IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received 4 November 2024, accepted 1 December 2024, date of publication 18 December 2024, date of current version 2 January 2025.

Digital Object Identifier 10.1109/ACCESS.2024.3519524

==l survey

A Survey on Adversarial Attacks for Malware
Analysis

KSHITIZ ARYAL1, (Graduate Student Member, IEEE),
MAANAK GUPTA'!, (Senior Member, IEEE),
MAHMOUD ABDELSALAM 2, (Member, IEEE),

PRADIP KUNWAR ', (Graduate Student Member, IEEE),
AND BHAVANI THURAISINGHAM3, (Fellow, IEEE)

! Department of Computer Science, Tennessee Technological University, Cookeville, TN 38505, USA
2Department of Computer Science, North Carolina A&T State University, Greensboro, NC 27411, USA
3Department of Computer Science, The University of Texas at Dallas, Dallas, TX 75080, USA

Corresponding author: Kshitiz Aryal (karyal42 @tntech.edu)

This work was supported in part by NSF Grant through Tennessee Tech University under Grant 2416990 and Grant 2230609 and in part by
North Carolina A&T State University under Grant 2416992 and Grant 2230610.

ABSTRACT Machine learning-based malware analysis approaches are widely researched and deployed in
critical infrastructures for detecting and classifying evasive and growing malware threats. However, minor
perturbations or ineffectual byte insertions can easily ‘fool’ these trained ML classifiers, making them
ineffective against these crafted and smart malicious software. This survey aims to provide an encyclopedic
overview of adversarial evasion attacks specifically targeting malware detection and classification systems,
standing apart from previous surveys by focusing exclusively and comprehensively on this unique application
domain. While significant strides have been made in adversarial research in other fields, the specific
challenges of adversarial malware remain under-explored due to the intricate nature and constraints of
the malware domain. Our survey addresses this gap by analyzing literature on adversarial evasion attacks
published between 2013 and 2024, making it one of the first to systematically focus on malware-specific
adversarial attacks in a detailed, self-contained manner. The paper will begin by introducing various
machine-learning techniques used to generate adversarial malware samples, including the structural nuances
of target files, which influence adversarial vulnerabilities. The work presents an in-depth threat model
specific to adversarial malware evasion attacks, describing the unique attack surfaces of malware detectors
and outlining adversarial goals tailored to the malware domain. We systematically analyze adversarial
generation algorithms from broader domains adapted to malware evasion attacks, proposing a taxonomy
of adversarial evasion attacks within malware detection based on target domains(Windows, Android and
PDF). The survey highlights real-world adversarial evasion attacks on machine learning-based anti-malware
engines under each taxonomical heading, demonstrating the evolution and refinement of these attack
strategies over time. Our survey outlines current limitations and practical challenges in executing adversarial
attacks against malware detectors in real-world environments. We identify open problems and propose future
research directions for developing more practical, robust, efficient, and generalized adversarial attacks on
ML-based malware classifiers.

INDEX TERMS Adversarial evasion attack, adversary modeling, security for Al, windows PE malware,
Android malware, PDF malware.

I. INTRODUCTION
Machine Learning (ML) has revolutionized the modern
world due to its ubiquity and generalization power over

The associate editor coordinating the review of this manuscript and

approving it for publication was Cong Pu

the humongous volume of data. The transformation of
ML approaches from classical algorithms to modern deep
learning technologies is providing breakthroughs in state-
of-the-art research problems. Further, deep learning (DL)
has excelled in areas where traditional ML approaches
were infeasible (or unsuccessful) to apply. Needless to

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
428 For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

Classification ‘

Threshold Adversary,

Test Sample

Class A . Class B

FIGURE 1. Example of adversarial evasion attack that drags test sample
from class A to B.

say, machine learning is increasingly embedded in our
daily life habits; connecting to people on social media,
ordering food and groceries from online stores, and listening
to music on Spotify are all examples of systems built
around recommendation engines powered by deep learning-
based models. Machine learning-based solutions not only
control our lifestyle, but it has also revolutionized cyber
security-critical operations in different domains, including
malware analysis [1], [2], [3], [4], [5], spam filtering [6],
fraud detection [7], medical analysis [8], access control [9],
[10], among others. These solutions exemplify ML’s versa-
tility in both enhancing user experience and strengthening
cybersecurity across diverse fields.

Malware analysis is one of the most critical fields in which
ML is employed significantly and increasingly relied upon.
Traditional malware detection methods focus on signature-
based approaches, maintaining a database of unique malware
identifiers to compare against signatures extracted from
suspicious files. However, with security researchers looking
for advanced detection techniques addressing sophisticated
zero-day and evasive malware, ML-based approaches have
become essential in advancing detection capabilities [11].
Most of the modern anti-malware engines, such as Windows
Defender, Avast, Deep Instinct D-Client and Cylance Smart
Antivirus, are powered by machine learning [12], making
them robust against emerging variants and polymorphic
malware. Despite the existence of numerous malware detec-
tion approaches, including ones that leverage ML, recent
ransomware attacks, like the Colonial Pipeline attack where
operators had to pay around $5 million for recovering a
5,500-mile long pipeline [13] and the MediaMarkt attack
worth an around $50M bitcoin payment [14], highlight the
vulnerabilities and limitations of current security approaches
and necessitates of more robust, real-time, adaptable and
autonomous Al-driven defense mechanisms.

The assumption of similar training and testing settings
in machine learning is overly simplified and often does
not hold true for real-world use cases where adversaries
deceive the ML models into performing wrong predictions
(i.e. adversarial attacks). These attacks manifest either as
data poisoning—altering the training data—or as test data
manipulation through evasion attacks [15]. Data poisoning
attacks [16], [17], [18] have been prevalent for some time
but are less scrutinized as access to training data by the
attackers is considered unlikely. In contrast, Adversarial

VOLUME 13, 2025

x sign(VzJ (6, ,y))

“panda” “nematode”
57.7% confidence 8.2% confidence 99.3 % confidence

FIGURE 2. An adversarial example against GooglLeNet [20] on
ImageNet [21], demonstrated by Goodfellow et al. [22].

Evasion(AE) attacks, first introduced by Szegedy et al. [19]
against deep learning architectures, are carried out by
carefully crafting imperceptible perturbation in test samples,
forcing models to misclassify as illustrated in Figure 1.
Here, the attacker’s effort is to drag a test sample across the
ML’s decision boundary by adding minimal perturbation to
that sample. Given the growing body of research and the
increasing security risks, this survey will focus exclusively
on adversarial evasion attacks targeting malware detection
systems.

Adpversarial Evasion (AE) attacks were originally devel-
oped for image data, where the primary constraint is to
make perturbations imperceptible to the human eye [23].
A widespread example of AE attack in images, shown
in Figure 2, is performed by Goodfellow et al. [22] where
GoogLeNet [20] trained on ImageNet [21] classifies panda
as a gibbon with the addition of minimal perturbations. This
threat has moved beyond research settings and has been
proven effective in real-world environments. For example,
Eykholt et al. successfully performed <sticker attacks”
on road signs, causing an image recognition system to
misidentify ‘STOP’ signs as speed limits. Researchers from
the Chinese technology company Tencent! tricked Tesla’s
Autopilot in Model S and forced it to switch lanes by adding
a few stickers on the road [24]. Such adversarial attacks
on real-world applications force us to rethink the increasing
reliability of machine learning-based smart technologies.

Generating adversarial examples in the malware domain
presents unique challenges compared to tasks in computer
vision due to additional constraints. Perturbations in malware
files must be crafted to preserve their functionality and
executability, which adds complexity to adversarial evasion.
Constraints may vary depending on the structure of the
malware files. Each file structure contains divisions, bringing
their individual significance and resilience to modification.
Adversarial evasion attacks on malware are carried out by
manipulating or inserting a few ineffectual bytes in the
malware executable in a way that does not tamper with its
original state but changes the classification decision by the
ML model.

For instance, one early demonstrated attack against an
anti-malware engine was carried out by Anderson et al. [25]
using reinforcement learning. This black-box attack bypassed

1 https://www.tencent.com/

429

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

Random Forest and Gradient-Boosted Decision Trees
(GBDT) detectors by modifying a few bytes of Windows
PE malware files. Kolosnjaji et al. [26] later employed an
evasion attack using a gradient-based approach against
a Convolutional Neural Network (CNN) based malware
detector. Since then, numerous works have tried to optimize
the attacks, discovering better approaches to attack wide
domains of malware detectors. Demetrio et al.’s [27] success
in crafting adversarial from few header byte modifications
and Suciu et al.’s [28] experiment on inserting perturbations
in different file locations, further magnified the interest
towards improving the standard of attacks. This growing
sophistication in adversarial attacks has intensified concerns
within the cybersecurity research community, fueling an
ongoing battle between adversarial attackers and defenders.

This survey aims to offer researchers a detailed overview
of adversarial evasion attacks on malware detectors across
platforms such as Windows, Android, PDF, Linux, and
hardware-based systems to elucidate existing vulnerabilities
and guide future offensive/defensive strategies.

A. MOTIVATION AND CONTRIBUTION

1) PRIOR SURVEYS AND LIMITATIONS

The surveys on adversarial attacks crafted in different
domains have been summarized in Table 1. Most surveys on
adversarial attacks are focused on computer vision for image
mis-classification [32], [33], [34], [50]. Fewer studies have
specifically addressed security domains such as malware,
intrusion, and network security, which are particularly
relevant due to the critical risks they pose. For instance,
Barreno et al. [29] worked on one of the first surveys on the
security side of machine learning, where different categories
of attacks and defences against ML systems are discussed.
Gardiner et al. [30] focused on reviewing call and control
detection techniques. They identified vulnerabilities and
also pointed out limitations of malware detection systems.
Duddu et al. [35] highlighted privacy issues within ML
systems and introduced a cyber-warfare testbed to evaluate
attack and defense strategies. In addition, Martins et al. [45]
performed a generalized survey on attacks focusing on cloud
security, malware detection and intrusion detection, while
Ibitoye et al. [47] surveyed adversarial attacks in the network
domain using a risk grid map.

Several recent surveys have attempted to bridge this gap by
focusing more closely on adversarial attacks within malware
detection, especially on Windows platforms. For instance,
Li et al. [48] systematized adversarial malware detection
(AMD), addressing both attack and defense perspectives.
Ling et al. [49] focused specifically on adversarial attacks
against Windows PE malware detectors, discussing the
intricacies of PE file structure, specific challenges, and
potential attack vectors. From studying all existing surveys,
we noticed none of the surveys entirely covered all adversarial
evasion attacks carried out against the malware binaries and
talked about the practicality of different approaches.

430

From these surveys, we can draw several conclusions
regarding adversarial research trends, particularly in cyber-
security. The surge in interest within adversarial research
over the past few years underscores an urgent need to
understand and address adversarial threats as our reliance
on automated systems grows. However, while adversarial
attacks on general domains have been well-surveyed, only
a few studies have focused solely on adversarial malware
attacks, and even fewer comprehensively cover adversarial
evasion attacks within malware detection systems. This
leaves a critical gap, as current malware-focused surveys
often span multiple domains without a detailed examination
of adversarial evasion attacks on malware.

2) OUR CONTRIBUTIONS

This work will contribute to understanding the arms race
between attacker and defender by discussing adversarial
evasion attacks in different folds of the malware domain.
We aim to provide a self-contained survey on adversarial
attacks against malware detection techniques. Based on
our knowledge, this work is one of the first to focus
solely on adversarial attacks on malware detection sys-
tems. In this work, our contributions cover the following
dimensions:

o Survey provides the threat modelling for adversarial
evasion attacks in the malware domain. The threat is
modelled in terms of the attack surface of the malware
detector, the attacker’s knowledge about the malware
detector, the attacker’s capabilities on malware, and the
adversarial goals that are to be achieved through the
malware files.

o We systematically analyze different adversarial gener-
ation algorithms proposed in different domains, which
have been attempted to be used in the malware domain.
We then taxonomize adversarial evasion attacks in
the malware with respect to various attack domains.
As Windows malware is the most abundant and also the
most exploited area, we further taxonomize attacks on
Windows malware based on the optimization algorithms
used. We also discuss attacks in less frequent file
structures like Android and PDF.

o We discuss real evasion attacks carried out against
anti-malware engines by the researchers under each
taxonomical heading. We also cover the strategies
researchers used to generate adversarial attacks,
showing how the attacks evolved with time.

o We discuss the challenges and limitations of existing
adversarial evasion attacks while carrying them out
in a real-world environment. We also highlight future
research directions for carrying out more practical,
robust, efficient, and generalized adversarial attacks on
malware classifiers.

B. SURVEY ORGANIZATION
We begin our survey, as discussed in Section I, by introducing
the field of adversarial machine learning and the motivation

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

TABLE 1. Surveys focusing on security of machine learning.

Paper Year | Application Domain Taxonomy Threat Adversarial
Model Example

Barreno et al. [29] 2008 Security Attack Nature

Gardiner et al. [30] 2016 | Security Attack Type/Algorithm | / v

Kumar et al. [31] 2017 | General Attack Type

Yuan et al. [32] 2017 Image Algorithm N Vv

Chakraborty etal. [33] | 2018 | Image/Intrusion Attack Phase v Vv

Akhtar et al. [34] 2018 | Image Image domains v

Duddu et al. [35] 2018 | Security Attack Type v

Lietal. [36] 2018 General Algorithm

Liu et al. [37] 2018 General Target Phase v

Biggio et al. [38] 2018 | Image Attack Type v v

Sun et al. [39] 2018 | Image Image Type v v

Pitropakis et al. [40] 2019 | Image/Intrusion/Spam Algorithm Vv

Wang et al. [41] 2019 | Image Algorithm v Vv

Qiu et al. [42] 2019 | Image Knowledge v v

Xu et al. [43] 2019 | Image/Graph/Text Attack Type v

Zhang et al. [44] 2019 | Natural Language Processing | Knowledge/Algorithm Vv Vv

Martins et al. [45] 2019 | Intrusion/Malware Approach Vv

Moisejevs [46] 2019 Malware Classification Attack Phase v

Ibitoye et al. [47] 2020 | Network Security Approach/Algorithm v v

Li et al. [48] 2021 Malware Detection Attacks/Defenses Vv

Ling et al. [49] 2023 | Windows malware Algorithm Vv

Our Work 2024 | Malware Analysis Domain/Algorithm v Vv

Year: Published Year, Application Domain: Dataset domain for adversarial, Taxonomy: Basis of taxonomy, Threat Model: Presence of threat modeling,
Adversarial Example: Discuss actual adversarial attacks crafted in literature

to study adversarial evasion attacks in the malware analysis
domain. Section II models the adversarial threat from
different dimensions. Section III discusses various algorithms
considered standard techniques for adversarial perturbation
generation. Section V taxonomizes existing real adversarial
attacks based on the execution domains (Windows, PDF,
Android, Hardware, Linux) and algorithms maneuvered to
carry out the attack. This section discusses real attacks
carried out against malware detection approaches in detail
and compares related works. Section VI highlights the
challenges of current adversarial generation approaches and
sheds light on open research areas and future directions
for adversarial generation in malware analysis. Finally,
Section VII concludes our survey.

C. LITERATURE SEARCH RESOURCES

We used different digital libraries for computer science
scholarly articles to discover the relevant state-of-the-art
works and publications in adversarial attacks on malware
analysis. Our major sources are IEEE Xplore, ACM Digital
Library, DBLP, Google Scholar, Semantic Scholar and
arXiv. Among numerous keywords used to fetch the papers
from public libraries, “Adversarial Malware”, ‘“Adversar-
ial Evasion Attacks”, ‘“Adversarial Malware Analysis”,
and “Adversarial attacks in malware” gave us the most
relevant papers. After listing all the published works in
the adversarial generation between the years 2013 and
2024, we filtered out papers with good impact and rele-
vance and prepared the final list to conduct our detailed
survey.

VOLUME 13, 2025

Il. ADVERSARIAL THREAT MODEL

Security threats are defined in terms of their goals and
capabilities. In this section, we divided the adversarial
threat model, tailored to adversarial attacks in malware, into
four parts: adversarial knowledge, attack surface, adversarial
capabilities, and adversarial goals. This section aims to
explain the major components of adversarial attacks to
readers.

A. ADVERSARIAL KNOWLEDGE

The adversary’s knowledge is the amount of information
about a model under attack that the attacker has, or is assumed
to have, to carry out adversarial attacks against the model.
An adversarial attack can be classified into two groups based
on the attacker’s knowledge:

« White box attack: In a white box approach, an attacker
has full knowledge about the underlying target model.
Such knowledge might include but is not limited to,
the name of the algorithm, training data, tuned hyper-
parameter, and gradient information, among others.
It is relatively easy to carry out attacks in the white
box model due to the large amount of available
knowledge. Current state-of-the-art works on white box
environments have achieved near-perfect adversarial
attacks [28].

« Black box attack: In a black box approach, an attacker
only has access to the inputs and outputs of the model.
No information about the internal structure of the model
has been provided. Generally, in a black box attack,
a surrogate model is created by guessing the internal

431

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

Confidence Untargeted Targeted High
Reduction Misclassification Misclassification
Attack Goal
xZ
O 3
Lo
<5
White Box Black Box
Attack Attack

| Attacker Capability - Low

FIGURE 3. An attack difficulty with adversarial knowledge and
adversarial goals.

structure of the target model using input and output [32],
[51]. In addition, in a gray box attack [52], a type
of black box attack, the attacker knows the output
performance of the model in the form of accuracy,
confusion matrix or some other performance metrics.

In general, it is assumed that black-box adversarial attacks are
difficult and inefficient to orchestrate compared to white-box
attacks, primarily due to the information available regarding
the underlying target model. However, black box attacks
reflect more real-world use cases where, in a practical sense,
an attacker will not likely have any knowledge of underlying
models.

B. ATTACK SURFACE

The attack surface includes different vulnerable points by
which an attacker attacks the target model. The flow of
data through this machine learning pipeline introduces
vulnerabilities in each stage [33]. Attack surfaces comprise
all those points in machine learning models (malware detector
models in our case) where adversaries can carry out their
attacks. Based on different approaches to carrying out attacks,
the attack surface is classified into the following broad
categories [53]:

o Poisoning Attack: This attack is carried out by
contaminating training data during the training process
of models [54], [55]. Training data is poisoned with
faulty data, making machine learning models learn on
the wrong dataset.

« Evasion Attack: This attack is performed by trying
to evade a trained system by adjusting malicious input
samples at test time [25], [28]. Evasion attacks do not
require any access to training data but require some level
of access to the target model.

« Exploratory Attack: This attack is carried out against
a model with blackbox access [51]. Attackers try to
maximize their knowledge without direct access to the
underlying algorithm and attempt to reflect similar input
data patterns.

C. ADVERSARIAL CAPABILITIES

Adversarial capabilities denote adversaries’ abilities and
largely depend on their knowledge of the target model. The
most straightforward attack approach is the attacker having
access to full or partial training data. For adversarial attacks
carried out on malware files, adversarial capabilities can be
classified into the following categories:

432

« Data Injection: It is the ability of attackers to inject
new data. One type of injection can be done on training
data before the training process. A different kind of data
injection is carried out by inserting a perturbation, which
forms a new section or replaces the original section
within an existing file. Injected data can corrupt the
model or cause the data-injected file to evade detection.

« Data Modification: Data modification can also be
performed both for training data and testing data. If an
attacker has access to training data, data can be modified
to cause the model to learn on modified data. An attacker
can also modify input data to cause perturbation and lead
to evasion.

o Logic Corruption: Logic corruption is the most
dangerous ability to be possessed by an attacker and
also the most improbable. Whenever an attacker has
complete access to a model, they can modify the learning
parameters and other hyper-parameters related to the
model. Logic corruption can go undetected, which
makes it hard to design remedies.

D. ADVERSARIAL GOALS

An attacker tries to fool the target model, causing it to produce
misclassifications. Details of algorithms used to attack and
achieve the adversary’s goals successfully are discussed in
section III. Typically, the adversarial goals of attackers are
categorized as follows:

o Untargeted Misclassification: An attacker tries to
change the output of the model to a value different from
the original prediction. For malware classification, if an
ML model predicts a malware file as a family A, the goal
is to force the model to misclassify it as a family other
than A.

« Targeted Misclassification: An attacker tries to change
the output of the model to a target value. For example,
if an ML model is predicting a malware file as family A,
the goal is to force the model to misclassify it as family
B.

« Confidence Reduction: An attacker’s goal is to reduce
the confidence of an ML model. Changing the prediction
is unnecessary, but a reduction of confidence is enough
to meet the goal.

Figure 3 gives an overview of the adversarial attack difficulty
with respect to the attacker’s knowledge, capabilities and
goals. While moving in the direction of increasing attack
complexity from confidence reduction to targeted misclas-
sification, attack difficulty also increases for the attacker.
However, white-box attacks with higher attacker capability
have the least attack difficulty.

Ill. ADVERSARIAL ALGORITHMS

In this section, we will explore the most distinguished adver-
sarial attack algorithms discovered in different domains and
applied to generate adversarial malware samples. Different
algorithms are developed in numerous time frames, battling

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

the trade-off in terms of application domain, performance,
computational efficiency and complexity [45]. We will
discuss the architecture, implementation and challenges
of each algorithm. Most of the attack algorithms are
gradient-based approaches where perturbations are obtained
by optimizing some distance metrics between original and
perturbed samples.

A. LIMITED-MEMORY BROYDEN - FLETCHER - GOLDFARB
- SHANNO (L-BFGS)

The Limited-Memory Broyden-Fletcher-Goldfarb-Shanno
(L-BFGS) algorithm is an optimization technique often
used in machine learning to minimize functions with
many variables, especially when resources for storing large
datasets are limited. Szegedy et al. [19] proposed one of
the first gradient-based approaches for adversarial example
generation in the imaging domain using the box-constrained
Limited-Memory Broyden-Fletcher-Goldfarb-Shanno opti-
mization technique. The authors studied counter-intuitive
properties of deep neural networks, which allow small
perturbations in the images to fool deep learning models
for misclassification. Adversarial examples trained for a
particular neural network are also able to evade other neural
networks trained on completely different hyperparameters.
These results are attributed to non-intuitive characteristics
and intrinsic unseen spots of deep learning models learned
by backpropagation, with structure connected to data dis-
tribution in a non-obvious way. Traditionally, for small
enough radius >0 around the given training sample x,
x + r satisfying ||r|| < € will be classified correctly by a
model with very high probability. However, many underlying
kernels are found not holding to this kind of smoothness.
The simple optimization procedure is able to find adversarial
samples using imperceptibly small perturbations, leading to
incorrect classifications by the classifier. While adding noise
to an original image is to minimize perturbation r added to the
original image under L, distance. This groundbreaking use of
L-BFGS for adversarial example generation set the stage for
an extensive research area focused on probing and mitigating
vulnerabilities in deep learning models.

B. FAST GRADIENT SIGN METHOD (FGSM)

The Fast Gradient Sign Method (FGSM) is a foundational
gradient-based technique for generating adversarial perturba-
tions, efficiently devised to exploit vulnerabilities in neural
networks. Considering the gradient-based optimization tech-
nique as a workhorse of modern Al, Goodfellow et al. [22]
proposed an efficient approach for generating adversarial
perturbation in the image domain. In contrast to earlier works
that explained adversarial phenomena as non-linearity and
overfitting, the authors argued that the linear nature of neural
networks leads to their vulnerability. Linear behaviour in high
dimensional space is found sufficient to cause adversarial
samples. To define the approach formally, let’s consider 6
as a parameter of the model, x as input to the model, y as
target associated with x and J(8, x, y) be the cost function

VOLUME 13, 2025

for training neural network. On linearizing the cost function
around the current parameter values 6, perturbation can be
obtained by

n = esign(ViJ (0, x,y)) ey

where the required gradient can be computed using backprop-
agation. Conversion of features from problem to feature space
affects the precision. Commonly, images are represented by
8 bits per pixel and other information below 1/255 of the
continuous range is discarded. With limited precision, the
classifier may not be able to respond to all perturbations
whose size is smaller than the precision of the feature. Classi-
fiers having well-separated decision boundaries are expected
to assign the same class for original sample x and perturbed
sample x” until ||7||oc < € where € is small enough to be
discarded. FGSM’s efficiency and generalizability sparked
further research into robust adversarial attack strategies and
defense mechanisms for deep learning.

C. ITERATIVE GRADIENT SIGN METHOD (IGSM)

Different from the one-step perturbation approach, where a
single large step is in the direction of increasing the loss of the
classifier, the Iterative Gradient Sign Method takes iterative
small steps while adjusting the direction after each step [23].
The basic iterative method extends the FGSM approach by
applying it multiple times with a small step size and clipping
the pixel values after each iteration to ensure the perturbation
within € neighbourhood of the original image. Formally, each
step in the iterative process is represented by:

X4 = Clipx Xi" + asign(VxJ XF" yine)) (2)
where Xl‘\l,‘ifl is the perturbed image at N iteration and
Clipx {X'} function performs pixel-wise clipping on image
X’ in order to keep perturbation inside Loo€-neighbourhood
of source image X. Kurakin et al. [23] extended basic iter-
ative method to iteratively least likely class method to
produce adversarial for targeted misclassification. By using
this iterative method, finer and controlled perturbations can
be added, allowing for successful adversarial examples even
with higher values of € while minimizing distortion to the
original image.

D. JACOBIAN SALIENCY MAP ATTACK (JSMA)

Most of the adversarial generation techniques are based on
observing output variations to generate input perturbations,
while Papernot et al. [56] crafted adversarial samples by
constructing a mapping of input perturbations with output
variations. The approach is based on limiting the Iy-
norm of the perturbation, which deals with a minimal
number of pixel modifications. The proposed adversarial
generation algorithm against feed-forward DNN modifies
a small portion of input features by applying heuristic
search approaches. Adversarial sample X* is constructed by
adding perturbation §x to benign sample X through following

433

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

optimization problem:
argming, ||8x|| s.t. F(X +8x) = Y* 3)

where X* = X + 8y is the adversarial sample and Y* is
the desired adversarial output. Forward derivative is used
to evaluate the changes in output due to corresponding
modifications in input, and these changes are presented
in matrix form called as Jacobian of the function. This
approach, leveraging a forward derivative matrix, provides a
precise mechanism for selecting minimal, impactful modifi-
cations, allowing adversarial examples to evade detection by
conventional defenses.

E. CARLINI & WAGNER ATTACK (C&W)

Carlini & Wagner [57] introduced an advanced adversarial
generation technique aimed at defeating defensive distil-
lation, a defense mechanism designed to harden neural
networks against adversarial attacks through a single retrain-
ing phase [58]. Defensive distillation leverages a softened
output layer during training to reduce model sensitivity
to perturbations; however, Carlini & Wagner’s approach
demonstrated the ability to evade such defenses effectively.
The proposed approach is able to perform three types
of attacks: Lg attack, L, attack and L., attack to evade
defensively distilled and undistilled networks. These attacks
are based on different distance metrics, which are:

L distance, measuring the number of pixels modified in
an image

o L,, measuring the standard Euclidean distance between
the original sample and the perturbed sample

o Lo, measuring the highest change among any of the
perturbed coordinates

The optimization problem for adversarial generation of input
image x is given as:

minD(x, x + 8) such that C(x +8) = tx + 68 € [0, 1]" (4)

where input x is fixed and goal is to reach & that minimizes
D(x,x + §). D could be any of distance metric among
Ly, Ly or Ls. This method not only bypasses defensive
distillation but also demonstrates effectiveness across both
distilled and undistilled networks.

F. DeepFool

Dezfooli et al. [59] introduced DeepFool, an untargeted
white-box adversarial generation method that targets mis-
classification by minimizing the Euclidean distance between
the perturbed and original samples. The attack begins by
generating a linear decision boundary to separate the given
classes and is accompanied by the addition of perturbation
perpendicular to the decision boundary that separates classes.
The attacker projects the perturbation into a separating line
called hyper-plane and tries to push it beyond for misclassi-
fication. Decision boundaries are usually non-linear in high
dimensional space, so the perturbation is added iteratively by
performing multiple attacks till evasion. An attack for such

434

a multiclass finds the closest hyperplane and projects input
towards that hyperplane, then proceeds to the other.

G. ZEROTH ORDER OPTIMIZATION (Z0O0)

All of the previously discussed adversarial generation algo-
rithms depend on the detector model’s gradient, which limits
the adversarial attack space within the white-box attack.
Chen et al. [60] proposed a black-box adversarial generation
approach by estimating the gradients of targeted DNN with
only access to the input and output of a target. Zeroth order
methods are gradient-free optimization approaches requiring
only the Zeroth order oracle for the optimization process.
The objective function is analyzed at every two close points
f(&x + hv) and f(x — hv) with a very small & to estimate
a gradient along the direction of vector v. An optimization
algorithm like gradient descent follows gradient estimation.
While attacking black-box DNN with a large input size,
the use of a single minute step of gradient descent can be
very inefficient as a large number of gradients needs to be
estimated. To address this, ZOO applies a coordinate descent
method, optimizing each input coordinate iteratively, thus
improving the computational efficiency of the attack without
requiring exact gradient calculations.

H. ONE PIXEL ATTACK (OPA)

Another gradient-free adversarial generation approach is pro-
posed by Su et al. [61] by generating one-pixel perturbations
based on Differential Evolution (DE). Differential evolution
is a population-based optimization algorithm that can find
higher quality solutions than gradient-based approaches [62].
Since gradient information is not required for DE, the need
for differentiable objective functions is also omitted. One
pixel attack perturbs a single pixel using only probability
labels. The single-pixel modification allows attackers to hide
the adversarial modifications, making them imperceptible.
Each image is represented as a vector to carry out the attack,
where each scalar element represents one pixel. With f as the
target function, x = (xi, .. ., x,) representing n-dimensional
inputs, ¢ being the original class, e(x) = (ey, ..., e,) denoting
the perturbation to be added to the input with maximum
modification limited to L, the optimized solution is given by
Equation 5.

H(H;Xfadv(x +e(x)) subject to ||e(x)||o < d, Q)
e(x)*

where d is a small number. This approach considers
determining two values: the dimension to be perturbed
and the corresponding magnitude of modification for each
dimension. Unlike multi-pixel approaches, OPA uniquely
focuses on modifying only one pixel without constraining
the intensity of the perturbation, making it a minimalistic yet
effective adversarial strategy.

I. UNIVERSAL ADVERSARIAL PERTURBATION (UAP)
The Universal Adversarial Perturbation (UAP) technique,
introduced by Moosavi-Dezfooli et al. [63], is a powerful

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

approach for generating adversarial examples that can
mislead a target classifier across a wide range of inputs.
Unlike traditional adversarial attacks that are tailored to
specific inputs, UAP generates a single perturbation that
can be applied universally to different images, effectively
compromising the model’s robustness. This technique begins
by formulating an optimization problem that seeks to find
a perturbation dthat minimizes the classification accuracy
across a diverse set of images while ensuring that the
perturbed images remain visually similar to the original ones.
The objective function is expressed as:

i L +4),y), 6
“?nzsrynay" (Fx+8),y) (©6)

where S is a set of input images, Y represents the set of
possible labels and L denotes the loss function. The UAP
technique effectively captures the inherent vulnerabilities
of deep learning models, revealing that even small, univer-
sal perturbations can lead to significant misclassification.
By utilizing a heuristic approach to iteratively refine the
perturbation, the UAP can efficiently generate adversarial
samples that maintain their effectiveness across various input
instances, making it a significant concern for the security of
machine learning systems.

J. AUTOATTACK

AutoAttack, proposed by Croce et al. [64] is a robust frame-
work for evaluating the adversarial robustness of machine
learning models through an ensemble of diverse, parameter-
free attacks. It aims to provide a reliable assessment of model
performance against adversarial examples by leveraging a
set of complementary attack methods that can adaptively
target vulnerabilities in the model. AutoAttack consists of
four different attacks, which are categorized into two groups:
arobust white-box attack and two parameter-free attacks. The
first one is based on APGD (Adaptive Projected Gradient
Descent) method, which effectively explores the decision
boundaries of the model by using iterative gradient-based
perturbations. The other attacks include FAB (Fast Adaptive
Boundary) and Square Attack, which leverage different
optimization strategies to generate adversarial examples
without requiring precise parameters, ensuring versatility
in attacking various models. One of the key features of
AutoAttack is its parameter-free nature, which eliminates
the need for tuning hyperparameters that often complicate
the evaluation process. By incorporating a diverse set of
parameter-free attacks, AutoAttack enhances the reliability of
robustness assessments.

K. BOUNDARY ATTACK

Boundary Attack, proposed by Brendeletal.[65] is a
decision-based adversarial attack method designed to effec-
tively target black-box machine learning models. It operates
under the principle of manipulating the input data while
staying within the vicinity of the original sample, aiming
to achieve a misclassification without the need for gradient

VOLUME 13, 2025

information. This technique is particularly notable for
its ability to generate adversarial examples in scenarios
where the model’s internal workings are not accessible.
Unlike gradient-based attacks, Boundary Attack leverages the
model’s output decisions to iteratively refine perturbations.
The attack begins with an initial adversarial example, which
is chosen based on a strategy that ensures it is misclassified.
It then seeks to adjust this example by moving along
the decision boundary of the model, gradually refining
the perturbation until a suitable adversarial example is
found that successfully misclassifies the input. Focusing on
decision boundaries and employing a minimal perturbation
strategy enhances the feasibility of adversarial attacks in
scenarios where traditional gradient-based methods are not
applicable.

IV. FILE STRUCTURE

Executable files are structured differently based on the tar-
get/host OS. Although detailed discussions on file structure
are out-of-scope for a survey, a good understanding of file
structure is critical both for shaping the adversarial generation
strategy and for successfully generating adversarial exam-
ples. Different file sections are classified into two groups:
mutable and immutable. Mutable sections can be modified
for adversarial generation without altering the functionality
of the file, whereas immutable sections either break the file
or alter the functionality on modification. This section will
provide a brief overview of three kinds of file structures that
will be discussed later in the survey.

A. WINDOWS PE FILE STRUCTURE

Windows PE file format is an executable file format based on
the Common Object File Format (COFF) specification. The
PE file is composed of linear streams of data. The structure
of Windows PE file as shown in Figure 4 is derived and
confirmed from [66], [67], [68]. The header section consists
of the MS-DOS MZ header, the MS-DOS stub program,
the PE file signature, the COFF file header and an optional
header. File headers are followed by body sections with
debug information before closing the file. The MS-DOS
header occupies the first 64 bytes of the PE file. This header
is required to maintain compatibility with files created on
Windows version 3.1 or earlier. The Magic number used
in the header determines if the file is of compatible type.
MS-DOS runs stub-program after loading the executable and
is responsible for giving output messages with errors and
warnings.

PE file header is searched by indexing the e_1lfanew
field to get the offset of the file, which is the actual memory-
mapped address. This section of the PE file is one of the
target areas for modification, and these locations are used
as macros to create adversarial examples [27]. The macro
returns the offset of the file signature location without any
dependency on the executable file type. This injection of
adversarial perturbation in this location, being in the header,
was found to be highly efficient while increasing the risk

435

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

MS-DOS
MZ Header

MS-DOS
Stub Program

PE File
Signature

PE File
COFF Header

PE File
Optional Header

.text Section Header

.bss Section Header

.rdata Section Header

Y
Array of Section Headers

.debug Section Header

=
text Section
.bss Section

.rdata Section ®»

c

S

FE

Q

n

.debug Section L

FIGURE 4. A standard structure of windows PE file.

of compromising the file integrity. At offset 0 x 3c, a
4-byte signature is placed to identify the file as a PE image.
The optional header takes the next 224 bytes. Although it
may be absent in a few types of files, it is not an optional
segment for PE files. It contains information like initial stack
size, program entry point location, preferred base address,
operating system version, and section alignment information,
among other [67].

Information from both the section header as well as
optional header is required to retrieve data directories. The
.text section contains all the executable code sections
along with the entry point. Uninitialized data for the
applications is stored in the . bss section, which includes all
declared static variables, and the . rdata section represents
all the read-only data like constants, strings, and debug
directory information. The . rsrc section contains resource
information for the module, and export data for an application
are present in the . edata section. Section data is the major
area where perturbation takes place to make a file adversarial.
Debug information is in the . debug section, but the debug
directories reside in the . rdata section.

In terms of perturbation injection strategy based on the
characteristics of the target location inside the PE file, we can
categorize the existing adversarial attack approaches into the
following kinds:

« Append Attack: This approach is the most common and
widely adopted approach for adversarial perturbation

436

injection inside a PE file as it appends the noise at the
end of the file without interfering with the execution of
a malware file [26], [69].

« Slack Attack: This approach looks for existing empty
spaces (code caves) inside a PE file and uses those
spaces as targets for injecting adversarial perturba-
tions [28]. These approaches are found to be more
efficient in creating adversarial samples while being
limited in their availability across all malware samples.

« Header Attack: This approach uses the unused spaces
in the header like the MS-DOS header used for
backward compatibility, that does not have relevance
to the execution of PE file as a target for adversarial
injection [27]. These perturbations are found to be
highly effective against end-to-end malware detectors.

o Code Cave Injection Attack: This approach is the latest
advancement in the field of adversarial malware genera-
tion in problem space as it introduces the unused spaces
inside the Windows PE file, bringing flexibility to the
injection of adversarial perturbation. Yuste et al. [70]
injected the perturbation on those locations of raw space
that never get mapped to memory, while Aryal et al. [71]
used a code loader to restore the malware’s original form
dynamically.

B. ANDROID FILE STRUCTURE

Android APK file has been recently victimized as a tool for
adversarial attacks [72], [73], [74], [75]. APK file is a ZIP file
containing different entries. Different sections of APK files
are described below:

o Androidmanifest.xml: AndroidManifest.xml con-
tains information to describe the application. It contains
information like the application’s package name, com-
ponents of the application, permissions required and
compatibility features [76]. Due to the presence of a
large amount of information, AndroidManifest .xml
is one of the majorly exploited sections in APK files for
adversarial attacks.

« classes.dex: As Android applications are written in Java,
the source code will be with the extension . java.
These source codes are optimized and packed into this
classes.dex file.

o resources.arsc: This file is an archive of compiled
resources. Resources include the design part of apps like
layout, strings and images. This file form the optimized
package of these resources.

« res: Resources of app which is not compiled to store
in resources.arsc stays in res folder. The XML files
present inside this folder are compiled to binary XML to
boost performance [77]. Each sub-folder inside res stores
different types of resources.

o Meta-INF: This section is in signed APKs and has all the
files in APK with their signatures. Signature verification
is done by comparing the signature with the uncompressed
file in archive [78].

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

C. PDF FILE STRUCTURE

Here, we will look into the internal structure of PDF file
format. PDF is a portable document with a range of features
that are capable of representing documents, including text,
images, multimedia, and many others. The basic structure of
a PDF file is discussed below:

o PDF header: PDF header is the first line of PDF which
specifies the version of a PDF file format.

« PDF Body: The body of a PDF file consists of objects
present in the document. The objects include images,
data, fonts, annotations, text streams, etc. Interactive
features like animation and graphics can also be
embedded in the document. This section provides the
possibility of injecting contents and files within it, which
makes it the most favourable avenue for adversarial
attackers.

o Cross-reference table: The cross-reference table stores
the links of all the objects or elements in a file. The table
helps navigate to other pages and document contents.
The cross-reference table automatically gets updated
when the PDF file is updated.

o The Trailer: The trailer denoted the end of the PDF
file and contains a link to the cross-reference table. The
last line of the trailer contains the end-of-file marker,
% %EOF.

First Evasion Attack|

against SVM [82] 2013

2014 First .Eva5|on Attack
against DNN [19]
l Fast Gradient Sign
] 2014
Method [22] 0
2017 AE attack orj Malware
Detector using RL [25]
Gradient based attack on‘
CNN-based Detector [26]J

Exploration of AE attack space
2019-2024 ——|
019-20 inside PE file [69, 28, 27, 70,71]]

[Exploration of Practical AE h
Al

2018

ttack using BlackBox Attacks |==== 2017-2024

[97-104,105-111,122,70])
Exploration of Efficient AE
| Attacks
L [27,104,111,117,118]

FIGURE 5. Timeline showing research trend for the development of
adversarial Evasion(AE) attack.

2019-2024

V. ADVERSARIAL MALWARE EVASION ATTACKS

Adversarial generation methods originating in the image
domain did not take long to migrate into the malware
field. Among different adversarial threats, evasion attacks
have been the most worrisome approach and have already

VOLUME 13, 2025

been exploited in various ways. the research trend for
the adversarial malware generation specific to evasion
attack is shown in a timeline in Figure 5. Initially started
by Biggio et al. [79] against SVM and Szegedy et al. [19]
against Deep Nets went through different phases to advance
in the malware domain. Adversarial malware started with
PDF and Windows files due to their abundance and then
proliferated into other file formats. Significant work has been
done on adversarial generation for Android, PDF, Windows
and Linux files. This section deals with adversarial examples
generated to evade malware detection systems by making
minor perturbations on input malware files.

Though initial research was not concerned about the
problem space of adversarial malware, A large volume of
research soon started to work on finding suitable locations
for adversarial perturbations within a malware file. These
subtle modifications to malware files during test time can
sneak through the unseen spots of machine learning models
without breaking the malware’s functionality. As the research
progressed, more recent works have focused on creating
more stealth and practical attacks while also trying to create
more efficient adversarial attacks. The following sections
will briefly explain different adversarial generation works
by researchers in the malware domain. Adversarial work has
been divided based on the attack file format, which includes
Windows, Android, PDF, Hardware, and Linux malware files.
The following subsection discusses adversarial attacks in
Windows files.

A. WINDOWS MALWARE ADVERSARIAL

Microsoft Windows is a dominant PC operating system
with more than 70% market share and 1.5 billion users
worldwide [80]. Gartner research [81] predicts that 30%
of cyberattacks by 2024 will be carried out in the form
of adversarial attacks. Abundant availability has placed
Windows malware at the core of adversarial threats. Machine
learning-based models are data-hungry, so feature engineer-
ing is a critical task to feed important features as input.
However, the advent of deep neural networks has allowed
models to learn features from complex raw data. Deep neural
networks have shown impressive performance in malware
detection by providing whole binary files as input without
any hand-crafted feature engineering effort. We want to
mention Raff et al.’s work [82] in this section (referred to
as MalConv), which has been an academic standard in the
field by making detection considering whole executable. Its
architecture combines convolutional activation with global
max-pooling before going to fully connected layers, allowing
the model to produce its activation regardless of the
locations of the detected features. MalConv, as one of the
prominent end-to-end static malware detectors, has been
considered a baseline for most static adversarial evasion
attacks. The subsequent part discusses different adversarial
evasion attacks on malware detectors classified based on the
optimization algorithm used.

437

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

TABLE 2. A gradient based approaches.

Paper/Year | Key Motivation Approach

Modification | Preserving Functionality SR

Adversarial attack on
malware detection us-
ing raw bytes

Kolosnjaji et
al. 2018 [26]
architecture

to embedded representation

o Optimizing byte at a time using gradient descent
o Embedded layer to tackle non-differentiable MalConv

o Gradient calculation of objective function with respect | file

Bytes are | e Byte padding only at the end | 60%
padded only at | e The Padding byte closest to
the end of the the embedded byte is chosen

al. 2019 [27] | for efficient adversar- feature

Kreuk et al. | Gradient based attack | e Perturbation generation in embedded space Padding bytes | e Loss function imposing per- | 99%
2018 [84] with better reconstruc- | e Calculation of weighted distance between generated | at the end of turbation to embedding ma-
tion adversarial embedding from actual embedding the file trix row
o Weighted gradient similar to iterative FGSM o Payloads inserted into the
flagged region
Demetrio et | Explainable technique | e Feature attribution to determine the most influential | Changing e MZ magic number and offset | 87%

ial generation e Perturbation generation using a gradient of classifica-
tion function with respect to embedding layer

bytes of file at 0x3C are not modified

header

Suciu et al.

Test existing methods | ¢ Random, gradient-based and fast gradient perturbation
2018 [28] on production-scale | e End of file append and slack region insertion
datasets and compare | e Transferability test across full, EMBER [85] and mini

Padding bytes | e Slackindexes calculated be- | 27%
at the end and fore adversarial payload in-
in the slack re- sertion

gradient-based

different strategies dataset gions o Updates only at the end or in
slack regions
Chen et al. | Enhancing o Saliency vector generation using Grad-CAM Bytes are ap- | e No alteration of existing sec- | 99%
2019 [86] effectiveness of | « Random benign block initialization and enhanced be- | pended only at tion

nign file append, followed by FGSM

approach through | e Experience-based attack by summarizing the successful | file
benign perturbation trajectories of random benign attacks for black box
initialization attack

the end of the | e« Appending only at the end

Jakhotiya et

Attacking state-of-art | e Train the malware detection system comprised of as-

Feature vector | e Modifications in feature | 24%

al. 2022 [87] | transformer-based sembly, static features and neural network modules space
malware detectors o Use FGSM to attack the detector e No considerations for func-
tionality
Aryal et al. | More flexibility and | e Inject intra-section code cave to make space for adver- | Inside the | ¢ Any modifications inside | 97%
2024 [71] stealth to adversarial sarial perturbation injected code code cave don’t alter the
perturbation o Inject code-loader to restore the integrity of malware | cave malware’s integrity
during execution o Code cave is removed by the
e Use gradient descent and FGSM to generate the pertur- code loader during execution
bations
Zhan et al. | Generate sample ag- | e Inject adversarial patch into arbitrary malware samples | Add e Modification inside non- | 50%
2024 [88] nostic perturbation e Two adversarial patch generation strategies, binary | adversarial executable regions does not
patch and img patch patches to non- break the execution
o Use of an evolutionary algorithm to search for universal | executable
and robust adversarial perturbations regions of the
file

Key Motivation: The major motive behind the published work, Approach: Key procedures, Modification: Changes on file during attack, Preserving
Functionality: Works towards safeguarding the functionality of a malware, SR: Evasion Success Rate

1) GRADIENT BASED ATTACK

Table 2 presents a comparative study of adversarial attacks
using a gradient of cost function against input Windows PE
malware. Since Anderson et al. [25] proposed the possibility
of manipulating sections of Windows PE malware to form an
adversarial sample, various types of research have been con-
ducted to bypass malware detectors. Authors [25] used ran-
dom actions from action space to modify PE files. To reduce
the randomness of payloads, Kolosnjaji et al. [26] proposed
appending optimized padding bytes using gradient descent,
originally proposed by Biggio et al. [79]. Gradient-based
approaches are carried out using either the append or insertion
method for perturbation generated using the gradient of cost
function as shown in Figure 6. One-hot represented malware
vector is combined with gradient-generated perturbation to

438

bypass the malware detector. Representation of the malware
can vary based on the approach. Kolosnjaji et al. [26] choose
to append bytes only at the end of the file, not to risk altering
the functionality of a file. Here, the attacker’s goal is to
minimize the confidence of the malicious class, limiting the
maximum perturbation. Authors achieved an evasion rate up
to 60% by only modifying 1% of bytes in the PE file.

Kreuk et al. [69], [83] proposed the enhanced attack
method against MalConv [82] using iterative FGSM [22]. The
authors focused this approach on enhancing reconstruction by
introducing a new surrogate loss function. The representation
of binary files as a sequence of bytes is arbitrary, and neural
networks are unable to work in this space. Generating adver-
sarial examples deals with adding perturbations to the original
sample by increasing or decreasing the gradient. However,

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

. Windows
Malware File

Problem Space to
Feature Space

flasia One Hot vector
u representation of
L]

features

Gradient
Calculation of
objective function

a

addition/insertion
based on gradient

Iterations
met

Reconstruction { L Failure
to problem)
space from
feature space L]
Adversarial
Malware Sample

FIGURE 6. Flow diagram for a gradient-based adversarial attack on
windows malware.

this process is not that simple, as perturbation in a one-hot
vector results in a new vector no longer in one-hot vector
space. This approach proceeds by generating perturbations
in embedded space. In many cases, the perturbed embedding
loses its resemblance to embedding in the lookup table,
which contains a mapping between bytes and embeddings.
In the absence of resemblance, reconstruction is not possible.
Kreuk et al. introduced a new term to the loss function, which
causes perturbations to be close to the embedding matrix.
To minimise the distance, the introduced term is the weighted
distance of generated adversarial embeddings from actual
embeddings. The new loss function is:

L N
I*(z,y;0) = a.l(z,y;6) + (1 — 0!)[> > da, A/[j)] @)
i=1 j=1
where the first part is the categorical loss called the negative
log-likelihood loss, and the second term gives the distance of
generated adversarial embedding with the actual embedding
in M. The second term is responsible for steering the
direction towards reconstructible adversarial embeddings.
This approach yielded an evasion rate as high as 99%.
To interpret the blackbox decisions of the malware
detection model, Demetrio et al. [27] proposed a tech-
nique called integrated gradients initially proposed by

VOLUME 13, 2025

Sundararajan et al. [8§8]. With input model f, a point x and
baseline x’, the attribution of iy, feature is computed as:

1 ’ I
1Gx) = (x: —x{)/ f (' + a(x — x'))
) .

ox;

Equation (8) is the integral of the gradient computed on all
points on a line passing through x and x’. Feature attribution
determines the most influential feature, leading to meaningful
explanations behind classifications of malware binaries.
Referencing the research findings, authors can also generate
adversarial malware samples by efficiently modifying a few
bytes in the file header. This approach is more efficient as it
requires a few manipulations to bypass the detector. Authors
could evade almost all malware by generating small perturba-
tions on file header sections other than MZ magic number and
value at offset 0 x 3C. Perturbation generation using a gradient
of classification function with respect to the embedding
layer is the same as implemented by Kolosnjaji et al. [26].
Along with success in efficient adversarial attacks from
perturbations in file headers, research also introduces new
challenges of perturbation being easily detected and patched.
This study has directed further research towards hiding
modifications from detection. The work claims a high evasion
rate of 87%. However, their sample size of just 60 may not
demonstrate the true performance on the general dataset.

Suciu et al. [28] trained existing models to study their
behaviour on a production-scale dataset to further explore
other regions for injecting adversarial perturbations. The
author evaluated the effectiveness of adversarial generation
strategies at different scales and observed their transferability.
Existing adversarial attacks are constrained on appending
adversarial noise at the end of a binary file. However,
appended bytes are found to be less influential and offset
by bytes in the original malware. Inability of byte append-
ing strategies while using size constrained detector like
MalConv(Only first 2MB are considered for detection), led
authors to use slack attacks. Slack attacks are performed
by discovering the region in executable files that are not
mapped to memory and will not affect the functionality
on modification. Attacking the most influential feature will
amplify attack effectiveness, and sufficiently appended bytes
can replace legitimate features. Slack attacks yielded an
evasion rate as high as 27% in this work. The approach is,
however, limited in terms of available slack space as there is
no guarantee that the binary files always have enough slack
spaces.

All previous works relied on random initial perturbations
and were then iteratively updated using a gradient of the
model. The role of initializing perturbation in the success
rate of adversarial generation can not be disregarded, and
Chen et al. [85] proposed the use of saliency vector to select
initializing perturbations from benign files. Researchers
consider the issue of accuracy and inefficiency in the
work of Kreuk et al. [83] and Suciu et al. [28] as a result
of random initialization before gradient-driven modification.
The benign feature append method was carried out by

do ®)

439

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

L
‘_ Windows
Malware File
cose |10101] ,]10101
Obfuscation 0'0" + 0'0"
Original
Code

Iterations
met

Detector

Adversarial
Malware

Failure

FIGURE 7. An adversarial generation workflow using code obfuscation.

debugging the victim model once to generate saliency
vectors. In contrast, continuous debugging of the model is
required while incorporating the FGSM algorithm. Avoiding
random initialization helps the model obtain backpropagation
gradients, and gradient-based algorithms can be implemented
more effectively. Benign bytes form saliency vectors and
help map between adversarial from continuous space to
discrete space, avoiding random perturbations that can
not be accurately mapped back to corresponding raw-byte
perturbations. This work successfully increased the accuracy
of gradient-based adversarial generation techniques up to
99% by replacing random initialization. Jakhotiya et al. [86]
tested the gradient-based adversarial attack on a state-of-
the-art transformer-based malware detector using FGSM.
However, their attack being in feature space is far from
addressing the problem space challenge.

Many recent works also use a gradient to optimize the
perturbation but without significant changes to the field.
Kozak et al. [8§9] combined multiple adversarial generation
approaches, both gradient and non-gradient, to create adver-
sarial malware samples. On the other hand, Yang et al. [90]
used multiple strategies for PE malware file modification to
preserve its functionality. Li et al. [91] use reverse gradient
sign to optimize the perturbations and use the least square
method to detect the oscillation in the perturbation optimiza-
tion while also limiting the injection ratio. To enhance the
flexibility and stealth of adversarial perturbation inside Win-
dows PE malware, Aryal et al. [71] proposed an intra-section
code cave injection strategy where first the code cave
makes spaces within the sections of PE structure. In the
next phase, these empty spaces are utilized to inject the
adversarial perturbation without breaking the file, as the code
loader completely removes the code cave dynamically. Now,
the adversarial perturbations are optimized using gradient
descent and FGSM. Even though all the discussed approaches

440

used gradient-based optimization, they were different in
terms of perturbation location or the motivation behind their
research. Their work produced variable success in attacking
different regions of the file, taking the evasion rate to as high
as 97%.

All existing works using a gradient of the target model
produce model-specific perturbations. To make the adver-
sarial generation model agnostic, Zhan et al. [87] proposed a
patch injection operation to arbitrary malware samples within
non-executable regions of a PE file. The approach initializes
the patch and trains it in each malware sample, resulting in an
optimized adversarial patch that can be directly applied to any
malware binary. Their work produces two different patches:
binary patch for raw byte sequences and img patch for image-
based detection. The approach achieved an evasion rate of up
to 50%, which, although lower than some targeted methods,
is notably high for a general-purpose adversarial patch.

2) CODE OBFUSCATION BASED ATTACK

Code obfuscation changes the pattern of a program without
any damage to program logic. Adversarial attacks using
obfuscation deal with modifying the code sections without
changing the functionality and flow of the program, as shown
in Figure 7. Table 3 discusses the code obfuscation attacks
done against Windows malware detectors. Park et al. [92]
proposed a generative model for generating adversarial
through obfuscation in raw binaries. The proposed approach
minimally modifies malicious raw binaries using a dynamic
programming-based insertion algorithm, obfuscating the
.text section of a binary in an executable byte sequence.
Windows malware binaries are initially converted into
grayscale images from byte code for obfuscation. An obfus-
cation technique called dummy code insertion inserts seman-
tic nops (no operation) into a program. At each iteration,
the algorithm chooses between inserting a semantic nop
or not inserting anything based on the distance metric
between binary strings. Adding semantic nops is easier if
the source code is given, but without it, patching techniques
are required [95], [96]. The algorithm outputs adversarial
malware with the original program’s logic after operating
in a closed-loop model until the classifier gets fooled. The
proposed algorithm is found to be effective against classifiers
employing both static and dynamic analysis with features
such as API, system calls and n-grams.

Most of the attacks in the adversarial domain are carried
out in feature space, and mapping features back to problem
space is not always feasible. Song et al. [94] proposed an
open-source systematic framework for adversarial malware
attacks using code randomization and binary manipulation
to evaluate against real-world antivirus systems. The authors
collected large categories of features from open-source mal-
ware detectors: hash-based signatures, rule-based signatures
and data distribution-based features. A generic action set is
prepared as micro and macro actions to modify these features.
Micro actions are a relative concept, which only changes

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

TABLE 3. A code obfuscation based approaches.

Paper/Year Key Motivation | Target Approach Modification | Preserving Functionality
Model
Park et al. | Generative model | Inception e Dummy code insertion using Adversarial Malware | Semantic o Modification with
2019 [93] by obfuscation in | V3 [94], Alignment Obfuscation nops executable adversarial
raw binaries MalConv o Semantic nops insertion to match original malware to | insertion e Dummy code insertion in
[82] standard adversarial form of semantic nops
o Optimization in closed loop till evasion
Song et al. | Practical Signature o Selection and application of macro actions from action | Through o Functionality preserving
2020 [95] adversarial based and space sequence of actions
generation machine e Action sequence minimization, traversing through ac- | macro and | e Cuckoo sandbox verifica-
and evaluation | learning tions and removing unnecessary actions micro action tion
against real world | based o Entangling macro actions to micro actions to evaluate
anti-virus system | detectors feature essence

Key Motivation: The major motive behind the published work, Target Model: Target defense for adversarial attack, Approach: Key procedures to carry out
adversarial attack, Modification: Changes on file to craft the adversarial perturbation, Preserving Functionality: Works towards safeguarding the
Sfunctionality of a malware

a subset of actions inside macro-actions. The proposed
workflow begins by selecting and applying macro-actions to
original samples till the original sample crosses the decision
boundary. Those macro-actions with no roles are removed
from the action sequence to reach the most efficient evasive
form. And finally, to get detailed knowledge about the reason
behind evasion, macro actions are broken into micro-action.
To provide reasoning for evasion, every actions are entangled
into several micro-actions and each macro-actions is replaced
with one micro-actions. This process helps in the evaluation
of essential feature changes responsible for classification
decisions. This research directs future exploration towards the
generation of adversarial, which can evade both static as well
as dynamic detectors, and also recommends antivirus systems
to provide offline dynamic detection.

3) REINFORCEMENT LEARNING BASED ATTACK

To counter the need for a differentiable model for gradient-
based approaches, a reinforcement learning agent has been
proposed to generate an adversarial sample against static
malware detection. Reinforcement learning enables complete
blackbox attacks on detector, creating real-world attack
scenarios where an attacker is completely unknown about the
detector. Table 4 compares all RL approaches on adversarial
evasion attacks for Windows malware. Anderson et al. [25]
proposed a whitepaper on evading malware detection by mod-
ifying Windows PE bytes for the first time. Anderson et al.
[97] extended results of work done in [25] to perform generic
black box attacks on static PE malware detection without
assuming any knowledge of the detector model’s structure
and features, retrieving only malicious/benign label. Actor-
Critic Model with Experience Replay (ACER) is used to
learn both policy model 7= and a Q-function to estimate the
state-action value. Countless, infinite features are collapsed
into a fixed-size vector using a hashing trick. The obtained
feature vector provides a complete view of malware files.
Functionality-preserving actions like adding functions to
unused import address tables, creating/renaming sections,

VOLUME 13, 2025

appending bytes, and manipulating debug info and header
checksums are present in action space.

To reduce the instability and increase the convergence
speed of Gym-Malware [97], Fang et al. [98] proposed a
Deep Q-network to Evade Antimalware engines (DQEAF)
framework to evade anti-malware engines. DQEAF can
reduce instability caused by higher dimensions, taking binary
stream features of only 513 dimensions. It takes only four
functionality-preserving actions in its action space to increase
convergence and reports a higher evasion rate. Actions
proposed for deep Q-network training are appending random
bytes, appending a random library with a random function
to import address table, appending a randomly named
section to section table and removing signature. Rewards
are provided based on number of training “TURN’ required
to evade malware detection along with discount factor
to consider future rewards. DQEAF also uses experience
replay, which allows reinforcement learning to remember
and reuse experiences from the past. The workflow of
adversarial generation begins by reading the original PE
malware, followed by modifications using DQEAF, and
finally, correcting the virtual address for the sample with
integrity insurance using Cuckoo Sandbox. DQEAF was able
to alleviate the evasion rate to 70% in the same dataset as used
by Gym-Malware.

Chen et al. [99] proposed an approach based on Gym-
Malware [25] using Deep Q-Network (DQN) and Advantage
Actor Critic (A2C) deep reinforcement algorithm and named
the environment as Gym-malware-mini. Even though authors
claimed to have increased the evasion rate by 18% than
that of Gym-Malware, it could be due to data leakage.
Gym-malware-mini is trained and tested using the same
data as gym-malware. Eleven actions in the action space
of Gym-Malware scale to an uncountable number due to
randomness in each action. Gym-malware-mini converts
those random actions to 10 deterministic actions, making
the space for the actions very small. To balance the exploit
and exploration, the best actions are chosen using the
epsilon-greedy method during the network training. Smaller

441

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

TABLE 4. A reinforcement learning adversarial attacks.

Paper/Year| Target Features Action Approach Reward SR
Space
Anderson Gradient 2350-Dimensional 10 stochastic ACER with DQN learns both a policy model | Positive:10, (12-
et al. 2018 | Boosted feature vector actions for and a Q-function Negative:0 24)%
[98] Decision Hashing trick to col- | simplicity Boltzman exploration and exploitation where
Trees lapse into a vector of mutation are proportional to expected Q-value
(GBDT) fixed size Mutations till evasion or 10 rounds
Fang et al. | GBDT Instability reduction | 4 stochastic DQN with prioritized version of experience | TURN and | 75%
2019 [99] using lower | actions, replay discount
dimensional features | choosen after Virtual address correction after modification factor based
Feature vector of | assessing Integrity verification using Cuckoo Sandbox function
513D malware
Chen et | GBDT Features similar to | 10 determin- DOQN and A2C based approach called as gym- | Positive:10, 83%
al. 2020 Anderson et al’s | istic actions malware-mini Negative:-1
[100] work [98] Modifying work of gym-malware
Fang et | Neural Import function fea- | 200 Novel static feature extraction r= 19.13%
al. 2020 | network ture, General infor- | deterministic RLAttackNet using DQN and optimized using | k*MAXTURN
[101] based Deep- mation feature, Byte | actions double and dueling DQN / TURN
DetectNet entropy features Different Q-network for choosing best action
2478-D feature vector and Q-value
Quertier MalConv Features/Raw bytes | 16 determin- Train DQN and REINFORCE (Monte Carlo | Detection (30-
et al. | and Ember extracted as per | istic actions Policy Gradient Method) score 100)%
2022 [102] detector Compile a vulnerability report for the target | dependent
PE converted to im- model function
age
Song et | Ember, Based on the target | Macro Adversarial attacks as a multi-armed bandit | Precise (32-
al. 2022 | MalConv classifiers and Micro problem to balance exploiting and exploring rewards for | 97)%
[103] and actions Limited exploration space by making genera- | essential
Commercial tion a stateless process actions
AV Minimized changes to malware file to assign
the reward correctly
Reusing successful payload in modelling
Rigaki et | Ember, Based on target clas- | Adapted Algorithm combining malware evasion and | Positive:10, (32-
al.2023 [104] Sorel-LGB, sifier from model extraction attacks Negative:0 73)%
Sorel- Malware- Model-based reinforcement learning to adver-
FFNN, MS- Gym sarially modify Windows PE
Defender environment Trains surrogate model with the target model
to evade
Zhan et al. | Ember, Fire- 220 dimensional fea- | 6 simple op- Intrinsic Curiosity Module(ICM) to explore | Extrinsic (63-
2024 [105] | Eye and Mal- ture vector for Mal- | erations state and action spaces efficiently rewards for | 85)%
Conv Conv and FireEye Leverage GAN model to generate synthetic | evasion and
2381 - for EMBER contents for actions intrinsic
rewards for
the novelty
of action

Target: Target defense for adversarial attack, Features: Properties of features considered for processing, Action Space: Nature of actions in action space
Approach: Key procedures, Reward: Reward used for learning, SR: Success Rate of evasion

action spaces aid in better learning policy. Gym-malware-
mini also uses negative rewards for punishment, which helps
to make agents learn faster.

Fang et al. [100] tried to address shortcomings of
previous work by proposing their own malware detection and
adversarial generation method using DRL. MalConv [82],
a standard detector network for Windows PE malware by
feeding whole binary bytes, has been exploited by various
researchers. Its vulnerability to gradient-based attacks for
adversarial motivated authors to build their own malware
detection system, DeepDetectNet, with AUC up to 0.989. For

442

feature extraction, DeepDetecNet uses a traditional approach
based on feature engineering. Static feature extraction mainly
includes three categories: Import Functions feature, General
information feature, and Bytes entropy feature. Previous suc-
cess in adversarial generation using reinforcement learning
is from UPX packing, which is not the actual modifications
on PE files. To solve this problem, all random modification
operations are expanded to 218 specific operations. The
reward is provided in each furn based on constants k and
MAXTURN , which denotes the maximum number of times
a file can be modified.

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

TABLE 5. An adversarial attacks based on GAN.

Paper/Year | Key-Motivation | Target Model Byte/ Approach Feature
Feature Count
Hu. et al. | Need of black- | ML-based (RF, | Feature o Feed Forward Neural Networks are used for both generator and | 128
2017 [106] box flexible | LR, DT, SVM, substitute detector APIs
adversarial attack | MLP, VOTE) o Iterative approach, modifying one feature every iteration
detectors
Kawai et al. | Using single mal- | ML-based (RF, | Feature o Deep Convolutional GAN used for Substitutor(S) and Generator(G) | All APIs
2019 [107] ware for realistic | LR, DT, SVM, o API list from multiple clean ware and single malware
attacks MLP, VOTE)
detectors
Castro et al. | Automatic GBDT Model Byte o Richer Feature representation 2350
2019 [108] byte-level Level o Generates random perturbation sequence with nine different options | Features
modifications at each injection
Yuan et al. | End-to-end MalConv [82] Byte o Dynamic thresholding to maintain the effectiveness of payload Raw
2020 [109] blackbox attacks Level o Balance in the attention of generator to payloads and adversarial | Bytes
at byte levels samples are brought using automatic weight tuning
Zhu et al. | Efficient deploy- | Random Forest N-gram | e Extract n-gram features from the bytecode of malware 350 fea-
2022 [110] ment and running o Train MalGan network using the features tures
time
Zhong et al. | Attacking the col- | VirusTotal Feature | ¢ MalFox, generation framework based on convolutional generative | 16156
2023 [111] lection of practi- adversarial networks features

cal AV o Parser to extract features, generator to produce perturbation paths and
discriminator to detect malware
e Novel frameworks: Obfusmal, Stealmal and Hollowmal

Enhanced
efficiency,

Gibert et al.
2023 [112]

EMBER,
VirusTotal

query-free

Feature | e Conditional Wasserstein GAN to generate malware resembling be- | Top K
nign samples in feature space

making approach o Employed byte histogram, API-based and String-based features
o Feature space attack mapped to en-to-end attack

features

Key Motivation: The major motive behind the published work, Target Model: Target defense for adversarial attack, Byte/Feature: Byte or Feature selected to
modify, Approach: Key procedures, Feature Count: Number of features

Quertier et al. [101] used DQN and REINFORCE
algorithms to attack popular malware detection engines, Mal-
Conv, EMBER, Grayscale and commercial AVs. On using the
same action space as introduced by Anderson et al., [25], they
were able to achieve an evasion rate of 67%, 100%, 98% and
30% against Ember, MalConv, GrayScale and commercial
AV, respectively, using DQL while reaching even improved
performance on the use of REINFORCE. To make adversarial
generation more efficient and practical, Song et al. [102]
proposed a black box Reinforcement Learning framework,
MAB-Malware. The framework takes a problem as a
multi-armed bandit to find a balance between exploiting
and exploring. They limit the exploration to avoid combina-
tional explosions while minimizing the changes to correctly
attribute the rewards. The work by Rigaki et al. [103] focuses
on more practical black-box attacks by focusing on model
evasion and model extraction of the target. The surrogate
model is trained and attacked before attacking the actual
target.

All existing reinforcement learning-based approaches
rely on evasion rewards for positive feedback, which,
in a black-box setting, results in low training efficiency.
To enhance the efficiency of adversarial generation using
RNN, Zhan et al. [104] introduced the intrinsic curiosity
reward into the framework that motivates the agent to

VOLUME 13, 2025

explore unknown state spaces. Additionally, the authors also
employed a Generative Adversarial Network(GAN) to obtain
varying adversarial payloads to replace random or benign
payloads.

4) GAN BASED ATTACKS

Most of the existing adversarial generation deals with the
use of gradient information and hand-crafted rules. However,
obtaining a high true positive rate (TPR) has been challenging
due to the constrained representation ability of existing
gradient-based models. Generative Adversarial Networks
(GAN), originally proposed by Goodfellow et al. [112], have
inspired blackbox attacks on malware detectors with very
high TPR. GAN uses the discriminative model to distinguish
between generated and real samples and a generative model
to fool the discriminative model between generated and
real samples. Table 5 summarizes adversarial attacks against
Windows anti-malware engines.

Hu et al. [105] proposed an adversarial generation
technique, MalGAN, which can bypass black-box machine
learning models. Binary features obtained by the presence or
absence of API are used as input to the model, and the number
of input features equals the input dimension. A generator
transforms malware to its adversarial version by taking the

443

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

probability distribution of adversarial far away from the
detector. Concatenating malware feature vectors with noise
vectors allows the generator to produce numerous adversarial
examples from a single malware feature vector. A substitute
detector is used to fit the detector model and provide gradient
information to train the generator.

Considering the use of multiple malware to train MalGAN
affecting the performance of avoidance, Kawai et al. [106]
proposed improved MalGAN with only one malware for
training. MalGAN imports malware detectors for training
and predicting, which is not convenient for attackers. This
improved MalGAN uses Python’s sub-process library to
import only detection results to MalGAN. The authors also
utilized all APIs used for malware to feature quantities instead
of the 128 APIs used by the original MalGAN. API lists
are extracted by combining multiple cleanware and single
malware in order to avoid the malware detection process
being driven by the addition of cleanware features to the
malware file.

A few assumptions made in designing MalGAN are less
realistic and limited in bypassing real malware classifiers.
One such assumption is that attackers are assumed to have full
access to feature space in the detector model. In addition, API
features are considered too extended to represent malware.
To overcome these limitations, Castro et al. [107] published
a poster using the GAN approach for generating adversarial
examples by injecting byte-level perturbations. The proposed
model works with real PE files instead of API feature
representations. Automatic byte-level real perturbation is
combined with feature representation to produce adversarial
examples. The use of richer feature representation and the
ability to return valid PE binaries allows the system to bypass
the GBDT detector and cross-evade different classifiers.

Using API sequences or feature representation demands
a lot of manual tasks to get the training data. Current
state-of-the-art research is directed towards end-to-end
malware detection without any feature engineering effort.
Yuan et al. [108] proposed a GAPGAN framework that
performs end-to-end black-box attacks against malware
detectors using byte-level features. Initial discrete malware
binary features are mapped to continuous space before
feeding to the generator network of GAPGAN, which
generates adversarial perturbations to be appended at the
end of original malware binaries. Dynamic thresholding
preserves generated subtle perturbations while mapping back
to discrete space from continuous space. The balance of the
attention of the generator across payloads and adversarial
samples is maintained using an automatic weight-tuning
strategy. Variable input and output size give great flexibility
to the GAPGAN model in contrast to prior research works.

To increase the efficiency of deployment and running time,
Zhu et al. [109] introduced the idea of n-gram to expand
feature sources from hexadecimal bytecode. The n-gram
features obtained from both malicious and benign files
are combined to form a 350-dimensional feature vector,
trained with MalGAN [105] network. Changing the features

444

to n-gram helps in carrying out attacks more efficiently.
Lately, to create adversarial samples against commercial
AV, Zhongetal. [110] proposed a generation framework
based on convolutional generative adversarial networks. The
framework majorly consists of a PE parser to extract features,
a generator to produce the perturbation path, a PE Editor
to edit, a Detector and a Discriminator to identify malware.
Their approach uses their distinct frameworks, Obfusmal,
Stealmal and Hollowmal, to attack a VirusTotal as their target
detector. Another approach by Gibert et al. [111] attempted
to resolve the high query requirement of GAN-based
approaches by proposing a conditional Wasserstein GAN.
They generate the malware sample resembling to a benign file
in feature space and later map it to end-to-end problems. The
approach’s generalization power is demonstrated on different
features: byte distribution, functions, libraries and strings.
Devadiga et al. [113] utilized GAN to further enhance the
GAN-based approach, fusing opcode and n-gram features
with LLM embeddings. Since the approach utilized LLM
and GAN as separate entities, exploring how the completely
merged approach will generate such attacks is still interesting.

5) RECURRENT NEURAL NETWORK BASED ATTACK

Recent works have focused on the use of Recurrent Neural
Networks (RNN) for malware detection and classifica-
tion [4], [114]. Sequential malware API is used by RNN
to predict whether the program is malware or benign.
Papernot et al. [115] introduced adversarial sequence for
RNN processing sequential data. The authors demonstrated
the transferability property of adversarial examples generated
from feed-forward neural networks against recurrent neural
networks. Table 6 summarizes a comparison among RNN,
explainable ML, malware visualization, Generative Al, and
Genetic algorithm-based adversarial attacks. Hu et al. [51]
proposed an RNN-based adversarial attack for an RNN mal-
ware detector. The approximation of the victim RNN model
is done by training substitute RNN, and generative RNN
outputs sequential adversarial examples. Some irrelevant API
sequences are generated and inserted in vulnerabilities in
the original sequence. API sequences, represented as a one-
hot vector, are the input for the generator network, which
generates adversarial API sequences. The generative part of
RNN generates small API sequence pieces after each API,
which are inserted after the API. A benign sequence and the
Gumbel-Softmax [116] output are used to train the substitute
network to fit the victim RNN-based detector. The attention
mechanism helps by spreading the focus on different parts
of the sequence. Using this approach, authors were able
to decrease the initial detection rate of around 90% across
all malware detectors to around (1)-(3)%, showing almost
perfect evasion against all the cases.

6) EXPLAINABLE MACHINE LEARNING BASED ATTACK
One of the biggest challenges of machine learning is the
lack of explainability or reasoning behind such intelligent

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

TABLE 6. RNN, Explainable ML, Visualization, Generative Al, and Genetic algorithm based adversarial.

Paper/Year| Key-Motivation Target Algorithms Used | Approach SR
Model
Hu et al. | Attack against RNN pro- | LSTM and | Bidirectional o Substitute RNN approximates victim RNN 97%
2017 [51] cessing sequential data BiLSTM- RNN with | e Generative RNN gives a sequential adversarial example
based attention o Irrelevant API sequence generated and inserted in vulnera-
detectors mechanism bilities of the original sequence
Rosenberg | Use of explainable ma- | GBDT Clas- | Integrated o Unearthing most impactful features using explainability al- | 37%
et al. | chine learning for adver- | sifer Gradient, LRP, gorithm
2020 [118] | sarial generation DeepLIFT, o Manual selection of easily modifiable features
SHAP o Feature by feature modification without harming function-
ality and interdependent features
Aryal et al. | Using explainability to en- | MalConv Gradient Descent | e Calculate SHAP values corresponding to different regions | 58%
2024 [119] | hance the efficiency of ad- of PE malware
versarial perturbation e Devise adversarial injection strategy based on calculated
attribution
Liu et al. | Adversarial malware | CNN, SVM | ATMPA o Data transformation to convert code segments into grayscale | 100%
2019 [120] | against visualization based | and RFbased | framework using images
detection malware GoogLeNet, e Pre-training module to find function of malware detectors
detectors FGSM and C&W | e Optimized FGSM and C&W attack is used to generate actual
AE
Khormali Targetted and Untargetted | Convolutional| FGSM, C&W, | e Adversarial generation using different algorithms 99%
et al. | misclassification on win- | Neural DeepFool, MIM | e Conversion of adversarial dimension, same as of original
2019 [121] | dows and IoT malware | Network and PGD image
dataset o Appending pixels at the end or injecting
Benkraouda| Attack against | Convolutional | Modified version | ¢ Mask generator to flag the locations for perturbation 98.9%
et al. 2021 | visualization based | Neural of CW attack | e Modified version of CW attack to generate optimal pertur-
[122] detection with ability | Network [57], Euclidean bation
to evade pre-processing distance o NOP generator to replace the perturbation from CW attack
filtering without losing by semantic NOPs
functionality o AE optimizer to choose optimal viable NOPs
Hu et | Increase efficiency of at- | VirusTotal Fine-tuning o Fine-tune the GPT2 language model to generate benign | 28%
al. 2021 | tack against black-box de- GPT2 looking byte sequence
[123] tectors o Append generated sequence from GPT2 to a malware sam-
ple
Yuste et al. | Create flexible, | MalConv Genetic o Introduction of space in between PE section that won’t be | 81%
2022 [70] functionality-preserving and algorithm loaded to memory
attacks using code caves VirusTotal o Optimization by exploring search space using genetic algo-
rithm (selection, crossover, and mutation)

Key-Motivation: The major motive behind the published work, Target Model: Target defense for adversarial attack, Algorithms Used: Algorithm used for
crafting adversarial example, Approach: Key procedures to carry out adversarial attack, SR: Evasion Success Rate

decisions. Recent researchers have been able to bypass
malware detectors using the concept of explainable machine
learning. The explainability approach involves finding
the significance of each feature and then conducting
feature-specific modifications based on their importance.
Rosenberg et al. [117] proposed an explainable ML approach
to generate adversaries against multi-feature type malware
classifiers. Adversarial attackers first evaluate the most
effective list of features, and the features that are easy to
modify are selected. Transferability of explainability allows
the proposed attack to achieve a very high impact on the
target classifier, even in a black-box attack. This approach
assumes that the malware classifier and the substitute model
possess similar feature importance, leading to modification
in features to impact the target malware classifier. Different
explainability algorithms on white-box [88], [123], [124] and

VOLUME 13, 2025

black-box [125] are evaluated to make comparisons between
substitute model and victim model. The proposed end-to-
end PE adversarial attack performs feature modification
without harming the malware functionality as well as
interdependent features, giving an evasion rate as high as 34%
compared to 0.11% when adding random perturbation. Using
naive and engineered features of the EMBER dataset, the
explainable ML approach successfully bypasses the GBDT
classifier. Rosenberg et al’s work presents explainability
as a dual-edged sword that can be used by adversaries to
make more explainable models and carry out more robust
adversarial attacks.

One of the recent works by Aryal et al. [118] demonstrated
the use of explainability as a tool to enhance the efficiency
of adversarial attacks. Their approach uses explainability
to attribute the different regions of Windows PE malware

445

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

based on their contribution towards being detected by
malware detectors. The attribution is later used to derive the
adversarial injection strategy. They demonstrated an increase
of efficiency by more than 200% on using the explainability
to assist the attack. The amount of increase and success of
the attack approach is dependent on the region of the PE
malware file. Their experiments demonstrated an evasion
rate as high as 58% on attacking .text section, 36% with
.data section and 49% while targeting . rdata section.

7) MALWARE VISUALIZATION BASED ATTACK

Machine learning-based visualization detection has been
popular due to its ability to prevent zero-day attacks and make
detection without extracting pre-selected features [126],
[127]. These approaches convert binary code into image
data and visualize the features of the sample, improving
the detection speed for malicious programs. Visualization-
based techniques are similar to the adversarial generation in
the image domain where pixel perturbations are introduced,
as shown in Figure 8. Liu et al. [119] introduced an Adversar-
ial Texture Malware Perturbation Attack (ATMPA) against
visualization-based malware detection using a rectifier in
neural network hidden layers. The framework allows an
attacker to probe with the malware image while visualizing
and also hiding them from malware detectors. Code segments
are converted into grayscale images during the data trans-
formation module. In the adversarial pre-training module,
an attacker uses a machine learning approach to train an
adversarial example generation model, producing a noise
signal §. For a generation of AEs, optimization algorithms,
FGSM and C&W attacks are used. ATMPA method also
used L,-based C&W attack to generate adversarial, including
lp, I, and I attack. Their approach produced a perfect
evasion rate of 100% in most of their attacks.

COPYCAT approach proposed by Khormali et al. [120]
produced both targeted and untargetted misclassification
on Windows and IoT malware datasets. The author used
two approaches, AE padding and sample injection, to pro-
duce adversarial malware for visualization-based detectors.
For padding method, COPYCAT generated adversarial x’
using five different attack methods namely: FGSM [22],
C&W [57], DeepFool [59], Momentum Iterative Method
(MIM) [128] and Projection Gradient Descent (PGD) [129].
The generated adversarial needs to be converted to the same
dimensions as that of the original image before appending at
the end of the image. The binary samples from the targeted
class are injected into an unreachable section of the target
sample, producing an evasion rate as high as 99% in almost
all attacks.

In order to provide an adversarial attack that can
evade visualization-based detection in the presence of pre-
processing filtering, Benkraouda et al. [121] proposed a
binary rewriting-based attack on malware files. A mask
generator creates the space in the instruction boundary
to insert the perturbations. Once the perturbation mask

446

Malware
Visualization

Pixel
¥ Perturbation

B
<

Malware
Detector

o m,me'ﬂ

Visualization
based
detector

Benign

Adversarial
Malware

FIGURE 8. An adversarial generation against malware visualization based
detection.

is created, the modified version of C&W attack [57] is
used to generate an adversarial example in image space.
The modified version is in the sense that the perturbation
mask is imposed while carrying out an attack to restrict
the positions of perturbations. The NOP generator will
replace the perturbation introduced by the C&W attack
with the corresponding binaries that preserve the malware
functionality. Finally, the AE optimizer will use the Euclidean
distance metric to choose semantic NOPs that are close to
sequences in the allowed perturbation space. Their approach
produced a high evasion rate of 98.9% when tested with just
174 malware samples.

8) MISCELLANEOUS

Generative Al has been the biggest buzzword and is being
tested across every domain. To make adversarial attacks more
efficient, overcoming the query limit imposed in black-box
attacks, Hu et al. [122] proposed MalGPT that demonstrates
the ability of a Deep Learning-based causal language model
to enable a single shot evasion. The approach fine-tunes the
GPT-2 model with the benign files and tests it against the
VirusTotal to achieve an evasion rate of around 24.51% with
just a single shot attack.

In another approach, Yusteetal. [70] tried to bring
flexibility while preserving malware’s functionality in the
adversarial creation process. The author’s approach intro-
duces code caves between the PE malware sections in the disk
that never get mapped to the memory. In the creation of code
cave, authors follow genetic algorithms through selection,
crossover and mutation to create an adversarial malware
sample. They were able to achieve an evasion rate as high
as 99% and significant success against VirusTotal detectors
as well.

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

TABLE 7. An Android adversarial attacks.

Paper/Year| Target/Dataset Approach Modification Limitations
Grosse Feed forward | e Binary feature vector extraction using static evaluation o Feature addition to An- | e Constrained on maxi-
et al. | neural o Jacobian matrix of neural network for adversarial generation droidManifest.xml mum feature space per-
2017 [131] | network o Direction for generated perturbation is given by gradient of | e Changing features leading turbation
based the given function with respect to the input to only one line of code o Feature modifications
detector / | o Selection of perturbation with maximal positive gradient confined inside
DREBIN towards target class AndroidManifest.xml
Yang et al. | KNN, DT, | ¢« Malware Recomposition Variation by semantic analysis e Resource, temporal, lo- | e Significant alteration
2017 [132] | SVM, RF/ | e Feature mutation analysis and phylogenetic analysis to per- cale and dependency fea- of semantic leading to
DREBIN, form automatic program transplantation tures used higher failure rate of
VirusShare, e Malware evolution attack focusing on mimicking and au- | ¢ Mutation following fea- app
Genome tomating the evolution of malware ture pattern of existing
o Conufsion attack making features less differentiable malware
Rosenberg | RNN e Mimicry attacks against surrogate model e No-op attack by adding | e Detectable Residual ar-
et al. | variaant o Surrogate model by querying black-box detectors with syn- API call with valid param- tifacts during app trans-
2018 [73] and Feed thetic inputs selected by Jacobian based heuristics in priori- eters formation
forward tizing directions o Functionality verification
neural e Closest API call in direction indicated by Jacobian are se- using sandbox after mod-
networks/ lected ification
VirusTotal
Liu et al. | Neural o Random forest to filter most significant features o Restricted permission | e Increased constraint on
2019 [133] | network, o Disturbance randomly generated and disturbance size calcu- modification on perturbation
logistic lated using genetic algorithm AndroidManifest file e Random perturbation
regression, e Mutation using fitness function till fit and evading individual | e Functionality changing affecting convergence
DT and RF is produced modifications are deemed
based detec- unfit
tors/DREBIN
Shahpasand | SVM, Neural | ¢ GAN architecture with threshold on generated distortion o Perturbation addition lim- | e Highly unstable learn-
et al. | network, RF | e Different loss function to generate benign like adversarial ited by threshold distor- ing of GAN architecture
2019 [74] and LR / and to produce high mis-classification tion amount
DREBIN
Li et al. | AdaBoost, o Bi-objective GAN with two discriminator and one generator | e Iterative perturbation ad- | e Very limited feature
2020 [72] CNN, SVM | e Onediscriminator to distinguish malware and benign sample dition till evasion vectors (Permission,
/ Tencent and another to distinguish original and adversarial sample o Perturbation evading both action and API calls)
Myapp, malware and adversarial are considered
AndroZoo detection
Pierazzi Linear o Formalization of adversarial evasion attacks in the problem | e Perturbations appended at | e Heuristic based
et al. | SVM, Sec- feature space including transformations, semantics, robust- the end approaches are time and
2020 [75] SVM/DREBIN ness and plausibility o Restricted addition of per- resource consuming
o Automated software transplantation to extract benign slices missions
e Side effect features to find projections that maps perturba- | e Cyclomatic Complexity
tion to feasible problem-space regions to take heuristic approach
o Gradient based strategy based on greedy algorithm to choose maintaining existing
perturbation homogeneity
Bostani et | DREBIN[135], ¢« Automated Software Transplantation Technique to prepare | ¢ Random Search(RS) for | ¢ In Random Search (RS)
al. 2024 | Sec- action set which includes gadgets extracted from benign moving malware sample algorithm, actions from
[134] SVM [136], Android apps in problem space apply- action space are random
MaMaDroid | e n-gram-based similarity method to identify benign APKs, ing sequence of transfor- | e Increase in adversarial
[137] / An- closely similar to malware files mation in action set size, increasing chances
droZoo [138] | e Applying extracted gadgets from benign samples into mali- | ¢ New contents injected in- of adversarial detection
cious files side an IF statement
o Iterative and incremental manipulation

Target/Dataset: Target defense for adversarial attack/Dataset used, Approach: Key procedures to carry out adversarial attack, Modification: Changes on file
to craft the adversarial perturbation, Limitations: Shortcomings of proposed approach

B. ANDROID MALWARE ADVERSARIAL

Android has over 2.8 billion active users and owns 75%
market share in the mobile phone industry [138]. The
wide usage of the Android platform has attracted security
threats in numerous forms, and adversarial evasion attacks
are one of them. Table 7 provides a brief comparison
among different adversarial attacks crafted on Android files.

VOLUME 13, 2025

Grosse et al. [130], [139] generated adversarial examples for
state-of-art Android malware detection trained on DREBIN
dataset [134]. Authors migrated the method proposed by
Papernot et al. [56] to handle binary features of Android
malware while preserving the malicious functionality. Binary
features are derived by statically evaluating code based on
system calls and usage of specific hardware. Authors adopted

447

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

the Jacobian matrix of neural network F for an adversarial
generation. To get adversarial, the gradient of the function
F with respect to X is calculated to get the direction of
perturbation such that the output of classification will change.
Perturbation § with the highest positive gradient in the
direction of the target is selected and is kept small enough
to prevent negative change due to intermediary alterations
of the gradient. Functionality is preserved in this approach
by changing features, resulting in the addition of only a
single line of code. Research also confines the modifications
to manifest features related to AndroidManifest.xml
file contained within the Android application. With
permissions, intents and activities being the most fre-
quently modified features, authors successfully evaded
DREBIN classifier [134], preserving the semantics of
malware.

To overcome the white box attack issues,
Rosenberg et al. [73] implemented the GADGET framework
to convert malware binary to an adversarial binary without
access to malware source code. The proposed end-to-end
black-box method is extended to bypass the multi-feature-
based malware classifiers relying on the transferability in
RNN variants. For the target RNN detector, a malicious
API call sequence is the adversarial example to be
generated. Adversaries train a surrogate model with the
same decision boundaries as the detector and then execute
a white-box attack on the surrogate model. The black-box
detector is queried with synthetic input values from chosen
Jacobian-based heuristics in the prioritizing directions where
model output varies to build the surrogate model. API
calls that are nearest to the direction given by Jacobian
are inserted to generate the adversarial sequence. The
Jacobian matrix of the surrogate model is used for evaluation,
and after each iteration, a synthetic example is added
to each existing sample. Adversarial generation showed
the same success against the substitute and blackbox
model with short API sequences, making adversarial
generation faster. Framework also uses Cuckoo Sandbox to
verify the malicious functionality of generated adversarial
malware. GADGET framework wraps malware binary with
proxy code and increases the risk even higher, providing
malware-as-a-service.

Adversarial attacks on the malware domain have not
considered manipulating the feature vector to see the
impact of mutation due to the strict functionality-preserving
requirements of malware. The Malware Recomposition Vari-
ation (MRV) based approach proposed by Yang et al. [131]
performed an analysis of malware files semantically and con-
structed a new malware variant. Mutation strategies synthe-
sized by conducting semantic-feature mutation analysis and
phylogenetic analysis are used to perform automatic program
transplantation [140]. The proposed framework performs
inter-component, inter-app, and inter-method transplantation.
A more comprehensive attack is performed on the manifest
and the as dex code. Malware evolution attacks aim to

448

imitate and automate malware evolution using phylogenetic
evolutionary tree [141].

Several adversarial generation approaches have been con-
ducted with minor changes to existing attacks. Liu et al. [132]
proposed a Testing framework for Learning-based Android
Malware Detection systems (TLAMD). Framework uses
a genetic algorithm to perform black-box attacks against
the Android malware detection system. Android files
are modified by adding the request permission codes
to the AndroidManifest.xml file originally proposed by
Grosse et al. [130]. The restriction was imposed on the types
and magnitude of permissions that can be added to the
AndroidManifest file. A random population is generated
giving the characteristics of permission to add and followed
by calculating the disturbance size for the sample malware.
Using the evaluated perturbation size, adversarial is generated
and tested against the detection model. Based on the detection
result, either a new disturbance size is calculated using
genetic algorithms, or perturbation is successfully added
to the Android application. The fitness function searches
for optimal solutions to perform a mutation, leading to a
new fit individual able to evade detection. A random forest
approach filters out insignificant features during feature
extraction. Disturbances generated by genetic algorithms can
bypass malware detectors trained on neural networks, logistic
regression, decision trees and random forest.

Shahpasand et al. [74] implemented GAN to generate
adversarial by keeping a threshold on the distortion values
of generated samples. The generated optimum perturbation
8 is added to existing malware to produce adversarial. Like
every other GAN architecture, the generator can learn the
distribution of benign samples, generating perturbations that
can bypass the learning-based detectors. The discriminator
implicitly enhances the perturbation by escalating the loss of
the generator while the adversarial samples are identifiable
with benign files.

The goal of adversarial generation has been to bypass
malware detectors without losing functionality. However,
due to the growth in adversarial malware in recent times,
defenders are employing firewalls to stop the adversarial
samples. Li et al. [72] extended the work of MalGAN [105]
to make it robust against a detection system equipped with
a firewall. Despite its high evasion rate against malware
detectors, MalGAN is found to be less effective against
detection systems using firewalls. Bi-objective GAN with
two discriminators with different objectives is used. One
discriminator helps distinguish between malware and benign,
whereas another discriminator helps to find out whether the
samples are adversarial or normal. Authors used permissions,
actions and application programming interface calls as a
feature to generate adversarial.

Pierazzi et al. [75] formalized the adversarial ML evasion
attacks in the problem space and proposed a problem space
attack on Android malware. This work is focused on attacks
modifying the objects in real input space corresponding to

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

TABLE 8. Adversarial attacks on PDF malware.

Paper/Year | Target Approach Modification Limitations
Maiorca PJScan, o Reverse mimicry attack by manipulating binary files to make | ¢ Malicious EXE payload asanew | e Less control on mali-
et al. 2013 | Malware it malicious version after trailer cious goal
[144] Slayer o Malicious embedded EXE payload insertion e Unrestrained embedded PDF
and o Malicious PDF file insertion inside a benign one structure insertion
PDFRate | e Encapsulating malicious JavaScript code
Biggio et | SVM and | e Gradient based optimization inspired by Golland’s discrim- | e Insertion of objects creating new Feature mapping issues
al. 2014 | neural inative directions technique PDF files Non-differential
[83], [145] | network o Additional panalizing term to reshape objective function, discriminating
based biasing gradient descent towards region of negative class functions can not
detectors concentration be evaded
Srndic et | PDFrate o Taking advantage of discrepancy between operation of PDF | e Insertion of dummy contents, ig- Feature mappings are
al. 2014 | em- reader and PDFrate nored by PDF readers but affect assumed to be perfect
[146] ployed o Mimicry attack to mimic 30 different benign files detector which is unrealistic
on o GD-KDE attack to defeat classifier with differentiable deci- | e Trailer section moved away from
Random sion function cross reference table for file in-
Forest jection space
Carmony PDFrate o Reference JavaScript extractor by directly tapping into a | e Obfuscation based on output of Useful only for
et al. 2016 | and Adobe reader at locations identified by dynamic binary anal- reference extractor JavaScript based
[147] PJScan ysis detector
o Parser confusion attack combined with reverse mimicry at- Dependent on versions
tack of Adobe Reader
Xu et al. | PDFrate o Stochastic manipulations using genetic algorithm to gener- | e Inserting new, removing and Stochastic approaches
2016 [148] | and ate population modifying existing contents are resource intensive
Hidost o Iterative population generation till evasion o Oracle confirming the malicious- No exact way to choose
o Successful mutation traces reused for initialization effi- ness of file best fitness function
ciency
o Fitness score based on maliciousness detected by oracle

Target: Target defense for adversarial attack, Approach: Key procedures to carry out adversarial attack, Modification: Changes on file to craft the
adversarial perturbation, Limitations: Shortcomings of proposed approach

the feature vectors. To overcome the inverse feature-mapping
problems from previous research, the author presents the
idea of side-effect features. An attack on a feature space
is projected towards a feasibility region satisfying the
problem space constraints to obtain the side effect features.
Though side effect features contribute towards preserving the
validity of malware, they alone can positively and negatively
influence the classification score. Authors use automated
software transplantation [140] to extract byte-codes from
benign donor applications to inject into a malicious host,
also known as organ harvesting. Prior research relied heavily
on adding permissions to the Android Manifest, which
is considered dangerous in Android documentation [142].
Authors bind the modifications to inject a single permission
into the host app. The gradient-based strategy using the
greedy algorithm proposed in this approach overcomes pre-
vious limitations of preserving semantics and pre-processing
robustness.

To overcome the challenges of limited access to target
classifiers while circumventing black-box Android malware
detectors, Bostani et al. [133] proposed a novel iterative and
incremental manipulation strategy. The attack is carried out in
two steps: preparation and manipulation. In the preparation
phase, automated software transplantation prepares action
sets from Android apps. The n-gram-based similarity method
is used to identify benign apps that closely match malware
files. Insertion of extracted gadgets of closely matching

VOLUME 13, 2025

benign files forces malware samples towards the unseen
spots of the classifier. In the manipulation stage, the
perturbation on malware samples is applied incrementally,
choosing from the collected action set. The search method
randomly chooses suitable transformations and applies them
to malware samples. This approach shows a high success
rate in query-efficient approaches but increases the size of
adversarial perturbation, increasing the risk of perturbation
being easily detected.

C. PDF MALWARE ADVERSARIAL

Along with widespread applications and adoption, PDF
documents have been one of the most exploited avenues for
adversarial malware attacks. Initially, JavaScript-based and
structural properties detection was prominent in recognising
malware in PDF. The freedom to distribute chunks of
Javascript code and assemble them at run-time and the high
degree of expressiveness in JavaScript led to the failure
of Javascript-based detection. Despite significant growth in
PDF malware detection from JavaScript using deep learning
techniques, the challenges posed by adversarial examples still
exist. Early evasion attempts on PDF documents were crafted
by Smutz et al. [148] and Srndic et al. [149] using heuristic
approaches. The authors proposed an approach to build more
robust PDF malware detection techniques that showcased the
adversarial ability to mislead linear classification algorithms
successfully.

449

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

The flexible logical structure of PDF has allowed us
to craft adversarial by carefully analyzing its structure.
Maiorca et al. [143] demonstrated an evasion technique
called reverse mimicry attack against popular state-of-
art malware detectors [148], [150], [151]. Traditionally,
malicious PDF files are believed to be structurally different
from benign PDF files. Taking advantage of this structural
difference, most malware detectors were able to discriminate
PDF files with very high accuracy. However, malware files
that can imitate the benign file structure or vice-versa
can easily fool the detector. Reverse mimicry attacks can
make benign files malicious with minimal changes in their
structure. Malicious payloads poison the samples, initially
classified as benign. Three kinds of malicious payloads
introduced to benign files take the sample across the decision
boundary of the malware detector. The first one is the EXE
payload with malicious embedding, which is introduced
using the Social Engineering Toolkit as a new version
after its trailer. The new trailer will point to a new object
when adding a new root object. In this payload, authors
embedded malicious PDF files inside other benign PDF
files using the embedded function of PeePDF [152] tool.
The embedded PDF file automatically opens without user
interaction, allowing malicious PDF to be embedded inside
a benign one without any restriction on embedding the file.
PDF file injection enabled an attacker to have fine-grained
control of structural features in the carrier file. A final kind of
payload insertion is carried out by encapsulating a malicious
JavaScript code without reference to other objects. Table 8
provides an overview of adversarial attacks carried out on
PDF files.

Optimization-based evasion attack against PDF malware
detection was introduced by Biggio et al. [79], [144]. The
attack was carried out using a gradient-based optimization
procedure inspired by Golland’s discriminative directions
technique [153] to evade linear as well as non-linear clas-
sifiers. The proposed work carried out complete knowledge
and constrained knowledge attacks on non-linear models
like Support Vector Machine(SVM) and neural networks.
This approach used a gradient descent procedure with
special consideration to avoid getting stuck on local optima.
To increase the probability of successful evasion, an attacker
needs to reach legitimate attack points and to reach this,
the additional penalizer term is introduced using a density
estimator. The extra component helps imitate features of
known legitimate samples, reshaping the objective function
by biasing the gradient descent towards the negative class
concentration region.

Srndic et al. [145] further enhanced optimization based
attack against deployed system PDFrate [148] using mimicry
attack, and Gradient Descent and Kennel Density Estimation
(GD-KDE) attack. The attack takes advantage of the discrep-
ancy between the functioning of PDF readers and PDFrate in
terms of interpretation of semantic gaps as explained in [154].
The dummy contents to insert should be ignored by PDF
readers but affect the feature computation in PDFrate. PDF

450

Malicious PDF Population
Flle Initialization
YA

Target
[Classifier] [it]
Fitness
Function
Variant
Selection
Benign
Samples

FIGURE 9. A PDF adversarial malware generation based on genetic
algorithm [147].

reader looks at the end of the PDF for the cross-reference
table and goes to locate the object directly. The trailer section
of PDF files was moved arbitrarily far away from the cross-
reference table, generating a space for file injection without
affecting the functionality of the PDF document.

PDF detection techniques mostly rely on PDF parsers
to extract features for classification [150], [155]. These
parsers are unable to extract all JavaScript of PDF files.
Carmony et al. [146] created a reference JavaScript extrac-
tor that measured the difference between the parser and
Adobe Reader by tapping Adobe Reader on locations
given by binary analysis. Manual analysis refines the few
candidate tap points provided by dynamic binary analysis.
JavaScript extraction tap points help Adobe Reader extract
and execute JavaScript code from PDF documents. The
memory accessed by Adobe Readers when reading PDF
files using automatically executable JavaScript is analyzed to
determine the raw JavaScript extraction tapping points. The
proposed PDF parser confusion attack applies obfuscation
on malicious PDF samples by analyzing the weaknesses of
extractors. Reference extractor enables new obfuscation in
comparison to existing extractors, and a combination of these
obfuscations was able to bypass all JavaScript extractor-based
detectors.

In order to preserve maliciousness, several works take a
conservative approach by inserting only new content and
refraining from modifying or removing existing content.
Xu et al. [147] proposed a black-box generic method to
evade the classifier as shown in Figure 9. As in the figure,
first, the population is initialized by performing random
modifications on malicious files. Then, each member of
the population is passed through a target classifier to
measure maliciousness and through Oracle to confirm the
functionality. Suppose no samples can evade the target
classifier with functionality intact. In that case, a subset of
the initialized population is chosen for the next generation

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

'.' Malware

File

| Computer
Hardware

Low level micro
architectural features
from hardware
performance

Heuristic and
Gradient based
perturbation addition
approaches

Reverse

Hardware
Malware
Detectors

Engineering

Adversarial
Sample

FIGURE 10. An adversarial generation workflow against hardware
malware detectors.

based on the fitness score, indicating progress towards the
evasive sample. The population generation is repeated, and
this process is continued until the evasive sample is found
or threshold iterations are met. The author uses genetic
programming (GP) to bring off stochastic modifications in
an iterative manner till evasion.

D. HARDWARE BASED MALWARE ADVERSARIAL

Hardware malware detectors use low-level information
on features from hardware performance monitoring units
available in CPUs. Hardware malware detectors are prone
to reverse engineering [159], allowing mimicry attack [160]
to reverse-engineer the models. Adversarial against such
detectors are carried out by generating perturbations in
the form of low-level hardware features, following the
architecture shown in Figure 10. These adversarial gen-
eration approaches differ only in the type of features
used in comparison to previous works. Table 9 briefly
compares adversarial attacks against hardware malware
detectors. Khasawneh et al. [156], [161] demonstrated eva-
sion of Hardware Malware DetectorstHMD) after being
reverse-engineered, using low overhead evasion strategies.
Data collected by running malware and cleanware programs
on a virtual machine operating on Windows 7 are used to train
a reverse-engineered model. Data required for training are

VOLUME 13, 2025

dynamic traces while executing the program and are collected
by using the Pin instrumentation tool [162]. These dynamic
traces are profiles of the program’s run time behaviour.
This dataset is comprised of three types of feature vectors:
Instruction features, Memory address and Architectural
events. Authors [156] constructed a Dynamic Control Flow
Graph (DCFG) of the malware to insert instructions into
the executing malware dynamically. Injection of instruction
features increases the weight of the corresponding feature,
while memory feature injection alters the histogram of
memory reference frequencies. Khasawneh et al. picked the
instructions with negative weights to move the malware away
from the decision boundary. A heuristic approach was taken
to identify the candidate instructions for insertion. Weighted
injection strategy where the probability of selecting particular
instruction is proportional to negative weight allowed to
bypass HMD with around 10% dynamic overhead.

Dinakarrao et al. [157] also proposed an adversarial
attack on low-level micro-architectural events captured
through Hardware Performance Counters (HPC). Victim’s
defense system (HMD) being black-box needs to be reverse
engineered to mimic the behaviour. The number of HPC
patterns required to bypass HMD is unknown, which leads
to the need for an adversarial sample predictor. The HPC
patterns perturbing mechanism are implemented using a
lower-complexity gradient approach, Fast Gradient Sign
Method (FGSM). The adversarial perturbations needed to
misclassify the HPC trace are calculated using the cost
function of the neural network. With 6 being hyperparameters
of neural network, x is input HPC trace to the model and y as
output, cost function L(9, x, y) is defined as:

X9 — + € sign(A,L(@O, x,y)) ©

where € is a scaling constant ranging between 0.0 to 1.0 and
is used to limit the perturbation to a very small value. The
LLC load misses and branch misses are the most significant
micro-architectural events of malicious applications [163].
Malicious circuits, or hardware Trojans, can be inserted into
circuits producing logically equivalent results. Modifications
in the manufacturing stage are more tedious than in the
design stage, as few changes in a hardware description
language (HDL) are enough to embed hardware Trojans into
the circuit. A trigger circuit allows the payload circuit to
trigger malicious behaviour, such as information leakage and
degrading performance, after satisfying the trigger condition.

Nozawa et al. [158] proposed an architecture to develop the
adversarial hardware Trojan using Trojan-net Concealment
Degree (TCD) and Modification Evaluating Value (MEV).
Feature mapping issues, like in all other adversarial attacks
in Windows, Android and PDF, are also prevalent in
hardware Trojan. Hardware circuits are represented in a
graph structure, and modifications in feature space do not
guarantee the transfer back of modification to the graph
structure. Two stages in the designing period are known for
adversarial attacks. The first is the RTL (Register-Transfer
Level) description design step, and the second is after logic

451

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

TABLE 9. Summary of hardware based malware adversarial.

Paper/Year | Target Data Feature Vectors Approach
Model Collection
Khasawneh Logistic Dynamic o Instructions Feature e Reverse engineering to create surrogate model of HMD
et al. 2017 | Regression traces e Memory address pat- | ¢ Dynamically instruction insertion into malware execution through
[157] and neural | collected terns Dynamic Control Flow Graph
network using Pin in- | e Architectural Events e Weighted injection strategy with insertion instruction selection
based strumentation proportional to negative weight
detectors tool
Dinakarrao Logistic Captured using | ¢ LLC load misses, | e Reverse engineering of Black-box HMD
et al. 2019 | Regression Hardware branch instructions, | e« HPC patterns perturbation mechanism determined using FGSM
[158] and neural | Performance branch misses and | e Perturbation calculated using neural network
network Counters executed instructions o Adversarial generators running as separate thread to avoid interfer-
based (HPC) ence with original source code
detectors
Nozawaetal. | Neural Structural fea- | e Gate level netlist e Hardware circuits represented in graph structure and converted to
2021 [159] network tures analysis feature space
architecture o During design step or after logic synthesis
o Trojan-net concealment degree to prevent from detection

Target Model: Defense model under adversarial attack, Data Collection: Feature value collection process, Feature Vectors: Types of features considered,
Approach: Process of crafting adversarial

synthesis. The authors take the assumption of the Trojan
detector using neural network architecture and the availability
of raw output values from the detector to train the adversarial
model.

E. LINUX MALWARE ADVERSARIAL

Distributed edge computing has increased the use of IoT
devices. With many devices using Linux systems, robust mal-
ware detection is paramount. Both deep learning networks
and Control Flow Graph (CFG) based malware detectors in
IoT devices are found to be vulnerable against adversarial
samples [164]. In off-the-shelf adversarial attacks, authors
examined different well-known adversarial algorithms based
on feature extraction. Generic adversarial algorithms are
successful in adversarial generation with a high evasion
rate but are limited in applying practical changes to feature
space. In response to these challenges, adversarial based on
a control flow graph has been proposed [164]. Programs
are structurally analyzed using vertices and edges with the
help of CFG. The graph embedding and augmentation (GEA)
approach combines the original graph with the target graph,
producing misclassification while preserving the original
program’s functionality. GNU compiler collection command
compiles in a way that only functionality related to the
original sample is executed. Linux-based malware binaries
easily evade IoT malware detection using different graph
algorithmic constructs. Our literature search found minimal
works carried out as adversarial malware attacks in the Linux
domain and also found that Linux and Android file systems
are used interchangeably.

VI. CHALLENGES AND FUTURE DIRECTIONS
Following the introduction of evasion attacks against deep
learning by Szegedy et al. [19], the research community is

452

concerned about its impact in different domains. To con-
tribute towards the literature, we conducted comprehensive
research on various adversarial evasion attacks carried out
against the malware detection domain. Although our survey
highlights several successful adversarial attacks crafted
against anti-malware engines, novel attacks are still evolving.
In this section, we will discuss potential research open
challenges and future direction as the adversarial approaches
in malware analysis domain become more prevalent. Our
intention is in no way to overlook or understate the
contributions of existing adversarial attack researchers in the
malware domain.

A. REALISTIC (PRACTICAL) ATTACKS

Most of the existing adversarial attacks in the survey are
carried out using white-box approaches. White-box approach
is an unrealistic scenario in itself as it is unlikely that
any ML-based anti-malware engine will reveal information
such as algorithms used, gradients of the model and
hyper-parameters used to fine-tune the model. Getting this
information about a target model provides a ‘superpower’
to attackers as they can camouflage the data in any way
they want. Few of the existing black-box attacks also depend
on the performance of models provided in numeric form.
In addition, most of the works are centred on static malware
detection. Modern industrial malware detection engines
merge both static and dynamic detection techniques. Further,
the attacker rarely gets the privilege to work with data at
rest. There have been very few successful attempts to craft
adversarial examples against data in motion [165], [166]. The
malware domain can have data that is moving at a very high
pace and may require performing an attack on data in motion.
Adversarial attacks are not always swift enough to work with
data moving across network channels. So, more adversarial

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

attacks are to be experimented with systems deployed with
both static and dynamic detection as well as against data at
motion.

B. PERTURBATION INSERTION SPACE

Smart perturbation insertion plays a key role in the success
of adversarial attacks. Initial adversarial evasion attacks
on malware began by placing perturbations at the end
of the malware file [83]. Most of the existing attack
approaches are concentrated on additive adversarial perturba-
tion. Demetrio et al. [27] later discovered that perturbations
embedded at header sections of files resulted in effective
adversarial attacks compared to perturbations appended at
the end. Suciu et al. [28] further investigated the possibility
of inserting perturbations in slack regions of file which are
left behind by the compilers. These experiments provide
inconclusive information about suitable insertion space for
perturbation. Hence, further research is needed to determine
optimal locations for perturbation that are more effective as
well as undetected.

C. ENHANCING EFFICIENCY

Adversarial efficiency can be defined in terms of different
parameters. One of the efficiency criteria is the length of
the payload to be generated/injected. The significance of the
inserted payload determines the efficiency of perturbation.
One way to insert efficient features is to first decipher
the importance of each feature in the decision-making of
the machine learning model. Despite the gradient helping
attackers to generate perturbation in the right direction,
efficiency may be limited due to uncountable iterations to
reach the adversarial goal. Applying small perturbations iter-
atively results in high-quality adversarial evasion. However,
these approaches will require an immense amount of time,
making it impossible for real-time operation. To challenge
this limitation approaches like the Fast Gradient Sign Method
are proposed, which produce perturbations at a very high pace
but are less effective and have a high chance of being detected.
Hence, research is needed to ensure that efficiency is looked
at both in terms of quantity and quality of noise generated
to produce adversarial evasion. In addition, the trade-off
between performance and computational complexity should
be analysed to evaluate the worth of performing adversarial
attacks [167].

D. MAPPING SPACE CHALLENGE

Mapping between problem space and feature space is
performed by an embedding layer present in between them.
The features in problem space can be of any form, like
n-grams, API names or other non-numeric parameters, which
can not be directly processed by machine learning models.
This causes the problem space vectors to be converted into
feature space which are some form of numeric values. The
embedding layer, however, is an approximation mapping
table between features in problem space and feature space.

VOLUME 13, 2025

Hence, there is no exact mapping between problem spaces
and feature space, which results in approximate mapping,
leading to a slightly altered feature space than the original
problem space. After adversarial examples are crafted on
malware files, mapping features back to problem space also
loses a few crafted perturbations due to a lack of absolute
mapping. Therefore, the challenge of defining adversarial
space and efficiently searching elements approaching the best
replacement has always been there in the adversarial domain.

E. AUTOMATED ATTACKS

All of the discussed adversarial attacks require manual
intervention at a few steps of the attack procedure. Human
intervention makes the process time-consuming and imprac-
tical in many cases. In white-box attacks, the loss function
of deep neural networks can be used to determine the
most influential features, and the corresponding features
can be automatically modified [44]. Current literature relies
on human efforts for feature extraction, mapping to adver-
sarial generation and functionality verification. Minimizing
human effort while moving towards automated adversarial
generation could be an interesting arena to work on in the
future [168]. Novel research is needed to fully automate the
adversarial attack ecosystem.

F. EXPLAINABLE ADVERSARIAL

Adversarial vulnerabilities have been considered unseen
spots of machine learning models but current research
work fails to assert concrete reasoning behind these unseen
spots. Having no consensus behind such reasoning leaves
explaining the existence of an adversarial example in an
open research domain. Goodfellow et al. [22] first attributed
vulnerability to the linear behaviour of the model in high
dimensional space. However, there has been research that
contradicts the accountability of adversarial behavior solely
to the linearity of the model as highly non-linear models are
also evaded successfully [169]. Explaining the adversarial
phenomenon both in terms of models’ functionality and
features’ contribution can pave the path for more robust
adversarial attacks. Features can be assigned appropriate
weights based on their contribution to alleviating the
adversarial effect in the model. With the current state of the
literature, explainable adversarial is still at an immature stage
and requires concrete efforts from the community.

G. TRANSFERABLE ATTACKS

Transferability refers to the generalization property of the
attack methods. A machine learning model with transfer-
ability property, trained on one particular dataset, can be
generalized well for another dataset as well. Transferability
is a common property for evasion attacks and is extensively
exploited by black-box attacks. Untargeted attacks are found
to be more transferable than targeted ones due to their
generality [168]. Transferability can also take three different
forms such as the same architecture with different data,

453

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

different architecture with the same application and different
architecture with different data [32]. Although some studies
have already been carried out on transferability, there is no
universally accepted postulation. The ability to use the same
data, model or algorithm to attack all available targets should
be one of the goals of future research on adversarial attacks.

H. ATTACKING ADVERSARIAL DEFENSE

The influx of research on the adversarial domain during
the last few years demonstrates the extent and importance
of work in performing adversarial attacks. The profound
activity has not been limited to the attack side only, but
considering the threat posed to the entire machine learning
family, researchers have been equally active on the defensive
side as well. Performing adversarial attacks is turning out to
be harder than ever, as many systems are designed robustly
with adversarial defence in mind. Defensive approaches like
adversarial training [170], defensive distillation [171] are
proposed to stop adversarial attacks. Some recent techniques
are hiding the gradients of the target model [42], which,
if carried out successfully, can completely nullify the threat of
gradient-based adversarial attacks. Hence, future adversarial
attacks are required not only to bypass machine learning
detection but also to overcome adversarial defences.

I. FUNCTIONALITY VERIFICATION

During adversarial evasion attacks, the modifications carried
out in a malware file should not alter the functionality of the
malware. The contents in the executable file could be very
sensitive, and modification of a single byte can completely
change the functionality of malware or even break the file.
Most of the adversarial attacks have constrained themselves
in perturbation type, volume and insertion techniques to
preserve the functionality of the executable. Despite such
gravity, most adversarial attacks can still not preserve the
functionality of modified files. Moreover, limited mech-
anisms exist to verify the functionality of malware after
perturbing the file. One of the available approaches is
to run the malware file in an isolated environment like
Cuckoo Sandbox [172]. However, running every individual
malware in a sandbox is inefficient and unrealistic. Therefore,
further research should be directed to develop tools that
can automatically and efficiently verify the functionality of
malware post perturbations.

J. BENIGN FILES ATTACK

Adversarial attacks are performed in malware files by
inserting some non-malicious contents that do not tamper
with any functionality other than classification decisions.
Modifying malware files slowly has been a mainstream
approach for adversarial. However, no limited or no existing
research has studied the possibility of inserting malicious
content into a benign file. This approach works in a reverse
way than the established adversarial approaches. Inserting
and hiding malicious payloads at different locations of files

454

without affecting the classification decision is also a future
research topic in adversarial and requires attention.

K. TARGETING UNEXPLORED ALGORITHMS

Most of the machine learning algorithms have already been
victimized by adversarial attackers, including sophisticated
deep neural networks. However, there are some deep neural
networks that haven’t yet been compromised by adversarial
attackers such as Generative Adversarial Networks (GANS),
Deep Reinforcement learning (DRL) and Variational Auto-
Encoders (VAEs) [44]. These algorithms are in the develop-
ment stage, which has capped the adversarial attempts against
them to date. Differentiable neural computer [173] are only
attacked once [174]. These new sets of algorithms are yet to
be explored by adversarial attackers.

L. STANDARDIZING TESTBED AND METRICES

Adversarial attacks discussed in the survey are carried out
in lab environments, taking numerous assumptions that may
be unpragmatic for real-world challenges. Most of the works
have assumed unlimited access to machine learning model,
favourable datasets and weak classifiers to bolster their
results. The current literature lacks standardized datasets
and detection mechanisms to measure the exact performance
of adversarial attacks. Hence, the attack testbed should be
standardized to ensure the assessment uniformity across the
research community.

The issue is not limited to the test environment but also
evaluation metrics. More often than not, the performance
of the attacker is reflected in terms of evasion accuracy
inherited from machine learning models. However, accuracy
only provides a small fraction of the attacker’s performance
in the adversarial domain. To provide the overall quality
of attacks, metrics such as transferability, universality, and
imperceptability need to be studied [167]. The metrics
should be descriptive, fair, and complete to evaluate the
quality of attacks performed across different environments.
Some metrics should measure the degree of functionality
preservation while manipulating the files. Metrics can also be
designed to determine the sensitivity of file structure, helping
attackers determine the level of cautiousness required during
modification. These complete and fair metrics will not only
help to understand and compare the adversarial quality but
also enhance the performance of attacks.

M. ADVERSARIAL DEFENSE

The growth in adversarial attacks and novel approaches
will also require developing advanced defense mechanisms.
Although our survey is focused on adversarial evasion
attacks, we believe it is important to briefly highlight future
defence directions to present a comprehensive review paper.
Among several defense techniques proposed, defensive
distillation [58] and adversarial training [175], [176] are
found to be the most effective. Collection of adversarial
samples in large amounts to perform adversarial training

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

is a tedious task as neural networks require a massive
volume of adversarial data [177]. An adversarial generation
approach was proposed by Goodfellow et al. [112]; however,
it is still very far away from being efficient and accurate
enough to perform robust adversarial training. In addition,
many defensive approaches that have been tested in an
image domain [178], [179] are yet to be introduced for
defence in malware adversarial domains. Recent research
using robust machine learning architectures like Generative
Adversarial Networks (GANs) [180] for defending against
adversarial attacks requires more exploration to thwart or
detect sophisticated evasion attacks. Overall, future research
works on adversarial malware should be directed to build
more robust, efficient, generalized and reliable defence
mechanisms that can protect malware detection models
against adversarial attacks.

VIl. CONCLUSION

Machine learning and Al solutions are increasingly playing
an important role in the cyber security domain. However,
these data-driven systems can be easily manipulated, misled
and evaded, which can have serious implications. Recent
surges and research in adversarial attacks highlight the
vulnerability of ML models, making them ineffective against
even minor perturbations. In this paper, we provide a
comprehensive survey of recent work that focuses on
adversarial evasion attacks in the malware analysis domain.
We have summarized the state-of-art adversarial attacks
carried out against anti-malware engines in different file
domains. The survey highlights the limitations of ML
architectures against minute perturbations in the form of
adversarial attacks. We taxonomize the adversarial evasion
world of malware based on the attack domain and the
approach taken to realize such attacks. The survey briefly
discusses approaches taken by researchers, comparing them
with other concomitant works. We conclude the survey
by highlighting current challenges, open issues and future
research directions in adversarial malware analysis. This
work will provide a definitive guide to researchers and the
community to understand the current scenarios of adversarial
malware evasion attacks, prompting unexplored research
territories in this highly dynamic and evolving domain.

REFERENCES

[1] M. Abdelsalam, R. Krishnan, Y. Huang, and R. Sandhu, ‘“Malware
detection in cloud infrastructures using convolutional neural networks,”
in Proc. IEEE 11th Int. Conf. Cloud Comput. (CLOUD), Jul. 2018,
pp. 162-169.

[2] A. McDole, M. Gupta, M. Abdelsalam, S. Mittal, and M. Alazab,
“Deep learning techniques for behavioral malware analysis in cloud
laaS,” in Malware Analysis Using Artificial Intelligence and Deep
Learning. Cham, Switzerland: Springer, 2021, pp. 269-285.

[3] A.McDole, M. Abdelsalam, M. Gupta, and S. Mittal, “Analyzing CNN
based behavioural malware detection techniques on cloud IaaS,” in
Proc. Int. Conf. Cloud Comput. Cham, Switzerland: Springer, Jan. 2020,
pp. 64-79.

[4] J. C. Kimmel, A. D. Mcdole, M. Abdelsalam, M. Gupta, and
R. Sandhu, “Recurrent neural networks based online behavioural
malware detection techniques for cloud infrastructure,” IEEE Access,
vol. 9, pp. 68066-68080, 2021.

VOLUME 13, 2025

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

J. C. Kimmell, M. Abdelsalam, and M. Gupta, “Analyzing machine learn-
ing approaches for online malware detection in cloud,” in Proc. [EEE
Int. Conf. Smart Comput. (SMARTCOMP), Aug. 2021, pp. 189-196.

T. S. Guzella and W. M. Caminhas, “A review of machine learning
approaches to spam filtering,” Expert Syst. Appl., vol. 36, no. 7,
pp. 10206-10222, Sep. 2009.

J. O. Awoyemi, A. O. Adetunmbi, and S. A. Oluwadare, ‘“Credit
card fraud detection using machine learning techniques: A comparative
analysis,” in Proc. Int. Conf. Comput. Netw. Informat. (ICCNI),
Oct. 2017, pp. 1-9.

A. Dhakal, C. McKay, J. J. Tanner, and J. Cheng, “Artificial intelligence
in the prediction of protein-ligand interactions: Recent advances
and future directions,” Briefings Bioinf., vol. 23, no. 1, Jan. 2022,
Art. no. bbab476.

M. Gupta, F. Patwa, and R. Sandhu, “POSTER: Access control model
for the Hadoop ecosystem,” in Proc. 22nd ACM Symp. Access Control
Models Technol., Jun. 2017, pp. 125-127.

M. Gupta and R. Sandhu, “Towards activity-centric access control for
smart collaborative ecosystems,” in Proc. 26th ACM Symp. Access
Control Models Technol., Jun. 2021, pp. 155-164.

J.-Y. Kim, S.-J. Bu, and S.-B. Cho, “Zero-day malware detection using
transferred generative adversarial networks based on deep autoencoders,”
Inf. Sci., vols. 460-461, pp. 83-102, Sep. 2018.

G. Phillips. (Aug. 2018). These 4 Antivirus Tools Are Using Al
to Protect Your System. [Online]. Available: https://www.makeuseof.
com/tag/artificial-intelligence-antivirus-tools/

S. Morrison. (May 2021). How a Major Oil Pipeline Got Held
for Ransom. [Online]. Available: https://www.vox.com/recode/
22428774/ransomeware-pipeline-colonial-darkside-gas-prices

J. Crawley. (2021). Electronics Retailer MediaMarkt Hit by Ransomware
Demand for $50M Bitcoin Payment: Report. [Online]. Available:
https://www.yahoo.com/lifestyle/electronics-retailer-mediamarkt-hit-
ransomware-151038565.html

L. Huang, A. D. Joseph, B. Nelson, B. I. P. Rubinstein, and
J. D. Tygar, “Adversarial machine learning,” in Proc. 4th ACM Workshop
Secur. Artif. Intell., Oct. 2011, pp. 43-58.

A. Shafahi, W. R. Huang, M. Najibi, O. Suciu, C. Studer, T. Dumitras,
and T. Goldstein, ““Poison frogs! Targeted clean-label poisoning attacks
on neural networks,” 2018, arXiv:1804.00792.

X. Liu, S. Si, X. Zhu, Y. Li, and C.-J. Hsieh, “A unified framework for
data poisoning attack to graph-based semi-supervised learning,” 2019,
arXiv:1910.14147.

K. Aryal, M. Gupta, and M. Abdelsalam, “Analysis of label-flip
poisoning attack on machine learning based malware detector,” in
Proc. IEEE Int. Conf. Big Data (Big Data), Dec. 2022, pp. 4236-4245.
C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfellow,
and R. Fergus, “Intriguing properties of neural networks,” 2013,
arXiv:1312.6199.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 1-9.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei,
“ImageNet: A large-scale hierarchical image database,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 248-255.

1. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” 2014, arXiv:1412.6572.

A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” 2016, arXiv:1607.02533.

T. Huddleston Jr., (Apr. 2019). These Chinese Hackers Tricked
Tesla’s Autopilot Into Suddenly Switching Lanes. [Online]. Avail-
able: https://www.cnbc.com/2019/04/03/chinese-hackers-tricked-teslas-
autopilot-into-switching-lanes.html

H. S. Anderson, A. Kharkar, B. Filar, and P. Roth, “Evading machine
learning malware detection,” in Proc. Black Hat, 2017, pp. 1-6.

B. Kolosnjaji, A. Demontis, B. Biggio, D. Maiorca, G. Giacinto,
C. Eckert, and F. Roli, “Adversarial malware binaries: Evading deep
learning for malware detection in executables,” in Proc. 26th Eur. Signal
Process. Conf. (EUSIPCO), Sep. 2018, pp. 533-537.

L. Demetrio, B. Biggio, G. Lagorio, F. Roli, and A. Armando,
“Explaining vulnerabilities of deep learning to adversarial malware
binaries,” 2019, arXiv:1901.03583.

455

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

[28]

[29]

[30]

[31]

[32]

[33]

[34]
[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[40]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

456

O. Suciu, S. E. Coull, and J. Johns, “Exploring adversarial examples
in malware detection,” in Proc. IEEE Secur. Privacy Workshops (SPW),
May 2019, pp. 8-14.

M. Barreno, B. Nelson, A. D. Joseph, and J. D. Tygar, “The security of
machine learning,” Mach. Learn., vol. 81, no. 2, pp. 121-148, May 2010.
J. Gardiner and S. Nagaraja, “On the security of machine learning in
malware C&C detection: A survey,” ACM Comput. Surv., vol. 49, no. 3,
pp. 1-39, 2016.

A. Kumar and S. Mehta, “A survey on resilient machine learning,” 2017,
arXiv:1707.03184.

X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Trans. Neural Netw. Learn. Syst.,
vol. 30, no. 9, pp. 2805-2824, Sep. 2019.

A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and
D. Mukhopadhyay, ‘“Adversarial attacks and defences: A survey,”
2018, arXiv:1810.00069.

N. Akhtar and A. Mian, “Threat of adversarial attacks on deep learning in
computer vision: A survey,” IEEE Access, vol. 6, pp. 14410-14430, 2018.
V. Duddu, “A survey of adversarial machine learning in cyber warfare,”
Defence Sci. J., vol. 68, no. 4, pp. 356-366, Jun. 2018.

G. Li, P. Zhu, J. Li, Z. Yang, N. Cao, and Z. Chen, ‘“‘Security matters:
A survey on adversarial machine learning,” 2018, arXiv:1810.07339.

Q. Liu, P. Li, W. Zhao, W. Cai, S. Yu, and V. C. M. Leung, “A survey
on security threats and defensive techniques of machine learning: A data
driven view,” IEEE Access, vol. 6, pp. 12103-12117, 2018.

B. Biggio and F. Roli, “Wild patterns: Ten years after the rise of
adversarial machine learning,” Pattern Recognit., vol. 84, pp. 317-331,
Dec. 2018, doi: 10.1016/j.patcog.2018.07.023.

L. Sun, M. Tan, and Z. Zhou, “A survey of practical adversarial example
attacks,” Cybersecurity, vol. 1, no. 1, pp. 1-9, Dec. 2018.

N. Pitropakis, E. Panaousis, T. Giannetsos, E. Anastasiadis, and
G. Loukas, “A taxonomy and survey of attacks against machine
learning,” Comput. Sci. Rev., vol. 34, Nov. 2019, Art. no. 100199.

X. Wang, J. Li, X. Kuang, Y.-A. Tan, and J. Li, ““The security of machine
learning in an adversarial setting: A survey,” J. Parallel Distrib. Comput.,
vol. 130, pp. 12-23, Aug. 2019.

S. Qiu, Q. Liu, S. Zhou, and C. Wu, “Review of artificial intelligence
adversarial attack and defense technologies,” Appl. Sci., vol. 9, no. 5,
p- 909, Mar. 2019.

H. Xu, Y. Ma, H.-C. Liu, D. Deb, H. Liu, J.-L. Tang, and A. K. Jain,
“Adversarial attacks and defenses in images, graphs and text: A review,”
Int. J. Autom. Comput., vol. 17, no. 2, pp. 151-178, Apr. 2020.

W. E. Zhang, Q. Z. Sheng, A. Alhazmi, and C. Li, “Adversarial attacks
on deep-learning models in natural language processing: A survey,” ACM
Trans. Intell. Syst. Technol., vol. 11, no. 3, pp. 1-41, Jun. 2020.

N. Martins, J. M. Cruz, T. Cruz, and P. H. Abreu, “Adversarial machine
learning applied to intrusion and malware scenarios: A systematic
review,” IEEE Access, vol. 8, pp. 35403-35419, 2020.

I. Moisejevs, “Adversarial attacks and defenses in malware classification:
A survey,” Int. J. Artif. Intell. Expert Syst., vol. 8, 2019.

O. Ibitoye, R. Abou-Khamis, M. E. Shehaby, A. Matrawy, and
M. O. Shafiq, “The threat of adversarial attacks on machine learning in
network security—A survey,” 2019, arXiv:1911.02621.

D. Li, Q. Li, Y. Ye, and S. Xu, “Arms race in adversarial malware
detection: A survey,” ACM Comput. Surv., vol. 55, no. 1, pp. 1-35,
Jan. 2023.

X. Ling, L. Wu, J. Zhang, Z. Qu, W. Deng, X. Chen, Y. Qian, C. Wu,
S. Ji, T. Luo, J. Wu, and Y. Wu, “Adversarial attacks against windows
PE malware detection: A survey of the state-of-the-art,” Comput. Secur.,
vol. 128, May 2023, Art. no. 103134,

K. Ren, T. Zheng, Z. Qin, and X. Liu, “Adversarial attacks and defenses
in deep learning,” Engineering, vol. 6, no. 3, pp. 346-360, Mar. 2020.
W. Hu and Y. Tan, “Black-box attacks against RNN based malware
detection algorithms,” in Proc. 32nd AAAI Conf. Artif. Intell. Workshops,
Jun. 2018, pp. 1-7.

B. S. Vivek, K. R. Mopuri, and R. V. Babu, “Gray-box adversarial
training,” in Proc. Eur. Conf. Comput. Vis. (ECCV), Aug. 2018,
pp. 203-218.

B. Biggio, G. Fumera, and F. Roli, “Security evaluation of pattern
classifiers under attack,” IEEE Trans. Knowl. Data Eng., vol. 26, no. 4,
pp- 984-996, Apr. 2014, doi: 10.1109/TKDE.2013.57.

Y. Wang and K. Chaudhuri, “Data poisoning attacks against online
learning,” 2018, arXiv:1808.08994.

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

X. Chen, C. Liu, B. Li, K. Lu, and D. Song, ‘“Targeted backdoor attacks on
deep learning systems using data poisoning,” 2017, arXiv:1712.05526.
N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Proc. IEEE Eur. Symp. Secur. Privacy (EuroS&P), Mar. 2016,
pp. 372-387.

N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in Proc. IEEE Symp. Secur. Privacy (SP), May 2017,
pp. 39-57.

N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, ““Distillation as
a defense to adversarial perturbations against deep neural networks,” in
Proc. IEEE Symp. Secur. Privacy (SP), May 2016, pp. 582-597.

S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, “DeepFool: A
simple and accurate method to fool deep neural networks,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2574-2582.
P-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proc. 10th ACM Workshop
Artif. Intell. Secur., Nov. 2017, pp. 15-26.

J. Su, D. V. Vargas, and K. Sakurai, “One pixel attack for fooling
deep neural networks,” [EEE Trans. Evol. Comput., vol. 23, no. 5,
pp. 828-841, Oct. 2019.

P. Civicioglu and E. Besdok, “A conceptual comparison of the cuckoo-
search, particle swarm optimization, differential evolution and artificial
bee colony algorithms,” Artif. Intell. Rev., vol. 39, no. 4, pp. 315-346,
Apr. 2013.

S.-M. Moosavi-Dezfooli, A. Fawzi, O. Fawzi, and P. Frossard, “Universal
adversarial perturbations,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jul. 2017, pp. 1765-1773.

F. Croce and M. Hein, “Reliable evaluation of adversarial
robustness with an ensemble of diverse parameter-free attacks,” in
Proc. Int. Conf. Mach. Learn., Jan. 2020, pp. 2206-2216.

W. Brendel, J. Rauber, and M. Bethge, “Decision-based adversarial
attacks: Reliable attacks against black-box machine learning models,”
2017, arXiv:1712.04248.

M. Pietrek. (2019). Inside Windows: Win32 Portable Executable File
Format in Detail. [Online]. Available: https://docs.microsoft.com/en-
us/archive/msdn-magazine/2002/february/inside-windows-win32-
portable-executable-file-format-in-detail

J. Plachy. (2018). Portable Executable File Format. [Online]. Available:
https://blog.kowalczyk.info/articles/pefileformat.html

(2007). Pe File Structure. [Online]. Available: https://ivanlefOu.fr/repo/
madchat/vxdevl/papers/winsys/pefile/pefile.htm

F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet,
“Deceiving end-to-end deep learning malware detectors using adversarial
examples,” 2018, arXiv:1802.04528.

J. Yuste, E. G. Pardo, and J. Tapiador, ““Optimization of code caves in
malware binaries to evade machine learning detectors,” Comput. Secur.,
vol. 116, May 2022, Art. no. 102643.

K. Aryal, M. Gupta, M. Abdelsalam, and M. Saleh, “Intra-section code
cave injection for adversarial evasion attacks on windows PE malware
file,” 2024, arXiv:2403.06428.

H. Li, S. Zhou, W. Yuan, J. Li, and H. Leung, “Adversarial-example
attacks toward Android malware detection system,” IEEE Syst. J., vol. 14,
no. 1, pp. 653-656, Mar. 2020.

I. Rosenberg, A. Shabtai, L. Rokach, and Y. Elovici, “Generic black-
box end-to-end attack against state of the art API call based malware
classifiers,” in Proc. Int. Symp. Res. Attacks, Intrusions, Defenses. Cham,
Switzerland: Springer, Jan. 2018, pp. 490-510.

M. Shahpasand, L. Hamey, D. Vatsalan, and M. Xue, “Adversarial
attacks on mobile malware detection,” in Proc. IEEE 1st Int. Workshop
Artif. Intell. Mobile (AI4Mobile), Feb. 2019, pp. 17-20.

F. Pierazzi, F. Pendlebury, J. Cortellazzi, and L. Cavallaro, “Intriguing
properties of adversarial ML attacks in the problem space,” in Proc. IEEE
Symp. Secur. Privacy (SP), May 2020, pp. 1332-1349.

Android. (2022). App Manifest Overview : Android Developers.
[Online]. Available: https://developer.android.com/guide/topics/
manifest/manifest-intro

A. Asokan. (Sep. 2016). APK File Contents—In-Depth Explanation.
[Online]. Available: https://ajinasokan.com/posts/apk-file-postmortem/
W. Kalicinski. (May 2016). SmallerAPK, Part 1: Anatomy of an APK.
[Online]. Available: https://medium.com/androiddevelopers/smallerapk-
part-1-anatomy-of-an-apk-da83c25¢7003

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]
[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

B. Biggio, I. Corona, D. Maiorca, B. Nelson, N. Stndi¢, P. Laskov,
G. Giacinto, and F. Roli, “Evasion attacks against machine learning at
test time,” in Proc. Joint Eur. Conf. Mach. Learn. Knowl. Discovery
Databases. Cham, Switzerland: Springer, Jan. 2013, pp. 387-402.

S. Liu. (Jul. 2021). Desktop OS Market Share. [Online]. Avail-
able: https://www.statista.com/statistics/218089/global-market-share-of-
windows-7/

M. D. Boer. (2019). Al as a Target and Tool: An Attacker’s
Perspective on ML. [Online]. Available: https://www.gartner.com/en/
documents/3939991

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. K. Nicholas, “Malware detection by eating a whole EXE,” in
Proc. 32nd AAAI Conf. Artif. Intell. Workshops, 2018, pp. 1-9.

F. Kreuk, A. Barak, S. Aviv-Reuven, M. Baruch, B. Pinkas, and J. Keshet,
“Adversarial examples on discrete sequences for beating whole-binary
malware detection,” 2018, arXiv:1802.04528.

H. S. Anderson and P. Roth, “EMBER: An open dataset for training static
PE malware machine learning models,” 2018, arXiv:1804.04637.

B. Chen, Z. Ren, C. Yu, I. Hussain, and J. Liu, “Adversarial
examples for CNN-based malware detectors,” IEEE Access, vol. 7,
pp. 54360-54371, 2019.

Y. Jakhotiya, H. Patil, J. Rawlani, and S. Mane, “‘Adversarial attacks
on transformers-based malware detectors,” in Proc. NeurlPS ML
Saf. Workshop, Jan. 2022, pp. 1-12.

D. Zhan, Y. Duan, Y. Hu, W. Li, S. Guo, and Z. Pan, “MalPatch:
Evading DNN-based malware detection with adversarial patches,” IEEE
Trans. Inf. Forensics Security, vol. 19, pp. 1183-1198, 2024.

M. Sundararajan, A. Taly, and Q. Yan, “Axiomatic attribution for deep
networks,” in Proc. Int. Conf. Mach. Learn., Jan. 2017, pp. 3319-3328.
M. Kozdk and M. Jurecek, “Combining generators of adversarial malware
examples to increase evasion rate,” 2023, arXiv:2304.07360.

W. Yang and F. Yin, “A multi-strategy adversarial attack method for deep
learning based malware detectors,” in Proc. 7th Int. Conf. Cryptography,
Secur. Privacy (CSP), Apr. 2023, pp. 66-70.

K. Li, F. Zhang, and W. Guo, “FGAM: Fast adversarial malware
generation method based on gradient sign,” 2023, arXiv:2305.12770.

D. Park, H. Khan, and B. Yener, “Generation & evaluation of
adversarial examples for malware obfuscation,” in Proc. 18th IEEE
Int. Conf. Mach. Learn. Appl. (ICMLA), Dec. 2019, pp. 1283-1290.

C. Szegedy, V. Vanhoucke, S. loffe, J. Shlens, and Z. Wojna, ““Rethinking
the inception architecture for computer vision,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit. (CVPR), Jun. 2016, pp. 2818-2826.

W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, “Automatic
generation of adversarial examples for interpreting malware classifiers,”
2020, arXiv:2003.03100.

P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, “Obfuscator-
LLVM—Software protection for the masses,” in Proc. IEEE/ACM Ist
Int. Workshop Softw. Protection, May 2015, pp. 3-9.

X. Meng and B. P. Miller, “Binary code is not easy,” in Proc. 25th
Int. Symp. Softw. Test. Anal., Jul. 2016, pp. 24-35.

H. S. Anderson, A. Kharkar, B. Filar, D. Evans, and P. Roth, “Learning
to evade static PE machine learning malware models via reinforcement
learning,” 2018, arXiv:1801.08917.

Z. Fang, J. Wang, B. Li, S. Wu, Y. Zhou, and H. Huang, “Evading anti-
malware engines with deep reinforcement learning,” IEEE Access, vol. 7,
pp. 48867-48879, 2019.

J. Chen, J. Jiang, R. Li, and Y. Dou, “Generating adversarial examples
for static PE malware detector based on deep reinforcement learning,”
J. Phys., Conf. Ser., vol. 1575, no. 1, Jun. 2020, Art. no. 012011.

Y. Fang, Y. Zeng, B. Li, L. Liu, and L. Zhang, “DeepDetectNet vs
RLAttackNet: An adversarial method to improve deep learning-based
static malware detection model,” PLoS ONE, vol. 15, no. 4, Apr. 2020,
Art. no. e0231626.

T. Quertier, B. Marais, S. Morucci, and B. Fournel, “MERLIN—Malware
evasion with reinforcement LearnINg,” 2022, arXiv:2203.12980.

W. Song, X. Li, S. Afroz, D. Garg, D. Kuznetsov, and H. Yin, “MAB-
Malware: A reinforcement learning framework for blackbox generation of
adversarial malware,” in Proc. ACM Asia Conf. Comput. Commun. Secur.,
2022, pp. 990-1003.

M. Rigaki and S. Garcia, “The power of MEME: Adversarial
malware creation with model-based reinforcement learning,” in
Proc. Eur. Symp. Res. Comput. Secur.. Cham, Switzerland: Springer,
Jan. 2023, pp. 44-64.

VOLUME 13, 2025

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

D.Zhan, Y. Zhang, L. Zhu, J. Chen, S. Xia, S. Guo, and Z. Pan, “Enhanc-
ing reinforcement learning based adversarial malware generation to evade
static detection,” Alexandria Eng. J., vol. 98, pp. 32-43, Jul. 2024.

W. Hu and Y. Tan, “Generating adversarial malware examples for black-
box attacks based on GAN,” 2017, arXiv:1702.05983.

M. Kawai, K. Ota, and M. Dong, “Improved MalGAN:
Avoiding malware detector by leaning cleanware features,” in
Proc. Int. Conf. Artif. Intell. Inf. Commun. (ICAIIC), Feb. 2019,
pp. 40-45.

R. L. Castro, C. Schmitt, and G. D. Rodosek, “Poster: Training GANs
to generate adversarial examples against malware classification,” in
Proc. IEEE Secur. Privacy, Jul. 2019, pp. 1-2.

J. Yuan, S. Zhou, L. Lin, F. Wang, and J. Cui, “Black-box adversarial
attacks against deep learning based malware binaries detection with
GAN,” in Proc. ECAI. Amsterdam, The Netherlands: I0OS Press,
Jan. 2020, pp. 2536-2542.

E. Zhu, J. Zhang, J. Yan, K. Chen, and C. Gao, “N-gram MalGAN:
Evading machine learning detection via feature N-gram,” Digit. Com-
mun. Netw., vol. 8, no. 4, pp. 485-491, Aug. 2022.

F. Zhong, X. Cheng, D. Yu, B. Gong, S. Song, and J. Yu, “MalFox:
Camouflaged adversarial malware example generation based on conv-
GANS against black-box detectors,” IEEE Trans. Comput., vol. 73, no. 4,
pp. 980-993, Apr. 2024.

D. Gibert, J. Planes, Q. Le, and G. Zizzo, “A wolf in sheep’s clothing:
Query-free evasion attacks against machine learning-based malware
detectors with generative adversarial networks,” in Proc. IEEE
Eur. Symp. Secur. Privacy Workshops (EuroS&PW), Jul. 2023,
pp. 415-426.

I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 27, 2014, pp. 1-11.

D. Devadiga, G. Jin, B. Potdar, H. Koo, A. Han, A. Shringi, A. Singh,
K. Chaudhari, and S. Kumar, “GLEAM: GAN and LLM for evasive
adversarial malware,” in Proc. 14th Int. Conf. Inf. Commun. Tech-
nol. Converg. (ICTC), Oct. 2023, pp. 53-58.

R. Pascanu, J. W. Stokes, H. Sanossian, M. Marinescu, and A. Thomas,
“Malware classification with recurrent networks,” in Proc. IEEE
Int. Conf. Acoust., Speech Signal Process. (ICASSP), Apr. 2015,
pp. 1916-1920.

N. Papernot, P. McDaniel, A. Swami, and R. Harang, “Crafting
adversarial input sequences for recurrent neural networks,” in Proc. IEEE
Mil. Commun. Conf. (MILCOM), Nov. 2016, pp. 49-54.

E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
Gumbel-Softmax,” 2016, arXiv:1611.01144.

I. Rosenberg, S. Meir, J. Berrebi, I. Gordon, G. Sicard, and E. O. David,
“Generating end-to-end adversarial examples for malware classifiers
using explainability,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2020, pp. 1-10.

K. Aryal, M. Gupta, M. Abdelsalam, and M. Saleh, “Explainabil-
ity guided adversarial evasion attacks on malware detectors,” 2024,
arXiv:2405.01728.

X. Liu, J. Zhang, Y. Lin, and H. Li, “ATMPA: Attacking machine
learning-based malware visualization detection methods via adversarial
examples,” in Proc. IEEE/ACM 27th Int. Symp. Quality Service (IWQoS),
Jun. 2019, pp. 1-10.

A. Khormali, A. Abusnaina, S. Chen, D. Nyang, and A. Mohaisen,
“COPYCAT: Practical adversarial attacks on visualization-based mal-
ware detection,” 2019, arXiv:1909.09735.

H. Benkraouda, J. Qian, H. Q. Tran, and B. Kaplan, “Attacks on
visualization-based malware detection: Balancing effectiveness
and executability,” in Proc. Int. Workshop Deployable

Mach. Learn. Secur. Defense. Cham, Switzerland: Springer, Jan. 2021,
pp. 107-131.

J. L. Hu, M. Ebrahimi, and H. Chen, *“Single-shot black-box adversarial
attacks against malware detectors: A causal language model approach,”
in Proc. IEEE Int. Conf. Intell. Secur. Informat. (ISI), Nov. 2021, pp. 1-6.
S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Miiller,
and W. Samek, “On pixel-wise explanations for non-linear classifier
decisions by layer-wise relevance propagation,” PLoS ONE, vol. 10,
no. 7, Jul. 2015, Art. no. e0130140.

A. Shrikumar, P Greenside, and A. Kundaje, ‘“Learning
important features through propagating activation differences,” in
Proc. Int. Conf. Mach. Learn., Jan. 2017, pp. 3145-3153.

457

IEEE Access

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

[125]

[126]

[127]

[128]

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

[147]

458

S. M. Lundberg and S.-1. Lee, “A unified approach to interpreting model
predictions,” in Proc. Int. Conf. Neural Inf. Process. Syst., Jan. 2017,
pp. 4768-47717.

K. S. Han, J. H. Lim, B. Kang, and E. G. Im, “Malware analysis using
visualized images and entropy graphs,” Int. J. Inf. Secur., vol. 14, no. 1,
pp. 1-14, Feb. 2015.

K. Kancherla and S. Mukkamala, “Image visualization based malware
detection,” in Proc. IEEE Symp. Comput. Intell. Cyber Secur. (CICS),
Apr. 2013, pp. 40-44.

Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Lj,
“Boosting adversarial attacks with momentum,” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit., Jun. 2018, pp. 9185-9193.

A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” 2017,
arXiv:1706.06083.

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and
P. McDaniel, “Adversarial examples for malware detection,” in
Proc. Eur. Symp. Res. Comput. Secur. Cham, Switzerland: Springer,
2017, pp. 62-79.

W. Yang, D. Kong, T. Xie, and C. A. Gunter, “Malware detection
in adversarial settings: Exploiting feature evolutions and confusions
in Android apps,” in Proc. 33rd Annu. Comput. Secur. Appl. Conf.,
Dec. 2017, pp. 288-302.

X. Liu, X. Du, X. Zhang, Q. Zhu, H. Wang, and M. Guizani, “Adversarial
samples on Android malware detection systems for IoT systems,”
Sensors, vol. 19, no. 4, p. 974, Feb. 2019.

H. Bostani and V. Moonsamy, ‘“EvadeDroid: A practical evasion
attack on machine learning for black-box Android malware detection,”
Comput. Secur., vol. 139, Apr. 2024, Art. no. 103676.

D. Arp, M. Spreitzenbarth, M. Hiibner, H. Gascon, and K. Rieck,
“DREBIN: Effective and explainable detection of Android malware in
your pocket,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2014, pp. 1-15.
A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be
more secure! A case study on Android malware detection,” IEEE
Trans. Dependable Secure Comput., vol. 16, no. 4, pp. 711-724, Jul. 2019.
E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross,
and G. Stringhini, ““MaMaDroid: Detecting Android malware by building
Markov chains of behavioral models,” 2016, arXiv:1612.04433.

K. Allix, T. F. Bissyandé, J. Klein, and Y. L. Traon, “AndroZoo:
Collecting millions of Android apps for the research community,” in
Proc. IEEE/ACM 13th Work. Conf. Mining Softw. Repositories (MSR),
May 2016, pp. 468—471.

D. Curry. (Jun. 2022). Android Statistics (2021). [Online]. Available:
https://www.businessofapps.com/data/android-statistics/

K. Grosse, N. Papernot, P. Manoharan, M. Backes, and P. McDaniel,
“Adversarial perturbations against deep neural networks for malware
classification,” 2016, arXiv:1606.04435.

E. T. Barr, M. Harman, Y. Jia, A. Marginean, and J. Petke, “Automated
software transplantation,” in Proc. Int. Symp. Softw. Test. Anal., Jul. 2015,
pp. 257-269.

C. J. Bult, “Bioinformatics: A practical guide to the analysis of genes and
proteins,” Science, vol. 282, no. 5389, pp. 635-636, 1998.

A. Developers. (2022). Permissions on Android : Android Devel-
opers. [Online]. Available: https://developer.android.com/guide/topics/
permissions/

D. Maiorca, I. Corona, and G. Giacinto, “Looking at the bag is
not enough to find the bomb: An evasion of structural methods for
malicious PDF files detection,” in Proc. 8th ACM SIGSAC Symp. Inf.,
Comput. Commun. Secur., May 2013, pp. 119-130.

B. Biggio, I. Corona, B. Nelson, B. I. Rubinstein, D. Maiorca, G. Fumera,
G. Giacinto, and F. Roli, “Security evaluation of support vector
machines in adversarial environments,” in Support Vector Machines
Applications. Cham, Switzerland: Springer, 2014, pp. 105-153.

N. Srndic and P. Laskov, “Practical evasion of a learning-based classifier:
A case study,” in Proc. IEEE Symp. Secur. Privacy, May 2014,
pp. 197-211.

C. Carmony, M. Zhang, X. Hu, A. V. Bhaskar, and H. Yin, “Extract
me if you can: Abusing PDF parsers in malware detectors,” in
Proc. Netw. Distrib. Syst. Secur. Symp., 2016, pp. 1-16.

W. Xu, Y. Qi, and D. Evans, “Automatically evading classifiers:
A case study on PDF malware classifiers,” in Proc. Netw. Dis-
trib. Syst. Secur. Symp., 2016, pp. 1-17.

[148]

[149]

[150]

[151]

[152]
[153]

[154]

[155]

[156]

[157]

[158]

[159]

[160]

[161]

[162]

[163]

[164]

[165]

[166]

[167]

[168]

[169]

C. Smutz and A. Stavrou, “Malicious PDF detection using metadata and
structural features,” in Proc. 28th Annu. Comput. Secur. Appl. Conf.,
Dec. 2012, pp. 239-248.

N. Srndi¢ and P. Laskov, “Detection of malicious PDF files based
on hierarchical document structure,” in Proc. Annu. Netw. Dis-
trib. Syst. Secur. Symp., Jan. 2013, pp. 1-16.

P. Laskov and N. §rndic’, “Static detection of
JavaScript-bearing PDF documents,” in Proc.
Annu. Comput. Secur. Appl. Conf., Dec. 2011, pp. 373-382.

D. Maiorca, G. Giacinto, and I. Corona, ““A pattern recognition system for
malicious PDF files detection,” in Proc. Int. Workshop Mach. Learn. Data
Mining Pattern Recognit. Cham, Switzerland: Springer, Jan. 2012,
pp. 510-524.

J. M. Esparza, “PEEPDF-PDF analysis tool,” Tech. Rep., 2015.

P. Golland, ‘“Discriminative direction for kernel -classifiers,” in
Proc. Adv. Neural Inf. Process. Syst., vol. 14, 2001, pp. 1-9.

S. Jana and V. Shmatikov, “Abusing file processing in malware detectors
for fun andprofit,” in Proc. IEEE Symp. Secur. Privacy, May 2012,
pp. 80-94.

D. Liu, H. Wang, and A. Stavrou, “Detecting malicious Javascript in
PDF through document instrumentation,” in Proc. 44th Annu. IEEE/IFIP
Int. Conf. Dependable Syst. Netw., Jun. 2014, pp. 100-111.

K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev, and L. Yu,
“RHMD: Evasion-resilient hardware malware detectors,” in Proc. 50th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), Oct. 2017,
pp. 315-327.

S. M. P. Dinakarrao, S. Amberkar, S. Bhat, A. Dhavlle, H. Sayadi,
A. Sasan, H. Homayoun, and S. Rafatirad, “Adversarial attack on
microarchitectural events based malware detectors,” in Proc. 56th
ACM/IEEE Design Autom. Conf. (DAC), Jun. 2019, pp. 1-6.

K. Nozawa, K. Hasegawa, S. Hidano, S. Kiyomoto, K. Hashimoto,
and N. Togawa, “Generating adversarial examples for hardware-trojan
detection at gate-level netlists,” J. Inf. Process., vol. 29, pp. 236-246,
Jan. 2021.

Y. Vorobeychik and B. Li, “Optimal randomized classification in
adversarial settings,” in Proc. Int. Conf. Auto. Agents Multi-Agent Syst.,
May 2014, pp. 485-492.

K. Wang, J. J. Parekh, and S. J. Stolfo, “Anagram: A content anomaly
detector resistant to mimicry attack,” in Proc. Int. Workshop Recent
Adv. Intrusion Detection. Cham, Switzerland: Springer, Jan. 2006,
pp- 226-248.

M. S. Islam, K. N. Khasawneh, N. Abu-Ghazaleh, D. Ponomarev,
and L. Yu, “Efficient hardware malware detectors that are resilient to
adversarial evasion,” IEEE Trans. Comput., vol. 71, no. 11, pp. 2872—
2887, Nov. 2022.

C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace,
V. J. Reddi, and K. Hazelwood, “Pin: Building customized program
analysis tools with dynamic instrumentation,” ACM SIGPLAN Notices,
vol. 40, no. 6, pp. 190-200, Jun. 2005.

N. Patel, A. Sasan, and H. Homayoun, ‘“Analyzing hardware
based malware detectors,” in Proc. 54th ACM/EDAC/IEEE Design
Autom. Conf. (DAC), Jun. 2017, pp. 1-6.

A. Abusnaina, A. Khormali, H. Alasmary, J. Park, A. Anwar, and
A. Mohaisen, “Adversarial learning attacks on graph-based IoT malware
detection systems,” in Proc. IEEE 39th Int. Conf. Distrib. Com-
put. Syst. (ICDCS), Jul. 2019, pp. 1296-1305.

Y. Gong, B. Li, C. Poellabauer, and Y. Shi, “Real-time adversarial
attacks,” 2019, arXiv:1905.13399.

Y. Xie, C. Shi, Z. Li, J. Liu, Y. Chen, and B. Yuan, ‘‘Real-time, universal,
and robust adversarial attacks against speaker recognition systems,”
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2020, pp. 1738-1742.

I. Alsmadi, K. Ahmad, M. Nazzal, F. Alam, A. Al-Fuqaha, A. Khreishah,
and A. Algosaibi, “Adversarial attacks and defenses for social network
text processing applications: Techniques, challenges and future research
directions,” 2021, arXiv:2110.13980.

B. Liang, H. Li, M. Su, P. Bian, X. Li, and W. Shi, “Deep text
classification can be fooled,” 2017, arXiv:1704.08006.

H.Li, Y. Fan, F. Ganz, A. Yezzi, and P. Barnaghi, ‘“Verifying the causes of
adversarial examples,” in Proc. 25th Int. Conf. Pattern Recognit. (ICPR),
Jan. 2021, pp. 6750-6757.

malicious
27th

VOLUME 13, 2025

K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

IEEE Access

[170] A. Shafahi, M. Najibi, A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,
L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial training for free!”
2019, arXiv:1904.12843.

[171] N. Papernot and P. McDaniel, “Extending defensive distillation,” 2017,
arXiv:1705.05264.

[172] S. Jamalpur, Y. S. Navya, P. Raja, G. Tagore, and G. R. K. Rao,
“Dynamic malware analysis using cuckoo sandbox,” in Proc. 2nd
Int. Conf. Inventive Commun. Comput. Technol. (ICICCT), Apr. 2018,
pp. 1056-1060.

[173] G. Wayne and A. Graves. (2016). Differentiable Neural Computers.
[Online]. Available: https://deepmind.com/blog/article/differentiable-
neural-computers

[174] A. Chan, L. Ma, F. Juefei-Xu, X. Xie, Y. Liu, and Y. S. Ong,
“Metamorphic relation based adversarial attacks on differentiable neural
computer,” 2018, arXiv:1809.02444.

[175] F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and
P. McDaniel, “Ensemble adversarial training: Attacks and defenses,”
STAT, vol. 1050, p. 30, May 2017.

[176] A. Shafahi, M. Najibi, Z. Xu, J. W. T. Dickerson, L. S. Davis,
and T. Goldstein, “Universal adversarial training,” in Proc. AAAI
Conf. Artif. Intell., Apr. 2020, vol. 34, no. 4, pp. 5636-5643.

[177] Y. Jang, T. Zhao, S. Hong, and H. Lee, “Adversarial defense via
learning to generate diverse attacks,” in Proc. IEEE/CVF Int. Conf. Com-
put. Vis. (ICCV), Oct. 2019, pp. 2740-2749.

[178] F.Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “‘Defense against
adversarial attacks using high-level representation guided denoiser,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2018,
pp- 1778-1787.

[179] D. Meng and H. Chen, “MagNet: A two-pronged defense against adver-
sarial examples,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.,
Oct. 2017, pp. 1-8.

[180] P. Samangouei, M. Kabkab, and R. Chellappa, ‘‘Defense-GAN: Protect-
ing classifiers against adversarial attacks using generative models,” 2018,
arXiv:1805.06605.

KSHITIZ ARYAL (Graduate Student Member,
IEEE) received the B.S. degree in ECE from
Tribhuvan University, Nepal, and the M.S. degree
in computer science from Tennessee Technolog-
ical University, Cookeville, TN, USA, where he
is currently pursuing the Ph.D. degree with the
Department of Computer Science. He is also a
Graduate Research Assistant with the Department
of Computer Science, Tennessee Technological
University. His current research interests include
adversarial attacks/defense, malware analysis, Al security, security of Al,
explainable Al, and data science.

MAANAK GUPTA (Senior Member, IEEE)
received the B.Tech. degree in computer science
and engineering from India, the M.S. degree in
information systems from Northeastern Univer-
sity, Boston, and the M.S. and Ph.D. degrees in
computer science from The University of Texas
at San Antonio (UTSA). He was a Postdoctoral
Fellow with the Institute for Cyber Security (ICS),
UTSA. He is currently an Associate Professor in

; computer science with Tennessee Technological
University, Cookeville, TN, USA. He has worked on developing novel
security mechanisms, models, and architectures for next-generation smart
cars, intelligent transportation systems, and smart farming. His research has
been funded by U.S. National Science Foundation (NSF), NASA, and U.S.
Department of Defense (DoD), among others. His research interests include
security and privacy in cyberspace, focused on studying foundational aspects
of access control, malware analysis, Al and machine learning-assisted
cyber security, and their applications in technologies, including cyber-
physical systems, cloud computing, the IoT, and big data. He was awarded
the 2019 Computer Science Outstanding Doctoral Dissertation Research
Award from UT San Antonio.

VOLUME 13, 2025

- MAHMOUD ABDELSALAM (Member, IEEE)
received the B.Sc. degree from the Arab Academy
for Science and Technology and Maritime Trans-
portation (AASTMT), in 2013, and the M.Sc. and
Ph.D. degrees from the University of Texas at San
Antonio (UTSA), in 2017 and 2018, respectively.
He was a Postdoctoral Research Fellow with the
Institute for Cyber Security (ICS), UTSA, and an
Assistant Professor with the Department of Com-
puter Science, Manhattan College. He is currently

an Assistant Professor with the Department of Computer Science, North
Carolina A&T State University. His research interests include computer
systems security, anomaly and malware detection, cloud computing security
and monitoring, cyber-physical systems security, and applied machine
learning.

PRADIP KUNWAR (Graduate Student Member,
IEEE) received the B.Tech. degree in electronics
and communication from NIT Rourkela, India.
He is currently pursuing the Ph.D. degree in
computer science with Tennessee Technological
University, Cookeville, TN, USA. His current
research interests include Al-based malware anal-
ysis, malware generation, security of LLMs and
Al models, and explainable Al. He is interested
in researching the underlying vulnerabilities of AL
systems and making them more robust against adversarial attacks.

BHAVANI THURAISINGHAM (Fellow, IEEE)
was educated from the University of Bristol and
the University of Wales, U.K. She is currently a
Professor of computer science and the Director
of the Cyber Security Research Center, The
University of Texas at Dallas (UTD). Prior to
joining UTD, she was the Program Director for
three years at the National Science Foundation
(NSF), Arlington. She has also worked for the
Computer Industry, Minneapolis, MN, USA, for
more than five years and has served as an Adjunct Professor of computer
science and a member of the Graduate Faculty at the University of
Minnesota and later taught at Boston University. She has published more
than 300 research papers, including more than 90 journal articles, and is
the inventor of three patents. She is also the author of nine books on data
management, data mining, and data security. Her research interests include
information security and data management. She is an elected fellow of three
professional organizations, such as IEEE, American Association for the
Advancement of Science (AAAS), and the British Computer Society (BCS)
for her work in data security. She serves on the editorial board of numerous
journals, including ACM Transactions on Information and Systems Security
and IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING.

459

