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ABSTRACT Machine learning-based malware analysis approaches are widely researched and deployed in

critical infrastructures for detecting and classifying evasive and growing malware threats. However, minor

perturbations or ineffectual byte insertions can easily ‘fool’ these trained ML classifiers, making them

ineffective against these crafted and smart malicious software. This survey aims to provide an encyclopedic

overview of adversarial evasion attacks specifically targeting malware detection and classification systems,

standing apart from previous surveys by focusing exclusively and comprehensively on this unique application

domain. While significant strides have been made in adversarial research in other fields, the specific

challenges of adversarial malware remain under-explored due to the intricate nature and constraints of

the malware domain. Our survey addresses this gap by analyzing literature on adversarial evasion attacks

published between 2013 and 2024, making it one of the first to systematically focus on malware-specific

adversarial attacks in a detailed, self-contained manner. The paper will begin by introducing various

machine-learning techniques used to generate adversarial malware samples, including the structural nuances

of target files, which influence adversarial vulnerabilities. The work presents an in-depth threat model

specific to adversarial malware evasion attacks, describing the unique attack surfaces of malware detectors

and outlining adversarial goals tailored to the malware domain. We systematically analyze adversarial

generation algorithms from broader domains adapted to malware evasion attacks, proposing a taxonomy

of adversarial evasion attacks within malware detection based on target domains(Windows, Android and

PDF). The survey highlights real-world adversarial evasion attacks on machine learning-based anti-malware

engines under each taxonomical heading, demonstrating the evolution and refinement of these attack

strategies over time. Our survey outlines current limitations and practical challenges in executing adversarial

attacks against malware detectors in real-world environments. We identify open problems and propose future

research directions for developing more practical, robust, efficient, and generalized adversarial attacks on

ML-based malware classifiers.

INDEX TERMS Adversarial evasion attack, adversary modeling, security for AI, windows PE malware,

Android malware, PDF malware.

I. INTRODUCTION

Machine Learning (ML) has revolutionized the modern

world due to its ubiquity and generalization power over

The associate editor coordinating the review of this manuscript and

approving it for publication was Cong Pu .

the humongous volume of data. The transformation of

ML approaches from classical algorithms to modern deep

learning technologies is providing breakthroughs in state-

of-the-art research problems. Further, deep learning (DL)

has excelled in areas where traditional ML approaches

were infeasible (or unsuccessful) to apply. Needless to
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FIGURE 1. Example of adversarial evasion attack that drags test sample
from class A to B.

say, machine learning is increasingly embedded in our

daily life habits; connecting to people on social media,

ordering food and groceries from online stores, and listening

to music on Spotify are all examples of systems built

around recommendation engines powered by deep learning-

based models. Machine learning-based solutions not only

control our lifestyle, but it has also revolutionized cyber

security-critical operations in different domains, including

malware analysis [1], [2], [3], [4], [5], spam filtering [6],

fraud detection [7], medical analysis [8], access control [9],

[10], among others. These solutions exemplify ML’s versa-

tility in both enhancing user experience and strengthening

cybersecurity across diverse fields.

Malware analysis is one of the most critical fields in which

ML is employed significantly and increasingly relied upon.

Traditional malware detection methods focus on signature-

based approaches, maintaining a database of unique malware

identifiers to compare against signatures extracted from

suspicious files. However, with security researchers looking

for advanced detection techniques addressing sophisticated

zero-day and evasive malware, ML-based approaches have

become essential in advancing detection capabilities [11].

Most of the modern anti-malware engines, such as Windows

Defender, Avast, Deep Instinct D-Client and Cylance Smart

Antivirus, are powered by machine learning [12], making

them robust against emerging variants and polymorphic

malware. Despite the existence of numerous malware detec-

tion approaches, including ones that leverage ML, recent

ransomware attacks, like the Colonial Pipeline attack where

operators had to pay around $5 million for recovering a

5,500-mile long pipeline [13] and the MediaMarkt attack

worth an around $50M bitcoin payment [14], highlight the

vulnerabilities and limitations of current security approaches

and necessitates of more robust, real-time, adaptable and

autonomous AI-driven defense mechanisms.

The assumption of similar training and testing settings

in machine learning is overly simplified and often does

not hold true for real-world use cases where adversaries

deceive the ML models into performing wrong predictions

(i.e. adversarial attacks). These attacks manifest either as

data poisoning—altering the training data—or as test data

manipulation through evasion attacks [15]. Data poisoning

attacks [16], [17], [18] have been prevalent for some time

but are less scrutinized as access to training data by the

attackers is considered unlikely. In contrast, Adversarial

FIGURE 2. An adversarial example against GoogLeNet [20] on
ImageNet [21], demonstrated by Goodfellow et al. [22].

Evasion(AE) attacks, first introduced by Szegedy et al. [19]

against deep learning architectures, are carried out by

carefully crafting imperceptible perturbation in test samples,

forcing models to misclassify as illustrated in Figure 1.

Here, the attacker’s effort is to drag a test sample across the

ML’s decision boundary by adding minimal perturbation to

that sample. Given the growing body of research and the

increasing security risks, this survey will focus exclusively

on adversarial evasion attacks targeting malware detection

systems.

Adversarial Evasion (AE) attacks were originally devel-

oped for image data, where the primary constraint is to

make perturbations imperceptible to the human eye [23].

A widespread example of AE attack in images, shown

in Figure 2, is performed by Goodfellow et al. [22] where

GoogLeNet [20] trained on ImageNet [21] classifies panda

as a gibbon with the addition of minimal perturbations. This

threat has moved beyond research settings and has been

proven effective in real-world environments. For example,

Eykholt et al. successfully performed ‘‘sticker attacks’’

on road signs, causing an image recognition system to

misidentify ‘STOP’ signs as speed limits. Researchers from

the Chinese technology company Tencent1 tricked Tesla’s

Autopilot in Model S and forced it to switch lanes by adding

a few stickers on the road [24]. Such adversarial attacks

on real-world applications force us to rethink the increasing

reliability of machine learning-based smart technologies.

Generating adversarial examples in the malware domain

presents unique challenges compared to tasks in computer

vision due to additional constraints. Perturbations in malware

files must be crafted to preserve their functionality and

executability, which adds complexity to adversarial evasion.

Constraints may vary depending on the structure of the

malware files. Each file structure contains divisions, bringing

their individual significance and resilience to modification.

Adversarial evasion attacks on malware are carried out by

manipulating or inserting a few ineffectual bytes in the

malware executable in a way that does not tamper with its

original state but changes the classification decision by the

ML model.

For instance, one early demonstrated attack against an

anti-malware engine was carried out by Anderson et al. [25]

using reinforcement learning. This black-box attack bypassed

1https://www.tencent.com/
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Random Forest and Gradient-Boosted Decision Trees

(GBDT) detectors by modifying a few bytes of Windows

PE malware files. Kolosnjaji et al. [26] later employed an

evasion attack using a gradient-based approach against

a Convolutional Neural Network (CNN) based malware

detector. Since then, numerous works have tried to optimize

the attacks, discovering better approaches to attack wide

domains of malware detectors. Demetrio et al.’s [27] success

in crafting adversarial from few header byte modifications

and Suciu et al.’s [28] experiment on inserting perturbations

in different file locations, further magnified the interest

towards improving the standard of attacks. This growing

sophistication in adversarial attacks has intensified concerns

within the cybersecurity research community, fueling an

ongoing battle between adversarial attackers and defenders.

This survey aims to offer researchers a detailed overview

of adversarial evasion attacks on malware detectors across

platforms such as Windows, Android, PDF, Linux, and

hardware-based systems to elucidate existing vulnerabilities

and guide future offensive/defensive strategies.

A. MOTIVATION AND CONTRIBUTION

1) PRIOR SURVEYS AND LIMITATIONS

The surveys on adversarial attacks crafted in different

domains have been summarized in Table 1. Most surveys on

adversarial attacks are focused on computer vision for image

mis-classification [32], [33], [34], [50]. Fewer studies have

specifically addressed security domains such as malware,

intrusion, and network security, which are particularly

relevant due to the critical risks they pose. For instance,

Barreno et al. [29] worked on one of the first surveys on the

security side of machine learning, where different categories

of attacks and defences against ML systems are discussed.

Gardiner et al. [30] focused on reviewing call and control

detection techniques. They identified vulnerabilities and

also pointed out limitations of malware detection systems.

Duddu et al. [35] highlighted privacy issues within ML

systems and introduced a cyber-warfare testbed to evaluate

attack and defense strategies. In addition, Martins et al. [45]

performed a generalized survey on attacks focusing on cloud

security, malware detection and intrusion detection, while

Ibitoye et al. [47] surveyed adversarial attacks in the network

domain using a risk grid map.

Several recent surveys have attempted to bridge this gap by

focusing more closely on adversarial attacks within malware

detection, especially on Windows platforms. For instance,

Li et al. [48] systematized adversarial malware detection

(AMD), addressing both attack and defense perspectives.

Ling et al. [49] focused specifically on adversarial attacks

against Windows PE malware detectors, discussing the

intricacies of PE file structure, specific challenges, and

potential attack vectors. From studying all existing surveys,

we noticed none of the surveys entirely covered all adversarial

evasion attacks carried out against the malware binaries and

talked about the practicality of different approaches.

From these surveys, we can draw several conclusions

regarding adversarial research trends, particularly in cyber-

security. The surge in interest within adversarial research

over the past few years underscores an urgent need to

understand and address adversarial threats as our reliance

on automated systems grows. However, while adversarial

attacks on general domains have been well-surveyed, only

a few studies have focused solely on adversarial malware

attacks, and even fewer comprehensively cover adversarial

evasion attacks within malware detection systems. This

leaves a critical gap, as current malware-focused surveys

often span multiple domains without a detailed examination

of adversarial evasion attacks on malware.

2) OUR CONTRIBUTIONS

This work will contribute to understanding the arms race

between attacker and defender by discussing adversarial

evasion attacks in different folds of the malware domain.

We aim to provide a self-contained survey on adversarial

attacks against malware detection techniques. Based on

our knowledge, this work is one of the first to focus

solely on adversarial attacks on malware detection sys-

tems. In this work, our contributions cover the following

dimensions:
• Survey provides the threat modelling for adversarial

evasion attacks in the malware domain. The threat is

modelled in terms of the attack surface of the malware

detector, the attacker’s knowledge about the malware

detector, the attacker’s capabilities on malware, and the

adversarial goals that are to be achieved through the

malware files.

• We systematically analyze different adversarial gener-

ation algorithms proposed in different domains, which

have been attempted to be used in the malware domain.

We then taxonomize adversarial evasion attacks in

the malware with respect to various attack domains.

As Windows malware is the most abundant and also the

most exploited area, we further taxonomize attacks on

Windows malware based on the optimization algorithms

used. We also discuss attacks in less frequent file

structures like Android and PDF.

• We discuss real evasion attacks carried out against

anti-malware engines by the researchers under each

taxonomical heading. We also cover the strategies

researchers used to generate adversarial attacks,

showing how the attacks evolved with time.

• We discuss the challenges and limitations of existing

adversarial evasion attacks while carrying them out

in a real-world environment. We also highlight future

research directions for carrying out more practical,

robust, efficient, and generalized adversarial attacks on

malware classifiers.

B. SURVEY ORGANIZATION

We begin our survey, as discussed in Section I, by introducing

the field of adversarial machine learning and the motivation
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TABLE 1. Surveys focusing on security of machine learning.

to study adversarial evasion attacks in the malware analysis

domain. Section II models the adversarial threat from

different dimensions. Section III discusses various algorithms

considered standard techniques for adversarial perturbation

generation. Section V taxonomizes existing real adversarial

attacks based on the execution domains (Windows, PDF,

Android, Hardware, Linux) and algorithms maneuvered to

carry out the attack. This section discusses real attacks

carried out against malware detection approaches in detail

and compares related works. Section VI highlights the

challenges of current adversarial generation approaches and

sheds light on open research areas and future directions

for adversarial generation in malware analysis. Finally,

Section VII concludes our survey.

C. LITERATURE SEARCH RESOURCES

We used different digital libraries for computer science

scholarly articles to discover the relevant state-of-the-art

works and publications in adversarial attacks on malware

analysis. Our major sources are IEEE Xplore, ACM Digital

Library, DBLP, Google Scholar, Semantic Scholar and

arXiv. Among numerous keywords used to fetch the papers

from public libraries, ‘‘Adversarial Malware’’, ‘‘Adversar-

ial Evasion Attacks’’, ‘‘Adversarial Malware Analysis’’,

and ‘‘Adversarial attacks in malware’’ gave us the most

relevant papers. After listing all the published works in

the adversarial generation between the years 2013 and

2024, we filtered out papers with good impact and rele-

vance and prepared the final list to conduct our detailed

survey.

II. ADVERSARIAL THREAT MODEL

Security threats are defined in terms of their goals and

capabilities. In this section, we divided the adversarial

threat model, tailored to adversarial attacks in malware, into

four parts: adversarial knowledge, attack surface, adversarial

capabilities, and adversarial goals. This section aims to

explain the major components of adversarial attacks to

readers.

A. ADVERSARIAL KNOWLEDGE

The adversary’s knowledge is the amount of information

about a model under attack that the attacker has, or is assumed

to have, to carry out adversarial attacks against the model.

An adversarial attack can be classified into two groups based

on the attacker’s knowledge:

• White box attack: In a white box approach, an attacker

has full knowledge about the underlying target model.

Such knowledge might include but is not limited to,

the name of the algorithm, training data, tuned hyper-

parameter, and gradient information, among others.

It is relatively easy to carry out attacks in the white

box model due to the large amount of available

knowledge. Current state-of-the-art works on white box

environments have achieved near-perfect adversarial

attacks [28].

• Black box attack: In a black box approach, an attacker

only has access to the inputs and outputs of the model.

No information about the internal structure of the model

has been provided. Generally, in a black box attack,

a surrogate model is created by guessing the internal
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FIGURE 3. An attack difficulty with adversarial knowledge and
adversarial goals.

structure of the target model using input and output [32],

[51]. In addition, in a gray box attack [52], a type

of black box attack, the attacker knows the output

performance of the model in the form of accuracy,

confusion matrix or some other performance metrics.

In general, it is assumed that black-box adversarial attacks are

difficult and inefficient to orchestrate compared to white-box

attacks, primarily due to the information available regarding

the underlying target model. However, black box attacks

reflect more real-world use cases where, in a practical sense,

an attacker will not likely have any knowledge of underlying

models.

B. ATTACK SURFACE

The attack surface includes different vulnerable points by

which an attacker attacks the target model. The flow of

data through this machine learning pipeline introduces

vulnerabilities in each stage [33]. Attack surfaces comprise

all those points inmachine learningmodels (malware detector

models in our case) where adversaries can carry out their

attacks. Based on different approaches to carrying out attacks,

the attack surface is classified into the following broad

categories [53]:

• Poisoning Attack: This attack is carried out by

contaminating training data during the training process

of models [54], [55]. Training data is poisoned with

faulty data, making machine learning models learn on

the wrong dataset.

• Evasion Attack: This attack is performed by trying

to evade a trained system by adjusting malicious input

samples at test time [25], [28]. Evasion attacks do not

require any access to training data but require some level

of access to the target model.

• Exploratory Attack: This attack is carried out against

a model with blackbox access [51]. Attackers try to

maximize their knowledge without direct access to the

underlying algorithm and attempt to reflect similar input

data patterns.

C. ADVERSARIAL CAPABILITIES

Adversarial capabilities denote adversaries’ abilities and

largely depend on their knowledge of the target model. The

most straightforward attack approach is the attacker having

access to full or partial training data. For adversarial attacks

carried out on malware files, adversarial capabilities can be

classified into the following categories:

• Data Injection: It is the ability of attackers to inject

new data. One type of injection can be done on training

data before the training process. A different kind of data

injection is carried out by inserting a perturbation, which

forms a new section or replaces the original section

within an existing file. Injected data can corrupt the

model or cause the data-injected file to evade detection.

• Data Modification: Data modification can also be

performed both for training data and testing data. If an

attacker has access to training data, data can be modified

to cause themodel to learn onmodified data. An attacker

can alsomodify input data to cause perturbation and lead

to evasion.

• Logic Corruption: Logic corruption is the most

dangerous ability to be possessed by an attacker and

also the most improbable. Whenever an attacker has

complete access to amodel, they canmodify the learning

parameters and other hyper-parameters related to the

model. Logic corruption can go undetected, which

makes it hard to design remedies.

D. ADVERSARIAL GOALS

An attacker tries to fool the target model, causing it to produce

misclassifications. Details of algorithms used to attack and

achieve the adversary’s goals successfully are discussed in

section III. Typically, the adversarial goals of attackers are

categorized as follows:

• Untargeted Misclassification: An attacker tries to

change the output of the model to a value different from

the original prediction. For malware classification, if an

MLmodel predicts a malware file as a family A, the goal

is to force the model to misclassify it as a family other

than A.

• TargetedMisclassification:An attacker tries to change

the output of the model to a target value. For example,

if an ML model is predicting a malware file as family A,

the goal is to force the model to misclassify it as family

B.

• Confidence Reduction: An attacker’s goal is to reduce

the confidence of anMLmodel. Changing the prediction

is unnecessary, but a reduction of confidence is enough

to meet the goal.

Figure 3 gives an overview of the adversarial attack difficulty

with respect to the attacker’s knowledge, capabilities and

goals. While moving in the direction of increasing attack

complexity from confidence reduction to targeted misclas-

sification, attack difficulty also increases for the attacker.

However, white-box attacks with higher attacker capability

have the least attack difficulty.

III. ADVERSARIAL ALGORITHMS

In this section, we will explore the most distinguished adver-

sarial attack algorithms discovered in different domains and

applied to generate adversarial malware samples. Different

algorithms are developed in numerous time frames, battling
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the trade-off in terms of application domain, performance,

computational efficiency and complexity [45]. We will

discuss the architecture, implementation and challenges

of each algorithm. Most of the attack algorithms are

gradient-based approaches where perturbations are obtained

by optimizing some distance metrics between original and

perturbed samples.

A. LIMITED-MEMORY BROYDEN - FLETCHER - GOLDFARB

- SHANNO (L-BFGS)

The Limited-Memory Broyden-Fletcher-Goldfarb-Shanno

(L-BFGS) algorithm is an optimization technique often

used in machine learning to minimize functions with

many variables, especially when resources for storing large

datasets are limited. Szegedy et al. [19] proposed one of

the first gradient-based approaches for adversarial example

generation in the imaging domain using the box-constrained

Limited-Memory Broyden-Fletcher-Goldfarb-Shanno opti-

mization technique. The authors studied counter-intuitive

properties of deep neural networks, which allow small

perturbations in the images to fool deep learning models

for misclassification. Adversarial examples trained for a

particular neural network are also able to evade other neural

networks trained on completely different hyperparameters.

These results are attributed to non-intuitive characteristics

and intrinsic unseen spots of deep learning models learned

by backpropagation, with structure connected to data dis-

tribution in a non-obvious way. Traditionally, for small

enough radius ϵ>0 around the given training sample x,

x + r satisfying ||r|| < ϵ will be classified correctly by a

model with very high probability. However, many underlying

kernels are found not holding to this kind of smoothness.

The simple optimization procedure is able to find adversarial

samples using imperceptibly small perturbations, leading to

incorrect classifications by the classifier. While adding noise

to an original image is to minimize perturbation r added to the

original image under L2 distance. This groundbreaking use of

L-BFGS for adversarial example generation set the stage for

an extensive research area focused on probing and mitigating

vulnerabilities in deep learning models.

B. FAST GRADIENT SIGN METHOD (FGSM)

The Fast Gradient Sign Method (FGSM) is a foundational

gradient-based technique for generating adversarial perturba-

tions, efficiently devised to exploit vulnerabilities in neural

networks. Considering the gradient-based optimization tech-

nique as a workhorse of modern AI, Goodfellow et al. [22]

proposed an efficient approach for generating adversarial

perturbation in the image domain. In contrast to earlier works

that explained adversarial phenomena as non-linearity and

overfitting, the authors argued that the linear nature of neural

networks leads to their vulnerability. Linear behaviour in high

dimensional space is found sufficient to cause adversarial

samples. To define the approach formally, let’s consider ¹

as a parameter of the model, x as input to the model, y as

target associated with x and J (¹, x, y) be the cost function

for training neural network. On linearizing the cost function

around the current parameter values ¹ , perturbation can be

obtained by

¸ = ϵsign(∇xJ (¹, x, y)) (1)

where the required gradient can be computed using backprop-

agation. Conversion of features from problem to feature space

affects the precision. Commonly, images are represented by

8 bits per pixel and other information below 1/255 of the

continuous range is discarded. With limited precision, the

classifier may not be able to respond to all perturbations

whose size is smaller than the precision of the feature. Classi-

fiers having well-separated decision boundaries are expected

to assign the same class for original sample x and perturbed

sample x ′ until ||¸||∞ < ϵ where ϵ is small enough to be

discarded. FGSM’s efficiency and generalizability sparked

further research into robust adversarial attack strategies and

defense mechanisms for deep learning.

C. ITERATIVE GRADIENT SIGN METHOD (IGSM)

Different from the one-step perturbation approach, where a

single large step is in the direction of increasing the loss of the

classifier, the Iterative Gradient Sign Method takes iterative

small steps while adjusting the direction after each step [23].

The basic iterative method extends the FGSM approach by

applying it multiple times with a small step size and clipping

the pixel values after each iteration to ensure the perturbation

within ϵ neighbourhood of the original image. Formally, each

step in the iterative process is represented by:

XadvN+1 = ClipX ,ϵX
adv
N + ³sign(∇XJ (X

adv
N , ytrue)) (2)

where XadvN+1 is the perturbed image at N th iteration and

ClipX ,ϵ{X
′} function performs pixel-wise clipping on image

X ′ in order to keep perturbation inside L∞ϵ-neighbourhood

of source image X. Kurakin et al. [23] extended basic iter-

ative method to iteratively least likely class method to

produce adversarial for targeted misclassification. By using

this iterative method, finer and controlled perturbations can

be added, allowing for successful adversarial examples even

with higher values of ϵ while minimizing distortion to the

original image.

D. JACOBIAN SALIENCY MAP ATTACK (JSMA)

Most of the adversarial generation techniques are based on

observing output variations to generate input perturbations,

while Papernot et al. [56] crafted adversarial samples by

constructing a mapping of input perturbations with output

variations. The approach is based on limiting the l0-

norm of the perturbation, which deals with a minimal

number of pixel modifications. The proposed adversarial

generation algorithm against feed-forward DNN modifies

a small portion of input features by applying heuristic

search approaches. Adversarial sample X∗ is constructed by

adding perturbation ¶X to benign sample X through following
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optimization problem:

argmin¶X ||¶X || s.t. F(X + ¶X ) = Y ∗ (3)

where X∗ = X + ¶X is the adversarial sample and Y ∗ is

the desired adversarial output. Forward derivative is used

to evaluate the changes in output due to corresponding

modifications in input, and these changes are presented

in matrix form called as Jacobian of the function. This

approach, leveraging a forward derivative matrix, provides a

precise mechanism for selecting minimal, impactful modifi-

cations, allowing adversarial examples to evade detection by

conventional defenses.

E. CARLINI & WAGNER ATTACK (C&W)

Carlini & Wagner [57] introduced an advanced adversarial

generation technique aimed at defeating defensive distil-

lation, a defense mechanism designed to harden neural

networks against adversarial attacks through a single retrain-

ing phase [58]. Defensive distillation leverages a softened

output layer during training to reduce model sensitivity

to perturbations; however, Carlini & Wagner’s approach

demonstrated the ability to evade such defenses effectively.

The proposed approach is able to perform three types

of attacks: L0 attack, L2 attack and L∞ attack to evade

defensively distilled and undistilled networks. These attacks

are based on different distance metrics, which are:

• L0 distance, measuring the number of pixels modified in

an image

• L2, measuring the standard Euclidean distance between

the original sample and the perturbed sample

• L∞, measuring the highest change among any of the

perturbed coordinates

The optimization problem for adversarial generation of input

image x is given as:

minD(x, x + ¶) such that C(x + ¶) = tx + ¶ ∈ [0, 1]n (4)

where input x is fixed and goal is to reach ¶ that minimizes

D(x, x + ¶). D could be any of distance metric among

L0, L2 or L∞. This method not only bypasses defensive

distillation but also demonstrates effectiveness across both

distilled and undistilled networks.

F. DeepFool

Dezfooli et al. [59] introduced DeepFool, an untargeted

white-box adversarial generation method that targets mis-

classification by minimizing the Euclidean distance between

the perturbed and original samples. The attack begins by

generating a linear decision boundary to separate the given

classes and is accompanied by the addition of perturbation

perpendicular to the decision boundary that separates classes.

The attacker projects the perturbation into a separating line

called hyper-plane and tries to push it beyond for misclassi-

fication. Decision boundaries are usually non-linear in high

dimensional space, so the perturbation is added iteratively by

performing multiple attacks till evasion. An attack for such

a multiclass finds the closest hyperplane and projects input

towards that hyperplane, then proceeds to the other.

G. ZEROTH ORDER OPTIMIZATION (ZOO)

All of the previously discussed adversarial generation algo-

rithms depend on the detector model’s gradient, which limits

the adversarial attack space within the white-box attack.

Chen et al. [60] proposed a black-box adversarial generation

approach by estimating the gradients of targeted DNN with

only access to the input and output of a target. Zeroth order

methods are gradient-free optimization approaches requiring

only the Zeroth order oracle for the optimization process.

The objective function is analyzed at every two close points

f (x + hv) and f (x − hv) with a very small h to estimate

a gradient along the direction of vector v. An optimization

algorithm like gradient descent follows gradient estimation.

While attacking black-box DNN with a large input size,

the use of a single minute step of gradient descent can be

very inefficient as a large number of gradients needs to be

estimated. To address this, ZOO applies a coordinate descent

method, optimizing each input coordinate iteratively, thus

improving the computational efficiency of the attack without

requiring exact gradient calculations.

H. ONE PIXEL ATTACK (OPA)

Another gradient-free adversarial generation approach is pro-

posed by Su et al. [61] by generating one-pixel perturbations

based on Differential Evolution (DE). Differential evolution

is a population-based optimization algorithm that can find

higher quality solutions than gradient-based approaches [62].

Since gradient information is not required for DE, the need

for differentiable objective functions is also omitted. One

pixel attack perturbs a single pixel using only probability

labels. The single-pixel modification allows attackers to hide

the adversarial modifications, making them imperceptible.

Each image is represented as a vector to carry out the attack,

where each scalar element represents one pixel. With f as the

target function, x = (x1, . . . , xn) representing n-dimensional

inputs, t being the original class, e(x) = (e1, . . . , en) denoting

the perturbation to be added to the input with maximum

modification limited to L, the optimized solution is given by

Equation 5.

max
e(x)∗

fadv(x + e(x)) subject to ||e(x)||0 f d, (5)

where d is a small number. This approach considers

determining two values: the dimension to be perturbed

and the corresponding magnitude of modification for each

dimension. Unlike multi-pixel approaches, OPA uniquely

focuses on modifying only one pixel without constraining

the intensity of the perturbation, making it a minimalistic yet

effective adversarial strategy.

I. UNIVERSAL ADVERSARIAL PERTURBATION (UAP)

The Universal Adversarial Perturbation (UAP) technique,

introduced by Moosavi-Dezfooli et al. [63], is a powerful
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approach for generating adversarial examples that can

mislead a target classifier across a wide range of inputs.

Unlike traditional adversarial attacks that are tailored to

specific inputs, UAP generates a single perturbation that

can be applied universally to different images, effectively

compromising the model’s robustness. This technique begins

by formulating an optimization problem that seeks to find

a perturbation ¶that minimizes the classification accuracy

across a diverse set of images while ensuring that the

perturbed images remain visually similar to the original ones.

The objective function is expressed as:

min
¶

∑

x∈S

max
y∈Y

L(f (x + ¶), y), (6)

where S is a set of input images, Y represents the set of

possible labels and L denotes the loss function. The UAP

technique effectively captures the inherent vulnerabilities

of deep learning models, revealing that even small, univer-

sal perturbations can lead to significant misclassification.

By utilizing a heuristic approach to iteratively refine the

perturbation, the UAP can efficiently generate adversarial

samples that maintain their effectiveness across various input

instances, making it a significant concern for the security of

machine learning systems.

J. AUTOATTACK

AutoAttack, proposed by Croce et al. [64] is a robust frame-

work for evaluating the adversarial robustness of machine

learning models through an ensemble of diverse, parameter-

free attacks. It aims to provide a reliable assessment of model

performance against adversarial examples by leveraging a

set of complementary attack methods that can adaptively

target vulnerabilities in the model. AutoAttack consists of

four different attacks, which are categorized into two groups:

a robust white-box attack and two parameter-free attacks. The

first one is based on APGD (Adaptive Projected Gradient

Descent) method, which effectively explores the decision

boundaries of the model by using iterative gradient-based

perturbations. The other attacks include FAB (Fast Adaptive

Boundary) and Square Attack, which leverage different

optimization strategies to generate adversarial examples

without requiring precise parameters, ensuring versatility

in attacking various models. One of the key features of

AutoAttack is its parameter-free nature, which eliminates

the need for tuning hyperparameters that often complicate

the evaluation process. By incorporating a diverse set of

parameter-free attacks, AutoAttack enhances the reliability of

robustness assessments.

K. BOUNDARY ATTACK

Boundary Attack, proposed by Brendel et al. [65] is a

decision-based adversarial attack method designed to effec-

tively target black-box machine learning models. It operates

under the principle of manipulating the input data while

staying within the vicinity of the original sample, aiming

to achieve a misclassification without the need for gradient

information. This technique is particularly notable for

its ability to generate adversarial examples in scenarios

where the model’s internal workings are not accessible.

Unlike gradient-based attacks, BoundaryAttack leverages the

model’s output decisions to iteratively refine perturbations.

The attack begins with an initial adversarial example, which

is chosen based on a strategy that ensures it is misclassified.

It then seeks to adjust this example by moving along

the decision boundary of the model, gradually refining

the perturbation until a suitable adversarial example is

found that successfully misclassifies the input. Focusing on

decision boundaries and employing a minimal perturbation

strategy enhances the feasibility of adversarial attacks in

scenarios where traditional gradient-based methods are not

applicable.

IV. FILE STRUCTURE

Executable files are structured differently based on the tar-

get/host OS. Although detailed discussions on file structure

are out-of-scope for a survey, a good understanding of file

structure is critical both for shaping the adversarial generation

strategy and for successfully generating adversarial exam-

ples. Different file sections are classified into two groups:

mutable and immutable. Mutable sections can be modified

for adversarial generation without altering the functionality

of the file, whereas immutable sections either break the file

or alter the functionality on modification. This section will

provide a brief overview of three kinds of file structures that

will be discussed later in the survey.

A. WINDOWS PE FILE STRUCTURE

Windows PE file format is an executable file format based on

the Common Object File Format (COFF) specification. The

PE file is composed of linear streams of data. The structure

of Windows PE file as shown in Figure 4 is derived and

confirmed from [66], [67], [68]. The header section consists

of the MS-DOS MZ header, the MS-DOS stub program,

the PE file signature, the COFF file header and an optional

header. File headers are followed by body sections with

debug information before closing the file. The MS-DOS

header occupies the first 64 bytes of the PE file. This header

is required to maintain compatibility with files created on

Windows version 3.1 or earlier. The Magic number used

in the header determines if the file is of compatible type.

MS-DOS runs stub-program after loading the executable and

is responsible for giving output messages with errors and

warnings.

PE file header is searched by indexing the e_lfanew

field to get the offset of the file, which is the actual memory-

mapped address. This section of the PE file is one of the

target areas for modification, and these locations are used

as macros to create adversarial examples [27]. The macro

returns the offset of the file signature location without any

dependency on the executable file type. This injection of

adversarial perturbation in this location, being in the header,

was found to be highly efficient while increasing the risk
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FIGURE 4. A standard structure of windows PE file.

of compromising the file integrity. At offset 0 × 3c, a

4-byte signature is placed to identify the file as a PE image.

The optional header takes the next 224 bytes. Although it

may be absent in a few types of files, it is not an optional

segment for PE files. It contains information like initial stack

size, program entry point location, preferred base address,

operating system version, and section alignment information,

among other [67].

Information from both the section header as well as

optional header is required to retrieve data directories. The

.text section contains all the executable code sections

along with the entry point. Uninitialized data for the

applications is stored in the .bss section, which includes all

declared static variables, and the .rdata section represents

all the read-only data like constants, strings, and debug

directory information. The .rsrc section contains resource

information for the module, and export data for an application

are present in the .edata section. Section data is the major

area where perturbation takes place to make a file adversarial.

Debug information is in the .debug section, but the debug

directories reside in the .rdata section.

In terms of perturbation injection strategy based on the

characteristics of the target location inside the PE file, we can

categorize the existing adversarial attack approaches into the

following kinds:

• AppendAttack:This approach is themost common and

widely adopted approach for adversarial perturbation

injection inside a PE file as it appends the noise at the

end of the file without interfering with the execution of

a malware file [26], [69].

• Slack Attack: This approach looks for existing empty

spaces (code caves) inside a PE file and uses those

spaces as targets for injecting adversarial perturba-

tions [28]. These approaches are found to be more

efficient in creating adversarial samples while being

limited in their availability across all malware samples.

• Header Attack: This approach uses the unused spaces

in the header like the MS-DOS header used for

backward compatibility, that does not have relevance

to the execution of PE file as a target for adversarial

injection [27]. These perturbations are found to be

highly effective against end-to-end malware detectors.

• CodeCave InjectionAttack:This approach is the latest

advancement in the field of adversarial malware genera-

tion in problem space as it introduces the unused spaces

inside the Windows PE file, bringing flexibility to the

injection of adversarial perturbation. Yuste et al. [70]

injected the perturbation on those locations of raw space

that never get mapped tomemory, while Aryal et al. [71]

used a code loader to restore the malware’s original form

dynamically.

B. ANDROID FILE STRUCTURE

Android APK file has been recently victimized as a tool for

adversarial attacks [72], [73], [74], [75]. APK file is a ZIP file

containing different entries. Different sections of APK files

are described below:

• Androidmanifest.xml: AndroidManifest.xml con-

tains information to describe the application. It contains

information like the application’s package name, com-

ponents of the application, permissions required and

compatibility features [76]. Due to the presence of a

large amount of information, AndroidManifest.xml

is one of the majorly exploited sections in APK files for

adversarial attacks.

• classes.dex: As Android applications are written in Java,

the source code will be with the extension .java.

These source codes are optimized and packed into this

classes.dex file.

• resources.arsc: This file is an archive of compiled

resources. Resources include the design part of apps like

layout, strings and images. This file form the optimized

package of these resources.

• res: Resources of app which is not compiled to store

in resources.arsc stays in res folder. The XML files

present inside this folder are compiled to binary XML to

boost performance [77]. Each sub-folder inside res stores

different types of resources.

• Meta-INF: This section is in signed APKs and has all the

files in APK with their signatures. Signature verification

is done by comparing the signature with the uncompressed

file in archive [78].
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C. PDF FILE STRUCTURE

Here, we will look into the internal structure of PDF file

format. PDF is a portable document with a range of features

that are capable of representing documents, including text,

images, multimedia, and many others. The basic structure of

a PDF file is discussed below:

• PDF header: PDF header is the first line of PDF which

specifies the version of a PDF file format.

• PDF Body: The body of a PDF file consists of objects

present in the document. The objects include images,

data, fonts, annotations, text streams, etc. Interactive

features like animation and graphics can also be

embedded in the document. This section provides the

possibility of injecting contents and files within it, which

makes it the most favourable avenue for adversarial

attackers.

• Cross-reference table: The cross-reference table stores

the links of all the objects or elements in a file. The table

helps navigate to other pages and document contents.

The cross-reference table automatically gets updated

when the PDF file is updated.

• The Trailer: The trailer denoted the end of the PDF

file and contains a link to the cross-reference table. The

last line of the trailer contains the end-of-file marker,

%%EOF.

FIGURE 5. Timeline showing research trend for the development of
adversarial Evasion(AE) attack.

V. ADVERSARIAL MALWARE EVASION ATTACKS

Adversarial generation methods originating in the image

domain did not take long to migrate into the malware

field. Among different adversarial threats, evasion attacks

have been the most worrisome approach and have already

been exploited in various ways. the research trend for

the adversarial malware generation specific to evasion

attack is shown in a timeline in Figure 5. Initially started

by Biggio et al. [79] against SVM and Szegedy et al. [19]

against Deep Nets went through different phases to advance

in the malware domain. Adversarial malware started with

PDF and Windows files due to their abundance and then

proliferated into other file formats. Significant work has been

done on adversarial generation for Android, PDF, Windows

and Linux files. This section deals with adversarial examples

generated to evade malware detection systems by making

minor perturbations on input malware files.

Though initial research was not concerned about the

problem space of adversarial malware, A large volume of

research soon started to work on finding suitable locations

for adversarial perturbations within a malware file. These

subtle modifications to malware files during test time can

sneak through the unseen spots of machine learning models

without breaking the malware’s functionality. As the research

progressed, more recent works have focused on creating

more stealth and practical attacks while also trying to create

more efficient adversarial attacks. The following sections

will briefly explain different adversarial generation works

by researchers in the malware domain. Adversarial work has

been divided based on the attack file format, which includes

Windows, Android, PDF, Hardware, and Linuxmalware files.

The following subsection discusses adversarial attacks in

Windows files.

A. WINDOWS MALWARE ADVERSARIAL

Microsoft Windows is a dominant PC operating system

with more than 70% market share and 1.5 billion users

worldwide [80]. Gartner research [81] predicts that 30%

of cyberattacks by 2024 will be carried out in the form

of adversarial attacks. Abundant availability has placed

Windows malware at the core of adversarial threats. Machine

learning-based models are data-hungry, so feature engineer-

ing is a critical task to feed important features as input.

However, the advent of deep neural networks has allowed

models to learn features from complex raw data. Deep neural

networks have shown impressive performance in malware

detection by providing whole binary files as input without

any hand-crafted feature engineering effort. We want to

mention Raff et al.’s work [82] in this section (referred to

as MalConv), which has been an academic standard in the

field by making detection considering whole executable. Its

architecture combines convolutional activation with global

max-pooling before going to fully connected layers, allowing

the model to produce its activation regardless of the

locations of the detected features. MalConv, as one of the

prominent end-to-end static malware detectors, has been

considered a baseline for most static adversarial evasion

attacks. The subsequent part discusses different adversarial

evasion attacks on malware detectors classified based on the

optimization algorithm used.
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TABLE 2. A gradient based approaches.

1) GRADIENT BASED ATTACK

Table 2 presents a comparative study of adversarial attacks

using a gradient of cost function against input Windows PE

malware. Since Anderson et al. [25] proposed the possibility

of manipulating sections of Windows PE malware to form an

adversarial sample, various types of research have been con-

ducted to bypass malware detectors. Authors [25] used ran-

dom actions from action space to modify PE files. To reduce

the randomness of payloads, Kolosnjaji et al. [26] proposed

appending optimized padding bytes using gradient descent,

originally proposed by Biggio et al. [79]. Gradient-based

approaches are carried out using either the append or insertion

method for perturbation generated using the gradient of cost

function as shown in Figure 6. One-hot represented malware

vector is combined with gradient-generated perturbation to

bypass the malware detector. Representation of the malware

can vary based on the approach. Kolosnjaji et al. [26] choose

to append bytes only at the end of the file, not to risk altering

the functionality of a file. Here, the attacker’s goal is to

minimize the confidence of the malicious class, limiting the

maximum perturbation. Authors achieved an evasion rate up

to 60% by only modifying 1% of bytes in the PE file.

Kreuk et al. [69], [83] proposed the enhanced attack

method againstMalConv [82] using iterative FGSM [22]. The

authors focused this approach on enhancing reconstruction by

introducing a new surrogate loss function. The representation

of binary files as a sequence of bytes is arbitrary, and neural

networks are unable to work in this space. Generating adver-

sarial examples deals with adding perturbations to the original

sample by increasing or decreasing the gradient. However,
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FIGURE 6. Flow diagram for a gradient-based adversarial attack on
windows malware.

this process is not that simple, as perturbation in a one-hot

vector results in a new vector no longer in one-hot vector

space. This approach proceeds by generating perturbations

in embedded space. In many cases, the perturbed embedding

loses its resemblance to embedding in the lookup table,

which contains a mapping between bytes and embeddings.

In the absence of resemblance, reconstruction is not possible.

Kreuk et al. introduced a new term to the loss function, which

causes perturbations to be close to the embedding matrix.

To minimise the distance, the introduced term is the weighted

distance of generated adversarial embeddings from actual

embeddings. The new loss function is:

l̄∗(z, y; ¹ ) = ³.l̄(z, y; ¹ ) + (1 − ³)

[ L
∑

i=1

N
∑

j=1

d(zi,Mj)

]

(7)

where the first part is the categorical loss called the negative

log-likelihood loss, and the second term gives the distance of

generated adversarial embedding with the actual embedding

in M. The second term is responsible for steering the

direction towards reconstructible adversarial embeddings.

This approach yielded an evasion rate as high as 99%.

To interpret the blackbox decisions of the malware

detection model, Demetrio et al. [27] proposed a tech-

nique called integrated gradients initially proposed by

Sundararajan et al. [88]. With input model f , a point x and

baseline x ′, the attribution of ith feature is computed as:

IGi(x) = (xi − x ′
i )

∫ 1

0

∂f (x ′ + ³(x − x ′))

∂xi
d³ (8)

Equation (8) is the integral of the gradient computed on all

points on a line passing through x and x ′. Feature attribution

determines themost influential feature, leading tomeaningful

explanations behind classifications of malware binaries.

Referencing the research findings, authors can also generate

adversarial malware samples by efficiently modifying a few

bytes in the file header. This approach is more efficient as it

requires a few manipulations to bypass the detector. Authors

could evade almost all malware by generating small perturba-

tions on file header sections other thanMZmagic number and

value at offset 0×3C. Perturbation generation using a gradient

of classification function with respect to the embedding

layer is the same as implemented by Kolosnjaji et al. [26].

Along with success in efficient adversarial attacks from

perturbations in file headers, research also introduces new

challenges of perturbation being easily detected and patched.

This study has directed further research towards hiding

modifications from detection. Thework claims a high evasion

rate of 87%. However, their sample size of just 60 may not

demonstrate the true performance on the general dataset.

Suciu et al. [28] trained existing models to study their

behaviour on a production-scale dataset to further explore

other regions for injecting adversarial perturbations. The

author evaluated the effectiveness of adversarial generation

strategies at different scales and observed their transferability.

Existing adversarial attacks are constrained on appending

adversarial noise at the end of a binary file. However,

appended bytes are found to be less influential and offset

by bytes in the original malware. Inability of byte append-

ing strategies while using size constrained detector like

MalConv(Only first 2MB are considered for detection), led

authors to use slack attacks. Slack attacks are performed

by discovering the region in executable files that are not

mapped to memory and will not affect the functionality

on modification. Attacking the most influential feature will

amplify attack effectiveness, and sufficiently appended bytes

can replace legitimate features. Slack attacks yielded an

evasion rate as high as 27% in this work. The approach is,

however, limited in terms of available slack space as there is

no guarantee that the binary files always have enough slack

spaces.

All previous works relied on random initial perturbations

and were then iteratively updated using a gradient of the

model. The role of initializing perturbation in the success

rate of adversarial generation can not be disregarded, and

Chen et al. [85] proposed the use of saliency vector to select

initializing perturbations from benign files. Researchers

consider the issue of accuracy and inefficiency in the

work of Kreuk et al. [83] and Suciu et al. [28] as a result

of random initialization before gradient-driven modification.

The benign feature append method was carried out by
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FIGURE 7. An adversarial generation workflow using code obfuscation.

debugging the victim model once to generate saliency

vectors. In contrast, continuous debugging of the model is

required while incorporating the FGSM algorithm. Avoiding

random initialization helps the model obtain backpropagation

gradients, and gradient-based algorithms can be implemented

more effectively. Benign bytes form saliency vectors and

help map between adversarial from continuous space to

discrete space, avoiding random perturbations that can

not be accurately mapped back to corresponding raw-byte

perturbations. This work successfully increased the accuracy

of gradient-based adversarial generation techniques up to

99% by replacing random initialization. Jakhotiya et al. [86]

tested the gradient-based adversarial attack on a state-of-

the-art transformer-based malware detector using FGSM.

However, their attack being in feature space is far from

addressing the problem space challenge.

Many recent works also use a gradient to optimize the

perturbation but without significant changes to the field.

Kozak et al. [89] combined multiple adversarial generation

approaches, both gradient and non-gradient, to create adver-

sarial malware samples. On the other hand, Yang et al. [90]

used multiple strategies for PE malware file modification to

preserve its functionality. Li et al. [91] use reverse gradient

sign to optimize the perturbations and use the least square

method to detect the oscillation in the perturbation optimiza-

tion while also limiting the injection ratio. To enhance the

flexibility and stealth of adversarial perturbation inside Win-

dows PE malware, Aryal et al. [71] proposed an intra-section

code cave injection strategy where first the code cave

makes spaces within the sections of PE structure. In the

next phase, these empty spaces are utilized to inject the

adversarial perturbation without breaking the file, as the code

loader completely removes the code cave dynamically. Now,

the adversarial perturbations are optimized using gradient

descent and FGSM. Even though all the discussed approaches

used gradient-based optimization, they were different in

terms of perturbation location or the motivation behind their

research. Their work produced variable success in attacking

different regions of the file, taking the evasion rate to as high

as 97%.

All existing works using a gradient of the target model

produce model-specific perturbations. To make the adver-

sarial generation model agnostic, Zhan et al. [87] proposed a

patch injection operation to arbitrary malware samples within

non-executable regions of a PE file. The approach initializes

the patch and trains it in each malware sample, resulting in an

optimized adversarial patch that can be directly applied to any

malware binary. Their work produces two different patches:

binary patch for raw byte sequences and img patch for image-

based detection. The approach achieved an evasion rate of up

to 50%, which, although lower than some targeted methods,

is notably high for a general-purpose adversarial patch.

2) CODE OBFUSCATION BASED ATTACK

Code obfuscation changes the pattern of a program without

any damage to program logic. Adversarial attacks using

obfuscation deal with modifying the code sections without

changing the functionality and flow of the program, as shown

in Figure 7. Table 3 discusses the code obfuscation attacks

done against Windows malware detectors. Park et al. [92]

proposed a generative model for generating adversarial

through obfuscation in raw binaries. The proposed approach

minimally modifies malicious raw binaries using a dynamic

programming-based insertion algorithm, obfuscating the

.text section of a binary in an executable byte sequence.

Windows malware binaries are initially converted into

grayscale images from byte code for obfuscation. An obfus-

cation technique called dummy code insertion inserts seman-

tic nops (no operation) into a program. At each iteration,

the algorithm chooses between inserting a semantic nop

or not inserting anything based on the distance metric

between binary strings. Adding semantic nops is easier if

the source code is given, but without it, patching techniques

are required [95], [96]. The algorithm outputs adversarial

malware with the original program’s logic after operating

in a closed-loop model until the classifier gets fooled. The

proposed algorithm is found to be effective against classifiers

employing both static and dynamic analysis with features

such as API, system calls and n-grams.

Most of the attacks in the adversarial domain are carried

out in feature space, and mapping features back to problem

space is not always feasible. Song et al. [94] proposed an

open-source systematic framework for adversarial malware

attacks using code randomization and binary manipulation

to evaluate against real-world antivirus systems. The authors

collected large categories of features from open-source mal-

ware detectors: hash-based signatures, rule-based signatures

and data distribution-based features. A generic action set is

prepared as micro andmacro actions to modify these features.

Micro actions are a relative concept, which only changes

440 VOLUME 13, 2025



K. Aryal et al.: Survey on Adversarial Attacks for Malware Analysis

TABLE 3. A code obfuscation based approaches.

a subset of actions inside macro-actions. The proposed

workflow begins by selecting and applying macro-actions to

original samples till the original sample crosses the decision

boundary. Those macro-actions with no roles are removed

from the action sequence to reach the most efficient evasive

form. And finally, to get detailed knowledge about the reason

behind evasion, macro actions are broken into micro-action.

To provide reasoning for evasion, every actions are entangled

into several micro-actions and each macro-actions is replaced

with one micro-actions. This process helps in the evaluation

of essential feature changes responsible for classification

decisions. This research directs future exploration towards the

generation of adversarial, which can evade both static as well

as dynamic detectors, and also recommends antivirus systems

to provide offline dynamic detection.

3) REINFORCEMENT LEARNING BASED ATTACK

To counter the need for a differentiable model for gradient-

based approaches, a reinforcement learning agent has been

proposed to generate an adversarial sample against static

malware detection. Reinforcement learning enables complete

blackbox attacks on detector, creating real-world attack

scenarios where an attacker is completely unknown about the

detector. Table 4 compares all RL approaches on adversarial

evasion attacks for Windows malware. Anderson et al. [25]

proposed awhitepaper on evadingmalware detection bymod-

ifying Windows PE bytes for the first time. Anderson et al.

[97] extended results of work done in [25] to perform generic

black box attacks on static PE malware detection without

assuming any knowledge of the detector model’s structure

and features, retrieving only malicious/benign label. Actor-

Critic Model with Experience Replay (ACER) is used to

learn both policy model Ã and a Q-function to estimate the

state-action value. Countless, infinite features are collapsed

into a fixed-size vector using a hashing trick. The obtained

feature vector provides a complete view of malware files.

Functionality-preserving actions like adding functions to

unused import address tables, creating/renaming sections,

appending bytes, and manipulating debug info and header

checksums are present in action space.

To reduce the instability and increase the convergence

speed of Gym-Malware [97], Fang et al. [98] proposed a

Deep Q-network to Evade Antimalware engines (DQEAF)

framework to evade anti-malware engines. DQEAF can

reduce instability caused by higher dimensions, taking binary

stream features of only 513 dimensions. It takes only four

functionality-preserving actions in its action space to increase

convergence and reports a higher evasion rate. Actions

proposed for deep Q-network training are appending random

bytes, appending a random library with a random function

to import address table, appending a randomly named

section to section table and removing signature. Rewards

are provided based on number of training ‘TURN’ required

to evade malware detection along with discount factor

to consider future rewards. DQEAF also uses experience

replay, which allows reinforcement learning to remember

and reuse experiences from the past. The workflow of

adversarial generation begins by reading the original PE

malware, followed by modifications using DQEAF, and

finally, correcting the virtual address for the sample with

integrity insurance using Cuckoo Sandbox. DQEAF was able

to alleviate the evasion rate to 70% in the same dataset as used

by Gym-Malware.

Chen et al. [99] proposed an approach based on Gym-

Malware [25] using Deep Q-Network (DQN) and Advantage

Actor Critic (A2C) deep reinforcement algorithm and named

the environment as Gym-malware-mini. Even though authors

claimed to have increased the evasion rate by 18% than

that of Gym-Malware, it could be due to data leakage.

Gym-malware-mini is trained and tested using the same

data as gym-malware. Eleven actions in the action space

of Gym-Malware scale to an uncountable number due to

randomness in each action. Gym-malware-mini converts

those random actions to 10 deterministic actions, making

the space for the actions very small. To balance the exploit

and exploration, the best actions are chosen using the

epsilon-greedy method during the network training. Smaller
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TABLE 4. A reinforcement learning adversarial attacks.

action spaces aid in better learning policy. Gym-malware-

mini also uses negative rewards for punishment, which helps

to make agents learn faster.

Fang et al. [100] tried to address shortcomings of

previous work by proposing their own malware detection and

adversarial generation method using DRL. MalConv [82],

a standard detector network for Windows PE malware by

feeding whole binary bytes, has been exploited by various

researchers. Its vulnerability to gradient-based attacks for

adversarial motivated authors to build their own malware

detection system, DeepDetectNet, with AUC up to 0.989. For

feature extraction, DeepDetecNet uses a traditional approach

based on feature engineering. Static feature extraction mainly

includes three categories: Import Functions feature, General

information feature, and Bytes entropy feature. Previous suc-

cess in adversarial generation using reinforcement learning

is from UPX packing, which is not the actual modifications

on PE files. To solve this problem, all random modification

operations are expanded to 218 specific operations. The

reward is provided in each turn based on constants k and

MAXTURN , which denotes the maximum number of times

a file can be modified.
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TABLE 5. An adversarial attacks based on GAN.

Quertier et al. [101] used DQN and REINFORCE

algorithms to attack popular malware detection engines, Mal-

Conv, EMBER, Grayscale and commercial AVs. On using the

same action space as introduced by Anderson et al., [25], they

were able to achieve an evasion rate of 67%, 100%, 98% and

30% against Ember, MalConv, GrayScale and commercial

AV, respectively, using DQL while reaching even improved

performance on the use of REINFORCE. Tomake adversarial

generation more efficient and practical, Song et al. [102]

proposed a black box Reinforcement Learning framework,

MAB-Malware. The framework takes a problem as a

multi-armed bandit to find a balance between exploiting

and exploring. They limit the exploration to avoid combina-

tional explosions while minimizing the changes to correctly

attribute the rewards. The work by Rigaki et al. [103] focuses

on more practical black-box attacks by focusing on model

evasion and model extraction of the target. The surrogate

model is trained and attacked before attacking the actual

target.

All existing reinforcement learning-based approaches

rely on evasion rewards for positive feedback, which,

in a black-box setting, results in low training efficiency.

To enhance the efficiency of adversarial generation using

RNN, Zhan et al. [104] introduced the intrinsic curiosity

reward into the framework that motivates the agent to

explore unknown state spaces. Additionally, the authors also

employed a Generative Adversarial Network(GAN) to obtain

varying adversarial payloads to replace random or benign

payloads.

4) GAN BASED ATTACKS

Most of the existing adversarial generation deals with the

use of gradient information and hand-crafted rules. However,

obtaining a high true positive rate (TPR) has been challenging

due to the constrained representation ability of existing

gradient-based models. Generative Adversarial Networks

(GAN), originally proposed by Goodfellow et al. [112], have

inspired blackbox attacks on malware detectors with very

high TPR. GAN uses the discriminative model to distinguish

between generated and real samples and a generative model

to fool the discriminative model between generated and

real samples. Table 5 summarizes adversarial attacks against

Windows anti-malware engines.

Hu et al. [105] proposed an adversarial generation

technique, MalGAN, which can bypass black-box machine

learning models. Binary features obtained by the presence or

absence of API are used as input to the model, and the number

of input features equals the input dimension. A generator

transforms malware to its adversarial version by taking the
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probability distribution of adversarial far away from the

detector. Concatenating malware feature vectors with noise

vectors allows the generator to produce numerous adversarial

examples from a single malware feature vector. A substitute

detector is used to fit the detector model and provide gradient

information to train the generator.

Considering the use of multiple malware to train MalGAN

affecting the performance of avoidance, Kawai et al. [106]

proposed improved MalGAN with only one malware for

training. MalGAN imports malware detectors for training

and predicting, which is not convenient for attackers. This

improved MalGAN uses Python’s sub-process library to

import only detection results to MalGAN. The authors also

utilized all APIs used formalware to feature quantities instead

of the 128 APIs used by the original MalGAN. API lists

are extracted by combining multiple cleanware and single

malware in order to avoid the malware detection process

being driven by the addition of cleanware features to the

malware file.

A few assumptions made in designing MalGAN are less

realistic and limited in bypassing real malware classifiers.

One such assumption is that attackers are assumed to have full

access to feature space in the detector model. In addition, API

features are considered too extended to represent malware.

To overcome these limitations, Castro et al. [107] published

a poster using the GAN approach for generating adversarial

examples by injecting byte-level perturbations. The proposed

model works with real PE files instead of API feature

representations. Automatic byte-level real perturbation is

combined with feature representation to produce adversarial

examples. The use of richer feature representation and the

ability to return valid PE binaries allows the system to bypass

the GBDT detector and cross-evade different classifiers.

Using API sequences or feature representation demands

a lot of manual tasks to get the training data. Current

state-of-the-art research is directed towards end-to-end

malware detection without any feature engineering effort.

Yuan et al. [108] proposed a GAPGAN framework that

performs end-to-end black-box attacks against malware

detectors using byte-level features. Initial discrete malware

binary features are mapped to continuous space before

feeding to the generator network of GAPGAN, which

generates adversarial perturbations to be appended at the

end of original malware binaries. Dynamic thresholding

preserves generated subtle perturbations while mapping back

to discrete space from continuous space. The balance of the

attention of the generator across payloads and adversarial

samples is maintained using an automatic weight-tuning

strategy. Variable input and output size give great flexibility

to the GAPGAN model in contrast to prior research works.

To increase the efficiency of deployment and running time,

Zhu et al. [109] introduced the idea of n-gram to expand

feature sources from hexadecimal bytecode. The n-gram

features obtained from both malicious and benign files

are combined to form a 350-dimensional feature vector,

trained with MalGAN [105] network. Changing the features

to n-gram helps in carrying out attacks more efficiently.

Lately, to create adversarial samples against commercial

AV, Zhong et al. [110] proposed a generation framework

based on convolutional generative adversarial networks. The

framework majorly consists of a PE parser to extract features,

a generator to produce the perturbation path, a PE Editor

to edit, a Detector and a Discriminator to identify malware.

Their approach uses their distinct frameworks, Obfusmal,

Stealmal and Hollowmal, to attack a VirusTotal as their target

detector. Another approach by Gibert et al. [111] attempted

to resolve the high query requirement of GAN-based

approaches by proposing a conditional Wasserstein GAN.

They generate themalware sample resembling to a benign file

in feature space and later map it to end-to-end problems. The

approach’s generalization power is demonstrated on different

features: byte distribution, functions, libraries and strings.

Devadiga et al. [113] utilized GAN to further enhance the

GAN-based approach, fusing opcode and n-gram features

with LLM embeddings. Since the approach utilized LLM

and GAN as separate entities, exploring how the completely

merged approachwill generate such attacks is still interesting.

5) RECURRENT NEURAL NETWORK BASED ATTACK

Recent works have focused on the use of Recurrent Neural

Networks (RNN) for malware detection and classifica-

tion [4], [114]. Sequential malware API is used by RNN

to predict whether the program is malware or benign.

Papernot et al. [115] introduced adversarial sequence for

RNN processing sequential data. The authors demonstrated

the transferability property of adversarial examples generated

from feed-forward neural networks against recurrent neural

networks. Table 6 summarizes a comparison among RNN,

explainable ML, malware visualization, Generative AI, and

Genetic algorithm-based adversarial attacks. Hu et al. [51]

proposed an RNN-based adversarial attack for an RNN mal-

ware detector. The approximation of the victim RNN model

is done by training substitute RNN, and generative RNN

outputs sequential adversarial examples. Some irrelevant API

sequences are generated and inserted in vulnerabilities in

the original sequence. API sequences, represented as a one-

hot vector, are the input for the generator network, which

generates adversarial API sequences. The generative part of

RNN generates small API sequence pieces after each API,

which are inserted after the API. A benign sequence and the

Gumbel-Softmax [116] output are used to train the substitute

network to fit the victim RNN-based detector. The attention

mechanism helps by spreading the focus on different parts

of the sequence. Using this approach, authors were able

to decrease the initial detection rate of around 90% across

all malware detectors to around (1)-(3)%, showing almost

perfect evasion against all the cases.

6) EXPLAINABLE MACHINE LEARNING BASED ATTACK

One of the biggest challenges of machine learning is the

lack of explainability or reasoning behind such intelligent
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TABLE 6. RNN, Explainable ML, Visualization, Generative AI, and Genetic algorithm based adversarial.

decisions. Recent researchers have been able to bypass

malware detectors using the concept of explainable machine

learning. The explainability approach involves finding

the significance of each feature and then conducting

feature-specific modifications based on their importance.

Rosenberg et al. [117] proposed an explainable ML approach

to generate adversaries against multi-feature type malware

classifiers. Adversarial attackers first evaluate the most

effective list of features, and the features that are easy to

modify are selected. Transferability of explainability allows

the proposed attack to achieve a very high impact on the

target classifier, even in a black-box attack. This approach

assumes that the malware classifier and the substitute model

possess similar feature importance, leading to modification

in features to impact the target malware classifier. Different

explainability algorithms on white-box [88], [123], [124] and

black-box [125] are evaluated to make comparisons between

substitute model and victim model. The proposed end-to-

end PE adversarial attack performs feature modification

without harming the malware functionality as well as

interdependent features, giving an evasion rate as high as 34%

compared to 0.11%when adding random perturbation. Using

naive and engineered features of the EMBER dataset, the

explainable ML approach successfully bypasses the GBDT

classifier. Rosenberg et al.’s work presents explainability

as a dual-edged sword that can be used by adversaries to

make more explainable models and carry out more robust

adversarial attacks.

One of the recent works by Aryal et al. [118] demonstrated

the use of explainability as a tool to enhance the efficiency

of adversarial attacks. Their approach uses explainability

to attribute the different regions of Windows PE malware
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based on their contribution towards being detected by

malware detectors. The attribution is later used to derive the

adversarial injection strategy. They demonstrated an increase

of efficiency by more than 200% on using the explainability

to assist the attack. The amount of increase and success of

the attack approach is dependent on the region of the PE

malware file. Their experiments demonstrated an evasion

rate as high as 58% on attacking .text section, 36% with

.data section and 49% while targeting .rdata section.

7) MALWARE VISUALIZATION BASED ATTACK

Machine learning-based visualization detection has been

popular due to its ability to prevent zero-day attacks andmake

detection without extracting pre-selected features [126],

[127]. These approaches convert binary code into image

data and visualize the features of the sample, improving

the detection speed for malicious programs. Visualization-

based techniques are similar to the adversarial generation in

the image domain where pixel perturbations are introduced,

as shown in Figure 8. Liu et al. [119] introduced an Adversar-

ial Texture Malware Perturbation Attack (ATMPA) against

visualization-based malware detection using a rectifier in

neural network hidden layers. The framework allows an

attacker to probe with the malware image while visualizing

and also hiding them frommalware detectors. Code segments

are converted into grayscale images during the data trans-

formation module. In the adversarial pre-training module,

an attacker uses a machine learning approach to train an

adversarial example generation model, producing a noise

signal ¶. For a generation of AEs, optimization algorithms,

FGSM and C&W attacks are used. ATMPA method also

used Lp-based C&W attack to generate adversarial, including

l0, l2 and l∞ attack. Their approach produced a perfect

evasion rate of 100% in most of their attacks.

COPYCAT approach proposed by Khormali et al. [120]

produced both targeted and untargetted misclassification

on Windows and IoT malware datasets. The author used

two approaches, AE padding and sample injection, to pro-

duce adversarial malware for visualization-based detectors.

For padding method, COPYCAT generated adversarial x ′

using five different attack methods namely: FGSM [22],

C&W [57], DeepFool [59], Momentum Iterative Method

(MIM) [128] and Projection Gradient Descent (PGD) [129].

The generated adversarial needs to be converted to the same

dimensions as that of the original image before appending at

the end of the image. The binary samples from the targeted

class are injected into an unreachable section of the target

sample, producing an evasion rate as high as 99% in almost

all attacks.

In order to provide an adversarial attack that can

evade visualization-based detection in the presence of pre-

processing filtering, Benkraouda et al. [121] proposed a

binary rewriting-based attack on malware files. A mask

generator creates the space in the instruction boundary

to insert the perturbations. Once the perturbation mask

FIGURE 8. An adversarial generation against malware visualization based
detection.

is created, the modified version of C&W attack [57] is

used to generate an adversarial example in image space.

The modified version is in the sense that the perturbation

mask is imposed while carrying out an attack to restrict

the positions of perturbations. The NOP generator will

replace the perturbation introduced by the C&W attack

with the corresponding binaries that preserve the malware

functionality. Finally, the AE optimizer will use the Euclidean

distance metric to choose semantic NOPs that are close to

sequences in the allowed perturbation space. Their approach

produced a high evasion rate of 98.9% when tested with just

174 malware samples.

8) MISCELLANEOUS

Generative AI has been the biggest buzzword and is being

tested across every domain. To make adversarial attacks more

efficient, overcoming the query limit imposed in black-box

attacks, Hu et al. [122] proposed MalGPT that demonstrates

the ability of a Deep Learning-based causal language model

to enable a single shot evasion. The approach fine-tunes the

GPT-2 model with the benign files and tests it against the

VirusTotal to achieve an evasion rate of around 24.51% with

just a single shot attack.

In another approach, Yuste et al. [70] tried to bring

flexibility while preserving malware’s functionality in the

adversarial creation process. The author’s approach intro-

duces code caves between the PEmalware sections in the disk

that never get mapped to the memory. In the creation of code

cave, authors follow genetic algorithms through selection,

crossover and mutation to create an adversarial malware

sample. They were able to achieve an evasion rate as high

as 99% and significant success against VirusTotal detectors

as well.
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TABLE 7. An Android adversarial attacks.

B. ANDROID MALWARE ADVERSARIAL

Android has over 2.8 billion active users and owns 75%

market share in the mobile phone industry [138]. The

wide usage of the Android platform has attracted security

threats in numerous forms, and adversarial evasion attacks

are one of them. Table 7 provides a brief comparison

among different adversarial attacks crafted on Android files.

Grosse et al. [130], [139] generated adversarial examples for

state-of-art Android malware detection trained on DREBIN

dataset [134]. Authors migrated the method proposed by

Papernot et al. [56] to handle binary features of Android

malware while preserving the malicious functionality. Binary

features are derived by statically evaluating code based on

system calls and usage of specific hardware. Authors adopted
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the Jacobian matrix of neural network F for an adversarial

generation. To get adversarial, the gradient of the function

F with respect to X is calculated to get the direction of

perturbation such that the output of classification will change.

Perturbation ¶ with the highest positive gradient in the

direction of the target is selected and is kept small enough

to prevent negative change due to intermediary alterations

of the gradient. Functionality is preserved in this approach

by changing features, resulting in the addition of only a

single line of code. Research also confines the modifications

to manifest features related to AndroidManifest.xml

file contained within the Android application. With

permissions, intents and activities being the most fre-

quently modified features, authors successfully evaded

DREBIN classifier [134], preserving the semantics of

malware.

To overcome the white box attack issues,

Rosenberg et al. [73] implemented the GADGET framework

to convert malware binary to an adversarial binary without

access to malware source code. The proposed end-to-end

black-box method is extended to bypass the multi-feature-

based malware classifiers relying on the transferability in

RNN variants. For the target RNN detector, a malicious

API call sequence is the adversarial example to be

generated. Adversaries train a surrogate model with the

same decision boundaries as the detector and then execute

a white-box attack on the surrogate model. The black-box

detector is queried with synthetic input values from chosen

Jacobian-based heuristics in the prioritizing directions where

model output varies to build the surrogate model. API

calls that are nearest to the direction given by Jacobian

are inserted to generate the adversarial sequence. The

Jacobian matrix of the surrogate model is used for evaluation,

and after each iteration, a synthetic example is added

to each existing sample. Adversarial generation showed

the same success against the substitute and blackbox

model with short API sequences, making adversarial

generation faster. Framework also uses Cuckoo Sandbox to

verify the malicious functionality of generated adversarial

malware. GADGET framework wraps malware binary with

proxy code and increases the risk even higher, providing

malware-as-a-service.

Adversarial attacks on the malware domain have not

considered manipulating the feature vector to see the

impact of mutation due to the strict functionality-preserving

requirements of malware. The Malware Recomposition Vari-

ation (MRV) based approach proposed by Yang et al. [131]

performed an analysis of malware files semantically and con-

structed a new malware variant. Mutation strategies synthe-

sized by conducting semantic-feature mutation analysis and

phylogenetic analysis are used to perform automatic program

transplantation [140]. The proposed framework performs

inter-component, inter-app, and inter-method transplantation.

A more comprehensive attack is performed on the manifest

and the as dex code. Malware evolution attacks aim to

imitate and automate malware evolution using phylogenetic

evolutionary tree [141].

Several adversarial generation approaches have been con-

ductedwithminor changes to existing attacks. Liu et al. [132]

proposed a Testing framework for Learning-based Android

Malware Detection systems (TLAMD). Framework uses

a genetic algorithm to perform black-box attacks against

the Android malware detection system. Android files

are modified by adding the request permission codes

to the AndroidManifest.xml file originally proposed by

Grosse et al. [130]. The restriction was imposed on the types

and magnitude of permissions that can be added to the

AndroidManifest file. A random population is generated

giving the characteristics of permission to add and followed

by calculating the disturbance size for the sample malware.

Using the evaluated perturbation size, adversarial is generated

and tested against the detectionmodel. Based on the detection

result, either a new disturbance size is calculated using

genetic algorithms, or perturbation is successfully added

to the Android application. The fitness function searches

for optimal solutions to perform a mutation, leading to a

new fit individual able to evade detection. A random forest

approach filters out insignificant features during feature

extraction. Disturbances generated by genetic algorithms can

bypass malware detectors trained on neural networks, logistic

regression, decision trees and random forest.

Shahpasand et al. [74] implemented GAN to generate

adversarial by keeping a threshold on the distortion values

of generated samples. The generated optimum perturbation

¶ is added to existing malware to produce adversarial. Like

every other GAN architecture, the generator can learn the

distribution of benign samples, generating perturbations that

can bypass the learning-based detectors. The discriminator

implicitly enhances the perturbation by escalating the loss of

the generator while the adversarial samples are identifiable

with benign files.

The goal of adversarial generation has been to bypass

malware detectors without losing functionality. However,

due to the growth in adversarial malware in recent times,

defenders are employing firewalls to stop the adversarial

samples. Li et al. [72] extended the work of MalGAN [105]

to make it robust against a detection system equipped with

a firewall. Despite its high evasion rate against malware

detectors, MalGAN is found to be less effective against

detection systems using firewalls. Bi-objective GAN with

two discriminators with different objectives is used. One

discriminator helps distinguish between malware and benign,

whereas another discriminator helps to find out whether the

samples are adversarial or normal. Authors used permissions,

actions and application programming interface calls as a

feature to generate adversarial.

Pierazzi et al. [75] formalized the adversarial ML evasion

attacks in the problem space and proposed a problem space

attack on Android malware. This work is focused on attacks

modifying the objects in real input space corresponding to
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TABLE 8. Adversarial attacks on PDF malware.

the feature vectors. To overcome the inverse feature-mapping

problems from previous research, the author presents the

idea of side-effect features. An attack on a feature space

is projected towards a feasibility region satisfying the

problem space constraints to obtain the side effect features.

Though side effect features contribute towards preserving the

validity of malware, they alone can positively and negatively

influence the classification score. Authors use automated

software transplantation [140] to extract byte-codes from

benign donor applications to inject into a malicious host,

also known as organ harvesting. Prior research relied heavily

on adding permissions to the Android Manifest, which

is considered dangerous in Android documentation [142].

Authors bind the modifications to inject a single permission

into the host app. The gradient-based strategy using the

greedy algorithm proposed in this approach overcomes pre-

vious limitations of preserving semantics and pre-processing

robustness.

To overcome the challenges of limited access to target

classifiers while circumventing black-box Android malware

detectors, Bostani et al. [133] proposed a novel iterative and

incremental manipulation strategy. The attack is carried out in

two steps: preparation and manipulation. In the preparation

phase, automated software transplantation prepares action

sets from Android apps. The n-gram-based similarity method

is used to identify benign apps that closely match malware

files. Insertion of extracted gadgets of closely matching

benign files forces malware samples towards the unseen

spots of the classifier. In the manipulation stage, the

perturbation on malware samples is applied incrementally,

choosing from the collected action set. The search method

randomly chooses suitable transformations and applies them

to malware samples. This approach shows a high success

rate in query-efficient approaches but increases the size of

adversarial perturbation, increasing the risk of perturbation

being easily detected.

C. PDF MALWARE ADVERSARIAL

Along with widespread applications and adoption, PDF

documents have been one of the most exploited avenues for

adversarial malware attacks. Initially, JavaScript-based and

structural properties detection was prominent in recognising

malware in PDF. The freedom to distribute chunks of

Javascript code and assemble them at run-time and the high

degree of expressiveness in JavaScript led to the failure

of Javascript-based detection. Despite significant growth in

PDF malware detection from JavaScript using deep learning

techniques, the challenges posed by adversarial examples still

exist. Early evasion attempts on PDF documents were crafted

by Smutz et al. [148] and Šrndić et al. [149] using heuristic

approaches. The authors proposed an approach to build more

robust PDF malware detection techniques that showcased the

adversarial ability to mislead linear classification algorithms

successfully.
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The flexible logical structure of PDF has allowed us

to craft adversarial by carefully analyzing its structure.

Maiorca et al. [143] demonstrated an evasion technique

called reverse mimicry attack against popular state-of-

art malware detectors [148], [150], [151]. Traditionally,

malicious PDF files are believed to be structurally different

from benign PDF files. Taking advantage of this structural

difference, most malware detectors were able to discriminate

PDF files with very high accuracy. However, malware files

that can imitate the benign file structure or vice-versa

can easily fool the detector. Reverse mimicry attacks can

make benign files malicious with minimal changes in their

structure. Malicious payloads poison the samples, initially

classified as benign. Three kinds of malicious payloads

introduced to benign files take the sample across the decision

boundary of the malware detector. The first one is the EXE

payload with malicious embedding, which is introduced

using the Social Engineering Toolkit as a new version

after its trailer. The new trailer will point to a new object

when adding a new root object. In this payload, authors

embedded malicious PDF files inside other benign PDF

files using the embedded function of PeePDF [152] tool.

The embedded PDF file automatically opens without user

interaction, allowing malicious PDF to be embedded inside

a benign one without any restriction on embedding the file.

PDF file injection enabled an attacker to have fine-grained

control of structural features in the carrier file. A final kind of

payload insertion is carried out by encapsulating a malicious

JavaScript code without reference to other objects. Table 8

provides an overview of adversarial attacks carried out on

PDF files.

Optimization-based evasion attack against PDF malware

detection was introduced by Biggio et al. [79], [144]. The

attack was carried out using a gradient-based optimization

procedure inspired by Golland’s discriminative directions

technique [153] to evade linear as well as non-linear clas-

sifiers. The proposed work carried out complete knowledge

and constrained knowledge attacks on non-linear models

like Support Vector Machine(SVM) and neural networks.

This approach used a gradient descent procedure with

special consideration to avoid getting stuck on local optima.

To increase the probability of successful evasion, an attacker

needs to reach legitimate attack points and to reach this,

the additional penalizer term is introduced using a density

estimator. The extra component helps imitate features of

known legitimate samples, reshaping the objective function

by biasing the gradient descent towards the negative class

concentration region.

Srndic et al. [145] further enhanced optimization based

attack against deployed system PDFrate [148] using mimicry

attack, and Gradient Descent and Kennel Density Estimation

(GD-KDE) attack. The attack takes advantage of the discrep-

ancy between the functioning of PDF readers and PDFrate in

terms of interpretation of semantic gaps as explained in [154].

The dummy contents to insert should be ignored by PDF

readers but affect the feature computation in PDFrate. PDF

FIGURE 9. A PDF adversarial malware generation based on genetic
algorithm [147].

reader looks at the end of the PDF for the cross-reference

table and goes to locate the object directly. The trailer section

of PDF files was moved arbitrarily far away from the cross-

reference table, generating a space for file injection without

affecting the functionality of the PDF document.

PDF detection techniques mostly rely on PDF parsers

to extract features for classification [150], [155]. These

parsers are unable to extract all JavaScript of PDF files.

Carmony et al. [146] created a reference JavaScript extrac-

tor that measured the difference between the parser and

Adobe Reader by tapping Adobe Reader on locations

given by binary analysis. Manual analysis refines the few

candidate tap points provided by dynamic binary analysis.

JavaScript extraction tap points help Adobe Reader extract

and execute JavaScript code from PDF documents. The

memory accessed by Adobe Readers when reading PDF

files using automatically executable JavaScript is analyzed to

determine the raw JavaScript extraction tapping points. The

proposed PDF parser confusion attack applies obfuscation

on malicious PDF samples by analyzing the weaknesses of

extractors. Reference extractor enables new obfuscation in

comparison to existing extractors, and a combination of these

obfuscationswas able to bypass all JavaScript extractor-based

detectors.

In order to preserve maliciousness, several works take a

conservative approach by inserting only new content and

refraining from modifying or removing existing content.

Xu et al. [147] proposed a black-box generic method to

evade the classifier as shown in Figure 9. As in the figure,

first, the population is initialized by performing random

modifications on malicious files. Then, each member of

the population is passed through a target classifier to

measure maliciousness and through Oracle to confirm the

functionality. Suppose no samples can evade the target

classifier with functionality intact. In that case, a subset of

the initialized population is chosen for the next generation
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FIGURE 10. An adversarial generation workflow against hardware
malware detectors.

based on the fitness score, indicating progress towards the

evasive sample. The population generation is repeated, and

this process is continued until the evasive sample is found

or threshold iterations are met. The author uses genetic

programming (GP) to bring off stochastic modifications in

an iterative manner till evasion.

D. HARDWARE BASED MALWARE ADVERSARIAL

Hardware malware detectors use low-level information

on features from hardware performance monitoring units

available in CPUs. Hardware malware detectors are prone

to reverse engineering [159], allowing mimicry attack [160]

to reverse-engineer the models. Adversarial against such

detectors are carried out by generating perturbations in

the form of low-level hardware features, following the

architecture shown in Figure 10. These adversarial gen-

eration approaches differ only in the type of features

used in comparison to previous works. Table 9 briefly

compares adversarial attacks against hardware malware

detectors. Khasawneh et al. [156], [161] demonstrated eva-

sion of Hardware Malware Detectors(HMD) after being

reverse-engineered, using low overhead evasion strategies.

Data collected by running malware and cleanware programs

on a virtual machine operating onWindows 7 are used to train

a reverse-engineered model. Data required for training are

dynamic traces while executing the program and are collected

by using the Pin instrumentation tool [162]. These dynamic

traces are profiles of the program’s run time behaviour.

This dataset is comprised of three types of feature vectors:

Instruction features, Memory address and Architectural

events. Authors [156] constructed a Dynamic Control Flow

Graph (DCFG) of the malware to insert instructions into

the executing malware dynamically. Injection of instruction

features increases the weight of the corresponding feature,

while memory feature injection alters the histogram of

memory reference frequencies. Khasawneh et al. picked the

instructions with negative weights to move the malware away

from the decision boundary. A heuristic approach was taken

to identify the candidate instructions for insertion. Weighted

injection strategy where the probability of selecting particular

instruction is proportional to negative weight allowed to

bypass HMD with around 10% dynamic overhead.

Dinakarrao et al. [157] also proposed an adversarial

attack on low-level micro-architectural events captured

through Hardware Performance Counters (HPC). Victim’s

defense system (HMD) being black-box needs to be reverse

engineered to mimic the behaviour. The number of HPC

patterns required to bypass HMD is unknown, which leads

to the need for an adversarial sample predictor. The HPC

patterns perturbing mechanism are implemented using a

lower-complexity gradient approach, Fast Gradient Sign

Method (FGSM). The adversarial perturbations needed to

misclassify the HPC trace are calculated using the cost

function of the neural network.With ¹ being hyperparameters

of neural network, x is input HPC trace to the model and y as

output, cost function L(¹, x, y) is defined as:

xadv = x + ϵ sign(1xL(¹, x, y)) (9)

where ϵ is a scaling constant ranging between 0.0 to 1.0 and

is used to limit the perturbation to a very small value. The

LLC load misses and branch misses are the most significant

micro-architectural events of malicious applications [163].

Malicious circuits, or hardware Trojans, can be inserted into

circuits producing logically equivalent results. Modifications

in the manufacturing stage are more tedious than in the

design stage, as few changes in a hardware description

language (HDL) are enough to embed hardware Trojans into

the circuit. A trigger circuit allows the payload circuit to

trigger malicious behaviour, such as information leakage and

degrading performance, after satisfying the trigger condition.

Nozawa et al. [158] proposed an architecture to develop the

adversarial hardware Trojan using Trojan-net Concealment

Degree (TCD) and Modification Evaluating Value (MEV).

Feature mapping issues, like in all other adversarial attacks

in Windows, Android and PDF, are also prevalent in

hardware Trojan. Hardware circuits are represented in a

graph structure, and modifications in feature space do not

guarantee the transfer back of modification to the graph

structure. Two stages in the designing period are known for

adversarial attacks. The first is the RTL (Register-Transfer

Level) description design step, and the second is after logic
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TABLE 9. Summary of hardware based malware adversarial.

synthesis. The authors take the assumption of the Trojan

detector using neural network architecture and the availability

of raw output values from the detector to train the adversarial

model.

E. LINUX MALWARE ADVERSARIAL

Distributed edge computing has increased the use of IoT

devices. With many devices using Linux systems, robust mal-

ware detection is paramount. Both deep learning networks

and Control Flow Graph (CFG) based malware detectors in

IoT devices are found to be vulnerable against adversarial

samples [164]. In off-the-shelf adversarial attacks, authors

examined different well-known adversarial algorithms based

on feature extraction. Generic adversarial algorithms are

successful in adversarial generation with a high evasion

rate but are limited in applying practical changes to feature

space. In response to these challenges, adversarial based on

a control flow graph has been proposed [164]. Programs

are structurally analyzed using vertices and edges with the

help of CFG. The graph embedding and augmentation (GEA)

approach combines the original graph with the target graph,

producing misclassification while preserving the original

program’s functionality. GNU compiler collection command

compiles in a way that only functionality related to the

original sample is executed. Linux-based malware binaries

easily evade IoT malware detection using different graph

algorithmic constructs. Our literature search found minimal

works carried out as adversarial malware attacks in the Linux

domain and also found that Linux and Android file systems

are used interchangeably.

VI. CHALLENGES AND FUTURE DIRECTIONS

Following the introduction of evasion attacks against deep

learning by Szegedy et al. [19], the research community is

concerned about its impact in different domains. To con-

tribute towards the literature, we conducted comprehensive

research on various adversarial evasion attacks carried out

against the malware detection domain. Although our survey

highlights several successful adversarial attacks crafted

against anti-malware engines, novel attacks are still evolving.

In this section, we will discuss potential research open

challenges and future direction as the adversarial approaches

in malware analysis domain become more prevalent. Our

intention is in no way to overlook or understate the

contributions of existing adversarial attack researchers in the

malware domain.

A. REALISTIC (PRACTICAL) ATTACKS

Most of the existing adversarial attacks in the survey are

carried out using white-box approaches. White-box approach

is an unrealistic scenario in itself as it is unlikely that

any ML-based anti-malware engine will reveal information

such as algorithms used, gradients of the model and

hyper-parameters used to fine-tune the model. Getting this

information about a target model provides a ‘superpower’

to attackers as they can camouflage the data in any way

they want. Few of the existing black-box attacks also depend

on the performance of models provided in numeric form.

In addition, most of the works are centred on static malware

detection. Modern industrial malware detection engines

merge both static and dynamic detection techniques. Further,

the attacker rarely gets the privilege to work with data at

rest. There have been very few successful attempts to craft

adversarial examples against data in motion [165], [166]. The

malware domain can have data that is moving at a very high

pace and may require performing an attack on data in motion.

Adversarial attacks are not always swift enough to work with

data moving across network channels. So, more adversarial
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attacks are to be experimented with systems deployed with

both static and dynamic detection as well as against data at

motion.

B. PERTURBATION INSERTION SPACE

Smart perturbation insertion plays a key role in the success

of adversarial attacks. Initial adversarial evasion attacks

on malware began by placing perturbations at the end

of the malware file [83]. Most of the existing attack

approaches are concentrated on additive adversarial perturba-

tion. Demetrio et al. [27] later discovered that perturbations

embedded at header sections of files resulted in effective

adversarial attacks compared to perturbations appended at

the end. Suciu et al. [28] further investigated the possibility

of inserting perturbations in slack regions of file which are

left behind by the compilers. These experiments provide

inconclusive information about suitable insertion space for

perturbation. Hence, further research is needed to determine

optimal locations for perturbation that are more effective as

well as undetected.

C. ENHANCING EFFICIENCY

Adversarial efficiency can be defined in terms of different

parameters. One of the efficiency criteria is the length of

the payload to be generated/injected. The significance of the

inserted payload determines the efficiency of perturbation.

One way to insert efficient features is to first decipher

the importance of each feature in the decision-making of

the machine learning model. Despite the gradient helping

attackers to generate perturbation in the right direction,

efficiency may be limited due to uncountable iterations to

reach the adversarial goal. Applying small perturbations iter-

atively results in high-quality adversarial evasion. However,

these approaches will require an immense amount of time,

making it impossible for real-time operation. To challenge

this limitation approaches like the Fast Gradient SignMethod

are proposed, which produce perturbations at a very high pace

but are less effective and have a high chance of being detected.

Hence, research is needed to ensure that efficiency is looked

at both in terms of quantity and quality of noise generated

to produce adversarial evasion. In addition, the trade-off

between performance and computational complexity should

be analysed to evaluate the worth of performing adversarial

attacks [167].

D. MAPPING SPACE CHALLENGE

Mapping between problem space and feature space is

performed by an embedding layer present in between them.

The features in problem space can be of any form, like

n-grams, API names or other non-numeric parameters, which

can not be directly processed by machine learning models.

This causes the problem space vectors to be converted into

feature space which are some form of numeric values. The

embedding layer, however, is an approximation mapping

table between features in problem space and feature space.

Hence, there is no exact mapping between problem spaces

and feature space, which results in approximate mapping,

leading to a slightly altered feature space than the original

problem space. After adversarial examples are crafted on

malware files, mapping features back to problem space also

loses a few crafted perturbations due to a lack of absolute

mapping. Therefore, the challenge of defining adversarial

space and efficiently searching elements approaching the best

replacement has always been there in the adversarial domain.

E. AUTOMATED ATTACKS

All of the discussed adversarial attacks require manual

intervention at a few steps of the attack procedure. Human

intervention makes the process time-consuming and imprac-

tical in many cases. In white-box attacks, the loss function

of deep neural networks can be used to determine the

most influential features, and the corresponding features

can be automatically modified [44]. Current literature relies

on human efforts for feature extraction, mapping to adver-

sarial generation and functionality verification. Minimizing

human effort while moving towards automated adversarial

generation could be an interesting arena to work on in the

future [168]. Novel research is needed to fully automate the

adversarial attack ecosystem.

F. EXPLAINABLE ADVERSARIAL

Adversarial vulnerabilities have been considered unseen

spots of machine learning models but current research

work fails to assert concrete reasoning behind these unseen

spots. Having no consensus behind such reasoning leaves

explaining the existence of an adversarial example in an

open research domain. Goodfellow et al. [22] first attributed

vulnerability to the linear behaviour of the model in high

dimensional space. However, there has been research that

contradicts the accountability of adversarial behavior solely

to the linearity of the model as highly non-linear models are

also evaded successfully [169]. Explaining the adversarial

phenomenon both in terms of models’ functionality and

features’ contribution can pave the path for more robust

adversarial attacks. Features can be assigned appropriate

weights based on their contribution to alleviating the

adversarial effect in the model. With the current state of the

literature, explainable adversarial is still at an immature stage

and requires concrete efforts from the community.

G. TRANSFERABLE ATTACKS

Transferability refers to the generalization property of the

attack methods. A machine learning model with transfer-

ability property, trained on one particular dataset, can be

generalized well for another dataset as well. Transferability

is a common property for evasion attacks and is extensively

exploited by black-box attacks. Untargeted attacks are found

to be more transferable than targeted ones due to their

generality [168]. Transferability can also take three different

forms such as the same architecture with different data,
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different architecture with the same application and different

architecture with different data [32]. Although some studies

have already been carried out on transferability, there is no

universally accepted postulation. The ability to use the same

data, model or algorithm to attack all available targets should

be one of the goals of future research on adversarial attacks.

H. ATTACKING ADVERSARIAL DEFENSE

The influx of research on the adversarial domain during

the last few years demonstrates the extent and importance

of work in performing adversarial attacks. The profound

activity has not been limited to the attack side only, but

considering the threat posed to the entire machine learning

family, researchers have been equally active on the defensive

side as well. Performing adversarial attacks is turning out to

be harder than ever, as many systems are designed robustly

with adversarial defence in mind. Defensive approaches like

adversarial training [170], defensive distillation [171] are

proposed to stop adversarial attacks. Some recent techniques

are hiding the gradients of the target model [42], which,

if carried out successfully, can completely nullify the threat of

gradient-based adversarial attacks. Hence, future adversarial

attacks are required not only to bypass machine learning

detection but also to overcome adversarial defences.

I. FUNCTIONALITY VERIFICATION

During adversarial evasion attacks, the modifications carried

out in a malware file should not alter the functionality of the

malware. The contents in the executable file could be very

sensitive, and modification of a single byte can completely

change the functionality of malware or even break the file.

Most of the adversarial attacks have constrained themselves

in perturbation type, volume and insertion techniques to

preserve the functionality of the executable. Despite such

gravity, most adversarial attacks can still not preserve the

functionality of modified files. Moreover, limited mech-

anisms exist to verify the functionality of malware after

perturbing the file. One of the available approaches is

to run the malware file in an isolated environment like

Cuckoo Sandbox [172]. However, running every individual

malware in a sandbox is inefficient and unrealistic. Therefore,

further research should be directed to develop tools that

can automatically and efficiently verify the functionality of

malware post perturbations.

J. BENIGN FILES ATTACK

Adversarial attacks are performed in malware files by

inserting some non-malicious contents that do not tamper

with any functionality other than classification decisions.

Modifying malware files slowly has been a mainstream

approach for adversarial. However, no limited or no existing

research has studied the possibility of inserting malicious

content into a benign file. This approach works in a reverse

way than the established adversarial approaches. Inserting

and hiding malicious payloads at different locations of files

without affecting the classification decision is also a future

research topic in adversarial and requires attention.

K. TARGETING UNEXPLORED ALGORITHMS

Most of the machine learning algorithms have already been

victimized by adversarial attackers, including sophisticated

deep neural networks. However, there are some deep neural

networks that haven’t yet been compromised by adversarial

attackers such as Generative Adversarial Networks (GANs),

Deep Reinforcement learning (DRL) and Variational Auto-

Encoders (VAEs) [44]. These algorithms are in the develop-

ment stage, which has capped the adversarial attempts against

them to date. Differentiable neural computer [173] are only

attacked once [174]. These new sets of algorithms are yet to

be explored by adversarial attackers.

L. STANDARDIZING TESTBED AND METRICES

Adversarial attacks discussed in the survey are carried out

in lab environments, taking numerous assumptions that may

be unpragmatic for real-world challenges. Most of the works

have assumed unlimited access to machine learning model,

favourable datasets and weak classifiers to bolster their

results. The current literature lacks standardized datasets

and detection mechanisms to measure the exact performance

of adversarial attacks. Hence, the attack testbed should be

standardized to ensure the assessment uniformity across the

research community.

The issue is not limited to the test environment but also

evaluation metrics. More often than not, the performance

of the attacker is reflected in terms of evasion accuracy

inherited from machine learning models. However, accuracy

only provides a small fraction of the attacker’s performance

in the adversarial domain. To provide the overall quality

of attacks, metrics such as transferability, universality, and

imperceptability need to be studied [167]. The metrics

should be descriptive, fair, and complete to evaluate the

quality of attacks performed across different environments.

Some metrics should measure the degree of functionality

preservation while manipulating the files. Metrics can also be

designed to determine the sensitivity of file structure, helping

attackers determine the level of cautiousness required during

modification. These complete and fair metrics will not only

help to understand and compare the adversarial quality but

also enhance the performance of attacks.

M. ADVERSARIAL DEFENSE

The growth in adversarial attacks and novel approaches

will also require developing advanced defense mechanisms.

Although our survey is focused on adversarial evasion

attacks, we believe it is important to briefly highlight future

defence directions to present a comprehensive review paper.

Among several defense techniques proposed, defensive

distillation [58] and adversarial training [175], [176] are

found to be the most effective. Collection of adversarial

samples in large amounts to perform adversarial training
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is a tedious task as neural networks require a massive

volume of adversarial data [177]. An adversarial generation

approach was proposed by Goodfellow et al. [112]; however,

it is still very far away from being efficient and accurate

enough to perform robust adversarial training. In addition,

many defensive approaches that have been tested in an

image domain [178], [179] are yet to be introduced for

defence in malware adversarial domains. Recent research

using robust machine learning architectures like Generative

Adversarial Networks (GANs) [180] for defending against

adversarial attacks requires more exploration to thwart or

detect sophisticated evasion attacks. Overall, future research

works on adversarial malware should be directed to build

more robust, efficient, generalized and reliable defence

mechanisms that can protect malware detection models

against adversarial attacks.

VII. CONCLUSION

Machine learning and AI solutions are increasingly playing

an important role in the cyber security domain. However,

these data-driven systems can be easily manipulated, misled

and evaded, which can have serious implications. Recent

surges and research in adversarial attacks highlight the

vulnerability of ML models, making them ineffective against

even minor perturbations. In this paper, we provide a

comprehensive survey of recent work that focuses on

adversarial evasion attacks in the malware analysis domain.

We have summarized the state-of-art adversarial attacks

carried out against anti-malware engines in different file

domains. The survey highlights the limitations of ML

architectures against minute perturbations in the form of

adversarial attacks. We taxonomize the adversarial evasion

world of malware based on the attack domain and the

approach taken to realize such attacks. The survey briefly

discusses approaches taken by researchers, comparing them

with other concomitant works. We conclude the survey

by highlighting current challenges, open issues and future

research directions in adversarial malware analysis. This

work will provide a definitive guide to researchers and the

community to understand the current scenarios of adversarial

malware evasion attacks, prompting unexplored research

territories in this highly dynamic and evolving domain.
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