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Super rewriting theory and nondegeneracy
of odd categorified sl,

Benjamin Dupont, Mark Ebert, and Aaron D. Lauda

Abstract. We develop the rewriting theory for monoidal supercategories and 2-supercategories.
This extends the theory of higher-dimensional rewriting established for (linear) 2-categories
to the super setting, providing a suite of tools for constructing bases and normal forms for
2-supercategories given by generators and relations. We then employ this newly developed the-
ory to prove the non-degeneracy conjecture for the odd categorification of quantum s[(2) from
A. Ellis and A. Lauda [Quantum Topol. 7 (2016), 329-433] and J. Brundan and A. Ellis [Proc.
Lond. Math. Soc. (3) 115 (2017), 925-973] As a corollary, this gives a classification of dg-
structures on the odd 2-category conjectured by A. Lauda and I. Egilmez [Quantum Topol. 11
(2020), 227-294].

1. Introduction

Higher representation theory studies the higher categorical structure present when an
associative algebra A acts on an additive/abelian category 'V, with algebra generators
acting by additive or exact functors and algebra relations lifting to explicit natural
isomorphisms of functors. In its most refined form, this involves a categorification of
an algebra A itself, lifting A to a monoidal category +. The algebra A is categorified
in the sense that there is an isomorphism from the (additive or abelian) Grothendieck
group K () to A. The monoidal structure equips K(+) with the structure of an alge-
bra, where the [X ® Y] = [X] - [Y] and the class [1] of the unit in the monoidal
category becomes the unit element for algebra.

If the algebra A is equipped with a system of mutually orthogonal idempotents,
the most natural setting for categorification is to lift A to an additive linear 2-cate-
gory. Since any monoidal category can be regarded as a 2-category with one object,
the 2-categorical setting is often the most natural. In particular, the diagrammatic
calculus of 2-categorical string diagrams often appear in categorification, where the
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2-categories # are defined diagrammatically via generating 2-morphisms modulo cer-
tain diagrammatic relations. Then the categorification isomorphisms K () = A often
requires significant effort to demonstrate that the diagrammatic presentation does not
collapse. In particular, finding a basis for the spaces of 2-morphisms in 4 becomes a
fundamental problem. This can be viewed as the higher representation theoretic ana-
log of studying PBW bases and related bases for enveloping algebras. In the same
way that those more traditional bases are a basic tool in the study of these algebras,
the analogous bases for the spaces of 2-morphisms are equally relevant in higher rep-
resentation theory.

Higher-dimensional rewriting theory applies the tools of rewriting theory in higher
categorical settings. It provides a set of tools for determining when a presentation of
a 2-category will be coherent and allows for a determination of a normal form for
a given 2-morphism within a given rewriting class, constructively providing bases
from a specific presentation of a 2-category. The techniques of higher-dimensional
rewriting have been effectively applied in a number of important examples in higher-
representation theory [2, 3, 16, 17] including cases where a determination of these
bases have eluded experts for some time [16].

More recently, the field of higher representation theory has taken on the categori-
fication of super algebras A. Superalgebras no longer lift to monoidal categories or
2-categories. Rather, they lift to so-called monoidal supercategories or 2-supercat-
egories where the familiar interchange law is replaced by a super interchange law
that depends on an additional Z5-grading on 2-morphisms [7, 8]. Monoidal supercat-
egories and 2-supercategories are becoming increasingly common place in modern
representation theory with examples ranging from categorification (Heisenberg cate-
gories [9, 10], super 2-Kac—Moody algebras [8,22,23,29-31], affine oriented Brauer—
Clifford supercategory [6], Frobenius nilHecke [42]), descriptions of the representa-
tion category of Lie superalgebras of Type Q [4,5], Deligne categories for periplectic
superalgebras [25], and super analogs of modular/fusion tensor categories [1,33,44].

Here we extend the theory of higher-dimensional rewriting to the super setting,
allowing for these techniques to be applied to monoidal supercategories and 2-super-
categories. This allows for a constructive approach to constructing bases in 2-super-
categories and provides a suite of techniques for identifying Grothendieck groups
needed for categorification. As an application, we prove the non-degeneracy con-
jecture for the odd categorification of quantum sl,. Our main motivation for study-
ing these bases is to facilitate the definition of derived equivalences extending those
in [12].

The odd categorification of quantum sl, arose as an attempt to provide a higher
representation theoretic explanation for a phenomena discovered in link homology
theories categorifying knot and link invariants. Ozsvath, Rassmusen, and Szabd
showed that Khovanov’s categorification of the Jones polynomial was not unique [40].
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They defined what they called odd Khovanov homology, that was similar in many
ways to ordinary Khovanov homology (the theories agree when coefficients are
reduced modulo two), but rather than being based on 2D TQFT, this theory was based
on a strange type of 2D TQFT where signs appear when heights of handles are inter-
changed [41]. These theories are inequivalent in the sense that each can distinguish
knots the other cannot [43]. Since Khovanov homology has a higher representation
theoretic interpretation coming from the categorification of quantum s, [34, 47],
Ellis, Khovanov, and Lauda initiated a program [22] to define odd analogs of quan-
tum sl, and related structures. The result was the discovery of odd, noncommutative,
analogs of many of the structures appearing in connection with sl, categorification
including odd analogs of the Hopf algebra of symmetric functions [21,22], cohomolo-
gies of Grassmannians [22] and Springer varieties [35]. Subsequent work has shown
these odd categorifications extend to arc algebras and constructions of odd Khovanov
homology for tangles [19,37,38].

These investigations into odd categorification turned out to be closely connected
with parallel investigations into super Kac—Moody algebra categorifications [29-31],
with the odd categorification of sl, lifting the rank one super Kac—-Moody algebra.
These odd categorifications are also closely connected with the theory of covering
Kac—Moody algebras [13—15, 28]. Covering algebras U, »(g) generalize quantum
enveloping algebras, depending on an additional parameter w with 72 = 1. When
m = 1, it reduces to the usual quantum enveloping algebra U, (g), while the 7 = —1
specialization recovers the quantum group of a super Kac—Moody algebra. Covering
algebras, and the novel introduction of the parameter 7, allow for the first construction
of canonical bases for Lie superalgebras [14, 15].

In the rank one case, the w = 1 specialization is U, (sl2), while for # = —1 it
gives the quantum group U, (osp(1|2)) associated with the super algebra osp(1]2).
Following a categorification of the positive parts of these algebra in [28], Ellis and
Lauda categorified the full rank one covering algebra proving a conjecture from [15].
In doing so, a 2-supercategory U := U(sl,) was defined [23] for the rank one cov-
ering algebra whose Grothendieck group recovers Uy »(sl>). This categorification
was later greatly simplified in [8], where the 2-supercategory formalism was better
developed, building off of the work [7]. This covering formalism and the connection
with osp(1|2) also informs the realization of odd Khovanov homology in theoretical
physics [36].

Despite being able to establish the categorification isomorphism for U(sl,), a
basis for the space of 2-morphisms was not achieved in [23]. A spanning set was given
in [23] and conjectured to form a basis — the non-degeneracy conjecture for odd cat-
egorified sl,. The need for a basis result was highlighted in [20] where dg-structures
were defined on U extending differentials on the positive part from [24]. These difter-
entials make the dg-Grothendieck group of its compact derived category isomorphic
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to the small quantum group # ,—y(sl>) that plays a role in quantum approaches to the
Alexander polynomial. Such dg-structures were conjecturally classified on U assum-
ing the non-degeneracy conjecture [20, Proposition 7.1]. As a corollary of the basis
results achieved here, we prove this conjectured classification is complete.

This paper is organized as follows. In Section 2 we adapt the theory of rewriting
in linear 2-categories to the context of super 2-categories. In Section 3 we give a con-
vergent presentation of the 2-supercategory we call odd isotopies. This is analogous
to the polygraph of isotopies from [17,26], but adapted to the context of 2-super-
Kac—-Moody algebras. Section 4 presents the 2-supercategory associated to the odd
nilHecke algebra; the resulting normal form is shown to recover the basis of the
odd nilHecke algebra from [22]. Section 5 gives a presentation of the odd 2-cate-
gory U(sl,) and proves that it is quasi-terminating and confluent modulo. Finally, in
Section 6 we show that the resulting quasi-normal forms of the (3, 2)-superpolygraph
presenting U(sl,) prove the non-degeneracy conjecture for U(sl,). Most of the com-
putations required in proving confluence and confluence modulo are located in the
appendices.

2. Super rewriting theory

2.1. 2-supercategories
Here we review Brundan and Ellis [7, 8] notion of a 2-supercategory.

2.1.1. Super vector spaces. Let k be a field with characteristic not equal to 2.
A superspace is a Z,-graded vector space V = V5 @ Vj. For a homogeneous ele-
ment v € V, write |v| for the parity of v.

Let SVect denote the category of superspaces and all linear maps. Note that
Homgvect(V, W) has the structure of a superspace since a linear map f:V — W
between superspaces decomposes uniquely into an even and odd map. The usual ten-
sor product of k-vector spaces is again a superspace with (V @ W) = 15 ® W5 &
Vi@ Wiand (V@ W); = V5 ® Wi @ V7 ® W;. Likewise, the tensor product f ® g
of two linear maps between superspaces is defined by

(f @) ew) = DEM ) @ gw).

Note that this tensor product does not define a tensor product on SVect, as the usual
interchange law between tensor product and composition has a sign in the presence
of odd maps

(f®g)oh@k)==DE"(foh) @ (gok).
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This failure of the interchange law depending on parity is the primary structure dif-
ferentiating monoidal supercategories from their non-super analogs.

If we set SVect to be the subcategory consisting of only even maps, then the tensor
product equips SVect with a monoidal structure. The map u @ v +— (—1)*ly @ u
makes SVect into a symmetric monoidal category.

2.1.2. Supercategories. Supercategories, superfunctors, and supernatural transfor-
mations are defined [7] via the theory of enriched categories by enriching over the
symmetric monoidal category SVect. See [32] for a review of the enriched category
theory. Unpacking this definition we have the following.

Definition 2.1 (Supercategories). A supercategory € is a category enriched in the
monoidal category SVect. This consists of the data of a set Cy called objects, or
0-cells, of € and

o foreach x, y € Cy, a superspace of 1-cells €(x, y);

» foreach x € Cy, an identity assigning map i,: I — €(x, x) where I is the super-
space k concentrated in degree zero;

» foreach x, y,z € Cy, the composition is given by a even linear map
x5 C(x,y) ® €(y.2) = €(x,2)
0 . k] y yv ’ .

such that composition is associative and unital with respect to identities.

Superfunctors are functors between supercategories that give even linear maps on
hom spaces. For more details see [7, Definition 1.1].

2.1.3. 2-supercategories

Definition 2.2 (2-supercategories). A 2-supercategory € is a category enriched in the
monoidal category of (small) supercategories SCat. Namely, a 2-supercategory € is
the data of a set Cy called the objects of € and

» foreach x,y € Cy a supercategory €(x, y);

» for each x € Cy an identity-assigning superfunctor i,: I — €(x, x) where I is
the supercategory with

— one object I,
— Hom(/, I) = k where everything is even,
— composition is the linear map o:k ® k — k sending c ® d — ¢d;

» foreach x, y,z € Cp, a composition superfunctor
*y 7 C(x,y) ® €(y,z) > €(x,2)

such that
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e one has
*gzw © (*3” &® Idt‘,’(z,w)) = *gyw ° (Id‘e(x,J’) ®*32w)

(associativity of composition),
* and

*o " 0 (ix X Idex,y) 0 is) = Ide(x,y) = *¢”” o (Ide(x,y) Xip) 057,
where is; and is, are the canonical isomorphisms C(a,b) — [ ® C(a, b) and
C(a,b) — C(a,b) ® I (unitors).

The objects of the hom supercategories €(x, y) taken over all x and y define the set
C; of 1-cells of € and the 1-cells in €(x, y) form the set C, of 2-cells in €. We
use x; to denote the composition operation in the supercategory € (x, y) and call this
vertical composition of 2-cells.

For p an object of the supercategory €(x, y) we define the O-source of p as
so(p) = x and O-target of p as to(p) = y. The source and target maps in €(x, y)
give 1-source and 1-target maps s1,t1: C; — Cy.

The fact that composition is given by a monoidal superfunctor implies that the
usual interchange axiom of a 2-category must be replaced by the superinterchange
law. That is, given 2-cellsu: p = qg:x > y,u":p' = q¢" .y > z,vig = r:x —> y,
v':q’ = r’: y — z, then the superinterchange equation

(u xou') %1 (v %0 V') = (=D %1 v) %o (U %1 V) (2.1)
holds in a 2-supercategory €.

Definition 2.3. A 2-supercategory € with one object is a monoidal supercategory.
The tensor product operation is given by the xo-composition and composition of mor-
phisms by ;. The unit for the monoidal structure is given by the identity morphism
of the unique object. For more details, see [7, Definition 1.4].

Definition 2.4. A hom-basis for a 2-supercategory € is a family of sets (Bp 4)p.qec,
such that B, 4 is a linear basis of the k-superspace C»(p, q).

The standard 2-categorical string diagrams can be adapted to the super setting.
The primary difference is that the interchange law is replaced by the superinterchange.
Since odd parity 2-morphisms now skew commute with each other, this means that for
2-supercategories one must be careful with the heights of 2-morphisms. In particular,
the superinterchange axiom (2.1) implies that given 2-cells u: p = ¢: x — y and
v:p = q':y — z then

(Id, %ov) *1 (u %o Idy) = (=)l 5 v)
= (=)l xq Id,/) *1 (Idg *ov),
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X z y X
= (e
pp
qg 4
z Yy u
— (_l)lu\lvl )
pp

The above superinterchange rule will play a prominent role in this article. We

that is,

N
~<

adopt the shorthand of ‘SInt’ to indicate when this equality has been applied in a
computation.

Remark 2.5. Throughout this paper, we read our compositions cells as is common
in higher category theory, just as Dupont does in [16, 17]. This composition is read
backwards from the more prevalent way of reading composition used by Brundan and
Ellis [7, Definition 2.1]. That is, f ; g in this paper translates to g x; f in [7]. So,
for example, we would have

A+4$A+ZT A A+2T A A+4$A+2
= *( .

2.2. 2-superpolygraphs and free 2-supercategories

From now on, we will introduce the notion of superpolygraphs extending the notion
of linear polygraphs to present higher-dimensional linear categories developed in [3],
and focus on their rewriting properties. In particular, we describe the derivation method
introduced in [26, Section 4.2] to prove termination for a (3, 2)-superpolygraph that
presents a (2, 2)-supercategory. The theory of linear polygraphs is quite general,
providing presentations of linear (n, p)-categories; these are defined using a com-
bination of globular n-category objects and p-fold iterative enrichment (see [3, Defi-
nition 2.2.1 and 2.2.2]) so that a linear (n + 1, p 4+ 1)-category is a category enriched
in (n, p)-categories, with the base case of linear (n, 0)-category corresponding to an
internal n-category in Vect. This means that a linear (1,1)-category is a linear category,
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a linear (1, 0)-category is a category object in vector spaces, and a linear (2, 2)-cat-
egory is a linear 2-category. Within the higher-dimensional rewriting framework,
a linear (n, p)-category is presented by a linear (n + 1, p)-polygraph.

Here we will need to extend several instances of the general linear (n, p)-category
framework to the super setting. This is because a (2, 2)-supercategory is just a 2-super-
category as defined in Definition 2.2 and these will be presented by (3, 2)-superpoly-
graphs. It is not hard to generalize Alleaume’s theory of linear (n, p)-polygraphs to
the super setting more generally, but as we do not have interesting examples of these
structures in higher dimensions, we focus on unpacking the general inductive defini-
tions in the cases of interest. To ease the exposition in this article, we make use of
the definitions and notation of linear (n, p)-polygraphs from [3, Section 3.2]. We start
with (2, 2)-superpolygraphs which will be used to form the free 2-supercategory on a
given set of generating cells.

Following [3], we will denote by P,’ the free strict n-category on a globular set

Sn—1 Sp Sp—1 Sp—2 S0
Pn _>—>_>—> Pp Pp—l _>—> PO-
h—1 Ip Ip—1 Ip—2 o

Definition 2.6. A (2, 2)-superpolygraph is a collection P = (Py, P1, P2) of sets
equipped with set maps s, tx: Pry1 — P}’ for k < 2, such that

* (Po, P1) withs;,¢t; for j < 1isa l-polygraph as defined in [3, Section 3];

* P, is a super globular extension of the free 1-category P on (Py, P;), that is a
Z,-graded set equipped with source and target maps si, f1: P, — Py satisfying
globular relations sg 0 51 = sg o f; and fp o 51 = fp o t7.

We sometimes refer to (2, 2)-superpolygraphs as 2-superpolygraphs for conve-
nience.

Definition 2.7. A pasting diagram on (2, 2)-superpolygraph P = (Py, Py, P2) is a
formal composite of elements of P, := P, U{l,:x = x | x € P} of the form

* ufora € P,

* u 1 v for u, v pasting diagrams on P with t; (1) = s1(v),

* u %o v for u, v pasting diagrams with #gs1 (1) = sos1(v).

Such a composite inherits a Z,-grading determined by the parity of elements in P, as
follows: |1,| = 0, and |u *x v| = |u| + |v| for k = 0, 1. We define a source s;(D)
and target #1 (D) of a composition D iteratively by

e s1(u) and 1 (u) are the normal 1-source and 1-target for u € Pj,
o st riv) =s1(u), 11w *v) =n(v),

o s1(uxov) = s1(u) *0 51(v), 11(u %o v) = 11(u) %o 11(v).
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Then pasting diagrams on P are such formal compositions quotiented by associativity
of xg and *1:
U *p (Vxpw) = U v)*xw fork =0,1.

We can now define the free (2, 2)-supercategory on a (2, 2)-superpolygraph by
adapting the definition [27, Definition 2.4.3]. A (2, 2)-supercategory is the same thing
as a 2-supercategory, so we will interchange freely between these two terminologies.

Definition 2.8. Let P be a 2-superpolygraph. The free (2, 2)-supercategory over P,
denoted by Pj, is defined as follows:

» the O-cells of P; are the O-cells of Py;
+ forall O-cells x and y of P, P5(x,y) is the supercategory whose
— O-cells are the 1-cells ' € P*(x,y), where P" is the free 1-category generated
by the 1-polygraph (Py, P1),

— set of 1-cells is the disjoint union of superspaces P5 (p, q) := Past(p,q) where
Past(p, q) is the free superspace on the set of pasting diagrams with 1-source
p and 1-target ¢ for any p,q € P (x,y),

and quotiented by the congruence generated by the cellular extensions made of all
the possible

(u %o ) *1 (u %0 V) = =11 sy w') % (v %1 V).

Ly x1u =u =ux1 1y,

for all pasting diagrams u, v, u’, v" composable in this way. The O-cells (resp.
1-cells) of the hom supercategories P (x, y) will be the 1-cells (resp. 2-cells) of
P3. For any O-cells p,q and r in P35 (x, y), there is an even linear map

*1: Py (p.q) ® Py(q.7) — Py(p.r)

given by gluing two 2-cells u: p = ¢ and v:¢ = r in P; along their common
1-cell g. For any O-cells x, y, z € Py, there is a composition map *¢: P (x, y) ®
P(y,z) — P{(x,z) defined as the composition map on P*. Let p,q and r, s
be any O-cells in the supercategories Py (x, y) and P5(y, z) respectively. Then
there is an even linear map xo: P} (p,q) ® Py (r,s) — P5(p o 1, q %o §) given
by gluing two 2-cells u: p = g and v:r = s in P; along their common 0-cell y.
The %o maps above give the data of a composition superfunctor xo: P53 (x, y) ®
P3(y,z) — P5(x,z). For any 1-cells uy, ..., u;; in P3(x,y) and vy, ... v, in
P35 (y,z), these compositions satisfy

(Uq *p = * Upy) %0 (V] *1 =+ %1 Uy)
= (U1 %0 S(v1)) *1 -+ *1 (Um *0 5(V1))

x1 (1(Um) *xo V1) *1 =+ *1 (t(Um) *0 Vn).
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Remark 2.9. If the Z,-grading of P, ina (2,2)-superpolygraph P is all concentrated
in even parity, then a (2, 2)-superpolygraph is just a linear (2, 2)-polygraph [3, Def-
inition 3.2.3], and the free (2, 2)-supercategory P generated by P will be a linear
(2, 2)-category Pf defined as in [3, Definition 3.2.4].

Notation 2.10. Let P be a 2-superpolygraph. Consider a subset Q, of the set P,
of generating 2-cells. For a given 2-cell u of P;, denote by |ul/g, the number of
generating cells of O appearing in u. When O, = {w} is a singleton, |u| g, counts
the number of occurrences of the generating 2-cell w in u.

The notion of monomial in a free 2-supercategory is defined by disregarding the
Z»-grading and utilizing the definition of monomial for free linear 2-categories from
[3, Definition 4.1.4].

Definition 2.11. Let P = (Py, P1, P,) be a 2-superpolygraph and let U(P) be the
linear (2, 2)-polygraph obtained by forgetting the parity of the elements P,. Then a
monomial of the free 2-supercategory P, is a monomial of the free linear (2, 2)-cate-
gory U (P)g equipped with a parity determined by P;.

The set of monomials of U(P )g is the set of 2-cells of the free 2-category U(P)3,
so equipping each element in the set of 2-cells of U(P)3 with the parity determined
by P, gives the monomials of Pj.

Remark 2.12. For a 2-superpolygraph P, let A be a set of 2-cells of U(P)} contain-
ing one element from each exchange equivalence class of pasting diagrams of U(P),
where 2-cells u, v € U(P)3 are in the same exchange equivalence class if u = v via
the exchange and identity relations. Then every 2-cell of U(P)3 is equal to a unique
element in A by exchange and identity relations, so A is the set of monomials of
U (P)g and a linear combination of elements in A is a monomial decomposition. We
then obtain a set B of 2-cells of P; by assigning to each element of A the parity
determined by P,. Then B is the set of monomials of P; and so a linear combination
of elements in B is a monomial decomposition.

It is known from [3, Definition 4.1.4] that every 2-cell of U (P)g has a unique
monomial decomposition. This is true because there are no relations in U} other than
the exchange and identity relations and no two elements of A are related via these
relations. We now prove a lemma that gives this result for 2-supercategories using
similar principles.

Lemma 2.13. Every 2-cell in the free 2-supercategory P, generated by a 2-super-
polygraph P admits a unique monomial decomposition.

Proof. Let both A and B be the sets of monomials of U(P)4 and P; described in
Remark 2.12. If u = +v in B by superinterchange, then there are corresponding
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elements u’ and v’ in A that satisfy u’ = v’ by exchange and identity relations. But
we know that no two elements of A are equal, so there are no two elements of B that
are scalar multiplies of each other by superinterchange and identity relations. Hence,
B is a linearly independent set of 2-cells because P, has no other relations other than
the superinterchange and identity relations. Furthermore, every pasting diagram of P
is equal as a 2-cell by the superinterchange and identity relations to an element in B up
to a sign, so every 2-cell admits a decomposition as a linear combination of elements
of B by construction. Hence, every 2-cell of P; admits a unique decomposition into
a linear combination of elements of B. ]

Given a 2-cell u of the free 2-supercategory P, expressed as a linear combination
of monomials u = > A;u;, we set

Supp(u) := {u; | u; appears in the monomial decomposition of u}.

Definition 2.14. Let C be a 2-(super)category. For a k-cell f in C, with k =1, 2,
define the boundary of f as the ordered pair of (k — 1)-cells given by

Af 1= (sk—1(f)s tk—1(f))-

A k-sphere of C is a pair of k-cells (f, g) such that df = dg. That is, sp_;(f) =
Sk—1(8) and fx—1 (f) = tr—1(g).

Let us recall some key definitions needed to prove termination using the derivation
method from [26]: that of a context of a 2-category.

Definition 2.15. A context of a 2-category C is a pair (S, ¢) where S is a 1-sphere of
C and c is a 2-cell in the 2-category C[S], defined as C extended by a formal 2-cell
tiling the sphere S as in [26, Section 1.3] such that this 2-cell occurs exactly once in c.
In other words, it is a 2-cell ¢ that contains one ‘hole’ with boundary the sphere S.

When C is a 2-category freely generated by a 2-polygraph, a context of C has the
form ¢ = my x1 (M *¢ S *¢ M3) x1 my, where m; are monomials of C. For a 2-cell
u in C, such that du = §, we denote by c[u] the 2-cell m1 *1 (2 *o U xg m3) *1 My
in Cz.

Definition 2.16. Let C be a 2-category. Then define the category of contexts C(C)
as the category with

* objects: 2-cells in C;

* morphisms: Hom(u, v) is the set of contexts (du, ¢) of C such that c[u] = v;

e composition: If x = (du, ¢) € Hom(p, g¢) and y = (dv, ¢’) € Hom(g, r), then
xoy:=(du,c’ oc) € Hom(p, r) where (¢’ o ¢)[w] := ¢[c[w]];
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» for any object u, there is an identity morphism 1,, := (S = du,c = S € C[S)).
For w € C; with dw = du, du[w] = w, so (¢ o Ju)[w] = c[w].

In order to define rewriting steps of (3, 2)-superpolygraph we need to extend Def-
inition 2.15 to the case of contexts of 2-supercategories.

Definition 2.17. A context of a 2-supercategory C is a pair (S, c) where S := (p,q)
is a 1-sphere of C and c is a 2-cell in the 2-supercategory C [S], defined as the 2-super-
category C extended with additional even 2-cells Aw, for A € Kk, tiling the sphere S
such that one of these 2-cells appears exactly once in c.

In the case where C is freely generated by a 2-superpolygraph, that is C = P;,
a context of P has the form ¢ = Amy 1 (my xo S *o m3) x1 m4 + u for some
scalar A, monomials m; in P; and a 2-cell u in P}. For a 2-cell v of P; with dv =
(p. q), denote by c[v] the 2-cell Amy x1 (M2 *o U *g m3) *1 M4 + u in Py.

2.3. (3, 2)-superpolygraphs

We now define (3, 2)-superpolygraphs as a means of presenting (2, 2)-supercate-
gories. This extends linear (3, 2)-polygraphs from [3, Definition 3.2.4].

Definition 2.18. A (3, 2)-superpolygraph is the data of P = (Py, P1, P>, P3) where
(Po, P1, P») is a 2-superpolygraph and Ps is a super globular extension of the free
2-supercategory P on (Py, Py, P»), thatis P3 is a Z,-graded set equipped with even
set maps s3,#>: P3 — P5 suchthat s; o sy = 510 and #; o 55 = #; o t, where 51, 1
are the 1-source and 1-target maps of P;.

The evenness of the set maps s, and 7, in the definition of a (3, 2)-superpolygraph
implies they preserve the Z, parity, so that the elements in P3 with even parity have
even sources and targets, while the elements in P3 with odd parity have odd source
and target.

24. (3, 2)-supercategory

Definition 2.19. A (1, 0)-supercategory is a category object in SVect. A (2, 1)-super-
category is a category enriched in (1, 0)-supercategories. A (3, 2)-supercategory is a
category enriched in (2, 1)-supercategories.

We will unpack these definitions in the cases of interest below.
2.4.1. Free (3, 2)-supercategory

Definition 2.20. A pasting diagram on a (3, 2)-superpolygraph P = (Py, Py, P>, P3)
is a formal composite of elements of the form
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o aforae Pj:=P3U{l,;u=u|uec Py}

e f %, g for pasting diagrams f, g with 15(f) = s2(g),

* f %1 g for pasting diagrams f, g with 111, (f) = s152(g),

* [ x¢ g for pasting diagrams f, g with tot122(f) = s05152(g),

quotiented by associativity relations for ¢, x; and *;:
foor(gaih)=(f xxg) #xh for0<k<2.

The source s, (f) and target 5 ( /) of a such a composition are defined by

o 52(f *x28) = 52(f), 02(f *28) = 12(8),

o so(f *i g) = 52(f) xi s2(g) fori € {0, 1},

* n(f *ig) =n(f)*in(g)i {01}

The parity of such a composition is defined by | f *x g| = | f| + |g| for k = 0,1 and
|f 28l =1f]=ls2(/)I

Definition 2.21. Let P = (Py, P1, P2, P3) be a (3, 2)-superpolygraph. The free
(3, 2)-supercategory generated by P, denoted by P3, is defined as follows. Its 0-cells
are the O-cells of Py. For any O-cells x and y of P, we define the Hom(2, 1)-super-
category Pj(x,y) as follows.

» Its O-cells are the 1-cells p € P{"(x, y), where P}" is the free 1-category generated
by the 1-polygraph (Py, Py).

* For any O-cells p and g in P§(x, y), let us define the 2 Hom(1, 0)-supercategory
P3(p, q) as follows:

- its set of O-cells P»(p, gq) is given by the superspace P; (p, q) of 2-cells of the
free (2, 2)-supercategory P with 1-source p and 1-target g;

— its set of 1-cells P3(p, q) is the superspace given by the free superspace on
(3, 2)-pasting diagrams with 1-source p and 1-target g quotiented by relations

(f %i 8) i (hxi k) = (D)WL x5 1) %i (g %5 k).
Ly *x2f =1 =1 *lyy
forany 0 <i < j <2 and for all pasting diagrams f, g, k, # composable in
this way.

The xg-composition for 1-cells and g, *j-composition for 2-cells of P3S are
defined as in the free (2, 2)-supercategory P;. For any O-cells p, g in P3(x, y)
and r,s in P§(y, z), there is an even linear map

*0: P3(p,q) ® P3(r,s) — P3(p xo7r.q *o5)
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given by gluing two 3-cells along their common 0-cell y. For any O-cells p, ¢, r in
P3(x,y), there is an even linear map *1: P3(p,q) ® P3(q,r) — P3(p,r) given by
gluing two 3-cells along their common 1-cell g. For any 0-cells p, g in P§(x,y),
there is an even linear map *2: P3(p, q) Xp,(p,q) P3(p.q) — P3(p, q) given
by gluing two I-cells f:u = v and g: v = w of the 2 Hom(1, 0)-supercategory
P3(p.q) along their common O-cell v € P>(p, q). For any 2-cells f1, ..., fn,
g1, .- &n in P35 (x,y), these compositions satisfy

(f1 %2+ %2 fm) *1 (g1 *2++- %1 gn)
= (f1 *15(g1)) *2 -+ *2 (fim *1 5(g1))
*2 (1(fm) *1 g1) *2 -+ %2 (1(fm) *1 gn)-

Remark 2.22. When the Z,-grading on the sets P, and P3 are concentrated in
degree zero, then a (3, 2)-superpolygraph and (3, 2)-supercategory reduce to a lin-
ear (3, 2)-polygraphs and linear (3, 2)-categories from [3].

2.5. Presenting 2-supercategories by (3, 2)-superpolygraphs

Definition 2.23. Let P be a (3, 2)-superpolygraph, and let P; be the free (3,2)-super-
category on P. Define an equivalence relation = on P} by

u=v ifthereisa3-cell f € P; suchthatsy(f) =wuand,(f) = v.

We say that a 2-supercategory C is presented by the (3, 2)-superpolygraph P if C is
isomorphic to the quotient 2-supercategory P,/ =.

Definition 2.24. A rewriting step of a (3, 2)-superpolygraph P is a 3-cell c[a] € P3
of the form

cla]:c[s2(@)] — clta(a)]

where o € P3 is a generating 3-cell, and ¢ = Amy *1 (my xg S *g m3) x; Mg + u
is a context of P35 such that the monomial m %1 (m2 %o s2(@) *xo m3) x4 m4 does
not appear in the monomial decomposition of u. A rewriting sequence is a sequence
of rewriting steps. A 3-cell f of Pj is called positive if it is an identity 3-cell or a
*p-composition f = f] %5 --- x5 f, of rewriting steps of P. The length of a positive
3-cell f in Pj, denoted by £( /'), is the number of rewriting steps of P needed to write
f as a xp-composition of these rewriting steps. As a consequence, the terminologies
rewriting path of P (resp. rewriting step of P) and positive 3-cell of P3 (resp. positive
3-cell of P; of length 1) can both be used to represent the same notion.
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2.6. Termination and confluence

A branching (resp. local branching) of a (3, 2)-superpolygraph P is a pair of rewriting
sequences (resp. rewriting steps) of P which have the same 2-cell as 2-source. Such
a branching (resp. local branching) is confluent if it can be completed by rewriting
sequences f’ and g’ of P as follows:

N
g\w/;’

A (3, 2)-superpolygraph P is said to be
(i)  left-monomial if for any « in P3, s3(«) is a monomial of P5;
(i) terminating if there is no infinite rewriting sequences in P;

(iii) quasi-terminating if for each sequence (u,)nen of 2-cells such that there
is a rewriting step from u, to u,1 for each n in N, the sequence (4, )neN
contains an infinite number of occurrences of the same 2-cell;

@iv) confluent (resp. locally confluent) if all the branchings (resp. local branch-
ings) of P are confluent;

(v)  convergent if it is both terminating and confluent.

From now on, we will only consider left-monomial (3, 2)-superpolygraphs. Let
us fix a (3, 2)-superpolygraph P. A normal form of P is a 2-cell u that cannot be
rewritten by any rewriting step of P. When P is terminating, any 2-cell admits at
least one normal form, and exactly one when it is also confluent. A quasi-normal
form is a 2-cell u such that for any rewriting step from u to another 2-cell v, there
exists a rewriting sequence from v to u.

If P is a terminating (3, 2)-superpolygraph, Newman’s lemma [39] states that
its confluence is equivalent to its local confluence. Following [3, Section 4], local
branchings of a (3, 2)-superpolygraph may be divided into four distinct families: triv-
ial branchings consisting of a pair of a rewriting step with itself, additive branchings
consisting of application of a rewriting step on two different monomials of a poly-
nomial, non-overlapping (also called Peiffer) branchings consisting of application of
two rewriting steps on a monomial whose 2-sources do not overlap, and finally over-
lapping branchings for which the 2-sources share a common part. Under appropriate
termination assumptions, the confluence of the first three families is always satis-
fied, and the study of confluence is reduced to the case of overlappings. However,
from [3, Theorem 4.2.13] we only need to study overlappings that are minimal under
contexts, that we call critical branchings. A critical branching of P is an overlap-
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ping local branching that is minimal for the order = on monomials of P; defined by
Jf E g if there exists a context ¢ of the free 2-category U(P)> generated by P such
that g = c[f].

Following [3], we prove that a terminating (3, 2)-superpolygraph is locally con-
fluent if and only if its critical branchings are confluent. Indeed, the proofs of [3,
Lemma 4.2.12 and Theorem 4.2.13] would remain the same: first proving that addi-
tive branchings are confluent and then proving that confluence of critical branchings
implies confluence of all the overlapping branchings using implicit rewriting modulo
superinterchange instead of the usual interchange. Moreover, with the definition of
monomials from Definition 2.11, we obtain that if P is a convergent (3, 2)-polygraph
presenting a (2, 2)-supercategory C, then the set of monomials in normal form with
respect to P gives a hom-basis of C in the sense of Definition 2.4. Indeed, the same
linear algebra argument as in the proof of [3, Proposition 4.2.15] would apply in this
context since monomials of P, are defined in such a way that a 2-cell of P; admits a
unique monomial decomposition.

2.6.1. Termination by derivation. Recall from [26] a method to prove termination
of a 3-polygraph using derivations of a 2-category. Dupont extended this method to
the setting of linear 2-categories in [16, 17], giving a method to prove termination of
a (3, 2)-linear polygraph using derivations of a 2-category. Inspired by this extension
to the linear setting, we describe a method to prove termination of a (3, 2)-superpoly-
graph using derivations of a 2-category in this section.

The linear extension of proving termination by derivation from [16, 17] utilizes
monomials of a linear (2, 2)-category, which up to parity, are the same as monomials
of supercategories. This suggests the following definition.

Definition 2.25. Let P = (Py, Py, P2, P3) be a (3, 2)-superpolygraph. Then define
U(P) as the linear (3, 2)-polygraph with

(1) U(P); = P; except that we forget the parity of elements;

(2) the same source and target maps as in P (forgetting parity of elements sends

map $y, f: P3 — P3 tomaps s2,t: U(P)3 — U(P)lz).

Definition 2.26. Let C be a 2-category. A C-module is a functor M: C(C) — Ab,
where C(C) is the category of contexts from Definition 2.16 and Ab is the category
of abelian groups.

Let Ord denote the category of partially ordered sets and monotone maps. This
is a monoidal category under the cartesian product. As in [26], thinking of Ord as a
2-category with one object, we build examples of C-modules as follows.

Definition 2.27. Let C be a 2-category, G be an internal abelian group in Ord, and
X:C — Ord and Y: C°? — Ord be 2-functors, where C°P denotes the 2-category in



Super rewriting theory and nondegeneracy of odd categorified sl» 17

which one has exchanged the source and target of any 2-cell. Then we can define a
C-module M := Mx y,c as follows.

* Every 2-cell u: p = ¢q in C is sent to the abelian group of morphisms M (u) =
Homor (X (p) x Y(gq), G).

e If p,q are 1-cells of C and ¢ = p’ xo S *¢ ¢’ is a context from u: p = ¢ to
p’ *o u *q ¢’, then M(c) sends a morphism a: X(p) x Y(¢) — G in Ord to the
morphism X(p') x X(p) x X(q¢') x Y(p') x Y(q) x Y(¢') — G in Ord sending
(' x. X"y y y") = alx, ).

o Ifu:p’— p,w:q — q’,are2-cellsand ¢ = u x; x x; w is a context from a 2-cell
V:p = qtou x; v*1 w,then M(c) sends a morphism a: X(p) x Y(q) = G in
Ord to the morphism a o (X x Y'), which is the map X(p’) x Y(q’) — G sending
(x,y) = a(X(g)(x), Y(h)(y)).

When C = U(P); is freely generated by a 2-polygraph U(P)<», then such a C-mod-

ule is uniquely determined by X(p) and Y(p) for p € P; and the morphisms

X(u): X(p) = X(q) and Y (u): Y(q) — Y(p) for every generating 2-cell u: p = ¢ in

U(P),.

We also recall the notion of a derivation of a 2-category.

Definition 2.28. A derivation of a 2-category C into a C-module M is a map sending
every 2-cell u in C to an element d(u#) € M (u) such that

du *; v) =ux; d) +du) *; v,

where u x; d(v) = M(u *; x)(d(v)) and d(u) x; v = M(x *; v)(d(u)).
Then, following [17], we get the following result.

Theorem 2.29. Let P be a (3,2)-superpolygraph and U(P) be the linear (3, 2)-poly-
graph defined in Definition 2.25. If there exist

(1) two 2-functors X:U(P)5 — Ord and Y: (U(P)3)® — Ord such that, for
every l1-cell p in Py, the sets X(p) and Y(p) are non-empty and, for every
generating 3-cell « in Ps, the inequalities X (s>(a)) > X(h) and Y (s2(2)) >
Y (h) hold for every h € Supp(t2(@)),

(2) an abelian group G in Ord whose addition is strictly monotone in both argu-
ments and such that every decreasing sequence of non-negative elements of G
is Stationary,

(3) a derivation of U(P)} into the U(P)3-module Mx y,g such that for every
2-cell of u € U(P)5, we have d(u) > 0, and for every generating 3-cell o in
P3, d(s2(a)) > d(h) for every h € Supp(t2(t)),

then the (3, 2)-superpolygraph P terminates.
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Remark 2.30. Usually we take the internal abelian group G = Z and consider deriva-
tions with values into a C-module of the form My y,z. We often consider C-module
where X or Y are the trivial 2-functor and write Mx « 7z or My 7.

2.6.2. Termination by context stable maps. Derivations were introduced in order
to define termination orders by requiring some inequalities on sources and targets of
generating 3-cells; the properties of derivations make this order stable by context of
2-categories. Instead of a derivation, we can equivalently use maps d: €, — N that
are stable under context, that is d(a) > d(b) implies d(c[a]) > d(c[b]) for any context
cof €.

2.6.3. Derivation by steps. The process of proving termination can be achieved in
steps, proving termination for subsets of generating 3-cells at a time.

Lemma 2.31. Let P = (Py, P1, P2, P3) be a superpolygraph with P3 = AU B and
let d: '€, — N be a context stable map satisfying the inequalities

d(c[s2(f)]) > d(c[t2(f)]) for f € A, and any context c,
d(s2(g)) = d(t2(g)) for g € B.

Then P terminates if P’ = (Py, Py, P>, B) terminates.

Proof. Suppose P’ terminates and

ci1lf1] c2[ /2]
V] —> Uy ———> VU3 —> ++-

is an infinite rewriting sequence in P. Define d(u) := max{d(u’) | u’ € Supp(u)}.
Then, since P’ terminates, there are an infinite number of f; that are in A. Then
consider the non-increasing infinite sequence (d(vy,))sen of natural numbers. The
inequality for the rewriting step ¢, [ f] is strict for f,, € A and Supp(u) is a finite set,
so d(v,) must decrease after a finite number of rewriting steps from A. Hence, there
is an infinite subsequence (d (v, ))ken of natural numbers that is strictly decreasing
giving a contradiction. ]

Lemma 2.31 allows us to prove termination, progressively eliminating 3-cells.
When one of these steps is constructed from a context stable map arising from a
derivation, we will need the conditions

X(s2(f)) =z X(2(f))., Y(s2(f)) = Y(©2(f)) forall f € P3

to hold at each step for the 2-functors used in defining the derivations.
One can view the process of proving derivations in steps’ as defining a termina-
tion lexicographic order. If we denote the context stable map used at step j by d;,
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then a k step procedure amounts to considering one large context stable map d =
(d1, da, ..., di) satisying

(di(s2()), da(s2()), ..., dk(s2())) >1ex (d1(t2(@)), da(t2()), ..., di(t2()))

for any generating 3-cell o of the (3, 2)-superpolygraph P, where >, denotes the
lexicographic order on N¥. Each of these components being stable by context, we
thus obtain that if there is an infinite rewriting sequence

Uy —> Uy —> -
with respect to P, then 122this yields an infinite strictly decreasing sequence
(dl (ul)’ dz(ul)s ceey dk(ul)) >16X (dl (uz)’ d2(”2)9 ce ey dk(uz)) >lex e

for the lexicographic order on N¥, which is impossible since this order is well
founded.

2.7. (3,2)-superpolygraphs modulo

In this section we introduce the notion of rewriting modulo in 2-supercategories
extending the work of Dupont [16, 17]. This is tool for breaking termination and
confluence arguments into incremental steps. We utilize this to first prove that ‘odd
isotopies’ have a convergent presentation. We then study presentations of the odd
2-category U modulo these odd isotopies.

A (3, 2)-superpolygraph modulo is a data (R, E, S) made of two (3, 2)-super
polygraphs R and E such that R<; = E<; and E» C R», and a cellular extension S
of the free 2-supercategory generated by R<, satisfying R € S € g Rg, where the
cellular extension g R is made of elements of triples of the form (e, f, ¢’) for 3-cells
e, e’ in Ej and a rewriting step f of R such that t(e) = s2(f) and t>(f) = s2(e’)

as follows:
[N
u /ﬂf\‘ v
\ﬂ’/

The rewriting sequences with respect to g Rg thus correspond to application of
rewriting sequences of R by allowing sources and targets of 3-cells to be transformed
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by a zig-zag sequence of rewriting steps of E. We refer to [18] for a detailed definition
of higher-dimensional polygraphs modulo. Given a (3, 2)-superpolygraph modulo
(R, E, S), the data of R<, and S gives a (3, 2)-superpolygraph, that we denote by
S in the sequel.

2.7.1. Branchings and confluence modulo. A triple (f, e, g) is branching modulo
E of a (3, 2)-superpolygraph (R, E, S) if f and g are rewriting sequences of S, with
f non-identity, and e is a 3-cell in Eg such that s,(f) = s2(e) and s2(g) = t2(e).
Such a branching modulo is confluent modulo E if there exist rewriting sequences f’
and g’ of S, and a 3-cell e in Ef as in the following diagram:

We then say that the triple (f”, ¢’, g’) is a confluence modulo E of the branching
(f. e, g) modulo E. The (3, 2)-superpolygraph S is confluent modulo E if all its
branchings modulo E are confluent modulo E. A branching ( f, e, g) modulo E is
local if f is a rewriting step of S, g is a positive 3-cell of S5 and e is a 3-cell of E3
such that £(g) + £(e) = 1. Following [17, Section 2.2.6], local branchings are classi-
fied in the following families: aspherical, additive, non-overlapping, additive modulo,
non-overlapping modulo, and overlappings modulo, which are all the remaining local
branchings modulo. A critical branching modulo E is an overlapping branching mod-
ulo which is minimal for the order C defined by ( f, e, g) C (c[f], c[e]., c[g]) for any
context ¢ of the 2-supercategory R3.

2.7.2. (Quasi)-normal forms modulo. Let us consider a (3, 2)-superpolygraph
modulo (R, E, S) such that S is confluent modulo E. If S is terminating (resp. quasi-
terminating), each 2-cell u of R3 admits at least one normal form (resp. quasi-normal
form) with respect to S, and all these normal forms (resp. quasi-normal forms) are
congruent modulo E by confluence of S modulo E. We fix such a normal form (resp.
quasi-normal form), that we denote by u. By convergence of E, any 2-cell u of R}
admits a unique normal form with respect to E, that we denote by 1. Note that when
S is confluent modulo E, the element fi does not depend on the chosen normal form
u for u with respect to S, since two normal forms of u being equivalent with respect
to E, they have the same E-normal form. A normal form for (R, E, S) (resp. quasi-
normal form for (R, E, S)) of a 2-cell u in R} is a 2-cell v such that v appears in
the monomial decomposition of W, where w is a monomial in the support of %. Such
a set is obtained by reducing a 2-cell u in Rj into its chosen normal form (resp.
quasi-normal form) with respect to .S, then taking all the monomials appearing in the
E-normal form of each element in Supp(1).
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2.7.3. Decreasingness modulo. The property of decreasingness modulo has been
introduced in [17] following Van Oostrom’s abstract decreasingness property [45,
Definition 3.3] for a rewriting system to give confluence criteria with respect to a
well-founded labelling on the rewriting steps of a linear (3, 2)-polygraph modulo.
When this polygraph is quasi-terminating, one may consider the quasi-normal form
labelling, given by measuring the distance between a 2-cell and a fixed quasi-normal
form. It is proven in [17] that if a linear (3, 2)-polygraph is decreasing with respect to
this labelling, which can be proved by proving the confluence of its critical branch-
ings, it is confluent modulo. Note that this extends to the case of (3, 2)-superpoly-
graphs since it is an abstract property. Another proof of the critical branching lemma
modulo in the quasi-terminating setting may be found in [11], based on induction on
the distance to the quasi-normal form.

2.8. Linear bases from confluence modulo

Given a (3, 2)-superpolygraph P, we define a splitting of P as a pair (E, R) of
(3, 2)-superpolygraphs such that

(1) £ is a sub-superpolygraph of P such that E<; = P<; and E» C P;;
(i)  Risa (3,2)-superpolygraph such that R<, = P<; and P3 = R3 LI E3.

Such a splitting is called convergent if we require that E is convergent. The data of
a splitting of a (3, 2)-superpolygraph P gives two distinct (3, 2)-superpolygraphs E
and R from which we can construct (3, 2)-superpolygraphs modulo. Then, since the
definition of monomials imply that every 2-cell u of P; admits a unique monomial
decomposition, we prove in the same fashion as in the non-super setting [17, Theo-
rems 2.5.4 and 2.5.6] the following statement.

Theorem 2.32. Let P be a (3,2)-superpolygraph presenting a (2, 2)-supercategory
C, (E, R) a convergent splitting of P and (R, E, S) a (3, 2)-superpolygraph modulo
such that

(i) S is terminating (resp. quasi-terminating),
@i1) S is confluent modulo E,

then the set of all normal forms (resp. of all quasi-normal forms) for (R, E, S) is a
hom-basis of € in the sense of Definition 2.4.

Remark 2.33. Note that we require E to be convergent to ensure that any quasi-
normal form with respect to the polygraph modulo S admits a unique normal form
with respect to E. However, even if we will still require £ to be terminating, the whole
confluence assumption can be weakened. In particular, when E is convergent with a
set of 2-cells that does not contain all the generating 2-cells of P, the generating
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2-cells of P, — E5 could create new indexed critical branchings, and thus obstruc-
tions to confluence. But confluence outside of these indexed critical branchings might
be enough provided that these obstructions can be removed using the 3-cells of S,
so that any (quasi-)normal form with respect to S still admit a unique normal form
with respect to E. This is the case for the (3, 2)-superpolygraph Osl(2) in which the
(3, 2)-superpolygraph will be confluent outside of crossing indexations as in (5.5), but
the polygraph modulo g R admits 3-cells allowing the removal of self-intersections,
as explained in Section 5.3.

3. A convergent presentation of the super isotopy category

In this section we study presentations for part of the structure appearing in the full
2-category U(g) associatived to the Kac—-Moody 2-supercategory for [8]. Though we
will be primarily interested in the case when g is rank 1, we have belive that the
general theory of super, or odd, isotopies will be valuable for future work studying
the 2-category U(g).

3.1. Definition of supercategory of super isotopies

Let I be a possibly infinite index set equipped with a parity function
I - 7Z/2, iw]il.

We say that i € [ is odd if |i| = 1 and even if |i| = 0.

Let (—d;;)i,jer be a generalized Cartan matrix with d;; = =2, d;; > 0 for
i # j,and d;; = 0if and only if d;; = 0. Under the additional assumption that d;;
is even whenever i is odd, Brundan and Ellis define a super 2-Kac—Moody algebra as
a certain 2-supercategory U(g) associated to the Kac—-Moody algebra g determined
by the generalized Cartan matrix (—d;;); jes. In particular, associated to this Cartan
matrix pick one can choose a complex vector space §) and linearly independent sub-
sets {o; | i € I} C b*, {h; |i € I} C b, such that the natural pairing h* x h — Z
is given by (h;, ;) = —d;; for all i, j € 1. We denote the weight lattice of g by
X ={Aebh*|(h;,A) € Zforalli € I} and the root lattice by Y = P, ; Za;. We
sometimes write A; := (h;, A).

In what follows we consider a certain sub super 2-category of the super 2-Kac—
Moody category U(g) defined by Brundan and Ellis [8, Definition 1.5]. This can be
thought of as a super analog of the 2-category of pearls from [26].

Definition 3.1. Define the 2-supercategory of g-valued isotopies ©3Iso(g) as fol-
lows.



®
(i)

(iii)
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Objects consist weights A € X of the Kac—-Moody algebra g.

I-morphisms are generated by
Eily: A —>A+oa;, Fily:A—A—oa,

fori € I and A € X, along with identity maps 1,: A — A. In this notation,
we have €1 = 1,14, &, Fil) = 13—y, F;i and we often omit all but one of
the 1,’s in a composite. Sometimes, we will also omit the xo compositions
written as in Remark 2.5 and use juxtaposition with the usual composition
conventions, so that

Si HA *0 8‘]']1/14-(11' *0 ‘(f;l ﬂ)H—ot,- +a; = ‘%]1/1-}—0[,' +o; 8] ﬂl—i—a,— gﬂl

is written as 7; 6;61;.
2-morphisms are generated by the identity 2-morphism of the 1-morphisms
&;1, and ¥;1,, represented by an upward, respectively downward, oriented
line carrying a label i with its right most region labeled A. In addition, we
have the following generating 2-morphisms:

i

A
/{ 181, — &1, i A Fily — Fily,

i

(parity [i]) (parity |])
A i
LN g6 > 1, il - &5,
(parity [i, A|) (parity |7, A[)

A i
(V€T — 1 \J 1~ Fi&il,
i
(parity 0) (parity 0)
fori € I and A € X where

i A= i (i A) + 1) = i|(As + D).

In what follows, we employ the convention that m-fold composites of the dot mor-
phism are represented by a single dot labelled m as

m$k:=<$l)m.

i i
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These 2-morphisms are required to satisfy the following axioms.
(a) Super zig-zag identities:

i i

et ek

i

(b) Fori e I of parity 1, define the odd bubble by

(~1)L3] ,-O L

Rr = (3.1)

; —A
@ ifA <0
A
Then the odd ‘cyclicity’ relations

-1,

)
i
i il if i is even,
i
S

2l Q- i* if i is odd,
i

/{A if i is even,

i
A, =
m 2@ TA —(—1)“‘% if i is odd
1 .
i .

l
l

hold.

3.2. The super (3, 2)-polygraph SIso

In this section we define a (3, 2)-super polygraph presenting the super 2-category
&3Iso(g) of g-valued isotopies. The case g = sl,, where I = {i} is an odd singleton
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is all that we will need for future sections, but the general case is not much more
complicated as we will see. Let SIso(g) be the super (3, 2)-polygraph defined as
follows.
(1) The elements of SIso(g)o are the weights A € X of the Kac—-Moody superal-
gebra.
(2) The elements of SIso(g); are given by &§;1, and ;1 fori € [ and A € X.

(3) The elements of SIso(g), are the following generating 2-cells: for any i in /
and M in X,

i A i .

A i

’) A
by a9 M g
i
with respective parity |i|, |i|, |i, A, |i, A], 0, O.
(4) SIso(g)s consists of the following 3-cells:
i i

uj.0 dx.0
A S VAT

i i
i ;o
d)L,O

u/)L,O i,
V) e (e 2

i i

u if i is even,
i 3

A i
U

—DAi A ifii

(=1 u +2 @ if i is odd,

IX
> s
1 1
A
[\\ if 7 1s even,
A o4 i

A
2 /1

; (_1)xii[\\ +2 @A if i is odd.

i i
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For the definition of an odd bubble in weight spaces A; = (h;, A) = 0 with

OIO 0
=

li| = 1, we also add 3-cells

1

4

and for any i € [ of parity 1 and any endomorphism 2-cell k of the identity
1, in normal form with respect to the set of 3-cells above:

;
A
® :

where the odd bubble

is the 2-cell defined as in (3.1).

(=1

m+1
if m + A; + 1is even,

ifm+ A; +11s odd,

m+1
if m + A; + 1 is even,

ifm+ A; +1isodd,

(!

i

We prove confluence of this (3, 2)-superpolygraph in Appendix A. To simplify the
calculations, we make use of the 3-cells defined in the following lemma.

Lemma 3.2. One can define 3-cells

i 4
Ux1 Al
A= g (=
i ’
LW
PF—3

dx 1 |
e b 1)
i

from the generating 3-cells of SIso(g)

i

i/l if i is even,
i i
2l®l—il ifi is odd,
i
/f,\ if i is even,

i
2Q® Tx —(—1)““% ifi is odd.
1 i '

1
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Remark 3.3. Note that in every 3-cell except for o, x and B, ., every strand of the
source and target are labeled by the same i € /. In oy, x and B,, ., the strands of k
can be labeled with any j € /. However, we cannot rewrite k using any rewriting
step since it is in normal form by definition. Knowing this, we can write SIsoz =
|l;; SIsoj, where SIso is the set of 3-cells where all of the strands of the source
and target are labeled by i along with the 3-cells &, x and fB,, x where the strands of
the odd bubble and the bubble surrounding k are labeled with i. Then there can be no
critical branchings between 3-cells in SIsoi3 and SIsoé unlessi = j.

We can prove that the (3, 2)-superpolygraph (SIsog, SIsoq, SIso,, SIsoé) is con-
vergent for any i € I of parity |i| = 0 by using an argument similar to the proof that
the polygraph of pearls from [26, Section 5.5] is convergent. Thus, if we prove that
the (3, 2)-superpolygraph (SIsog, SIso;, SIso,, SIso}) is convergent for an arbitrary
i € I of parity |i| = 1, then we will have proved that the entire (3, 2)-superpolygraph
SIso(g) is convergent.

3.2.1. Termination. We now prove the termination of the (3, 2)-superpolygraph
SIso(g) using the derivation method from Section 2.6.1.

Lemma 3.4. Let U(SIso(g)) be the linear (3, 2)-polygraph given by U(SIso(g)); =
SIso(q); forgetting the parity of elements in SIso(q) as in Definition 2.25. Then the
map d:U(SIso(g))5 — N given by

— 2times the number of odd bubbles

e =ul, }
oy

is stable under contexts as described in 2.6.2.

Proof. For f €{uj o.d) 0.1} 4 di,o}v we have d(s2(f)) =2 > 0=d(t2(f)). Fur-
thermore, for any context ¢ of U(SIso(g))5 such that ¢[f] is defined, we have that
V= IIC[tz(f)]II{

i

lelsa (O 2
e A

s

11

and c[t>(f)] must have at least as many odd bubbles as ¢[s2( f)]. Thus, d(c[s2(f)]) >
d(c[t2()]) +2 > d(c[t2()]) for | € {up0.dr0.1) 4. dj o}

For f € {i%, iél}, and any context ¢ for which c[f] is defined, we have that
d(c[s2(f)]) = d(c[t2(f)]) because c[s2(f)] and c[t2(f)] have the same number of
caps and cups and c[s2( f)] cannot have more odd bubbles than c¢[#;( f)] by the defi-
nition of the odd bubble in 3.1. For f € {i f , ii‘}, the context c[t2( f)] has two terms.
We have d(c[s2(f)]) = d(c[h]) for all & € Supp(#2(f)) using a similar argument for
the first term of the target and observing that in the second term the target has exactly
two more caps and cups and at least one more odd bubble than the source.
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The remaining 3-cells are endomorphism 2-cells of the identity 1, and, therefore,

it is straightforward to verify the desired inequality. ]
Proposition 3.5. The (3, 2)-superpolygraph SIso(g) terminates.

Proof. We prove the termination of SIso(g) in five steps as described in Section 2.6.3.

Step 1. Using the context stable map from Lemma 3.4, we have that d(c[s2(f)]) >

d(c[a(f)]) for f € {uz0.da0.uj o.d; o} and d(cls2(f)]) = d[c[t2(f)]] for the
remaining 3-cells. Hence, the map d allows us to reduce termination of SIso(g) to
termination of

SIso(g)’ := (SIso(g)o, SIso(g)1, SIso(q)2, SIso(q)3 — {u4.0, di,0, U} o.d; o})-

Step 2. Define 2-functors X : U(SIso(g)’); — Ord and Y: (U(SIso(g)’);)°® — Ord
whose non-empty values are given on generators by

(1))

i

X)) =x(\p =00, v N)=r( Y =00,

1 1

X(TA )(n) = Y(TA )(n) = x(iA )(n) = Y(iA )(n) =n+1.

Then, a derivation d: U(SIso(g)’); — My y,z is defined from

d(/f" )(n,m) =0 d(iA )(n,m) =0,

d(q )(n,m) = d(\[\/l )(n,m) =m,

4

d( f\k,)(n,m) = d( U)(n,m) = 0.

i A
From the definition, we can compute the image of the other relevant 2-morphisms
under the derivation:
i A

d(GU)(n,m) —m+a, d(°L \)n,m)=m+a,

4

(Cr)-e AP

d(ua)(n,m)zm, d(i[\'\“)(n,m):m, d(@“):o.
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To illustrate how one can deduce these equations from the definition on the generators,
we prove the first of these equations as an example:

2 Ao :d(U; ([ g o
STSIM{ )
NP
_ (Auj)(y(lx v “(m))
ey

=d(’\Jj J(n.m+a)+0=m+a.

Then, for every generating 3-cell x € SIso(g)5, the inequalities X (s2(x)) > X (h),
Y(s2(x)) > Y (h), and d(s2(x)) > d(h) hold for every h € Supp(f2(x)). Furthermore,
for f € {i},i}} we have the inequalities X(s2(x)) > X(h), Y(s2(x)) > Y(h), and
a strict inequality d(s2(x)) > d(h) for every h € Supp(t2(x)). This reduces the ter-
mination of SIso(g)’ to the termination of the (3, 2)-superpolygraph R with R<; :=
SIso(g)~, and R3 := SIso(g); — {i}.i}}.

Step 3. To prove termination of R, consider the derivation d into the trivial U(R)3-
module M « 7 counting the number caps and cups, that is,

e =l \
oy

for any 2-cell u of Rj. For every generating 3-cell in « € R3, we have the inequality
d(s2()) > d(h) for every h € Supp(t2(«)), and

d(s2(i})) = 1 = d(12(i})).
d(s2(i3)) = 1 = d(1(i})).
d(s2(mp)) = d(k) + 4 > d(k) + 2 = d(t2(@m k),
d(s:(Bmi)) = d(k) + 4 > d(k) +2 = d(2(Bm.i)).
d(s2(1p)) = 2 = d(t2(1p)).



B. Dupont, M. Ebert, and A. D. Lauda 30

Furthermore, for o ¢ {i /{ i f Iy} we have strict inequalities d(s2(c)) > d(h) for
every h € Supp(#;(«)). This reduces the termination of R to the termination of the
(3.2)-superpolygraph R’ with R_, := R<; and R} = {i} i3, Io}.

Step 4. Now, consider 2-functors X: U(R'); — Ord and Y: (U(R')3)°? — Ord,

(1))

¥ ) =x(\p =00, r(N\)=r( =00

i i

x(f* )(n) - Y@A )(n) - x(iA )(n) - Y(iA )(n) —

and the derivation d: U(R’); — My y,z given by

d(/f* )(n,m) =0, d(i* )(n,m) =0,

i A
d(u Yn.m)y=m, d(L O )n,m)=m,

1

4 i
d (n,m)y=m, d (n,m) =m.
(Y (\ )
Then we have the desired inequalities X(sz(«)) > X(h), Y(s2(x)) > Y(h), and
d(s2(a)) > d(h) for every h € Supp(t»(«)) for every generating 3-cell o of R’, with
strict inequalities for o € {i i, i f} So, termination of R’ reduces to termination of
R" := (Ry, R}, R}, {1o}).

Step 5. Consider the derivation d into the trivial module M, .« z defined by

d(u) = [Ju

.
Then we have that d(s2(lp)) = 1 > 0 = d(t2(Ip)), so R” terminates. Hence, R’ ter-
minates. Therefore, SIso(qg) terminates. [
3.2.2. Convergence of SIso(g)

Proposition 3.6. The (3,2)-superpolygraph SIso(g) defined in Section 3.2 is conver-
gent.

Proof. Since SIso(g) is terminating, following [3, Theorem 4.2.13] its confluence is
equivalent to the confluence of its critical branchings, that are all proved confluent in
Appendix A. ]
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4. A convergent presentation of the odd nilHecke algebra

4.1. Definition of odd nilHecke 2-supercategory

Here we recall the odd nilHecke algebra and its associated 2-supercategory. This
algebra appeared independently in [22,29] and is closely related to the spin Hecke
algebra associated to the affine Hecke—Clifford superalgebra appearing in earlier work
of Wang [46].
Definition 4.1. Define the odd nilHecke 2-supercategory to have

(i) one object *,

(i) 1-morphismsn € N,

(iii)) 2-morphisms generated by

+:1—>1 and ><:2—>2

both of parity 1,

modulo the relations

e B
< |

><+><=‘ ‘ + ‘ 4.2)

4.2. The super (3, 2)-polygraph ONH
4.2.1. Definition. In this section we define a (3, 2)-superpolygraph presenting the
odd Nilhecke 2-supercategory. Let ONH be the (3, 2)-superpolygraph defined by

(1) one object denoted by A,

(2) one generating 1-cell denoted 1, with n denoting the *¢-composition of 1 with
itself n times (since there are only one O-cell and one generating 1-cell, we
omit them in the string diagrams below),

b s <.

(3) generating 2-cells

both of parity 1,
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(4) generating 3-cells

ony
=<+ |
§d6 ?{yb
EO, = )
ons
> =< |

4.2.2. Termination. We closely follow [16, Section 2.3.3] to prove the termination
of the (3, 2)-superpolygraph ONH in two steps.

Proposition 4.2. The (3, 2)-superpolygraph ONH terminates.
Proof. We proceed in two steps.

Step 1. Define a 2-functor X: U(ONH); — Ord by setting
X(@) =N,

so that X(i 9 i) = N x N, and on generating 2-cells of ONH by

X(D(n) — n, X( + )(n) —n, X<><>(n,m) = (m.n + 1),

forall n,m € N. Define a derivation d: U(ONH)3 — My« 7 on the generating 2-cells
of ONH by

d(‘)(n) -0, d(><)(n,m) —m, d(D(n) -0,

for any n, m € N. Then by the same calculation in [16, Section 2.3.3] for the even
nilHecke algebra, we obtain the inequalities X(s2(f)) > X(t2(f)) and d(s2(f)) >
d(t2(f)) for all 3-cells f and d(s2()) > d(t2()) for @ € {yb, dc}. Thus, termina-
tion of ONH is reduced to termination of

ONH/ = (ONH(), ONH], ONHz, {onl, 0712}).

Step 2. Define a 2-functor X: U(ONH); — Ord on the generating 2-cells of ONH

by
X(D(n) =n, X(*)(n) =n, X(><)(n,m) =m+2,n+1),

for all n,m € N, and a derivation d: U (ONH’); — My x,z given by

d(D(n) —0, d(><)(n,m) —n, d( + )(n) —n,
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for any n, m € N. Then, by [16, Section 2.3.3], we obtain the desired inequalities
X(s2()) = X(t2(«)) and d(sz(«)) > d(t2(a)) for o € {ony, on,}, so that Theo-
rem 2.29 implies that ONH’ is terminating, and thus ONH is terminating. |

Moreover, we now prove the following result.
Proposition 4.3. The (3, 2)-superpolygraph ONH is convergent.

Proof. Since ONH is terminating by Proposition 4.2, following [3, Theorem 4.2.13],
its confluence is equivalent to the confluence of its critical branchings, whose classi-
fication follows from [16], and are all proved confluent in Appendix B. |

4.2.3. Bases of ONH

Definition 4.4. Define the odd nilHecke 2-supercategory ONH to be the basis
obtained from the convergent (3, 2)-superpolygraph ONH. This basis is obtained by
choosing a fixed representative from each equivalence class of normal forms modulo
superinterchange.

In practice, to rewrite a 2-cell in ONHS, one checks if there is a representative in
its equivalence class modulo superinterchange that is reducible by a 3-cell. If there
is more than one representative where a 3-cell can be applied, the convergence of
the superpolygraph ensures that it does not matter which representative is chosen to
apply a 3-cell. Then a 2-cell is in its normal form if and only if, for any representative
modulo superinterchange, this representative is irreducible using the set of 3-cells in
the (3, 2)-superpolygraph ONH.

In the case of the odd nilHecke algebra, we can further specify the resulting nor-
mal form basis by making a preferred choice of representative of the superinterchange
class for the order of dots; for example, choosing that dots will decrease in height
going from left to right. With our fixed choice or ordering of dots, we can represent
these dot sequences as x% = x‘fl ... xy" with a1 dots appearing on the first strand, o,
dots below these on the second, and so on.

The 3-cells in ONH ensure that all dots appearing in a given normal form 2-cell
appear below any crossings. Then, for each reduced expression of w = s;, ...s;, of
a permutation in the symmetric group S, there is a corresponding crossing diagram
0w = 0j, ...0;, in the odd nilHecke algebra, where 0; is the crossing of the ith and
(i 4+ 1)st lines. The crossings appearing at the top of a normal form diagram will have
reduced expressions d,, where no equivalence class under superinterchange admits a
reduction 0;0;410; = 0;4+10;0;+1. The superinterchange equivalence class may still
be undetermined if the reduced expression contains a subsequence of the form 9;0; =
—0;0; with |i — j| > 1. We can then uniquely specify a representative by choosing the
ordering d;0; where i < j. An example is given below with the reduced expression
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52515382, rather than s,57 5355, illustrating this choice of ordering:

o] 02 03 04
82818382361 Xy " X3 Xy =

o
e o, o
3

aq

In [22, Proposition 2.11], bases for the odd nilHecke algebra are defined by mak-
ing a choice of a reduced expression for each element w € S, and considering ele-
ments {0y, X%} or {x%0dy, } where 0y,.

Proposition 4.5. The superpolygraph ONH presents the odd nilHecke 2-supercate-
gory. The resulting normal form basis recovers the basis {0,x%} from [22, Propo-
sition 2.11] where the choice of reduced expressions cannot be simplified further by
any application of the identity 0;0;4+10; = 0;4+10;0;+1 for any representative of the
superinterchange equivalence class of 0y, x“.

5. Rewriting modulo in the odd 2-category

5.1. Definition of the odd 2-category

Ellis and Brundan give a description of the odd 2-category U(sl,) involving a min-
imal number of relations by requiring the invertibility of certain maps lifting the
sl,-relations. They show that the invertibility of these maps imply the relations given
below. In the definition that follows we do not attempt to provide a minimal set of
relations. In section 5.2 we will explain how to reduce the number of generating
2-morphisms and defining relations in a way that will be helpful for presenting this
super 2-category by a (3, 2)-superpolygraph.

Definition 5.1. The odd 2-supercategory U = U(sl,) is the 2-supercategory consist-
ing of

* objects A forA € Z,

o for a signed sequence ¢ = (€1, &2,...,8m), With &1, ..., &, € {4+, —}, define
< Cemo

€= 64,6,y... €

where &4 := € and &_ := F . A 1-morphisms from A to A’ is a formal finite direct
sum of strings
Ely = 1y &,,

for any signed sequence ¢ such that A’ = A + 2 Z;"zl g l.
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* 2-morphisms are generated by the Z x Z,-graded generating 2-morphisms

re }\’\:Shegh, A2 i*:mxemk
degree (2, 1) degree (2, 1)
,><\9\288]1,\—>88]1;L, xliﬁyﬂxﬁﬁf{vﬂ,{,
degree (—2, 1) degree (—2, 1)
Kfiﬂx—)?@ﬂx, v 2HA—>8$]1,1,
degree (1 4+ A,0) degree (1 —A, A+ 1)

f\:ﬁehﬁh, /\\/:SJ’”]IA—)]IA,

degree (1 +A, A + 1) degree (1 — A,0)

where we have indicated a Q-grading and parity as an ordered tuple (x, y).

The identity 2-morphism of the 1-morphism &1, is represented by an upward oriented
line (likewise, the identity 2-morphism of % 1,, is represented by a downward oriented
line).

Horizontal and vertical composites of the above diagrams are interpreted using the
conventions for supercategories explained in Section 2.1.3. The rightmost region in
our diagrams is usually colored by A. The fact that we are defining a 2-supercategory
means that diagrams with odd parity skew commute. The 2-morphisms satisfy the
following relations (see [8] for more details).

(1) Odd nilHecke. The odd nilHecke relations from Definition 4.1 are satisfied for
upward oriented strands and any A € Z.

(2) Odd isotopies. The odd isotopy relations from Definition 3.1 for a Cartan data
with a single odd i € 1.

(3) Bubble relations. Dotted bubbles of negative degree are zero, so that for all
m >0,

A A
O =0 ifm<A—1, O =0 ifm<-A—1.

Dotted bubbles of degree 0 are equal to the identity 2-morphism:

A A

O =1Idg, ford>1, O =1Idg, ifA=<-1.
A—1 Za—1
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We will sometimes make use of the shorthand notation

n+*©k = )L—H—nO)l s
AOn-ﬁ-* = )\O—)L—H—n .

The degree two bubble is given a special notation as in (3.1) and squares to
zero by the superinterchange law.

We call a clockwise (resp. counterclockwise) bubble fake if m + A —1 <0
and (resp. if m — A — 1 < 0). These correspond to positive degree bubbles that
are labeled by a negative number of dots. These are to be interpreted as formal
symbols recursively defined by the odd infinite Grassmannian relations

n 2(n—t)+x O
2n+*©x

:Z_Z Om* for0<2n<—-A,  (5.la)
=1

n [+x*
x@z”* ==y o O @zm—m* for 0<2n <A, (5.1b)

=1

2n++ O

2n+1+©x = X for 0<2n<-—A, (5.1¢)
Ozn-f-*
O @ for0<2n +1<A. (5.1d)

(4) Centrality of odd bubbles. Odd bubbles are central:

o o e e

(5) Odd crossing cyclicity. The cyclic relations for crossings' are given by

v><vx - @ - @ (5.2)

'Equation 5.2 differs by a sign from [8, equation (1.28)], but is consistent with the original

formulation of the odd 2-category from [23].
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Sideways crossings satisfy the following identities:

><k = mx = Mx, (5.32)

>< A= (=DM A - A (5.3b)

(6) Odd sL(2) relations. We have

T = /3
A A P A
=l O T
1 f11{2_41-f3 mi
T k‘:\/,z
A A P A
o =X s O T
~ fl:_sz’j_lf:; m/‘l

Remark 5.2. Let Sym denote the algebra of symmetric functions over k. This algebra
is generated by elementary symmetric functions e, for r > 0 and by the complete
symmetric functions hg with s > 0. By convention eg = hg = 1. These generators are
related by the equations

Z(—l)serhs =0 foralln > 0.

r+s=n

Let Sym[d] be the supercommutative superalgebra obtained by placing Sym in even
degree and adjoining an odd generator d with d®> = 0. Then consider the unique sur-
jective homomorphism

B,.:Sym[d] — Endy (1,)

such that
e, > A—1+2nOA ifn > —g,
h, — (_1)’% A(}A—Hzn ifn > g
de, — A—1+2n+1©/1 ifn > —g,

h
dhy > (—1)" A(}A—Hznﬂ itn> 2.
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The relations in U imply that this is a homomorphism and that the relations (5.1)
defining the fake bubbles hold for all values of A and for all n > 0, see [8, Proposi-
tion 5.1].

5.2. The super (3, 2)-polygraph Osl(2)

Definition 5.3. Let Osl(2) be the linear (3, 2)-polygraph defined as follows.
(i)  The elements of Osl(2)q are the weights A € Z of sl5,.

(i) The elements of Osl(2); are given by
IyEe ... 8,12

- Ogm

for any sequence of signs (e1, ..., &) and A,A" in Z. Such a 1-cell has for
0-source A and 0-target A, and

1&g, ... &, 10 %0 11//85/1 L8y = 1,1//88/1 R

(iii) The elements of Osl(2), are the following generating 2-cells: for A € Z,
A
P b X
& 2

with respective parity 1, 1, 1, 1, A + 1,1 + 1,0, 0.
(iv) Osl(2)3 consists of the following 3-cells:
(1) The odd nilHecke 3-cells, given by

dc yb*
—4 0, > .

%—}{Jﬁ T
%—}{ +T T

with the rightmost region of the diagram being labeled A. When no con-
fusion is likely to arise we often drop the A subscript from this notation.

(2) The super isotopy 3-cells of SIsos.
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(3) The cyclicity 3-cell for the definition of the downward crossing:

together with their respective images 0 and Q* through the Chevalley
involution @ defined in [8, Proposition 3.5] giving the same cyclicity
condition for the upward crossing in terms of the downward crossing.

(4) The 3-cells for the degree conditions on bubbles: for every A € Z and

neN,
1 : — _
n{))/1 b 1y, ifn=A41A-1,
by |0 ifn <A—1,

AC}” ol {11A ifn=-1-1,

9n 10 ifn <—-A—1.

x

(5) The infinite-Grassmannian 3-cells: for any A € Z and n > 1 such that

2n+A—-1>0,
n o 2(n—f)+x C

ig
e On 224 -y Gyt

=1
(6) Bubble Slide 3-cells

s+
n+*©TA LN > er+ 1)$2r "‘”**'O , (5.4a)

r>0

O”J”* Tk SIE@ T AO ntx 3 '{2 A@ n—2+%
+4) (=17 Pr *O”‘Z”* . (5.4b)

r>2

and their reflections across the horizontal axis r/{ " and r;’ e which
allow a bubble to go through a downwards strand. The reflections cor-
respond to the images of these relations via the Chevalley involution
w defined in [8, Proposition 3.5]. By (3.1) and the definition of fake
bubbles (5.1), we simplify notation and write 53 ; = s)tl =31 and
a1 = ril =7 These are added to the presentation to reach conflu-
ence modulo.
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(7) The invertibility 3-cells:

— (= 1)A+1le +ZZ( 1)n+r %—14—27

n=0r>0

A

n

(- 1)A+1l/|\ —f—_ilZ( (e 28; n.

n=0 r>0
r

(8) The remaining 3-cells:

A‘ )4
A C/l Z( l)n O —n—1
Y

n=0 n

» t
T r
N =Y (=t %:;:g
r,s,t>0 sm A

4 N
cxer Ty
7,8,t>0 ﬂrk

Note that the last 3-cell is added to the presentation to recover the Yang—Baxter
relation for sideways crossing,” see [8, equation (7.20)], and is needed to reach conflu-
ence modulo and to fix a preferred choice of representative for all possible orientations
of the Yang—Baxter equations.

The 3-cell '), corrects a minor typo from [8, equation (7.20)].
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Remark 5.4. By the definition of fake bubbles (5.1) in terms of positively dotted
bubbles from U, we can use i g, 3 for all n > 1 by using it as an equality for 2n +
A —1 < 0and as an oriented 3-cell for 2n + A — 1 > 0, see also Remark 5.2. Likewise,
we can use by, ¢, for all n € Z by using it as an equality for n < 0 and as an oriented
3-cell forn > 0.

Remark 5.5. The summations appearing in the targets of rit’ o sf’ a0 Eas Fp,and Ty
are assumed to be restricted so that no negative degree bubbles appear. For example,
the target of F; has the summation with r ranging from 0 to A — 1 — n and E the
r summation runs from 0 to —A — 1 — n. The first sum in #,(I") implicitly has the
restriction —r — s — ¢t + A > 0 since the degree of the bubble in that summand is
—r—s—t+A

5.3. Splitting of Osl(2)

Let us split the (3, 2)-superpolygraph Osl(2) into two parts. Consider the (3, 2)-super-
polygraph E defined by

E; =0sl(2); for0<i <1,

E> = 0sl(2) — { X } = SIso, U {3},

E3 = SlIsoz U {yb, dc}.

Let R be the (3, 2)-superpolygraph such that R; = Osl(2); for 0 <i <2 and contain-
ing all the remaining 3-cells.

Proposition 5.6. The (3, 2)-superpolygraph E is terminating.
Proof. The proof goes in three steps as explained in Section 2.6.3.

Step 1. Eliminate the zigzag 3-cells using the first step of the proof of termination of
SIso.

Step 2. Eliminate yb and dc using the first step of the proof of termination of ONH,
extending values of X and d by

x(\S) =x(\7) = 0.0,

A

0d (& N)(n.m) = d( fﬁ)(n,m) —0,

QU
—_
C
N—
I
QU
—_
g/
I

so that the inequalities
d(s2(a)) = d(12(e))

hold for any o € SIso — {u o. Mi,o,dx,o, d/’m}.
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Step 3. Finish the proof by eliminating the 3-cells in the same order as in the proof of
termination of SIso. u

Since E, = Slso, U {”}{}, additional indexed critical branchings appear in E
between i i and if: of the form

A (5.5)

that are not confluent. However, we still have the following.

Lemma 5.7. Any 2-cell u that does not contain a strand that self-intersects admits a
unique decomposition into monomials in normal form with respect to E.

Proof. Let u be a 2-cell that does not contain a self-intersecting strand, that is up to
application of yb that does not contain any element of the form (5.5). Since E is ter-
minating and left-monomial, u admits at least a linear decomposition into monomials
in normal form with respect to E. If two such decompositions exist, then the two
reductions leading to these results give a branching, that is either a non-overlapping
branching or come from a critical branching in a context. However, since u does not
contain a self-intersection, this critical branching is not given by a crossing indexation
as in (5.5), and thus from confluence of critical branchings of SIso and {yb, dc}, there
exists a confluence of that branching, so that these two decompositions are equal. m

Lemma 5.7 is enough to get the hom-basis of U since the 3-cells 4,, B,, C, and
D) in g R’ can be used to remove all self-intersections, so that any quasi-normal form
with respect to g R will admit a unique normal form with respect to E.

5.4. Quasi-termination of g R

In this section, we will prove that the (3, 2)-superpolygraph R is terminating without
bubble slide and cyclicity 3-cells, and quasi-terminating with these 3-cells. We also
give a procedure showing that g R is quasi-terminating with rewriting cycles being
induced by bubble slide cycles as in [3], isotopy cycles created by dots moving on
cups and caps, and cyclicity for crossings.

5.4.1. Termination without bubble slide and cyclicity 3-cells
Lemma 5.8. The (3, 2)-superpolygraph
R :=R—{s} sy.ri.ri.Px.P}. 0. 04}

terminates.
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Notation 5.9. For a 3-cell «, define

d(t2(@)) := max{d(h) | h € Supp(t2())}
and similarly

X(t2()) := max{X(h) | h € Supp(12())}.
Proof. We prove termination in three steps.

Step 1. First, consider the derivation d into the trivial U(R’)3-module My « 7 given
by

d(u) = ||”||><
for any 2-cell u of R. Then d(sz(«)) > d(t2(x)) fora € {A;, By, Cy, Dy, E;, Fy}
and d(s2(a)) > d(t2()) for all other « in R}. Thus, termination of R’ is reduced to
termination of

= (R' , R’l, R’z, Rg —{A4,,By.Cy, Dy, Ey, Fy})
=(R/,R/1,R/2,R/3/={0”1,0’12,F,b b,pcl yc}“ngn})-

Step 2. Consider the 2-functor X: U(R"”)5 — Ord and derivation d: U(R"); — Z
defined by extending the second derivation used for ONH as follows:

((fJoa(l s 2 (s

X(5)(n.m) = (m + 2,0 + 1), X(f)(n):n+1,
X (%) (. m) = (m.n), X(H):X(\/;) — (0,0),

A([Jor- A Jor-

d (%) (n,m) = n, d(f)(n)zn,
d($3)(n.m) =n+m, (") =d(\_J)=0.

d(ﬂ )(n,m) = d(ij\)(n,m) =0.

Then we have X(s2(«)) > X(t2(x)) and d(s2(«)) > d(t2(x)) for all 3-cells o € RY.
Furthermore, d(s2(«)) > d(t2(«)) for o € {ony,on,, I'}. Thus, termination of R” is
reduced to termination of the (3, 2)-superpolygraph

= (Ry. R}, R, (b}’ -0 bx,c)L ,Cx,ngn})
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Step 3. To prove termination of R, we use a context stable map as in Section 2.6.2.
For any u € U(ﬁ);, define a map d’: U(I\é);‘ — N by

d’(u) := number of bubbles in u + Z | deg(mr)|

7 clockwise bubble in u

where the sum is over all clockwise bubbles appearing in u and | deg(;r)| denotes the
absolute value of the Z-grading defined in Definition 5.1.

For a € Rs, we have d’(s2(et)) > d'(12(e0)). Let ¢ be any context of U(E);
such that c[e] is defined. Then we have d’(c[s2(a)]) = d’(s2(x)) + d'(c[11,]) >
d'(t2(«)) + d'(c[ldy,]) = d’(c[t2(@)]) since both s,() and #,(«x) are endomor-
phism 2-cells on the identity 1-cell 1. Therefore, R terminates, implying R’ also
terminates. ]

5.4.2. Indexed cycles. The super (3, 2)-polygraph
R = R—{s;.ri. Py P}. 0. 0%}

terminates by Lemma 5.8. However, g R’, and thus g R do not. Closing off crossing
diagrams with caps and cups can create cycles where a dot slides around a closed
strand and arrives back where it started as in the configurations:

5y

for k > 0 even and / > 1 odd, where the label n stands for a x;-composition of n
crossings. By successive application of on; and on,, these give a rewriting cycle in
E R. However, for k being even and / # 1 they do not have to be taken into account
since the whole diagram will become 0 when taking the normal form with respect
to E. The case [ = 1 gives a rewriting cycle as follows:

| A (39
22 f}ﬂz(l)A G{J
A A X
%(_1)A+1 [}{}@ @4—2[}{} : (5.6)

A
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further sliding the dot term produces

A A
(_1))L+1 Sint = (- 1))H-l

A
A
i3
= - +2(=HH!
®

) ) X
St (At + 2(1)*[}@
A
W (- 1)“1@@ +2(— 1)*[}{}

The term with the odd bubble cancels with the corresponding term in (5.6). Continu-
ing with the dot term we have

A A A A

The double bubble term combines with the corresponding term in (5.6) with coeffi-

cient (1 4+ (—1)%), so for A odd these cancel. But since negative degree bubbles vanish,
this diagram is only non-zero if A = 0 in which the two bubbles are both multiples
of the odd bubbles that squares to zero. Sliding the remaining dot term completes the

A A
G@ (li)_ G@ -
— = —

This may seem like a special coincidence that the cycle completed, however the dia-

cycle:

gram that we started with vanishes unless A = 0, —1 using 3-cells C; and B, so that
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an element of the form (5.6) will never appear in a quasi-normal form with respect to
E R. In general, if there are more dots inside the figure (5.6) the cycle can be shown
to complete more generally. In fact, simplifying a diagram of this form with addi-
tional dots leads directly to the odd infinite Grassmannian equation. The cycles built
in this way are called indexed cycles, and are rewriting cycles proper to the context of
rewriting modulo.

5.4.3. Quasi-reduced monomials. Alleaume showed in [3] that linear 2-categories
with bubble slide relations cannot be presented by terminating polygraphs, but rather
by quasi-terminating polygraphs. For the same reason, 2-supercategories with bub-
ble slide relations cannot be presented with terminating superpolygraphs, but rather
quasi-terminating superpolygraphs. Furthermore, rewriting modulo isotopies with the
existence of cyclicity 3-cells for crossings imply the existence of cycles of the form

Q/
Lol E%}{A , (5.7)

>

P/
LS B DY %}{A . (5.8)

The image of these cycles through the Chevalley involution @ give rise to similar
cycles for the downward crossings. If we consider sideways crossings as defined
in (5.3) in terms of upward crossings, we can derive their definition using downward
crossing using P, P;, and come back to the upward version using Qj, Q. As a
consequence, the cyclicity 3-cells provide cycles from any kind of crossing to itself.
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A monomial in & is quasi-reduced if it is not E-equivalent to 0 and, up to indexed
cycles, it can be rewritten only using rewriting cycles generated by (5.7) and (5.8) and
cycles that slide a bubble through a cap or cup:

oMol

Remark 5.10. No quasi-reduced monomial in &5 can be rewritten as a linear com-
bination of other non-equivalent quasi-reduced monomials.

5.4.4. Weight functions and quasi-normal forms

Definition 5.11. Let C be a 2-supercategory, then a weight function on C is a function
7: Co, — N such that

(D) t(u*;v) = t(u) + (v),
(2) 7(u) = max{r(u;) | u; € Supp(u)}.

When C presented by (3, 2)-superpolygraph P, such a weight function is uniquely
determined by its values on generating 2-cells u of P,. This allows us to define a
quasi-ordering 2 on Py by u 2 vif t(u) > t(v).

We define a weight function on Osl(2)5 by

(D) = (") =<(r V)= D) =0,

A

(P)=o(f)=0 (%) =c(Xx)=>

Then, for all 3-cells « € E3\{dc}, we have t(s2(c)) =7 (h) for all & € Supp(t2(x)),
so that all isotopy 3-cells but dc preserve the weight function. In the procedure below,
we only use dc from left to right, and stop the procedure whenever a 2-cell u is 0.
Then, starting with a monomial u of Osl(2)3 that does not contain any negative degree
bubble, and that is not E-equivalent to 0,
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* while u is not 0 and can be rewritten with respect to g R into a 2-cell u’ such that
(1) > t(u’), then assign u to u’;

e while u is not 0 and can be rewritten with respect to g R into a 2-cell u’ with-
out any of the rewriting sequences in the definition of quasi-reduced monomial,
namely [y, ony, on, outside of indexed cycles, infinite Grassmannians, reduction
of bubbles of degree 0, bubble slide with a through strand, assign u to u’.

This procedure terminates since 2 is well founded, R — {sit, rit, P, P]’L, 0, Qi}
is terminating by Lemma 5.8 and a bubble can only go through a finite number of
through strands. It produces a linear combination of quasi-reduced monomials in
Osl(2)3, on which one can only apply cycles generated by (5.7) and (5.8) and bubble
slide through a cap or cup. Thus, g R is quasi-terminating. Moreover, we will fix a
choice of preferred quasi-normal form with respect to these cycles by the following:

* slide the bubble outside of caps and cups, and slide them to the rightmost region
of the diagram;

» keep sideways crossings using their definition in terms of upward crossings (5.3),
use the cyclicity 3-cell P)’L provided the number of leftward caps and cups is
decreasing, and replace every downward crossing with its value in terms of upward
crossings rightward caps and cups as in (5.2) using Q',.

5.5. Confluence modulo

In this section, we will prove that the (3, 2)-superpolygraph modulo g R is confluent
modulo E by showing decreasing confluence of its critical branchings with respect to
the quasi-normal form labelling for the quasi-normal forms fixed in Section 5.4.4. We
first start by enumerating many 3-cells that can be derived from the generating 3-cells
of Osl(2), and that will be helpful for the proof of confluence of critical branchings
and for the determination of the basis elements.

5.5.1. Additional 3-cells. From the definition of the (3, 2)-superpolygraph Osl(2),
we can derive the following 3-cells in E° or g R’. We will often simplify summa-
tions involving bubbles by removing the terms involving negative degree bubbles by
applying bg or cg to each term in a summation containing a negative bubble. To make
these types of 3-cells transparent in our notation we introduce a shorthand bi or ci to
denote such application of bg or cg. For example,

A

N Y

demonstrates how we will utilize this notation.

in%x o A_IO/A + 9%
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+ For A > 0, define A, to be the 3-cell

A A%
UQE»

n

0

ifn <A,

(1145 \_J ifn =1

We can use this to describe another 3-cell A’i for A > 0, defined by

vy )0
U@
n

e For A >0,let B/lx be the 3-cell

e Forl <0, let Ci be the 3-cell

n
Oyt
2 A
N

e Forl <0, let Di be the 3-cell

A Dj
@<J
n

0

N

ifn < A,

kj/{ ifn =A.

ifn <A,
ifn = A.
ifn < —A,
ifn =—A\.
ifn < —A,
ifn = —A.

As an illustration of how to derive these 3-cells, let us actually describe the process
for creating A;. Given that A > 0, we slide the dots in the source of Ai through all

possible crossings:

A
) =]

(H*2")".on}
>

A
+ Z(_I)S—H

(—1)%(@@

&)

r+s=n—1
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The first term rewrites to 0 by the 3-cell

4 A (ihrem—a,
For n < A, the second term rewrites to 0 by b/,
St I B,
r+s=n—1 y O

For n = A, only the s = A — 1 term remains non-zero after applying b; and we can
apply bi to this term to obtain
A b} Atl
-1 L51+4 U 2 -1 [55—] )
v oS =Y

A—1

Hence, for A > 0, we obtain a 3-cell A’)L given by

0 ifn <A,

A Ay
=
U@ DS ifn =2

n

Using the bubble slide 3-cells of 5.4, we define a 3-cell s,  that appears in some
of the more complicated computations:

> @+ 1)(‘}n;3r }\2/: SAE> *@ e,

r>0

We have a 3-cell in E® given by

which allows, up to isotopy and using sideways crossings as defined in (5.3), to give
an orientation for the Yang—Baxter relation for upward-upward-downward strands,
corresponding to [8, equation (3.8)]:
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We actually can derive such 3-cells either in £¢ using yb or in g R® using [ to fix
an orientation for all the possible configurations of Yang—Baxter 3-cells.

Using the 3-cell Q) to convert a downward crossing into an upward crossing
with rightward caps and cups, and the odd isotopy 3-cells along with the 3-cells from
superpolygraph ONH, one can derive the following 3-cells of g R*:

dct yb*
E=—42 0, Eid ,

me b |
b ]

5.5.2. Critical branchings modulo of Osl(2). We prove that g R is confluent mod-
ulo E by showing that its critical branchings modulo are confluent and decreasing
with respect to the quasi-normal form labelling for the fixed quasi-normal forms. All
its critical branchings are proved confluent in Appendix C and every rewriting step in
these decrease, the labelling to the quasi-normal form by 1. The classification of criti-
cal branchings modulo follows from [16]. Note that from the convergent presentation
of the odd nilHecke 2-supercategory given in Section 4.2, all the critical branchings
modulo involving two odd nilHecke 3-cells are confluent. There is no critical branch-
ing implying the degree condition 3-cells and infinite Grassmannians since these only
reduce bubbles of positive degree by assumption, and branchings between degree con-
dition 3-cells and bubble slide 3-cells are trivially confluent since the degree remains
negative. There are critical branchings between infinite Grassmannians and bubble
slide 3-cells, that are proved confluent in Appendix C.2. Moreover, the critical branch-
ings implied by P; or P; with another 3-cell given by modifying an upward crossing
are trivially confluent, since there is a way to deform again the new crossing into the
upward one, so that one gets back to the original 2-cell and can apply the other 3-cell
of the branching to reach a confluence.
The remaining critical branchings are split into two families.

* Branchings coming from the odd nilHecke 3-cells, that is, those involving a 3-cell
of Osl(2) and on; or on,, and branchings that are given by applying two 3-cells
on terms that are equal modulo application of yb. These branchings are proved
confluent in Appendix C.1.

* Branchings between the 3-cells Ay, By, C,, Dy, Ej, F; and I';. These ones are
proved confluent modulo £ in Appendix C.2.
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6. A basis theorem for odd categorified s/(2)
Split the (3, 2)-superpolygraph Osl(2) into £ and R as defined in section 5.3. We

have proved the following statement.

Theorem 6.1. The (3, 2)-superpolygraph g R is quasi-terminating and confluent
modulo E.

The quasi-normal forms resulting from the (3, 2)-superpolygraph modulo g R
can be described in a diagrammatic fashion. The space 2-morphisms from &1, =

E¢p ... 8 1y to Egly = & ... &, 1,, when non-zero, consists of planar diagrams
with k points at the bottom equipped with upward/downward oriented collar neigh-
borhoods for each + sign ey, ..., &, and m points at the top with collar neighbor-
hoods determined by signs €1, ..., &,. These endpoints are connected by smoothly

immersed directed strands whose endpoints connect the (k + m) vertices compatibly
with the orientation on the collar neighborhoods. Further,

* we require that there are no triple intersections and no tangencies;
* no strand intersects itself, and intersects any other strand at most once;

* dots on a given strand appear only in a small interval near the negatively oriented
endpoint of a strand connecting the vertices;

» all closed diagrams have been reduced to a product of non-nested dotted bubbles
with a counterclockwise orientation (dots on bubbles are pushed to the rightmost
edge of each bubble);

» if any three strands are such that each strand intersects the other two to cre-
ate a triangle, then the triangle must be in the normal form with respect to the
(3, 2)-superpolygraph SIso given by one of the following:

%A‘ | %X | %X | % A’ |
%A’ | % A’ | %A’ | %X |
We can further reduce the ambiguity of our chosen basis by making a preferred choice
of each super interchange class of diagram. For example, choosing dots and crossings

to decrease in height from right to left, with dots appearing above crossings when
related by super interchange.
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An example of the normal form of a 2-morphism from &_&1&,8_8&,1) to
E+86,6_6_8618 1, is given in the first diagram below, while the second would not
be in normal form as it does not have the correct Yang—Baxter representative:

(24} AN
o2
/%3

o4 as o
0 B1+*

Br +%*

Hence, we have proven the non-degeneracy conjecture for the odd 2-category U from
[8, Section 8].

Theorem 6.2 (Nondegeneracy conjecture). Fixing a choice of representative for each
super interchange class of elements from the quasi-normal form of the (3, 2)-super-
polygraph Osl(2) gives a basis for each Hom space Homy (&g, E¢). In particular,
Homy (&;, &) is a free right Sym[d]-module with Sym[d] the bubble algebra defined
in Remark 5.2.

Corollary 6.3. The conjectural classification of dg-structures on the super 2-category
U(sl,) from [20, Proposition 7.1] is a complete classification.

Proof. In [20] the dg-structures on U(s(,) are classified assuming a weak form of the
non-degeneracy conjecture holds. Theorem 6.2 then implies the result. ]

A. Critical branchings for SIso(g)

A.1. Regular critical branchings

Here we verify the critical branchings for the (3, 2)-superpolygraph SIso(g). For every
3-cell other than «,, x and B, k, every strand in both the source and target is labelled
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with i, so for branchings that do not use o, x and B, x, we often write (— 1) instead
of (—1)*. The classification of critical branchings is analogous to that of the 3-poly-
graph of pearls [26, Section 5.5], with one extra regular critical branching involving
the 3-cells Iy and 0,1, _,» and two extra indexed critical branchings involving the
3-cells &, k and B, x, coming from the definition of the odd bubble:

A
;.0 ﬂ
B ——
A i
i
SInt
) A
(_1)(/14-1) N
DA i

’ i
U0
y —— s

SInt

i

i
2
(—1)@+D) y (_1)(A+1)u
(_1) d)ho

since (—1)#+D? = (—1)»*+1 = (—1)*+1, Diagrams with reverse orientations give
the same critical branchings as in the even case, since the use of superinterchange do
not create any sign. The critical branchings in Figure 1 make use of the 3-cells from
Lemma 3.2. Here, the * symbol before the rewriting step d )/L,O means that we used a
superinterchange relation, between the odd bubble and the leftward cup before apply-
ing the rewriting step, creating the sign (—1)**'. Moreover, the critical branching
involving Iy and o ; 1, is proved confluent as follows:

O e
—_—=0.

A=0

® "



N i

A (=2 A +2 A — TA
Y ey o, ]
H 1

1 ® !

Sint

i i

4 i i —1YA g/ —1)yA 1 g7
(=D*dy {+x2(=1) d
PRSI 2 +2 A L ZNYETES ix
4
| H
i

Sint

i

—1)AF! A ERIVERTR B
(=1 Coa, (=D

Figure 1

215 pay11032)ed ppo Jo AoeIoudgopuou pue A£109y) Suntmar radng
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A.1.1. Shortened notation for critical branchings. In order to avoid drawing all the
critical branchings entirely, we introduced a shortened diagrammatic representation
for these, encoding the minimal amount of data that we need in order to reconstruct
the actual branching. We only draw the diagrammatic source and the diagrammatic
normal form (or chosen quasi-normal form) of the critical branchings, and indicate
between brackets the two rewriting sequences that lead from the source to the com-
mon target. If one has to apply super-interchange relations at the source of the critical
branching, we will indicate this by adding the element SInt at the beginning of one
of the rewriting paths. If one has to apply super-interchange relation in the middle
of a rewriting path, we will indicate this by writing a symbol * before applying the
rewriting step with the correct sign brought by super interchange. Later, when rewrit-
ing modulo isotopy, we will indicate using a 3-cell e of the super-isotopy polygraph
E before applying a rewriting step f of Rbye- f.

For example, the last critical branching above is depicted in our shorthand as fol-

lows:
{SInt, (—1)“1‘13,0}

-1 A+1
A (=1 A
(i, (D"} +2(-D T )

We assume that if the two different reductions on a given diagram are applied at dif-

ferent heights, the upper branch of the critical branchings will represent the rewriting
sequence corresponding to the application of the uppermost first rewriting step. From
now on, unless reconstructing the final result of a given critical branching is difficult
for one branch of reductions, we will represent the critical branchings and critical
branchings modulo using this notation.

A.2. Indexed critical branchings

The classification of indexed critical branchings follows from the indexed critical
branchings for the 3-polygraphs of peatls in [26], for all possible orientation of strands.
Let us draw the ones that differ from the even case, labelled by some odd i € I:

{i)zni)lau/}L,O’ *(_l)h—‘rlu)»,O} Adl
0
{Stnt, (=D 133, =) | +2(=D" 1), —2u; 0—(=1D*T2u; o}

{if, (=D*d} | +a2(=1)T1d} o (~1DA@2da 0—di 0)+2(-1D T 1d) o}
(_1)A+1 i*
{Shnt, (=DAT1i1, (~DAHiZ, (DA 1) o, (=DM ) 0}
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{if, D dy42,0+2dr 42,0} &
m* PN +2Lg)

{Sint,i},i2.ds 120,13}

A i (DA, L A2DA TN o, (DAL j
(_1))L+1 Q
E b

{Snt, (_1)A+1i){, (_1)A+ld)t+2.0, (_1)A+l l,{}

i

| A {i%,i)lh,u,\_zgo,ii} A i U
(-1) u +2 Qi
{SInt, i3, (=1)*uz 5 0+2us 2,0} i
(g (=1 By i} m+1
=D™; ;
{SInt, (1) 1kl 1 Sint}

m {i%} m+1

{Stnt, (— 1)KL 3 (—1ymHK g, 4 Sint)

G2, 041,13

® A {SIng (D" R g,y k)

(_1)m+1+|k| i if m + A; + 2is even,

0 ifm+ A; +21is odd,

Gt (DX B i}

{Snt, (=) KL (1) By i}

m+2
=n" if m + A; + 2 is even,

0 if m + A; + 21is odd.
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B. Critical branchings of ONH

B.1. Helpful 3-cells of ONH

We introduce some additional 3-cells in ONH that will be helpful in analyzing the
critical branchings. To simplify the description of these critical branchings we make
use of the following 3-cells obtained by iterative application of on; and on,, see also

[8, Lemma 3.1]:
e TSI PD ST B

a+b=n—1
PR T

Using these 3-cells we also introduce the following 3-cells:

Ory = (ny 2(4))‘%? + 3P + Iy
X at+b=x-1 b

{on? +SInt} b
2En (—1)x+y yﬁ + E (—1)a+x a* I
X X

a+b=y—1

-1 b+ay a
+Y (=D * Lﬂ

a+b=x—1

2} (_1)x+y yﬁ + Z(_l)a+x+ab a+ l
X a+b=y—1 b+x
+ -1 b+ay a
Y (=D * Lﬂ

a+b=x—1

y—1
— (_1)x+y y + Z(_l)x-i-a-i-ay a
X a=0 x+y—1—a

x—1
_ Z(_l)x-‘ra-‘r—ay a
a=0 x+y—1—-a

max(x,y)—1
+ Z(_l)x+a+ay+81nax(x,y),x a ,
x+y—1—a

a=min(x,y)
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@) = (" 2y +Y (1t

" g+b=n—1

L2 S, )

a+b=n—1

e (g 2o B 14,
a+b=n—1

{dC Z( 1)a b )’

a+b=n—1

and more generally we have

X!

®,

Yy
max(x,y)—1
+ Z(_I)X+a+ay+5max<x,y),x aﬁ
a=min(x,y) xty—l-a
Ox.y max(x,y)—1
—_— Z(_l)x+a+ay+8max(x,y)!x aﬁ )’
a=min(x,y) xt+y—l-a

It will also be convenient to define a 3-cell T given by

Y= (Lﬁé( el e +Z(—1)“Qa Tb
a+b=n—-1

{on},0n4}
— +(=D"D (=1)* al ”ﬁ

a+b=n—1
b b
— —1)42
vy - o
a+b=n—1 a+b=n—1
ay+az=a—1
=, =,SInt, =
s L w7
a+b=n—1

5o 3 bz 4 )

a+b=n—1 a+b+c=n—2
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Consider the 3-cell

Z(—l)b“ > Z( 1>'+'“ S bret

a+b+c=n—2 a+b+c=n—2 j=c -J

Z Z( 1)]+jb j bte—1 .  (B.D)

atbici= b -/
AR

d:‘bc

where in the first summation is zero unless » > ¢ and the second is zero unless b < c.
We will show that the target of this 3-cell is zero. Swapping the b, ¢ variables in the
second summation the right-hand side can be written as

> Z( D/ [(—1)7¢ - (1)’b] Tt

a+b+c=n—2j=c =J
n—2 b—1b—1
=Y Y ) V=D = (=17 i€ -1 (B2)
b=1c=0j=c b__zc —J

where
2, if b is even, ¢ is odd, and j is odd,
[(—1)-ic — (—l)jb] = { —2, ifbisodd, ciseven,and j is odd,
0 otherwise.
Breaking the b and ¢ summations in (B.2) into a sum over even and odd terms, the
only non-vanishing terms are

2¢1—1

1252] | 1 20,41

i (24 (24 .
D S S BV Bl iies
01=0 {r=0 j=2{r+1 —2(1+4£>)

12521 125L] 2
i (24 (241 +1 .
DD DED DV (G e G Vi I 24t

£1=0 £,=0 j=2{, —21+42)
Now, observe that since j is assumed to be odd , we can remove the £, = £; term in
the second summation since 2¢; < j < 2{; would imply j was even. Similarly, since
j is odd the j summation index in the second term can start at 2¢» + 1 and end at
2¢1 — 1 so that the above terms cancel out and the target of the 3-cell from (B.1) is
Zero.
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B.2. Regular critical branchings of ONH

In this section we study the critical branchings of the (3, 2)-superpolygraph ONH.
We begin with the relatively straightforward regular branchings using the shorthand
notation introduced in Appendix A.1.1:

{oni,—ons} {dc} {ons,—ony,dc}
, _— 0, ————=0,
{SInt, {dc) {dc}

—onp,ony,Snt}

{ony,—on,,dc} {dc} {yb, yb,dc}
0, ———=0, —_———=0,
{dc} {yb,yb,dc} {dc}

{yb,dc} {ony,—ony+dc, yb}
—_—=0, - ;
{yb,dc}

{SInt, —yb,—on>,ons+dc, Sint}

g ety
;
S

{yb ony,xonz}
{yb,+—ony,on—dc, yb}

+ .
{ony,—ony,«—yb+dc}

B.3. Indexed critical branchings of ONH

We now verify the indexed critical branchings of ONH, whose classification is the
same as in [16], by spelling out in greater detail the required steps as they are some-
what subtle and differ notably from the corresponding calculations in the even setting.
The first indexed critical branching is obtained by reducing the diagram

n = - n—1-b
> (=1

a+b+c=n-2 b c
a

in two possible ways; the top branch is obtained by first applying the Yang—Baxter
3-cell to the bottom half, then sliding the n dots to the bottom, while the bottom
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branch is obtained by first doing super interchange law, applying Yang—Baxter to the
top half of the diagram, and sliding the n dots to the bottom. In detail, the top branch
is given by the following:

no_ (_l)n

2 1y

= (1" Z(l)bﬁ% + 3P
L. a+b=n—1 a b a+b=n—1 4 b

-2 =1’

a+b+c=n-2 b c
a

dec,dc,yb,id
{de.de,yb,id} Z(_l)b-l—n +Z(_1)n—l—b
a+b=n—1 4 b a+b+c=n—2 aeb c
dc n—1-b
= > (-1 . (B.3)
a+b+c=n—2 b c

a

The bottom branch is given by

gjn Byb%n

2 o

a+b=n-1

= Y (1)“;51, +Z(1)xrf§b
a+b=n—1 a x+y=a—1 X
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S

SInt n— b
> o=t , =20

a+b=n—1 B a+b+c=n—2 @

2 Yy =Y 0] e

a+b=n—1 b gtb+ce=n—2 4@

SInt Z(_l)n—l + Z(_l)n—l-f-c b c,

a+b=n—1 b gtbte=n—2 a

where the first summand reduces by ®, into the right-hand side of (B.3).
The final indexed critical branching for ONH is obtained from two branches
obtained from the left-hand side below:

=+ DGk -2 (=1’ :
" a+b=n—1 b a+b+c=n—2 ey c

obtained by applying the Yang—Baxter 3-cell to the top of the diagram, then sliding
the n dots to the bottom using 3-cells on,. The bottom branch is obtained by applying
super interchange, applying the Yang—Baxter 3-cell to the bottom of the diagram,
then sliding the n dots to the bottom of the diagram using on,. In more detail, the top

yb T
n | = =
n
n

+Y (=P - +

a+b=n—1

branching is

a

=Y (=1

a+b+c=n—-2 b

a
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Note that the last summand is a normal form, and the first three terms reduce respec-
tively using the rewriting paths {yb, SInt, yb, yb}, {yb} and {SInt, —yb, —dc} so
that this branch of the branching gives

=Y (=1 =Y (1P . (B4
a+b=n—1 b a+b+c=n—2 b c

The bottom branch is given by applying the 3-cells below:

ol
= Y(-D"H! n%
= [ B

— (D)"Y (=P . (B.5)

a+b+c=n—2 ,eb

Now, we relate the terms in (B.5) to those appearing in the top branch (B.4).

* The first summand of (B.5) reduces using the rewriting path
{SInt, —yb, SInt, yb, yb}

to the first summand of (B.4).

* The second summand of (B.5) reduces using the rewriting path

{SInt, - q>1,b}

a+b=n—1
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into

> (= . (B.6)

d=n-2 c
a+c+d=n a d

The third summand of (B.5) reduces as follows:

b+n
Z(l)++l f

a+b=n—1

onb
= Y1 + Y (=1)F
a+b=n—1 26 b atct+d=n—-2 ,q°¢ d

{SInt, yb, yb}+{SInt, yb} b
> (=n*

b=n—1
a+b=n a6 b

+ Z(_l)c-i-l ’
d

a+c+d=n—-2 ae €

so that the first sum gives the second sum of (B.4), and the second sum gives the
third sum of (B.4). As a consequence, using the first and third summand on the
bottom branch, we recover all the elements from the top branch.

The fourth summand of (B.5) reduces using the 3-cell ®; . as follows:

_ (_1)n+1 Z(_l)b
a+b+c=n—2
gt_ Z( 1)n+b+a
a+b+c=n-—2
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Oe, > =1

a+b+c=n—-2 c b
a

max(b,c)—1

+ Z Z (_1)C+b+j+jc+8max(b.(r),h

a+b+c=n—2 j=min(b,c)

where, after applying the 3-cell yb, the first term on the right-hand side cancels
with (B.6), and the second summation above reduces to zero as in the computation
of (B.1). The second sum

max(b,c)—1

Z Z (_1)C+b+j+jc+8max(b,c),b

a+b+c=n—2 j=min(b,c)

B.7)

reduces to O as follows:

max(b,c)—1

Z Z (_1)C+b+j+j6+8max(},’c),b

a+b+c=n—2 j=min(b,c)

— Z Cii(_l)c+b-‘rj—i-jc

a+b+c=n-2 j=b

_ Z bii(_l)c-l-b-i—j-i—jc

a+b+c=n—-2 j=c

b—1
DD G VA (Co VA CA VA

a+b+c=n—-2j=c

n—2 b—1b—1

=22 2 DI = (1))

b=1c=1j=c

a
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where

2 if b is even, ¢ is odd, and j is odd,
[(=1)7¢ — (=1)’1 = { =2 if b is odd, c is even, and j is odd,

0 otherwise.
In particular, b 4+ ¢ must be odd, so we write this summation as
n—2 b—1b—1

DY DD = (- 1)!”]

b=1c=1j=c

(B.8)

Breaking the b and ¢ summations in (B.8) into a sum over even and odd terms,
the only non vanishing terms are

12521 12971 54,

Z Z Z (—1)7 [(=1)/@e+D _ (_ 1),(251)]

L1=0 L=0 j=2{r+1

1252] |35L] 24,

+Z Z Z( 1)]( 1)](2152) (— 1)1(261-1-1)]

L1=0 {r=0 j=24>

Now, observe that since j is assumed to be odd, we can remove the £, = ¢; term
in the second summation since 2¢; < j < 2{; would imply j was even. Similarly,
since j is odd the j summation index in the second term can start at 2¢, + 1 and
end at 2¢; — 1 so that the above terms cancel out and the target of the 3-cell
from (B.7) is zero.

C. Ceritical branchings modulo for the full 2-category

In this Section, we prove that the critical branchings modulo for the (3, 2)-superpoly-
graph Osl(2) are confluent modulo E.

C.1. Critical branchings from 3-cells of ONH

We prove that the critical branchings implying a 3-cell of Osl(2) with ony, on, and
two 3-cells of Osl(2) on two terms that are equal up to yb are confluent modulo E.
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Critical branchings (4, ,0n1,—2). Forany A € Z, we have that the critical branch-
ings (A, on; ,—») are confluent modulo super isotopies as follows:

A {4x}
{SInt,ony y—2, (i3 %2% () ) 0n2 22, 1) " w A2 X o(— D a—p_1.1 1 Snloil}
iy +1
n
Z(_l)n lgx :
n=0 =

The last 3-cell used in a bottom sequence is a 3-cell of £, needed to close the con-
fluence diagram modulo on the right. Note that, when applying the 3-cell (i ){)_ cx Ay,

we obtain the following 2-cell:

—A —A
D} Y =1y lg’; —2Y -1y 1\0}2 +(1+<—1)*>\Ofw
n=0 —n— n=0 —n—
&®

which reduces using the 3-cell Z;io(—l)”oc_n_l,lu on the second summand into

-2 -
(—1)*(2 1 -2y ) ’;)+(1+(—1)*)\OfA.
n=0""" n=0, "
n—A even

We can then use the isotopy 3-cell Z;io i ){ to move dots on the right of the cup of
the first summand, and obtain the following term:

—A —A
+1
A W s W) raeen
n=0 —n—1 n=0, "
n—A even
If A is even, this quantity is
—A -2
n+1 n
y T2 Z , T2 A
n=0 —7—1 n=0, "
h even
—A -2
_ n+1 n
- y T2 Z A
n=0 —n—1 n=1, "

n even

—A+1 —A+1 —A

-X 5l e E
n=0 " n=1, " n=0 —n—1

h even
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If A is odd, this quantity is

-2 -1
o n+1 E: n
2 L +2 ;
n=0 —n—1 n=0, "
n odd
—A+1 —A+1 —A
— n n _ _1\n n+1
n=1 —" n=1, " n=0 —n—1
n odd

which proves that the result is the same as in the top branch, so that this branching is
confluent modulo E.

Critical branchings (B, , i42 cony  —2). Wehave

mx (Biox Sn2oid Suto2si1. Kntoa—n—1}
{Snt, it-(on1 y—o++253 1), (3 %2+(G2)7)0n2 2—2,+ By}
—A
Z(—l)” - G i —(+EDY O A
n=0 VA L33 N

Note that after using the odd bubble slides in the top sequence, we use similar argu-

ments as above to prove that the target of the rewriting step is equal to the expected
result.

Critical branchings (Cx, (iZ)™ - on3,1—2). We have

219 N B
DQ e

where X is the rewriting sequence given by

{SInt =)™ omz 2, = L1} Ch #2211 G 221
A

A A
Z(—l)"m,l, 2 Z B-n—1,1, 12> Z l';%*},
n=0 n=0

n=0

®
ST 1y e %_ZDQA’

where the 3-cell y is defined as

A @)~ 2

|8
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and the proof that the final result of the bottom sequence is the same as the one
obtained in the top branch is made similarly, using bubble slide through a downward
strand to make the odd bubble go back into the regular bubble before applying the
3-cell

A
2 Z ’3_”_1’1‘A+2'
n=0

Critical branchings (D, on%). We have

0y A
FEE YRS
x) 0 \SE

where X is the rewriting path defined by

{Stnt, (=1} *ons 55, (~*8, i3 - <D;.
h A
()7 2D Y raa =2-D* Y Bowny, |

n=0 n=0
and the 3-cell § is defined as

U =0 2o 2@
(—D*ony y—o+2s) 1

and we then prove that we obtain the same result as in the top branch by using ii’ on
the first summand, creating an extra term that cancel the third summand above, and

[[ES

reducing the first summand with D . After applying these 3-cells, it remains

A

ciyr R Lar e\,
Z O -1 © *

and we prove after using Zizo(i j’)_ to place all dots on the left that the final result
is equal to the top result using similar arguments.

Critical branchings (I'y, ony,,). This critical branching has source

A
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One can use superinterchange and move the dots to the bottom of the diagram: this
process gives minus a diagram on which we can apply I" with a dot at the bottom
of the leftmost strand, and two extra terms on which we can apply the 3-cell E,. By
applying these 3-cells, we obtain up to isotopy the following terms:

A

; t t+1 %
_ + Z(_l)r+s :;:g + Z(_l)r—l—s—l—t Z{:ﬁ

7,8,6>0 s+1m A rs,t>0 ﬂr)t

—A—1 S,
L+ D A > =t —5%3’
m n=0 r>0 ﬂrl

—A—1 n
S c
n=0 r>0 ﬂrk

For the other branch, we first apply the 3-cell I and then move the dot to the bottom,
creating two extra terms on which we can apply the 3-cell F) 4, giving

; 141 t N1
_ _ Z(_l)r-i-s :;,:g + Z(_])r-‘rs—i—t :;:g )

7,8,t>0 Sm A 7,8,t>0 \[\V
\J

+ (=D g

"

A+1 e n A+1 P
Sver sl Yror gl e
n=0r>0 m A n=0r>0 nm A

The first, fourth, and fifth terms of (C.1) and (C.2) match. Moreover, one proves
that extra terms in both (C.1) and (C.2) simplify to give

r t ¢ s+1
PG oot Emd -
7,8,t>0 s+1m A rs,t>0 ﬂrl

Indeed, consider for instance the case A < 0. In (C.2), the third term reduces to 0
using degree of bubble 3-cells, and 6th and 7th terms are O since sums are increasing.
In (C.1), the third term also reduces to 0. Moreover, changing variables to s’ = s + 1

+ (_l)l-i-l

+ (_1)/1+1 R
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and ¢’ = ¢ — 1 gives a sum that is similar to the second element of (C.2), up to extra
terms given by — the term for s’ = —1 and + the term for t' = 0, which cancel the
6th and 7th terms of (C.1). We proceed similarly for A > 0, where the second element
of (C.1) reduces to 0 using bubble 3-cells. Note that there is another critical branching
implying I" and on, given by putting a dot on top of the other upward oriented strand,
however this one would be proved confluent in a similar manner.

Critical branchings (F,,on 3—2) and (E;,ony,-2). Let us denote by onj_,
the following composition of 3-cells of g R®:

A A
% — gg} %
- +f>@
A
«(=1Dony 3, St \U L)Q
_— —+ A — .
J
VA

We then prove the critical branching (F), on, 3—») confluent modulo E as follows:

A {F/\:C;\}

{Sint,on—>, F)—Ax+B,}

A—1A-1 n+1 A
SYe G~ |

n=0r=0
r

where the 3-cell ¢} is the 3-cell defined in 5.5.1. Similarly, the critical branching
(Ej,onj p—2) is proved confluent modulo E as follows:

A {Ex. b4}

{Sint, (=1 *lony o, x—ony y—2, Ex—D+B,}

—-A-1 —A-1 \g'ﬂrl
’;) (_1)n+r Z —n—r—2 2 - (_1)A+1l /f/l ,

r=0
r

where the 3-cell bi is the 3-cell defined in 5.5.1.
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Critical branchings ((u;L o*2U 2,0)" * Fajy2,0n3 ;). Starting from here, whenever
we write A = B in the source of a branching between 3-cells f and e - g we take A

to be the source and B to be the result after applying e to A:

A A
A+2
X A
=3 (-1 O $ ,
Y n=0

= (_l)l-i-l

where
A+2
X = {0712, ni, —dc + Zuk,o},
n=0
Y = {(u%,o *2 u/\,O)_ “xFoio, (M/)k’() *2 MA,O)* . sil,/l-‘rZ’ Ci+2}~
and the 3-cell ), := (”I,o)* - Cy42 in g R® is defined as the first rewriting step in the

following *,-composition of rewriting steps of g R:

Uy o)*
D{A LW A
A+2 A+2
Qn_ll A (C.3)
n

C *
== S (pr TR LYy
n=0 n n=0

Introduce the shorthands
h(l’l) = IA 0 A+2—n—+* )
n

2(n) = 0 A+2—n+x 1\:

Then, the result of the top branch (and the critical branching) is Ziig (=D)"g(n).
In the bottom branch, the result after applying the steps up to and including

(u/A,O *2 uA,O)* is
A+1

h(O) =D Y (=" gn+r+1)

n=0r>0

‘We can write this as follows:

A+1
h(O) =Y "3 (=" g +r + 1) = h(0) - (ZZzg(ZZ) +Y gz + 1))
z>0

n=0r>0 z>1
=h(0) = Y 2z + D)gz) + Y (-1)'g(®).
z=0 >0
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Then,
h(0) = >z + 1)g(22) 222 .
z>0
so we have that
A+1
h(O) =D Y (=D gn+r+ LN = > (~1)'g()
n=0r>0 t>0

o/ A+2 A+2
Eas Z( 1) g(t)—Z( 1)’QHZI g

Critical branching (F,, ,.(14’)“'_2’0 *2 Uy42,0 *2 Yb %2 u;+2’0) - «Car+4). Con-
sider the critical branching

A X A+3 r
%G@ LR Ol s e
r=0s=0 K

with
A+4
— !/ —
X = {(”A+2,o *2 Up+2,0 *2 yb %3 ”A+2,0) “«Caga, +Up120" Z(‘U"On’{,
n=0

A+4
3 et
n=0
A+3
Y = {SIHL —Faga « Uy yp0%2a120) - Y > (=D 0n] SInt, y},

n=0r=>0

where the 3-cell 7, is defined in (C.3) and the 3-cell y in the bottom branch will be
defined in (C.6) below.
Let us denote by f(a, b) the monomial

fla,b) = ®+2—(a+b)+* 1\ 1\,1'

b

: A
Then, using Sy +2.A+2—a> We get

A2 i A2
S =D@b + 1) f(2b, a)% Z(—l)”T Qn_ll A (o%)
=0 n

a=05>0
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and thus in particular we get that there is rewriting sequence y := {na, Up+2,0

S;&+2,k+2—a} of g R® obtained from 7, and (C.5) as follows:
A2 ,
T L= (=D*@2b+ 1) f(2b.a)=0. (C.6)
a=05H>0

Note that, before applying the 3-cell y in the bottom branch, we have obtained the
polynomial

A+3
-1 A+1 n
(-1) D INEN S A
n=0r>0 —r4%* r
A+3 r—1 O
+ (_1)/1 Z ZZ(_I)S-l—sn-I—rn A_t;:__*n - (C.7)
n=0r>1s=0 n+r—1 r

We now show that the first summand of (C.7) cancels the third using the 3-cell y
from (C.6). Using the 3-cells ¢, to remove the terms containing bubbles of negative
degree, the last term reduces to

A+2A+2-n r
( l)/l Z Z Z( 1)s+sn+rn+nf(n +r—s, S)
n=0 r>0 s=0

A+2A+2—n A+2—n—r’

— (_l)l Z Z Z (_1)a+an+n+(k+2—n—r’)nf()t 12—/ —a, a)
n=0 r’'=0 a=0
A+2 A+2—a A+2—r'—a

— (_1)/1 Z Z Z (_1)a-i—an-i—(/l-{-Z—r’)nf()L +2-1 —a, a)

a=0 r’'=0 n=0

A+2 A+2—a A+2—r'—a
=DM Y vt -r—aa( Y (-perEem),
a=0 r’'=0 n=0

where we set 7’ = A +2 —n —r and s = a in the second equality and exchanged the
summation order in the third. Now, let &’ = A + 2 — a — r’. The previous expression
equals

A+2A42—a

DY Y D@ a)(Z( Dn¥").

a=0 p’'=0
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When &’ is odd, the n summation gives zero; but, when b’ is even, it gives a coefficient
b + 1. Keeping only the non-zero terms gives

A+2
—D* Y "> (=D*@b + 1) f(2b.a)
a=0h=0
so that
A+2A42—n r

(_1)/\ Z Z Z(_I)S-i-sn-i-rn-l-nf(n +r— S,S)

n=0 r>0 s=0
A+2

= (=D* YD (=D*@b + 1) f(2b.a).

a=05b>0

Therefore, after applying the 3-cell y from (C.6) to (C.7), only the second term
remains:

A+3 A+3 1

p R SN RRED W ILIARSANS [

n=0r>0 —r—+* r r=0s>0 s

agreeing with the result in (C.4) of the top branch, establishing that this critical
branching is confluent modulo E.

Critical branching (Ej, (uj) *x2 yb *2 ("A o)* A+2, o)» * T'1). Recalling the
definition of sideways crossings from 5.3, we describe a critical branching between
E) and (uy %2 yb x> (”;,0)* *2 ”)_t+2,0)* -y,

*o U,

= (_l)l-i-l

{x3}
—= (- + Y (= :
{Y} X, y,r>0 —x— y r—3

—A—1

X = {Ek, «Up 0" Z Z*ong, dc},

n=0 r>0

= {SInt, (4, *x2 yb *; (“;,0)* *2 u;+270)* -Ty, 2},

with
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where €2 is the rewriting sequence described below. The 3-cell €2 has source

DD Vi

r,s,t>0

+ Z(_l)r-f—s

r,s,t>0

—r—s—t—3

¥ e

The second term rewrites to O by either A

42 for A > =2 or cg+2 for A < —2. The

first term rewrites by E 45 to
A
=1 :

plus an extra sum which is reduced to

—A—3 n

3 Syt | e

n=0 k>0
= k
. .. / — !
via the rewriting sequence {xUj42,0 - 0N 1, (u“)) “xFat2 + €, }. Hence, first
term rewrites to

—A—3 "

(—1)* + 3 Syt | SR : (C.8)

n=0 k>0 "

For the third term, we use super isotopy and on, to move the s dots through the
sideways crossing and then move them below the ¢ dots to obtain

y b+t
—1)*tr X _1\rt+atbt—t a
2= O YD ISR
x,y,r=0 —X=V=r=3 4b,rt>0 —a—b—t-r—4
¥ e & er

and one can check that the second term of this cancels with the second term of C.8
once we apply bubble slides.

C.2. Critical branchings from odd s/(2)-relations

We prove that the critical branching between two 3-cells of the set {4,, By, Cy, D},
E,, F, Ty} are confluent modulo E.
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Aand C. For A <0,
A {Ay.chcl+bl}

——=0.

Ca

For A = 0,
A {40}
:0; ®A .
{Cocd-To}

78

For A > 0, the calculation is similar to the case A < 0, except A takes it to 0 instead

of Cj.
AandF. For A <0,

A
{42,020 Dj.b}}
B% ———— (—I)Au )
F)

For A = 0,
{40,b, Do, cl} U
—— .
Fo A
For A > 0,

B and D. For A < 0,
A {Bi.cj,ci+bl}
é

————=0.
D,

For A = 0,
L {Bo.bY)
—— X
{DOaC(l):IO}

: \\jl
A
{F,\,b;,ci,b}t,c)‘t}
—————=0.
A

For A > 0, we get a similar calculation as for A < 0 except B, takes it to O instead

of D,.
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EandF. For A <0,

(Ex. 02! Yra0 D))

T X

For A = 0,
Eo
— .
A Fy
For A > 0,

{Fr. X020 Xr=0 By}

s X

The other family of critical branchings with Fj and Ej; would be proved to be

confluent modulo E in a similar manner.

BandF. For A > 0,

B
—————= 0,
{Fy,b,.c},cl,bl}

For A = 0,
A
Fy A
_ >
% .
{Bo.b},Co.cl}
For A < 0,

Fy

ey

{Br, Y020 Cj.b1}
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E and D. For A > 0,

E;

D"\
{DA7Z§=OA/):’C/1\} A

For A < 0,
D,
—————=0.
{E;,cy,by,blcl}

Cand E. For A > 0,

A

A
i; (—1)’1\[\ .

{Cx, Xh—o B, cl}

For A = 0,
A A
Eo
————U
——9 .
{Co,c}, Bo,b}}
For A < 0,
A

1 1
{E)uc;l:b;“c)tsbk}

0.

Ca

Critical branching (T'), C,). We have

A
{Cx,0on5,1d+B), «(uy0) " Er}

(T, () ) 785 gt (B *2ch), (W) o) *2dc)}

Z(_l)n-‘r nr/_\J\OA—n—l .

n=0

80

Note that there is also a critical branching between Iy and D, given by attaching to

the source of I'y a rightward cup on bottom on the rightmost two strands. This one is

proven confluent in a similar manner.
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Critical branching (T',, F,). We have

A {Fa 1A+ 028 =0 (D" T onk, w(up 0)"Ex+«B}}

{Tx, 2}

A A—1 r
(—1)*% LYYy %n_l ,

n=0r>0 n A

where B i is the 3-cell that reduces the term

A—1 b
Sorrmon )
n=0r>0 a+b=n—1 A

into 0, as defined in Section 5.5.1. The 3-cell Q2 is defined as the following composi-
tion of g R-rewriting steps: when applying I'; we obtain the polynomial

A Z(_l)k-l—r—i—s-l-l .

r,s,t>0

. Z(_l)l+r+s+t t %

r,5,t>0 A

'
The third term reduces to 0 using the 3-cell D into 0 since s < A, the first term
reduces using {(*(M/A,O) *3 yb %5 (u;,o)_) -« Fj 42} into

A

(—n*

plus an extra term that one might check is cancelled by the term obtained from the sec-
ond summand when using super isotopies and making the r dots move to the bottom
of the crossing, so that it only remains the terms where the dots break the crossing,

b
Z(_l)s+k+b+(l+a+b)(a+z) 0 , t-:—SJ
—a—. 9
a,b,s,t>0 S—t—4

“ﬂ A

giving the summand
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and one checks that this reduces using bubble slide 3-cells S:l,n into the second term
of the final result. Note that there also is a critical branching between I") and E given
by attaching to the source of I'j a rightward crossing on bottom on the rightmost two
strands. This one would be proved confluent in a similar manner.

Critical branching (ig2,, s;'n ). We have

—1.
{S)T,Zn’ YrZ0ig2n—2ra}

2n+x*

. + _ .
{igan.a+2, Sy 2n—2¢e° S)hzg’ngH—Zr,A}

n—1n—r 2n—2r—24+x*
SSer+n | O Cyate

2n+1) —
2n r=0/¢=1 2r

where the last ig 3-cell in the bottom branch is only applied to terms without a
counter-clockwise bubble of positive degree. Note that there is a similar branching
between i gz, and r,, nA given by changing the upward strand to the right of the bub-
ble in the source of the last branching to a downward strand. This would be proved
confluent in a similar manner.
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