024 attack is 41% using IGSM

and 15% using GRAD, showing their increased susceptibility

to these perturbation techniques. This behavior is further

emphasized in the hybrid attack scenario, with ER of 44%
using IGSM and 26% using GRAD. Overall, the virus family

exhibits a high evasion rate against both Append and Slack

attacks targeted against MalConv.

Trojan: Despite 55% of the Trojan samples exhibiting slack

space, as shown in Table 5C, their ER for slack attacks are

moderate - 24% using IGSM and 15% under the Grad attack,

as depicted in Table 3. ER of Trojan increases with the amount

of available slack space to the range of 5000-6000 Bytes.

Remarkably, Trojans with over 10, 000 Bytes of slack space

demonstrate a near-perfect ER of 98% in slack attacks, which

on further investigation showcased slackspace more than 3
Billion Bytes. On the other hand, the response to padding

attacks is more pronounced. With IGSM, the Trojan family

shows a significant ER of 48%. This positive response is

further amplified in hybrid attacks, where the ER climbs to

51%, as indicated in Table 3. This increase suggests that while

slack space provides a foundation for evasion, the addition of

padding offers a more substantial boost to the Trojan’s ability

to evade detection.

Dropper: The structural analysis of the Dropper family, based

on Tables 4 and 5D, indicates Dropper malware group is

lean in design and conservative in its use of slack space.

Table 4 reveals the variation slack space across different

sections of the dropper, with the highest counts observed in

the .rsrc and .text sections. Table 5D further shows that 507
out of the 899 Dropper samples showcase 0 bytes of slack

space, and the droppers with slack space beyond 2, 000 bytes

are exceptionally low. Although the smaller size can be an

advantage for droppers to evade detection, the limited slack

space larger than 2, 000 bytes poses a major challenge from

an adversarial perspective as evidenced by the ER from the

Table 3. The slack attack yielded a maximum ER of 7% with

IGSM on 58 samples, while the GRAD attack yielded ER of

5%. In Table 4, the number of the .data and .idata sections with

slack regions are almost equal to the number of files evaded

with slack attack. This points us to the possibility of .data and

.idata playing a crucial role towards evasion. Further, when

droppers are subjected to append1024 attack, it yielded an ER

of 24% using IGSM and 3% using GRAD. As you can see

from Table 3, the dropper family has the second lowest ER;

this shows that the Dropper family is more resilient to padding

than compared to other. Due to its resiliency to padding and

low slack space availability, dropper yielded the second lowest

ER under hybrid attack with 27% using IGSM and 7% under

gradient attack.

Adware: Padding attacks are highly effective against adware

as shown in Table 3, the ER for the append1024 attack using

IGSM is a remarkable 91%. When examining the Adware

family’s interaction with slack space (Table 5E), it’s evident

that only a small fraction, about 70 samples, exhibit slack

presence. In line with this observation, the ER for Adware

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

5628

Slack Space
A. Worm B. Virus C. Trojan

(Byte)
No.Of Slack(%) Hybrid1024(%) No.Of Slack(%) Hybrid1024(%) No.Of Slack(%) Hybrid1024(%)

Malware IGSM GRAD IGSM GRAD Malware IGSM GRAD IGSM GRAD Malware IGSM GRAD IGSM GRAD

0 1775 0 (0%) 0 (0%) 559 (32%) 39 (3%) 870 0 (0%) 0 (0%) 286 (33%) 31 (4%) 451 0 (0%) 0 (0%) 220 (49%) 78 (18%)
1-1, 000 249 52 (21%) 59 (24%) 122 (49%) 66 (27%) 284 14 (5%) 17 (6%) 33 (12%) 20 (8%) 162 36 (23%) 29 (18%) 83 (52%) 32 (20%)

1, 001-2, 000 153 31 (21%) 8 (6%) 40 (27%) 10 (7%) 474 228 (49%) 200 (43%) 316 (67%) 254 (54%) 141 70 (50%) 37 (27%) 76 (54%) 39 (28%)
2, 001-3, 000 155 26 (17%) 21 (14%) 52 (34%) 31 (20%) 140 2 (2%) 1 (1%) 38 (28%) 4 (3%) 47 25 (54%) 24 (52%) 32 (69%) 24 (52%)
3, 001-4, 000 81 48 (60%) 41 (51%) 57 (71%) 41 (51%) 13 1 (8%) 1 (8%) 1 (8%) 1 (8%) 7 5 (72%) 4 (58%) 7 (100%) 5 (72%)
4, 001-5, 000 114 44 (39%) 14 (13%) 53 (47%) 16 (15%) 6 2 (34%) 1 (17%) 3 (50%) 1 (17%) 9 2 (23%) 2 (23%) 2 (23%) 2 (23%)
5, 001-6, 000 74 28 (38%) 23 (32%) 33 (45%) 23 (32%) 2 0 (0%) 1 (50%) 1 (50%) 1 (50%) 3 2 (67%) 2 (67%) 3 (100%) 2 (67%)
6, 001-7, 000 120 24 (20%) 25 (21%) 70 (59%) 41 (35%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 136 57 (42%) 3 (3%) 38 (28%) 28 (21%)
7, 001-8, 000 8 3 (38%) 4 (50%) 5 (63%) 5 (63%) 21 2 (10%) 2 (10%) 2 (10%) 2 (10%) 4 2 (50%) 2 (50%) 3 (75%) 2 (50%)
8, 001-9, 000 5 0 (0%) 1 (20%) 0 (0%) 1 (20%) 11 4 (37%) 4 (37%) 5 (46%) 4 (37%) 2 1 (50%) 1 (50%) 1 (50%) 1 (50%)
9, 001-10, 000 4 0 (0%) 0 (0%) 3 (75%) 0 (0%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%)
> 10, 000 15 9 (60%) 8 (54%) 10 (67%) 9 (60%) 206 205 (100%) 202 (99%) 205 (100%) 202 (99%) 40 39 (98%) 39 (98%) 40 (100%) 39 (98%)

D. Dropper E. Adware F. Downloader
0 507 0 (0%) 0 (0%) 95 (19%) 17 (4%) 423 0 (0%) 0 (0%) 410 (97%) 191 (46%) 258 0 (0%) 0 (0%) 122 (48%) 29 (12%)

1-1, 000 218 43 (20%) 23 (11%) 116 (54%) 24 (12%) 28 15 (54%) 15 (54%) 20 (72%) 15 (54%) 134 88 (66%) 95 (71%) 95 (71%) 96 (72%)
1, 001-2, 000 148 12 (9%) 14 (10%) 26 (18%) 14 (10%) 41 12 (30%) 13 (32%) 27 (66%) 13 (32%) 43 26 (61%) 28 (66%) 30 (70%) 28 (66%)
2, 001-3, 000 1 1 (100%) 0 (0%) 1 (100%) 0 (0%) 4 1 (25%) 1 (25%) 2 (50%) 1 (25%) 8 3 (38%) 3 (38%) 4 (50%) 3 (38%)
3, 001-4, 000 1 1 (100%) 1 (100%) 1 (100%) 1 (100%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 0 (0%) 0 (0%) 0 (0%) 0 (0%)
4, 001-5, 000 2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 2 (50%) 4 (100%) 3 (75%) 4 (100%)
5, 001-6, 000 19 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 0 (0%) 0 (0%) 0 (0%) 0 (0%) 4 4 (100%) 3 (75%) 4 (100%) 4 (100%)
6, 001-7, 000 3 1 (34%) 1 (34%) 3 (100%) 1 (34%) 1 1 (100%) 0 (0%) 1 (100%) 1 (100%) 1 0 (0%) 0 (0%) 0 (0%) 0 (0%)
7, 001-8, 000 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 0 (0%) 0 (0%) 0 (0%) 0 (0%) 5 1 (20%) 0 (0%) 5 (100%) 0 (0%)
8, 001-9, 000 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 2 0 (0%) 0 (0%) 2 (100%) 0 (0%)
9, 001-10, 000 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 8 8 (100%) 8 (100%) 8 (100%) 8 (100%) 0 0 (0%) 0 (0%) 0 (0%) 0 (0%)
> 10, 000 0 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 1 (100%) 1 (100%) 1 (100%) 1 (100%) 5 5 (100%) 5 (100%) 5 (100%) 5 (100%)

TABLE 5
MALWARE FAMILY EVASION RATE BASED ON SLACK SPACE AVAILABLE

under slack attack is 8% for both IGSM and GRAD attacks.

Since the majority of Adware samples lack significant slack

space, AE attack relies on padding for evasion. This is

reinforced in the hybrid attack scenario, which mirrors the

results seen in padding-only attacks.

Downloader: Table 3 reveals that the Downloader family

responds differently to IGSM and GRAD attacks in a slack

attack scenario. With an ER of 28% for IGSM and a slightly

higher 30% for GRAD, it suggests that Downloader malware

is more sensitive to the Gradient Descent method’s one-to-

one perturbation optimization approach. The append attack

results show the converse result between the two methods, as

IGSM outperforms with 55% of ER where GRAD manages

only 25%. In the hybrid attack scenario, combining slack with

padding, IGSM achieved an ER of 58%, marginally higher

than its performance in the append-only attack. However, for

GRAD, the ER jumps to 37%, up from 25% in the append-only

scenario. This notable increase for GRAD is inline with the

higher evasion for slack attack under GRAD than compared

to IGSM.

Rest of the Malware types: Ransomware, with 149 samples,

shows an ER of 15% using IGSM and 23% with GRAD in

slack attacks. Although more than 125 of 149 samples exhibit

slackspace, the ER of slack attack is not high. Similarly,

the effectiveness of padding is also very low as evidenced

by the ER of 22% using IGSM and 0% using GRAD tech-

niques under append attack. Interestingly, ransomware with

the GRAD technique yielded a higher ER under slack attack

while yielding 0% ER under append attack. This gets more

interesting when we observe the hybrid ER reduce to 21% as

slack attack alone evaded 23% of the malware. This shows the

performance of slack attack is better on using GRAD while

padding attack is better for IGSM in ransomware.

Miner malware shows contrasting results as its ER is only

4% in slack attacks, it escalates to 44% in append attacks

using IGSM. This low ER under slack attack can be attributed

to the lack of slack space in most of the samples as seen in

Table 4. Spyware, consisting of 79 samples, demonstrates a

notably high ER in append attacks, reaching 90% with IGSM

and 73% using GRAD. Despite this, its ER in slack attacks is

only 11% (as seen in Table 3), which could be attributed to

its limited slack space as depicted in Table 4.

For PUA, Hacktool, and Banker, the ER in slack attacks

vary, with PUA at 31% (IGSM) and 19% (GRAD), Hacktool

at 18% and 22%, and Banker at 43% for both techniques.

While coming to append attack all the three malware types

has ER around 50%. This has been further amplified in the

hybrid attack with PUA achieving a maximum ER of 70%.

Finally, to answer RQ3, Table 3 clearly shows the varying

evasion rates across malware types. By this, we can say that the

malware type affects the ER. As discussed, each malware type

has a different response to different adversarial techniques. For

instance, Adware has only 9% evasion rate under SlackIGSM,

whereas it has a 91% and 93% evasion rate under AppendIGSM

and HybridIGSM attacks, respectively showing an upper hand

for the Append attack. On the contrary, Ransomware has a

higher ER under SlackGRAD compared to AppendIGSM.

Each malware type has a different structure to fulfill its

functionalities. For instance, the Virus has shown a lot of

slack space availability in various sections, thereby increasing

its evasion rate (ER) under slack attacks. In contrast, worms,

being very concise, have shown a very low evasion rate.

The range of slack space in which each family achieves

maximum evasion has not been consistent, further indicating

the influence of structural characteristics. Thus, the structural

characteristics and available slack space within each malware

type significantly influence their evasion rates.

VI. CONCLUSION AND FUTURE WORK

This study explores the domain of adversarial malware,

using raw executable files as input and employing existing

benchmark adversarial sample generation techniques to evade

a CNN-based malware classifier, MalConv. We focus our

adversarial attack analysis on different malware types and

their structure. Our analysis started by analysing the impact

of padding on the evasion rate. Initially, the evasion rate

increased, but soon, the Malconv showed resistance to padding

beyond 1024 bytes. This behaviour has been consistent across

both the padding and hybrid attacks. The peak evasion rate

achieved by the padding attack alone is 43%. Among two

traditional methods, the padding and the slack attack, the

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

5629

padding attack demonstrated a higher evasion success under

IGSM. However, the Hybrid attack, which combines padding

and slack attacks by complementing each other’s drawbacks,

consistently outperformed the individual methods. The anal-

ysis also noted that IGSM achieved better performance with

minimal alterations, as low as three modifications.

Coming to the factors in the scope of the analysis, the

relationship between slackspace and the ER is complex. Ini-

tially, the ER increased but eventually fluctuated, reaching

a peak of 97% at very high slack spaces. Apart from the

quantity of slack space, the section containing the slack space

is also an important factor. In our analysis, we identified

that the .data section played an important role towards the

ER. Regarding the type of malware, each malware type has

showcased various ERs, highlighting the impact of malware

type on the ER. Each malware type has a different structure

in relation to slackspace, and this structure also plays a key

role in evasion in Slackspace-based attacks. One important

observation highlighting the impact of malware type is that

considering each type of malware with a similar range of slack

space, each malware type has shown a different ER.

To mitigate evasion attacks, adversarial training can be em-

ployed, which strengthens malware detection models by train-

ing them with adversarial examples[26]. Additionally, random-

ized smoothing, particularly through byte ablation techniques,

can enhance robustness by blurring decision boundaries and

reducing the model’s sensitivity to adversarial perturbations

[27]. Finally, input preprocessing, such as marking all slack

bytes to 0, can limit the attack surface available for adversar-

ial manipulations, further reducing the effectiveness of such

attacks. These combined approaches offer a more resilient

defense against malware adversarial attacks.

However, it is important to note that the distribution of

malware across types in the dataset was not uniform, and

the study was limited to only 10-12 types. Future work could

extend this research to explore the behavioral patterns of a

broader range of malware types. Additionally, while these

results provide valuable insights into the susceptibility of Mal-

Conv to adversarial attacks, they are specific to this particular

model. Extending this research to a black-box environment

would be crucial in real-world scenarios, where the target

models are often unknown. Furthermore, the current research

focused on adding perturbations only in available slack spaces.

Future efforts could explore the potential of exploiting other

regions, such as within the sections of PE files, to further

enhance the sophistication and effectiveness of adversarial

attacks in malware detection.

VII. ACKNOWLEDGMENT

This work is partially supported by NSF grants 2416992,

2230610 at North Carolina A&T State University and

2416990, 2230609 at Tennessee Tech University.

REFERENCES

[1] H. Sarker et al., “Ai-driven cybersecurity: an overview, security intelli-
gence modeling and research directions,” SN Computer Science, vol. 2,
no. 3, p. 173, 2021.

[2] S. Samtani et al., “Trailblazing the artificial intelligence for cybersecu-
rity discipline: A multi-disciplinary research roadmap,” pp. 1–19, 2020.

[3] E. Raff et al., “Malware detection by eating a whole exe,” in Workshops

at the thirty-second AAAI conference on artificial intelligence, 2018.
[4] I. J. Goodfellow et al., “Explaining and harnessing adversarial exam-

ples,” arXiv preprint arXiv:1412.6572, 2014.
[5] A. Madry, “Towards deep learning models resistant to adversarial

attacks,” arXiv preprint arXiv:1706.06083, 2017.
[6] K. Aryal et al., “A survey on adversarial attacks for malware analysis.

arxiv 2021,” arXiv preprint arXiv:2111.08223.
[7] F. Kreuk et al., “Deceiving end-to-end deep learning malware detectors

using adversarial examples,” arXiv preprint arXiv:1802.04528, 2018.
[8] “New malware variants every second,” 2023. [Online]. Avail-

able: https://www.av-test.org/fileadmin/pdf/reports/AV-TEST HYAS
Protect Evaluation February 2023.pdf

[9] D. Kim et al., “Static detection of malware and benign executable
using machine learning algorithm,” in INTERNET 2016: The Eighth

International Conference on Evolving Internet, 2016, pp. 14–19.
[10] Y. Nagano and R. Uda, “Static analysis with paragraph vector for

malware detection,” in Proceedings of the 11th International Conference

on Ubiquitous Information Management and Communication, 2017, pp.
1–7.

[11] R. Searles et al., “Parallelization of machine learning applied to call
graphs of binaries for malware detection,” in 2017 25th Euromicro

International Conference on Parallel, Distributed and Network-based

Processing (PDP). IEEE, 2017, pp. 69–77.
[12] A. N. Jahromi et al., “An improved two-hidden-layer extreme learning

machine for malware hunting,” Computers & Security, vol. 89, p.
101655, 2020.

[13] Ç. Yücel and A. Koltuksuz, “Imaging and evaluating the memory access
for malware,” Forensic Science International: Digital Investigation,
vol. 32, p. 200903, 2020.

[14] Q. K. A. Mirza et al., “Cloudintell: An intelligent malware detection
system,” Future Generation Computer Systems, vol. 86, pp. 1042–1053,
2018.

[15] R. Vinayakumar et al., “Robust intelligent malware detection using deep
learning,” IEEE access, vol. 7, pp. 46 717–46 738, 2019.

[16] A. McDole et al., “Deep learning techniques for behavioral malware
analysis in cloud iaas,” Malware analysis using artificial intelligence

and deep learning, pp. 269–285, 2021.
[17] McDole et al., “Analyzing cnn based behavioural malware detection

techniques on cloud iaas,” in Cloud Computing–CLOUD 2020: 13th

International Conference, Held as Part of the Services Conference

Federation, SCF 2020, Honolulu, HI, USA, September 18-20, 2020,

Proceedings 13. Springer, 2020, pp. 64–79.
[18] J. C. Kimmel et al., “Recurrent neural networks based online behavioural

malware detection techniques for cloud infrastructure,” IEEE Access,
vol. 9, pp. 68 066–68 080, 2021.

[19] C. Szegedy et al., “Going deeper with convolutions,” in Proceedings of

the IEEE conference on computer vision and pattern recognition, 2015,
pp. 1–9.

[20] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in 2009 IEEE conference on computer vision and pattern recognition.
Ieee, 2009, pp. 248–255.

[21] B. Kolosnjaji et al., “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in 2018 26th European

signal processing conference (EUSIPCO). IEEE, 2018, pp. 533–537.
[22] O. Suciu et al., “Exploring adversarial examples in malware detection,”

in 2019 IEEE Security and Privacy Workshops (SPW). IEEE, 2019,
pp. 8–14.

[23] K. Li et al., “Fgam: Fast adversarial malware generation method based
on gradient sign,” arXiv preprint arXiv:2305.12770, 2023.

[24] A. Kurakin et al., “Adversarial examples in the physical world,” in
Artificial intelligence safety and security. Chapman and Hall/CRC,
2018, pp. 99–112.

[25] E. Carrera, “pefile: Python module to read and work with pe (portable
executable) files,” https://github.com/erocarrera/pefile, 2023.

[26] K. Lucas et al., “Adversarial training for {Raw-Binary} malware clas-
sifiers,” in 32nd USENIX Security Symposium (USENIX Security 23),
2023, pp. 1163–1180.

[27] D. Gibert et al., “A robust defense against adversarial attacks on
deep learning-based malware detectors via (de) randomized smoothing,”
CoRR, 2024.

Authorized licensed use limited to: INDIAN INST OF INFO TECH AND MANAGEMENT. Downloaded on May 17,2025 at 20:15:49 UTC from IEEE Xplore. Restrictions apply.

