IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received 5 February 2025, accepted 23 March 2025, date of publication 28 March 2025, date of current version 14 April 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3555926

== survey

Explainable Artificial Intelligence (XAl) for
Malware Analysis: A Survey of Techniques,
Applications, and Open Challenges

HARIKHA MANTHENA“1-*, SHAGHAYEGH SHAJARIAN“1-*, JEFFREY C. KIMMELL "2,
MAHMOUD ABDELSALAM“1, SAJAD KHORSANDROO 1,
AND MAANAK GUPTA“2, (Senior Member, IEEE)

!Computer Science Department, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
2Computer Science Department, Tennessee Tech University, Cookeville, TN 38505, USA

Corresponding author: Shaghayegh Shajarian (sshajarian@aggies.ncat.edu)

This work is supported by Google and NSF grants 2416992, 2230610, 2113945, 2329705, and 2200538 at North Carolina A&T State

University and 2416990 and 2230609 at Tennessee Tech University.

*Harikha Manthena and Shaghayegh Shajarian contributed equally to this work.

ABSTRACT Machine learning (ML) has rapidly advanced in recent years, revolutionizing fields such
as finance, medicine, and cybersecurity. In malware detection, ML-based approaches have demonstrated
high accuracy; however, their lack of transparency poses a significant challenge. Traditional ML
models often fail to provide interpretable justifications for their predictions, limiting their adoption in
security-critical environments where understanding the reasoning behind a detection is essential for threat
mitigation and response. Explainable Al (XAI) addresses this gap by enhancing model interpretability
while maintaining strong detection capabilities. This survey presents a comprehensive review of state-
of-the-art ML techniques for malware analysis, with a specific focus on explainability methods and
research mainly from 2018 to 2024. We examine existing XAl frameworks, their application in malware
classification and detection, and the challenges associated with making malware detection models more
interpretable. Additionally, we explore recent advancements and highlight open research challenges in the
field of explainable malware analysis. By providing a structured overview of XAl-driven malware detection
approaches, this survey serves as a valuable resource for researchers and practitioners seeking to bridge the
gap between ML performance and explainability in cybersecurity.

INDEX TERMS Explainable malware analysis, interpretable malware analysis, explainable Al, Al for

security, malware detection, malware classification.

I. INTRODUCTION

In today’s digital landscape, malware remains a formidable
threat, causing billions in financial losses and disrupting
critical services worldwide. The increasing sophistication
of attacks, particularly zero-day malware, has rendered
traditional detection and analysis methods increasingly
ineffective. As a result, there is a need for advanced,
automated malware detection solutions that can adapt to
evolving threats.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

Machine Learning (ML) and Deep Learning (DL) have
emerged as powerful tools for malware detection, demon-
strating the ability to identify both known and zero-day
threats. However, to achieve high accuracy, these models
often grow complex and opaque, making it difficult to
understand how predictions are made. DL-based models,
in particular, are frequently described as MLs, as their
decision-making processes remain largely inscrutable to
users and security professionals alike [1]. This lack of
interpretability poses a significant challenge in cybersecurity,
where understanding why a detection occurred is just as
important as the detection itself for ensuring reliability,
fairness, and error analysis.

© 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

VOLUME 13, 2025

For more information, see https://creativecommons.org/licenses/by/4.0/

61611

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

To address this issue, Explainable Al (XAI) has gained
increasing attention. XAI aims to bridge the gap between
accuracy and explainability by providing transparent,
comprehensible explanations for model predictions. By mak-
ing malware detection systems more explainable, XAl
enhances trust, facilitates threat analysis, and enables security
professionals to make informed decisions based on model
outputs [2].

Several surveys [3], [4], [5], [6], [7] have reviewed XAlI,
covering research areas, methods, and opportunities with
mathematical and visual explanations. Danilevsky et al.
[8] focus on XAI in NLP, while Mohseni et al. [9]
propose an evaluation framework. Li et al. [10] explore
knowledge-driven and data-driven = methods, and
Confalonieri et al. [11] discuss XAI’s evolution in expert
systems. Speith [12] provides a taxonomy of XAl approaches
and challenges.

Saeed and Omlin [13] review XAI challenges and
research directions, while Milani et al. [14] survey
explainable reinforcement learning. Nasser and Nasser [15]
examine hardware-assisted ML for malware detection.
Charmet et al. [16] explore XAI’s role in cybersecurity
but do not specifically address explainable ML in malware
analysis.

Despite growing interest in XAI (2018-2024), no survey
exclusively focuses on malware analysis. Existing literature
lacks a clear distinction between ‘interpretable’ and ‘explain-
able’ Al, except for Lin and Chang [17], who categorize
interpretable malware detectors. Our survey fills this gap
by covering both interpretable and explainable methods in
malware classification and detection, introducing a taxon-
omy for explainability approaches, and summarizing recent
advancements. This work aims to provide a comprehensive
view of explainable malware analysis, its methodologies, and
open research challenges.

Hence, this paper contributes significantly to the field of
XAI with a particular focus on malware analysis. The key
contributions are as follows:

« Our work presents an extensive survey covering various
XAI models and techniques used across multiple
disciplines. This contribution offers a broad view of XAl
and showcases its applications and relevance in different
areas.

e We provide an in-depth overview of ML-based
approaches in malware detection to understand the
intersection of ML and malware detection, which fills
a gap in the current literature.

« Our research identifies key limitations and challenges in
the area of explainable malware detection. We specifi-
cally point out the predominant focus on Android-based
malware in existing research, suggesting a need for a
more diversified approach in future studies.

o The paper also explores potential avenues for future
research in XAI applied to malware detection.
We emphasize less-explored areas, such as malware
detection for Windows, PDF, Linux, and hardware,

61612

thereby encouraging further investigation and develop-
ment in these domains.

Our survey method involves a detailed search across
various academic databases and platforms, including Google
Scholar, IEEE Xplore, Science Direct, ResearchGate, arXiv,
ACM, and Springer. We focus our search using a series
of targeted keyword parameters. These keywords were
chosen to cover a wide range of pertinent subjects. They
included terms such as ‘“‘explainable machine learning,”
“explainable artificial intelligence,” “XAIL,” explainable
malware,” ‘“‘explainable malware analysis,” “explainable
malware detection,” and “‘explainable Al on malware detec-
tion.” In addition, we also used keywords like “interpretable
machine learning,” ““interpretable artificial intelligence,” and
“interpretable malware analysis.” This approach allowed for
an extensive and systematic review of the literature in the
domains of explainable and interpretable ML and Al, with
a particular emphasis on malware analysis and detection.

The structure of the remainder of this paper is outlined as
follows: Section II offers an in-depth exploration of file clas-
sification and online malware detection methods. Section III
discusses ML-based models and the explainable techniques.
Section IV is dedicated to the studies on approaches
and techniques in explainable malware classification and
detection. This is followed by Section V, which addresses
the open challenges and future prospects in this area. Finally,
The paper concludes with a conclusion, which provides a
summary of our work.

LR T3

Il. MALWARE DETECTION APPROACHES

Malware detection techniques are used to detect the threat
posed by malware. They are generally categorized into
two distinct approaches: File Classification and Online-
Based Approaches. The field has seen considerable research
efforts, with numerous studies and developments aimed at
enhancing the efficacy and reliability of these malware
detection methodologies.

A. FILE CLASSIFICATION APPROACH
File classification focuses on the analysis of a file’s code
to determine whether it is malware. The process begins
with the identification of a potentially suspicious file.
To thoroughly assess its nature, file classification employs
different methods, which fall into three main categories:
Static analysis, Dynamic analysis, and Hybrid analysis.
Static analysis involves examining the file’s code without
executing it and looking for malicious patterns. In contrast,
in dynamic analysis, the file is executed in a secured
environment to observe and analyze its behavior. Hybrid
analysis combines these two approaches, leveraging the
strengths of both static and dynamic examinations. Once
a file is concluded to be non-malicious, it is generally
exempt from ongoing scrutiny. These varying techniques in
file classification are designed to address different aspects
of malware detection. This categorization, along with the

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

File Classification

Dynamic

Static Analysis el Hybrid Analysis
. Suspicious PE File .
Static Collection Dynamic
Feature Extraction Run Program in Sandbox
Lt 3 Sl st Record System Behavior
ML Model

Benign

Malware Detection Results

Malicious

FIGURE 1. Machine learning-based file classification techniques.

explanation of dynamic and static analysis processes, are also
illustrated in Fig 1.

1) STATIC ANALYSIS
Static analysis involves the careful examination of an
executable’s signature without the need to execute the code,
aiming to classify the file as malware if the signature appears
malicious or as benign if otherwise [18]. This method has the
reverse engineering of malware code and involves the detailed
processing of extracted features to discern and interpret
any malicious activities through a signature-based approach.
In this context, a signature refers to a unique identifier for a
binary file, determined by calculating its cryptographic hash.
Multiple research, e.g. studies by Hou et al. [19] and
Kim and Lee [20], have been dedicated to enhancing static
malware detection, with a particular focus on the extraction
of Application programming interfaces (API) calls from
Portable Executable (PE) files using techniques like stacked
autoencoders. This process involves extracting vital features
such as API calls, Opcode sequences, and N-Grams from
potentially suspicious files, as illustrated in Fig 1, which are
then employed to train ML algorithms for more accurate and
efficient malware detection.

VOLUME 13, 2025

For instance, the work of Shankarapani et al. [21] has
been using API and Opcode sequences to effectively identify
segments of code that closely resemble known malware
patterns. However, it is important to recognize that static
analysis, while valuable, is not without its limitations. One
significant challenge is its inability to detect malware that
is actively running within a system or to identify completely
new malware variants that have not been cataloged.

2) DYNAMIC ANALYSIS

It involves executing malware within a secure virtual
environment, such as a cuckoo sandbox, to study its behavior
meticulously [18], [22]. This method is particularly effec-
tive in addressing zero-day malware threats. The dynamic
analysis process, as depicted in Fig 1, starts with executing
a suspicious PE file in a sandbox environment, ensuring
isolation from external systems. This controlled execution
allows for the collection of essential data, including memory
features, system calls, and function calls. Subsequently, these
collected data are preprocessed and used to train various
ML-based algorithms, which can enhance the malware
detection model.

61613

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

Unlike static analysis, dynamic malware analysis requires
the execution of code in a time-restricted, closed environ-
ment, which can be resource-intensive. Research endeavors,
such as studies by Firdausi et al. [23] and Luckett et al.
[24], have utilized system calls as key features for training
traditional ML models like k-Nearest Neighbor (k-NN),
Decision Tree, Support Vector Machine (SVM), and Naive
Bayes. Furthermore, studies by Pirscoveanu et al. [25], and
Tobiyama et al. [26] have focused on the extraction of features
from API calls, evaluating the effectiveness of ML algo-
rithms, including Random Forest, k-NN, and Convolutional
Neural Networks (CNN) in dynamic malware analysis. These
approaches highlight the dynamic method’s capacity for
dealing with complex malware detection challenges, although
it requires significant time and resource allocation.

3) HYBRID ANALYSIS

A methodology integrating static and dynamic techniques,
hybrid analysis, is another malware detection technique [27].
This concept has been explored in various studies. For
example, Santoso et al. [28] utilized a combination of
Artificial Neural Networks (ANN) and CNN for malware
detection. Focusing on Android malware, Zhu et al. [29]
proposed an innovative framework using the Merged Sparse
Autoencoder (MSAE), which is an unsupervised learning
algorithm demonstrating its effectiveness.

Adding to this, Tong and Yan [30] developed a method that
combines static and dynamic analysis for mobile malware
detection. This method compares system call patterns of
benign and malicious applications with the dynamic analysis
applied to unknown applications. Subsequent offline com-
parison of these pattern sets further validates the unknown
application’s nature. Their results show the advantages of
the hybrid approach over methods relying solely on static or
dynamic analysis. Altaher and Barukab [31] also proposed
a hybrid methodology for Android malware detection that
leverages API calls and application permissions, further
substantiating the potential of hybrid techniques in this field.

B. ONLINE MALWARE DETECTION

Online malware detection stands out as a distinct approach in
the cybersecurity domain. Unlike static, dynamic, or hybrid
methods from file classification that analyze specific malware
samples, online detection monitors the entire system in real-
time, which enables the capture of malware at any moment,
regardless of its activity level. This technique focuses on the
behavior of the entire machine rather than individual malware
behaviors.

Key contributions in this area include the work of
Watson et al. [32], who developed a system using perfor-
mance metrics to build SVM, achieving a 90% accuracy rate.
Azmandian et al. [33] proposed intrusion-based detection
techniques, while Abdelsalam et al. [34] introduced a sequen-
tial k-means clustering algorithm for anomaly detection,
specifically designed for a standard 3-tier architecture on

61614

an OpenStack Testbed. Their approach leverages virtual
machine systems and resource utilization features but shows
limitations in detecting low-resource-utilization malware.

Further research was done by McDole et al. [35],
who examined various CNN models to determine their
suitability for malware detection in cloud Infrastructure as
a Service (IaaS). Their subsequent study [36] compared the
process-level performance metrics of different deep learning
models in the context of online malware detection in cloud
IaaS environments.

Similarly, Kimmel et al. [37], [38] presented a compre-
hensive analysis of the effectiveness of several ML models
for online malware detection, focusing on system features
describing processes in a virtual machine. They emphasized
the use of CNNs, which are known for their simplicity and
effective representation in 2D format. Abdelsalam et al. [39]
extended this concept by employing a 3-dimensional CNN to
enhance classifier accuracy and specifically target low-profile
malware, achieving an accuracy rate of 90%.

Ill. EXPLAINABILITY IN MACHINE LEARNING

DL-based models enable machines to develop complex
hierarchical data patterns, which play a key role in tasks like
classification or detection. These ML models, by layering
and integrating various levels of data representation, can
enhance the predictive power of systems. However, this
increased complexity often obscures the internal decision-
making process, which can lead to questions about their
decision logic [40], [41].

In contrast, white-box models offer a more transparent
approach. They are designed to be easily interpretable, which
allows users to understand how input data is transformed
into predictions or decisions. This transparency is particularly
valuable in fields where understanding the reasoning behind
a decision is as important as the decision itself [42], [43].

For instance, in the context of cancer diagnosis, medical
professionals often rely on predictive models. While these
models are useful tools, there is always a possibility
of incorrect predictions. Therefore, both practitioners and
patients have to trust these models, which becomes possible
in the situation that they understand the underlying reasons
for their predictions.

This is where the concept of XAI comes into the picture.
As depicted in Fig 2, today’s Al systems typically involve
training the data, undergoing the machine learning process,
and providing prediction for end-users. In contrast, XAl goes
a step further. It can deliver high-accuracy predictions and
provides clear, justifiable explanations for these outcomes.
With higher interpretability, the reasons behind Al predic-
tions become more comprehensible to humans, which boosts
the trustworthiness and reliability of the model’s predictions.

In the comprehensive study, Blanco-Justicia and Domingo-
Ferrer. [44] discussed the seven characteristics that define
XALI for enhancing transparency and efficacy in Al systems
as follows.

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

O 0O
O 0O

] —

Training Machine
Data Learning
Process

TODAY'SAI

&9

2

User Prediction

FIGURE 2. Explainable machine learning concept.

Accuracy. This aspect evaluates how well an XAI model
predicts outcomes for new, unseen data. Predictions made by
these models must have a high level of accuracy.

Fidelity. It is about the closeness of the explanation to
the model’s prediction. An explanation is regarded as highly
accurate when it meets the high fidelity and high accuracy of
the ML model.

Consistency. This characteristic describes how equally
explanations are applied to a model that is trained on the same
dataset.

Stability. It examines whether the stability is reflected in
the explanation model, which means that similar instances
should produce similar explanations.

Degree of Importance. This attribute indicates how well
the explanation reflects the significance of various features
within the model, which is essential for understanding the
weight of different aspects in the model’s decision-making
process.

Novelty. Closely related to stability, novelty assesses the
ability of the explanation mechanism to accurately represent
data instances that are significantly different from those in the
training set.

Representativeness. This factor has a significant effect
on explainability, emphasizing the need for explanations to
be relevant and applicable in a diverse range of decision-
making scenarios, thereby ensuring their utility across
various applications.

Hence, in the context of XAl it is important to understand
the general classification of ML-based models, which is
illustrated in Fig 3. This figure presents a comprehensive
taxonomy of ML models and XAI techniques and provides
a clear framework for understanding this field.

As depicted in Fig 3, ML models can be broadly classified
into Transparent and Opaque models. Transparent models
are inherently explainable. These models are straightforward
enough that they do not require additional post-hoc explain-
ability techniques, i.e., techniques provide explanations only

VOLUME 13, 2025

Training Machine
Data Learning
Process
[EXPLAINABLE AT
ull
aee
% (o) &
Explainable
Model @
Prediction
User

after the training process has finished. However, as indicated
by the dashed arrow in Fig 3, when these models become
more complex, post-hoc explainability may still be needed
to improve clarity and ensure human interpretability.

On the other hand, Opaque models, often referred to as
ML models, are characterized by their high accuracy yet
present challenges in interpretation. Due to their complexity,
they require the use of post-hoc explainability methods. The
goal of post-hoc explainability is to make the outcomes
of ML-based models more transparent, understandable, and
trustworthy to humans.

Post-hoc explainability can be further divided into two
types: model-agnostic and model-specific methods. Model-
agnostic methods have a variety of explainability techniques
and are versatile enough to be applied to any ML model.
In contrast, model-specific methods are applicable only to
certain types of models and limit their utility to specific cases.

The subsequent section of this paper will outline the
various ML models and post-hoc explainability techniques,
providing a comprehensive summary of different research
challenges encountered in this evolving field.

A. TRANSPARENT MACHINE-LEARNING MODELS
Transparent models are distinguished by their inherent ability
to be self-explanatory. They can be interpreted directly,
enabling users to comprehend their decision-making pro-
cesses. This category of models, from Rule-based Learners
and Regression Models to Decision Trees, Bayesian Models,
k-NN algorithms, and the Generalized Additive Model
(GAM), are unified by their transparent nature.

1) RULE-BASED MODELS

These models are characterized by developing rules to
represent and interpret the data they are designed to learn
from. At the core of these models is the IF-THEN statement,
a basic but powerful structure that forms the foundation

61615

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

Models
r* Rule-Based Models
| Regression Models

Decision Trees
Transparent
Models
» Bayesian Models

-+ K-Nearest Neighbor

Generalised Linear

el and Additive Models

Random Forest

Support Vector
Opaque Models ’7‘{ Machine

Multi-Layer Neural
Network

Techniques

Partial Dependence
Plots (PDP
Individual Conditional
Expectations (ICE)

% Visual Explanations

Model-Agnostie }

Global
Explanation

Counterfactual
Instances

Local Surrogate

Methods

DeepSHAP

Feature Relevance
Explanation

Integrated Gradients ‘
aG)

DeepLift
Propagation (LRP
Grad-CAM

Saliency Maps

FIGURE 3. Taxonomy for explainable machine learning techniques inspired by [41], [45], and [46].

of these rules. The IF part represents the condition, while
the THEN part denotes the prediction. These predictions
can arise from a single rule or a synergy of multiple rules.
Soares et al. [47] apply this concept to explain DL-
based models. They propose a method where a deep
reinforcement learning model is approximated through a
series of IF-THEN rules, effectively enhancing the model’s
interpretability.

The clarity of rule-based models makes them highly
interpretable and understandable. Their straightforward
structure eliminates the need for post-hoc analysis. They
are also used to clarify the predictions of more intri-
cate models by generating and applying rules to link
sophisticated ML-based techniques with approachable
interpretability.

2) REGRESSION MODELS

Linear and logistic regression models stand as two important
regression models. The weight of the coefficient of linear
regression is easy to quantify and interpret, which is why it
is used in various fields to explain the predictions. On the
other hand, logistic regression strength lies in its ability to
provide probabilities alongside classifications, which offers
a nuanced view of outcomes.

Lundberg’s research [48] further enhances this model’s
utility by integrating logistic regression with gradient-boosted
trees for predicting synthetic labels and augmenting the
explainability of tree-based models. Despite their trans-
parency, these regression models often require additional
post-hoc explainability tools, like visual aids, to make their
predictions accessible to those not well-versed in statistical
methodologies.

61616

3) DECISION TREES

Decision trees offer transparent models that enable domain
experts to understand how they work. Furthermore, the
exploration of these trees can lead to the discovery of new
relationships and insights. Blanco-Justicia and Domingo-
Ferrer [44] leverage decision trees as surrogate models
to elucidate ML models, constructing these trees from
segmented portions of the training dataset.

This approach assumes that the person responsible for
providing explanations has access to the training data and the
ML model. Nevertheless, decision trees encounter scalability
issues with large datasets in real-world applications, which
diminish their explainability as the tree complexity increases.
This complexity requires the adoption of post-hoc explain-
ability methods to maintain clarity.

4) BAYESIAN MODELS
Bayesian models excel in providing a high degree of
interpretability and explainability, offering insights into the
statistical interplay between variables. This capability makes
them particularly useful for applications where clear, com-
prehensible explanations are essential, such as demonstrating
the correlation between diseases and their symptoms.
Hence, in the realm of medical research, the appli-
cation of Bayesian methods has been notably effective.
For instance, Arrieta et al. [41] demonstrate the utility of
Bayesian approaches in healthcare analytics, highlighting
their potential to the complex relationships within medical
data. Similarly, the Naive Bayes classifier, as discussed
by Rana et al. [49], serves as a robust algorithm for
predictive modeling. This classifier efficiently tackles both
binary and multi-classification problems by calculating the

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

probabilities of individual elements, subsequently employing
Bayes’ theorem to identify the most probable outcome.

5) k-NEAREST NEIGHBOUR

The k-NN algorithm operates on a simple yet effective
principle: for classification, it determines a test sample’s
class based on the majority vote from its nearest neighbors,
and for regression, it computes the average outcome of
these neighbors. The interpretability of k-NN is significantly
influenced by the chosen features, the distance metric
utilized, and the number of neighbors. While models with
extensive features may obscure interpretability, a k-NN
model characterized by a concise, well-selected feature set
remains one of the main models for interpretable results. In a
study, Aslam et al. [S0] showcase the application of various
supervised ML-based models, including k-NN, utilizing XAl
techniques.

6) GENERALIZED LINEAR AND ADDITIVE MODELS

The Generalized Additive Model (GAM) represents an
advancement in statistical modeling, combining the benefits
of linearity and interpretability. This model assigns values
to variables by integrating numerous undefined functions
specific to regression models and enhancing accuracy without
compromising interpretability. One of the unique features
of GAM is its ability to allow users to evaluate the
significance of each variable by examining its impact on
the predicted outcome. GAM models exhibit algorithmic
transparency and are regarded as simulatable due to their
minimal dimensionality issues.

To have an optimal balance between accuracy and explain-
ability, Yang et al. [51] introduce GAMI-Net (Generalized
Additive Models with Structured Interactions), a neural
network characterized by its intrinsic explainability. This
model has been benchmarked against several standard
models, including GLM, showcasing its robustness.

Despite the inherent transparency and explainability
of these models, ongoing research explores undirected
graphical models to further enhance their trustworthiness.
Transparency alone may not always guarantee straightfor-
ward explainability, as increasing model complexity can
reduce interpretability. This necessitates the development
of post-hoc explanations to maintain clarity and reliability.
As mentioned above and illustrated in Figure 3, the dashed
arrow represents cases where even transparent models may
require post-hoc explanations in complex scenarios. This
highlights the dynamic nature of explainability, where
certain conditions still necessitate additional interpretability
techniques to ensure model reliability and trust.

B. OPAQUE ML-BASED MODELS

We explored models characterized by their transparency,
highlighting that their interpretability does not guarantee
enhanced performance. This section shifts focus to examine
complex models that stand out for their high accuracy.

VOLUME 13, 2025

However, these models require post-hoc explanations to
unlock an understanding of their internal processes.

1) RANDOM FOREST

Random Forests (RFs) consist of multiple decision trees, each
dividing the input space into smaller segments and averaging
outcomes. As problem complexity increases, more trees
are needed, improving accuracy but reducing explainability.
RFs were designed to mitigate overfitting in single decision
trees by averaging predictions across multiple trees, reducing
variance. Each tree is trained on a unique data subset,
ensuring diverse insights.

However, the model’s complexity necessitates post-hoc
explainability techniques. Zhao et al. [52] introduce a
visual analytic system to enhance interpretability, offering a
comprehensive approach to understanding RF predictions.

2) SUPPORT VECTOR MACHINE

SVM constructs a hyperplane or a set of hyperplanes
within a high or infinite-dimensional space, serving purposes
across classification, regression, outlier detection, and even
clustering tasks. A hyperplane achieves optimal separation
when it maximizes the distance to the nearest point of
the training dataset, as a larger margin correlates with
a lower generalization error of the classifier. Owing to
their remarkable predictive and generalization capabilities,
SVMs are among the most widely utilized ML models.
However, due to their complex dimensionality, they are often
regarded as opaque, making their decision-making process
less transparent.

Based on this, Vieira and Digiampietri [53] explore the use
of decision trees to derive rules from SVMs, which provides
explanations for the classifications made by SVM classifiers
and enhances their interpretability.

3) MULTI-LAYER NEURAL NETWORK

These models are computationally intensive but provide
unparalleled performance across a wide range of applications.
Neural networks are inherently considered ML models due to
their complex internal mechanisms. In the study by Sharma
et al. [54], the focus is on utilizing a multi-layer perceptron
neural network for the risk prediction of default loans, with
the explanation of model decisions facilitated through a
sensitivity analysis technique.

C. MODEL-AGNOSTIC TECHNIQUES FOR POST-HOC
EXPLAINABILITY

Post-hoc explainability methods play a crucial role in
interpreting complex ML-based models, especially in
high-stakes applications where decision transparency is
required. One way to classify post-hoc explainability
methods is based on their dependency on the model structure.
In this classification, we identify two groups: model-
agnostic methods, which can be applied to any model, and

61617

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

model-specific methods, which are tailored to particular
model architectures.

Model-agnostic techniques can be applied across various
ML architectures, offering greater flexibility. However, this
flexibility often comes at the cost of precision in explanations,
as these methods approximate model behavior rather than
providing direct interpretability. Given the increasing reliance
on ML in security-sensitive domains such as malware detec-
tion, adopting robust and interpretable post-hoc techniques
is essential to ensure trust and accountability. The domain
of model agnostic interpretability is divided into three
main categories: Global Explanation, Local Explanation, and
Visual Explanation.

1) GLOBAL EXPLANATION

Global explainability provides insights into how a model
makes decisions across all instances, rather than focusing
on individual predictions. This is essential for understanding
which features are most influential and how they interact at a
systemic level.

A widely used approach to achieving global explain-
ability is the use of surrogate models, which approx-
imate the decision-making process of a complex ML
model by training a more interpretable alternative (e.g.,
decision trees, linear models) on the same dataset.
These models enable researchers to analyze feature
contributions in a transparent manner, facilitating model
interpretation.

However, surrogate models introduce trade-offs. Since
they approximate rather than replicate the ML model’s
decision boundaries, they may introduce inaccuracies, partic-
ularly in the presence of nonlinear relationships or complex
feature interactions. Despite these limitations, they remain a
practical tool for obtaining high-level insights into opaque
models.

In cybersecurity and malware detection, global explana-
tions help identify critical risk factors in security assess-
ments. For instance, a surrogate model trained on malware
classification outputs can reveal whether API call sequences,
file metadata, or network behaviors are the most significant
predictors. This understanding allows security analysts to
refine detection rules, improve feature selection, and enhance
model robustness.

Surrogate models serve as interpretable stand-ins for
complex models, offering insights into their underlying
mechanisms. For example, Islam et al. [S] demonstrated
the effectiveness of this approach by using Classification
and Regression Trees (CART) to approximate a random
forest’s decision-making process. If a surrogate achieves
comparable performance, it may reduce reliance on the orig-
inal model, particularly when interpretability is prioritized.
Additionally, multiple surrogate models can be developed
for a single ML system, each providing distinct perspectives
on model behavior. This approach enhances transparency
and facilitates the comprehension of sophisticated decision
processes.

61618

2) LOCAL EXPLANATION

Local explainability focuses on understanding why a model
makes a specific prediction for a single instance rather than
explaining overall model behavior. These methods help users
answer questions such as, “Why was this particular file
classified as malware?”” or ‘“What features contributed to
this anomaly?”” Unlike global explanations, which provide
an overview of feature importance across an entire dataset,
local explanations offer insights into decision-making at an
individual level.

Local explanation techniques are particularly valuable in
high-stakes applications like cybersecurity, where under-
standing why a model flagged a file as malicious can
assist analysts in investigating threats, identifying adversarial
attacks, or refining detection rules. Additionally, local
explanations play a critical role in bias detection and fairness
assessments, ensuring that models do not make decisions
based on unintended or discriminatory features.

Several widely used model-agnostic techniques exist for
local explainability, including LIME (Local Interpretable
Model-Agnostic Explanations), KernelSHAP (Shapley Addi-
tive Explanations), Shapley values, counterfactual explana-
tions, and Logic Explained Networks (LENs). The following
sections discuss these methods in more detail, highlighting
their strengths, limitations, and practical applications.

a: LIME

For the first time, Ribeiro et al. [55] introduce a novel
local explainability technique known as LIME. This method
operates as a local surrogate model, generating interpretable
predictions by approximating how the model behaves in the
vicinity of a given prediction. It is designed to be model-
agnostic, which makes it versatile across different ML-
based models. To evaluate the effectiveness of the surrogate
model, LIME employs a local fidelity measure. This metric
assesses the extent to which LIME’s approximations reflect
the true behavior and accuracy of the underlying ML model.
However, it is important to note that LIME is not equipped
to offer insights into the global operations of a model.
Furthermore, if the local fidelity measure indicates poor
accuracy, the reliability of LIME’s interpretability may be
compromised.

In a practical application of LIME, Magesh et al. [56]
utilize this technique to interpret the predictions of a CNN
model designed for the early detection of Parkinson’s disease.
This study demonstrates the potential of LIME to provide
valuable insights into real-world scenarios.

b: KernalSHAP

Among the various local interpretability methods developed,
a significant challenge lies in determining the most suitable
method for specific scenarios. To address this, Lundberg and
Lee [57] propose Shapley Additive exPlanations (SHAP),
a concept derived from game theory that evaluates the
importance of each feature in contributing to a particular

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

prediction. The SHAP framework establishes a new class
of additive feature importance measures characterized by a
unique solution that exhibits desirable attributes.
KernelSHAP, as part of the SHAP family, is model-
agnostic, allowing its application across diverse ML models.
The computation of exact SHAP values via KernelSHAP can
be exponentially time-consuming, which highlights its com-
putational demands. Despite this, its capability to adapt to any
ML model shows its broad utility. The SHAP framework also
includes tailored variants such as TreeSHAP and DeepSHAP,
designed specifically for tree-based and deep learning mod-
els, respectively. These variants can optimize the efficiency
and relevance of SHAP analysis in targeted model types.

¢: SHAPLEY VALUES

They originate from coalitional game theory, framing each
feature value of an instance as a ‘“‘player”” and the pre-
diction outcome as the ‘“‘payout.”” This approach assigns
a quantifiable contribution to each feature, which can
demonstrate how significantly each one influences the final
prediction. Shapley values are distinguished by key principles
such as consistency and local accuracy. These principles
ensure that the allocation of importance to features is both
fair and interpretable, accurately reflecting each feature’s
contribution to the outcome.

d: COUNTERFACTUAL EXPLANATIONS

Counterfactual explanations provide a compelling approach
for local interpretation. This method stands out for its
simplicity in implementation, as it does not need access to
the underlying data or model. Counterfactual explanations
focus on identifying which features would need alteration
to achieve a specific desired outcome, thereby elucidating
the reasoning behind model predictions. These explanations
are particularly user-friendly because they illustrate how
minimal changes in features can influence predictions.
Nonetheless, one limitation of this method is its difficulty
in accommodating categorical data across different levels.
Related to the Counterfactual explanation, Molnar [58]
discusses their application in models generating continuous
predictions that showcase their utility in providing clear and
actionable insights. In malware classification, counterfactual
explanations can highlight the minimal changes required
to alter a model’s decision, offering valuable insights for
both threat analysis and adversarial defense strategies. This
approach is particularly useful in detecting adversarial
attacks, as it helps identify which modifications in malware
features could evade detection, thereby strengthening model
robustness.

e: LENs

They enhance the interpretability of neural networks by
utilizing human-understandable predicates as inputs and
translating predictions into First-Order Logic (FOL) explana-
tions. These networks are highly adaptable and can function

VOLUME 13, 2025

effectively in both supervised and unsupervised learning
contexts. LENs can serve as direct classifiers, providing
explanations for their predictions, or they can work alongside
ML classifiers to make their decisions interpretable. The
learning process for LENs involves associating specific
input features with output classes in supervised scenarios
and generating logic rules that explain the conditions
for predictions. In unsupervised learning, LENs identify
patterns and relationships within the data, clustering similar
data points and generating explanations that describe these
clusters. Additionally, LENs can mimic the outputs of
ML models while generating FOL explanations, which
leads to elucidating the decision-making process for these
complex models [59]. LENs bridge the gap between symbolic
reasoning and neural networks by incorporating logical
constraints into the learning process, making their decisions
more interpretable. Unlike traditional neural networks, which
act as MLs, LENs provide structured, rule-based explanations
that enhance transparency and trust in Al-driven decision-
making.

3) VISUAL EXPLANATION

This approach contains methods designed to produce visual
representations of models that make them accessible and
comprehensible. Techniques such as Individual Conditional
Expectation (ICE), Partial Dependence Plot (PDP), and
Accumulated Local Effects (ALE) serve as key tools in
this visualization process. These techniques facilitate a
deeper understanding of how models operate by graphically
depicting the relationship between features and the model’s
predictions. The advantage of visual explanations lies in
their ability to convey complex model dynamics in a
manner that is easily graspable. This makes visualizing
techniques invaluable for broadening the accessibility of
model interpretations.

a: PARTIAL DEPENDENCE PLOT (PDP)

It offers insights into the marginal impact of one or
two features on the predicted outcome of an ML model,
as highlighted by Molnar [58]. This tool is important in
determining whether the relationship between the target and
features is linear or exhibits more complexity. For instance,
in the context of a linear regression model, PDP can reveal a
linear relationship and illustrate how variations in a specific
feature correlate with changes in the prediction. Unlike
methods that focus on the influence of features on individual
predictions, PDP emphasizes the average effect of features
on the model’s overall behavior. However, its application
is generally constrained to analyzing up to two features
simultaneously, based on the assumption that the selected
features are independent of others not included in the plot.

b: INDIVIDUAL CONDITIONAL EXPECTATION (ICE)
Within the post-hoc explainability, visual explanations, par-
ticularly those compatible with model-agnostic approaches,

61619

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

are notably rare. The ICE plot, introduced by
Goldstein et al. [60], emerges as a visualization technique
for delineating the predicted outcomes of models governed
by supervised learning algorithms. Diverging from the PDP,
the ICE plot underscores the dependency of predictions on a
specific feature across individual instances, each represented
by a unique line. This approach allows users to understand
how changes in a feature impact predictions on a case-by-
case basis.

ICE plots especially highlight the variability of predictions
within the range of a given covariate, identifying areas of
significant heterogeneity. This capability is complemented by
a visual test for assessing the model that generated the data
alongside a comprehensive suite of tools for exploratory anal-
ysis. By employing both simulated examples and real-world
data sets, the creators of ICE plots demonstrate their utility in
uncovering insights about estimated models that PDPs may
not reveal, offering a more granular perspective on model
behavior.

¢: ACCUMULATED LOCAL EFFECTS (ALE)

The ALE plot provides a visual illustration of how individual
features influence the predictions made by a machine learning
model. It effectively showcases the dynamics between regres-
sors (independent variables) and the dependent variable,
offering insights into their relationship. Notably, ALE plots
are recognized for their efficiency, being faster to generate
compared to PDP.

Kramer et al. [61] demonstrated the application of ALE
plots within the realm of real estate, employing them to
discern which features significantly impact property values.
This use case underscores the utility of ALE plots in practical,
real-world analysis. Additionally, many researchers have
adopted ALE plots as a method for visually exploring the
nature of relationships between variables, assessing whether
these relationships are linear or exhibit more complexity.

D. MODEL-SPECIFIC TECHNIQUES FOR POST-HOC
EXPLAINABILITY

Model-specific methods of post-hoc explainability are
designed to be applied exclusively to certain types of
models. These techniques can also be categorized based on
their scope of interpretability, which includes local, global,
and visual dimensions. Local scope refers to methods that
focus on explaining the prediction for an individual data
point. In contrast, global scope encompasses techniques that
interpret the overall behavior of the model. Meanwhile, visual
scope techniques are aimed at creating visual representations
that make model behaviors comprehensible.

Among the array of model-specific approaches, Tree-
Shap and DeepSHAP are notable for their application to
tree-based and deep learning models, respectively. Addition-
ally, saliency maps encompass a variety of methods, such
as DeepLift, layer-wise relevance propagation, Grad-CAM,

61620

and other gradient-based approaches, along with feature
relevance explanations.

a: TreeSHAP AND DeepSHAP

They represent two specialized implementations of SHAP
grounded in the principles of Shapley values. TreeSHAP is
tailored for tree-based models, offering a more efficient com-
putation of exact SHAP values by operating in polynomial
time, in contrast to the exponential time typically required
by the general SHAP approach. In an illustrative application,
Athanasiou et al. [62] leveraged TreeSHAP within an
explainable risk prediction model for cardiovascular disease,
utilizing this technique to furnish personalized explanations
of the machine learning model’s predictions.

Conversely, DeepSHAP is devised to work with neural
networks and serves as an approximation method for cal-
culating conditional expectations of SHAP values, utilizing
selected background samples for this purpose. It represents
an evolution of the DeepLIFT method, adapting it to estimate
Shapley values for specific inputs across the feature space.
This adaptation enables DeepSHAP to pinpoint the contri-
bution of each feature to a given prediction within neural
network models. An example of DeepSHAP’s application
can be found in the work by Davagdorj et al. [63], where
it was employed within a neural network framework to
predict non-communicable diseases. The primary objective
of this approach is to elucidate the risk factors influencing the
model’s predictions, aiming to provide explanations that are
both meaningful and accessible to users, focusing on specific
instances from the user’s perspective.

b: FEATURE RELEVANCE EXPLANATIONS

Feature relevance explanation techniques are important
in enhancing the interpretability of tree ensembles. This
category contains a variety of techniques aimed at elucidating
how different features contribute to a model’s predictions,
including feature importance, feature extraction, and feature
contribution. Central to these techniques is the concept of
feature importance, which assesses the significance of feature
interactions in influencing the model’s outcome. Adebayo
and Kagal [64] introduced a methodological approach for
quantifying feature importance by iteratively transforming
features within the dataset. This process involves eliminating
features deemed non-essential, thereby creating a refined
dataset that retains only those features with significant
relevance.

Subsequently, the authors developed a novel metric to
calculate scores for the revised datasets based on the
variations observed in model performance. This approach
underscores the dynamic nature of feature interactions within
predictive models, where the effect of individual features on
the prediction cannot simply be aggregated to reflect the total
influence.

Further advancing the understanding of feature inter-
actions, Friedman and Popescu [65] introduced the

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

H-statistic. This metric is designed to explain the extent of
feature interactions by measuring the variance in predictions
attributable to these interactions. The H-statistic thus serves
as a valuable tool for detecting and quantifying the strength
of interactions among features within a prediction model.

c: SALIENCY MAPS

They serve as critical tools in attribution analysis by showing
the pixels that significantly influence image classification
decisions. These gradient-based methods, designed specifi-
cally for neural network models, can facilitate an understand-
ing of the features most relevant to a model’s output. Among
such methods, Layer-wise Relevance Propagation (LRP) and
DeepLIFT stand out by providing a framework to assign
importance scores to different elements of a network, offering
a detailed explanation of a model’s decision-making process.
Specifically, LRP identifies the contribution of various parts
of the input data towards the final decision, a technique
effectively employed by Wang et al. [66] for dynamic and
explainable malware detection. By pinpointing malicious
code snippets, their approach enhances the interpretability of
malware classifiers.

Similarly, DeepLIFT, as explored by Shrikumar et al. [67],
contrasts the activation of neurons against a reference point,
leveraging the differences to ascertain the significance of each
feature. This method enriches our understanding of neural
network operations by clarifying how each input affects the
output.

Moreover, Grad-CAM represents another notable advance-
ment in pixel-attribution methodologies, offering a refined
lens through which to view the decision-making processes of
CNNs. By attributing a relevance score to each neuron in the
final convolutional layer and examining the activated regions
within the feature map, Grad-CAM elucidates the features
deemed most crucial by the CNN. This process not only aids
in interpreting the model’s focus but also contributes to the
model’s transparency.

Integrated Gradients (IG) is another one that calculates
the average gradients across a straight-line path between
the baseline input and the actual input. This approach,
particularly beneficial for CNN predictions, highlights the
incremental impact of each feature along this path, thereby
offering a comprehensive view of the factors influencing
the model’s predictions. Collectively, these saliency map
methods show the importance of model-specific analyses
in enhancing the interpretability and transparency of neural
networks.

IV. EXPLAINABLE MALWARE CLASSIFICATION AND
DETECTION APPROACHES

The preceding section provided an introduction to the
concept of explainability in ML, detailed various models
and techniques for enhancing explainability, and reviewed
relevant research in the broader field of explainable ML.
Moving forward, this section will focus on the application
of explainable ML in the context of malware classification

VOLUME 13, 2025

and detection. These approaches are organized by the types
of target systems, including Windows PE files, hardware
systems, Android devices, PDF documents, and Linux files.
This classification is depicted in Fig 4, which provides
a clear framework for understanding how explainable ML
techniques are applied across different computing platforms
to address malware threats.

By categorizing existing explainable malware detection
strategies by the target platform—Windows PE, Android,
hardware, PDF, and Linux— we highlight how explain-
ability methods adapt to each system’s unique execution
environment and feature set. We also provide comprehensive
tables (2, 1, 3, 4) summarizing key contributions, limitations,
and XAI techniques. These tables are provided for quick
reference. However, we will make explanatory context in
each subsection.

A. WINDOWS PE-BASED MALWARE APPROACHES
Windows is the most widely used desktop OS, making
Windows PE files a significant target for malware. Below,
we summarize the PE format’s structure and then highlight
state-of-the-art studies based on key explainable detection
methods grouped by the type of XAl approach (gradient-
based, model-agnostic, and image-based). Finally, Table 1
lists major works in Windows PE-based malware detection,
comparing their focus, contributions, limitations, and XAl
techniques.

Windows PE is a file format based on the Common Object
File Format (COFF) specification and holds significant
importance within the Windows operating system family.
The structure of a PE file starts with a header initially used
by the MS-DOS operating system. When the executable is
loaded, MS-DOS runs a stub program to ensure backward
compatibility. Next, the COFF header provides detailed
specifications of the executable file. It is followed by an
optional header, which adds flexibility and supports future
enhancements to the file structure. Following this, the
section header divides the executable into distinct sections.
These sections comprise blocks of memory and support
page swapping to address memory limitations, which leads
to organizing the executable into structured segments for
efficient execution.

The Windows operating system has emerged as the
predominant platform on personal computers, which has
increased its vulnerability to malware attacks. Despite this
risk, limited research has focused on explainable malware
detection methodologies specifically for Windows.

Developing ML-based models that learn discriminative
features from raw inputs requires feature extraction, which
is time-consuming and complex. To address this challenge,
Raff et al. [68] introduce ‘“MalConv,” a novel architecture
for malware detection. This architecture leverages the entire
executable as input for a CNN. The MalConv architecture
utilizes a methodology similar to techniques employed in
speech and signal processing [69], text understanding [70],

61621

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

Explainable Malware-Based Approaches

v

v

v

v

-

‘Windows-Based
Malware Approach

Hardware-Based

Malware Approach

PDF-

Based Malware
Approach

Android-Based
Malware Approach

Linux-Based Malware
Approach

v

v

v

v

v

v

Ve

Gradient-Based
Malware Approach

Model-Agnostic-
Based Malware
Approach

]

Image-Based

Malware Approach] [Malware Approach

Rule-Based

Malware Approach

[Gradient-Based

Model-Agnostic-
Based Malware
Approach

FIGURE 4. Explainable malware classification and detection approaches.

and image classification [71], where CNNs effectively extract
pertinent features.

MalConv is designed as a static architecture for identifying
static malware, which combines CNN activation functions
with global max-pooling before progressing to fully con-
nected layers. This approach guarantees that the ML model
generates activations independent of the features’ spatial
locations, which leads to enhancing its ability to classify and
detect malware. The discussion surrounding Windows PE
malware detection includes gradient-based, model-agnostic
techniques, and reliance on image representations.

The forthcoming section will discuss an analysis of
existing strategies for malware classification and detection,
with Table 1 explicitly addressing the application of model-
agnostic, gradient-based, and image-based methodologies in
the context of Windows PE-based malware research.

Table 1 summarizes research on explainable Windows
malware detection. Focus/Objective clarifies the primary
goal, the Contribution outlines each paper’s novelty, and the
XAI Technique highlights the interpretability approach used.

crucial.
1) GRADIENT-BASED APPROACH
The gradient-based methodology measures the impact of
input features on predictions by assigning weights to different
parts of an executable. To elucidate the decision-making
processes of Deep Neural Networks (DNNs), Bose et al.
[72] examine the MalConv architecture using the open-source
‘emberMalConv’ framework. This study seeks to understand
how the architecture distinguishes between malicious and
benign executables based on their raw data. Ember, which
is a tool utilized for training static PE malware models
within the ML-based domain, highlights the MalConv
architecture’s ability to attribute significant weight to specific
executable parts, thereby having a significant influence on the
classification results.

Their research introduces a sophisticated framework based
on gradient analysis, which maps gradient embeddings

61622

from malicious files and interpolates between accurately
classified instances to define a clear decision boundary
between categories. By analyzing the interpolation among
samples, the study explores filter activations to investigate
if there is a connection between different filter pairs. This
leads to the development of a correlation heatmap for the
filters, providing insights into how they interact. One filter
specializes in identifying malicious traits within a file, and
another filter focuses on generalizing these findings across
various samples. The proposed framework transcends the
MalConv model and offers a general method suitable for
classification tasks in any neural network.

In summary, gradient-based methods for Windows PE
malware detection effectively pinpoint which bytes or seg-
ments of an executable are most influential for classification,
offering highly granular explanations. However, they often
require large labeled datasets and can be susceptible to
adversarial manipulation if attackers target the most salient
bytes. Despite these limitations, gradient-based XAl remains
a powerful tool when fine-grained feature importance is

2) MODEL-AGNOSTIC-BASED APPROACH
This method clarifies the predictions by simplifying the
complex original model into a more understandable local
surrogate model. The research presented by Mathews [73]
introduces an explainability framework aimed at classifying
two distinct malware families on Windows PCs. Firstly,
they calculate content-based features and extract statistical
features derived from Hex and assembly views. These
features are indicative of the PE file’s structure. Their
investigation shows shortcomings in the feature selection
process and emphasizes the global characteristics through
which a model learns to distinguish between the two malware
categories. To elucidate the outcomes produced by the deep
learning model, they utilize the LIME framework.

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

TABLE 1. Research addressing explainable machine learning in windows malware.

Paper/Year| Focus/Objective Contribution Limitation XAI
Technique
Bose et al. | Analyzed MalConv and pro- | Introduced gradient analysis mapping malicious | Limited interpretability of | Gradient
2020 [72] posed an end-to-end gradient- | file embeddings and interpolating between cor- | Neural Network decisions | Analysis
based explanation framework rectly classified samples to clarify decision
boundaries
Mathews Identify feature-engineering | Proposed an explainability framework using | Lacks comparison with | LIME
2019 [73] flaws and global traits | content-based and PE-file statistical features, | other model-agnostic XAl
distinguishing malware classes | with LIME for model interpretation methods
Pirch et al. | Develop an explainable CNN | Assigns a relevance score to each feature (“to- | Restricted to a behavioral- | LRP
2021 [74] | to predict malware tags for | ken”) for tagging malware, evaluated by descrip- | based approach
clustering and organization tive accuracy and sparsity
Marais Improve model interpretability | Developed a CNN-based malware model com- | Missing attention mech- | GradCam++
et al. | to reduce false positives pared with LGBM, XGBoost, and DNN, using | anisms; limited to static
2021 [75] GradCam++ to highlight critical pixels for re- | analysis and higher com-
duced false positives putation time
Li et al. | Introduce an interpretable | Proposed IFFNN with high accuracy and inter- | Interpretation fidelity re- | IFFNN
2021 [76] feed-forward neural network | pretability; tested with MNIST for qualitative | quires more validation
(IFFNN) for malware detection | assessment
Chen et al. | Validate explanation fidelity in | Extended LIME for vision-based interpretationin | Does not compare LIME | LIME
2019 [77] dynamic malware analysis dynamic malware analysis, with two case studies | with more advanced XAI
showing interpretability benefits methods
Lin and | Implement a deep ensemble | Proposed Selective Deep Ensemble Learning | It needs more base clas- | LIME,
Chang detector for image-based mal- | (SDEL) and used LIME, SHAP, and LRP to | sifiers and original mal- | SHAP, and
2021 [78] ware with interpretable outputs | interpret image-based malware predictions ware files to locate seman- | LRP
tic features
Alani et al. | Detect obfuscated Windows | Achieves >99% detection using only five | Dependent on a limited | SHAP
2023 [79] malware from memory dumps | memory-dump features, with SHAP-based inter- | feature set and dataset-
using minimal features pretability specific performance
Ciaramella | Proposes a CNN-based ap- | Uses Grad-CAM to visualize high-impact image | Focused mainly on | Grad-CAM
et al. | proach for ransomware detec- | regions, improving ransomware detection inter- | ransomware, with unclear
2024 [80] tion using image conversion pretability generalization to other
malware
Anthony Adapt LENs for interpretable | Provides high-fidelity FOL rule explanations, | Generating/optimizing LENs
et al. | large-scale malware detection balancing accuracy with transparency FOL rules is
2024 [81] computationally heavy,
limiting real-time
application
Gulmez Propose XRan, an XAI- | Combines API/DLL/Mutex features in a | High overhead for dy- | LIME, and
et al. | enabled CNN approach | two-layer CNN, reaching 99.4% TPR with | namic feature extraction SHAP
2024 [82] combining API, DLL, and | LIME/SHAP explanations
Mutex features for ransomware
detection
Aryaletal. | Use SHAP to locate and per- | Demonstrates SHAP-guided perturbation boosts | Limited to specific | SHAP
2024 [83] turb critical regions of Win- | adversarial evasion rates while preserving mal- | Windows PE samples;
dows PE malware for enhanced | ware functionality broader malware families
evasion not tested
Ghadekar | Propose a deeperGCN model | Reaches 97% accuracy on combined byte/ASM | Preprocessing (byte/ASM | GradCAM
et al. | for multi-class malware detec- | images; GradCAM highlights key regions to image) is time-
2024 [84] | tion with integrated GradCAM consuming and may
explainability limit real-time use

A study by Pirtch et al. [74] seeks to develop a CNN model
that accurately predicts malware tags. This work involves a
thorough dynamic analysis that examines malware tags to
inform the training of the surrogate learning model. Each

VOLUME 13, 2025

detected feature, referred to as a ‘token’ in the research,
receives a relevance score that indicates its impact on
the predicted malware tag. To assess the quality of these
explanations, the authors employ two measures: descriptive

61623

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

accuracy, which evaluates the precision with which an
explanation captures the influential features of a prediction,
and descriptive sparsity, which identifies the superfluous
features within these explanations. The model’s effectiveness
is validated through its performance in classifying three
types of tags—sandbox, family, and clustering—with each
category achieving an accuracy rate of over 90%.

In a study, Alani et al. [79] present an ML-based
system designed to detect obfuscated malware on Windows
platforms with high accuracy and efficiency. The system
utilizes a variety of classifiers, including RF, logistic
regression, decision trees, Gaussian Naive Bayes (GNB), and
extreme gradient boosting (XGB). Through an evaluation
process, XGB was identified as the best-performing classifier.
Moreover, The system relies on features extracted from
memory dumps using the VolMemLyzer tool. The feature
selection algorithm, i.e., Recursive Feature Elimination
(RFE), identifies the five most effective features, resulting in
a streamlined model that maintains an accuracy rate exceed-
ing 99%. The selected features include the total number of
services, average number of dynamic-link libraries (DLLs)
per process, total number of mutant handles, number of kernel
drivers, and shared process services. The system’s detection
capabilities are bolstered by its explainability, achieved
through SHAP. SHAP values provide insight into the impact
of each feature on the model’s predictions. The evaluation of
the system demonstrates its high accuracy and rapid detection
speed, with a processing time of 0.413 microseconds per
instance. Despite its robustness, the paper has some potential
limitations, such as the model’s dependence on specific
features and vulnerability to adversarial attacks.

Anthony et al. [81] focus on enhancing malware detection
through the integration of XAI. The primary goal is to
address the limitations of traditional ML models, particularly
their lack of interpretability. The proposed solution leverages
LENSs, which offer a balance between accuracy and explain-
ability. LENs provide explanations in the form of First-Order
Logic (FOL) rules, making their decision-making processes
more transparent and understandable for human analysts. The
methodology involves extending the application of LENSs to
the EMBER dataset. Additionally, they introduce a tailored
version of LENs to enhance the fidelity of logic explanations.
The experimental results demonstrated that LENs achieve
robust performance, rivaling traditional ML models while
significantly outperforming other interpretable methods. The
tailored LENs provide high-fidelity explanations with low
complexity that can ensure they are both accurate and
comprehensible.

Gulmez et al. [82] present an approach to ransomware
detection by integrating multiple dynamic analysis features
with DL and XAl techniques. They developed XRan, which is
a system that combines API call sequences, DLL sequences,
and mutual exclusion (Mutex) sequences to provide a
comprehensive view of executable behaviors. These features
are extracted through dynamic analysis, where executables
are run in a controlled environment to observe their actions.

61624

XRan leverages a two-layer CNN to process these combined
sequences, which enables precise detection of ransomware.
To address the challenge of model interpretability, the authors
integrated two XAI models, i.e., LIME and SHAP.

The study utilized five datasets: RD1 from VirusShare with
6,263 ransomware samples, RD2 from Sorel-20M with 7,703
ransomware samples, RD3 from ISOT with 668 ransomware
samples, MD from VX Heaven with 6,263 malware samples,
and BD from various sources including Windows System
Files and Download.com with 14,797 benign samples.
Dynamic analysis was conducted using Cuckoo Sandbox to
extract features, which were then combined into sequences
for the CNN model. Performance metrics included accuracy,
TPR, FPR, and F-score, with XRan showing superior
results compared to baseline and state-of-the-art methods.
The experimental results demonstrate XRan’s effectiveness,
achieving up to a 99.4% True Positive Rate (TPR) and
outperforming existing state-of-the-art methods.

Aryal et al. [83] aims to enhance the effectiveness of
adversarial evasion attacks on malware detectors. They
focus on Windows PE malware and utilize SHAP values
to identify the most critical regions of malware files that
influence detection decisions by a CNN-based malware
detector, MalConv. The rationale behind this approach is
that by understanding which parts of the malware file have
the greatest impact on the detector’s decision, they can
strategically place perturbations in these regions to evade
detection more effectively.

To achieve this, they calculate the SHAP values for each
byte in the malware files using the DeepExplainer module,
which is adapted to work with the embedding layer in
MalConv. These SHAP values reveal the contribution of each
byte to the malware detector’s decision, which facilitates
the mapping of these values to different regions of the PE
file structure. Aggregating these values will help identify the
regions with the highest impact. Using this information, they
inject adversarial perturbations into these targeted regions,
both at a high level (across entire sections) and at a more
granular level (within subsections of larger sections). The
results, based on a dataset of 6000 Windows PE malware
samples, demonstrate that perturbations guided by SHAP
values significantly improve the success rate of evasion
attacks compared to random perturbations. Specifically, they
observe high evasion rates when perturbations are injected
in regions with high SHAP values, which demonstrates the
efficacy of their explainability-guided approach in crafting
adversarial samples that maintain the malware’s functionality
while evading detection.

Overall, model-agnostic frameworks (e.g., LIME, SHAP,
LENs) are popular for Windows PE malware detection
thanks to their flexibility: they can explain virtually
any classifier. Yet, these post-hoc explanations can vary
from sample to sample, sometimes lacking global consis-
tency. Their simplicity and model independence, however,
make them valuable for real-world malware detection
pipelines.

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

3) IMAGE-BASED APPROACH

Recent advancements in CNNs showcase their remark-
able capability in detecting malware binaries through
image classification techniques. The work presented by
Marais et al. [75] introduces detection models that effec-
tively convert binary files into grayscale images. Utilizing
the Ember dataset, which is formatted in Windows PE,
the authors proceed with feature extraction from these
grayscale images. Subsequently, they propose a CNN
model that leverages these images for malware detection.
Additionally, they implement a novel approach, termed
the HIT method, to train another CNN model on RGB
images. A significant contribution of their research is
the application of the GradCam++ explainability technique
on the CNN model. This technique identifies the most
influential pixels affecting the model’s prediction, aiming
to diminish the false positive rate of detecting malicious
files.

Contrastingly, while non-linear ML models are known
for their superior accuracy and classification performance
over linear counterparts, their complexity often renders them
difficult to interpret. Addressing this challenge, Li et al. [76]
have developed an IFFNN. This model can achieve high
accuracy in malware detection and ensures interpretability.
They conduct their experiments on a Windows server to
determine the IFFNN’s capability to handle multi-class
classification problems. Moreover, to assess the effectiveness
and interpretability of the IFFNN, they use the MNIST
dataset for image classification and convolutional layers
for a comprehensive qualitative evaluation of the model’s
interpretability.

In another work, Chen et al. [77] aim to enhance the
interpretability of image-based dynamic malware classifi-
cation by extending the LIME framework. They start by
training deep learning models on images and then apply an
explanatory approach to understanding the decision-making
process of these models. The objective is to determine
whether the insights derived from the algorithm align with
expert knowledge in the cybersecurity domain.

Lin and Chang [78] engage with an image-based malware
dataset to explore the potential of ensemble learning. They
introduce a Selective Deep Ensemble Learning (SDEL)-
based detector that is coupled with an innovative Interpretable
Ensemble Learning approach. This detector is specifically
designed for Malware Detection (IEMD). The IEMD strategy
is developed to elucidate the predictive decisions made
by the SDEL detector and advance the interpretability of
the model. This endeavor is supported by the deployment
of explainable AI techniques such as LIME, SHAP, and
Layer-wise Relevance Propagation (LRP). These methods
are analyzed and compared to understand their efficacy in
providing transparent explanations. Their research results
have impressive outcomes, achieving an accuracy rate
of approximately 99.87%. Furthermore, the study shows
the superiority of their explanations in the context of

VOLUME 13, 2025

image-based malware classification compared to preceding
research.

The paper by Ciaramella et al. [80] develops an approach
to ransomware detection by converting Windows PE files
into RGB images and analyzing them using DL-based
models. The researchers developed a script to transform the
binary code of executable applications into images, which
are then used as input for various CNNs such as LeNet,
AlexNet, Standard-CNN, and VGG-16. The goal is to classify
the files into ransomware, generic malware, or legitimate
software. The Grad-CAM technique is employed to enhance
the interpretability of the model’s predictions. Grad-CAM
generates visual explanations by highlighting regions of
the images that most influence the model’s decisions. The
results demonstrate the effectiveness of the proposed method,
achieving high accuracy, precision, and recall, particularly
with the VGG-16 model, which outperformed others with an
accuracy of 96.9%.

Ghadekar et al. [84] implement a methodology for detect-
ing various types of malware by leveraging a modified GNN
architecture called deeperGCN, along with XAI techniques.
The research combines byte and ASM (assembly) files, con-
verting them into images to better capture intricate malware
behaviors. This conversion process involves the extraction
of features such as byte bigrams, opcode sequences, and the
generation of pixel representations of the files. These images
are processed using the deeperGCN model, which enhances
the feature extraction capabilities by leveraging the inherent
relationships in the graph-structured data. The model includes
several advanced techniques, such as skip connections to
address vanishing gradient problems and a graph readout
pooling layer to effectively aggregate information across
nodes.

The results demonstrate that this innovative approach
achieves a high detection accuracy of up to 97%. In addition,
the integration of GradCAM provides transparency into the
model’s decision-making process by generating heatmaps
that highlight the important regions of the input data
influencing the predictions.

By converting PE files into images, these techniques
leverage CNNs’ strength in pattern recognition. Gradient-
based visualization methods (e.g., Grad-CAM) then highlight
which pixel regions most impact the model’s decision,
increasing transparency for security analysts. The main
challenge is the computational cost and the complexity of
transforming binaries to images, but when accuracy and
visual interpretability are desired, image-based XAl can be
highly effective.

Collectively, these Windows-based XAI approaches
illustrate a variety of explainability techniques—gradient-
focused, model-agnostic, and image-based—each balancing
interpretability, detection accuracy, and computational com-
plexity. Next, we explore how Android malware detection
demands similar yet distinct methods, given Android’s unique
environment and features.

61625

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

B. ANDROID-BASED MALWARE APPROACHES

The rapid advancement of technology has also led to an
increase in malware attacks, with the Android platform
emerging as a particularly significant target. In response to
this escalating threat, various security measures have been
implemented within the Android ecosystem. Among these,
ML-based methods have proven to be highly effective in
detecting Android malware, which led to extensive research
in this domain [103], [104], [105], [106]. Specifically, recent
developments in DNNs have improved detection rates and
reduced the reliance on manual feature engineering.

A standout innovation in this field is the DREBIN malware
detection system [107]. DREBIN leverages a lightweight
approach to identify Android malware on smartphones
through static analysis, extracting application features that
are represented in a binary vector format. This setup enables
linear classification to differentiate between features of
benign and malicious applications. Furthermore, DREBIN
is distinguished by its explainable approach to malware
detection. It provides insights into the reasoning behind its
decisions by highlighting key attributes of detected malware.

The dataset used by DREBIN includes 5,560 malware
samples and 123,453 benign samples that demonstrate
the comprehensive nature of its analysis. DREBIN has
outperformed other ML-based approaches by achieving high
accuracy. This success has attracted significant attention in
the academic world and has prompted many researchers to
leverage DREBIN in their studies on explainable Android
malware detection. This has made a substantial contribution
to the enhancements of mobile security.

To analyze the Android malware, the research by
Kumar et al. [85] introduces two ML-supported method-
ologies: one focuses on static analysis and the other
on feature extraction. They perform feature extraction on
the DREBIN dataset through vectorization, followed by
feature selection and dimensionality reduction, thus trans-
forming high-dimensional data into a more manageable
low-dimensional format while omitting extraneous features.
Their analysis yields metrics such as the True Positive Rate
(TPR) and False Positive Rate (FPR), with their methodology
demonstrating high precision and recall. Various ML-based
algorithms, including SVM, KNN, Naive Bayes, and C4.5,
are applied to the newly processed data, which reveals SVM’s
superior performance. The combination of static analysis,
feature vectorization, and supervised learning enables these
ML algorithms to identify new malware families with high
true positive and recall rates.

While feature extraction and dimensionality reduction
can streamline malware detection, filtering out redundant
instances in the dataset can further enhance both classifier
efficiency and the clarity of explanations. Surendran et al.
[108] propose using the Ochiai coefficient to identify and
remove near-duplicate samples before retraining, which
can reduce noise and training overhead. Eliminating these
overlaps helps ensure that model explanations (e.g., SHAP or
LIME outputs) capture truly informative patterns rather than

61626

repeated artifacts, ultimately improving both performance
and the stability of XAl-based insights.

Following this discussion, below we will explore gradient-
based approaches, which provide a more fine-grained analy-
sis of feature importance in malware classification.

1) GRADIENT-BASED APPROACH

Gradient-based methods are crafted to classify and detect
malware through the lens of ML. These strategies reveal
the underlying architecture of a specific ML model and
enhance the interpretability of predictions made by deep
learning-based malware detection systems. This approach
calculates and allocates the predictive weights relative to
input features across different segments of the executable
file. To discover the mechanism behind ML Android malware
detection systems and determine the most significant features
influencing each decision, Melis et al. [86] introduce a
comprehensive explainable ML framework. This framework
uses a gradient-based technique to determine whether a
sample is correctly classified as malware, leveraging its most
critical local features. Their research utilizes the DREBIN
Android malware detection tool for practical testing. The
main objective of this endeavor is to enhance the accuracy
of predictions while maintaining the transparency and
interpretability of the decision-making process. By utilizing
the DREBIN malware detection tool and dataset, the authors
propose a novel methodology that highlights both local
and global characteristics to distinguish and clarify the
discernment between benign and malicious applications.

The authors, Iadarola et al. [87], introduce a gradient-based
deep learning methodology designed to clarify the method-
ology behind malware family classification. This approach
begins by extracting code from Android application package
(.apk) samples and subsequently transforming it into an
image format. Following this transformation, a CNN model
classifies these images into their respective malware families.
They implement the Gradient-weighted Class Activation
Mapping (Grad-CAM) technique to facilitate the prediction
of classes by identifying critical areas within the images.
A thorough code analysis is conducted to demonstrate
the efficacy of their method in extracting relevant classes.
In another work, Scalas [91] develops a gradient-based strat-
egy specifically designed for detecting Android ransomware.
This study shows the selection of system API calls as key
features, asserting their utility in evading detection strategies
employed by attackers.

Further study by Melis et al. [109] explores the effective-
ness of gradient-based attribution techniques in identifying
key features crucial for understanding a classifier’s decision-
making process. Their work seeks to establish the importance
of these features in developing more robust algorithms.
They analyze the correlation between explanatory methods
and adversarial resilience, probing how these aspects are
interconnected. Moreover, ladarola et al. [94] put forward
an explainable deep-learning framework designed for mobile

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

TABLE 2. Research addressing explainable machine learning in android malware.

Paper/Year| Focus/Objective Contribution Limitation XAI Technique
Kumar Reduce high-dimensional An- | Proposed static analysis + feature vectorization | Relies on small static datasets; | Feature
et al. | droid malware features to avoid | for effective Android malware detection lacks hybrid or dynamic analy- | Extraction
2018 [85] unnecessary data sis
Melis et al. | Highlight global features to dif- | Presented a gradient-based, global surrogate | Does not compare different | Global Surrogate
2018 [86] ferentiate benign from malicious | method to explain ML Android malware models| surrogate models’ impact on
Android apps explanations
Iadarola Evaluate deep learning for An- | Introduced Grad-CAM-based CNN to localize | Susceptible to code obfusca- | Grad-CAM
et al. | droid malware family identifica- | crucial image regions for malware family classi- | tion
2021 [87] tion fication
Kinkead Compare CNN-identified mali- | Introduced a CNN to locate malicious opcode | No deep analysis of CNN filter | LIME
et al. | cious opcode sequences with | sequences; validated with LIME consistency activations
2021 [88] LIME explanations
Lu and | Address Android malware detec- | Proposed MPT explainer to optimize feature at- | Limited scope on a single at- | Modern Portfolio
Thing tion via feature attribution tribution; compared with LIME/SHAP tack; no mitigation strategies Theory (MPT)
2021 [89]
Korine and | Present DAEMON, a model- | Developed DAEMON with layer-wise propaga- | Unclear performance on be- | Feature
Hendler agnostic, explainable malware | tion for explainable classification across plat- | nign executables Importance
2021 [90] classifier forms
Scalas Explore feature-based traits for | Proposed a gradient-based approach and ana- | Lacks detailed rationale for | Integrated Gradi-
2021 [91] effective Android ransomware | lyzed adversarial attacks with integrated gradi- | specific attribution methods ent
detection ents
Yan et al. | Introduce a rule-extraction | Extracts DNN rules for malicious traffic detec- | Lacks detail on the proposed | Rule-Based
2021 [92] method from DNNs for | tion; offers high accuracy and explainability online detection implementa- | Learner
transparent mobile malware tion
detection
Wang et al. | Leverage network traffic for mo- | Developed TrafficAV with feature extraction + | Small dataset and limited | Feature
2016 [93] bile malware detection; add inter- | ML classification for malware traffic model comparisons Extraction
pretable ML explanations
Iadarola Propose explainable DL for mo- | Implemented Grad-CAM to highlight crucial im- | Potential label bias in the | Grad-CAM
et al. | bile malware detection and fam- | age areas for accurate classification dataset
2021 [94] ily classification
Wu et al. | Combine MPT explainer | Employs XMAL for interpretable detection, val- | Missing multi-attention; lim- | XMAL, LIME
2021 [95] (XMAL) with feature | idated via user surveys and state-of-the-art com- | ited feature scope
descriptions for high-fidelity | parison
Android malware classification
Alenezi Apply SHAP for explainable cy- | Tested RF, XGBoost, and sequential models; | Limited model variety tested SHAP
and bersecurity threat detection SHAP reveals key features
Ludwig
2021 [96]
Ullah et al. | Develop BERT-based transfer | Merged text (BERT) and image-based (CNN) | Only SHAP used, no LIME | SHAP
2022 [97] learning for Android malware, | features; explained predictions with SHAP comparisons; local explana-
with SHAP for top features tions only
Naeem Fine-tune CNN for IoT malware | Applied Inception-v3 for IoT malware, employ- | Limited validation and scala- | Grad-CAM
et al. | images, offering Grad-CAM- | ing Grad-CAM heatmaps for explanation bility to larger malware fami-
2022 [98] based explainability lies
Alani and | Introduce PAIRED, a lightweight | Reduced features from 214 to 35, achieving 98% | Only global SHAP used, no lo- | SHAP
Awad. Android malware detector with | accuracy; SHAP explains global feature impact cal interpretation
2022 [99] SHAP feature importance
Liu et al. | Examine temporal bias in An- | Reveal how inconsistent time splits inflate ML | Feature-importance XAI may | XMAL,
2022 [100] | droid malware detection and use | performance, with XMal and Drebin for expla- | miss deeper non-linear interac- | DREBIN, and
XAI to explain inflated accuracy | nation tions Model-Agnostic
Techniques
Ambekar Propose TabLSTMNet combin- | Achieves 97-98% accuracy, with LIME/SHAP | Over-sampling risks overfit- | LIME, SHAP
et al. | ing TabNet + LSTM for inter- | explaining permission-level contributions ting; high computational com-
2024 [101] | pretable Android malware detec- plexity
tion
Soi et al. | Use function-call graphs and | Selects critical API calls from function-call | Large-scale API features may | SHAP
2024 [102] | SHAP for clear, model-agnostic | graphs, employs SHAP for transparent classifica- | hinder efficient analysis
explanations in Android tion
VOLUME 13, 2025 61627

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

malware detection. This approach transforms applications
into images that feed into an explainable deep-learning
model that is capable of recognizing Android malware and
classifying its family. Utilizing the Grad-CAM explainability
method, they demonstrate the selection of explanatory tech-
niques that improve classification performance. To enhance
interpretability, they generate heatmaps that offer visual
insights into the model’s reasoning, making the predictions’
rationale more accessible. Additionally, because the process
of analyzing these heatmaps is automated, it simplifies the
architecture’s debugging for analysts without necessitating
a background in the system’s design. besides enhancing
transparency in their model, they record a notable increase
in accuracy.

Naeem et al. [98] expand the application of gradient-based
methods by introducing a transfer learning approach for
classifying IoT malware, leveraging the Inception-v3 archi-
tecture, a pre-trained network designed to process malware
images and extract pivotal features. These features are
then fed into a classification algorithm and evaluated
across various ML classifiers to assess performance. The
Grad-CAM explainability method is utilized to highlight
the critical areas within the images. Furthermore, the study
utilizes t-distributed stochastic neighbor embedding (t-SNE)
to verify the comprehensiveness of the feature set within the
proposed CNN models. This ensures that they encapsulate
sufficient information for effective malware classification.

Gradient-based attribution helps Android malware detec-
tors reveal exactly which app features (e.g., API calls, opcode
sequences) most strongly affect the classifier’s output. While
this granularity aids in pinpointing malicious behavior, these
methods may require careful tuning to handle the massive
variety of Android apps and can still be undermined by
obfuscation or adversarial feature manipulation.

2) MODEL-AGNOSTIC BASED APPROACH

The challenge of explaining the vast range of models in
deep learning research is increasing. In this context, model-
agnostic approaches provide explanations after the decision-
making process, which are applicable to various opaque
models. The study by Kinkead et al. [88] presents a novel
CNN-based method focused on identifying specific parts
of opcode sequences suspected of containing malicious
elements. Their main objective is to examine and compare
the similarities between the locations of malicious opcode
sequences identified by the CNN and those marked as
important by LIME. They carry out their research using the
DREBIN dataset, known for its collection of 5,560 malicious
apps across different malware families, serving as a standard
for Android malware detection. Their results show that the
model achieves an accuracy of about 0.98, highlighting
CNN’s exceptional performance with the DREBIN dataset.
Further analysis of how both CNN and LIME highlight
locations across all the samples in each malware family
reveals a significant finding that CNN tends to focus on the

61628

same areas as LIME, indicating CNN’s targeted effort in
detecting malware.

In another effort to improve Android malware detection,
researchers Lu and Thing [89] utilize a model-agnostic
explainable Al framework focused on feature attribution,
highlighting the importance of feature manipulation and
optimization. Their approach integrates a trained model with
a Modern Portfolio Theory (MPT) explainer during the
explanation phase. Quantitative analysis of their method
shows greater sensitivity in detecting important data fea-
tures compared to the results from machine learning-based
Android malware detection tools. Additionally, they use
both LIME and SHAP to evaluate the effectiveness of the
MPT explainer, seeking to confirm its superior capability in
identifying key features essential for malware detection.

On the other hand, rapidly mutating malware variants
necessitate sophisticated classification methods to categorize
these variants accurately. Although variants within the same
malware family often exhibit identical behavioral patterns,
the increasing number of variants complicates the process
of accurately classifying new ones. This challenge has
motivated researchers to develop advanced detection tools
aimed at enhancing the accuracy of malware classification.
One notable contribution in this field is DAEMON, a data-
agnostic malware classification tool developed by Korine and
Hendler [90]. DAEMON stands out for its ability to discern
the unique features of various malware families, which
lends clarity and explainability to the classification process.
The researchers behind DAEMON have collected extensive
datasets, which they have analyzed on both Windows and
Android platforms, utilizing the renowned DREBIN dataset
for the latter. Their efforts have culminated in DAEMON
achieving remarkable accuracy in malware classification.

Based on a model-agnostic approach, the study [97] intro-
duces anovel, hybrid methodology for crafting an explainable
malware detection system that leverages both textual and
visual representations of malware attributes. Initially, they
develop a pre-trained model known as Bidirectional Encoder
Representations from Transformers (BERT), specifically
customized to learn textual features derived from network
traffic. Following this, they suggest an algorithm capable
of transforming malware into a visual format. Subsequently,
a CNN model is implemented to utilize deep extraction of
features. Once these balanced features are obtained, they are
fed into a suite of ensemble models, including SVM, DT, LR,
and REF, to facilitate the system’s classification and detection
capabilities. Furthermore, the researchers utilize SHAP,
amodel-agnostic technique for explainability, to elucidate the
critical features in interpreting the model’s decisions.

In the study Alani et al. [99], the researchers introduce
an Android malware detection system named PAIRED. This
system is distinguished by its lightweight design and high
precision, achieving a significant reduction in feature count—
from 214 to 35, amounting to an approximate 84% decrease.
The SHAP explainability technique is utilized to elucidate
the overarching influence of the features, identifying which

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

among them have a greater impact on the predicted outcomes.
Impressively, PAIRED manages to sustain a remarkable
accuracy rate of 97.98%.

Ambekar et al. [101] introduce the TabLSTMNet,
an approach to Android malware classification that combines
the strengths of the TabNet architecture, which was developed
by researchers at Google Cloud and LSTM models,
complemented by XAI techniques. This model integrates
TabNet’s attention-mechanism feature selection, which
efficiently identifies critical features, with LSTM’s dynamic
processing capabilities for sequential data. This integration
allows for a detailed analysis of Android permissions and
API calls to distinguish between benign and malicious
applications effectively. The proposed model is evaluated on
two different datasets and achieves classification accuracies,
demonstrating 97.10% on the NATICUSdroid dataset and
98.00% on the TUNADROMD dataset. Moreover, the
incorporation of explainable Al methods such as LIME and
SHAP significantly increases the transparency of the model’s
decision-making process.

Soi et al. [102] propose a novel methodology for improving
the explainability of Android malware detection systems.
The approach begins with a static analysis of Android
application packages (APKSs) to extract a Function Call Graph
(FCG). This graph represents all the API calls within the
application’s code. Based on FCG, a set of critical API
calls can be selected, which are strongly correlated with the
application’s behavior, to serve as features for their model.
After that, the selected features are embedded using Natural
Language Processing (NLP) techniques, such as TF-IDF and
Word2Vec, to produce a consistent input format for a CNN.
To enhance the interpretability of the model’s decisions, the
paper employs SHAP values, which provide a clear and
detailed explanation of how each API call contributes to the
classification outcome.

The results of the experiments conducted on a dataset of
over 40,000 Android applications show that the proposed
method achieves a classification accuracy comparable to
state-of-the-art models. The paper also conducts extensive
evaluations to address potential issues such as temporal
bias and concept drift. It highlights that while the approach
maintains strong performance over time, the inclusion of
more recent data can be important for sustaining its accuracy.

Model-agnostic tools like LIME and SHAP allow security
analysts to investigate any ML Android malware detector,
highlighting the top features—Ilike permissions or API
calls—responsible for a malicious label. Their interpretability
fosters user trust but can sometimes yield inconsistent local
explanations across app variants, especially if the underlying
model is unstable.

3) RULE-BASED APPROACH

Yan et al. [92] present an innovative approach for extracting
rules from DNNs, aiming to balance the accuracy intrinsic
to DNNs with the need for explainability in their operation.
The initial phase contains the collection of network traffic

VOLUME 13, 2025

data, utilizing a tool named DroidCollector for this purpose.
Subsequent to data collection, feature extraction is conducted
to distill the essential information necessary for training the
model. This algorithm begins by verifying the appropriate-
ness of the neural network settings, such as its suitability
for classification tasks. In instances where the predicted
label aligns with the true label, the model’s performance
is deemed satisfactory. However, misclassification triggers
a reassessment and update of the neural network’s weights.
The backpropagation process prioritizes the weights of
the outermost layer before sequentially addressing each
subsequent layer, effectively distributing the errors from each
output variable across the network’s hidden layers. Through
numerous iterations, the model iteratively refines itself until
it achieves optimal performance, at which point rules are
extracted from the DNN.

Employing these extracted rules, the authors devise a
mechanism to detect malicious network activity. They
conduct an evaluation of their DNN rule extraction technique
against three contemporary technologies—Multi View, CNN,
TrafficAV—and four ML-based algorithms, namely Bagging,
Adaboost, KNN, and Random Forest. The findings from
this comparison suggested the superiority of their proposed
method, which excelled in numerical prediction accuracy
and outperformed the benchmarked methods. Hence, the
authors propose an online detection system that is optimized
for high-speed network environments and leverages FPGA
technology to facilitate the real-time detection of mobile
malware.

Also, as ML has emerged as a powerful tool for uncovering
rules crucial for predictive data analysis, in their work,
Wang et al. [93] develop TrafficAV, an efficient and
intelligible method for classifying mobile malware based
on network traffic patterns. This approach is designed to
minimize resource usage and performs malware detection
and network traffic analysis server-side. TrafficAV leverages
feature extraction combined with the C4.5 DT algorithm
to detect the presence of malicious applications, applying
two distinct detection models for HTTP and TCP protocols.
This dual-model strategy has yielded high accuracy rates.
Furthermore, TrafficAV provides an analysis of the signifi-
cance of each feature in the decision-making process, offering
user-friendly explanations of its findings.

Similarly, another study [95] works on the framework
named XMAL—an interpretable machine learning-based
framework—proposes a rule-based methodology for accu-
rately classifying Android malware. This system enhances its
capabilities with a Multilayer Perceptron (MLP) model that
incorporates an attention layer to highlight the relevance of
input features. By integrating the MLP model, the researchers
are able to underscore the importance of specific features
in malware identification. XMAL’s effectiveness is also
compared to other explainability techniques, such as LIME,
where it demonstrates superior performance in terms of
interpretability, thereby reinforcing the value of machine
learning in enhancing cybersecurity measures.

61629

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

TABLE 3. Research addressing explainable machine learning in malware analysis.

Linux malware detector

Paper/Year| Focus/Objective Contribution Limitation XAI technique
Hardware-Based Malware Approaches
Pan et al. | Use linear regression for inter- | Introduced a hardware trace-based detection | Insufficient details on | Linear regression
2020 [110] | pretable hardware-based mal- | framework with interpretable regression filter/activation interpretability
ware detection
Pan et al. | Hardware performance coun- | Provided interpretable HPC-based classification, | Does not test various surro- | Linear regression
2022 [111] | ters + ETB for explainable mal- | localizing malicious behavior via RNN + DT gates or compare interpretabil- | and Decision tree
ware detection/localization ity outcomes
Li et al. | Introduce I-MAD with an in- | Analyzes assembly code, uses IFFNN to locate | Limited fidelity documenta- | IFFNN
2021 [112] | terpretable feed-forward neural | payload patterns and improve transparency tion; risk of adversarial misuse
network for hardware-level de-
tection
Linux-Based Malware Approaches
Wang et al. | Pinpoint malicious code snip- | Proposed a CNN to detect inline assembly mal- | Minimal discussion of future | Layer-wise
2021 [66] pets in Linux malware with | ware, using LRP to highlight influential code | improvements relevance
LRP-based explainability blocks propagation (LRP)
Wang et al. | Develop SHAP-guided adver- | Combined feature-level and problem-space ob- | Limited to static detection and | SHAP
2021 [113] | sarial evasion on Linux mal- | fuscation using SHAP-based insights SHAP approach
ware detectors
Mills et al. | Propose NODENS, an inter- | Demonstrates zero-day detection with a tree- | Evaluation constrained by | Decision tree
2019 [114] | pretable RF-based real-time | based approach for straightforward explanations | small dataset

PDF-Based Malware Approaches

2018 [117] | pretable PDF malware classifi-

forming LIME on PDF malware tasks

explanation

Kuppa and | Explore ML attacks on Investigated gradient-based XAI robustness and | No detailed defense strategies | Gradient-Based
Le-Khac gradient-based XAI, wusing | accuracy under ML adversarial scenarios were provided Methods

2020 [115] | PDF and Android malware

Severi Demonstrate SHAP-based | Created stealthy backdoor triggers for | Constrained to certain back- | SHAP

et al. | backdoor triggers that poison | PDF/Windows PE; validated with SHAP | door scenarios

2021 [116] | ML training analysis

Guo et al. | Introduce LEMNA for inter- | LEMNA captures feature dependencies, outper- | Limited detail on feature-level | LEMNA

cation with fused lasso

The study provided by Liu et al. [100] investigates the
performance of ML models under realistic and unrealistic
experimental setups. It utilizes a dataset of 165,000 Android
applications, with 33,000 malware and 132,000 benign
samples, spanning from 2010 to 2020. The focus of the study
is on understanding why ML-based malware detection mod-
els perform exceptionally well under certain experimental
setups, particularly those involving temporal inconsistencies
between malicious and benign samples. To achieve this goal,
it leverages different explainable malware detection tech-
niques, i.e., XMal, Drebin, and model-agnostic explanation
approaches [118]. It shows how this inconsistent distribution
between malware and benign samples can lead to high
detection performance but poor generalization. Its results
emphasize the need for XAl techniques in experiments to
ensure that the models are practically useful and not just
theoretically effective.

Rule-based learners (e.g., DNN rule extraction or
tree-based methods) strive to combine the accuracy of
deep nets with the readability of logical rules. When
applied to Android malware, these frameworks can yield
straightforward if-then statements describing malicious
behaviors. Still, as Android evolves, rule sets must be

61630

updated frequently, or attackers may exploit static rules for
evasion.

Collectively, these Android XAI approaches underscore
the interplay between interpretability and the fluid nature
of the mobile ecosystem, where APIs and permissions
often shift. Next, we examine how hardware-based XAI
approaches address embedded systems and HPC-driven
malware detection.

C. HARDWARE-BASED MALWARE APPROACHES
Many researchers have designed hardware-based malware
detectors with the assumption that solutions such as anti-virus
software can be fooled easily by malicious code. Although
there are many studies on hardware-assisted malware
detection, there is a distinct lack of research focused on
explainability. This highlights a critical need for innovation
in the field that goes beyond detection accuracy, aiming
for systems that can articulate the rationale behind their
detections. In table 3, the literature on hardware malware
classification and detection using XAl is discussed.

Sheldon [119] conducts a study analyzing hardware traces
for malware detection using explainable ML approaches.
Hardware traces comprise the data stored in caches and

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

registers during the execution of a program. These traces are
then processed by an ML-based model to identify malware
presence. Subsequently, the model’s accuracy is evaluated
against that of leading-edge ML models. The feedback
obtained from this comparison is utilized to refine the
accuracy of malware detection.

To explore the comprehensive study of hardware trace
analysis and the development of an explainable, hardware-
assisted malware detection framework, the research by
Pan et al. [110] introduces a hardware framework depicted
in Fig 5. This framework is structured around three principal
activities.

The first phase involves training an ML model (M) with
collected hardware traces. For this purpose, they implement
an RNN and leverage the Embedded Trace Buffer (ETB)
architecture for trace collection. Subsequently, a specially
curated artificial dataset X = (x1, x2,...,X,) is processed
by the machine learning model (M) to yield the output Y.
To adapt this artificial dataset for the model, linear regression
is conducted, resulting in the formulation of a linear
predictive model. This process is shown in Equation 1.

n
y= axi+e ()
i=1

Linear predictions are formulated as a polynomial func-
tion, where n represents the number of instances. This
expression incorporates an error term, €, which is crucial for
understanding the weight distribution within the model. The
value of € needs to be as small as possible. The goal is to
minimize the value of € as much as possible, ensuring that the
model’s predictions are as accurate and reliable as possible.

argmin |[X, — yl[2 @

Equation 2 shows the optimization problem, emerging
from the selection of y as the perturbed output. Further ridge
regression is applied in order to achieve higher fitness with
correlated data. This approach aims at achieving optimal
fitness by introducing an additional term to the optimization
equation, further elaborated in Equation 3.

arg min [|X, — yll2 + Allall2 3

To mitigate the issue of high variance, the strategy involves
substituting X with X — A/, as depicted in Equation 4. This
adjustment incorporates a regularization parameter, A, and
the identity matrix, I, directly into the predictive model.
This technique effectively reduces the model’s complexity,
discouraging overfitting by penalizing larger coefficients.

argmin ||X, — yll2 + Allall2 — argmin [[(X — Aa — |2
“

After determining the linear regression coefficients, the
focus shifts to interpreting the outcomes, with particu-
lar emphasis on identifying the most influential features.
Features associated with larger coefficients are flagged as
potentially malicious. To benchmark the effectiveness of

VOLUME 13, 2025

Outputs (Y)

Trace Data M?d?l Machine Learning
Training Model (M)

Artificial Inputs
{x1,x2,....xn)

Outcome Coefficients Linear
Interpretation {a1,a2,....an) Regression

FIGURE 5. Explainable hardware malware generation workflow [110].

their method, the authors reference the PREEMPT malware
detector for comparison [120]. PREEMPT employs two
algorithmic models, i.e., Random Forest and Decision Tree,
utilizing hardware performance counters (HPC) to generate
its dataset. However, it does not extensively investigate the
dataset’s characteristics, focusing primarily on the interpre-
tation of outcomes. Given the scarcity of research in this area
and the need to address malware detection challenges, it is
imperative for researchers to engage deeply with the realm of
explainable hardware malware detection.

Building upon their previous efforts, the authors [111]
harness hardware performance counters and embedded trace
buffers to identify the exact locations of malicious activities
within a system. They develop Decision Tree and RNNs
to perform a trade-off between accuracy and efficiency in
their detection methodology. Their evaluation, conducted on
a broad spectrum of real-world malware datasets, elucidates
the interpretability of the RNN model, leveraging linear
regression and Decision Tree through tree parsing techniques.

In a parallel line of research, Li et al. [112] intro-
duce an innovative interpretable malware detector named
I-MAD transformer, designed to analyze assembly code
at the basic block level of executables. This approach
integrates an interpretable feed-forward neural network,
allowing for the examination of each feature’s impact on the
prediction outcome. The significant advancements brought
forth by this study include 1) The proposition of a deep
learning model capable of interpreting entire sequences
of assembly-level code in malware executables, offering a
comprehensive analysis beyond superficial layers. 2) The
introduction of two pre-training activities aimed at enhancing
the understanding of the relevance and functionality of
assembly-level constructs, thereby improving the model’s
predictive accuracy and interpretability. 3) The development
of an Interpretable Feed-Forward Neural Network (IFFNN),
which assists analysts in identifying payloads and recurring
patterns within malware samples. This network combines the
interpretability akin to logistic regression with the modeling
prowess of multi-layer FFNN, presenting a powerful tool for
cybersecurity professionals in the battle against malware.

In conclusion, hardware-based XAI solutions exploit
HPCs and trace buffers to offer fine-grained inspection
of runtime behavior. The interpretable models (e.g., linear
regression, interpretable feed-forward nets) provide valuable
insights into which low-level counters or basic blocks signal

61631

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

malicious patterns. However, custom hardware or specialized
instrumentation is often needed, which can limit widespread
deployment.

D. PDF-BASED MALWARE APPROACH

A Portable Document Format (PDF) file contains text,
images, digital signatures, and other elements. Its structure
includes a Header, Body, Cross-reference Table, and Trailer.
The header of a PDF file is the top section that indicates
the version number and file format. The body of the PDF
stores all the pertinent data, and it contains a range of
objects, including data, text, images, and dictionaries. The
cross-reference table in a PDF file includes links to all
elements within the document, which facilitates navigation
and access. The trailer, which links to the cross-reference
table, also contains the EOF marker.

Given the global acceptance of PDF as a standard docu-
ment format, the prevalence of PDF malware is increasing.
Malware exploits vulnerabilities in PDF readers to hijack
execution control, such as executing shell code. To evade
malware detection, PDF authors might employ techniques
that can cause the PDF reader to crash [121].

To analyze and evaluate the consistency and correctness
of the gradient-based approach, the study by Kuppa and Le-
Khac [115] designed a novel ML attack. They apply this
method to detect malicious PDF files using the Mimicus
dataset and to identify Android malware with the DREBIN
dataset, interpreting the results through gradient-based
explainable machine-learning techniques.

To guide the selection of relevant features and avoid back-
door poisoning attacks, the authors [116] use model-agnostic
techniques in explainable machine learning and develop
effective backdoor triggers. They specifically use Android,
PDEF, and Windows PE files for malware classification and
analyze nearly 10,000 samples of benign and malicious files.
To maintain the functionality of the binaries, they create a
static analysis watermarking utility for Windows PE files that
meets multiple adversarial constraints. Subsequently, their
attention turns to PDF files and Android applications. Using
the SHAP explainability technique, they identify features that
contribute to malware detection. Finally, they demonstrate
and evaluate the challenges in fully defending against these
stealthy poisoning attacks.

To classify PDF malware, another research [117] intro-
duces an explainable method named LEMNA, which pro-
vides high-fidelity explanations for malware detection. They
utilize deep learning models and assess their interpretability
using LEMNA. The study also explores feature augmenta-
tion, along with synthetic and feature deduction tests. They
note that due to sparse input feature vectors affecting local
decision boundaries, LIME, and other advanced explainable
techniques were as ineffective as traditional feature selection
methods. The PDF-based malware detection studies are
summarized in Table 3.

PDF files continue to be a popular vector for mali-
cious exploitation. The interpretability methods described

61632

here—whether gradient-based or model-agnostic—provide
clarity on which structural elements (e.g., JavaScript objects,
suspicious headers) are raising red flags. Nevertheless,
sophisticated obfuscation within PDFs can still pose signif-
icant challenges for these models.

E. LINUX-BASED MALWARE APPROACH

Linux, a Unix-based operating system, is an open-source
platform that is renowned for its reliability and functionality.
For malware analysis, Linux allows malicious code to run
in isolated sandbox environments. However, due to the
limited availability of sandboxes compatible with the latest
Linux versions, they are less commonly used than Android
and Windows platforms. Recognizing that ML in malware
detection often yields predictions that lack explainability,
Wang et al. [66] introduce an explainable malware detection
method based on Linux systems. This approach clarifies the
rationale behind the classifier’s decisions by locating the
malicious code snippets. By using a dynamic approach, they
map system calls to inputs for a deep learning model and
utilize the explainable technique of Layer-wise Relevance
Propagation to recognize which sequence parts are most sig-
nificant in the decision-making process. By using a confusion
matrix as a performance evaluation, they confirm that their
method can swiftly and accurately identify malicious code.

Wang et al. [113] focus on exposing vulnerabilities in mal-
ware detectors through explainability-guided evasion attacks
that combine feature space manipulation with problem space
obfuscation. They utilize a dataset of approximately 43,553
ELF binary files on Linux systems. Their research uses the
model-agnostic explainability method SHAP to demonstrate
how evasion attacks can be transferred from one detector
to another. In another study, Mills et al. [114] develop
a lightweight malware detection system named NODENS,
suitable for deployment on Raspberry Pi hardware. They test
several ML-based algorithms on a Linux operating system,
with the Random Forest algorithm performing optimally
among them. This work utilizes a tree-based model to
facilitate visual interpretation of the classification process,
which enhances the end user’s understanding of the output
and aids in the individual development of the malware sample
lifecycle. Due to the infrequent application of the Linux
platform, there is limited research on explainable malware
detection within the Linux domain. Studies addressing this
topic are detailed in Table 3.

These Linux-oriented approaches show that explaining
which code snippets or system calls are pivotal can help
analysts better grasp the root causes of malicious behav-
ior. However, the limited availability of Linux malware
datasets—and the complexity of dynamic sandboxing—
remains a bottleneck for broad adoption.

F. OTHER APPROACHES

This section provides information regarding approaches
that are not specific to any domain. Chen [122] leverages
DL-based techniques for static malware classification to

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

TABLE 4. Research addressing explainable machine learning in malware analysis.

Paper/Year| Focus/Objective Contribution Limitation XAI technique
General Malware Approaches
Chen Employ image-based static ML | Visualizes malicious features in grayscale images | Unverified against adversarial | LIME
2018 [122] | with LIME explanations for improved interpretability or obfuscated malware; lacks
trust metrics
Briguglio Use LRP to interpret ML-based | Compared LR, RF, NN using LRP for n-gram | Lacks thorough interpretability | Layer-wise
and Saad. | n-gram analysis in malware de- | feature relevance framework analysis relevance
2019 [123] | tection propagation (LRP)
Li et al. | Propose LSH-based clustering | Groups similar assembly functions, offering | Potential limitations not clearly | Executable
2021 [124] | for interpretable function-level | built-in interpretability discussed functions
malware classification
Fidel et al. | Exploit SHAP “signatures” to | Shows SHAP-value distributions differ for adver- | Method not easily transferable | SHAP
2020 [125] | detect adversarial vs. benign | sarial samples, enabling classifier-based detec- | across detectors; SHAP’s non-
samples tion differentiability is limiting
Kumar and | Apply SHAP to identify top | Employs SHAP bar/waterfall plots to analyze | Does not deeply explore | SHAP
Subbiah features in zero-day malware | false positives/negatives in zero-day detection SHAP-based misclassification
2022 [126] | classification causes
lee et al. | Use reliability indicators + | Validated screening method with IDS/malware | Omits comparison with alter- | SHAP
2022 [127] | SHAP to refine alerts in large- | datasets, employing SHAP-driven feature in- | nate XAl tools
scale security threats sights
Galli et al. | Evaluate SHAP, LIME, | Proposed an XAI framework for behavioral | Unclear if results generalize | SHAP, LIME, LRP,
2024 [128] | LRP, attention to explain | models, assessing multiple explanation methods | beyond tested datasets and attention mech-
LSTM/GRU in behavioral | across diverse datasets anisms
malware detection

emphasize the importance of model transparency to gain user
trust. They enhance their model’s interpretability by utilizing
LIME and adopting an image-based approach to visualize
malware data. The study is conducted using three distinct
datasets, where the model demonstrates high accuracy and
a low false positive rate. For a practical demonstration of
interpretability, the authors select an image from Lloyda. AA2
malware family and represent it with 200 super-pixel
representations. They then identify which aspects of the
malware images are crucial for the deep learning model’s
predictions. Their visual interpretation states that the red
regions indicate the pixel regions that the model does not trust
to contribute to the prediction.

To evaluate interpretability techniques applied to ML-based
malware detectors, Briguglio and Saad [123] explore
how these techniques enhance N-gram analysis in the
interpretation of machine-learning malware detectors. They
focus on logistic regression, random forest, and neural
network models, enhancing model confidence and feature
significance. Specifically, they use the Layer-wise Relevance
Propagation (LRP) technique to recognize the most important
input nodes for classification.

Li et al. [124] develop a novel ML-based model that
classifies malware effectively and offers exceptional inter-
pretability. They introduced a unique ML-based algorithm,
the LSH-based clustering approach, which supports result
visualization and interpretation that distinguishes it from
other models in the field.

In their study on detecting evasion attacks, such as
adversarial examples, Fidel et al. [125] utilize SHAP values

VOLUME 13, 2025

as an innovative approach. They created SHAP signatures
based on the premise that these signatures differ between
benign and adversarial samples. Their findings confirm
the initial hypothesis that variations in SHAP values in
the classification model’s final layer can effectively reveal the
distribution of feature importance in classification outcomes.
This method enhances the model’s ability to identify
adversarial examples, demonstrating a novel application of
SHAP values in enhancing security measures.

Kumar and Subbiah [126] conduct a static analysis using
three different datasets to detect zero-day malware with ML-
based algorithms. Among the algorithms tested, XGBoost
achieves the highest accuracy and outperforms all other
models. The authors utilize the SHAP bar and waterfall
plots to identify the most significant features contributing
to the model’s predictions. They compare these top features
across four categories of samples: False Positives (FP), False
Negatives (FN), True Negatives (TN), and True Positives
(TP). This comparison helps recognize misclassification
categories, and the findings suggest that redistributing
misclassified samples into their correct categories could
significantly enhance the model’s efficiency.

Lee et al. [127] address large-scale threats to cybersecurity
by leveraging IDS and malware datasets to validate the effec-
tiveness of their proposed approach. Their method focuses
on screening high-quality data to identify and rectify false
predictions using reliability indicators. They incorporate the
SHAP explainability technique to determine the contributions
of individual features to specific outcomes. This approach
identifies weaknesses in the existing AI models and enhances

61633

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

the detection of valuable alerts. By improving the accuracy
of alert detection, the method allows human analysts to work
more effectively and efficiently, which leads to prioritizing
critical threats and optimizing response strategies.

Galli et al. [128] address the critical need for transparency
in Al systems used for malware detection. They develop
and evaluate an XAI framework that applies to behavioral
malware detection by employing DL models such as LSTM
and GRU. These models analyze sequences of API calls to
detect malicious activities. To make the models’ decisions
understandable and trustworthy, the paper investigates four
different XAl techniques, i.e., SHAP, LIME, LRP, and atten-
tion mechanisms. The evaluation of these methods across
three datasets (Mal-API-2019, API Call Sequences, and
Alibaba Cloud Malware) shows their varying effectiveness in
providing clear and useful explanations.

These generalized XAl solutions—covering n-gram anal-
ysis, signature-based detection, or adversarial defense—
offer additional perspectives on explaining ML-driven mal-
ware detection. While each technique addresses a different
niche (e.g., zero-day detection, adversarial resilience, multi-
platform coverage), common XAl issues like scalability, con-
sistency of explanations, and susceptibility to manipulation
still arise.

In summary, explainable malware detection strategies
span a diverse range of platforms and techniques—from
gradient-based methods pinpointing critical file regions to
model-agnostic tools offering broader coverage at the cost
of local-only explanations to advanced image-based or rule-
based systems. While these approaches strengthen trust,
transparency, and analyst insight, they also face challenges in
scaling to large datasets, handling obfuscated or adversarial
samples, and balancing interpretability with accuracy. In the
next section, we examine how these XAI methods can be
enhanced against advanced threat tactics and integrated into
practical cybersecurity frameworks.

V. FUTURE RESEARCH DIRECTIONS

Explainable ML is an evolving field with many ongo-
ing challenges and opportunities for exploration. In the
previous sections, we conducted an extensive review of
various explainable ML techniques, with a particular focus
on malware classification and detection. however, as the
application of explainable methods in malware detection
becomes increasingly prevalent, new challenges continue to
emerge. As shown in Fig 6, this section outlines several key
challenges and potential research directions that researchers
may pursue as future work in the area of explainable malware
analysis.

A. IMPROVE DATASETS

Improving and updating malware datasets is a critical concern
in the field of XAl Many existing datasets are outdated
and lack comprehensive coverage of current malware
behaviors. These datasets often do not provide a sufficient
volume of data for training XAI applications. For instance,

61634

previous research on explainable Android malware detection
utilized the DREBIN dataset, which comprises 5,616 mali-
cious instances and 121,329 benign instances [107]. This
imbalance, where benign instances significantly outnumber
malicious ones, can hinder the training of effective models.

Moreover, the size of the current datasets is generally too
small to train robust models. This field of research needs an
unbiased, reasonably sized benchmark dataset that equally
represents both benign and malicious behaviors. Accessing
this kind of dataset is essential for evaluating explain-
able ML-based techniques and achieving reliable detection
results. Furthermore, the DREBIN dataset, in particular,
highlights the limitations of static analysis, pointing to the
necessity for dynamic updates that support more comprehen-
sive dynamic analyses. Additionally, there is potential for
innovation in automated data generation and minimization
techniques to accelerate the prediction process. For example,
in hardware malware detection, researchers [119] have
generated trace data to facilitate hardware trace analysis and
distinguish between malware and benign programs. Future
work could focus on enhancing these techniques to streamline
and speed up the predictive capabilities of malware detection
systems.

B. COMBINE STATIC AND DYNAMIC

This paper discussed explainability techniques in malware
analysis, wherein researchers have primarily concentrated
on static and dynamic analyses. Static analysis involves
feature extraction and dimensionality reduction, processes
that minimize information uncertainty and facilitate the
analysis of malicious applications. Conversely, dynamic
analysis focuses on training surrogate learning models.
However, there is a notable absence of research on hybrid
analysis, which combines elements of both to enhance the
explainability of malware detection.

To address this gap, multiple ML-based classifiers will
be leveraged to analyze both source code and runtime
dynamic features. This dual approach aims to improve
the efficiency and effectiveness of ML-based algorithms in
distinguishing between benign and malicious applications.
Moreover, to overcome the limitations in static and dynamic
methodologies, researchers should also develop online and
real-time explainable malware detection systems. These
systems would continuously monitor the entire system to
detect any possible malicious behavior or traces at any
moment. Thus, the development of hybrid and online
detection systems represents a significant research challenge
in the field of explainable malware analysis.

C. ANALYZE MODEL-AGNOSTIC TECHNIQUES

There is a need to explore various model-agnostic techniques
that provide both local and global explanations, which can
help develop fast-training and explainable models without
sacrificing accuracy. One promising direction for future
research is the automation of explainability when it is
decoupled from the underlying machine learning model.

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

Combine Static and

Dynamic

Improve Datasets

Hardware Malware
Detectors

Mitigate Attacks

Future Directions

Analyze Model-
Agnostic Techniques

Apply Explainability
to Multiple Models

Pre-Trained Models

v

v

Improve Detection
Efficiency

FIGURE 6. Future directions for explainable malware detection.

This decoupling facilitates the easy replacement of both the
explainable technique and the machine learning model itself.

The model-agnostic technique, LIME, is widely cited in
research but comes with notable limitations. Its reliance on
data sampling can lead to variability in explanations, mak-
ing them potentially unstable and unreliable. Furthermore,
if the local fidelity measure is inaccurate, the reliability of
LIME’s explanations for distinguishing between malicious
and benign samples is compromised. Additionally, LIME
lacks guidance on the optimal number of features to use,
which could affect the quality of its explanations.

To advance the field of explainable malware detec-
tion, paying attention to evaluating various model-agnostic
techniques is essential. Future research could also focus
on improving fidelity in explanations, which is crucial
for maintaining reliability in rapidly evolving scenarios.
Overall, model-agnostic methods represent a flexible and
effective approach to enhancing malware detection through
explainable ML.

D. APPLY EXPLAINABILITY APPROACH TO MULTIPLE
MODELS

Previous research in explainable ML within the malware
detection domain has primarily focused on developing
frameworks and applying specific explainability methods to
those frameworks. However, there is a notable gap in the
literature regarding the selection of explainability techniques
for non-differentiable models. Theoretical findings suggest
that under certain assumptions, various ML-based algorithms
can yield similar decision functions. This similarity raises a

VOLUME 13, 2025

Y

Automated
Explainable Models

critical question: how does one select the most appropriate
explainable technique for a given malware detection process?

Hence, conducting thorough analyses and evaluations
of how different explainability techniques influence the
explanations generated by a specific framework. Such
research can demonstrate that the chosen explainability
technique fits the model and outperforms alternative methods
in clarity and effectiveness. Enhancing the understanding
of the applicability and efficiency of various explainable
methods in malware detection leads to more robust and
transparent systems.

E. USE PRE-TRAINED MODELS

While neural networks are powerful tools for modeling,
their ML nature makes them difficult to interpret, which
poses a significant challenge in fields such as malware
detection. In the research regarding this, the authors [110]
have developed a framework that utilizes neural networks
to facilitate interpretable malware detection, which has
innovative approaches to this issue.

Looking forward, in the malware detection domain,
it would be advantageous to leverage existing explainable
pre-trained models rather than building new models from
scratch. This approach can save considerable time that would
otherwise be spent collecting data and training models and
enhances the efficiency of detecting malicious activities in
systems that may already be compromised.

In other words, utilizing pre-trained models can accel-
erate the deployment of malware detection systems
and improve their effectiveness by integrating advanced,

61635

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

pre-learned features into the detection process. At present,
there is no well-established, publicly available pre-trained
explainable model that is widely adopted specifically for
malware detection. While the concept of pre-trained” and
“explainable models exists in other domains (e.g., NLP,
computer vision), the malware analysis community has not
converged on a standard, large-scale pre-trained model that
includes built-in explainability for detecting malicious code
or behavior.

Building a comprehensive pre-trained explainable model
for malware detection is hampered by challenges such as
limited access to large, high-quality datasets due to privacy
and proprietary concerns, as well as the constantly evolving
nature of malware which requires frequent retraining and
adaptation. Additionally, integrating explainability mech-
anisms at scale introduces complexity and may reduce
performance if not carefully designed and maintained.

F. AUTOMATED EXPLAINABLE MODELS

One promising direction for future research in the field of
malware detection involves implementing more automated
explainability models. The goal is to enhance user trust in
ML models, such as those based on DL techniques, which
are currently not automatically interpretable. Most existing
research focuses on interpreting the results of malware
detection after the detection has already occurred. This
method leaves a gap in real-time understanding and response,
which automated explainability aims to fill.

Moreover, achieving an optimal balance between accuracy
and explainability continues to be a significant challenge.
Automated explainability could help bridge this gap by
providing insights into the decision-making process of
complex models in real time. Additionally, there is a
clear need for more research focused on quantitative-level
evaluation of these explainable models. Such evaluations
would assess the interpretability and how the introduction of
explainability affects the overall performance of the detection
system.

G. IMPROVE DETECTION EFFICIENCY

A valuable future direction in explainable malware detection
is to enhance the design methodologies of malware detectors
so that the explanations they generate can assist professionals
in more accurately characterizing malware attacks. For
example, wang et al. [93] involve extracting features and
employing a decision tree to develop a model capable of
determining the maliciousness of applications.

Looking forward, the implementation of pruning strategies
in decision trees presents a promising avenue for enhancing
the efficiency of these detection models. Pruning optimizes
the tree structure by removing superfluous or minimally
informative branches, thereby simplifying the model. This
optimization can accelerate the processing time and enhance
the accuracy by focusing the model’s analysis on the most
significant features.

61636

H. MITIGATE ATTACKS

In recent research, the primary focus has been on ML
attacks, gradient-based attacks, evasion attacks, and poison-
ing attacks. Evasion attacks involve manipulating malicious
input samples during the training phase to circumvent
detection by a trained system, and it requires access to the
model. Poisoning attacks compromise the integrity of training
data by introducing incorrect data since it can mislead the
learning process of ML models. This corruption of training
data severely undermines the entire training process.

In both gradient-based and poisoning attacks, it is assumed
that the attacker has knowledge of the feature space used by
the target. Future research in the field of explainable ML
should explore defense mechanisms against these types of
attacks and develop generic mitigation methods. Moreover,
while current attacks typically use either static or dynamic
approaches, future attacks might utilize a hybrid approach
that integrates both strategies. As malware data continuously
evolves, implementing attacks in online detection systems
could pose significant challenges for attackers trying to
intercept or manipulate high-speed continuous data compared
to data stored on devices.

The study by Scalas et al. [91] highlights the use of system
API calls as effective features for detecting attack strategies.
Future research could assess the susceptibility of system API
calls to attacks and explore whether this detection strategy
limits the number of features that attackers can feasibly
manipulate.

I. HARDWARE MALWARE DETECTORS

Research on explainable hardware-based malware detection
is currently limited, which presents significant opportu-
nities for future investigation. One potential avenue for
advancement involves the design of efficient and explainable
hardware malware detectors. These systems could automate
the trace selection process and reduce prediction time
while maintaining high accuracy in differentiating between
malware and benign programs.

Another area for exploration is the development of
debugging architectures that enhance malware detection
capabilities. This could include the design of embedded trace
buffers and the utilization of hardware performance counters.
These tools would help identify the most informative traces
for use in explainable machine learning applications within
the malware detection field. This focus can enhance the
efficiency and effectiveness of malware detection systems
and make them more accessible and interpretable for
cybersecurity professionals.

VI. CONCLUSION

ML-based techniques play a crucial role in cybersecurity, yet
these data-driven frameworks are susceptible to exploitation,
misdirection, and circumvention. Explainability is essential
to enhance the transparency of these models and build trust
in order to deploy them effectively for malware analysis.

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

This paper discusses explainable ML in malware analysis

and

reviews state-of-the-art approaches. We provide an

in-depth examination of explainable malware classification
and detection methods, summarizing the work of researchers
to date. Our study systematically organizes various explain-
able malware-based approaches, making this information
more accessible to researchers and others interested in this

field.

We conclude the survey by identifying open research
challenges and future directions in explainable malware
analysis. This survey serves as a comprehensive guide
for researchers exploring explainable malware detection,
offering insights into the current landscape and stimulating
research in unexplored domains within this dynamic and
evolving field.

REFERENCES

(1]

[2]

[3

[4]

[5]

[7]

[8]

[10]

[11]

[12]

[15]

[16]

[17]

R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, “Explainable machine
learning for scientific insights and discoveries,” IEEE Access, vol. 8,
pp. 42200-42216, 2020.

A. Saranya and R. Subhashini, “A systematic review of explainable
artificial intelligence models and applications: Recent developments and
future trends,” Decis. Anal. J., vol. 7, Jun. 2023, Art. no. 100230.

A. Das and P. Rad, “Opportunities and challenges in explainable artificial
intelligence (XAI): A survey,” 2020, arXiv:2006.11371.

F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, “Explainable
Al A brief survey on history, research areas, approaches and challenges,”
in Proc. CCF Int. Conf. Natural Lang. Process. Chin. Comput. Cham,
Switzerland: Springer, Jan. 2019, pp. 563-574.

S. R. Islam, W. Eberle, S. K. Ghafoor, and M. Ahmed, “Explainable
artificial intelligence approaches: A survey,” 2021, arXiv:2101.09429.
L. Weber, S. Lapuschkin, A. Binder, and W. Samek, “Beyond explaining:
Opportunities and challenges of XAl-based model improvement,”
Inf. Fusion, vol. 92, pp. 154-176, Apr. 2023.

V. Chamola, V. Hassija, A. R. Sulthana, D. Ghosh, D. Dhingra, and
B. Sikdar, ““A review of trustworthy and explainable artificial intelligence
(XAI),” IEEE Access, vol. 11, pp. 78994-79015, 2023.

M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, and P. Sen,
““A survey of the state of explainable Al for natural language processing,”
2020, arXiv:2010.00711.

S. Mohseni, N. Zarei, and E. D. Ragan, “A multidisciplinary survey and
framework for design and evaluation of explainable Al systems,” ACM
Trans. Interact. Intell. Syst., vol. 11, nos. 3—4, pp. 1-45, Dec. 2021.
X.-H. Li, C. C. Cao, Y. Shi, W. Bai, H. Gao, L. Qiu, C. Wang, Y. Gao,
S.Zhang, X. Xue, and L. Chen, “A survey of data-driven and knowledge-
aware explainable AL IEEE Trans. Knowl. Data Eng., vol. 34, no. 1,
pp- 2949, Jan. 2022.

R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold, “A historical
perspective of explainable artificial intelligence,” WIREs Data Mining
Knowl. Discovery, vol. 11, no. 1, Jan. 2021, Art. no. e1391.

T. Speith, “A review of taxonomies of explainable artificial intelligence
(XAI) methods,” in Proc. ACM Conf. Fairness, Accountability, Trans-
parency, Jun. 2022, pp. 2239-2250.

W. Saeed and C. Omlin, “Explainable AI (XAI): A systematic meta-
survey of current challenges and future opportunities,” Knowl.-Based
Syst., vol. 263, Mar. 2023, Art. no. 110273.

S. Milani, N. Topin, M. Veloso, and F. Fang, “Explainable reinforcement
learning: A survey and comparative review,” ACM Comput. Surveys,
vol. 56, no. 7, pp. 1-36, Jul. 2024.

Y. Nasser and M. Nassar, “Toward hardware-assisted malware detection
utilizing explainable machine learning: A survey,” IEEE Access, vol. 11,
pp. 131273-131288, 2023.

F. Charmet, H. C. Tanuwidjaja, S. Ayoubi, P.-F. Gimenez, Y. Han,
H. Jmila, G. Blanc, T. Takahashi, and Z. Zhang, “Explainable artificial
intelligence for cybersecurity: A literature survey,” Ann. Telecommun.,
vol. 77, nos. 11-12, pp. 789-812, Dec. 2022.

Y. Lin and X. Chang, “Towards interpreting ML-based automated
malware detection models: A survey,” 2021, arXiv:2101.06232.

VOLUME 13, 2025

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,
“A comparison of static, dynamic, and hybrid analysis for malware
detection,” J. Comput. Virol. Hacking Techn., vol. 13, no. 1, pp. 1-12,
Feb. 2017.

S. Hou, A. Saas, L. Chen, Y. Ye, and T. Bourlai, “Deep neural
networks for automatic Android malware detection,” in Proc. IEEE/ACM
Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM), Jul. 2017,
pp. 803-810.

H. Kim and T. Lee, “Research on autoencdoer technology for malware
feature purification,” in Proc. 21st ACIS Int. Winter Conf. Softw. Eng.,
Artif. Intell., Netw. Parallel/Distrib. Comput. (SNPD-Winter), Jan. 2021,
pp- 236-239.

M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala,
“Malware detection using assembly and API call sequences,” J. Com-
put. Virol., vol. 7, no. 2, pp. 107-119, May 2011.

A. G. Kakisim, M. Nar, N. Carkaci, and I. Sogukpinar, “Analysis and
evaluation of dynamic feature-based malware detection methods,” in
Proc. Int. Conf. Secur. Inf. Technol. Commun., Jan. 2019, pp. 247-258.
I. Firdausi, C. Lim, A. Erwin, and A. S. Nugroho, “Analysis of
machine learning techniques used in behavior-based malware detection,”
in Proc. 2nd Int. Conf. Adv. Comput., Control, Telecommun. Technol.,
Dec. 2010, pp. 201-203.

P. Luckett, J. T. McDonald, and J. Dawson, ‘“Neural network anal-
ysis of system call timing for rootkit detection,” in Proc. Cyberse-
cur. Symp. (CYBERSEC), Apr. 2016, pp. 1-6.

R. S. Pirscoveanu, S. S. Hansen, T. M. T. Larsen, M. Stevanovic,
J. M. Pedersen, and A. Czech, “Analysis of malware behavior: Type
classification using machine learning,” in Proc. Int. Conf. Cyber
Situational Awareness, Data Anal. Assessment (CyberSA), Jun. 2015,
pp. 1-7.

S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,
“Malware detection with deep neural network using process behavior,” in
Proc. IEEE 40th Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 2,
Jun. 2016, pp. 577-582.

Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P. Markatos,
“Combining static and dynamic analysis for the detection of malicious
documents,” in Proc. 4th Eur. Workshop Syst. Secur., Apr. 2011, pp. 1-6.
I. Santoso, Y. Heryadi, H. L. H. S. Warnars, L. A. Wulandhari, Lukas,
and E. Abdurachman, “Malware detection using hybrid autoencoder
approach for better security in educational institutions,” in Proc. IEEE
Int. Conf. Eng., Technol. Educ. (TALE), Dec. 2019, pp. 1-6.

H.-J. Zhu, L.-M. Wang, S. Zhong, Y. Li, and V. S. Sheng,
“A hybrid deep network framework for Android malware detection,”
IEEE Trans. Knowl. Data Eng., vol. 34, no. 12, pp.5558-5570,
Dec. 2022.

F. Tong and Z. Yan, ““A hybrid approach of mobile malware detection in
Android,” J. Parallel Distrib. Comput., vol. 103, pp. 22-31, May 2017.
A. Altaher and O. Mohammed, “Intelligent hybrid approach
for Android malware detection based on permissions and API
calls,” Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 6, pp.60-67,
2017.

M. R. Watson, N.-U.-H. Shirazi, A. K. Marnerides, A. Mauthe, and
D. Hutchison, “Malware detection in cloud computing infrastructures,”
IEEE Trans. Dependable Secure Comput., vol. 13, no. 2, pp. 192-205,
Mar. 2016.

F. Azmandian, M. Moffie, M. Alshawabkeh, J. Dy, J. Aslam, and D. Kaeli,
“Virtual machine monitor-based lightweight intrusion detection,” ACM
SIGOPS Operating Syst. Rev., vol. 45, no. 2, pp. 38-53, Jul. 2011.

M. Abdelsalam, R. Krishnan, and R. Sandhu, “Clustering-based
IaaS cloud monitoring,” in Proc. IEEE 10th Int. Conf. Cloud Com-
put. (CLOUD), Jun. 2017, pp. 672-679.

A. McDole, M. Abdelsalam, M. Gupta, and S. Mittal, “Analyzing CNN
based behavioural malware detection techniques on cloud laaS,” in
Proc. Int. Conf. Cloud Comput., Jan. 2020, pp. 64-79.

A. McDole, M. Gupta, M. Abdelsalam, S. Mittal, and M. Alazab,
“Deep learning techniques for behavioral malware analysis in

cloud IaaS,” in Malware Analysis Using Artificial Intelligence
and Deep Learning. Cham, Switzerland: Springer, 2021,
pp. 269-285.

J. C. Kimmell, M. Abdelsalam, and M. Gupta, “Analyzing machine
learning approaches for online malware detection in cloud,” 2021,
arXiv:2105.09268.

61637

IEEE Access

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

61638

J. C. Kimmel, A. D. Mcdole, M. Abdelsalam, M. Gupta, and
R. Sandhu, ‘“Recurrent neural networks based online behavioural
malware detection techniques for cloud infrastructure,” IEEE Access,
vol. 9, pp. 68066-68080, 2021.

M. Abdelsalam, R. Krishnan, Y. Huang, and R. Sandhu, ‘“Malware
detection in cloud infrastructures using convolutional neural networks,”
in Proc. IEEE 11th Int. Conf. Cloud Comput. (CLOUD), Jul. 2018,
pp. 162-169.

P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, “Explainable AI:
A review of machine learning interpretability methods,” Entropy, vol. 23,
no. 1, p. 18, Dec. 2020.

A. B. Arrieta, N. Dfaz-Rodriguez, J. Del Ser, A. Bennetot, S. Tabik,
A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,
R. Chatila, and F. Herrera, “Explainable artificial intelligence (XAI):
Concepts, taxonomies, opportunities and challenges toward responsible
AL” Inf. Fusion, vol. 58, pp. 82-115, Jun. 2020.

V. Hassija, V. Chamola, A. Mahapatra, A. Singal, D. Goel, K. Huang,
S. Scardapane, 1. Spinelli, M. Mahmud, and A. Hussain, “Interpreting
black-box models: A review on explainable artificial intelligence,”
Cognit. Comput., vol. 16, no. 1, pp. 45-74, Jan. 2024.

R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian,
Z. Wen, T. Shah, G. Morgan, and R. Ranjan, “Explainable AI (XAI):
Core ideas, techniques, and solutions,” ACM Comput. Surv., vol. 55,1n0.9,
pp. 1-33, Sep. 2023.

A. Blanco-Justicia and J. Domingo-Ferrer, ‘“Machine learning
explainability ~ through comprehensible decision trees,” in
Proc. Int. Cross-Domain Conf. Mach. Learn. Knowl. Extraction. Cham,
Switzerland: Springer, 2019, pp. 15-26.

V. Belle and I. Papantonis, “Principles and practice of explainable
machine learning,” Frontiers Big Data, vol. 4, p. 39, Jul. 2021.

Y.-L. Chou, C. Moreira, P. Bruza, C. Ouyang, and J. Jorge, “Coun-
terfactuals and causability in explainable artificial intelligence: Theory,
algorithms, and applications,” Inf. Fusion, vol. 81, pp. 59-83, May 2022.
E. Soares, P. P. Angelov, B. Costa, M. P. G. Castro, S. Nageshrao,
and D. Filev, “Explaining deep learning models through rule-based
approximation and visualization,” IEEE Trans. Fuzzy Syst., vol. 29, no. 8,
pp- 2399-2407, Aug. 2021.

S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair,
R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, “Explainable AI
for trees: From local explanations to global understanding,” 2019,
arXiv:1905.04610.

M. S. Rana, C. Gudla, and A. H. Sung, “Evaluating machine learning
models for Android malware detection: A comparison study,” in Proc. 7th
Int. Conf. Netw., Commun. Comput., Dec. 2018, pp. 17-21.

N. Aslam, I. U. Khan, R. F. Aljishi, Z. M. Alnamer, Z. M. Alzawad,
F. A. Almomen, and F. A. Alramadan, “Explainable computational
intelligence model for antepartum fetal monitoring to predict the risk of
IUGR,” Electronics, vol. 11, no. 4, p. 593, Feb. 2022.

Z. Yang, A. Zhang, and A. Sudjianto, “GAMI-Net: An explainable
neural network based on generalized additive models with structured
interactions,” Pattern Recognit., vol. 120, Dec. 2021, Art. no. 108192.
X. Zhao, Y. Wu, D. L. Lee, and W. Cui, “iForest: Interpreting random
forests via visual analytics,” IEEE Trans. Vis. Comput. Graphics, vol. 25,
no. 1, pp. 407-416, Jan. 2019.

C. P. R. Vieira and L. A. Digiampietri, “A study about explainable
artificial intelligence: Using decision tree to explain SVM,” Revista
Brasileira de Computagdo Aplicada, vol. 12, no. 1, pp. 113-121,
Jan. 2020.

R. Sharma, C. Schommer, and N. Vivarelli, “Building up explainability
in multi-layer perceptrons for credit risk modeling,” in Proc. IEEE 7th
Int. Conf. Data Sci. Adv. Anal. (DSAA), Oct. 2020, pp. 761-762.

M. Ribeiro, S. Singh, and C. Guestrin, ““Why should I trust you?
Explaining the predictions of any classifier,” in Proc. Conf. North
Amer. Chapter Assoc. Comput. Linguistics, Demonstrations, 2016,
pp. 1135-1144.

P. R. Magesh, R. D. Myloth, and R. J. Tom, “An explainable machine
learning model for early detection of Parkinson’s disease using LIME
on DaTSCAN imagery,” Comput. Biol. Med., vol. 126, Nov. 2020,
Art. no. 104041.

S. Lundberg and S. Lee, “A unified approach to interpreting model
predictions,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst., Jan. 2017,
pp. 4768-47717.

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

C. Molnar, Interpretable Machine Learning, 2nd ed., Christoph Molnar,
2022. [Online]. Available: christophm.github.io/interpretable-ml-book/
G. Ciravegna, P. Barbiero, F. Giannini, M. Gori, P. Li6, M. Maggini, and
S. Melacci, ““‘Logic explained networks,” Artif. Intell., vol. 314, Jan. 2023,
Art. no. 103822.

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking inside
the black box: Visualizing statistical learning with plots of individual
conditional expectation,” J. Comput. Graph. Statist., vol. 24, no. 1,
pp. 44-65, Jan. 2015.

B. Kridmer, M. Stang, C. Nagl, and W. Schifers, “Explainable Al in a
real estate context—Exploring the determinants of residential real estate
values,” J. Housing Res., vol. 32, no. 2, pp. 204-245, 2023.

M. Athanasiou, K. Sfrintzeri, K. Zarkogianni, A. C. Thanopoulou,
and K. S. Nikita, “An explainable XGBoost-based approach towards
assessing the risk of cardiovascular disease in patients with type 2 diabetes
mellitus,” in Proc. IEEE 20th Int. Conf. Bioinf. Bioengineering (BIBE),
Oct. 2020, pp. 859-864.

K. Davagdorj, J.-W. Bae, V.-H. Pham, N. Theera-Umpon, and
K. H. Ryu, “Explainable artificial intelligence based framework
for non-communicable diseases prediction,” IEEE Access, vol. 9,
pp. 123672-123688, 2021.

J. Adebayo and L. Kagal, “Iterative orthogonal feature projection for
diagnosing bias in black-box models,” 2016, arXiv:1611.04967.

J. H. Friedman and B. E. Popescu, “Predictive learning via rule
ensembles,” Ann. Appl. Statist., vol. 2, no. 3, pp. 1-12, Sep. 2008.

H. Wang, Z. Zhu, Z. Tong, X. Yin, Y. Feng, G. Shi, and D. Meng,
“An effective approach for malware detection and explanation via deep
learning analysis,” in Proc. Int. Joint Conf. Neural Netw. (IJCNN),
Jul. 2021, pp. 1-10.

A. Shrikumar, P. Greenside, and A. Kundaje, “Learning
important features through propagating activation differences,” in
Proc. Int. Conf. Mach. Learn., Jan. 2017, pp. 3145-3153.

E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and
C. K. Nicholas, “Malware detection by eating a whole EXE,” in
Proc. Workshops 32nd AAAI Conf. Artif. Intell., 2018, pp. 1-10.

A. Graves, A.-R. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” in Proc. IEEE Int. Conf. Acoust., Speech
Signal Process., May 2013, pp. 6645-6649.

X. Zhang and Y. LeCun, “Text understanding from scratch,” 2015,
arXiv:1502.01710.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1-9.

S. Bose, T. Barao, and X. Liu, “Explaining AI for malware detection:
Analysis of mechanisms of MalConv,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2020, pp. 1-8.

S. M. Mathews, “Explainable artificial intelligence applications in
NLP, biomedical, and malware classification: A literature review,” in
Proc. Intell. Comput. Comput. Conf., Jan. 2019, pp. 1269-1292.

L. Pirch, A. Warnecke, C. Wressnegger, and K. Rieck, ‘“TagVet:
Vetting malware tags using explainable machine learning,” in Proc. 14th
Eur. Workshop Syst. Secur., Apr. 2021, pp. 34-40.

B. Marais, T. Quertier, and C. Chesneau, ‘““Malware analysis with artificial
intelligence and a particular attention on results interpretability,” in
Proc. Int. Symp. Distrib. Comput. Artif. Intell., Sep. 2021, pp. 43-55.

M. Q. Li, B. C. M. Fung, and A. Abusitta, “On the effectiveness of
interpretable feedforward neural network,” 2021, arXiv:2111.02303.

L. Chen, C. Yagemann, and E. Downing, “To believe or not to
believe: Validating explanation fidelity for dynamic malware analysis,”
in Proc. CVPR Workshops, Jan. 2019, pp. 48-52.

Y. Lin and X. Chang, “Towards interpretable ensemble learning for
image-based malware detection,” 2021, arXiv:2101.04889.

M. M. Alani, A. Mashatan, and A. Miri, “XMal: A lightweight memory-
based explainable obfuscated-malware detector,” Comput. Secur.,
vol. 133, Oct. 2023, Art. no. 103409.

G. Ciaramella, G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone,
“Explainable ransomware detection with deep learning techniques,”
J. Comput. Virol. Hacking Techn., vol. 20, no. 2, pp. 317-330, Sep. 2023.
P. Anthony, F. Giannini, M. Diligenti, M. Homola, M. Gori, S. Balogh,
and J. Mojzis, “Explainable malware detection with tailored logic
explained networks,” 2024, arXiv:2405.03009.

VOLUME 13, 2025

H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

IEEE Access

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

S. Gulmez, A. G. Kakisim, and I. Sogukpinar, ‘“XRan: Explainable
deep learning-based ransomware detection using dynamic analysis,”
Comput. Secur., vol. 139, Apr. 2024, Art. no. 103703.

K. Aryal, M. Gupta, M. Abdelsalam, and M. Saleh, “Explainabil-
ity guided adversarial evasion attacks on malware detectors,” 2024,
arXiv:2405.01728.

P. Ghadekar, T. Adsare, N. Agrawal, D. Deore, and T. Dharmik, “Multi-
class malware detection using modified GNN and explainable AL”
in Proc. Ist Int. Conf. Cognit., Green Ubiquitous Comput. (IC-CGU),
Mar. 2024, pp. 1-8.

R. Kumar, Z. Xiaosong, R. U. Khan, J. Kumar, and I. Ahad, “Effective
and explainable detection of Android malware based on machine learning
algorithms,” in Proc. Int. Conf. Comput. Artif. Intell., Mar. 2018,
pp. 35-40.

M. Melis, D. Maiorca, B. Biggio, G. Giacinto, and F. Roli, “Explaining
black-box Android malware detection,” in Proc. 26th Eur. Signal
Process. Conf. (EUSIPCO), Sep. 2018, pp. 524-528.

G. Iadarola, R. Casolare, F. Martinelli, F. Mercaldo, C. Peluso, and
A. Santone, “A semi-automated explainability-driven approach for
malware analysis through deep learning,” in Proc. Int. Joint Conf. Neural
Netw. (IJCNN), Jul. 2021, pp. 1-8.

M. Kinkead, S. Millar, N. McLaughlin, and P. O’Kane, ‘“Towards
explainable CNNs for Android malware detection,” Proc. Comput. Sci.,
vol. 184, pp. 959-965, Apr. 2021.

Z. Lu and V. L. L. Thing, “How does it detect a malicious app?’
explaining the predictions of Al-based Android malware detector,” 2021,
arXiv:2111.05108.

R. Korine and D. Hendler, “DAEMON: Dataset/platform-agnostic
explainable malware classification using multi-stage feature mining,”
IEEE Access, vol. 9, pp. 78382-78399, 2021.

M. Scalas, “Malware analysis and detection with explainable machine
learning,” Universita degli Studi di Cagliari, Italy, Tech. Rep. S.S.D. ING-
IINF/05, 2021.

A. Yan, Z. Chen, H. Zhang, L. Peng, Q. Yan, M. U. Hassan,
C. Zhao, and B. Yang, “Effective detection of mobile malware behavior
based on explainable deep neural network,” Neurocomputing, vol. 453,
pp. 482-492, Sep. 2021.

S. Wang, Z. Chen, L. Zhang, Q. Yan, B. Yang, L. Peng, and
Z. Jia, “TrafficAV: An effective and explainable detection of mobile
malware behavior using network traffic,” in Proc. IEEE/ACM 24th
Int. Symp. Quality Service (IWQoS), Jun. 2016, pp. 1-6.

G. ladarola, F. Martinelli, F. Mercaldo, and A. Santone, ‘“Towards an
interpretable deep learning model for mobile malware detection and fam-
ily identification,” Comput. Secur., vol. 105, Jun. 2021, Art. no. 102198.
B. Wu, S. Chen, C. Gao, L. Fan, Y. Liu, W. Wen, and M. R. Lyu, “Why
an Android app is classified as malware: Toward malware classification
interpretation,” ACM Trans. Softw. Eng. Methodol., vol. 30, no. 2,
pp. 1-29, Apr. 2021.

R. Alenezi and S. A. Ludwig, “Explainability of cybersecurity threats
data using SHAP,” in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI),
Dec. 2021, pp. 1-10.

F. Ullah, A. Alsirhani, M. M. Alshahrani, A. Alomari, H. Naeem, and
S. A. Shah, “Explainable malware detection system using transformers-
based transfer learning and multi-model visual representation,” Sensors,
vol. 22, no. 18, p. 6766, Sep. 2022.

H. Naeem, B. M. Alshammari, and F. Ullah, “Explainable artificial
intelligence-based IoT device malware detection mechanism using
image visualization and fine-tuned CNN-based transfer learning model,”
Comput. Intell. Neurosci., vol. 2022, pp. 1-17, Jul. 2022.

M. M. Alani and A. I. Awad, “PAIRED: An explainable lightweight
Android malware detection system,” [EEE Access, vol. 10,
pp. 73214-73228, 2022.

Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, “Explainable AI for
Android malware detection: Towards understanding why the models
perform so well?”” in Proc. IEEE 33rd Int. Symp. Softw. Rel. Eng. (ISSRE),
Oct. 2022, pp. 169-180.

N. G. Ambekar, N. N. Devi, S. Thokchom, and Yogita, ‘““TabLSTMNet:
Enhancing Android malware classification through integrated attention
and explainable AL Microsyst. Technol., vol. 31, no. 3, pp. 695-713,
Mar. 2025.

D. Soi, A. Sanna, D. Maiorca, and G. Giacinto, “Enhancing Android
malware detection explainability through function call graph APIs,”
J. Inf. Secur. Appl., vol. 80, Feb. 2024, Art. no. 103691.

VOLUME 13, 2025

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

J. Sahs and L. Khan, “A machine learning approach to Android malware
detection,” in Proc. Eur. Intell. Secur. Informat. Conf., Aug. 2012,
pp. 141-147.

X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, “Android
malware detection based on system call sequences and LSTM,”
Multimedia Tools Appl., vol. 78, no. 4, pp. 3979-3999, Feb. 2019.

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,
I. Corona, G. Giacinto, and F. Roli, “Yes, machine learning can be
more secure! A case study on Android malware detection,” [EEE
Trans. Dependable Secure Comput., vol. 16, no. 4, pp.711-724,
Jul. 2019.

J. Yan, Y. Qi, and Q. Rao, “LSTM-based hierarchical denoising network
for Android malware detection,” Secur. Commun. Netw., vol. 2018,
pp. 1-18, Apr. 2018.

D. J. Arp, M. Spreitzenbarth, M. Huebner, H. Gascén, and K. Rieck,
“Drebin: Effective and explainable detection of Android malware in your
pocket,” in Proc. NDSS, vol. 14, Jan. 2014, pp. 23-26.

R. Surendran, T. Thomas, and M. M. Uddin, “Optimizing malware
detection with redundant sample filtering for efficient retraining,”
J. Cyber Secur. Technol., pp. 1-22, Dec. 2024.

M. Melis, M. Scalas, A. Demontis, D. Maiorca, B. Biggio, G. Giacinto,
and F. Roli, “Do gradient-based explanations tell anything about adver-
sarial robustness to Android malware?” Int. J. Mach. Learn. Cybern.,
vol. 13, no. 1, pp. 217-232, Jan. 2022.

Z. Pan, J. Sheldon, and P. Mishra, ‘“Hardware-assisted malware
detection using explainable machine learning,” in Proc. IEEE 38th
Int. Conf. Comput. Design (ICCD), Oct. 2020, pp. 663-666.

Z. Pan, J. Sheldon, and P. Mishra, ‘“Hardware-assisted malware
detection and localization using explainable machine learning,” IEEE
Trans. Comput., vol. 71, no. 12, pp. 3308-3321, Dec. 2022.

M. Q. Li, B. C. M. Fung, P. Charland, and S. H. H. Ding, “I-MAD: Inter-
pretable malware detector using galaxy transformer,” Comput. Secur.,
vol. 108, Sep. 2021, Art. no. 102371.

R. Sun, M. Xue, G. Tyson, T. Dong, S. Li, S. Wang, H. Zhu, S. Camtepe,
and S. Nepal, “Mate! Are you really aware? An explainability-
guided testing framework for robustness of malware detectors,” 2021,
arXiv:2111.10085.

A. Mills, T. Spyridopoulos, and P. Legg, “Efficient and interpretable real-
time malware detection using random-forest,” in Proc. Int. Conf. Cyber
Situational Awareness, Data Anal. Assessment (Cyber SA), Jun. 2019,
pp- 1-8.

A. Kuppa and N.-A. Le-Khac, “Black box attacks on explainable
artificial intelligence(XAI) methods in cyber security,” in Proc. Int. Joint
Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1-8.

G. Severi, J. Meyer, S. E. Coull, and A. Oprea, “Explanation-guided
backdoor poisoning attacks against malware classifiers,” in Proc. 30th
USENIX Secur. Symp. USENIX Secur., Jan. 2021, pp. 1-10.

W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, “LEMNA:
Explaining deep learning based security applications,” in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2018, pp. 364-379.

M. Fan, W. Wei, X. Xie, Y. Liu, X. Guan, and T. Liu, “Can we
trust your explanations? Sanity checks for interpreters in Android
malware analysis,” [EEE Trans. Inf. Forensics Security, vol. 16,
pp. 838-853, 2021.

Z.Pan, J. Sheldon, C. Sudusinghe, S. Charles, and P. Mishra, ‘““Hardware-
assisted malware detection using machine learning,” in Proc. Design,
Autom. Test Eur. Conf. Exhib. (DATE), Feb. 2021, pp. 1775-1780.

K. Basu, R. Elnaggar, K. Chakrabarty, and R. Karri, “PREEMPT:
PReempting malware by examining embedded processor traces,” in
Proc. 56th ACM/IEEE Design Autom. Conf. (DAC), Jun. 2019, pp. 1-6.

Y. Chen, S. Wang, D. She, and S. Jana, “On training robust PDF
malware classifiers,” in Proc. 29th USENIX Secur. Symp. USENIX Secur.,
2020, pp. 2343-2360.

L. Chen, “Deep transfer learning for static malware classification,” 2018,
arXiv:1812.07606.

W. Briguglio and S. Saad, “Interpreting machine
malware detectors which leverage N-gram analysis,”

Int. Symp. Found. Pract. Secur., Jan. 2020, pp. 82-97.

M. Q. Li, B. C. M. Fung, P. Charland, and S. H. H. Ding, “A novel
and dedicated machine learning model for malware classification,” in
Proc. 16th Int. Conf. Softw. Technol., 2021, pp. 617-628.

learning
in Proc.

61639

lE E E ACC@SS H. Manthena et al.: XAl for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

[125] G. Fidel, R. Bitton, and A. Shabtai, “When explainability meets adver-
sarial learning: Detecting adversarial examples using SHAP signatures,”
in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1-8.

[126] R. Kumar and G. Subbiah, “Zero-day malware detection and effec-
tive malware analysis using Shapley ensemble boosting and bagging
approach,” Sensors, vol. 22, no. 7, p. 2798, Apr. 2022.

[127] E.Lee,Y.Lee, andT. Lee, “Automatic false alarm detection based on XAl
and reliability analysis,” Appl. Sci., vol. 12, no. 13, p. 6761, Jul. 2022.

[128] A. Galli, V. La Gatta, V. Moscato, M. Postiglione, and G. Sperli,
“Explainability in Al-based behavioral malware detection systems,”
Comput. Secur., vol. 141, Jun. 2024, Art. no. 103842.

HARIKHA MANTHENA received the B.Tech.
degree in computer science from Andhra Univer-
sity, in 2016, and the M.S. degree in computer sci-
ence from North Carolina Agricultural and Tech-
nical State University, in 2022. She was a Software
Engineer at Fidelity Information Services (FIS),
Bangalore, India. Her research interest includes
explainable/interpretable machine learning-based
malware analysis in the cloud.

SHAGHAYEGH SHAJARIAN received the B.S.
and M.S. degrees in computer software engineer-
ing from the University of Mazandaran, Iran,
and the Science and Research Branch, Azad
University, Tehran, Iran, in 2016 and 2019, respec-
tively. She is currently pursuing the Ph.D. degree
in computer science with North Carolina A&T
State University. Her research interests include
autonomous networks, network management, and
applied AI/ML.

JEFFREY C. KIMMELL received the B.S. and
M.S. degrees in computer science from Tennessee
Tech University, in 2021 and 2022, respectively.
His research interests include deep learning and
Al-based malware analysis in the cloud and its
explainability aspects.

61640

MAHMOUD ABDELSALAM received the M.Sc.
and Ph.D. degrees from The University of Texas
at San Antonio (UTSA), in 2017 and 2018,
respectively. He was a Postdoctoral Research
Fellow with the Institute for Cyber Security (ICS),
UTSA, and an Assistant Professor with the Depart-
ment of Computer Science, Manhattan College.
He is currently an Assistant Professor with the
Department of Computer Science, North Carolina
Agricultural and Technical State University. His

research interests 1nclude computer systems security, anomaly and malware
detection, cloud computing security and monitoring, cyber-physical systems

security, and applied ML.

SAJAD KHORSANDROO received the Ph.D.
degree in computer science from The University
of Texas at San Antonio, in 2019. He is currently
an Assistant Professor with the Department of
Computer Science, North Carolina Agricultural
and Technical State University. His research inter-
ests include systems, cybersecurity, and applied
AI/ML, supported by funding from federal and
state agencies as well as industry collaborators,
including the National Science Foundation (NSF),

Department of Defense (DoD), Carolina Cyber Network, and Palo Alto

Networks, Inc.

MAANAK GUPTA (Senior Member, IEEE)
received the M.S. and Ph.D. degrees in computer
science from The University of Texas at San
Antonio (UTSA). He was a Postdoctoral Fellow
at the Institute for Cyber Security (ICS), UTSA.
He is currently an Associate Professor in computer
science at Tennessee Technological University,
Cookeville, TN, USA. His research interests
include security and privacy in cyberspace,
focused on studying foundational aspects of access

control, malware analysis, Al, and machine learning-assisted cyber security,
and their applications in technologies, including cyber-physical systems,
cloud computing, the IoT, and big data. His research has been funded by
U.S. National Science Foundation (NSF), NASA, and U.S. Department of

Defense (DoD).

VOLUME 13, 2025

