
Received 5 February 2025, accepted 23 March 2025, date of publication 28 March 2025, date of current version 14 April 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3555926

Explainable Artificial Intelligence (XAI) for
Malware Analysis: A Survey of Techniques,
Applications, and Open Challenges

HARIKHA MANTHENA 1,∗, SHAGHAYEGH SHAJARIAN 1,∗, JEFFREY C. KIMMELL 2,

MAHMOUD ABDELSALAM 1, SAJAD KHORSANDROO 1,

AND MAANAK GUPTA 2, (Senior Member, IEEE)
1Computer Science Department, North Carolina Agricultural and Technical State University, Greensboro, NC 27411, USA
2Computer Science Department, Tennessee Tech University, Cookeville, TN 38505, USA

Corresponding author: Shaghayegh Shajarian (sshajarian@aggies.ncat.edu)

This work is supported by Google and NSF grants 2416992, 2230610, 2113945, 2329705, and 2200538 at North Carolina A&T State

University and 2416990 and 2230609 at Tennessee Tech University.

∗Harikha Manthena and Shaghayegh Shajarian contributed equally to this work.

ABSTRACT Machine learning (ML) has rapidly advanced in recent years, revolutionizing fields such

as finance, medicine, and cybersecurity. In malware detection, ML-based approaches have demonstrated

high accuracy; however, their lack of transparency poses a significant challenge. Traditional ML

models often fail to provide interpretable justifications for their predictions, limiting their adoption in

security-critical environments where understanding the reasoning behind a detection is essential for threat

mitigation and response. Explainable AI (XAI) addresses this gap by enhancing model interpretability

while maintaining strong detection capabilities. This survey presents a comprehensive review of state-

of-the-art ML techniques for malware analysis, with a specific focus on explainability methods and

research mainly from 2018 to 2024. We examine existing XAI frameworks, their application in malware

classification and detection, and the challenges associated with making malware detection models more

interpretable. Additionally, we explore recent advancements and highlight open research challenges in the

field of explainable malware analysis. By providing a structured overview of XAI-driven malware detection

approaches, this survey serves as a valuable resource for researchers and practitioners seeking to bridge the

gap between ML performance and explainability in cybersecurity.

INDEX TERMS Explainable malware analysis, interpretable malware analysis, explainable AI, AI for

security, malware detection, malware classification.

I. INTRODUCTION

In today’s digital landscape, malware remains a formidable

threat, causing billions in financial losses and disrupting

critical services worldwide. The increasing sophistication

of attacks, particularly zero-day malware, has rendered

traditional detection and analysis methods increasingly

ineffective. As a result, there is a need for advanced,

automated malware detection solutions that can adapt to

evolving threats.

The associate editor coordinating the review of this manuscript and
approving it for publication was Tony Thomas.

Machine Learning (ML) and Deep Learning (DL) have
emerged as powerful tools for malware detection, demon-
strating the ability to identify both known and zero-day
threats. However, to achieve high accuracy, these models
often grow complex and opaque, making it difficult to
understand how predictions are made. DL-based models,
in particular, are frequently described as MLs, as their
decision-making processes remain largely inscrutable to
users and security professionals alike [1]. This lack of
interpretability poses a significant challenge in cybersecurity,
where understanding why a detection occurred is just as

important as the detection itself for ensuring reliability,

fairness, and error analysis.

VOLUME 13, 2025

 2025 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 61611

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

To address this issue, Explainable AI (XAI) has gained

increasing attention. XAI aims to bridge the gap between

accuracy and explainability by providing transparent,

comprehensible explanations for model predictions. By mak-

ing malware detection systems more explainable, XAI

enhances trust, facilitates threat analysis, and enables security

professionals to make informed decisions based on model

outputs [2].

Several surveys [3], [4], [5], [6], [7] have reviewed XAI,

covering research areas, methods, and opportunities with

mathematical and visual explanations. Danilevsky et al.

[8] focus on XAI in NLP, while Mohseni et al. [9]

propose an evaluation framework. Li et al. [10] explore

knowledge-driven and data-driven methods, and

Confalonieri et al. [11] discuss XAI’s evolution in expert

systems. Speith [12] provides a taxonomy of XAI approaches

and challenges.

Saeed and Omlin [13] review XAI challenges and

research directions, while Milani et al. [14] survey

explainable reinforcement learning. Nasser and Nasser [15]

examine hardware-assisted ML for malware detection.

Charmet et al. [16] explore XAI’s role in cybersecurity

but do not specifically address explainable ML in malware

analysis.

Despite growing interest in XAI (2018–2024), no survey

exclusively focuses on malware analysis. Existing literature

lacks a clear distinction between ‘interpretable’ and ‘explain-

able’ AI, except for Lin and Chang [17], who categorize

interpretable malware detectors. Our survey fills this gap

by covering both interpretable and explainable methods in

malware classification and detection, introducing a taxon-

omy for explainability approaches, and summarizing recent

advancements. This work aims to provide a comprehensive

view of explainable malware analysis, its methodologies, and

open research challenges.

Hence, this paper contributes significantly to the field of

XAI with a particular focus on malware analysis. The key

contributions are as follows:
• Our work presents an extensive survey covering various

XAI models and techniques used across multiple

disciplines. This contribution offers a broad view of XAI

and showcases its applications and relevance in different

areas.

• We provide an in-depth overview of ML-based

approaches in malware detection to understand the

intersection of ML and malware detection, which fills

a gap in the current literature.

• Our research identifies key limitations and challenges in

the area of explainable malware detection. We specifi-

cally point out the predominant focus on Android-based

malware in existing research, suggesting a need for a

more diversified approach in future studies.

• The paper also explores potential avenues for future

research in XAI applied to malware detection.

We emphasize less-explored areas, such as malware

detection for Windows, PDF, Linux, and hardware,

thereby encouraging further investigation and develop-

ment in these domains.

Our survey method involves a detailed search across

various academic databases and platforms, including Google

Scholar, IEEE Xplore, Science Direct, ResearchGate, arXiv,

ACM, and Springer. We focus our search using a series

of targeted keyword parameters. These keywords were

chosen to cover a wide range of pertinent subjects. They

included terms such as ‘‘explainable machine learning,’’

‘‘explainable artificial intelligence,’’ ‘‘XAI,’’ explainable

malware,’’ ‘‘explainable malware analysis,’’ ‘‘explainable

malware detection,’’ and ‘‘explainable AI on malware detec-

tion.’’ In addition, we also used keywords like ‘‘interpretable

machine learning,’’ ‘‘interpretable artificial intelligence,’’ and

‘‘interpretable malware analysis.’’ This approach allowed for

an extensive and systematic review of the literature in the

domains of explainable and interpretable ML and AI, with

a particular emphasis on malware analysis and detection.

The structure of the remainder of this paper is outlined as

follows: Section II offers an in-depth exploration of file clas-

sification and online malware detection methods. Section III

discusses ML-based models and the explainable techniques.

Section IV is dedicated to the studies on approaches

and techniques in explainable malware classification and

detection. This is followed by Section V, which addresses

the open challenges and future prospects in this area. Finally,

The paper concludes with a conclusion, which provides a

summary of our work.

II. MALWARE DETECTION APPROACHES

Malware detection techniques are used to detect the threat

posed by malware. They are generally categorized into

two distinct approaches: File Classification and Online-

Based Approaches. The field has seen considerable research

efforts, with numerous studies and developments aimed at

enhancing the efficacy and reliability of these malware

detection methodologies.

A. FILE CLASSIFICATION APPROACH

File classification focuses on the analysis of a file’s code

to determine whether it is malware. The process begins

with the identification of a potentially suspicious file.

To thoroughly assess its nature, file classification employs

different methods, which fall into three main categories:

Static analysis, Dynamic analysis, and Hybrid analysis.

Static analysis involves examining the file’s code without

executing it and looking for malicious patterns. In contrast,

in dynamic analysis, the file is executed in a secured

environment to observe and analyze its behavior. Hybrid

analysis combines these two approaches, leveraging the

strengths of both static and dynamic examinations. Once

a file is concluded to be non-malicious, it is generally

exempt from ongoing scrutiny. These varying techniques in

file classification are designed to address different aspects

of malware detection. This categorization, along with the

61612 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

FIGURE 1. Machine learning-based file classification techniques.

explanation of dynamic and static analysis processes, are also

illustrated in Fig 1.

1) STATIC ANALYSIS

Static analysis involves the careful examination of an

executable’s signature without the need to execute the code,

aiming to classify the file as malware if the signature appears

malicious or as benign if otherwise [18]. This method has the

reverse engineering ofmalware code and involves the detailed

processing of extracted features to discern and interpret

any malicious activities through a signature-based approach.

In this context, a signature refers to a unique identifier for a

binary file, determined by calculating its cryptographic hash.

Multiple research, e.g. studies by Hou et al. [19] and

Kim and Lee [20], have been dedicated to enhancing static

malware detection, with a particular focus on the extraction

of Application programming interfaces (API) calls from

Portable Executable (PE) files using techniques like stacked

autoencoders. This process involves extracting vital features

such as API calls, Opcode sequences, and N-Grams from

potentially suspicious files, as illustrated in Fig 1, which are

then employed to train ML algorithms for more accurate and

efficient malware detection.

For instance, the work of Shankarapani et al. [21] has

been using API and Opcode sequences to effectively identify

segments of code that closely resemble known malware

patterns. However, it is important to recognize that static

analysis, while valuable, is not without its limitations. One

significant challenge is its inability to detect malware that

is actively running within a system or to identify completely

new malware variants that have not been cataloged.

2) DYNAMIC ANALYSIS

It involves executing malware within a secure virtual

environment, such as a cuckoo sandbox, to study its behavior

meticulously [18], [22]. This method is particularly effec-

tive in addressing zero-day malware threats. The dynamic

analysis process, as depicted in Fig 1, starts with executing

a suspicious PE file in a sandbox environment, ensuring

isolation from external systems. This controlled execution

allows for the collection of essential data, including memory

features, system calls, and function calls. Subsequently, these

collected data are preprocessed and used to train various

ML-based algorithms, which can enhance the malware

detection model.

VOLUME 13, 2025 61613

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

Unlike static analysis, dynamic malware analysis requires

the execution of code in a time-restricted, closed environ-

ment, which can be resource-intensive. Research endeavors,

such as studies by Firdausi et al. [23] and Luckett et al.

[24], have utilized system calls as key features for training

traditional ML models like k-Nearest Neighbor (k-NN),

Decision Tree, Support Vector Machine (SVM), and Naive

Bayes. Furthermore, studies by Pirscoveanu et al. [25], and

Tobiyama et al. [26] have focused on the extraction of features

from API calls, evaluating the effectiveness of ML algo-

rithms, including Random Forest, k-NN, and Convolutional

Neural Networks (CNN) in dynamic malware analysis. These

approaches highlight the dynamic method’s capacity for

dealingwith complexmalware detection challenges, although

it requires significant time and resource allocation.

3) HYBRID ANALYSIS

A methodology integrating static and dynamic techniques,

hybrid analysis, is another malware detection technique [27].

This concept has been explored in various studies. For

example, Santoso et al. [28] utilized a combination of

Artificial Neural Networks (ANN) and CNN for malware

detection. Focusing on Android malware, Zhu et al. [29]

proposed an innovative framework using the Merged Sparse

Autoencoder (MSAE), which is an unsupervised learning

algorithm demonstrating its effectiveness.

Adding to this, Tong and Yan [30] developed a method that

combines static and dynamic analysis for mobile malware

detection. This method compares system call patterns of

benign and malicious applications with the dynamic analysis

applied to unknown applications. Subsequent offline com-

parison of these pattern sets further validates the unknown

application’s nature. Their results show the advantages of

the hybrid approach over methods relying solely on static or

dynamic analysis. Altaher and Barukab [31] also proposed

a hybrid methodology for Android malware detection that

leverages API calls and application permissions, further

substantiating the potential of hybrid techniques in this field.

B. ONLINE MALWARE DETECTION

Online malware detection stands out as a distinct approach in

the cybersecurity domain. Unlike static, dynamic, or hybrid

methods fromfile classification that analyze specificmalware

samples, online detection monitors the entire system in real-

time, which enables the capture of malware at any moment,

regardless of its activity level. This technique focuses on the

behavior of the entire machine rather than individual malware

behaviors.

Key contributions in this area include the work of

Watson et al. [32], who developed a system using perfor-

mance metrics to build SVM, achieving a 90% accuracy rate.

Azmandian et al. [33] proposed intrusion-based detection

techniques, while Abdelsalam et al. [34] introduced a sequen-

tial k-means clustering algorithm for anomaly detection,

specifically designed for a standard 3-tier architecture on

an OpenStack Testbed. Their approach leverages virtual

machine systems and resource utilization features but shows

limitations in detecting low-resource-utilization malware.

Further research was done by McDole et al. [35],

who examined various CNN models to determine their

suitability for malware detection in cloud Infrastructure as

a Service (IaaS). Their subsequent study [36] compared the

process-level performance metrics of different deep learning

models in the context of online malware detection in cloud

IaaS environments.

Similarly, Kimmel et al. [37], [38] presented a compre-

hensive analysis of the effectiveness of several ML models

for online malware detection, focusing on system features

describing processes in a virtual machine. They emphasized

the use of CNNs, which are known for their simplicity and

effective representation in 2D format. Abdelsalam et al. [39]

extended this concept by employing a 3-dimensional CNN to

enhance classifier accuracy and specifically target low-profile

malware, achieving an accuracy rate of 90%.

III. EXPLAINABILITY IN MACHINE LEARNING

DL-based models enable machines to develop complex

hierarchical data patterns, which play a key role in tasks like

classification or detection. These ML models, by layering

and integrating various levels of data representation, can

enhance the predictive power of systems. However, this

increased complexity often obscures the internal decision-

making process, which can lead to questions about their

decision logic [40], [41].

In contrast, white-box models offer a more transparent

approach. They are designed to be easily interpretable, which

allows users to understand how input data is transformed

into predictions or decisions. This transparency is particularly

valuable in fields where understanding the reasoning behind

a decision is as important as the decision itself [42], [43].

For instance, in the context of cancer diagnosis, medical

professionals often rely on predictive models. While these

models are useful tools, there is always a possibility

of incorrect predictions. Therefore, both practitioners and

patients have to trust these models, which becomes possible

in the situation that they understand the underlying reasons

for their predictions.

This is where the concept of XAI comes into the picture.

As depicted in Fig 2, today’s AI systems typically involve

training the data, undergoing the machine learning process,

and providing prediction for end-users. In contrast, XAI goes

a step further. It can deliver high-accuracy predictions and

provides clear, justifiable explanations for these outcomes.

With higher interpretability, the reasons behind AI predic-

tions become more comprehensible to humans, which boosts

the trustworthiness and reliability of the model’s predictions.

In the comprehensive study, Blanco-Justicia andDomingo-

Ferrer. [44] discussed the seven characteristics that define

XAI for enhancing transparency and efficacy in AI systems

as follows.

61614 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

FIGURE 2. Explainable machine learning concept.

Accuracy. This aspect evaluates how well an XAI model

predicts outcomes for new, unseen data. Predictions made by

these models must have a high level of accuracy.

Fidelity. It is about the closeness of the explanation to

the model’s prediction. An explanation is regarded as highly

accurate when it meets the high fidelity and high accuracy of

the ML model.

Consistency. This characteristic describes how equally

explanations are applied to a model that is trained on the same

dataset.

Stability. It examines whether the stability is reflected in

the explanation model, which means that similar instances

should produce similar explanations.

Degree of Importance. This attribute indicates how well

the explanation reflects the significance of various features

within the model, which is essential for understanding the

weight of different aspects in the model’s decision-making

process.

Novelty. Closely related to stability, novelty assesses the

ability of the explanation mechanism to accurately represent

data instances that are significantly different from those in the

training set.

Representativeness. This factor has a significant effect

on explainability, emphasizing the need for explanations to

be relevant and applicable in a diverse range of decision-

making scenarios, thereby ensuring their utility across

various applications.

Hence, in the context of XAI, it is important to understand

the general classification of ML-based models, which is

illustrated in Fig 3. This figure presents a comprehensive

taxonomy of ML models and XAI techniques and provides

a clear framework for understanding this field.

As depicted in Fig 3, ML models can be broadly classified

into Transparent and Opaque models. Transparent models

are inherently explainable. These models are straightforward

enough that they do not require additional post-hoc explain-

ability techniques, i.e., techniques provide explanations only

after the training process has finished. However, as indicated

by the dashed arrow in Fig 3, when these models become

more complex, post-hoc explainability may still be needed

to improve clarity and ensure human interpretability.

On the other hand, Opaque models, often referred to as

ML models, are characterized by their high accuracy yet

present challenges in interpretation. Due to their complexity,

they require the use of post-hoc explainability methods. The

goal of post-hoc explainability is to make the outcomes

of ML-based models more transparent, understandable, and

trustworthy to humans.

Post-hoc explainability can be further divided into two

types: model-agnostic and model-specific methods. Model-

agnostic methods have a variety of explainability techniques

and are versatile enough to be applied to any ML model.

In contrast, model-specific methods are applicable only to

certain types of models and limit their utility to specific cases.

The subsequent section of this paper will outline the

various ML models and post-hoc explainability techniques,

providing a comprehensive summary of different research

challenges encountered in this evolving field.

A. TRANSPARENT MACHINE-LEARNING MODELS

Transparent models are distinguished by their inherent ability

to be self-explanatory. They can be interpreted directly,

enabling users to comprehend their decision-making pro-

cesses. This category of models, from Rule-based Learners

and Regression Models to Decision Trees, Bayesian Models,

k-NN algorithms, and the Generalized Additive Model

(GAM), are unified by their transparent nature.

1) RULE-BASED MODELS

These models are characterized by developing rules to

represent and interpret the data they are designed to learn

from. At the core of these models is the IF-THEN statement,

a basic but powerful structure that forms the foundation

VOLUME 13, 2025 61615

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

FIGURE 3. Taxonomy for explainable machine learning techniques inspired by [41], [45], and [46].

of these rules. The IF part represents the condition, while

the THEN part denotes the prediction. These predictions

can arise from a single rule or a synergy of multiple rules.

Soares et al. [47] apply this concept to explain DL-

based models. They propose a method where a deep

reinforcement learning model is approximated through a

series of IF-THEN rules, effectively enhancing the model’s

interpretability.

The clarity of rule-based models makes them highly

interpretable and understandable. Their straightforward

structure eliminates the need for post-hoc analysis. They

are also used to clarify the predictions of more intri-

cate models by generating and applying rules to link

sophisticated ML-based techniques with approachable

interpretability.

2) REGRESSION MODELS

Linear and logistic regression models stand as two important

regression models. The weight of the coefficient of linear

regression is easy to quantify and interpret, which is why it

is used in various fields to explain the predictions. On the

other hand, logistic regression strength lies in its ability to

provide probabilities alongside classifications, which offers

a nuanced view of outcomes.

Lundberg’s research [48] further enhances this model’s

utility by integrating logistic regressionwith gradient-boosted

trees for predicting synthetic labels and augmenting the

explainability of tree-based models. Despite their trans-

parency, these regression models often require additional

post-hoc explainability tools, like visual aids, to make their

predictions accessible to those not well-versed in statistical

methodologies.

3) DECISION TREES

Decision trees offer transparent models that enable domain

experts to understand how they work. Furthermore, the

exploration of these trees can lead to the discovery of new

relationships and insights. Blanco-Justicia and Domingo-

Ferrer [44] leverage decision trees as surrogate models

to elucidate ML models, constructing these trees from

segmented portions of the training dataset.

This approach assumes that the person responsible for

providing explanations has access to the training data and the

ML model. Nevertheless, decision trees encounter scalability

issues with large datasets in real-world applications, which

diminish their explainability as the tree complexity increases.

This complexity requires the adoption of post-hoc explain-

ability methods to maintain clarity.

4) BAYESIAN MODELS

Bayesian models excel in providing a high degree of

interpretability and explainability, offering insights into the

statistical interplay between variables. This capability makes

them particularly useful for applications where clear, com-

prehensible explanations are essential, such as demonstrating

the correlation between diseases and their symptoms.

Hence, in the realm of medical research, the appli-

cation of Bayesian methods has been notably effective.

For instance, Arrieta et al. [41] demonstrate the utility of

Bayesian approaches in healthcare analytics, highlighting

their potential to the complex relationships within medical

data. Similarly, the Naive Bayes classifier, as discussed

by Rana et al. [49], serves as a robust algorithm for

predictive modeling. This classifier efficiently tackles both

binary and multi-classification problems by calculating the

61616 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

probabilities of individual elements, subsequently employing

Bayes’ theorem to identify the most probable outcome.

5) k-NEAREST NEIGHBOUR

The k-NN algorithm operates on a simple yet effective

principle: for classification, it determines a test sample’s

class based on the majority vote from its nearest neighbors,

and for regression, it computes the average outcome of

these neighbors. The interpretability of k-NN is significantly

influenced by the chosen features, the distance metric

utilized, and the number of neighbors. While models with

extensive features may obscure interpretability, a k-NN

model characterized by a concise, well-selected feature set

remains one of the main models for interpretable results. In a

study, Aslam et al. [50] showcase the application of various

supervised ML-based models, including k-NN, utilizing XAI

techniques.

6) GENERALIZED LINEAR AND ADDITIVE MODELS

The Generalized Additive Model (GAM) represents an

advancement in statistical modeling, combining the benefits

of linearity and interpretability. This model assigns values

to variables by integrating numerous undefined functions

specific to regressionmodels and enhancing accuracywithout

compromising interpretability. One of the unique features

of GAM is its ability to allow users to evaluate the

significance of each variable by examining its impact on

the predicted outcome. GAM models exhibit algorithmic

transparency and are regarded as simulatable due to their

minimal dimensionality issues.

To have an optimal balance between accuracy and explain-

ability, Yang et al. [51] introduce GAMI-Net (Generalized

Additive Models with Structured Interactions), a neural

network characterized by its intrinsic explainability. This

model has been benchmarked against several standard

models, including GLM, showcasing its robustness.

Despite the inherent transparency and explainability

of these models, ongoing research explores undirected

graphical models to further enhance their trustworthiness.

Transparency alone may not always guarantee straightfor-

ward explainability, as increasing model complexity can

reduce interpretability. This necessitates the development

of post-hoc explanations to maintain clarity and reliability.

As mentioned above and illustrated in Figure 3, the dashed

arrow represents cases where even transparent models may

require post-hoc explanations in complex scenarios. This

highlights the dynamic nature of explainability, where

certain conditions still necessitate additional interpretability

techniques to ensure model reliability and trust.

B. OPAQUE ML-BASED MODELS

We explored models characterized by their transparency,

highlighting that their interpretability does not guarantee

enhanced performance. This section shifts focus to examine

complex models that stand out for their high accuracy.

However, these models require post-hoc explanations to

unlock an understanding of their internal processes.

1) RANDOM FOREST

RandomForests (RFs) consist of multiple decision trees, each

dividing the input space into smaller segments and averaging

outcomes. As problem complexity increases, more trees

are needed, improving accuracy but reducing explainability.

RFs were designed to mitigate overfitting in single decision

trees by averaging predictions across multiple trees, reducing

variance. Each tree is trained on a unique data subset,

ensuring diverse insights.

However, the model’s complexity necessitates post-hoc

explainability techniques. Zhao et al. [52] introduce a

visual analytic system to enhance interpretability, offering a

comprehensive approach to understanding RF predictions.

2) SUPPORT VECTOR MACHINE

SVM constructs a hyperplane or a set of hyperplanes

within a high or infinite-dimensional space, serving purposes

across classification, regression, outlier detection, and even

clustering tasks. A hyperplane achieves optimal separation

when it maximizes the distance to the nearest point of

the training dataset, as a larger margin correlates with

a lower generalization error of the classifier. Owing to

their remarkable predictive and generalization capabilities,

SVMs are among the most widely utilized ML models.

However, due to their complex dimensionality, they are often

regarded as opaque, making their decision-making process

less transparent.

Based on this, Vieira and Digiampietri [53] explore the use

of decision trees to derive rules from SVMs, which provides

explanations for the classifications made by SVM classifiers

and enhances their interpretability.

3) MULTI-LAYER NEURAL NETWORK

These models are computationally intensive but provide

unparalleled performance across awide range of applications.

Neural networks are inherently considered MLmodels due to

their complex internal mechanisms. In the study by Sharma

et al. [54], the focus is on utilizing a multi-layer perceptron

neural network for the risk prediction of default loans, with

the explanation of model decisions facilitated through a

sensitivity analysis technique.

C. MODEL-AGNOSTIC TECHNIQUES FOR POST-HOC

EXPLAINABILITY

Post-hoc explainability methods play a crucial role in

interpreting complex ML-based models, especially in

high-stakes applications where decision transparency is

required. One way to classify post-hoc explainability

methods is based on their dependency on the model structure.

In this classification, we identify two groups: model-

agnostic methods, which can be applied to any model, and

VOLUME 13, 2025 61617

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

model-specific methods, which are tailored to particular

model architectures.

Model-agnostic techniques can be applied across various

ML architectures, offering greater flexibility. However, this

flexibility often comes at the cost of precision in explanations,

as these methods approximate model behavior rather than

providing direct interpretability. Given the increasing reliance

on ML in security-sensitive domains such as malware detec-

tion, adopting robust and interpretable post-hoc techniques

is essential to ensure trust and accountability. The domain

of model agnostic interpretability is divided into three

main categories: Global Explanation, Local Explanation, and

Visual Explanation.

1) GLOBAL EXPLANATION

Global explainability provides insights into how a model

makes decisions across all instances, rather than focusing

on individual predictions. This is essential for understanding

which features are most influential and how they interact at a

systemic level.

A widely used approach to achieving global explain-

ability is the use of surrogate models, which approx-

imate the decision-making process of a complex ML

model by training a more interpretable alternative (e.g.,

decision trees, linear models) on the same dataset.

These models enable researchers to analyze feature

contributions in a transparent manner, facilitating model

interpretation.

However, surrogate models introduce trade-offs. Since

they approximate rather than replicate the ML model’s

decision boundaries, they may introduce inaccuracies, partic-

ularly in the presence of nonlinear relationships or complex

feature interactions. Despite these limitations, they remain a

practical tool for obtaining high-level insights into opaque

models.

In cybersecurity and malware detection, global explana-

tions help identify critical risk factors in security assess-

ments. For instance, a surrogate model trained on malware

classification outputs can reveal whether API call sequences,

file metadata, or network behaviors are the most significant

predictors. This understanding allows security analysts to

refine detection rules, improve feature selection, and enhance

model robustness.

Surrogate models serve as interpretable stand-ins for

complex models, offering insights into their underlying

mechanisms. For example, Islam et al. [5] demonstrated

the effectiveness of this approach by using Classification

and Regression Trees (CART) to approximate a random

forest’s decision-making process. If a surrogate achieves

comparable performance, it may reduce reliance on the orig-

inal model, particularly when interpretability is prioritized.

Additionally, multiple surrogate models can be developed

for a single ML system, each providing distinct perspectives

on model behavior. This approach enhances transparency

and facilitates the comprehension of sophisticated decision

processes.

2) LOCAL EXPLANATION

Local explainability focuses on understanding why a model

makes a specific prediction for a single instance rather than

explaining overall model behavior. These methods help users

answer questions such as, ‘‘Why was this particular file

classified as malware?’’ or ‘‘What features contributed to

this anomaly?’’ Unlike global explanations, which provide

an overview of feature importance across an entire dataset,

local explanations offer insights into decision-making at an

individual level.

Local explanation techniques are particularly valuable in

high-stakes applications like cybersecurity, where under-

standing why a model flagged a file as malicious can

assist analysts in investigating threats, identifying adversarial

attacks, or refining detection rules. Additionally, local

explanations play a critical role in bias detection and fairness

assessments, ensuring that models do not make decisions

based on unintended or discriminatory features.

Several widely used model-agnostic techniques exist for

local explainability, including LIME (Local Interpretable

Model-Agnostic Explanations), KernelSHAP (Shapley Addi-

tive Explanations), Shapley values, counterfactual explana-

tions, and Logic Explained Networks (LENs). The following

sections discuss these methods in more detail, highlighting

their strengths, limitations, and practical applications.

a: LIME

For the first time, Ribeiro et al. [55] introduce a novel

local explainability technique known as LIME. This method

operates as a local surrogate model, generating interpretable

predictions by approximating how the model behaves in the

vicinity of a given prediction. It is designed to be model-

agnostic, which makes it versatile across different ML-

based models. To evaluate the effectiveness of the surrogate

model, LIME employs a local fidelity measure. This metric

assesses the extent to which LIME’s approximations reflect

the true behavior and accuracy of the underlying ML model.

However, it is important to note that LIME is not equipped

to offer insights into the global operations of a model.

Furthermore, if the local fidelity measure indicates poor

accuracy, the reliability of LIME’s interpretability may be

compromised.

In a practical application of LIME, Magesh et al. [56]

utilize this technique to interpret the predictions of a CNN

model designed for the early detection of Parkinson’s disease.

This study demonstrates the potential of LIME to provide

valuable insights into real-world scenarios.

b: KernalSHAP

Among the various local interpretability methods developed,

a significant challenge lies in determining the most suitable

method for specific scenarios. To address this, Lundberg and

Lee [57] propose Shapley Additive exPlanations (SHAP),

a concept derived from game theory that evaluates the

importance of each feature in contributing to a particular

61618 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

prediction. The SHAP framework establishes a new class

of additive feature importance measures characterized by a

unique solution that exhibits desirable attributes.

KernelSHAP, as part of the SHAP family, is model-

agnostic, allowing its application across diverse ML models.

The computation of exact SHAP values via KernelSHAP can

be exponentially time-consuming, which highlights its com-

putational demands. Despite this, its capability to adapt to any

MLmodel shows its broad utility. The SHAP framework also

includes tailored variants such as TreeSHAP and DeepSHAP,

designed specifically for tree-based and deep learning mod-

els, respectively. These variants can optimize the efficiency

and relevance of SHAP analysis in targeted model types.

c: SHAPLEY VALUES

They originate from coalitional game theory, framing each

feature value of an instance as a ‘‘player’’ and the pre-

diction outcome as the ‘‘payout.’’ This approach assigns

a quantifiable contribution to each feature, which can

demonstrate how significantly each one influences the final

prediction. Shapley values are distinguished by key principles

such as consistency and local accuracy. These principles

ensure that the allocation of importance to features is both

fair and interpretable, accurately reflecting each feature’s

contribution to the outcome.

d: COUNTERFACTUAL EXPLANATIONS

Counterfactual explanations provide a compelling approach

for local interpretation. This method stands out for its

simplicity in implementation, as it does not need access to

the underlying data or model. Counterfactual explanations

focus on identifying which features would need alteration

to achieve a specific desired outcome, thereby elucidating

the reasoning behind model predictions. These explanations

are particularly user-friendly because they illustrate how

minimal changes in features can influence predictions.

Nonetheless, one limitation of this method is its difficulty

in accommodating categorical data across different levels.

Related to the Counterfactual explanation, Molnar [58]

discusses their application in models generating continuous

predictions that showcase their utility in providing clear and

actionable insights. In malware classification, counterfactual

explanations can highlight the minimal changes required

to alter a model’s decision, offering valuable insights for

both threat analysis and adversarial defense strategies. This

approach is particularly useful in detecting adversarial

attacks, as it helps identify which modifications in malware

features could evade detection, thereby strengthening model

robustness.

e: LENs

They enhance the interpretability of neural networks by

utilizing human-understandable predicates as inputs and

translating predictions into First-Order Logic (FOL) explana-

tions. These networks are highly adaptable and can function

effectively in both supervised and unsupervised learning

contexts. LENs can serve as direct classifiers, providing

explanations for their predictions, or they can work alongside

ML classifiers to make their decisions interpretable. The

learning process for LENs involves associating specific

input features with output classes in supervised scenarios

and generating logic rules that explain the conditions

for predictions. In unsupervised learning, LENs identify

patterns and relationships within the data, clustering similar

data points and generating explanations that describe these

clusters. Additionally, LENs can mimic the outputs of

ML models while generating FOL explanations, which

leads to elucidating the decision-making process for these

complexmodels [59]. LENs bridge the gap between symbolic

reasoning and neural networks by incorporating logical

constraints into the learning process, making their decisions

more interpretable. Unlike traditional neural networks, which

act asMLs, LENs provide structured, rule-based explanations

that enhance transparency and trust in AI-driven decision-

making.

3) VISUAL EXPLANATION

This approach contains methods designed to produce visual

representations of models that make them accessible and

comprehensible. Techniques such as Individual Conditional

Expectation (ICE), Partial Dependence Plot (PDP), and

Accumulated Local Effects (ALE) serve as key tools in

this visualization process. These techniques facilitate a

deeper understanding of how models operate by graphically

depicting the relationship between features and the model’s

predictions. The advantage of visual explanations lies in

their ability to convey complex model dynamics in a

manner that is easily graspable. This makes visualizing

techniques invaluable for broadening the accessibility of

model interpretations.

a: PARTIAL DEPENDENCE PLOT (PDP)

It offers insights into the marginal impact of one or

two features on the predicted outcome of an ML model,

as highlighted by Molnar [58]. This tool is important in

determining whether the relationship between the target and

features is linear or exhibits more complexity. For instance,

in the context of a linear regression model, PDP can reveal a

linear relationship and illustrate how variations in a specific

feature correlate with changes in the prediction. Unlike

methods that focus on the influence of features on individual

predictions, PDP emphasizes the average effect of features

on the model’s overall behavior. However, its application

is generally constrained to analyzing up to two features

simultaneously, based on the assumption that the selected

features are independent of others not included in the plot.

b: INDIVIDUAL CONDITIONAL EXPECTATION (ICE)

Within the post-hoc explainability, visual explanations, par-

ticularly those compatible with model-agnostic approaches,

VOLUME 13, 2025 61619

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

are notably rare. The ICE plot, introduced by

Goldstein et al. [60], emerges as a visualization technique

for delineating the predicted outcomes of models governed

by supervised learning algorithms. Diverging from the PDP,

the ICE plot underscores the dependency of predictions on a

specific feature across individual instances, each represented

by a unique line. This approach allows users to understand

how changes in a feature impact predictions on a case-by-

case basis.

ICE plots especially highlight the variability of predictions

within the range of a given covariate, identifying areas of

significant heterogeneity. This capability is complemented by

a visual test for assessing the model that generated the data

alongside a comprehensive suite of tools for exploratory anal-

ysis. By employing both simulated examples and real-world

data sets, the creators of ICE plots demonstrate their utility in

uncovering insights about estimated models that PDPs may

not reveal, offering a more granular perspective on model

behavior.

c: ACCUMULATED LOCAL EFFECTS (ALE)

The ALE plot provides a visual illustration of how individual

features influence the predictionsmade by amachine learning

model. It effectively showcases the dynamics between regres-

sors (independent variables) and the dependent variable,

offering insights into their relationship. Notably, ALE plots

are recognized for their efficiency, being faster to generate

compared to PDP.

Kramer et al. [61] demonstrated the application of ALE

plots within the realm of real estate, employing them to

discern which features significantly impact property values.

This use case underscores the utility of ALE plots in practical,

real-world analysis. Additionally, many researchers have

adopted ALE plots as a method for visually exploring the

nature of relationships between variables, assessing whether

these relationships are linear or exhibit more complexity.

D. MODEL-SPECIFIC TECHNIQUES FOR POST-HOC

EXPLAINABILITY

Model-specific methods of post-hoc explainability are

designed to be applied exclusively to certain types of

models. These techniques can also be categorized based on

their scope of interpretability, which includes local, global,

and visual dimensions. Local scope refers to methods that

focus on explaining the prediction for an individual data

point. In contrast, global scope encompasses techniques that

interpret the overall behavior of themodel.Meanwhile, visual

scope techniques are aimed at creating visual representations

that make model behaviors comprehensible.

Among the array of model-specific approaches, Tree-

Shap and DeepSHAP are notable for their application to

tree-based and deep learning models, respectively. Addition-

ally, saliency maps encompass a variety of methods, such

as DeepLift, layer-wise relevance propagation, Grad-CAM,

and other gradient-based approaches, along with feature

relevance explanations.

a: TreeSHAP AND DeepSHAP

They represent two specialized implementations of SHAP

grounded in the principles of Shapley values. TreeSHAP is

tailored for tree-based models, offering a more efficient com-

putation of exact SHAP values by operating in polynomial

time, in contrast to the exponential time typically required

by the general SHAP approach. In an illustrative application,

Athanasiou et al. [62] leveraged TreeSHAP within an

explainable risk prediction model for cardiovascular disease,

utilizing this technique to furnish personalized explanations

of the machine learning model’s predictions.

Conversely, DeepSHAP is devised to work with neural

networks and serves as an approximation method for cal-

culating conditional expectations of SHAP values, utilizing

selected background samples for this purpose. It represents

an evolution of the DeepLIFT method, adapting it to estimate

Shapley values for specific inputs across the feature space.

This adaptation enables DeepSHAP to pinpoint the contri-

bution of each feature to a given prediction within neural

network models. An example of DeepSHAP’s application

can be found in the work by Davagdorj et al. [63], where

it was employed within a neural network framework to

predict non-communicable diseases. The primary objective

of this approach is to elucidate the risk factors influencing the

model’s predictions, aiming to provide explanations that are

both meaningful and accessible to users, focusing on specific

instances from the user’s perspective.

b: FEATURE RELEVANCE EXPLANATIONS

Feature relevance explanation techniques are important

in enhancing the interpretability of tree ensembles. This

category contains a variety of techniques aimed at elucidating

how different features contribute to a model’s predictions,

including feature importance, feature extraction, and feature

contribution. Central to these techniques is the concept of

feature importance, which assesses the significance of feature

interactions in influencing the model’s outcome. Adebayo

and Kagal [64] introduced a methodological approach for

quantifying feature importance by iteratively transforming

features within the dataset. This process involves eliminating

features deemed non-essential, thereby creating a refined

dataset that retains only those features with significant

relevance.

Subsequently, the authors developed a novel metric to

calculate scores for the revised datasets based on the

variations observed in model performance. This approach

underscores the dynamic nature of feature interactions within

predictive models, where the effect of individual features on

the prediction cannot simply be aggregated to reflect the total

influence.

Further advancing the understanding of feature inter-

actions, Friedman and Popescu [65] introduced the

61620 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

H-statistic. This metric is designed to explain the extent of

feature interactions by measuring the variance in predictions

attributable to these interactions. The H-statistic thus serves

as a valuable tool for detecting and quantifying the strength

of interactions among features within a prediction model.

c: SALIENCY MAPS

They serve as critical tools in attribution analysis by showing

the pixels that significantly influence image classification

decisions. These gradient-based methods, designed specifi-

cally for neural network models, can facilitate an understand-

ing of the features most relevant to a model’s output. Among

such methods, Layer-wise Relevance Propagation (LRP) and

DeepLIFT stand out by providing a framework to assign

importance scores to different elements of a network, offering

a detailed explanation of a model’s decision-making process.

Specifically, LRP identifies the contribution of various parts

of the input data towards the final decision, a technique

effectively employed by Wang et al. [66] for dynamic and

explainable malware detection. By pinpointing malicious

code snippets, their approach enhances the interpretability of

malware classifiers.

Similarly, DeepLIFT, as explored by Shrikumar et al. [67],

contrasts the activation of neurons against a reference point,

leveraging the differences to ascertain the significance of each

feature. This method enriches our understanding of neural

network operations by clarifying how each input affects the

output.

Moreover, Grad-CAM represents another notable advance-

ment in pixel-attribution methodologies, offering a refined

lens through which to view the decision-making processes of

CNNs. By attributing a relevance score to each neuron in the

final convolutional layer and examining the activated regions

within the feature map, Grad-CAM elucidates the features

deemed most crucial by the CNN. This process not only aids

in interpreting the model’s focus but also contributes to the

model’s transparency.

Integrated Gradients (IG) is another one that calculates

the average gradients across a straight-line path between

the baseline input and the actual input. This approach,

particularly beneficial for CNN predictions, highlights the

incremental impact of each feature along this path, thereby

offering a comprehensive view of the factors influencing

the model’s predictions. Collectively, these saliency map

methods show the importance of model-specific analyses

in enhancing the interpretability and transparency of neural

networks.

IV. EXPLAINABLE MALWARE CLASSIFICATION AND

DETECTION APPROACHES

The preceding section provided an introduction to the

concept of explainability in ML, detailed various models

and techniques for enhancing explainability, and reviewed

relevant research in the broader field of explainable ML.

Moving forward, this section will focus on the application

of explainable ML in the context of malware classification

and detection. These approaches are organized by the types

of target systems, including Windows PE files, hardware

systems, Android devices, PDF documents, and Linux files.

This classification is depicted in Fig 4, which provides

a clear framework for understanding how explainable ML

techniques are applied across different computing platforms

to address malware threats.

By categorizing existing explainable malware detection

strategies by the target platform—Windows PE, Android,

hardware, PDF, and Linux— we highlight how explain-

ability methods adapt to each system’s unique execution

environment and feature set. We also provide comprehensive

tables (2, 1, 3, 4) summarizing key contributions, limitations,

and XAI techniques. These tables are provided for quick

reference. However, we will make explanatory context in

each subsection.

A. WINDOWS PE-BASED MALWARE APPROACHES

Windows is the most widely used desktop OS, making

Windows PE files a significant target for malware. Below,

we summarize the PE format’s structure and then highlight

state-of-the-art studies based on key explainable detection

methods grouped by the type of XAI approach (gradient-

based, model-agnostic, and image-based). Finally, Table 1

lists major works in Windows PE-based malware detection,

comparing their focus, contributions, limitations, and XAI

techniques.

Windows PE is a file format based on the Common Object

File Format (COFF) specification and holds significant

importance within the Windows operating system family.

The structure of a PE file starts with a header initially used

by the MS-DOS operating system. When the executable is

loaded, MS-DOS runs a stub program to ensure backward

compatibility. Next, the COFF header provides detailed

specifications of the executable file. It is followed by an

optional header, which adds flexibility and supports future

enhancements to the file structure. Following this, the

section header divides the executable into distinct sections.

These sections comprise blocks of memory and support

page swapping to address memory limitations, which leads

to organizing the executable into structured segments for

efficient execution.

The Windows operating system has emerged as the

predominant platform on personal computers, which has

increased its vulnerability to malware attacks. Despite this

risk, limited research has focused on explainable malware

detection methodologies specifically for Windows.

Developing ML-based models that learn discriminative

features from raw inputs requires feature extraction, which

is time-consuming and complex. To address this challenge,

Raff et al. [68] introduce ‘‘MalConv,’’ a novel architecture

for malware detection. This architecture leverages the entire

executable as input for a CNN. The MalConv architecture

utilizes a methodology similar to techniques employed in

speech and signal processing [69], text understanding [70],

VOLUME 13, 2025 61621

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

FIGURE 4. Explainable malware classification and detection approaches.

and image classification [71], where CNNs effectively extract

pertinent features.

MalConv is designed as a static architecture for identifying

static malware, which combines CNN activation functions

with global max-pooling before progressing to fully con-

nected layers. This approach guarantees that the ML model

generates activations independent of the features’ spatial

locations, which leads to enhancing its ability to classify and

detect malware. The discussion surrounding Windows PE

malware detection includes gradient-based, model-agnostic

techniques, and reliance on image representations.

The forthcoming section will discuss an analysis of

existing strategies for malware classification and detection,

with Table 1 explicitly addressing the application of model-

agnostic, gradient-based, and image-based methodologies in

the context of Windows PE-based malware research.

Table 1 summarizes research on explainable Windows

malware detection. Focus/Objective clarifies the primary

goal, the Contribution outlines each paper’s novelty, and the

XAI Technique highlights the interpretability approach used.

1) GRADIENT-BASED APPROACH

The gradient-based methodology measures the impact of

input features on predictions by assigning weights to different

parts of an executable. To elucidate the decision-making

processes of Deep Neural Networks (DNNs), Bose et al.

[72] examine theMalConv architecture using the open-source

‘emberMalConv’ framework. This study seeks to understand

how the architecture distinguishes between malicious and

benign executables based on their raw data. Ember, which

is a tool utilized for training static PE malware models

within the ML-based domain, highlights the MalConv

architecture’s ability to attribute significant weight to specific

executable parts, thereby having a significant influence on the

classification results.

Their research introduces a sophisticated framework based

on gradient analysis, which maps gradient embeddings

from malicious files and interpolates between accurately

classified instances to define a clear decision boundary

between categories. By analyzing the interpolation among

samples, the study explores filter activations to investigate

if there is a connection between different filter pairs. This

leads to the development of a correlation heatmap for the

filters, providing insights into how they interact. One filter

specializes in identifying malicious traits within a file, and

another filter focuses on generalizing these findings across

various samples. The proposed framework transcends the

MalConv model and offers a general method suitable for

classification tasks in any neural network.

In summary, gradient-based methods for Windows PE

malware detection effectively pinpoint which bytes or seg-

ments of an executable are most influential for classification,

offering highly granular explanations. However, they often

require large labeled datasets and can be susceptible to

adversarial manipulation if attackers target the most salient

bytes. Despite these limitations, gradient-based XAI remains

a powerful tool when fine-grained feature importance is

crucial.

2) MODEL-AGNOSTIC-BASED APPROACH

This method clarifies the predictions by simplifying the

complex original model into a more understandable local

surrogate model. The research presented by Mathews [73]

introduces an explainability framework aimed at classifying

two distinct malware families on Windows PCs. Firstly,

they calculate content-based features and extract statistical

features derived from Hex and assembly views. These

features are indicative of the PE file’s structure. Their

investigation shows shortcomings in the feature selection

process and emphasizes the global characteristics through

which a model learns to distinguish between the two malware

categories. To elucidate the outcomes produced by the deep

learning model, they utilize the LIME framework.

61622 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

TABLE 1. Research addressing explainable machine learning in windows malware.

A study by Pirtch et al. [74] seeks to develop a CNNmodel

that accurately predicts malware tags. This work involves a

thorough dynamic analysis that examines malware tags to

inform the training of the surrogate learning model. Each

detected feature, referred to as a ‘token’ in the research,

receives a relevance score that indicates its impact on

the predicted malware tag. To assess the quality of these

explanations, the authors employ two measures: descriptive

VOLUME 13, 2025 61623

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

accuracy, which evaluates the precision with which an

explanation captures the influential features of a prediction,

and descriptive sparsity, which identifies the superfluous

features within these explanations. The model’s effectiveness

is validated through its performance in classifying three

types of tags—sandbox, family, and clustering—with each

category achieving an accuracy rate of over 90%.

In a study, Alani et al. [79] present an ML-based

system designed to detect obfuscated malware on Windows

platforms with high accuracy and efficiency. The system

utilizes a variety of classifiers, including RF, logistic

regression, decision trees, Gaussian Naive Bayes (GNB), and

extreme gradient boosting (XGB). Through an evaluation

process, XGBwas identified as the best-performing classifier.

Moreover, The system relies on features extracted from

memory dumps using the VolMemLyzer tool. The feature

selection algorithm, i.e., Recursive Feature Elimination

(RFE), identifies the five most effective features, resulting in

a streamlined model that maintains an accuracy rate exceed-

ing 99%. The selected features include the total number of

services, average number of dynamic-link libraries (DLLs)

per process, total number ofmutant handles, number of kernel

drivers, and shared process services. The system’s detection

capabilities are bolstered by its explainability, achieved

through SHAP. SHAP values provide insight into the impact

of each feature on the model’s predictions. The evaluation of

the system demonstrates its high accuracy and rapid detection

speed, with a processing time of 0.413 microseconds per

instance. Despite its robustness, the paper has some potential

limitations, such as the model’s dependence on specific

features and vulnerability to adversarial attacks.

Anthony et al. [81] focus on enhancing malware detection

through the integration of XAI. The primary goal is to

address the limitations of traditional ML models, particularly

their lack of interpretability. The proposed solution leverages

LENs, which offer a balance between accuracy and explain-

ability. LENs provide explanations in the form of First-Order

Logic (FOL) rules, making their decision-making processes

more transparent and understandable for human analysts. The

methodology involves extending the application of LENs to

the EMBER dataset. Additionally, they introduce a tailored

version of LENs to enhance the fidelity of logic explanations.

The experimental results demonstrated that LENs achieve

robust performance, rivaling traditional ML models while

significantly outperforming other interpretable methods. The

tailored LENs provide high-fidelity explanations with low

complexity that can ensure they are both accurate and

comprehensible.

Gulmez et al. [82] present an approach to ransomware

detection by integrating multiple dynamic analysis features

with DL andXAI techniques. They developedXRan, which is

a system that combines API call sequences, DLL sequences,

and mutual exclusion (Mutex) sequences to provide a

comprehensive view of executable behaviors. These features

are extracted through dynamic analysis, where executables

are run in a controlled environment to observe their actions.

XRan leverages a two-layer CNN to process these combined

sequences, which enables precise detection of ransomware.

To address the challenge of model interpretability, the authors

integrated two XAI models, i.e., LIME and SHAP.

The study utilized five datasets: RD1 fromVirusShare with

6,263 ransomware samples, RD2 from Sorel-20Mwith 7,703

ransomware samples, RD3 from ISOT with 668 ransomware

samples, MD from VX Heaven with 6,263 malware samples,

and BD from various sources including Windows System

Files and Download.com with 14,797 benign samples.

Dynamic analysis was conducted using Cuckoo Sandbox to

extract features, which were then combined into sequences

for the CNN model. Performance metrics included accuracy,

TPR, FPR, and F-score, with XRan showing superior

results compared to baseline and state-of-the-art methods.

The experimental results demonstrate XRan’s effectiveness,

achieving up to a 99.4% True Positive Rate (TPR) and

outperforming existing state-of-the-art methods.

Aryal et al. [83] aims to enhance the effectiveness of

adversarial evasion attacks on malware detectors. They

focus on Windows PE malware and utilize SHAP values

to identify the most critical regions of malware files that

influence detection decisions by a CNN-based malware

detector, MalConv. The rationale behind this approach is

that by understanding which parts of the malware file have

the greatest impact on the detector’s decision, they can

strategically place perturbations in these regions to evade

detection more effectively.

To achieve this, they calculate the SHAP values for each

byte in the malware files using the DeepExplainer module,

which is adapted to work with the embedding layer in

MalConv. These SHAP values reveal the contribution of each

byte to the malware detector’s decision, which facilitates

the mapping of these values to different regions of the PE

file structure. Aggregating these values will help identify the

regions with the highest impact. Using this information, they

inject adversarial perturbations into these targeted regions,

both at a high level (across entire sections) and at a more

granular level (within subsections of larger sections). The

results, based on a dataset of 6000 Windows PE malware

samples, demonstrate that perturbations guided by SHAP

values significantly improve the success rate of evasion

attacks compared to random perturbations. Specifically, they

observe high evasion rates when perturbations are injected

in regions with high SHAP values, which demonstrates the

efficacy of their explainability-guided approach in crafting

adversarial samples that maintain the malware’s functionality

while evading detection.

Overall, model-agnostic frameworks (e.g., LIME, SHAP,

LENs) are popular for Windows PE malware detection

thanks to their flexibility: they can explain virtually

any classifier. Yet, these post-hoc explanations can vary

from sample to sample, sometimes lacking global consis-

tency. Their simplicity and model independence, however,

make them valuable for real-world malware detection

pipelines.

61624 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

3) IMAGE-BASED APPROACH

Recent advancements in CNNs showcase their remark-

able capability in detecting malware binaries through

image classification techniques. The work presented by

Marais et al. [75] introduces detection models that effec-

tively convert binary files into grayscale images. Utilizing

the Ember dataset, which is formatted in Windows PE,

the authors proceed with feature extraction from these

grayscale images. Subsequently, they propose a CNN

model that leverages these images for malware detection.

Additionally, they implement a novel approach, termed

the HIT method, to train another CNN model on RGB

images. A significant contribution of their research is

the application of the GradCam++ explainability technique

on the CNN model. This technique identifies the most

influential pixels affecting the model’s prediction, aiming

to diminish the false positive rate of detecting malicious

files.

Contrastingly, while non-linear ML models are known

for their superior accuracy and classification performance

over linear counterparts, their complexity often renders them

difficult to interpret. Addressing this challenge, Li et al. [76]

have developed an IFFNN. This model can achieve high

accuracy in malware detection and ensures interpretability.

They conduct their experiments on a Windows server to

determine the IFFNN’s capability to handle multi-class

classification problems. Moreover, to assess the effectiveness

and interpretability of the IFFNN, they use the MNIST

dataset for image classification and convolutional layers

for a comprehensive qualitative evaluation of the model’s

interpretability.

In another work, Chen et al. [77] aim to enhance the

interpretability of image-based dynamic malware classifi-

cation by extending the LIME framework. They start by

training deep learning models on images and then apply an

explanatory approach to understanding the decision-making

process of these models. The objective is to determine

whether the insights derived from the algorithm align with

expert knowledge in the cybersecurity domain.

Lin and Chang [78] engage with an image-based malware

dataset to explore the potential of ensemble learning. They

introduce a Selective Deep Ensemble Learning (SDEL)-

based detector that is coupledwith an innovative Interpretable

Ensemble Learning approach. This detector is specifically

designed forMalware Detection (IEMD). The IEMD strategy

is developed to elucidate the predictive decisions made

by the SDEL detector and advance the interpretability of

the model. This endeavor is supported by the deployment

of explainable AI techniques such as LIME, SHAP, and

Layer-wise Relevance Propagation (LRP). These methods

are analyzed and compared to understand their efficacy in

providing transparent explanations. Their research results

have impressive outcomes, achieving an accuracy rate

of approximately 99.87%. Furthermore, the study shows

the superiority of their explanations in the context of

image-based malware classification compared to preceding

research.

The paper by Ciaramella et al. [80] develops an approach

to ransomware detection by converting Windows PE files

into RGB images and analyzing them using DL-based

models. The researchers developed a script to transform the

binary code of executable applications into images, which

are then used as input for various CNNs such as LeNet,

AlexNet, Standard-CNN, andVGG-16. The goal is to classify

the files into ransomware, generic malware, or legitimate

software. The Grad-CAM technique is employed to enhance

the interpretability of the model’s predictions. Grad-CAM

generates visual explanations by highlighting regions of

the images that most influence the model’s decisions. The

results demonstrate the effectiveness of the proposed method,

achieving high accuracy, precision, and recall, particularly

with the VGG-16 model, which outperformed others with an

accuracy of 96.9%.

Ghadekar et al. [84] implement a methodology for detect-

ing various types of malware by leveraging a modified GNN

architecture called deeperGCN, along with XAI techniques.

The research combines byte and ASM (assembly) files, con-

verting them into images to better capture intricate malware

behaviors. This conversion process involves the extraction

of features such as byte bigrams, opcode sequences, and the

generation of pixel representations of the files. These images

are processed using the deeperGCN model, which enhances

the feature extraction capabilities by leveraging the inherent

relationships in the graph-structured data. Themodel includes

several advanced techniques, such as skip connections to

address vanishing gradient problems and a graph readout

pooling layer to effectively aggregate information across

nodes.

The results demonstrate that this innovative approach

achieves a high detection accuracy of up to 97%. In addition,

the integration of GradCAM provides transparency into the

model’s decision-making process by generating heatmaps

that highlight the important regions of the input data

influencing the predictions.

By converting PE files into images, these techniques

leverage CNNs’ strength in pattern recognition. Gradient-

based visualization methods (e.g., Grad-CAM) then highlight

which pixel regions most impact the model’s decision,

increasing transparency for security analysts. The main

challenge is the computational cost and the complexity of

transforming binaries to images, but when accuracy and

visual interpretability are desired, image-based XAI can be

highly effective.

Collectively, these Windows-based XAI approaches

illustrate a variety of explainability techniques—gradient-

focused, model-agnostic, and image-based—each balancing

interpretability, detection accuracy, and computational com-

plexity. Next, we explore how Android malware detection

demands similar yet distinctmethods, givenAndroid’s unique

environment and features.

VOLUME 13, 2025 61625

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

B. ANDROID-BASED MALWARE APPROACHES

The rapid advancement of technology has also led to an

increase in malware attacks, with the Android platform

emerging as a particularly significant target. In response to

this escalating threat, various security measures have been

implemented within the Android ecosystem. Among these,

ML-based methods have proven to be highly effective in

detecting Android malware, which led to extensive research

in this domain [103], [104], [105], [106]. Specifically, recent

developments in DNNs have improved detection rates and

reduced the reliance on manual feature engineering.

A standout innovation in this field is the DREBINmalware

detection system [107]. DREBIN leverages a lightweight

approach to identify Android malware on smartphones

through static analysis, extracting application features that

are represented in a binary vector format. This setup enables

linear classification to differentiate between features of

benign and malicious applications. Furthermore, DREBIN

is distinguished by its explainable approach to malware

detection. It provides insights into the reasoning behind its

decisions by highlighting key attributes of detected malware.

The dataset used by DREBIN includes 5,560 malware

samples and 123,453 benign samples that demonstrate

the comprehensive nature of its analysis. DREBIN has

outperformed other ML-based approaches by achieving high

accuracy. This success has attracted significant attention in

the academic world and has prompted many researchers to

leverage DREBIN in their studies on explainable Android

malware detection. This has made a substantial contribution

to the enhancements of mobile security.

To analyze the Android malware, the research by

Kumar et al. [85] introduces two ML-supported method-

ologies: one focuses on static analysis and the other

on feature extraction. They perform feature extraction on

the DREBIN dataset through vectorization, followed by

feature selection and dimensionality reduction, thus trans-

forming high-dimensional data into a more manageable

low-dimensional format while omitting extraneous features.

Their analysis yields metrics such as the True Positive Rate

(TPR) and False Positive Rate (FPR), with their methodology

demonstrating high precision and recall. Various ML-based

algorithms, including SVM, KNN, Naive Bayes, and C4.5,

are applied to the newly processed data, which reveals SVM’s

superior performance. The combination of static analysis,

feature vectorization, and supervised learning enables these

ML algorithms to identify new malware families with high

true positive and recall rates.

While feature extraction and dimensionality reduction

can streamline malware detection, filtering out redundant

instances in the dataset can further enhance both classifier

efficiency and the clarity of explanations. Surendran et al.

[108] propose using the Ochiai coefficient to identify and

remove near-duplicate samples before retraining, which

can reduce noise and training overhead. Eliminating these

overlaps helps ensure that model explanations (e.g., SHAP or

LIME outputs) capture truly informative patterns rather than

repeated artifacts, ultimately improving both performance

and the stability of XAI-based insights.

Following this discussion, below we will explore gradient-

based approaches, which provide a more fine-grained analy-

sis of feature importance in malware classification.

1) GRADIENT-BASED APPROACH

Gradient-based methods are crafted to classify and detect

malware through the lens of ML. These strategies reveal

the underlying architecture of a specific ML model and

enhance the interpretability of predictions made by deep

learning-based malware detection systems. This approach

calculates and allocates the predictive weights relative to

input features across different segments of the executable

file. To discover the mechanism behindMLAndroid malware

detection systems and determine the most significant features

influencing each decision, Melis et al. [86] introduce a

comprehensive explainable ML framework. This framework

uses a gradient-based technique to determine whether a

sample is correctly classified as malware, leveraging its most

critical local features. Their research utilizes the DREBIN

Android malware detection tool for practical testing. The

main objective of this endeavor is to enhance the accuracy

of predictions while maintaining the transparency and

interpretability of the decision-making process. By utilizing

the DREBIN malware detection tool and dataset, the authors

propose a novel methodology that highlights both local

and global characteristics to distinguish and clarify the

discernment between benign and malicious applications.

The authors, Iadarola et al. [87], introduce a gradient-based

deep learning methodology designed to clarify the method-

ology behind malware family classification. This approach

begins by extracting code from Android application package

(.apk) samples and subsequently transforming it into an

image format. Following this transformation, a CNN model

classifies these images into their respective malware families.

They implement the Gradient-weighted Class Activation

Mapping (Grad-CAM) technique to facilitate the prediction

of classes by identifying critical areas within the images.

A thorough code analysis is conducted to demonstrate

the efficacy of their method in extracting relevant classes.

In another work, Scalas [91] develops a gradient-based strat-

egy specifically designed for detecting Android ransomware.

This study shows the selection of system API calls as key

features, asserting their utility in evading detection strategies

employed by attackers.

Further study by Melis et al. [109] explores the effective-

ness of gradient-based attribution techniques in identifying

key features crucial for understanding a classifier’s decision-

making process. Their work seeks to establish the importance

of these features in developing more robust algorithms.

They analyze the correlation between explanatory methods

and adversarial resilience, probing how these aspects are

interconnected. Moreover, Iadarola et al. [94] put forward

an explainable deep-learning framework designed for mobile

61626 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

TABLE 2. Research addressing explainable machine learning in android malware.

VOLUME 13, 2025 61627

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

malware detection. This approach transforms applications

into images that feed into an explainable deep-learning

model that is capable of recognizing Android malware and

classifying its family. Utilizing the Grad-CAM explainability

method, they demonstrate the selection of explanatory tech-

niques that improve classification performance. To enhance

interpretability, they generate heatmaps that offer visual

insights into the model’s reasoning, making the predictions’

rationale more accessible. Additionally, because the process

of analyzing these heatmaps is automated, it simplifies the

architecture’s debugging for analysts without necessitating

a background in the system’s design. besides enhancing

transparency in their model, they record a notable increase

in accuracy.

Naeem et al. [98] expand the application of gradient-based

methods by introducing a transfer learning approach for

classifying IoT malware, leveraging the Inception-v3 archi-

tecture, a pre-trained network designed to process malware

images and extract pivotal features. These features are

then fed into a classification algorithm and evaluated

across various ML classifiers to assess performance. The

Grad-CAM explainability method is utilized to highlight

the critical areas within the images. Furthermore, the study

utilizes t-distributed stochastic neighbor embedding (t-SNE)

to verify the comprehensiveness of the feature set within the

proposed CNN models. This ensures that they encapsulate

sufficient information for effective malware classification.

Gradient-based attribution helps Android malware detec-

tors reveal exactly which app features (e.g., API calls, opcode

sequences) most strongly affect the classifier’s output. While

this granularity aids in pinpointing malicious behavior, these

methods may require careful tuning to handle the massive

variety of Android apps and can still be undermined by

obfuscation or adversarial feature manipulation.

2) MODEL-AGNOSTIC BASED APPROACH

The challenge of explaining the vast range of models in

deep learning research is increasing. In this context, model-

agnostic approaches provide explanations after the decision-

making process, which are applicable to various opaque

models. The study by Kinkead et al. [88] presents a novel

CNN-based method focused on identifying specific parts

of opcode sequences suspected of containing malicious

elements. Their main objective is to examine and compare

the similarities between the locations of malicious opcode

sequences identified by the CNN and those marked as

important by LIME. They carry out their research using the

DREBIN dataset, known for its collection of 5,560 malicious

apps across different malware families, serving as a standard

for Android malware detection. Their results show that the

model achieves an accuracy of about 0.98, highlighting

CNN’s exceptional performance with the DREBIN dataset.

Further analysis of how both CNN and LIME highlight

locations across all the samples in each malware family

reveals a significant finding that CNN tends to focus on the

same areas as LIME, indicating CNN’s targeted effort in

detecting malware.

In another effort to improve Android malware detection,

researchers Lu and Thing [89] utilize a model-agnostic

explainable AI framework focused on feature attribution,

highlighting the importance of feature manipulation and

optimization. Their approach integrates a trained model with

a Modern Portfolio Theory (MPT) explainer during the

explanation phase. Quantitative analysis of their method

shows greater sensitivity in detecting important data fea-

tures compared to the results from machine learning-based

Android malware detection tools. Additionally, they use

both LIME and SHAP to evaluate the effectiveness of the

MPT explainer, seeking to confirm its superior capability in

identifying key features essential for malware detection.

On the other hand, rapidly mutating malware variants

necessitate sophisticated classification methods to categorize

these variants accurately. Although variants within the same

malware family often exhibit identical behavioral patterns,

the increasing number of variants complicates the process

of accurately classifying new ones. This challenge has

motivated researchers to develop advanced detection tools

aimed at enhancing the accuracy of malware classification.

One notable contribution in this field is DAEMON, a data-

agnostic malware classification tool developed by Korine and

Hendler [90]. DAEMON stands out for its ability to discern

the unique features of various malware families, which

lends clarity and explainability to the classification process.

The researchers behind DAEMON have collected extensive

datasets, which they have analyzed on both Windows and

Android platforms, utilizing the renowned DREBIN dataset

for the latter. Their efforts have culminated in DAEMON

achieving remarkable accuracy in malware classification.

Based on a model-agnostic approach, the study [97] intro-

duces a novel, hybridmethodology for crafting an explainable

malware detection system that leverages both textual and

visual representations of malware attributes. Initially, they

develop a pre-trained model known as Bidirectional Encoder

Representations from Transformers (BERT), specifically

customized to learn textual features derived from network

traffic. Following this, they suggest an algorithm capable

of transforming malware into a visual format. Subsequently,

a CNN model is implemented to utilize deep extraction of

features. Once these balanced features are obtained, they are

fed into a suite of ensemble models, including SVM, DT, LR,

and RF, to facilitate the system’s classification and detection

capabilities. Furthermore, the researchers utilize SHAP,

amodel-agnostic technique for explainability, to elucidate the

critical features in interpreting the model’s decisions.

In the study Alani et al. [99], the researchers introduce

an Android malware detection system named PAIRED. This

system is distinguished by its lightweight design and high

precision, achieving a significant reduction in feature count—

from 214 to 35, amounting to an approximate 84% decrease.

The SHAP explainability technique is utilized to elucidate

the overarching influence of the features, identifying which

61628 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

among them have a greater impact on the predicted outcomes.

Impressively, PAIRED manages to sustain a remarkable

accuracy rate of 97.98%.

Ambekar et al. [101] introduce the TabLSTMNet,

an approach to Android malware classification that combines

the strengths of the TabNet architecture, whichwas developed

by researchers at Google Cloud and LSTM models,

complemented by XAI techniques. This model integrates

TabNet’s attention-mechanism feature selection, which

efficiently identifies critical features, with LSTM’s dynamic

processing capabilities for sequential data. This integration

allows for a detailed analysis of Android permissions and

API calls to distinguish between benign and malicious

applications effectively. The proposed model is evaluated on

two different datasets and achieves classification accuracies,

demonstrating 97.10% on the NATICUSdroid dataset and

98.00% on the TUNADROMD dataset. Moreover, the

incorporation of explainable AI methods such as LIME and

SHAP significantly increases the transparency of the model’s

decision-making process.

Soi et al. [102] propose a novel methodology for improving

the explainability of Android malware detection systems.

The approach begins with a static analysis of Android

application packages (APKs) to extract a Function Call Graph

(FCG). This graph represents all the API calls within the

application’s code. Based on FCG, a set of critical API

calls can be selected, which are strongly correlated with the

application’s behavior, to serve as features for their model.

After that, the selected features are embedded using Natural

Language Processing (NLP) techniques, such as TF-IDF and

Word2Vec, to produce a consistent input format for a CNN.

To enhance the interpretability of the model’s decisions, the

paper employs SHAP values, which provide a clear and

detailed explanation of how each API call contributes to the

classification outcome.

The results of the experiments conducted on a dataset of

over 40,000 Android applications show that the proposed

method achieves a classification accuracy comparable to

state-of-the-art models. The paper also conducts extensive

evaluations to address potential issues such as temporal

bias and concept drift. It highlights that while the approach

maintains strong performance over time, the inclusion of

more recent data can be important for sustaining its accuracy.

Model-agnostic tools like LIME and SHAP allow security

analysts to investigate any ML Android malware detector,

highlighting the top features—like permissions or API

calls—responsible for amalicious label. Their interpretability

fosters user trust but can sometimes yield inconsistent local

explanations across app variants, especially if the underlying

model is unstable.

3) RULE-BASED APPROACH

Yan et al. [92] present an innovative approach for extracting

rules from DNNs, aiming to balance the accuracy intrinsic

to DNNs with the need for explainability in their operation.

The initial phase contains the collection of network traffic

data, utilizing a tool named DroidCollector for this purpose.

Subsequent to data collection, feature extraction is conducted

to distill the essential information necessary for training the

model. This algorithm begins by verifying the appropriate-

ness of the neural network settings, such as its suitability

for classification tasks. In instances where the predicted

label aligns with the true label, the model’s performance

is deemed satisfactory. However, misclassification triggers

a reassessment and update of the neural network’s weights.

The backpropagation process prioritizes the weights of

the outermost layer before sequentially addressing each

subsequent layer, effectively distributing the errors from each

output variable across the network’s hidden layers. Through

numerous iterations, the model iteratively refines itself until

it achieves optimal performance, at which point rules are

extracted from the DNN.

Employing these extracted rules, the authors devise a

mechanism to detect malicious network activity. They

conduct an evaluation of their DNN rule extraction technique

against three contemporary technologies—MultiView, CNN,

TrafficAV—and fourML-based algorithms, namely Bagging,

Adaboost, KNN, and Random Forest. The findings from

this comparison suggested the superiority of their proposed

method, which excelled in numerical prediction accuracy

and outperformed the benchmarked methods. Hence, the

authors propose an online detection system that is optimized

for high-speed network environments and leverages FPGA

technology to facilitate the real-time detection of mobile

malware.

Also, as ML has emerged as a powerful tool for uncovering

rules crucial for predictive data analysis, in their work,

Wang et al. [93] develop TrafficAV, an efficient and

intelligible method for classifying mobile malware based

on network traffic patterns. This approach is designed to

minimize resource usage and performs malware detection

and network traffic analysis server-side. TrafficAV leverages

feature extraction combined with the C4.5 DT algorithm

to detect the presence of malicious applications, applying

two distinct detection models for HTTP and TCP protocols.

This dual-model strategy has yielded high accuracy rates.

Furthermore, TrafficAV provides an analysis of the signifi-

cance of each feature in the decision-making process, offering

user-friendly explanations of its findings.

Similarly, another study [95] works on the framework

named XMAL—an interpretable machine learning-based

framework—proposes a rule-based methodology for accu-

rately classifying Android malware. This system enhances its

capabilities with a Multilayer Perceptron (MLP) model that

incorporates an attention layer to highlight the relevance of

input features. By integrating theMLPmodel, the researchers

are able to underscore the importance of specific features

in malware identification. XMAL’s effectiveness is also

compared to other explainability techniques, such as LIME,

where it demonstrates superior performance in terms of

interpretability, thereby reinforcing the value of machine

learning in enhancing cybersecurity measures.

VOLUME 13, 2025 61629

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

TABLE 3. Research addressing explainable machine learning in malware analysis.

The study provided by Liu et al. [100] investigates the

performance of ML models under realistic and unrealistic

experimental setups. It utilizes a dataset of 165,000 Android

applications, with 33,000 malware and 132,000 benign

samples, spanning from 2010 to 2020. The focus of the study

is on understanding why ML-based malware detection mod-

els perform exceptionally well under certain experimental

setups, particularly those involving temporal inconsistencies

between malicious and benign samples. To achieve this goal,

it leverages different explainable malware detection tech-

niques, i.e., XMal, Drebin, and model-agnostic explanation

approaches [118]. It shows how this inconsistent distribution

between malware and benign samples can lead to high

detection performance but poor generalization. Its results

emphasize the need for XAI techniques in experiments to

ensure that the models are practically useful and not just

theoretically effective.

Rule-based learners (e.g., DNN rule extraction or

tree-based methods) strive to combine the accuracy of

deep nets with the readability of logical rules. When

applied to Android malware, these frameworks can yield

straightforward if-then statements describing malicious

behaviors. Still, as Android evolves, rule sets must be

updated frequently, or attackers may exploit static rules for

evasion.

Collectively, these Android XAI approaches underscore

the interplay between interpretability and the fluid nature

of the mobile ecosystem, where APIs and permissions

often shift. Next, we examine how hardware-based XAI

approaches address embedded systems and HPC-driven

malware detection.

C. HARDWARE-BASED MALWARE APPROACHES

Many researchers have designed hardware-based malware

detectors with the assumption that solutions such as anti-virus

software can be fooled easily by malicious code. Although

there are many studies on hardware-assisted malware

detection, there is a distinct lack of research focused on

explainability. This highlights a critical need for innovation

in the field that goes beyond detection accuracy, aiming

for systems that can articulate the rationale behind their

detections. In table 3, the literature on hardware malware

classification and detection using XAI is discussed.

Sheldon [119] conducts a study analyzing hardware traces

for malware detection using explainable ML approaches.

Hardware traces comprise the data stored in caches and

61630 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

registers during the execution of a program. These traces are

then processed by an ML-based model to identify malware

presence. Subsequently, the model’s accuracy is evaluated

against that of leading-edge ML models. The feedback

obtained from this comparison is utilized to refine the

accuracy of malware detection.

To explore the comprehensive study of hardware trace

analysis and the development of an explainable, hardware-

assisted malware detection framework, the research by

Pan et al. [110] introduces a hardware framework depicted

in Fig 5. This framework is structured around three principal

activities.

The first phase involves training an ML model (M) with

collected hardware traces. For this purpose, they implement

an RNN and leverage the Embedded Trace Buffer (ETB)

architecture for trace collection. Subsequently, a specially

curated artificial dataset X = (x1, x2, . . . , xn) is processed

by the machine learning model (M) to yield the output Y .

To adapt this artificial dataset for the model, linear regression

is conducted, resulting in the formulation of a linear

predictive model. This process is shown in Equation 1.

y =

n∑

i=1

aixi + ϵ (1)

Linear predictions are formulated as a polynomial func-

tion, where n represents the number of instances. This

expression incorporates an error term, ϵ, which is crucial for

understanding the weight distribution within the model. The

value of ϵ needs to be as small as possible. The goal is to

minimize the value of ϵ as much as possible, ensuring that the

model’s predictions are as accurate and reliable as possible.

argmin ||Xa − y||2 (2)

Equation 2 shows the optimization problem, emerging

from the selection of y as the perturbed output. Further ridge

regression is applied in order to achieve higher fitness with

correlated data. This approach aims at achieving optimal

fitness by introducing an additional term to the optimization

equation, further elaborated in Equation 3.

argmin ||Xa − y||2 + λ||a||2 (3)

To mitigate the issue of high variance, the strategy involves

substituting X with X − λI , as depicted in Equation 4. This

adjustment incorporates a regularization parameter, λ, and

the identity matrix, I , directly into the predictive model.

This technique effectively reduces the model’s complexity,

discouraging overfitting by penalizing larger coefficients.

argmin ||Xa − y||2 + λ||a||2 → argmin ||(X − λI)a− y||2
(4)

After determining the linear regression coefficients, the

focus shifts to interpreting the outcomes, with particu-

lar emphasis on identifying the most influential features.

Features associated with larger coefficients are flagged as

potentially malicious. To benchmark the effectiveness of

FIGURE 5. Explainable hardware malware generation workflow [110].

their method, the authors reference the PREEMPT malware

detector for comparison [120]. PREEMPT employs two

algorithmic models, i.e., Random Forest and Decision Tree,

utilizing hardware performance counters (HPC) to generate

its dataset. However, it does not extensively investigate the

dataset’s characteristics, focusing primarily on the interpre-

tation of outcomes. Given the scarcity of research in this area

and the need to address malware detection challenges, it is

imperative for researchers to engage deeply with the realm of

explainable hardware malware detection.

Building upon their previous efforts, the authors [111]

harness hardware performance counters and embedded trace

buffers to identify the exact locations of malicious activities

within a system. They develop Decision Tree and RNNs

to perform a trade-off between accuracy and efficiency in

their detection methodology. Their evaluation, conducted on

a broad spectrum of real-world malware datasets, elucidates

the interpretability of the RNN model, leveraging linear

regression andDecision Tree through tree parsing techniques.

In a parallel line of research, Li et al. [112] intro-

duce an innovative interpretable malware detector named

I-MAD transformer, designed to analyze assembly code

at the basic block level of executables. This approach

integrates an interpretable feed-forward neural network,

allowing for the examination of each feature’s impact on the

prediction outcome. The significant advancements brought

forth by this study include 1) The proposition of a deep

learning model capable of interpreting entire sequences

of assembly-level code in malware executables, offering a

comprehensive analysis beyond superficial layers. 2) The

introduction of two pre-training activities aimed at enhancing

the understanding of the relevance and functionality of

assembly-level constructs, thereby improving the model’s

predictive accuracy and interpretability. 3) The development

of an Interpretable Feed-Forward Neural Network (IFFNN),

which assists analysts in identifying payloads and recurring

patterns within malware samples. This network combines the

interpretability akin to logistic regression with the modeling

prowess of multi-layer FFNN, presenting a powerful tool for

cybersecurity professionals in the battle against malware.

In conclusion, hardware-based XAI solutions exploit

HPCs and trace buffers to offer fine-grained inspection

of runtime behavior. The interpretable models (e.g., linear

regression, interpretable feed-forward nets) provide valuable

insights into which low-level counters or basic blocks signal

VOLUME 13, 2025 61631

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

malicious patterns. However, custom hardware or specialized

instrumentation is often needed, which can limit widespread

deployment.

D. PDF-BASED MALWARE APPROACH

A Portable Document Format (PDF) file contains text,

images, digital signatures, and other elements. Its structure

includes a Header, Body, Cross-reference Table, and Trailer.

The header of a PDF file is the top section that indicates

the version number and file format. The body of the PDF

stores all the pertinent data, and it contains a range of

objects, including data, text, images, and dictionaries. The

cross-reference table in a PDF file includes links to all

elements within the document, which facilitates navigation

and access. The trailer, which links to the cross-reference

table, also contains the EOF marker.

Given the global acceptance of PDF as a standard docu-

ment format, the prevalence of PDF malware is increasing.

Malware exploits vulnerabilities in PDF readers to hijack

execution control, such as executing shell code. To evade

malware detection, PDF authors might employ techniques

that can cause the PDF reader to crash [121].

To analyze and evaluate the consistency and correctness

of the gradient-based approach, the study by Kuppa and Le-

Khac [115] designed a novel ML attack. They apply this

method to detect malicious PDF files using the Mimicus

dataset and to identify Android malware with the DREBIN

dataset, interpreting the results through gradient-based

explainable machine-learning techniques.

To guide the selection of relevant features and avoid back-

door poisoning attacks, the authors [116] use model-agnostic

techniques in explainable machine learning and develop

effective backdoor triggers. They specifically use Android,

PDF, and Windows PE files for malware classification and

analyze nearly 10,000 samples of benign and malicious files.

To maintain the functionality of the binaries, they create a

static analysis watermarking utility for Windows PE files that

meets multiple adversarial constraints. Subsequently, their

attention turns to PDF files and Android applications. Using

the SHAP explainability technique, they identify features that

contribute to malware detection. Finally, they demonstrate

and evaluate the challenges in fully defending against these

stealthy poisoning attacks.

To classify PDF malware, another research [117] intro-

duces an explainable method named LEMNA, which pro-

vides high-fidelity explanations for malware detection. They

utilize deep learning models and assess their interpretability

using LEMNA. The study also explores feature augmenta-

tion, along with synthetic and feature deduction tests. They

note that due to sparse input feature vectors affecting local

decision boundaries, LIME, and other advanced explainable

techniques were as ineffective as traditional feature selection

methods. The PDF-based malware detection studies are

summarized in Table 3.

PDF files continue to be a popular vector for mali-

cious exploitation. The interpretability methods described

here—whether gradient-based or model-agnostic—provide

clarity on which structural elements (e.g., JavaScript objects,

suspicious headers) are raising red flags. Nevertheless,

sophisticated obfuscation within PDFs can still pose signif-

icant challenges for these models.

E. LINUX-BASED MALWARE APPROACH

Linux, a Unix-based operating system, is an open-source

platform that is renowned for its reliability and functionality.

For malware analysis, Linux allows malicious code to run

in isolated sandbox environments. However, due to the

limited availability of sandboxes compatible with the latest

Linux versions, they are less commonly used than Android

and Windows platforms. Recognizing that ML in malware

detection often yields predictions that lack explainability,

Wang et al. [66] introduce an explainable malware detection

method based on Linux systems. This approach clarifies the

rationale behind the classifier’s decisions by locating the

malicious code snippets. By using a dynamic approach, they

map system calls to inputs for a deep learning model and

utilize the explainable technique of Layer-wise Relevance

Propagation to recognize which sequence parts are most sig-

nificant in the decision-making process. By using a confusion

matrix as a performance evaluation, they confirm that their

method can swiftly and accurately identify malicious code.

Wang et al. [113] focus on exposing vulnerabilities in mal-

ware detectors through explainability-guided evasion attacks

that combine feature space manipulation with problem space

obfuscation. They utilize a dataset of approximately 43,553

ELF binary files on Linux systems. Their research uses the

model-agnostic explainability method SHAP to demonstrate

how evasion attacks can be transferred from one detector

to another. In another study, Mills et al. [114] develop

a lightweight malware detection system named NODENS,

suitable for deployment on Raspberry Pi hardware. They test

several ML-based algorithms on a Linux operating system,

with the Random Forest algorithm performing optimally

among them. This work utilizes a tree-based model to

facilitate visual interpretation of the classification process,

which enhances the end user’s understanding of the output

and aids in the individual development of the malware sample

lifecycle. Due to the infrequent application of the Linux

platform, there is limited research on explainable malware

detection within the Linux domain. Studies addressing this

topic are detailed in Table 3.

These Linux-oriented approaches show that explaining

which code snippets or system calls are pivotal can help

analysts better grasp the root causes of malicious behav-

ior. However, the limited availability of Linux malware

datasets—and the complexity of dynamic sandboxing—

remains a bottleneck for broad adoption.

F. OTHER APPROACHES

This section provides information regarding approaches

that are not specific to any domain. Chen [122] leverages

DL-based techniques for static malware classification to

61632 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

TABLE 4. Research addressing explainable machine learning in malware analysis.

emphasize the importance of model transparency to gain user

trust. They enhance their model’s interpretability by utilizing

LIME and adopting an image-based approach to visualize

malware data. The study is conducted using three distinct

datasets, where the model demonstrates high accuracy and

a low false positive rate. For a practical demonstration of

interpretability, the authors select an image from Lloyda.AA2

malware family and represent it with 200 super-pixel

representations. They then identify which aspects of the

malware images are crucial for the deep learning model’s

predictions. Their visual interpretation states that the red

regions indicate the pixel regions that the model does not trust

to contribute to the prediction.

To evaluate interpretability techniques applied toML-based

malware detectors, Briguglio and Saad [123] explore

how these techniques enhance N-gram analysis in the

interpretation of machine-learning malware detectors. They

focus on logistic regression, random forest, and neural

network models, enhancing model confidence and feature

significance. Specifically, they use the Layer-wise Relevance

Propagation (LRP) technique to recognize themost important

input nodes for classification.

Li et al. [124] develop a novel ML-based model that

classifies malware effectively and offers exceptional inter-

pretability. They introduced a unique ML-based algorithm,

the LSH-based clustering approach, which supports result

visualization and interpretation that distinguishes it from

other models in the field.

In their study on detecting evasion attacks, such as

adversarial examples, Fidel et al. [125] utilize SHAP values

as an innovative approach. They created SHAP signatures

based on the premise that these signatures differ between

benign and adversarial samples. Their findings confirm

the initial hypothesis that variations in SHAP values in

the classification model’s final layer can effectively reveal the

distribution of feature importance in classification outcomes.

This method enhances the model’s ability to identify

adversarial examples, demonstrating a novel application of

SHAP values in enhancing security measures.

Kumar and Subbiah [126] conduct a static analysis using

three different datasets to detect zero-day malware with ML-

based algorithms. Among the algorithms tested, XGBoost

achieves the highest accuracy and outperforms all other

models. The authors utilize the SHAP bar and waterfall

plots to identify the most significant features contributing

to the model’s predictions. They compare these top features

across four categories of samples: False Positives (FP), False

Negatives (FN), True Negatives (TN), and True Positives

(TP). This comparison helps recognize misclassification

categories, and the findings suggest that redistributing

misclassified samples into their correct categories could

significantly enhance the model’s efficiency.

Lee et al. [127] address large-scale threats to cybersecurity

by leveraging IDS and malware datasets to validate the effec-

tiveness of their proposed approach. Their method focuses

on screening high-quality data to identify and rectify false

predictions using reliability indicators. They incorporate the

SHAP explainability technique to determine the contributions

of individual features to specific outcomes. This approach

identifies weaknesses in the existing AI models and enhances

VOLUME 13, 2025 61633

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

the detection of valuable alerts. By improving the accuracy

of alert detection, the method allows human analysts to work

more effectively and efficiently, which leads to prioritizing

critical threats and optimizing response strategies.

Galli et al. [128] address the critical need for transparency

in AI systems used for malware detection. They develop

and evaluate an XAI framework that applies to behavioral

malware detection by employing DL models such as LSTM

and GRU. These models analyze sequences of API calls to

detect malicious activities. To make the models’ decisions

understandable and trustworthy, the paper investigates four

different XAI techniques, i.e., SHAP, LIME, LRP, and atten-

tion mechanisms. The evaluation of these methods across

three datasets (Mal-API-2019, API Call Sequences, and

Alibaba Cloud Malware) shows their varying effectiveness in

providing clear and useful explanations.

These generalized XAI solutions—covering n-gram anal-

ysis, signature-based detection, or adversarial defense—

offer additional perspectives on explaining ML-driven mal-

ware detection. While each technique addresses a different

niche (e.g., zero-day detection, adversarial resilience, multi-

platform coverage), common XAI issues like scalability, con-

sistency of explanations, and susceptibility to manipulation

still arise.

In summary, explainable malware detection strategies

span a diverse range of platforms and techniques—from

gradient-based methods pinpointing critical file regions to

model-agnostic tools offering broader coverage at the cost

of local-only explanations to advanced image-based or rule-

based systems. While these approaches strengthen trust,

transparency, and analyst insight, they also face challenges in

scaling to large datasets, handling obfuscated or adversarial

samples, and balancing interpretability with accuracy. In the

next section, we examine how these XAI methods can be

enhanced against advanced threat tactics and integrated into

practical cybersecurity frameworks.

V. FUTURE RESEARCH DIRECTIONS

Explainable ML is an evolving field with many ongo-

ing challenges and opportunities for exploration. In the

previous sections, we conducted an extensive review of

various explainable ML techniques, with a particular focus

on malware classification and detection. however, as the

application of explainable methods in malware detection

becomes increasingly prevalent, new challenges continue to

emerge. As shown in Fig 6, this section outlines several key

challenges and potential research directions that researchers

may pursue as future work in the area of explainable malware

analysis.

A. IMPROVE DATASETS

Improving and updatingmalware datasets is a critical concern

in the field of XAI. Many existing datasets are outdated

and lack comprehensive coverage of current malware

behaviors. These datasets often do not provide a sufficient

volume of data for training XAI applications. For instance,

previous research on explainable Android malware detection

utilized the DREBIN dataset, which comprises 5,616 mali-

cious instances and 121,329 benign instances [107]. This

imbalance, where benign instances significantly outnumber

malicious ones, can hinder the training of effective models.

Moreover, the size of the current datasets is generally too

small to train robust models. This field of research needs an

unbiased, reasonably sized benchmark dataset that equally

represents both benign and malicious behaviors. Accessing

this kind of dataset is essential for evaluating explain-

able ML-based techniques and achieving reliable detection

results. Furthermore, the DREBIN dataset, in particular,

highlights the limitations of static analysis, pointing to the

necessity for dynamic updates that support more comprehen-

sive dynamic analyses. Additionally, there is potential for

innovation in automated data generation and minimization

techniques to accelerate the prediction process. For example,

in hardware malware detection, researchers [119] have

generated trace data to facilitate hardware trace analysis and

distinguish between malware and benign programs. Future

work could focus on enhancing these techniques to streamline

and speed up the predictive capabilities of malware detection

systems.

B. COMBINE STATIC AND DYNAMIC

This paper discussed explainability techniques in malware

analysis, wherein researchers have primarily concentrated

on static and dynamic analyses. Static analysis involves

feature extraction and dimensionality reduction, processes

that minimize information uncertainty and facilitate the

analysis of malicious applications. Conversely, dynamic

analysis focuses on training surrogate learning models.

However, there is a notable absence of research on hybrid

analysis, which combines elements of both to enhance the

explainability of malware detection.

To address this gap, multiple ML-based classifiers will

be leveraged to analyze both source code and runtime

dynamic features. This dual approach aims to improve

the efficiency and effectiveness of ML-based algorithms in

distinguishing between benign and malicious applications.

Moreover, to overcome the limitations in static and dynamic

methodologies, researchers should also develop online and

real-time explainable malware detection systems. These

systems would continuously monitor the entire system to

detect any possible malicious behavior or traces at any

moment. Thus, the development of hybrid and online

detection systems represents a significant research challenge

in the field of explainable malware analysis.

C. ANALYZE MODEL-AGNOSTIC TECHNIQUES

There is a need to explore various model-agnostic techniques

that provide both local and global explanations, which can

help develop fast-training and explainable models without

sacrificing accuracy. One promising direction for future

research is the automation of explainability when it is

decoupled from the underlying machine learning model.

61634 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

FIGURE 6. Future directions for explainable malware detection.

This decoupling facilitates the easy replacement of both the

explainable technique and the machine learning model itself.

The model-agnostic technique, LIME, is widely cited in

research but comes with notable limitations. Its reliance on

data sampling can lead to variability in explanations, mak-

ing them potentially unstable and unreliable. Furthermore,

if the local fidelity measure is inaccurate, the reliability of

LIME’s explanations for distinguishing between malicious

and benign samples is compromised. Additionally, LIME

lacks guidance on the optimal number of features to use,

which could affect the quality of its explanations.

To advance the field of explainable malware detec-

tion, paying attention to evaluating various model-agnostic

techniques is essential. Future research could also focus

on improving fidelity in explanations, which is crucial

for maintaining reliability in rapidly evolving scenarios.

Overall, model-agnostic methods represent a flexible and

effective approach to enhancing malware detection through

explainable ML.

D. APPLY EXPLAINABILITY APPROACH TO MULTIPLE

MODELS

Previous research in explainable ML within the malware

detection domain has primarily focused on developing

frameworks and applying specific explainability methods to

those frameworks. However, there is a notable gap in the

literature regarding the selection of explainability techniques

for non-differentiable models. Theoretical findings suggest

that under certain assumptions, various ML-based algorithms

can yield similar decision functions. This similarity raises a

critical question: how does one select the most appropriate

explainable technique for a given malware detection process?

Hence, conducting thorough analyses and evaluations

of how different explainability techniques influence the

explanations generated by a specific framework. Such

research can demonstrate that the chosen explainability

technique fits the model and outperforms alternative methods

in clarity and effectiveness. Enhancing the understanding

of the applicability and efficiency of various explainable

methods in malware detection leads to more robust and

transparent systems.

E. USE PRE-TRAINED MODELS

While neural networks are powerful tools for modeling,

their ML nature makes them difficult to interpret, which

poses a significant challenge in fields such as malware

detection. In the research regarding this, the authors [110]

have developed a framework that utilizes neural networks

to facilitate interpretable malware detection, which has

innovative approaches to this issue.

Looking forward, in the malware detection domain,

it would be advantageous to leverage existing explainable

pre-trained models rather than building new models from

scratch. This approach can save considerable time that would

otherwise be spent collecting data and training models and

enhances the efficiency of detecting malicious activities in

systems that may already be compromised.

In other words, utilizing pre-trained models can accel-

erate the deployment of malware detection systems

and improve their effectiveness by integrating advanced,

VOLUME 13, 2025 61635

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

pre-learned features into the detection process. At present,

there is no well-established, publicly available pre-trained

explainable model that is widely adopted specifically for

malware detection. While the concept of pre-trained’’ and

‘‘explainable models exists in other domains (e.g., NLP,

computer vision), the malware analysis community has not

converged on a standard, large-scale pre-trained model that

includes built-in explainability for detecting malicious code

or behavior.

Building a comprehensive pre-trained explainable model

for malware detection is hampered by challenges such as

limited access to large, high-quality datasets due to privacy

and proprietary concerns, as well as the constantly evolving

nature of malware which requires frequent retraining and

adaptation. Additionally, integrating explainability mech-

anisms at scale introduces complexity and may reduce

performance if not carefully designed and maintained.

F. AUTOMATED EXPLAINABLE MODELS

One promising direction for future research in the field of

malware detection involves implementing more automated

explainability models. The goal is to enhance user trust in

ML models, such as those based on DL techniques, which

are currently not automatically interpretable. Most existing

research focuses on interpreting the results of malware

detection after the detection has already occurred. This

method leaves a gap in real-time understanding and response,

which automated explainability aims to fill.

Moreover, achieving an optimal balance between accuracy

and explainability continues to be a significant challenge.

Automated explainability could help bridge this gap by

providing insights into the decision-making process of

complex models in real time. Additionally, there is a

clear need for more research focused on quantitative-level

evaluation of these explainable models. Such evaluations

would assess the interpretability and how the introduction of

explainability affects the overall performance of the detection

system.

G. IMPROVE DETECTION EFFICIENCY

A valuable future direction in explainable malware detection

is to enhance the design methodologies of malware detectors

so that the explanations they generate can assist professionals

in more accurately characterizing malware attacks. For

example, wang et al. [93] involve extracting features and

employing a decision tree to develop a model capable of

determining the maliciousness of applications.

Looking forward, the implementation of pruning strategies

in decision trees presents a promising avenue for enhancing

the efficiency of these detection models. Pruning optimizes

the tree structure by removing superfluous or minimally

informative branches, thereby simplifying the model. This

optimization can accelerate the processing time and enhance

the accuracy by focusing the model’s analysis on the most

significant features.

H. MITIGATE ATTACKS

In recent research, the primary focus has been on ML

attacks, gradient-based attacks, evasion attacks, and poison-

ing attacks. Evasion attacks involve manipulating malicious

input samples during the training phase to circumvent

detection by a trained system, and it requires access to the

model. Poisoning attacks compromise the integrity of training

data by introducing incorrect data since it can mislead the

learning process of ML models. This corruption of training

data severely undermines the entire training process.

In both gradient-based and poisoning attacks, it is assumed

that the attacker has knowledge of the feature space used by

the target. Future research in the field of explainable ML

should explore defense mechanisms against these types of

attacks and develop generic mitigation methods. Moreover,

while current attacks typically use either static or dynamic

approaches, future attacks might utilize a hybrid approach

that integrates both strategies. As malware data continuously

evolves, implementing attacks in online detection systems

could pose significant challenges for attackers trying to

intercept or manipulate high-speed continuous data compared

to data stored on devices.

The study by Scalas et al. [91] highlights the use of system

API calls as effective features for detecting attack strategies.

Future research could assess the susceptibility of system API

calls to attacks and explore whether this detection strategy

limits the number of features that attackers can feasibly

manipulate.

I. HARDWARE MALWARE DETECTORS

Research on explainable hardware-based malware detection

is currently limited, which presents significant opportu-

nities for future investigation. One potential avenue for

advancement involves the design of efficient and explainable

hardware malware detectors. These systems could automate

the trace selection process and reduce prediction time

while maintaining high accuracy in differentiating between

malware and benign programs.

Another area for exploration is the development of

debugging architectures that enhance malware detection

capabilities. This could include the design of embedded trace

buffers and the utilization of hardware performance counters.

These tools would help identify the most informative traces

for use in explainable machine learning applications within

the malware detection field. This focus can enhance the

efficiency and effectiveness of malware detection systems

and make them more accessible and interpretable for

cybersecurity professionals.

VI. CONCLUSION

ML-based techniques play a crucial role in cybersecurity, yet

these data-driven frameworks are susceptible to exploitation,

misdirection, and circumvention. Explainability is essential

to enhance the transparency of these models and build trust

in order to deploy them effectively for malware analysis.

61636 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

This paper discusses explainable ML in malware analysis

and reviews state-of-the-art approaches. We provide an

in-depth examination of explainable malware classification

and detection methods, summarizing the work of researchers

to date. Our study systematically organizes various explain-

able malware-based approaches, making this information

more accessible to researchers and others interested in this

field.

We conclude the survey by identifying open research

challenges and future directions in explainable malware

analysis. This survey serves as a comprehensive guide

for researchers exploring explainable malware detection,

offering insights into the current landscape and stimulating

research in unexplored domains within this dynamic and

evolving field.

REFERENCES

[1] R. Roscher, B. Bohn, M. F. Duarte, and J. Garcke, ‘‘Explainable machine

learning for scientific insights and discoveries,’’ IEEE Access, vol. 8,

pp. 42200–42216, 2020.

[2] A. Saranya and R. Subhashini, ‘‘A systematic review of explainable

artificial intelligence models and applications: Recent developments and

future trends,’’ Decis. Anal. J., vol. 7, Jun. 2023, Art. no. 100230.

[3] A. Das and P. Rad, ‘‘Opportunities and challenges in explainable artificial

intelligence (XAI): A survey,’’ 2020, arXiv:2006.11371.

[4] F. Xu, H. Uszkoreit, Y. Du, W. Fan, D. Zhao, and J. Zhu, ‘‘Explainable

AI: A brief survey on history, research areas, approaches and challenges,’’

in Proc. CCF Int. Conf. Natural Lang. Process. Chin. Comput. Cham,

Switzerland: Springer, Jan. 2019, pp. 563–574.

[5] S. R. Islam, W. Eberle, S. K. Ghafoor, and M. Ahmed, ‘‘Explainable

artificial intelligence approaches: A survey,’’ 2021, arXiv:2101.09429.

[6] L. Weber, S. Lapuschkin, A. Binder, andW. Samek, ‘‘Beyond explaining:

Opportunities and challenges of XAI-based model improvement,’’

Inf. Fusion, vol. 92, pp. 154–176, Apr. 2023.

[7] V. Chamola, V. Hassija, A. R. Sulthana, D. Ghosh, D. Dhingra, and

B. Sikdar, ‘‘A review of trustworthy and explainable artificial intelligence

(XAI),’’ IEEE Access, vol. 11, pp. 78994–79015, 2023.

[8] M. Danilevsky, K. Qian, R. Aharonov, Y. Katsis, B. Kawas, and P. Sen,

‘‘A survey of the state of explainable AI for natural language processing,’’

2020, arXiv:2010.00711.

[9] S. Mohseni, N. Zarei, and E. D. Ragan, ‘‘A multidisciplinary survey and

framework for design and evaluation of explainable AI systems,’’ ACM

Trans. Interact. Intell. Syst., vol. 11, nos. 3–4, pp. 1–45, Dec. 2021.

[10] X.-H. Li, C. C. Cao, Y. Shi, W. Bai, H. Gao, L. Qiu, C. Wang, Y. Gao,

S. Zhang, X. Xue, and L. Chen, ‘‘A survey of data-driven and knowledge-

aware explainable AI,’’ IEEE Trans. Knowl. Data Eng., vol. 34, no. 1,

pp. 29–49, Jan. 2022.

[11] R. Confalonieri, L. Coba, B. Wagner, and T. R. Besold, ‘‘A historical

perspective of explainable artificial intelligence,’’ WIREs Data Mining

Knowl. Discovery, vol. 11, no. 1, Jan. 2021, Art. no. e1391.

[12] T. Speith, ‘‘A review of taxonomies of explainable artificial intelligence

(XAI) methods,’’ in Proc. ACM Conf. Fairness, Accountability, Trans-

parency, Jun. 2022, pp. 2239–2250.

[13] W. Saeed and C. Omlin, ‘‘Explainable AI (XAI): A systematic meta-

survey of current challenges and future opportunities,’’ Knowl.-Based

Syst., vol. 263, Mar. 2023, Art. no. 110273.

[14] S. Milani, N. Topin, M. Veloso, and F. Fang, ‘‘Explainable reinforcement

learning: A survey and comparative review,’’ ACM Comput. Surveys,

vol. 56, no. 7, pp. 1–36, Jul. 2024.

[15] Y. Nasser and M. Nassar, ‘‘Toward hardware-assisted malware detection

utilizing explainable machine learning: A survey,’’ IEEE Access, vol. 11,

pp. 131273–131288, 2023.

[16] F. Charmet, H. C. Tanuwidjaja, S. Ayoubi, P.-F. Gimenez, Y. Han,

H. Jmila, G. Blanc, T. Takahashi, and Z. Zhang, ‘‘Explainable artificial

intelligence for cybersecurity: A literature survey,’’ Ann. Telecommun.,

vol. 77, nos. 11–12, pp. 789–812, Dec. 2022.

[17] Y. Lin and X. Chang, ‘‘Towards interpreting ML-based automated

malware detection models: A survey,’’ 2021, arXiv:2101.06232.

[18] A. Damodaran, F. D. Troia, C. A. Visaggio, T. H. Austin, and M. Stamp,

‘‘A comparison of static, dynamic, and hybrid analysis for malware

detection,’’ J. Comput. Virol. Hacking Techn., vol. 13, no. 1, pp. 1–12,

Feb. 2017.

[19] S. Hou, A. Saas, L. Chen, Y. Ye, and T. Bourlai, ‘‘Deep neural

networks for automatic Android malware detection,’’ in Proc. IEEE/ACM

Int. Conf. Adv. Social Netw. Anal. Mining (ASONAM), Jul. 2017,

pp. 803–810.

[20] H. Kim and T. Lee, ‘‘Research on autoencdoer technology for malware

feature purification,’’ in Proc. 21st ACIS Int. Winter Conf. Softw. Eng.,

Artif. Intell., Netw. Parallel/Distrib. Comput. (SNPD-Winter), Jan. 2021,

pp. 236–239.

[21] M. K. Shankarapani, S. Ramamoorthy, R. S. Movva, and S. Mukkamala,

‘‘Malware detection using assembly and API call sequences,’’ J. Com-

put. Virol., vol. 7, no. 2, pp. 107–119, May 2011.

[22] A. G. Kakisim, M. Nar, N. Carkaci, and I. Sogukpinar, ‘‘Analysis and

evaluation of dynamic feature-based malware detection methods,’’ in

Proc. Int. Conf. Secur. Inf. Technol. Commun., Jan. 2019, pp. 247–258.

[23] I. Firdausi, C. Lim, A. Erwin, and A. S. Nugroho, ‘‘Analysis of

machine learning techniques used in behavior-based malware detection,’’

in Proc. 2nd Int. Conf. Adv. Comput., Control, Telecommun. Technol.,

Dec. 2010, pp. 201–203.

[24] P. Luckett, J. T. McDonald, and J. Dawson, ‘‘Neural network anal-

ysis of system call timing for rootkit detection,’’ in Proc. Cyberse-

cur. Symp. (CYBERSEC), Apr. 2016, pp. 1–6.

[25] R. S. Pirscoveanu, S. S. Hansen, T. M. T. Larsen, M. Stevanovic,

J. M. Pedersen, and A. Czech, ‘‘Analysis of malware behavior: Type

classification using machine learning,’’ in Proc. Int. Conf. Cyber

Situational Awareness, Data Anal. Assessment (CyberSA), Jun. 2015,

pp. 1–7.

[26] S. Tobiyama, Y. Yamaguchi, H. Shimada, T. Ikuse, and T. Yagi,

‘‘Malware detection with deep neural network using process behavior,’’ in

Proc. IEEE 40th Annu. Comput. Softw. Appl. Conf. (COMPSAC), vol. 2,

Jun. 2016, pp. 577–582.

[27] Z. Tzermias, G. Sykiotakis, M. Polychronakis, and E. P. Markatos,

‘‘Combining static and dynamic analysis for the detection of malicious

documents,’’ in Proc. 4th Eur. Workshop Syst. Secur., Apr. 2011, pp. 1–6.

[28] I. Santoso, Y. Heryadi, H. L. H. S. Warnars, L. A. Wulandhari, Lukas,

and E. Abdurachman, ‘‘Malware detection using hybrid autoencoder

approach for better security in educational institutions,’’ in Proc. IEEE

Int. Conf. Eng., Technol. Educ. (TALE), Dec. 2019, pp. 1–6.

[29] H.-J. Zhu, L.-M. Wang, S. Zhong, Y. Li, and V. S. Sheng,

‘‘A hybrid deep network framework for Android malware detection,’’

IEEE Trans. Knowl. Data Eng., vol. 34, no. 12, pp. 5558–5570,

Dec. 2022.

[30] F. Tong and Z. Yan, ‘‘A hybrid approach of mobile malware detection in

Android,’’ J. Parallel Distrib. Comput., vol. 103, pp. 22–31, May 2017.

[31] A. Altaher and O. Mohammed, ‘‘Intelligent hybrid approach

for Android malware detection based on permissions and API

calls,’’ Int. J. Adv. Comput. Sci. Appl., vol. 8, no. 6, pp. 60–67,

2017.

[32] M. R. Watson, N.-U.-H. Shirazi, A. K. Marnerides, A. Mauthe, and

D. Hutchison, ‘‘Malware detection in cloud computing infrastructures,’’

IEEE Trans. Dependable Secure Comput., vol. 13, no. 2, pp. 192–205,

Mar. 2016.

[33] F. Azmandian,M.Moffie,M.Alshawabkeh, J. Dy, J. Aslam, andD. Kaeli,

‘‘Virtual machine monitor-based lightweight intrusion detection,’’ ACM

SIGOPS Operating Syst. Rev., vol. 45, no. 2, pp. 38–53, Jul. 2011.

[34] M. Abdelsalam, R. Krishnan, and R. Sandhu, ‘‘Clustering-based

IaaS cloud monitoring,’’ in Proc. IEEE 10th Int. Conf. Cloud Com-

put. (CLOUD), Jun. 2017, pp. 672–679.

[35] A. McDole, M. Abdelsalam, M. Gupta, and S. Mittal, ‘‘Analyzing CNN

based behavioural malware detection techniques on cloud IaaS,’’ in

Proc. Int. Conf. Cloud Comput., Jan. 2020, pp. 64–79.

[36] A. McDole, M. Gupta, M. Abdelsalam, S. Mittal, and M. Alazab,

‘‘Deep learning techniques for behavioral malware analysis in

cloud IaaS,’’ in Malware Analysis Using Artificial Intelligence

and Deep Learning. Cham, Switzerland: Springer, 2021,

pp. 269–285.

[37] J. C. Kimmell, M. Abdelsalam, and M. Gupta, ‘‘Analyzing machine

learning approaches for online malware detection in cloud,’’ 2021,

arXiv:2105.09268.

VOLUME 13, 2025 61637

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

[38] J. C. Kimmel, A. D. Mcdole, M. Abdelsalam, M. Gupta, and

R. Sandhu, ‘‘Recurrent neural networks based online behavioural

malware detection techniques for cloud infrastructure,’’ IEEE Access,

vol. 9, pp. 68066–68080, 2021.

[39] M. Abdelsalam, R. Krishnan, Y. Huang, and R. Sandhu, ‘‘Malware

detection in cloud infrastructures using convolutional neural networks,’’

in Proc. IEEE 11th Int. Conf. Cloud Comput. (CLOUD), Jul. 2018,

pp. 162–169.

[40] P. Linardatos, V. Papastefanopoulos, and S. Kotsiantis, ‘‘Explainable AI:

A review of machine learning interpretability methods,’’ Entropy, vol. 23,

no. 1, p. 18, Dec. 2020.

[41] A. B. Arrieta, N. Díaz-Rodríguez, J. Del Ser, A. Bennetot, S. Tabik,

A. Barbado, S. Garcia, S. Gil-Lopez, D. Molina, R. Benjamins,

R. Chatila, and F. Herrera, ‘‘Explainable artificial intelligence (XAI):

Concepts, taxonomies, opportunities and challenges toward responsible

AI,’’ Inf. Fusion, vol. 58, pp. 82–115, Jun. 2020.

[42] V. Hassija, V. Chamola, A. Mahapatra, A. Singal, D. Goel, K. Huang,

S. Scardapane, I. Spinelli, M. Mahmud, and A. Hussain, ‘‘Interpreting

black-box models: A review on explainable artificial intelligence,’’

Cognit. Comput., vol. 16, no. 1, pp. 45–74, Jan. 2024.

[43] R. Dwivedi, D. Dave, H. Naik, S. Singhal, R. Omer, P. Patel, B. Qian,

Z. Wen, T. Shah, G. Morgan, and R. Ranjan, ‘‘Explainable AI (XAI):

Core ideas, techniques, and solutions,’’ACMComput. Surv., vol. 55, no. 9,

pp. 1–33, Sep. 2023.

[44] A. Blanco-Justicia and J. Domingo-Ferrer, ‘‘Machine learning

explainability through comprehensible decision trees,’’ in

Proc. Int. Cross-Domain Conf. Mach. Learn. Knowl. Extraction. Cham,

Switzerland: Springer, 2019, pp. 15–26.

[45] V. Belle and I. Papantonis, ‘‘Principles and practice of explainable

machine learning,’’ Frontiers Big Data, vol. 4, p. 39, Jul. 2021.

[46] Y.-L. Chou, C. Moreira, P. Bruza, C. Ouyang, and J. Jorge, ‘‘Coun-

terfactuals and causability in explainable artificial intelligence: Theory,

algorithms, and applications,’’ Inf. Fusion, vol. 81, pp. 59–83, May 2022.

[47] E. Soares, P. P. Angelov, B. Costa, M. P. G. Castro, S. Nageshrao,

and D. Filev, ‘‘Explaining deep learning models through rule-based

approximation and visualization,’’ IEEE Trans. Fuzzy Syst., vol. 29, no. 8,

pp. 2399–2407, Aug. 2021.

[48] S. M. Lundberg, G. Erion, H. Chen, A. DeGrave, J. M. Prutkin, B. Nair,

R. Katz, J. Himmelfarb, N. Bansal, and S.-I. Lee, ‘‘Explainable AI

for trees: From local explanations to global understanding,’’ 2019,

arXiv:1905.04610.

[49] M. S. Rana, C. Gudla, and A. H. Sung, ‘‘Evaluating machine learning

models for Androidmalware detection: A comparison study,’’ inProc. 7th

Int. Conf. Netw., Commun. Comput., Dec. 2018, pp. 17–21.

[50] N. Aslam, I. U. Khan, R. F. Aljishi, Z. M. Alnamer, Z. M. Alzawad,

F. A. Almomen, and F. A. Alramadan, ‘‘Explainable computational

intelligence model for antepartum fetal monitoring to predict the risk of

IUGR,’’ Electronics, vol. 11, no. 4, p. 593, Feb. 2022.

[51] Z. Yang, A. Zhang, and A. Sudjianto, ‘‘GAMI-Net: An explainable

neural network based on generalized additive models with structured

interactions,’’ Pattern Recognit., vol. 120, Dec. 2021, Art. no. 108192.

[52] X. Zhao, Y. Wu, D. L. Lee, and W. Cui, ‘‘iForest: Interpreting random

forests via visual analytics,’’ IEEE Trans. Vis. Comput. Graphics, vol. 25,

no. 1, pp. 407–416, Jan. 2019.

[53] C. P. R. Vieira and L. A. Digiampietri, ‘‘A study about explainable

artificial intelligence: Using decision tree to explain SVM,’’ Revista

Brasileira de Computação Aplicada, vol. 12, no. 1, pp. 113–121,

Jan. 2020.

[54] R. Sharma, C. Schommer, and N. Vivarelli, ‘‘Building up explainability

in multi-layer perceptrons for credit risk modeling,’’ in Proc. IEEE 7th

Int. Conf. Data Sci. Adv. Anal. (DSAA), Oct. 2020, pp. 761–762.

[55] M. Ribeiro, S. Singh, and C. Guestrin, ‘‘‘Why should I trust you?’

Explaining the predictions of any classifier,’’ in Proc. Conf. North

Amer. Chapter Assoc. Comput. Linguistics, Demonstrations, 2016,

pp. 1135–1144.

[56] P. R. Magesh, R. D. Myloth, and R. J. Tom, ‘‘An explainable machine

learning model for early detection of Parkinson’s disease using LIME

on DaTSCAN imagery,’’ Comput. Biol. Med., vol. 126, Nov. 2020,

Art. no. 104041.

[57] S. Lundberg and S. Lee, ‘‘A unified approach to interpreting model

predictions,’’ in Proc. 31st Int. Conf. Neural Inf. Process. Syst., Jan. 2017,

pp. 4768–4777.

[58] C. Molnar, Interpretable Machine Learning, 2nd ed., Christoph Molnar,

2022. [Online]. Available: christophm.github.io/interpretable-ml-book/

[59] G. Ciravegna, P. Barbiero, F. Giannini, M. Gori, P. Lió, M. Maggini, and

S.Melacci, ‘‘Logic explained networks,’’Artif. Intell., vol. 314, Jan. 2023,

Art. no. 103822.

[60] A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, ‘‘Peeking inside

the black box: Visualizing statistical learning with plots of individual

conditional expectation,’’ J. Comput. Graph. Statist., vol. 24, no. 1,

pp. 44–65, Jan. 2015.

[61] B. Krämer, M. Stang, C. Nagl, and W. Schäfers, ‘‘Explainable AI in a

real estate context—Exploring the determinants of residential real estate

values,’’ J. Housing Res., vol. 32, no. 2, pp. 204–245, 2023.

[62] M. Athanasiou, K. Sfrintzeri, K. Zarkogianni, A. C. Thanopoulou,

and K. S. Nikita, ‘‘An explainable XGBoost–based approach towards

assessing the risk of cardiovascular disease in patients with type 2 diabetes

mellitus,’’ in Proc. IEEE 20th Int. Conf. Bioinf. Bioengineering (BIBE),

Oct. 2020, pp. 859–864.

[63] K. Davagdorj, J.-W. Bae, V.-H. Pham, N. Theera-Umpon, and

K. H. Ryu, ‘‘Explainable artificial intelligence based framework

for non-communicable diseases prediction,’’ IEEE Access, vol. 9,

pp. 123672–123688, 2021.

[64] J. Adebayo and L. Kagal, ‘‘Iterative orthogonal feature projection for

diagnosing bias in black-box models,’’ 2016, arXiv:1611.04967.

[65] J. H. Friedman and B. E. Popescu, ‘‘Predictive learning via rule

ensembles,’’ Ann. Appl. Statist., vol. 2, no. 3, pp. 1–12, Sep. 2008.

[66] H. Wang, Z. Zhu, Z. Tong, X. Yin, Y. Feng, G. Shi, and D. Meng,

‘‘An effective approach for malware detection and explanation via deep

learning analysis,’’ in Proc. Int. Joint Conf. Neural Netw. (IJCNN),

Jul. 2021, pp. 1–10.

[67] A. Shrikumar, P. Greenside, and A. Kundaje, ‘‘Learning

important features through propagating activation differences,’’ in

Proc. Int. Conf. Mach. Learn., Jan. 2017, pp. 3145–3153.

[68] E. Raff, J. Barker, J. Sylvester, R. Brandon, B. Catanzaro, and

C. K. Nicholas, ‘‘Malware detection by eating a whole EXE,’’ in

Proc. Workshops 32nd AAAI Conf. Artif. Intell., 2018, pp. 1–10.

[69] A. Graves, A.-R. Mohamed, and G. Hinton, ‘‘Speech recognition with

deep recurrent neural networks,’’ in Proc. IEEE Int. Conf. Acoust., Speech

Signal Process., May 2013, pp. 6645–6649.

[70] X. Zhang and Y. LeCun, ‘‘Text understanding from scratch,’’ 2015,

arXiv:1502.01710.

[71] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’

in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,

pp. 1–9.

[72] S. Bose, T. Barao, and X. Liu, ‘‘Explaining AI for malware detection:

Analysis of mechanisms of MalConv,’’ in Proc. Int. Joint Conf. Neural

Netw. (IJCNN), Jul. 2020, pp. 1–8.

[73] S. M. Mathews, ‘‘Explainable artificial intelligence applications in

NLP, biomedical, and malware classification: A literature review,’’ in

Proc. Intell. Comput. Comput. Conf., Jan. 2019, pp. 1269–1292.

[74] L. Pirch, A. Warnecke, C. Wressnegger, and K. Rieck, ‘‘TagVet:

Vetting malware tags using explainable machine learning,’’ in Proc. 14th

Eur. Workshop Syst. Secur., Apr. 2021, pp. 34–40.

[75] B.Marais, T. Quertier, and C. Chesneau, ‘‘Malware analysis with artificial

intelligence and a particular attention on results interpretability,’’ in

Proc. Int. Symp. Distrib. Comput. Artif. Intell., Sep. 2021, pp. 43–55.

[76] M. Q. Li, B. C. M. Fung, and A. Abusitta, ‘‘On the effectiveness of

interpretable feedforward neural network,’’ 2021, arXiv:2111.02303.

[77] L. Chen, C. Yagemann, and E. Downing, ‘‘To believe or not to

believe: Validating explanation fidelity for dynamic malware analysis,’’

in Proc. CVPR Workshops, Jan. 2019, pp. 48–52.

[78] Y. Lin and X. Chang, ‘‘Towards interpretable ensemble learning for

image-based malware detection,’’ 2021, arXiv:2101.04889.

[79] M. M. Alani, A. Mashatan, and A. Miri, ‘‘XMal: A lightweight memory-

based explainable obfuscated-malware detector,’’ Comput. Secur.,

vol. 133, Oct. 2023, Art. no. 103409.

[80] G. Ciaramella, G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone,

‘‘Explainable ransomware detection with deep learning techniques,’’

J. Comput. Virol. Hacking Techn., vol. 20, no. 2, pp. 317–330, Sep. 2023.

[81] P. Anthony, F. Giannini, M. Diligenti, M. Homola, M. Gori, S. Balogh,

and J. Mojzis, ‘‘Explainable malware detection with tailored logic

explained networks,’’ 2024, arXiv:2405.03009.

61638 VOLUME 13, 2025

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

[82] S. Gulmez, A. G. Kakisim, and I. Sogukpinar, ‘‘XRan: Explainable

deep learning-based ransomware detection using dynamic analysis,’’

Comput. Secur., vol. 139, Apr. 2024, Art. no. 103703.

[83] K. Aryal, M. Gupta, M. Abdelsalam, and M. Saleh, ‘‘Explainabil-

ity guided adversarial evasion attacks on malware detectors,’’ 2024,

arXiv:2405.01728.

[84] P. Ghadekar, T. Adsare, N. Agrawal, D. Deore, and T. Dharmik, ‘‘Multi-

class malware detection using modified GNN and explainable AI,’’

in Proc. 1st Int. Conf. Cognit., Green Ubiquitous Comput. (IC-CGU),

Mar. 2024, pp. 1–8.

[85] R. Kumar, Z. Xiaosong, R. U. Khan, J. Kumar, and I. Ahad, ‘‘Effective

and explainable detection of Android malware based on machine learning

algorithms,’’ in Proc. Int. Conf. Comput. Artif. Intell., Mar. 2018,

pp. 35–40.

[86] M. Melis, D. Maiorca, B. Biggio, G. Giacinto, and F. Roli, ‘‘Explaining

black-box Android malware detection,’’ in Proc. 26th Eur. Signal

Process. Conf. (EUSIPCO), Sep. 2018, pp. 524–528.

[87] G. Iadarola, R. Casolare, F. Martinelli, F. Mercaldo, C. Peluso, and

A. Santone, ‘‘A semi-automated explainability-driven approach for

malware analysis through deep learning,’’ in Proc. Int. Joint Conf. Neural

Netw. (IJCNN), Jul. 2021, pp. 1–8.

[88] M. Kinkead, S. Millar, N. McLaughlin, and P. O’Kane, ‘‘Towards

explainable CNNs for Android malware detection,’’ Proc. Comput. Sci.,

vol. 184, pp. 959–965, Apr. 2021.

[89] Z. Lu and V. L. L. Thing, ‘‘How does it detect a malicious app?’

explaining the predictions of AI-based Android malware detector,’’ 2021,

arXiv:2111.05108.

[90] R. Korine and D. Hendler, ‘‘DAEMON: Dataset/platform-agnostic

explainable malware classification using multi-stage feature mining,’’

IEEE Access, vol. 9, pp. 78382–78399, 2021.

[91] M. Scalas, ‘‘Malware analysis and detection with explainable machine

learning,’’ Università degli Studi di Cagliari, Italy, Tech. Rep. S.S.D. ING-

IINF/05, 2021.

[92] A. Yan, Z. Chen, H. Zhang, L. Peng, Q. Yan, M. U. Hassan,

C. Zhao, and B. Yang, ‘‘Effective detection of mobile malware behavior

based on explainable deep neural network,’’ Neurocomputing, vol. 453,

pp. 482–492, Sep. 2021.

[93] S. Wang, Z. Chen, L. Zhang, Q. Yan, B. Yang, L. Peng, and

Z. Jia, ‘‘TrafficAV: An effective and explainable detection of mobile

malware behavior using network traffic,’’ in Proc. IEEE/ACM 24th

Int. Symp. Quality Service (IWQoS), Jun. 2016, pp. 1–6.

[94] G. Iadarola, F. Martinelli, F. Mercaldo, and A. Santone, ‘‘Towards an

interpretable deep learning model for mobile malware detection and fam-

ily identification,’’ Comput. Secur., vol. 105, Jun. 2021, Art. no. 102198.

[95] B. Wu, S. Chen, C. Gao, L. Fan, Y. Liu, W. Wen, and M. R. Lyu, ‘‘Why

an Android app is classified as malware: Toward malware classification

interpretation,’’ ACM Trans. Softw. Eng. Methodol., vol. 30, no. 2,

pp. 1–29, Apr. 2021.

[96] R. Alenezi and S. A. Ludwig, ‘‘Explainability of cybersecurity threats

data using SHAP,’’ in Proc. IEEE Symp. Ser. Comput. Intell. (SSCI),

Dec. 2021, pp. 1–10.

[97] F. Ullah, A. Alsirhani, M. M. Alshahrani, A. Alomari, H. Naeem, and

S. A. Shah, ‘‘Explainable malware detection system using transformers-

based transfer learning and multi-model visual representation,’’ Sensors,

vol. 22, no. 18, p. 6766, Sep. 2022.

[98] H. Naeem, B. M. Alshammari, and F. Ullah, ‘‘Explainable artificial

intelligence-based IoT device malware detection mechanism using

image visualization and fine-tuned CNN-based transfer learning model,’’

Comput. Intell. Neurosci., vol. 2022, pp. 1–17, Jul. 2022.

[99] M. M. Alani and A. I. Awad, ‘‘PAIRED: An explainable lightweight

Android malware detection system,’’ IEEE Access, vol. 10,

pp. 73214–73228, 2022.

[100] Y. Liu, C. Tantithamthavorn, L. Li, and Y. Liu, ‘‘Explainable AI for

Android malware detection: Towards understanding why the models

perform sowell?’’ inProc. IEEE 33rd Int. Symp. Softw. Rel. Eng. (ISSRE),

Oct. 2022, pp. 169–180.

[101] N. G. Ambekar, N. N. Devi, S. Thokchom, and Yogita, ‘‘TabLSTMNet:

Enhancing Android malware classification through integrated attention

and explainable AI,’’ Microsyst. Technol., vol. 31, no. 3, pp. 695–713,

Mar. 2025.

[102] D. Soi, A. Sanna, D. Maiorca, and G. Giacinto, ‘‘Enhancing Android

malware detection explainability through function call graph APIs,’’

J. Inf. Secur. Appl., vol. 80, Feb. 2024, Art. no. 103691.

[103] J. Sahs and L. Khan, ‘‘A machine learning approach to Android malware

detection,’’ in Proc. Eur. Intell. Secur. Informat. Conf., Aug. 2012,

pp. 141–147.

[104] X. Xiao, S. Zhang, F. Mercaldo, G. Hu, and A. K. Sangaiah, ‘‘Android

malware detection based on system call sequences and LSTM,’’

Multimedia Tools Appl., vol. 78, no. 4, pp. 3979–3999, Feb. 2019.

[105] A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp, K. Rieck,

I. Corona, G. Giacinto, and F. Roli, ‘‘Yes, machine learning can be

more secure! A case study on Android malware detection,’’ IEEE

Trans. Dependable Secure Comput., vol. 16, no. 4, pp. 711–724,

Jul. 2019.

[106] J. Yan, Y. Qi, and Q. Rao, ‘‘LSTM-based hierarchical denoising network

for Android malware detection,’’ Secur. Commun. Netw., vol. 2018,

pp. 1–18, Apr. 2018.

[107] D. J. Arp, M. Spreitzenbarth, M. Huebner, H. Gascón, and K. Rieck,

‘‘Drebin: Effective and explainable detection of Android malware in your

pocket,’’ in Proc. NDSS, vol. 14, Jan. 2014, pp. 23–26.

[108] R. Surendran, T. Thomas, and M. M. Uddin, ‘‘Optimizing malware

detection with redundant sample filtering for efficient retraining,’’

J. Cyber Secur. Technol., pp. 1–22, Dec. 2024.

[109] M. Melis, M. Scalas, A. Demontis, D. Maiorca, B. Biggio, G. Giacinto,

and F. Roli, ‘‘Do gradient-based explanations tell anything about adver-

sarial robustness to Android malware?’’ Int. J. Mach. Learn. Cybern.,

vol. 13, no. 1, pp. 217–232, Jan. 2022.

[110] Z. Pan, J. Sheldon, and P. Mishra, ‘‘Hardware-assisted malware

detection using explainable machine learning,’’ in Proc. IEEE 38th

Int. Conf. Comput. Design (ICCD), Oct. 2020, pp. 663–666.

[111] Z. Pan, J. Sheldon, and P. Mishra, ‘‘Hardware-assisted malware

detection and localization using explainable machine learning,’’ IEEE

Trans. Comput., vol. 71, no. 12, pp. 3308–3321, Dec. 2022.

[112] M. Q. Li, B. C. M. Fung, P. Charland, and S. H. H. Ding, ‘‘I-MAD: Inter-

pretable malware detector using galaxy transformer,’’ Comput. Secur.,

vol. 108, Sep. 2021, Art. no. 102371.

[113] R. Sun, M. Xue, G. Tyson, T. Dong, S. Li, S. Wang, H. Zhu, S. Camtepe,

and S. Nepal, ‘‘Mate! Are you really aware? An explainability-

guided testing framework for robustness of malware detectors,’’ 2021,

arXiv:2111.10085.

[114] A. Mills, T. Spyridopoulos, and P. Legg, ‘‘Efficient and interpretable real-

time malware detection using random-forest,’’ in Proc. Int. Conf. Cyber

Situational Awareness, Data Anal. Assessment (Cyber SA), Jun. 2019,

pp. 1–8.

[115] A. Kuppa and N.-A. Le-Khac, ‘‘Black box attacks on explainable

artificial intelligence(XAI) methods in cyber security,’’ in Proc. Int. Joint

Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–8.

[116] G. Severi, J. Meyer, S. E. Coull, and A. Oprea, ‘‘Explanation-guided

backdoor poisoning attacks against malware classifiers,’’ in Proc. 30th

USENIX Secur. Symp. USENIX Secur., Jan. 2021, pp. 1–10.

[117] W. Guo, D. Mu, J. Xu, P. Su, G. Wang, and X. Xing, ‘‘LEMNA:

Explaining deep learning based security applications,’’ in Proc. ACM

SIGSAC Conf. Comput. Commun. Secur., Oct. 2018, pp. 364–379.

[118] M. Fan, W. Wei, X. Xie, Y. Liu, X. Guan, and T. Liu, ‘‘Can we

trust your explanations? Sanity checks for interpreters in Android

malware analysis,’’ IEEE Trans. Inf. Forensics Security, vol. 16,

pp. 838–853, 2021.

[119] Z. Pan, J. Sheldon, C. Sudusinghe, S. Charles, and P. Mishra, ‘‘Hardware-

assisted malware detection using machine learning,’’ in Proc. Design,

Autom. Test Eur. Conf. Exhib. (DATE), Feb. 2021, pp. 1775–1780.

[120] K. Basu, R. Elnaggar, K. Chakrabarty, and R. Karri, ‘‘PREEMPT:

PReempting malware by examining embedded processor traces,’’ in

Proc. 56th ACM/IEEE Design Autom. Conf. (DAC), Jun. 2019, pp. 1–6.

[121] Y. Chen, S. Wang, D. She, and S. Jana, ‘‘On training robust PDF

malware classifiers,’’ in Proc. 29th USENIX Secur. Symp. USENIX Secur.,

2020, pp. 2343–2360.

[122] L. Chen, ‘‘Deep transfer learning for static malware classification,’’ 2018,

arXiv:1812.07606.

[123] W. Briguglio and S. Saad, ‘‘Interpreting machine learning

malware detectors which leverage N-gram analysis,’’ in Proc.

Int. Symp. Found. Pract. Secur., Jan. 2020, pp. 82–97.

[124] M. Q. Li, B. C. M. Fung, P. Charland, and S. H. H. Ding, ‘‘A novel

and dedicated machine learning model for malware classification,’’ in

Proc. 16th Int. Conf. Softw. Technol., 2021, pp. 617–628.

VOLUME 13, 2025 61639

H. Manthena et al.: XAI for Malware Analysis: A Survey of Techniques, Applications, and Open Challenges

[125] G. Fidel, R. Bitton, and A. Shabtai, ‘‘When explainability meets adver-

sarial learning: Detecting adversarial examples using SHAP signatures,’’

in Proc. Int. Joint Conf. Neural Netw. (IJCNN), Jul. 2020, pp. 1–8.

[126] R. Kumar and G. Subbiah, ‘‘Zero-day malware detection and effec-

tive malware analysis using Shapley ensemble boosting and bagging

approach,’’ Sensors, vol. 22, no. 7, p. 2798, Apr. 2022.

[127] E. Lee, Y. Lee, and T. Lee, ‘‘Automatic false alarm detection based onXAI

and reliability analysis,’’ Appl. Sci., vol. 12, no. 13, p. 6761, Jul. 2022.

[128] A. Galli, V. La Gatta, V. Moscato, M. Postiglione, and G. Sperlì,

‘‘Explainability in AI-based behavioral malware detection systems,’’

Comput. Secur., vol. 141, Jun. 2024, Art. no. 103842.

HARIKHA MANTHENA received the B.Tech.

degree in computer science from Andhra Univer-

sity, in 2016, and the M.S. degree in computer sci-

ence from North Carolina Agricultural and Tech-

nical State University, in 2022. She was a Software

Engineer at Fidelity Information Services (FIS),

Bangalore, India. Her research interest includes

explainable/interpretable machine learning-based

malware analysis in the cloud.

SHAGHAYEGH SHAJARIAN received the B.S.

and M.S. degrees in computer software engineer-

ing from the University of Mazandaran, Iran,

and the Science and Research Branch, Azad

University, Tehran, Iran, in 2016 and 2019, respec-

tively. She is currently pursuing the Ph.D. degree

in computer science with North Carolina A&T

State University. Her research interests include

autonomous networks, network management, and

applied AI/ML.

JEFFREY C. KIMMELL received the B.S. and

M.S. degrees in computer science from Tennessee

Tech University, in 2021 and 2022, respectively.

His research interests include deep learning and

AI-based malware analysis in the cloud and its

explainability aspects.

MAHMOUD ABDELSALAM received the M.Sc.

and Ph.D. degrees from The University of Texas

at San Antonio (UTSA), in 2017 and 2018,

respectively. He was a Postdoctoral Research

Fellow with the Institute for Cyber Security (ICS),

UTSA, and anAssistant Professor with the Depart-

ment of Computer Science, Manhattan College.

He is currently an Assistant Professor with the

Department of Computer Science, North Carolina

Agricultural and Technical State University. His

research interests include computer systems security, anomaly and malware

detection, cloud computing security and monitoring, cyber-physical systems

security, and applied ML.

SAJAD KHORSANDROO received the Ph.D.

degree in computer science from The University

of Texas at San Antonio, in 2019. He is currently

an Assistant Professor with the Department of

Computer Science, North Carolina Agricultural

and Technical State University. His research inter-

ests include systems, cybersecurity, and applied

AI/ML, supported by funding from federal and

state agencies as well as industry collaborators,

including the National Science Foundation (NSF),

Department of Defense (DoD), Carolina Cyber Network, and Palo Alto

Networks, Inc.

MAANAK GUPTA (Senior Member, IEEE)

received the M.S. and Ph.D. degrees in computer

science from The University of Texas at San

Antonio (UTSA). He was a Postdoctoral Fellow

at the Institute for Cyber Security (ICS), UTSA.

He is currently an Associate Professor in computer

science at Tennessee Technological University,

Cookeville, TN, USA. His research interests

include security and privacy in cyberspace,

focused on studying foundational aspects of access

control, malware analysis, AI, and machine learning-assisted cyber security,

and their applications in technologies, including cyber-physical systems,

cloud computing, the IoT, and big data. His research has been funded by

U.S. National Science Foundation (NSF), NASA, and U.S. Department of

Defense (DoD).

61640 VOLUME 13, 2025

