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ABSTRACT: A phase shift in the acoustic oscillations of cosmic microwave background (CMB)
spectra is a characteristic signature for the presence of non-photon radiation propagating
differently from photons, even when the radiation couples to the Standard Model particles
solely gravitationally. It is well-established that compared to the presence of free-streaming
radiation, CMB spectra shift to higher £-modes in the presence of self-interacting non-photon
radiation such as neutrinos and dark radiation. In this study, we further demonstrate that the
scattering of non-photon radiation with dark matter can further amplify this phase shift. We
show that when the energy density of the interacting radiation surpasses that of interacting
dark matter around matter-radiation equality, the phase shift enhancement is proportional to
the interacting dark matter abundance and remains insensitive to the radiation energy density.
Given the presence of dark matter-radiation interaction, this additional phase shift emerges
as a generic signature of models featuring an interacting dark sector or neutrino-dark matter
scattering. Using neutrino-dark matter scattering as an example, we numerically calculate
the amplified phase shift and offer an analytical interpretation of the result by modeling
photon and neutrino perturbations with coupled harmonic oscillators. This framework also
explains the phase shift contrast between self-interacting and free-streaming neutrinos. Fitting
models with neutrino-dark matter or dark radiation-dark matter interactions to CMB and
large-scale structure data, we validate the presence of the enhanced phase shift, affirmed by
the linear dependence observed between the preferred regions of the sound horizon angle 6,
and interacting dark matter abundance. An increased 6, and a suppressed matter power
spectrum is therefore a generic feature of models containing dark matter scattering with
abundant dark radiation.
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1 Introduction

Cosmology provides a distinct opportunity to investigate new physics with minimal interactions
with Standard Model (SM) particles. Whether the interaction is solely gravitational, the
existence of new particles with substantial energy density in the early universe can modify

the anisotropy of photons and baryons. This impact on the cosmic microwave background

(CMB) and large-scale structure (LSS) provides valuable insights into the propagation and

clustering behavior of these particles, shedding light on their interactions. The ability to

probe interactions between particles that couple weakly to the SM is crucial in studying

neutrino and dark sector physics. It is shown that an efficient neutrino self-scattering could



persist during the CMB time to modify temperature and polarization perturbations while
satisfying existing bounds from collider searches [1-5]. Dark sector models containing new
massless non-abelian gauge bosons [6-8] or dark photons interacting with other massless
dark sector particles [9] provide candidates for interacting DR that can also change the CMB
perturbations. The idea of self-interacting neutrinos and dark radiation has drawn much
attention in addressing the Hy problem [1-4, 10-13]

A phase shift in the acoustic oscillations of CMB spectra, compared to free-streaming
radiation scenarios, is a generic signature of these interacting radiation models [12, 14—-26]
Fluctuations in the radiation background, whether arising from cosmic neutrinos or dark
radiation, are known to induce phase shifts in the acoustic peaks of the CMB. Compared
to ACDM model without neutrinos, the presence of free-streaming neutrinos (or additional
free-streaming dark-radiation) shifts the phase towards lower ¢ modes, and the effect has
been observed in the Planck data [15, 27]. On the contrary, the acoustic peaks experience a
shift towards higher ¢ modes when the neutrino or additional dark radiation propagates as a
perfect fluid. As discussed in ref. [15], this phase shift in the CMB spectrum can only come
from two origins: either due to the different propagation sound speeds of radiations or due
to radiations carrying isocurvature perturbations. In models with adiabatic perturbations,
the limited origins of the phase shift make it a distinct signature for identifying radiations
with exotic propagation properties.

Beyond self-interactions, both dark radiation and neutrino exhibit delayed propagation
in presence of scattering with dark matter particles. Such interactions exist in scenarios
like interacting dark matter [6-9, 28-30] and atomic dark matter [31-46] models, often
proposed to address issues such as the Hy [47] and Sg [48-57] tensions, the Higgs hierarchy
problem, and similarity between the baryon and dark matter abundance [58, 59]. Similar
setups are considered for neutrino models featuring dark matter scatterings to also tackle
challenges like the Hubble tension and small-scale structure anomalies [19, 60-63]. While
existing cosmological discussions on these dark sector models predominantly focus on signals
such as additional light degrees of freedom AN.g or matter power spectrum suppression
due to the dark acoustic oscillation process [35, 64], we emphasize that the propagation
of interacting radiation within the dark matter medium also presents another distinctive
signal in the form of CMB phase shift.

In this study, we demonstrate that a loading effect from dark matter (DM) on radiation
propagation, akin to the baryon-loading effect that slows down the photon sound speed,
results in a positive shift in £-modes and surpasses that of self-interacting radiation scenario.
As we show, the phase shift corresponds to a larger sound horizon angle 65 from fitting the
CMB data. An observation of non-zero AN,g, a suppressed matter power spectrum (Sg),
and a larger 65 compared to the fit from the self-interacting radiation model will hint at
the presence of DM-dark radiation scattering. While previous studies such as refs. [19, 39]
have discussed the presence of a phase shift in models with radiation-DM scatterings, the
contribution from DM-loading, leading to an additional phase shift in these models, has been
overlooked. Here, we use the interacting neutrino scenario to observe the extra phase shift
due to the DM-loading effect, and the discussions on the parametric dependence of the signal
can be extended to scenarios with dark radiation-DM interactions.



By comparing results from full numerical calculations and semi-analytical approximations,
we demonstrate that the phase shift between interacting neutrinos with and without DM-
loading, referred to as DM-loading neutrinos (DL-v) and self-interacting neutrinos (SI-v),!
can be approximated by treating photon and neutrino perturbations as harmonic oscillators
coupled via gravity perturbations. This approximation reveals that the observed phase shift
arises from the slowing down of the neutrino sound speed due to DM-loading, with the shift’s
magnitude proportional to the scattering dark matter abundance. Detecting this additional
phase shift provides a means to measure the DM-loading effect and uncover the medium effect
on neutrino and dark radiation propagations. The analytical discussion of the DL-v phase shift
can also be applied to the phase difference between SI-v and free-streaming neutrino (FS-v),
offering a simple picture of coupled harmonic oscillators to explain the origin of the phase shift.

The paper is organized as follows. In section 2, we introduce the interacting neutrino
scenario with DM-loading and define its parameters. In section 3, using calculations from the
Cosmic Linear Anisotropy Solving System (CLASS) [65, 66], we illustrate examples of the phase
shift between DL-v and SI-v scenarios in the CMB TT and EE spectra. We demonstrate
the linear dependence of the phase shift on the interacting dark matter abundance and its
insensitivity to the interacting neutrino abundance. Section 4 explains how the evolutions
of photon and neutrino perturbations can be described by coupled harmonic oscillators,
providing insights into the origin and parametric dependence of the phase shift. We discuss
the generalization of the results to models with N secluded dark sectors with interacting DR.
In section 5, we conduct a Markov Chain Monte Carlo (MCMC) analysis, demonstrating that
the fitting result with current cosmological data does reveal a phase shift in the form of the
sound horizon angle 6, that linearly increases with the scattering dark matter abundance.
We conclude in section 6.

2 Interacting radiation with DM-loading

In general, a relativistic fluid can be formed in the dark sector from the efficient scattering of
dark radiation (DR) with dark matter. We aim to study how the presence of dark matter
interaction in such a fluid before recombination can produce an observable phase shift in
the CMB power spectrum, and derive a simple mechanism that captures the physics behind
this DM-loading effect.

As a concrete example of DM-loading effects, we study the DM-v interaction. Massless
neutrinos act identically as free-streaming DR as far as cosmological observables are concerned.
Therefore, for concreteness, we begin the discussion by focusing on a particular example
where neutrinos play the role of DR and introduce interaction with a fraction of dark matter.
Cosmology provides the best constraints on the DM-v interaction parameter for asymmetric
dark matter models through its effects on the CMB and matter power spectrum. In the
following, we will summarize the essential features of the interaction model.

In this work, by SI-v we mean all the neutrinos are coupled till today. This is equivalent to neutrinos
behaving as perfect-fluid. Although, if the neutrinos are coupled only till recombination we get a very similar
effect on CMB compared with SI-v. In the literature, SI-v sometimes refers to ‘Strongly-Interacting Neutrino
mode’ where, due to finite interaction strength, neutrinos are only coupled approximately till matter-radiation
equality (e.g. ref. [2]).



The DM-loading effects are also present in DM-DR scattering. As we will see later, the
effects of phase shift due to DM-loading are independent of the DR energy density. Thus
the effects are visible in the CMB even when a small amount of DR interacts with the dark
matter. Due to their similarities, the expressions given below for DM-v interactions are
also applicable to DM-DR interactions as well.

2.1 Models with DM-radiation interactions

Consider multi-component dark matter and neutrino sectors, where a fraction of the neutrinos
v scatters with a fraction of the dark matter y, with all remaining dark matter as cold dark
matter (CDM) and all remaining neutrinos free-streaming. The multi-component neutrino
sector serves as a proxy for either scattering DR in the presence of free-streaming neutrinos or
flavor-specific DM-Neutrino interaction. The fraction of interacting dark matter is quantified
by the parameter f, = p,/ppm where ppy = py + pcpm, while the fraction of interacting
neutrinos that participate in the scattering (out of the total radiation energy) is denoted
by f, = pi/(py + pv) where p, = p* + p is the total neutrino density consisting of both
scattering and free-streaming neutrinos. The strength of the coupling between y and the
interacting neutrinos v is quantified by the interaction parameter y, which will be defined
below. A schematic of this multi-component system is provided in figure 1.

In the case of multicomponent DR-DM interaction, f, still denotes the fraction of total
dark matter interacting with DR. The parameter f,, in that case, will denote fpgr which is the

ratio of the scattering DR energy density to the total radiation energy density. In summary,

pint
int % : v—DM
_ P _ P )yttt
fx = , fu= = v (2.1)
PDM Prad,tot PDR

m : DR — DM

Many beyond the Standard Model (BSM) scenarios involve interactions between dark
matter and SM neutrinos as has been discussed in the introduction. If such v-DM scattering
significantly alters neutrino propagation for redshift z < 10°, it can imprint a DM-loading
effect on the CMB spectrum. Our cosmological analysis will maintain a general approach to
v-DM scattering, avoiding focus on a particular BSM model. In appendix. A, we present a
specific example of v-DM scattering induced by a dimension-five operator (LH1x)/A [19, 67],
discussing the necessary mass and coupling for efficient scattering, along with associated
collider constraints.

The v-DM scattering rate can depend differently on the neutrino temperature 7,. For
concreteness, let us consider the case where the velocity averaged scattering cross-section
0 = (oyv) is independent of T}, [60, 67]. As is discussed in appendix A, the scenario can exist
if the mass difference between dark matter and the mediator that generates the scattering
is smaller than the neutrino temperature. In this case, the comoving v-DM scattering rate
(equivalently for DR-DM scattering) can be parameterized as,

FDR_DM = a0 fy (’)DM> — 2.4-10_2y( Ix ) (“’DM> ( i 4)2 Mpe!, (2.2)
- 0.01) \0.12 /) \4-10
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Figure 1. Schematic of multi-component dark matter and radiation system with interactions shown.
The interacting dark matter fraction f, of the total DM, and interacting neutrino (dark radiation)
fraction f, (fpr) of the total radiation are denoted.

where the interaction parameter y is defined as,

y= (Gefﬂ) (S’:XV) . (2.3)

This is related to the u, parameter often used in the dark matter neutrino interaction literature

by y = 17.08u, [19, 60-62, 67, 68]. CMB power spectrum at £ ~ 103 is mainly supported by
1

perturbation modes with comoving wavenumbers k;. ;93 ~ 0.1 Mpc™, which enter horizon

at comoving time kZ_Nlmg around z = 4 - 10*. The scattering remains efficient, meaning

’%DRfDng_NlmB 2> 1, if the cross-section and dark matter mass are below the GeV scale.
When discussing cosmological perturbations, we work in the conformal Newtonian gauge

where 1 and ¢ characterize the two scalar perturbations on the background metric [69]
ds* = a*(1)[—(1 + 2¢)dr* + (1 — 2¢)d;;dx'da?] (2.4)

where 7 denotes conformal time. We use H to denote the Hubble parameter in 7. The
Boltzmann equations describing the motion of the interacting v (will be denoted by the
subscript DR since those are equivalent systems) and x components resemble that of the
photons and baryons in fiducial cosmology.

. 4 .

OpR + 50pr —4¢ =0, (2.5)
. 1 _
Opr + k* (O’DR - 45DR> — k*¢ = kpr-pm(fpr — by) (2.6)

Fpr + 267—1—1(@ + 1) FpRre+1 — LFDRe-1) = wkpR-DMFDRe, (£ > 2) (2.7)



The overhead dot (') represents the derivative with respect to conformal time d/d7. opr =
dppR/PDR , DR = 62‘”]%1%7 and opgr are the density perturbation, velocity divergence, and
shear stress of DR, respectively. Fpr ¢ is the fth moment of DR perturbation. For the example
of the temperature-independent cross-section o that we are considering, the scattering rate
KADR—DM is given in eq. (2.2), and ay>2 = 1 if the scattering comes from a tree level scalar
mediator. On the other hand, the Boltzmann equations governing the interacting dark
matter perturbations are

Oy + 60y — 3¢ =0, (2.8)

4
PDR /.@DR—DM(OX — GDR) . (2.9)

Oy + 9 — k%0, — kP = —
3px

where ¢, < 1 represents the adiabatic sound speed of the non-relativistic x. CLASS computes
cy when generating power spectra, but we do not consider this sound speed in the semi-
analytical discussions in section 4.3.

The cosmologically relevant quantity from the DR-DM interaction model is the scatter-
ing rate which appears in the Boltzmann equations above. Similar to the photon-baryon
interaction in ACDM, this governs the rate of momentum transfer between particles and is
independent of the attractive or repulsive nature of the interaction.? The DR-DM scattering
is efficient to modify the DR perturbation when 7ipr_pMm 2 1. In the tightly coupled regime
TEDR—DM > 1, scattering events occur frequently enough compared to the Hubble rate
to maintain momentum equilibrium between the radiation and dark matter, so that the
radiation and dark matter perturbations have the same velocity divergence and propagate
together as a fluid. More specifically, the slip term Apr—_pm(fpr — 6y) dominates the Opr
equation, such that Opr ~ ¢, and the higher £ > 2 moments of the DR perturbation get
turned off. As in the standard treatment of baryon-photon plasma, we can approximate
the DR-DM system in the tightly coupled regime by re-writing the perturbation equations
into a second-order DR equation [70]

k? . Rpr . 4k?

0 — 4 =4 4 - — 2.10
pr + H 30+ Ron) DR = 4¢ + Hl—l—R o w (2.10)

75

T Rpp PR +
Here Rpr = 3py/4ppR, and the frequency divided by k can be identified as the sound
speed of tightly coupled fluid

2 1

S — 2.11
DR < 3(1 + Rpr) (2.11)

Just as the presence of baryons in the photon-baryon plasma led to a baryon loading effect that
suppressed the photon sound speed over time (with an increasing R, ), there is an analogous
suppression effect in the DL-v or DL-DR fluid due to the presence of p,. We therefore refer to
the Rpg suppression of the DR sound speed as dark-matter loading. As a reference case, we
will also consider the self-interacting SI-v and SI-DR cases which, in the efficient scattering
regime, can be interpreted as the f, — 0 limit of the DL-DR fluid with negligible DM-loading.

2For the particular DL-v interaction model considered in appendix. A, the interaction rate would be
proportional to the fourth power of the coupling and would thus be insensitive to the sign of coupling.



Model | Dark Matter Neutrinos DR (ANeg) | Radiation Scattering
1| ACDM CDM Free-Streaming — —
2| Slv CDM Int(f,) + FS — v self-interaction
3| DL-v |Int(fy)+ CDM | Int(f,) + FS — v interacting with DM
4 | SI-DR CDM Free-Streaming | Int(fpr) DR self-interaction
5 | DL-DR | Int(fy) + CDM | Free-Streaming | Int(fpr) | DR interacting with DM

Table 1. Summary of models, parameterized by the f, and f, (or fpr) fractions. Here, we denote
Int = “Interacting” and FS = “Free-Streaming”. Variations in the interaction parameter y will be
studied in section 5.4 for DL-v with later time decoupling. This work mainly focuses on the enhanced
phase shift between models 3 and 2, as well as between models 5 and 4. In general matter-loading
effects will enhance phase-shift where radiation is scattering with non-relativistic species compared to
self-scattering radiation with equivalent interaction strength.

In table 1, we summarize the models that are considered in this paper. Models 2-5
describe scenarios with non-photon radiation scattering. In the SI-x cases (models 2 and 4)
the scattering is coming only from the self-interaction of the radiation, while in the DL-x
cases (models 3 and 5) it is coming only from scattering with DM. These are compared
against model 1 when finding the phase shift with respect to the base ACDM model with
all v free-streaming. When isolating the phase shift enhancement due specifically to the
DM-loading effect in the scattering radiation fluid, we compare model 3 against model 2 for
the DL-v case and model 5 against model 4 for the DL-DR case.

For the DL-v discussion, we will first focus on very strongly interacting DL-v £pr_pm >
aH for the entirety of the neutrino evolution. Later, in the MCMC section, we will relax
this assumption and allow y (and hence ipr—_pnm) to vary. However, as will be seen later,
the effects of the DM-loading are still visible with DL-v decoupling at a later time. We also
show results for the DL-DR scenario from the MCMC study. An efficient DR-DM scattering
is easier to model build since all the dynamics occur in the dark sector, and there is no
coupling with SM besides gravity.

2.2 Implementation in CLASS

For numerical calculations, we use the built-in interacting DM-DR (‘idm__idr’) module in
CLASS to implement both the DL-v and DL-DR scenarios. This implementation is based on
an effective theory of structure formation, known as ETHOS [71].

We make use of the following ‘idm__idr’ parameters: firstly, the £ idm parameter
is the energy density ratio of the interacting dark matter component out of the total DM,
which corresponds directly to the dark matter fraction f, defined in eq. (2.1). In terms of
CLASS variables and using the ETHOS parametrization, N__ur is the number of free-streaming
radiation species, which is equal to the number of neutrinos in the base ACDM cosmology,
while N__idr is the amount of interacting DR. We use the N__idr parameter to denote the
interacting neutrino species for the DL- model and the interacting DR in the DM-DR model.
Since the radiation species in both cases do not have self-interaction, we set the self-interaction
parameter b__idr = 0. We treat the neutrinos to be massless and, therefore, they can be



described by either N__ur or N__idr when they have interaction. Since in the DL-v case
neutrino free-streaming properties get modified when neutrinos are relativistic, neutrino
mass has a negligible effect on the mechanism that we will be discussing. To implement the
DL-v system, we fix N__idr + N__ur = 3.046, the total number of neutrinos.> The ratio of
interacting neutrinos out of the total radiation energy is then parameterized by

Nﬁidl‘ ) P total

= : , 2.12
/ (N _idr + N_ur/ py + putotal ( )

where pytotal/ (P4 + Putotal) = 0.41 for N_idr + N_ur = 3.046. For the subsequent
implementation of the DL-DR system, the DR fraction is defined as

B N_idr PDR T Py total
forR =

‘ , 2.13
N_idr + 3.046 P~y + PDR + Py total ( )

where the SM free streaming neutrinos are fixed to N__ur = 3.046. The a_ idm_ dr
parameter in ETHOS corresponds to the scattering cross-section between the interacting
radiation and dark matter components in both DL-v and DM-DR. In the discussions of
section 3 and 4, we simply set the a_ idm__dr parameter to a very large value 10* — 109
to ensure efficient scattering for all time with no decoupling. For the subsequent MCMC
analysis in section 5, we also consider varying a__idm__dr where the DL-v system decouples
before recombination. We focus on the example with temperature-independent scattering
cross section and map the ETHOS parameters to egs. (2.2) and (2.3) as

a_idm_dr=1.13x10°, nindex_ idm_dr =2, alpha_idm_dr =1. (2.14)

The idr__nature flag determines whether the radiation component is free-streaming
or propagates as a perfect fluid. We set this to free-streaming for both the DL-v and
DM-DR scattering cases so that the effects come only from the scattering with DM. We
set the choice to fluid only when implementing the purely self-interacting radiation fluid
case, whether this is composed of v in the SI-v scenario or of DR in the SI-DR scenario.
For this pure radiation reference case, we additionally set a_ idm_ dr = 0. Finally, we
use the fixed ACDM parameters

(10005, wp, Wedm, 107 Ag, 1, Treio) = (1.0453, 0.02238, 0.1201, 2.1006, 0.9661, 0.05431)
(2.15)
when studying the origin of the phase shift in section 3 and 4 and will allow the parameters
to flow when performing the MCMC study in section 5.

3 Enhanced phase shift: numerical calculations

In this section, we show the results of CMB phase shift between the DL-v and SI-v models
obtained from CLASS and discuss the parametric dependence of the phase shift result. We
will discuss the origin of the phase shift and explain the parametric dependence of the
result in section 4.

3Recent studies have found the contribution of the SM neutrinos to the relativistic degrees of freedom to
be 3.044 [72-75]. This difference will have no impact on our results.



3.1 Locating acoustic peak positions

To quantify the phase shift in the calculated CMB power spectrum, we determine how the
positions of the acoustic peaks change relative to different models (ACDM, DL-v, or SI-v).
However, one difficulty in extracting the location of acoustic peaks in either DET’EE spectra
or the transfer function 7 (k) is that the diffusion damping, together with the discrete £
and k points output from CLASS, makes it tricky to determine the peak location at high ¢
(or high k) with precision ¢ ~ 1 (6k ~ 107> Mpc™1) for seeing the signal. We hence need

to implement the following scheme to fit the peak locations:

1. For DETT’EE, we include the lensing correction in the spectra when finding the peak
locations. Since £ is an integer, the digitized peak positions are found by searching for
the values of ¢ that correspond to local maxima in the D,’s, with the condition that
these points be larger than all other points within an interval of [¢ — 10, ¢ + 10]. As the
peak structure gets less well-defined at larger £’s due to diffusion damping, the positions
of the larger ¢ peaks are excluded as unreliable. The resulting shift in peak positions A/,
which are only resolved up to integer level, may experience some numerical fluctuation
due to rounding uncertainty. Instead of looking at the individual A¢ points, we analyze
the mean and standard deviation of several points to quantify the average phase shift
in the D;’s for each model for the high-¢ peaks. Further investigation of the phase shift
signal would involve fitting the CMB spectra with a template designed to capture the
shifts in ¢-peaks [76], which we leave for future work.

2. The peak structure of the photon transfer function 7 (k) allows us to monitor the
generation of photon phase shift at different redshifts and is important for understanding
the origin of the phase shift. We adjust the CLASS settings to ensure a high density
of points for the T, (k) output. However, due to the limitation of the computation
time, we can only obtain the spectrum down to step size Ak ~ 2 x 10_4k:p, where
k, represents the peak location, and find the precise peak positions by fitting with a
Gaussian function f(k) = Aexp(—(k — kp)?/202) + b. The fitting is done over a range
of 100 to 400 points on each side of the maxima to extract the mean value k, as the
true peak position — as many points as possible are included in the fit to obtain a
symmetric profile for the peak region while aiming for the variance in the fitting of the
mean to satisfy a threshold of |/Var[k,]/k, < 1075 — 10754 As damping at larger k
smears out the peak structure, the Gaussian fit for the larger k-peaks with k7 2> 45 is
excluded as unreliable.

3.2 Phase shift enhancement in the CMB power spectra

In figure 2, we show the A/ shift for each acoustic peak in the lensed D} (circle) and
DFE (triangle) spectra of the SI-v (blue) and DL-v scenarios compared to the ACDM model.
Among the total neutrino number 3.046, we assume either one-third (labeled as 1v), two-
thirds (labeled as 2v), or all of the neutrinos (labeled as 3v) are interacting. We see certain
general features in the CMB phase shift by plotting the Af’s as a function of the ACDM

“Here we define Var[k,] as the diagonal element of the covariant matrix for the mean value of the Gaussian,
obtained as an output from fitting with scipy curve__fit in Python [77].
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Figure 2. CMB phase shift enhancement from CLASS for one (upper) and two (lower) species of
scattering neutrinos. The A/ shift in peaks in the DI (circle) and DFF (triangle) lensed spectra
for SI-v (blue) and f, = 2.5% DL-v (orange) fluids were taken with respect to ACDM, where ¢ is
an integer. Lines connecting the points have been provided to help guide the eye, but should not be
directly interpreted as having physical meaning due to the integer-level rounding fluctuations of the
points. For the five peaks larger than ¢ = 1250 (black vertical line), the asymptotic mean (“asymp
mean”) Al and standard deviation o of the Af’s in the deep radiation era were calculated. The
Al + 10 band was plotted for each case.
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f,-dependence of DM-loaded enhancement in AZ
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Figure 5. f,-dependence of the A¢ enhancement on top of SI-v (f, = 0) for respective numbers
of scattering v’s, where A/ is the mean value of the A¢’s for the five peaks larger than ¢ = 1250.
Error bars correspond to the standard deviation og;g in the differences between the computed Af’s,
quantifying the relative integer rounding fluctuation of points with respect to SI-v. A linear fit to the
first 5-7 points in f, is provided for each f,.

peak positions in £. First, in both interacting neutrino models, there is a positive Af that
grows with £ across both the D?T and DgEE spectra, indicating that there is a phase shift to
higher /-modes from neutrino scattering. The phase shift gets more pronounced for modes
entering the horizon deeper in the radiation era.

Conversely, Al goes to zero as £ goes to zero, which is to be expected since the low-£
modes only enter the horizon in the deep matter-dominated era. At this time, the metric
perturbations would be dominated by non-oscillating contributions coming from the clumping
of cold dark matter, making the contributions of the SI-v and DL-v acoustic oscillations to the
metric negligible in comparison. We do not have a clear analytic understanding of the interim
period between the deep radiation domination and deep matter domination eras, although
we can reasonably expect the A/ values to interpolate between the two extremes. We see
this in the full CLASS result (which remain valid in the interim period) where A/ steadily
declines as we go from larger to smaller £ modes. To study the phase shift in Dy, we focus
on the deep radiation era and consider only Af values for larger ¢ modes, as this is where
analytical understanding is feasible and numerical calculations show the largest phase shift.

As shown in figures 2 and 3, when comparing models with the same number of scattering
neutrinos, there is a noticeable positive A¢ enhancement from the DL-v model (orange) on
top of the SI-v (blue). We show this additional ¢-peak shift in figure 4, which increases
with the fraction of interacting dark matter f, and continues to grow for f, > 15% when
the sound speed of the DL-v is slower than the photon sound speed. We will discuss the
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relationship between neutrino sound speed and phase shift in section 4.1. To better quantify
this additional A/ shift produced in the deep radiation-dominated era, we focus on the
modes ¢ > 1250 (black vertical line) mainly contributed by perturbations entering the horizon
before matter density becomes significant. To account for numerical fluctuations due to the
integer-level rounding of the peak positions, we average the shift A¢ of the larger ¢ peaks
(¢ > 1250) and obtain the standard deviation o of the A points about this average. The
significance of this effect is indicated by the separation of the +1¢ bands in figure 2.

In figure 5, we show the average and standard deviation of DL-v’s A/ shift relative to the
SI-v case against f,, where f, = 0 corresponds to the SI-v case. A clear linear dependence of
the average Al in [y is observed until f, gets larger ~ 6%. However, as we show in section 5,
current CMB data favors f, < 1%, restricting us to the regime where the interacting neutrino
density dominates over the interacting dark matter density around matter-radiation equality,
and the linear dependence in f, holds well. Despite an increasing fraction of interacting
neutrinos f, leading to a larger phase shift compared to the ACDM model (figure 2 and 3),
the additional phase shift compared to the SI-» model remains insensitive to the fraction
of interacting neutrinos (figure 5) in this regime.

4 Enhanced phase shift: analytic understanding

By solving the Boltzmann equations, we find that neutrino-DM scattering further shifts the
acoustic oscillation peaks to higher /-modes. In this section, we show that the mechanism
underlying the DM-induced phase shift can be explained by coupled harmonic oscillators
between photon and neutrino perturbations. This insight helps us to understand the linear
dependence on f, and the insensitivity to f, in the additional phase shift.

As we explain below, the phase shift is determined by perturbation evolution right after
horizon re-entry. For perturbations with ¢ > 103, we can assume a radiation-dominated
Universe in the following discussion.

4.1 Sound speeds of the cosmic fluids

Earlier studies on the CMB phase shift [14, 15] have shown that a phase shift is generated
in the photon fluid if we have non-photon radiation with sound speed larger than photons,
or if the radiation carries isocurvature fluctuations. These earlier studies were done in the
context of a radiation-dominated universe with negligible matter content. In this paper, we
focus on adiabatic fluctuations and consider the phase shift due to the propagation behavior
of radiation inside the horizon when matter-loading effects are taken into account. The
key quantity of interest is the adiabatic sound speed CZ = 0P,;/0p, describing the speed at
which the fluctuations propagate, where g is a general index that may denote any particular
component or combination of components. This can be related to the equation of state
wg = P;/pg by the general relation [78]:

dwg Wg

2
_ = w, — . 4.1
=T P T YT S+ wy) (4.1

In a radiation-dominated universe, the overall equation of state is a constant w = 1/3.
The total sound speed reduces to ¢> = w and ref. [15] shows that there is no phase shift
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Sound Speeds of Tightly Coupled Fluids
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Figure 6. Illustration of the time-dependence of the tightly-coupled radiation sound speeds in the
presence of matter loading. The curves were obtained using the sound speed formula (2.11) and the
background densities from CLASS for all neutrinos scattering and a range of f,. The corresponding

sound speed of the photon-baryon plasma c2

S is included for reference.

if 2 < c%. In a universe containing both radiation and matter, w would instead exhibit
a time-dependence:

_ 1 prad o 1 1
W=7 - 5 )
3 Ptotal 3 1+ a(r)

Qeq

(4.2)

where aeq is the scale factor at matter-radiation equilibrium. This results in a non-zero w
and the total sound speed becomes:

(4.3)

While ¢2 = w holds true only at a(7) < aeq, time evolution due to the presence of matter
in the background leads us into the c? # w regime discussed in ref. [15] where a phase shift
can be generated, albeit without isocurvature.

To understand the mechanism behind the phase shift effect we obtained from CLASS, it
is important to consider the relative sizes of the individual radiation sound speeds. Applying
eq. (4.1) to a cosmic fluid consisting of tightly coupled radiation and matter components
yields the sound speed formula (2.11) from before. The 7-dependence of the sound speed
for various tightly coupled fluids can be obtained by plugging in the background densities
from CLASS into the energy ratio in eq. (2.11), with R, = 3py/4p, for the photon-baryon
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plasma and R, = 3p,/4p, for the efficiently scattering DL-v fluid. These are plotted in
figure 6 for a range of f, for 7 < 120 Mpc when the tight-coupling approximation for the
photon-baryon plasma holds well.

As expected, the DL-v fluids exhibit a DM-loaded suppression in the sound speed over
time compared to the pure SI-v fluid (purple dash-dotted line). For the fraction of scattering
dark matter f, < 10%, the sound speeds follow the order:

DL—v SI—v
v

ey <Dl < S < B (4.4)
where 31 = 1//3 for the SI-v fluid with zero DM-loading.? Notably, the ordering in the
neutrino sound speeds ¢, coincides with the relative sizes of the phase shift calculated in
section 3, with slower sound speeds corresponding to larger positive shifts in /. Comparing
figures 4 and 6, the phase shift induced by DM-loading continues to rise for f, 2 15%, even
when the corresponding DL-v sound speed now follows the ordering c21—" < ¢y. While this
implies that the total sound speed c¢; < ¢y in the absence of any other radiation component,

we reiterate that this is not in contradiction with the discussion in ref. [15] since ¢2 # w.

4.2 A toy model analysis

To obtain a qualitative understanding of the enhanced phase shift, we construct a toy model
mimicking the evolution of photon and neutrino perturbations from the CLASS calculation.
We first examine the scenario where all neutrinos undergo scattering with a fraction of DM,
then discuss the case where some neutrinos remain free-streaming.

The temperature perturbation of photons 07/ T7 results from a combination of energy
density perturbation 6, = dp,/p, and metric perturbation ¢. However, in the radiation-
dominated era, ¢ decays upon entering the horizon and contributes significantly less to
temperature perturbations, especially for the high-¢ modes we are considering. As a result,
we can simplify the discussion by focusing on d, instead of the gauge invariant 677 /Tv- As
we discussed in more details in appendix. B, under the tight coupling approximation, the
perturbations of fluids in the v — b and DL-v (or SI-v) systems can be described by a pair
of gravitationally coupled oscillators

. 2

(1) + B8 () = T8 () + )] (4.5)
. 2 i

) + R = fﬁ) [£0(7) + £,3,(7)]. (46)

c4,» are the photon and neutrino sound speeds c%’l, = [B(1+ R, (7))~ with

3 foa(r)
4 fy aeq

5Beginning at horizon re-entry, the evolution of the FS-v perturbation diverges from that of the SI-v

fom a(7)

fv Geq .

Ry (7) = R() =2, (4.7)

perturbation as the shear perturbation begins to grow. In section 4.3, we will show that the sound speed
cES7" in the FR-v perturbation equation starts around ~ 1/4/3 at horizon re-entry and accelerates to ~ 1

through diffusion damping.
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fi = pi/praa for i = v,v, and f; = p;/pm for i = b, DM, are the background density ratios
of the components in the radiation and matter respectively. The background density ratios
fi were taken from the CLASS background output. To the two decimal places, they are
fom = 0.84, f, = 0.16, f, = 0.59 and f, = 0.41 for all neutrinos scattering. Eqs. (4.5)
and (4.6) are derived based on four assumptions described below that offer reasonable
approximations of 4., evolution right after horizon re-entry. This is when ¢, obtains a phase
shift, as we will show. The coupled oscillators can effectively reproduce several qualitative
features observed in the CLASS results. Nevertheless, these approximations have limitations,
and deviations between this toy model and the CLASS results are to be expected.

o (Assumption 1) The system does not contain free-streaming radiation, hence there is
no anisotropic stress and metric perturbations ¢ = . The toy model cannot capture
diffusion-damping effects in the CMB, especially near recombination, where photon
and baryon perturbations decouple from each other starting from the higher k-modes.
Deviations from CLASS are hence anticipated near recombination. When considering
some neutrinos as free-streaming, as discussed at the end of section 4.3, since the shear
perturbation ¢ has not undergone significant growth in the early evolution, the toy
model still captures the main features of the full result that we focus on.

o (Assumption 2) The matter loading gives a minor correction to photon and neutrino
propagation, with R, , < 1 when a perturbation mode enters the horizon. This
condition holds true for the perturbation modes we consider when f, < f, at matter-
radiation equality. This assumption allows for the neglect of Hubble damping and
simplification of the Einstein equations, as discussed in appendix B.

o (Assumption 3) The toy model focuses on the evolution of perturbations inside the
horizon (k7 > 1), where ¢ o 772 holds in the radiation-dominated era. It does not
accurately represent the behavior close to horizon re-entry (k7 < 1), leading to expected
deviations from CLASS for the location of low-k peaks.

e (Assumption 4) The energy density perturbation is dominated by photons and
neutrinos, a valid approximation for modes entering the horizon during the radiation-
dominated era. This assumption simplifies the setup as a closed system with 4, ,.
However, the toy model cannot capture contributions to the phase shift arising from
dark matter acoustic oscillations (DAQO), which become more pronounced at later
times. Consequently, the toy model can underestimate the phase shift compared to the
CLASS result, with the underestimation amplifying over time and with increasing f,/f,.
In this work, we concentrate on scenarios where f,/f, < 1 until recombination, and
the DAO produce a minor correction to the phase shift.

To validate the toy model, we compare the phase shift in d, (k) with the results obtained
from CLASS using Hubble expansion rates and energy densities p; (i = 7,v,b,DM) from
CLASS output. We set the initial conditions 6., () = 1 and 57,,,(7@-”) =0 for k7j, = 1 to
approximate the CLASS perturbations starting from horizon re-entry. When studying the phase
shift signal, the choice of initial conditions only determines the initial amplitude and phase of
the oscillation, which is identical among DL-v and SI-v scenarios. The difference in the phase
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Figure 7. CLASS (solid) vs toy model (dotted) comparison of Ak for f, = 1.25% (blue) and
2.5% (orange) DL-v with respect to SI-v for 3 scattering neutrinos in the radiation-dominant era
(1 &~ 40 Mpc). The peak locations of the toy model (cross points) lie within +10% of the peaks from
CLASS (solid dots), as demarcated by the grey vertical bands.

shift is therefore insensitive to the choice of initial conditions. To obtain transfer functions
in k modes, we solve the toy model across a range of k-values, evaluating until redshifts
z, = 10800, 3400, and 1070, corresponding to the deep radiation-dominated era (7 ~ 40 Mpc),
the matter-radiation equality (7 ~ 113 Mpc), and recombination (7 &~ 280 Mpc), respectively.
The transfer function is obtained from 6. (7(2,)) values over k.

In figures 7 and 8, we present the shift of 0, (k) peaks relative to the scattering neutrino
scenario (fy = 0 and ¢2 = 1), calculated by the toy model (dotted) with f, = 1.25% (blue)
and 2.5% (orange). For comparison, we include results from the CLASS calculation (solid),
with connected points for visual clarity. The toy model predicts peak positions within +10%
deviation from the respective CLASS peaks in all cases (shown as the grey vertical bands).
This discrepancy mainly arises from the initial evolution of the metric perturbation ¢ and the
neglect of matter perturbations (Assumptions 3 & 4), which affect the time-dependence of
¢ and hence the d, oscillations in the complete Boltzmann equations. However, since we are
only concerned with the relative phase shift between DL-v and SI-v scenarios, deviations in
the peak locations relative to CLASS that appear in both scenarios, in the same way, would
cancel and hence do not matter to the discussion.

The toy model solution reasonably approximates the enhanced phase shift obtained in
the full result, demonstrating a linear dependence on f, and insensitivity to f, as in figure 9.

5The deviation in the peak location is consistent with the discussion in ref. [70], where an analytic
approximation of the acoustic oscillations obtained by ignoring contributions from the time-dependence of ¢
predicted peak locations at higher k-modes that lie within 10% from the full numerical solution.
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Figure 8. Same as figure 7 but with 7 =~ 110 Mpc at matter-radiation equality (upper) and
T & 280 Mpc at recombination (lower).
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Toy Model f,-dependence at z = 10800 (Kpeak = 0.43/Mpc)
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Figure 9. Toy model fy-dependence of the shift in the peak at k ~ 0.43/Mpc, obtained in the
radiation-dominant era (7 = 40 Mpc) for different numbers of scattering neutrinos. The lines were
obtained by varying f, continuously from 0 — 5% (no linear fit).

As expected from (Assumption 3), the toy model does not replicate the horizon entry
behavior precisely enough to reproduce low-k modes’ phase shift to the Ak/kpeax ~ 10~°
level precision. We therefore only consider dk results starting from the second oscillation peak
in 7 so that the perturbation modes fully enter the horizon. (Assumption 4) also suggests
increasing deviations between toy model and CLASS at later times, exacerbated for larger f,.
At recombination, a deviation grows with k, as anticipated from (Assumption 1). We leave
additional plots for the DL-v scenarios with one and two interacting neutrinos in appendix. C.

Given the toy model’s reasonable approximation and simultaneous reproduction of f,
and f, dependence, it serves for analytical understanding of the full result.

4.3 Parametric dependence from the toy model analysis

Eqgs. (4.5) and (4.6) describe two harmonic oscillators d, and J,, with natural frequencies kc,
and kc, and couple to each other via gravitational interaction

AHA (1) 4
1420 7 21+ )

Geq Teq

Fdriv (7—)

(4.8)

with H = 77! for being in the deep radiation-dominated era. To focus on the parametric
dependence on f, for the DM-loading effect, we ignore baryon-loading (fy/f, < 1) in ¢,
to simplify the discussion, such that cg = % While baryon-loading changes ¢, oscillation
and corrects its peak positions, the resulting phase shift shows up equally in the DL-v and
SI-v scenarios. When comparing phase shifts between the two scenarios, the baryon-loading
corrections cancel out, leaving the enhanced phase shift that we focus on.
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Figure 10. Evolution of the photon transfer function from CLASS calculations, comparing the
free-streaming neutrino scenario (black) to the DL-v scenario with f, = 0.1 (red). Perturbations grow
mildly outside the horizon (grey region). The two curves evolve similarly when ke, < 2 (eq. (4.8),

green region) until perturbations begin oscillating around the peak in the white region. ATs keyt > 2
(yellow), oscillations resemble freely propagating waves. The blue curve represents a plane wave fit to
the DL-v curve in the yellow region, characterized by a constant w = 0‘—937/{. The phase shift between
the black and red curves is determined within the white time window, where the driving force Fyyiy(7)
approaches kQC?W. Vertical lines mark peak locations in the DL-v (red) and free-streaming (black)
scenarios, showing a positive phase shift in the DL-v curve.

Considering small DM-loading with f, < f, (Assumption 2), or equivalently p, < p,
at matter-radiation equality, we have ¢, = ¢, — dc, where

cy(7)

de(r) = RV(T)m

L Cy. (4.9)
DM-loading slows down ¢, as the universe expands, which drives the oscillation frequencies
between 4, and J, apart over time. As depicted in figure 10 obtained using CLASS, the
evolution of the photon’s transfer function unfolds in three steps. Initially, the perturbations
only grow mildly before fully entering the horizon (grey region). Between k7 ~ 1 and
kcyT = 2 (green region), the perturbations start to grow, and the evolutions of 4, , are
governed by the same gravitational interaction Fg,iv(7) in egs. (4.5) and (4.6). This gives
identical evolution for all fluids, whether neutrinos are free-streaming or interacting with or
without DM-loading. Conversely, gravitational interaction becomes negligible as kcy7 > 2
(yellow region), and 6., oscillates with their natural frequencies kc, . There is no further
change in the phase shift upon this point. As a result, we can fit the oscillation frequency
and phase in the interacting neutrino scenario with constants (blue curve). As depicted in
the white region, 6, with DM-loading (red) develops a positive phase shift compared to the
free-streaming neutrino case (black) when kc,7 ~ 2.
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In the radiation-dominated era, Fyy & kQCg happens when ke, 7 & 2[1 — (kcyTeq) 1)
Since the decoupling of the driving force Fy,y(7) happens right after this time scale, to
simplify the discussion, we define a fixed O(1) number « such that the phase shift is fixed
around time 7,

keyTo = 20 (1 _ ) . (4.10)
CyTeq
As discussed in appendix B, we find a = 1.5 by matching the oscillation phase of the numerical
solutions of eqgs. (4.5) and (4.6) to harmonic oscillator solutions. Given 7eq ~ 110 Mpc, when
considering modes with k = O(0.1) Mpc~!, the k-dependent term in the parenthesis only
introduces an O(10)% percent level correction to the result. The interplay between the
weakening of Fy,iy and the growth of dc dictates the evolution of the phase shift. Despite the
toy model offering a more concise approximation of the CLASS result, the time-dependence in
Fayiv(7) and d¢(7) still complicates obtaining analytical insights on the parametric dependence
of the phase shift. To further simplify the system, we exploit the fact that at the timescale 7,
we focus on, both the changing rate of ’Fdriv [Faiv| =75t = (204)*1ch and the difference in
the oscillation frequency kdc are slower than the natural oscillation frequency ~ kcy. We then
assume Fg,iy and kdc to be constants in time when deriving corrections to the 4, oscillation.
While this assumption is somewhat crude, given that 7! is not significantly smaller than
kc,, it serves as a useful approximation for identifying the parametric dependence of the
phase shift from otherwise intricate equations.

In the SI-v scenario (6¢c = 0), eqs. (4.5) and (4.6) around 7, can be approximated as’

Oy(k,7) =0y (k,7) = cos(wT), w=kcy. (4.11)

See appendix B for more discussions. Once the neutrino sound speed decreases due to
DM-loading, dc slows down the neutrino’s oscillation frequency to w — kdc, hence altering
the driving force of the photon oscillation:

Fariv [fy cos(wT) + f, cos((w — kdc)T)] = Fariv [cos(wT) + fuk deTsin(wT)] . (4.12)

We use f, + f, =1 and the small angle approximation, incorporating sin(kdcr) ~ kdcr in
the second equation. As the oscillation from kdc is much slower than w, we treat kT = k7,
as static. The presence of the sin(w7) oscillation generates a phase shift cos(wr + Adioad)
to the initially cosinusoidal driving force with

2
Adload ~ —fy <56) 20 (1 _ ! ) _ 32 fou (1 ! ) = < . (4.13)
Y

Cy kcyTeq kcyTeq kcyTeq cy+ )

where we use the correction to the sound speed in eq. (4.9). When absorbing the angle
as a shift to the oscillation, the solution cos(wT + Agipaq) still satisfies eq. (4.5) under the

"As discussed below eq. (B.8), the approximation should come with an initial phase ¢in = 2a +
tan~! (%ﬁ) in the oscillation. The phase is determined by matching the initial power-law solution

of eq. (4.5), when Fyyiv > kQng, to the cosine solution starting at 7. Given our interest solely in the phase
difference among different models, the overall phase ¢i, becomes irrelevant for comparison. We hence omit ¢in

in the subsequent discussion and concentrate on the additional phase generated from DM-loading.
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Toy Model Ak for 3 v Scattering at z=10800: Large k
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Figure 11. Toy model: large k dependence of Ak for f, = 1.25% (blue) and 2.5% (orange) DL-v with
respect to SI-v for 3 scattering neutrinos. Points are obtained by solving the toy model numerically up
to k = 100/Mpc at redshift z = 10800. Functions A/(k+ a) —b, where A, a,b are constant parameters,
are plotted to show the inverse k dependence at large k.

approximation of static Fyyy and c¢,. The phase shift becomes

~ 3a2fDM fx o 1 3 afDM

Mo =g RO am (2 2R

When considering modes with k& = 0(0.1) Mpc~!, the estimate gives a phase shift between
DL-v vs. SI-v with size A¢jpaq ~ —0.1f,, and the shift of the k pole a ~ 1072 Mpc~!.

At a later time 7, the acoustic peaks in the perfect fluid scenario exist when wr =~

(4.14)

kpeakcyT = nm. In the radiation-dominated era, the peak location in k& obtains a positive
shift with size

Sk~ —Adioad _ 307 fom [y
4T 2¢27eq (k+a)T

~ 0.07f, (k7)™ Mpc™* (4.15)

if taking o = 1.5 in the last expression. Considering comoving time and wave number with
kT ~ 30 in figure 7, the estimated 6k ~ 2 x 1073 fx Mpc~! aligns with the order of magnitude
of the CLASS results (solid curves). Although in the analytical approximation we treat the
photon sound speed ¢, in eq. (4.15) as a constant at later times, it decreases by about 10%
from the deep radiation-dominated era to 7.y in the CLASS calculation. We hence expect 6k
to increase over time by = 20% when comparing results with the same k7 between figures 7
and 8.Nevertheless, the estimate from eq. (4.15) effectively captures the order of magnitude
for 0k and explains the linear dependence on f,.

The k~! dependence in eq. (4.15) suggests a decoupling limit for 6k to vanish at large k.
This limit is anticipated because dc is smaller at an earlier time when a perturbation mode
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with higher k enters the horizon. While it is challenging to obtain ¢k from CLASS for large
enough k-modes due to the severe diffusion damping of ¢, the toy model provides a glimpse
of the k-suppression. In figure 11, we show the phase shift obtained by numerically solving the
toy model at 7 = 40 Mpc for large k-modes, and the 6k o< (k + a)~! dependence in eq. (4.15)
does capture the suppression pattern of the phase shift. Our analytical approximation
does not reproduce the oscillation in the phase shift. We suspect it comes from the time
dependence in c,(7) since the oscillations disappear when setting c, as a constant. We leave
a more detailed understanding of the large-k dependence for future work. Considering CMB
measurements, we also do not anticipate observing the phase shift at such large k-modes.

In the flat-sky approximation, the shift in the acoustic peaks of CZT’EE spectra is related
to the k-modes as 00/Alpeax = 0k/Akpear =~ % v» where Alpear and Akpeax are the
distance between oscillation peaks at recombination. For modes entering the horizon in
the radiation-dominated era, Alpeax ~ 330, our analytical estimate gives 6¢ ~ 120f, with
k =~ 0.1 Mpc™!, which is not far from fitting the CLASS result ¢ ~ 80(1 & 0.5) f, in figure 5.

When considering scenarios where only a fraction fi" of neutrinos are interacting, and
fs fraction are free-streaming (with fi"* + £ = £}, the modified driving force for photon
oscillation is given by:

Fariv {fVA cos(wr) + f A cos(DineT) + f,fSA COS((I}fST)} , (4.16)

where @it &~ w — kdc as before. The free-streaming neutrino has &g — 1 at later evolution,
significantly different from the w of interacting radiation. However, as illustrated in figure 12,
before §, (orange) reaches its first oscillation peak at kc, 7 ~ 7, the shear o, (red dotted) has
not increased significantly. The diffusion damping has not started yet, and &g ~ w. Since
the phase shift is also fixed right before kc, 7, = 2a =~ m, we can write Qg = w + dwg with
w > dwgs > 0. The driving force around the 7, time we consider approximates

FyivA [COS(&)T) + (finth Ge — 36w 0 sin(m')} (4.17)

with f, + f, = 1. When considering the phase shift between DL-v and SI-v with the
same fraction fi™ of interacting neutrinos, the phase shift from fSdwg cancels out, and the
enhanced phase shift is still approximated as eq. (4.12) if f,, < fi"*. The phase shift between
the two scenarios therefore remains insensitive to fI" as shown in figures 5 and 9. Applying
the same approximation, the phase shift of FS-v compared to SI-v, commonly discussed in
the literature, can be approximated as cos(wT 4+ Agiyt) for an initially cosinusodial wave with

Adint ~ @ (MS) 5 —00.1) x f5. (4.18)
ke,
This FS-v shift is in the opposite direction compared to the DL-v shift in eq. (4.14). In
the second equality we use the fact that a ~ 1.5, w =~ ke¢,, and (dwg/w) = O(0.1) from
the numerical solution depicted in figure 12. This linear dependence is similar to the
approximation A¢iy; ~ 0.1917f% derived in [15], up to first order in f&. However, to
determine the pre-factor, a more precise estimation of dwg from the diffusion damping process
is necessary, as discussed in refs. [14, 15].
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FS-v vs Sl-v Perturbations for k = 0.1 [1/Mpc]
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FS-v vs Sl-v Perturbations for k = 0.2 [1/Mpc]
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Figure 12. CLASS: evolution of §, perturbations in conformal time for FS-v and SI-v at two different
k-modes, with k£ = 0.1/Mpc on the top and k = 0.2/Mpc below. For comparison, the dipole 8, /k and
shear o, for FS-v are included.

4.4 Phase shift from N-copies of DR-DM system

DR-DM scattering has been extensively explored in studies of dark sector cosmology. Our
analysis of the phase shift in the DL-v scenario is readily applicable to these DR-DM models.
In this context, one can substitute fi™ in eq. (4.16) with f3lt = pis% /(py + Pl + PR,
representing the fraction of interacting DR. The enhanced phase shift due to DM-loading
emerges as a generic feature across dark sector models featuring DR-DM scattering.

To examine the phase shift in the DR-DM system, we incorporate interacting DR within
the ETHOS framework in CLASS [71]. We assume all SM neutrinos as free-streaming and

introduce an extra DR component that undergoes scattering with y for the DM-loading DR
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Figure 13. CMB phase shift enhancement from CLASS for interacting DR-DM, with Npr = 0.4
and all neutrinos free-streaming. Top: A/ shift in peaks in D] 7 and DFF lensed spectra for SI-DR
(blue) and f, = 2.5% DL-DR (orange), with respect to ACDM. Lines connecting the points have
been provided to help guide the eye. As in figure 2, the asymptotic mean (“asymp mean”) Al and
standard deviation o of the A¢’s in the deep radiation era are shown. Bottom: f,-dependence of the
Al enhancement on top of SI-DR (f, = 0). Error bars correspond to the standard deviation ogig in
the differences between the computed Af’s, quantifying the relative integer rounding fluctuation of
points with respect to SI-DR. A linear fit to the first 5 points is provided.
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(DL-DR) scenario. This is compared to the self-interacting DR (SI-DR) for an additional
phase shift. In figure 13 left, we show the phase shift of DL-DR (orange) and SI-DR (blue)
models relative to the free-streaming DR (FS-DR) scenario, assuming a large AN.g = 0.4
that has been considered to address the Hy problem [79, 80] and f,, = 2.5%. The enhanced
phase shift in the DL-DR model is evident. Similar to the interacting neutrino case, the
extra phase shift from DR-DM scattering is proportional to f, (figure 13 right), as long
as fy < fi ~ 5% in this case.

The study of the DL-v and DL-DR gives us insights into how a ‘loaded’ fluid can generate
an additional phase in the photon acoustic peaks, and we can generalize the idea for N
isolated dark sectors, each with their own interacting DR-DM system. For concreteness, let
us consider multiple efficiently scattering relativistic fluids DR; — x;, indexed by i = 1,..., N,
where the DR component DR; can include scattering v. The toy model then describes
N + 1 coupled oscillators for the photon-baryon fluid and the N dark sector fluids. Consider
again the solution with initial conditions 8, pr(7in) = 1, 0, pr(7in) = 0, and drop the same
initial phase ¢; and amplitude A

dy(1) = cos(keyT), 6pR,(7) = cos(kcpr,iT) (4.19)

with DR sound speed cpr; = ¢y — d¢;. Assuming d¢; < ¢, for small deviations from photon
oscillations for all ¢, the driving force contribution in eq. (4.5) is given by

Fariv[f10~(T) + Z JDR,iODR, (T)] = Fariv[cos(keyT) + kTq (Z fDR,iéci> sin(keyT)], (4.20)

where we apply the small angle approximation for k7,d0c; = 2« (%> < 1 with « being

Cy
an order one number. Given that 2« (%) R~ %%7 the total phase shift from the
Y Ji eq
dark sectors becomes

302
Asttotal ~ Z fx,i . (421)
Teq 4

ke,
Therefore, in the case where all dark sectors are dominated by the DR energy, i.e., fpm,; <
fpR,i, the additional phase shift compared to the SI-DR should be linearly proportional to the
sum of interacting dark matter energy density, not the individual dark sectors. To numerically
confirm the statement with CLASS, it is necessary to generalize the interacting dark matter
module to include multiple copies of DR-DM system, and we defer the task to future studies.

5 MCMC analysis

In this section, we investigate the impact of the phase shift induced by DM-loading on
cosmological data. As illustrated in figures 5 and 13, the variation in the sound speed due to
DM-loading leads to a shift in CMB multipole peaks (A/), exhibiting a linear relationship
with f, when f, < f,pr at matter-radiation equality. Additionally, for a fixed f,, we observe
an approximately linear relation between Af and ¢ up to ¢ ~ 1200, beyond which A/ begins
to plateau or grow slower than ¢ at higher ¢ modes as can be seen from figure 2 and 13.
Although we cannot extract the A/ shifts for high-¢ modes due to diffusion damping, the
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intuition from the toy model analysis (figure 11) suggests that the shift should vanish for
very high k which corresponds to high-¢ modes.

One signature of modification of the acoustic phase shift in CMB is a shift in the angular
sound horizon 65 [19]. The locations of the acoustic peaks of the CMB correspond to the
extremas of the photon transfer function which can be approximated as cos(krs + ¢) where k
is the corresponding wavenumber, r, is the sound horizon and ¢ is the phase shift. In the
multipole space, the location of the m-th acoustic peak corresponds to,

mm — ¢ mm — ¢

Ts 05

(5.1)

where D 4 is the angular diameter distance and s = r5/D 4. Since the observed peak positions
are very well measured in CMB experiments, eq. (5.1) implies that a change in the phase
shift A¢ will result in a shift, Af;/0; ~ —A¢/mm, for a good fit of the CMB data. Models
that modify neutrino induced phase of the CMB, such as DL-v interaction and neutrino-self
interaction, all predict a significant shift in the 65 from its ACDM value [12, 18, 19].

Compared to the typically assumed FS-v scenario in the ACDM model, the DL-v or
DL-DR scenarios experience phase shifts from two sources.

1. Phase shift from self-interacting neutrinos: the dominant modification of the acoustic
phase shift originates because the v scattering stops neutrinos from free-steaming. The
modification of the phase shift w.r.t. the ACDM with FS-v is,

plf/s Pv

. - ~ (f5 —0.41), (5.2
py+ oS0 oyt s )

Ading — Apacpm X

where f is the amount of scattering radiation as defined in eq. (4.18). Thus, this effect
is proportional to the amount of scattering radiation fraction i.e, f,. Note that, this is
the sole modification of the phase shift where the neutrino only interacts with itself to
stop free streaming such is the SI-v case.

2. Additional phase shift from DM-loading: the phase shift from DM-loading represents
an additional contribution where neutrinos (or DR) are scattered by non-relativistic
particles like dark matter (or baryons), reducing the sound speed of the DL-v fluid
below the threshold of a perfect fluid, as illustrated in figure 6. The modification of the
phase shift due to this effect, as shown in eq. (4.15), is independent of the amount of
scattering by neutrinos (f,) when f, < f, at matter-radiation equality, and depends
linearly on f,:

Adroad X _fx . (5.3)

In the subsequent analysis, we probe Agjy.q using MCMC analysis with cosmological data.
As outlined earlier in this section, A¢ leads to changes in 6. Thus, any deviation of 8, from
the ACDM value will indicate the presence of a phase shift. A positive correlation between
s and f, from the MCMC analysis will suggest the existence of DM-loading effects in our
study. Noting that while many of the scenarios described here have been explored in the
literature, the physics of DM-loading has been largely overlooked, to our knowledge. Our
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primary aim with the MCMC analysis is not to update bounds with new datasets, but rather
to highlight the DM-loading effects that should already exist in these models. For instance,
if future data like CMB-S4 shows additional radiation energy, we could compare the fitted
values of 6 and the suppression of matter power spectrum to see if they align with a non-zero
fx- A match would strongly support the presence of DR-DM scattering.

5.1 Datasets and methodology

We use the combination of the following datasets for our MCMC analysis.

o Planck: the Planck 2018 dataset which consists of low-£ (¢ < 30) TT, EE and high-¢
(¢ > 30) TT,TE,EE measurement [81]. It also includes the Planck Lensing likelihood [82].

e BAO:® The BAO dataset consists of measurements from 6DF Galaxy survey [84], SDSS-
DR7 MGS data [85], and the BOSS measurement of BAO scale and fo8 from DR12
galaxy sample [86].

o Ext (SHOES + KV450): the other datasets (EXT) contains the Hubble constant
measurement (Hp = 73.04 £ 1.04km/s/Mpc) from the SHOES collaboration [47] and
matter power spectrum shape measurement from KiDS + Viking 450 (KV450) [48].
For KV-450 we use data up to kmax = 0.3h Mpc~! limiting the analysis from the region
where non-linear effects are important.

We use MontePython to perform the MCMC analysis with the Metropolis-Hastings
algorithm [87-89]. We use GetDist for analysis and plotting of the MCMC samples [90].

5.2 Strong v-DM interaction

To demonstrate the s dependence on DM-loading, we first focus on DL-v scenario with
a very strong coupling and assume all SM neutrinos to interact with f, fraction of DM.?
Since neutrinos never free-stream in this model, (A¢int — Adpacpm) is non-zero but fixed.
However, the contribution from A¢yaq will depend on the corresponding value of f,. We
performed two types of MCMC runs, one set of runs with f, set to 1.25%,2.5%, 5%, 10%
and another set where we vary f, continuously between [0, 1].

In figure 14 we show the marginalized 2D contours on 65 and f, for varying f, runs.
Overlay-ed on the plot are also the values of 65 with 1o errorbar for the fixed f, runs. Both
these graphs show a linear correlation between 65 and f,, which is the characteristic signature
of DM-loading effects explained in eq. (4.14) and 5.1 from fitting fixed location of ¢-peaks. In
the right panel of the plot, we show the decrease in og with increasing f,, which is another
generic signature of interacting dark matter models.

8Non-standard phase shift does modify the perturbation template with which BAO peak location is
extracted from sky surveys. However, ref. [83] showed that these effects do not introduce any significant bias
in the conventional BAO analysis and it’s safe to use BAO scales derived from those analyses. Note that ‘DNI’
models ref. [83] does contain DM-loading effects and particularly ‘DNI-2’ where 2% of DM is interacting with
neutrinos. See also refs. [17, 20, 21] for effects of phase shift on the shape and amplitude of the BAO spectrum.

9In the ETHOS parameterization, we set N__idr = 3.046, N_ur = 0, a_ idm_ dr = 104/fx with T2
dependent interaction and varied fy. Note that the exact T, -dependence of the scattering rate Apr—pwm does
not have any impact as long as Apr—pm7 > 1.
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Figure 14. Proof-of-principle demonstration of correlations using strong v-DM example. Datasets
include Planck (with lensing) and BAO. Marginalized contours up to 3o are shown in the plots. Mean
values for fixed f, runs with 1o error bars are overlaid on top of the contour plots and joined with
lines for visual clarity. Left: 0, vs f, showing positive linear correlation. Right: og vs f, showing
negative linear correlation.

The purpose of this particular analysis is to demonstrate that DM-loading indeed leads to
a linear positive (negative) correlation between 6, (og) and f,. When assessing the goodness
of fit to the Planck+BAO data, models with SI-v (f, = 0) already exhibit a poorer fit
compared to the FS-v model. The blue contours highlight additional tensions in fitting the
data relative to the SI-v case, as a large f, is disfavored due to the change of perturbations
from dark matter scattering. In the following, we will consider more realistic scenarios where
we will try to demonstrate the DM-loading effects.

5.3 Strong DR-DM interaction

We consider a scenario where DR interacts strongly with a fraction of dark matter in the
universe. Due to the large interaction strength, the DR propagates as perfect fluid till today
unless f, = 0. This is similar to the DL-v case discussed above, but the DR constitutes a
small fraction of the total Neg. In the MCMC analysis, we fix the free streaming neutrino
contribution to N, = 3.046 and vary the DR abundance Npg.'" In this scenario, the phase
shift relative to ACDM arises from ¢ = Ay — Adacpm + Adload, Wwhere Agiy varies
with f, and A¢ioaq varies with f,. We provide the mean model parameters obtained from
the MCMC study in appendix D, along with the triangular plot and the minimum Ay?
compared to the ACDM model. In the following discussion, we focus on the parametric
dependencies between 65, Npr, and f,.

Figure 15 shows the marginalized 2D contours of 65 and f, where the points are color-
coded with the corresponding Npgr values (we will call this kind as 3D plot from now on). By

10T terms of ETHOS parameters, we set N__ur = 3.046, a_ idm_ dr = 10° with 72 dependent interaction
and vary N__idr and fy.
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Figure 15. Strong DR-DM scenario: efficient scattering in the dark sector with all neutrinos
free-streaming. Plots were obtained by varying both Npr and f,. The f, — 0 limit for Npr > 0
corresponds to the SI-DR fluid case. Top Row: Planck and BAO datasets. Filter Npg > 0.1 applied
on the right plot to isolate points corresponding to DL-DR fluid. Bottom row: Planck, BAO and
Ext = SHOES + kv450 datasets. Filter applied on the right plot to isolate two separate bands with
high and low Npg respectively.

including the SHOES data that prefers larger Npg, as is shown in the lower-left plot, a positive
correlation between ¢, and f, shows up for each color of Npgr points. The linear relation
is even more obvious when we separate the points by different Npr values (lower-right),
which signifies the presence of DM-loading effects. However, due to the constraint on the
fx coming from the physics of dark acoustic oscillations, the increase of 0, is limited to
~ 0.1%-level correction to 05 (¢ ~ 1). Additionally, an overall shift in the 5 distribution
between black and red points at f, — 0 is attributed to the different fractional abundance of
free-streaming radiation between these samples. Although we only add fluid-like DR, this
raises the total Neg and consequently reduces the energy fraction f% in eq. (4.18), causing
a smaller ¢ and larger 6, from eq. (5.1). The red points therefore distributed with a bit
larger 6 than the black points.
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Figure 16. Strong DR-DM scenario: efficient scattering in the dark sector with all neutrinos
free-streaming. Plots were obtained by varying both Npgr and f,. Plot shows og vs f, contours up to
3o for Planck, BAO and Ext = SHOES + kv450 datasets. The f, — 0 limit here corresponds to the
SI-DR fluid case, since the bestfit point corresponds to a significantly non-zero value of Npg for this
dataset (appendix. D).

The upper plots, derived from Planck+BAO data, illustrate a linear correlation between
fx and 6§, for slightly larger values of Npg (ranging from light blue to red). Conversely, smaller
values of Npg (darker blue) exhibit no significant correlation between these parameters. This
deviation from linear correlation occurs in the small Npg region, where we observe minimal
phase shift, allowing for larger values of f, due to reduced effects from dark matter scattering.
To highlight the linear correlation between 65 and f, for higher Npgr, we present a 3D plot of
the Planck dataset in the upper right panel, focusing solely on MCMC points with Npgr > 0.1.

In figure 16, we show the marginalized 2D contours for og and f, with respect to the
self-interacting DR model. As discussed in ref. [9], DM-DR scattering leads to suppression
of the matter power spectrum with increasing f,, resulting in a reduction of og, which
represents the root mean square of matter fluctuations around the 82! Mpc scale. The
positive correlation between 6, and f,, along with the negative correlation between og and
fx, provides a distinct signature of dark matter density scattering with DR or neutrinos.
The primary constraint on f, in this analysis comes from the suppression of dark matter
perturbations, setting the maximum allowed phase shift A¢i,; indicated by the data.

5.4 Varying the v-DM interaction

In this subsection, we explore scenarios of DL-v with varying scattering cross sections to allow

neutrinos to decouple at later times. We employ the temperature-independent cross-section

detailed in section 2 and allow for variations in both f, and the interaction strength y.
In the MCMC scan, we fix the effective number of interacting neutrinos at 3.046.'!

"1n terms of ETHOS parameters, N_idr= 3.046, N_ ur= 0, and we vary f, xa_idm_ dr with 7, independent
cross-section (nindex_idm_ dr= 2, alpha_idm_ dr= 1) according to the model outlined in section 2.
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Figure 17. Varying v-DM interaction: all neutrinos scatter efficiently at early times but free-stream
at late times with decoupling time controlled by yf, in the scattering rate eq. (2.2). The 2D plots on
the left were obtained by varying y for fixed f,, showing contours up to 20 for a range of f, values.
The plots on the right were obtained by varying both f, and yf,. Top row: Planck and BAO datasets.
Bottom Row: Planck, BAO and Ext = SHOES + kv450 datasets.

This scenario has previously been studied in the context of Hy tension by alleviating the
tension with neutrino-induced phase shift [19]. The scattering rate between neutrinos and
dark matter depends on the product yf,. To expedite convergence in our runs, we vary
yfy and f, as primary parameters in the MCMC analysis.'? Additionally, we conduct a
series of MCMC analyses with fixed f, = 107, 0.01, 0.02,and 0.03 to highlight the phase
shift’s dependence on yf,. For f, = 10~%, the DM-loading effect is negligible and can be
considered an approximation to the SI-v case. We present more complete results from the
MCMC scan in appendix. D.

First focusing on the fixed f, runs, the left plots of figure 17 display marginalized 2D
contours for 6, vs. yfy, with Planck+BAO (top) and Planck+BAO+Ext (bottom). The

2Given that aiam_ar varies linearly with y according to eq. (2.14), varying fy@iam_dr is equivalent to varying
yfx. Thus, we vary fy@iam dr in the scan and derive yfy as an output parameter.
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positive correlation between 0 and yf, observed with f, = 10~ (green) comes from the
phase shift induced by self-interacting neutrinos (A¢int — Adpacpm). Larger values of y fy
delay the v-DM decoupling to later redshifts, causing a phase shift that starts at lower
f-modes and results in a more pronounced change in the 6, fit. The shift in A¢ due to
changes in sound speed is not constant across ¢ (figures 4 and 13). Due to the domination of
matter energy density at later times, this phase shift roughly scales as o ¢ at lower modes
and begins to plateau for £ = 1000. This ¢-dependence differs from the Af¢ change due to 65
shift, which behaves as Al oc Afs¢ (eq. (5.1)). However, partial compensation between these
phase shifts occurs because the power spectrum at very high ¢-modes is suppressed due to
diffusion damping, thus allowing for less constraint on the different phase shifts arising from
radiation interaction versus 6, shift. These different changes in Af, nevertheless, still limit how
Adint + Adioad from radiation interaction can address the Hubble tension by raising Hy [19].
The curves for larger f, obtain larger 6, from A@joading With the same size of coupling.

Large f, additionally brings in more constraints due to the effects of dark matter
scattering on the matter power spectrum. For larger fy, the 1o and 20 contours shrink along
the y f, direction due to the additional constraints on fractional dark matter scattering that
suppresses the matter density perturbations. This also limits the amount of total phase-shift
as the extent of the 20 contours in the left panels of figure 17 along 6, direction is smaller
for larger f,. This effect is also seen table 4 and 5, where larger f, results in a smaller Hy
due to the lesser extent of the 6, shift. Larger f, cases also do not seem to provide a good
fit to the data from the Ax? values. The triangle plot for all the parameters for the fixed- f
runs are shown in figure 21 and 22 in appendix. D.

In the right column of figure 17, we present 3D plots of 0, fy, and yf, for the runs with
continuously varying fy. By focusing on a fixed interaction strength yf, (indicated by fixed
color), we observe a positive correlation between 5 and f,, characteristic of DM-loading.
As discussed earlier, ¢, also increases with y f,, which delays the decoupling time. The plot
further suggests that 0, exhibits a consistent correlation with f, across different values of
yfy, indicating that the DM-loading phase shift is insensitive to the effective number of
scattering neutrinos f,. Although we do not directly vary f, in v-DM scattering, smaller
values of y f, effectively correspond to a lower fraction of neutrinos with efficient scattering.
Similar to the fixed f, analysis, for larger yf, values the allowed range of f, is smaller due
to constraints from the dark matter scattering. Table. 3 and figure 20 show the constraints
on the parameters for this scenario.

It is reasonable to ask how our results would change for a temperature-dependent cross
section, where the scattering rate scales as on, o< T" for more general n.'3 Given that the
enhanced phase shift only occurs for perturbation modes that enter the horizon when the
v-DM scattering is efficient, the relevant factor is the decoupling time when the scattering
rate falls below the Hubble rate, which scales as H o< T?. A temperature-dependent cross
section can lead to an earlier or later decoupling of the scattering, which changes which
f-peaks experience the enhanced phase shift. The size of this enhanced phase shift due to
DM-loading, however, remains unchanged as long as the scattering is efficient. As shown in

13The temperature-independent case considered in this section corresponds to n = 3 since all the scaling
comes from the DM number density n, oc T°.
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the right column of figure 17, when the scattering decouples earlier (smaller yf,, indicated
by darker blue), the linear dependence of 6, on f, disappears. However, for values of yf
that result in efficient scattering, the linear dependence reappears, and 6, increases with f,
at the same rate for each yf,, as seen in the different color bands.

6 Discussion and conclusion

In this study, we explore how the phase shift in CMB acoustic oscillations acts as a probe
for neutrinos and dark radiation propagation, affecting CMB anisotropy solely through
gravitational effects. Specifically, we focus on the enhanced phase shift resulting from
radiation-dark matter scattering compared to the self-interacting radiation scenarios.

We first demonstrate the presence of this enhanced phase shift in the TT and EE spectra
through the CLASS calculations, revealing a linear dependence to the interacting dark matter
abundance Al o« f,, with Af being insensitive to radiation abundance (f, or Npr) when
radiation’s energy density dominates over dark matter around matter-radiation equality. To
understand these parametric dependencies, we approximate the evolution of photon and
interacting radiation fluctuations using coupled harmonic oscillators. The analysis shows that
the delayed radiation sound speed, due to dark matter scattering, enhances the phase shift.
Our analytical framework extends to scenarios with multiple dark sectors, each featuring its
own interacting DM-dark radiation. In such cases, the total enhanced phase shift is expected
to scale proportionally with the sum of interacting dark matter abundance. We also conduct
MCMC studies to obtain constraints on the interacting neutrino and dark radiation models
with the Planck and BAO data. The effect of the enhanced phase shift from DM-loading
shows up as an enhanced 6, proportional to f,.

The enhanced phase shift amplifies with f, (figure 15) due to the slowing down of neutrinos
and dark radiation by dark matter scattering. From the DM’s perspective, interacting
radiation delays its structure formation process, resulting in suppression of the matter
power spectrum as illustrated in the og plot (figure 16). Consequently, cosmological models
incorporating dark matter scattering to neutrinos or abundant dark radiation commonly
exhibit two characteristics: an enhanced 65 and a reduced og compared to models lacking
efficient radiation-DM scattering. Identifying both of these features in cosmological data
could ultimately pave the way for discovering non-minimal dark sectors even without non-
gravitational interactions with the Standard Model.
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A An example DL-r model and constraints

An example of a new physics model featuring DM-v coupling is described in [19, 67]. In this
model, the effective DM-v coupling with a heavy mediator 1 is generated during electroweak
symmetry breaking:

Lo LHWWN) = mgidix, where = TEL (A
Notice that when expanding the Higgs around its vacuum expectation value and absorbing
the phase of Goldstone bosons into left-handed leptons ensures that the operator Hl only
involves neutrino couplings among all SM particles, which is important for circumventing
constraints related to charged leptons [67]. If the dark matter x is a scalar, then the mediator
1 is a fermion, and vice versa. The dimension five coupling can be mediated by massive
vector-like fermions N:

L D YniNi(H'l;) + Yy iiNi (bix) + M iy NiNy,  where % ~ QW . (A2)
Further details regarding the charge assignment and flavor symmetry structure of the model
can be found in ref. [19]. The v-DM scattering remains independent of 7, (as illustrated in
section 2 to section 4) when the dark matter and mediator masses are close (mi - mi) <
2m,/T,. Under these conditions, the leading-order cross-section (zeroth order in (7}, /m,))
and corresponding interaction parameter y in eq. (2.3) are:

4 2 4 3
o=1.7x10"° (") (Gev> GeV=2,  y=11 (”) (50 Mev) : (A.3)

0.1 My 0.3 My

where benchmark parameters are selected to ensure efficient v-DM scattering until z ~ 4 x 10%,
impacting modes in the CMB spectra with ¢ = 1000.

Given that the cross-section scales as m; 2

limit on m, < O(10)MeV. Collider constraints to consider for the Higgs and neutrino

~

efficient »-DM scattering imposes an upper

coupling with light particles ¢ and x include:

1. Invisible Higgs and Z decays: h(Z) — vipx: the branching ratio for the Higgs process
is approximately O(1%), which is consistent with the current limit of about 18% (95%
C.L.) from the CMS search [91]. Invisible Z decay measurements from the LHC put a
constraint of n < 1(0.2) for dark matter and mediator masses of 50(10) Mev [92]

2. Kaon decay K — (1, e)xt via virtual v, .: while there has not been a specific search for
this process to the best of our knowledge, some studies have examined Kaon decays into
(i, €)pv, where ¢ is a light mediator with a coupling g;;¢v;v;. For 1 < mg < 100 MeV,
the kaon bound requires gy e S (3 x 1073,1072) [4]. A similar bound should also
apply to n, limiting the size below y < 0.1. Alternatively, one can avoid the kaon bound
by considering an 7 coupling only to v, since bound on g,, for neutrino self-interaction
is rather weak (g-r < 0.3) [4]. A more focused study of the kaon bound on the nuiy

~

coupling is needed, which we defer to future investigations.
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We emphasize that the model involving scattering with all neutrinos was utilized earlier
solely to illustrate the DM-loading effect. As discussed in section 3, the enhancement of
phase shift in the DL-v case also occurs with just 1 or 2 neutrinos scattering. Additionally,
appendix C demonstrates that the agreement between CLASS and the toy model for DL-v
phase shift enhancement compared to SI-v is maintained even with only 1 neutrino scattering.
Furthermore, similar phase shift enhancements and f, dependencies are observed in scenarios
involving DR-DM interaction, which effectively circumvents experimental constraints relying
on non-gravitational SM - dark sector couplings.

B Establishing the toy model

The efficient scattering of neutrinos with dark matter is modelled after the Boltzmann
system for the photons and baryons under the tight coupling approximation, following
the approach used in ref. [70]. Working in the conformal Newtonian gauge, we follow the
convention for the energy ratio R, = 3p,,/4p,, where (r,m) now denotes either (v,b) or
(v,x), to obtain

R, . k2

Or
1+ RT3

R, . 4k?
¢—7w

6, =4¢+4
TES S A

Using the definition of the sound speed from eq. (2.11), it is straightforward to rewrite R,

o +H

in terms of ¢ to obtain the coupled equations

Oy 4+ H(1 — 303/)&, + kQCzdy = Gorav(T) (B.1)

oy +H(1 —3¢2)d, + k*c25, = ggrav (T) (B.2)

4k*

— B.3
—y (B.3)

where ggrav(7) denotes the gravitational coupling between the two tightly coupled fluids. This

where ggray (1) = 46 + 4H (1 — 3¢2)d —

system is still not easy to solve since we would still need to solve the Einstein equations for
¢ and 1, which are sourced by the total perturbations. To obtain a closed set of equations
in the d,, we make four further assumptions.

(Assumption 1) No free-streaming radiation.

Assume that all neutrinos are efficiently scattering before recombination. Then all
radiation components are fluid-like and so the total shear vanishes ¢ = (0 in the absence of
free-streaming radiation components. We can then use the Einstein equation for ¢ to set ¢ = 1.

(Assumption 2) Small matter loading.
Suppose that the matter loading effect is small, which occurs deep in the radiation era

where 1 — 3c¢2 =1 — ﬁ ~ R, < 1. Then the Hubble damping term in the Boltzmann

equations will be negligible
H(1 - 3c2)o, < k%6, ,0,
Similarly, the Hubble damping can be ignored in the gravitational coupling term

9. 5, = . 4k2
H(l - 3CT)¢ < k d) 7¢ = ggrav(T) = 4¢ - ?Qﬁ
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(Assumption 3) Sub-horizon.
Consider the Einstein equations for the density and pressure perturbations

—47Ga?0p = k*¢p + 3H(d + Ho)
AnGa®SP = ¢ + 3H (¢ — Hwo)

where we used the second Friedmann equation to write (2H + H?) = —87Ga’P = —3H’w.
Assume that we only consider k-modes that have entered the horizon k7 > 1 during radiation
era, where the metric behaves as ¢ ~ 1/72. Plugging this ansatz for ¢ into the Einstein
equations, we find that

4nGa®(6p + 30P) = —k2¢ (B.4)
The gravitational coupling term also simplifies

4k 167Ga?

Gorav(T) —?qb = 3 (6p + 30P)

since the ¢ term in garav(T) would be 1/k?72 suppressed compared to k?¢.

(Assumption 4) Perturbations in radiation only.

Staying within the radiation-dominated era, suppose that the metric perturbations are
only sourced by perturbations in the radiation component so that we ignore the effect of
matter perturbations on the metric. Then

167Ga?
3

1 2
3" (6pr +30P,) = GWTGQ > (14 3w,)dp,

r=y,v =Y,y

Ygrav (1) =~

where for adiabatic perturbations, equation (4.1) implies that d P, = w,dp, in the radiation.
The presence of matter in the background serves as a dilution factor to the radiation density as:

Prad(T) _ Prad(T) _ 1
p(T) prad(T) + ,Omat(T) 1+ @

Qeq

where prad, Pmat are the total radiation and matter densities respectively. Using the Friedmann
equation

Gerav(T) 27>

1 pr 0pr
_— 1+ 3w
1+ a(r) r;:,u( T)prad Pr

Qeq

(1+ 3wy) 4H?

al(r) a(r)
Qeq Qeq

(f’Y(S’Y + fu(su)

where w, = 1/3 and the radiation ratios f, = p,/prad are constant.

Plugging this form of ggrav(7) back into the tightly coupled equations (B.1)-(B.2) and
neglecting the Hubble damping terms yields the toy model equations (4.5)—(4.6).

For the rest of this appendix, we provide more details about the solution in eq. (4.11)
used for the analytical examination of eqs. (4.5) and (4.6). In particular, we provide an
analytic expression for d,(7) at early times which we can use to approximate the initial
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phase of the oscillator by matching with the late time solutions. While our primary focus
is on the phase shift of the oscillating solution post gravitational driving force decoupling,
it is essential to note that initially, the Fy, ~ 4/ 72 term in eq. (4.8) dominates over the
oscillation frequency k2c,2y. As a result, the early time evolution is governed by
5 (1) ~ 6. (7). (B.5)
277

With initial conditions d,(7in) = 1 and ('57(7111) = 0 at k7iy = 1, considering the regime k7, = 1
assumed for the toy model, the early-time solution is given by

1 1433 1 _/33 1
0 ~ (k)2 [(1 + ) kT + (1 — )] . B.6
lf (k) ) () v (5.6
The power-law growth 5,eyaﬂy(7-) ~ 3 (k) Ly persists at k7 > 1 until
2a
Y= — . B.
T, e, (B.7)

After a numerical factor o times the moment when k:zc% = 2F4;iv(7), the oscillating solution

begins to dominate and can be expressed as:
517%‘3(7') = AcoslkeyT — ¢in] - (B.8)

Aligning the two approximated solutions 65 (14) = 612%°(74) and 0<™ (15) = d8%(7,) sets
the initial phase ¢i, = 2a + tan™! (%) Note that ¢, is a fixed phase introduced to
match the later time solution (7 > 7,), when the perturbation starts to oscillate as a plane
wave. Since ¢, is common for models with and without DM-loading, the specific value of
¢in is unimportant when considering the enhanced phase difference due to DM-loading. We
hence drop the phase in eq. (4.11) in the analytical discussion.

Numerical solutions of egs. (4.5) and (4.6) for the toy model indicate o ~ 1.5 reproduces
the oscillation phase in the later time solution of (7). We therefore use 7, with o ~ 1.5 to
indicate the timescale for the photon perturbation transitioning into a harmonic oscillator
and acquiring a phase. Note that « increases with Aa ~ 0.1f,, which is the enhanced
phase shift we discuss in section 4.3 due to the DM-loading effect. In this case, the solution
takes the form (with a ~ 1.5)

(ﬂitDeL_V(T) ~ AcoslkeyT — ¢in — 2.5A0] . (B.9)

C Additional plots for the phase shift enhancement

Here we present more plots comparing the phase shift in the photon transfer function
obtained from both CLASS and the toy model.

Figure 18 shows the shift of transfer function peaks for the cases where either one or two
neutrinos scatter with DM. For the CLASS calculation, the rest of the neutrinos free-stream,
while in the toy model only the fraction f, of interacting neutrinos is accounted for. Notably,
the toy model peak locations and Ak enhancement in DL-v with respect to SI-v maintains
a similar level of agreement with CLASS as compared to the three neutrino scattering case
presented in the main text (figures 7 and 8).
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Figure 18. CLASS (solid) vs toy model (dotted) comparison of Ak in photon transfer function for
fx = 1.25% (blue) and 2.5% (orange) DL-v with respect to SI-v. Same as figures 7 and 8, but for 1
interacting neutrino (left column) and 2 interacting neutrinos (right column).
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Planck + BAO

Planck + BAO 4+ Ext

Parameter Best Fit Mean+o Best Fit Mean+o
102wy, 2.248 2.24175:012 2.276 2.280 £ 0.015
Wedm 0.11966 0.12115750099" 0.1263 0.1258 + 0.0027
ns 0.9666 0.9663 + 0.0039 0.9752 0.9728 + 0.0037
Ho(km/s/Mpc) 68.15 68311939 71.43 71.10 + 0.82
10794, 2.098 2.10670:028 2.086 2.09970:051
T reio 0.0544 0.0557+0:0007 0.0573 0.05831000%
fx 0.853 < 0.248 0.00162 < 0.00370
Npr 8 x 107° < 0.0605 0.44 0.39 +0.13
o3 0.817 0.80210-027 0.8245 0.820870:90%8
1006, 1.04194 1.04202 + 0.00032 1.04233 1.04247 + 0.00031
Ax? —1.38 —11.5

Table 2. Strong DR-DM scenario with varying Npgr and f,: best fits and mean values to 68%

confidence. The Ax? = x* — x3cpu for each fit is also provided.

D Tables and triangle plots for MCMC analysis

In this appendix, we provide the triangle plots and tables of mean values with 1o errors for
the MCMC analysis done in sections 5.3 and 5.4. We also provide best fit values for the scans

where we varied Npgr and f, (table 2) and yf, and f, (table 3). The Ax? with respect to
the ACDM for each model fit is also provided in the tables.
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Planck + BAO

Planck + BAO 4+ Ext

Parameter Best Fit Mean+o Best Fit Mean+o
10~ 2wy, 2.245 2.244 4 0.014 2.248 2.260 4 0.014
Wedm 0.1204 0.1216 + 0.0013 0.1202 0.1197 4 0.0011
N 0.9504 0.948810-0040 0.9466 0.9502+9-9037
Ho(km/s/Mpc) 68.64 68.251 028 69.27 69.40 & 0.47
10794, 2.012 2.02810:038 1.990 2.009700%5
Treio 0.0516 0.0536 + 0.0070 0.0546 0.0562 + 0.0072
fx 0.0048 < 0.0217 0.0037 < 0.0111
y* fy 0.109 0.14170938 0.27 0.237018
o 0.824 0.81875:553, 0.826 0.81970-00es
1000, 1.0442 1.04447061% 1.0458 1.045470 0555,
Ax? +0.28 —7.4

Table 3. Varying v-DM scenario with varying y f, and f,: best fits and mean values to 68% confidence.

The Ax? = x% — X?\CDM for each fit is also provided.

Meanzo for fixed f, (Planck + BAO)
Parameter fr=1071 f =0.01 fy = 0.02 fx =0.03
10~ 2w, 2.240 + 0.014 2.242 +0.013 2.244+0.014 | 2.247+0.014
Wedm 0.1205 4 0.0010 | 0.1215+0.0011 | 0.122070051% 0.122310-0015
N 094847100044 0.947875:5039 0.948575:5038 0.949570-003%
Ho(km/s/Mpc)|  68.55 & 0.52 68.36 + 0.46 68.16 + 0.44 68.03 + 0.43
10794, 2.02019:940 2.01979:934 20271593 2.037190%
Treio 0.0524 +0.0069 | 0.0532 4 0.0070 | 0.0536 +0.0070 | 0.0541 4 0.0070
y* fy 0.15210-950 0.16270932 0.13470038 0.11017938
o8 0.8299 + 0.0066 | 0.8230 4 0.0062 | 0.8158 +0.0062 | 0.8089 & 0.0061
1000, 1.044375:0015 1.044610 0008 | 1.0445T00%08 | 1.044310-50054
Ax? —0.62 —0.08 +0.32 +1.44

Table 4. Varying v-DM scenario for fixed f, (Planck + BAO): mean values to 68% confidence. We
vary y for each fixed f,, but present the y * f, values for meaningful comparison between the cases.

The Ax? = x? — Xicpy for each fit is also provided.
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Mean+to for fixed f, (Planck + BAO + Ext)

Parameter Ix = 1074 fx =0.01 fx = 0.02 fx =0.03
102w, 2258 +£0.014 | 2.259+0.013 | 2.263+0.013 | 2.265+0.014
Wedm 0.11919 +0.00097 [ 0.11988 4 0.00099 |  0.1203+3:9912 0.120375:0015
ng 0.948270:0039 0.950470-9937 0.95207:9935 0.9542+0-9057
Ho(km/s/Mpc)| 69.64 + 0.45 69.34 + 0.43 69.11 + 0.41 68.96 + 0.41
10794, 199210033 2.01010-0%2 2.02413:931 2.04213:937
Treio 0.0541 +0.0071 | 0.0566 4 0.0072 | 0.0572 +0.0070 | 0.057619:90%3
y* fy 0.297017 0.2317092° 0.1741-076 0.1217993°
o3 0.8266 £ 0.0063 | 0.8194 4+ 0.0061 | 0.8121 + 0.0059 | 0.8048 + 0.0063
. . .0014 .0017
1006, 10456700008, | 1.0454100002) | 1.045150:0008, | 1.044610-0007
A2 —6.86 —5.74 —5.50 —3.86

Table 5. Varying v-DM scenario for fixed f, (Planck + BAO + Ext): mean values to 68% confidence.
We vary y for each fixed fy, but present the y x f, values for meaningful comparison between the

cases. The Ax? = x? — x%cpu for each fit is also provided.

— 42 —



Wedm

~

@
S

0.13

0.12

0.98

0.97

0.96

Il Planck + BAO
Il Planck + BAO + Ext

=

T
T T |
T

A
¢

1 1 1
2.22 2.30 0.12 0.13 0.96 0.98 68 70 72 2.1 2.2 0.04 0.08 0.03 0.07 0.2 0.5 0.8 0.74 0.80 1.0415 1.0430

102wy, Wedin s Hy 1072 A, Treio Fx Npr o8 1000,

Figure 19. Strong DR-DM scenario with varying Npgr and f,.
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References

[1] C.D. Kreisch, F.-Y. Cyr-Racine and O. Doré, Neutrino puzzle: anomalies, interactions, and
cosmological tensions, Phys. Rev. D 101 (2020) 123505 [arXiv:1902.00534] [INSPIRE].

[2] L. Lancaster, F.-Y. Cyr-Racine, L. Knox and Z. Pan, A tale of two modes: neutrino
free-streaming in the early universe, JCAP 07 (2017) 033 [arXiv:1704.06657] INSPIRE].

[3] .M. Oldengott, T. Tram, C. Rampf and Y.Y.Y. Wong, Interacting neutrinos in cosmology: ezxact
description and constraints, JCAP 11 (2017) 027 [arXiv:1706.02123] [nSPIRE].

[4] N. Blinov, K.J. Kelly, G.Z. Krnjaic and S.D. McDermott, Constraining the self-interacting
neutrino interpretation of the Hubble tension, Phys. Rev. Lett. 123 (2019) 191102
[arXiv:1905.02727] [INSPIRE].

— 46 —



[5]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. Brinckmann, J.H. Chang and M. LoVerde, Self-interacting neutrinos, the Hubble parameter
tension, and the cosmic microwave background, Phys. Rev. D 104 (2021) 063523
[arXiv:2012.11830] [INSPIRE].

M.A. Buen-Abad, G. Marques-Tavares and M. Schmaltz, Non-Abelian dark matter and dark
radiation, Phys. Rev. D 92 (2015) 023531 [arXiv:1505.03542] [INSPIRE].

J. Lesgourgues, G. Marques-Tavares and M. Schmaltz, Fvidence for dark matter interactions in
cosmological precision data?, JCAP 02 (2016) 037 [arXiv:1507.04351] [INSPIRE].

M.A. Buen-Abad, M. Schmaltz, J. Lesgourgues and T. Brinckmann, Interacting dark sector and
precision cosmology, JCAP 01 (2018) 008 [arXiv:1708.09406] [INSPIRE].

Z. Chacko et al., Partially acoustic dark matter, interacting dark radiation, and large scale
structure, JHEP 12 (2016) 108 [arXiv:1609.03569] [INSPIRE].

C. Brust, Y. Cui and K. Sigurdson, Cosmological constraints on interacting light particles, JCAP
08 (2017) 020 [arXiv:1703.10732] [INSPIRE].

S. Roy Choudhury, S. Hannestad and T. Tram, Updated constraints on massive neutrino
self-interactions from cosmology in light of the Hy tension, JCAP 03 (2021) 084
[arXiv:2012.07519] [INSPIRE].

S. Ghosh, S. Kumar and Y. Tsai, Free-streaming and coupled dark radiation isocurvature
perturbations: constraints and application to the Hubble tension, JCAP 05 (2022) 014
[arXiv:2107.09076] [INSPIRE].

T. Brinckmann, J.H. Chang, P. Du and M. LoVerde, Confronting interacting dark radiation
scenarios with cosmological data, Phys. Rev. D 107 (2023) 123517 [arXiv:2212.13264]
[NSPIRE].

S. Bashinsky and U. Seljak, Neutrino perturbations in CMB anisotropy and matter clustering,
Phys. Rev. D 69 (2004) 083002 [astro-ph/0310198] [INSPIRE].

D. Baumann, D. Green, J. Meyers and B. Wallisch, Phases of new physics in the CMB, JCAP
01 (2016) 007 [arXiv:1508.06342] [INSPIRE].

Z. Pan, L. Knox, B. Mulroe and A. Narimani, Cosmic microwave background acoustic peak
locations, Mon. Not. Roy. Astron. Soc. 459 (2016) 2513 [arXiv:1603.03091] [INSPIRE].

D. Baumann, D. Green and M. Zaldarriaga, Phases of new physics in the BAO spectrum, JCAP
11 (2017) 007 [arXiv:1703.00894] INSPIRE].

G. Choi, C.-T. Chiang and M. LoVerde, Probing decoupling in dark sectors with the cosmic
microwave background, JCAP 06 (2018) 044 [arXiv:1804.10180] INSPIRE].

S. Ghosh, R. Khatri and T.S. Roy, Can dark neutrino interactions phase out the Hubble tension?,
Phys. Rev. D 102 (2020) 123544 [arXiv:1908.09843] [INSPIRE].

D. Baumann, D. Green and B. Wallisch, Searching for light relics with large-scale structure,
JCAP 08 (2018) 029 [arXiv:1712.08067] [iNSPIRE].

D. Baumann et al., First constraint on the neutrino-induced phase shift in the spectrum of
baryon acoustic oscillations, Nature Phys. 15 (2019) 465 [arXiv:1803.10741] INSPIRE].

D. Green and A.K. Ridgway, The phase of the BAO on observable scales, JCAP 12 (2020) 050
[arXiv:2008.05026] [INSPIRE].

D. Green et al., Messengers from the early universe: cosmic neutrinos and other light relics, Bull.
Am. Astron. Soc. 51 (2019) 159 [arXiv:1903.04763] [INSPIRE].

— 47 —



[24] M. Gerbino et al., Synergy between cosmological and laboratory searches in neutrino physics,
Phys. Dark Ungv. 42 (2023) 101333 [arXiv:2203.07377] [INSPIRE].

[25] J.M. Berryman et al., Neutrino self-interactions: a white paper, Phys. Dark Univ. 42 (2023)
101267 [arXiv:2203.01955] [iNSPIRE].

[26] C. Dvorkin et al., Dark matter physics from the CMB-S/ experiment, in the proceedings of the
Snowmass 2021, (2022) [arXiv:2203.07064] [INSPIRE].

[27] B. Follin, L. Knox, M. Millea and Z. Pan, First detection of the acoustic oscillation phase shift
expected from the cosmic neutrino background, Phys. Rev. Lett. 115 (2015) 091301
[arXiv:1503.07863] [INSPIRE].

[28] M. Raveri, W. Hu, T. Hoffman and L.-T. Wang, Partially acoustic dark matter cosmology and
cosmological constraints, Phys. Rev. D 96 (2017) 103501 [arXiv:1709.04877] [INSPIRE].

[29] H. Rubira, A. Mazoun and M. Garny, Full-shape BOSS constraints on dark matter interacting
with dark radiation and lifting the Ss tension, JCAP 01 (2023) 034 [arXiv:2209.03974]
[INSPIRE].

[30] M.A. Buen-Abad et al., Stepped partially acoustic dark matter: likelihood analysis and
cosmological tensions, JCAP 11 (2023) 005 [arXiv:2306.01844] [INSPIRE].

[31] D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Atomic dark matter, JCAP 05
(2010) 021 [arXiv:0909.0753] [INSPIRE].

[32] D.E. Kaplan, G.Z. Krnjaic, K.R. Rehermann and C.M. Wells, Dark atoms: asymmetry and
direct detection, JCAP 10 (2011) 011 [arXiv:1105.2073] [INSPIRE].

[33] J.M. Cline, Z. Liu and W. Xue, Millicharged atomic dark matter, Phys. Rev. D 85 (2012) 101302
[arXiv:1201.4858] [INSPIRE].

[34] F.-Y. Cyr-Racine and K. Sigurdson, Cosmology of atomic dark matter, Phys. Rev. D 87 (2013)
103515 [arXiv:1209.5752] [INSPIRE].

[35] F.-Y. Cyr-Racine, R. de Putter, A. Raccanelli and K. Sigurdson, Constraints on large-scale dark
acoustic oscillations from cosmology, Phys. Rev. D 89 (2014) 063517 [arXiv:1310.3278|
[INSPIRE].

[36] J.J. Fan, A. Katz, L. Randall and M. Reece, Dark-disk universe, Phys. Rev. Lett. 110 (2013)
211302 [arXiv:1303.3271] [INSPIRE].

[37] Z. Chacko, D. Curtin, M. Geller and Y. Tsai, Cosmological signatures of a mirror twin Higgs,
JHEP 09 (2018) 163 [arXiv:1803.03263] [INSPIRE].

[38] D. Curtin and J. Setford, Direct detection of atomic dark matter in white dwarfs, JHEP 03
(2021) 166 [arXiv:2010.00601] [INSPIRE].

[39] S. Bansal et al., Mirror twin Higgs cosmology: constraints and a possible resolution to the Hy
and Ss tensions, JHEP 05 (2022) 050 [arXiv:2110.04317| InSPIRE].

[40] F.-Y. Cyr-Racine, F. Ge and L. Knox, Symmetry of cosmological observables, a mirror world
dark sector, and the Hubble constant, Phys. Rev. Lett. 128 (2022) 201301 [arXiv:2107.13000]
[INSPIRE].

[41] N. Blinov, G. Krnjaic and S.W. Li, Toward a realistic model of dark atoms to resolve the Hubble
tension, Phys. Rev. D 105 (2022) 095005 [arXiv:2108.11386] [INSPIRE].

[42] S. Bansal, J. Barron, D. Curtin and Y. Tsai, Precision cosmological constraints on atomic dark
matter, JHEP 10 (2023) 095 [arXiv:2212.02487] [INSPIRE].

— 48 —



[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[57]

[58]

[59]

[60]

L. Zu et al., Exploring mirror twin Higgs cosmology with present and future weak lensing surveys,
JCAP 08 (2023) 023 [arXiv:2304.06308] [iNSPIRE].

K.L. Greene and F.-Y. Cyr-Racine, Thomson scattering: one rate to rule them all, JCAP 10
(2023) 065 [arXiv:2306.06165] INSPIRE].

E. Hughes et al., Cool dark sector, concordance, and a low os, Phys. Rev. D 109 (2024) 103516
[arXiv:2311.05678] [INSPIRE].

K. Greene and F.-Y. Cyr-Racine, Ratio-preserving approach to cosmological concordance, Phys.
Rev. D 110 (2024) 043524 [arXiv:2403.05619] [iNSPIRE].

A.G. Riess et al., A comprehensive measurement of the local value of the Hubble constant with
1km s~' Mpc™! uncertainty from the Hubble space telescope and the SHOES team, Astrophys. J.
Lett. 934 (2022) L7 [arXiv:2112.04510] INSPIRE].

H. Hildebrandt et al., KiDS+ VIKING-450: cosmic shear tomography with optical and infrared
data, Astron. Astrophys. 633 (2020) A69 [arXiv:1812.06076] [INSPIRE].

N. MacCrann et al., Cosmic discordance: are Planck CMB and CFHTLenS weak lensing
measurements out of tune?, Mon. Not. Roy. Astron. Soc. 451 (2015) 2877 [arXiv:1408.4742]
[NSPIRE].

S. Joudaki et al., CFHTLenS revisited: assessing concordance with Planck including astrophysical
systematics, Mon. Not. Roy. Astron. Soc. 465 (2017) 2033 [arXiv:1601.05786] [INSPIRE].

S. Joudaki et al., KiDS+ VIKING-450 and DES-Y1 combined: cosmology with cosmic shear,
Astron. Astrophys. 638 (2020) L1 [arXiv:1906.09262] [INSPIRE].

KiDS collaboration, KiDS-1000 cosmology: cosmic shear constraints and comparison between
two point statistics, Astron. Astrophys. 645 (2021) A104 [arXiv:2007.15633] [INSPIRE].

KiDS and EucLID collaborations, KiDS and Euclid: cosmological implications of a pseudo
angular power spectrum analysis of KiDS-1000 cosmic shear tomography, Astron. Astrophys. 665
(2022) A56 [arXiv:2110.06947] NSPIRE].

C. Heymans et al., KiDS-1000 cosmology: multi-probe weak gravitational lensing and
spectroscopic galazy clustering constraints, Astron. Astrophys. 646 (2021) A140
[arXiv:2007.15632] [INSPIRE].

DES collaboration, Dark Energy Survey year 3 results: cosmological constraints from galaxy
clustering and weak lensing, Phys. Rev. D 105 (2022) 023520 [arXiv:2105.13549] INSPIRE].

O.H.E. Philcox and M.M. Ivanov, BOSS DR12 full-shape cosmology: ACDM constraints from the
large-scale galaxy power spectrum and bispectrum monopole, Phys. Rev. D 105 (2022) 043517
[arXiv:2112.04515] [INSPIRE].

E. Abdalla et al., Cosmology intertwined: a review of the particle physics, astrophysics, and
cosmology associated with the cosmological tensions and anomalies, JHEAp 34 (2022) 49
[arXiv:2203.06142] [INSPIRE].

R. Foot and S. Mitra, Ordinary atom mirror atom bound states: a new window on the mirror
world, Phys. Rev. D 66 (2002) 061301 [hep-ph/0204256] [INSPIRE].

R. Foot and R.R. Volkas, Was ordinary matter synthesized from mirror matter? An attempt to
explain why Omega(Baryon) approxzimately equal to 0.2 Omega(Dark), Phys. Rev. D 68 (2003)
021304 [hep-ph/0304261] [INSPIRE].

R.J. Wilkinson, C. Boehm and J. Lesgourgues, Constraining dark matter-neutrino interactions
using the CMB and large-scale structure, JCAP 05 (2014) 011 [arXiv:1401.7597] INSPIRE].

— 49 —



[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]
[77]

[78]

[79]

M. Escudero et al., Exploring dark matter microphysics with galaxy surveys, JCAP 09 (2015)
034 [arXiv:1505.06735] [INSPIRE].

E. Di Valentino, C. Bgehm, E. Hivon and F.R. Bouchet, Reducing the Hy and og tensions with
dark matter-neutrino interactions, Phys. Rev. D 97 (2018) 043513 [arXiv:1710.02559]
[INSPIRE].

K. Akita and S. Ando, Constraints on dark matter-neutrino scattering from the Milky- Way
satellites and subhalo modeling for dark acoustic oscillations, JCAP 11 (2023) 037
[arXiv:2305.01913] [INSPIRE].

M.R. Buckley et al., Scattering, damping, and acoustic oscillations: simulating the structure of
dark matter halos with relativistic force carriers, Phys. Rev. D 90 (2014) 043524
[arXiv:1405.2075] INSPIRE].

D. Blas, J. Lesgourgues and T. Tram, The Cosmic Linear Anisotropy Solving System (CLASS)
II: approximation schemes, JCAP 07 (2011) 034 [arXiv:1104.2933] [INSPIRE].

J. Lesgourgues, The Cosmic Linear Anisotropy Solving System (CLASS) I: overview,
arXiv:1104.2932 [INSPIRE].

S. Ghosh, R. Khatri and T.S. Roy, Dark neutrino interactions make gravitational waves blue,
Phys. Rev. D 97 (2018) 063529 [arXiv:1711.09929] [INSPIRE].

M.R. Mosbech et al., The full Boltzmann hierarchy for dark matter-massive neutrino
interactions, JCAP 03 (2021) 066 [arXiv:2011.04206] [INSPIRE].

C.-P. Ma and E. Bertschinger, Cosmological perturbation theory in the synchronous and
conformal Newtonian gauges, Astrophys. J. 455 (1995) 7 [astro-ph/9506072] [INSPIRE].

S. Dodelson and F. Schmidt, Modern cosmology, Elsevier (2020) [DOI:10.1016/c2017-0-01943-2].

F.-Y. Cyr-Racine et al., ETHOS — an effective theory of structure formation: from dark particle
physics to the matter distribution of the universe, Phys. Rev. D 93 (2016) 123527
[arXiv:1512.05344] [INSPIRE].

S. Gariazzo, P.F. de Salas and S. Pastor, Thermalisation of sterile neutrinos in the early universe
in the 3+1 scheme with full mizing matriz, JCAP 07 (2019) 014 [arXiv:1905.11290] [INSPIRE].

J.J. Bennett et al., Towards a precision calculation of Neg in the Standard Model II: neutrino
decoupling in the presence of flavour oscillations and finite-temperature QED, JCAP 04 (2021)
073 [arXiv:2012.02726] [INSPIRE].

J. Froustey, C. Pitrou and M.C. Volpe, Neutrino decoupling including flavour oscillations and
primordial nucleosynthesis, JCAP 12 (2020) 015 [arXiv:2008.01074] [InSPIRE].

K. Akita and M. Yamaguchi, A precision calculation of relic neutrino decoupling, JCAP 08
(2020) 012 [arXiv:2005.07047] [INSPIRE].

K. Freese, G. Montefalcone and B. Wallisch, in preparation.

P. Virtanen et al., SciPy 1.0 — fundamental algorithms for scientific computing in python,
Nature Meth. 17 (2020) 261 [arXiv:1907.10121] [InSPIRE].

W. Hu, Structure formation with generalized dark matter, Astrophys. J. 506 (1998) 485
[astro-ph/9801234] [INSPIRE].

PLANCK collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641
(2020) A6 [Erratum bid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

— 50 —



[80]

[81]

[82]

[83]

[84]

[85]

[36]

[87]

[88]

[89]

[90]

[91]

[92]

N. Blinov and G. Marques-Tavares, Interacting radiation after Planck and its implications for
the Hubble tension, JCAP 09 (2020) 029 [arXiv:2003.08387| [INSPIRE].

PLANCK collaboration, Planck 2018 results. V. CMB power spectra and likelihoods, Astron.
Astrophys. 641 (2020) A5 [arXiv:1907.12875] InSPIRE].

PLANCK collaboration, Planck 2018 results. VIII. Gravitational lensing, Astron. Astrophys. 641
(2020) A8 [arXiv:1807.06210] [INSPIRE].

J.L. Bernal, T.L. Smith, K.K. Boddy and M. Kamionkowski, Robustness of baryon acoustic
oscillation constraints for early-Universe modifications of ACDM cosmology, Phys. Rev. D 102
(2020) 123515 [arXiv:2004.07263] [INSPIRE].

F. Beutler et al., The 6dF galary survey: baryon acoustic oscillations and the local Hubble
constant, Mon. Not. Roy. Astron. Soc. 416 (2011) 3017 [arXiv:1106.3366] INSPIRE].

A.J. Ross et al., The clustering of the SDSS DR7 main Galaxy sample — 1. A 4 per cent distance
measure at z = 0.15, Mon. Not. Roy. Astron. Soc. 449 (2015) 835 [arXiv:1409.3242] [INSPIRE].

BOSS collaboration, The clustering of galaxies in the completed SDSS-III Baryon Oscillation
Spectroscopic Survey: cosmological analysis of the DR12 galaxy sample, Mon. Not. Roy. Astron.
Soc. 470 (2017) 2617 [arXiv:1607.03155] [INSPIRE].

B. Audren, J. Lesgourgues, K. Benabed and S. Prunet, Conservative constraints on early
cosmology: an illustration of the Monte Python cosmological parameter inference code, JCAP 02
(2013) 001 [arXiv:1210.7183] [INSPIRE].

T. Brinckmann and J. Lesgourgues, MontePython 3: boosted MCMC' sampler and other features,
Phys. Dark Univ. 24 (2019) 100260 [arXiv:1804.07261] INSPIRE].

W .K. Hastings, Monte Carlo sampling methods using Markov chains and their applications,
Biometrika 57 (1970) 97 [INSPIRE].

A. Lewis, GetDist: a Python package for analysing Monte Carlo samples, arXiv:1910.13970
[INSPIRE].

CMS collaboration, Search for invisible decays of the Higgs boson produced via vector boson
fusion in proton-proton collisions at /s = 13 TeV, Phys. Rev. D 105 (2022) 092007
[arXiv:2201.11585] [INSPIRE].

R. Primulando and P. Uttayarat, Dark matter-neutrino interaction in light of collider and
neutrino telescope data, JHEP 06 (2018) 026 [arXiv:1710.08567] INSPIRE].

— 51 —



	Introduction
	Interacting radiation with DM-loading
	Models with DM-radiation interactions
	Implementation in CLASS

	Enhanced phase shift: numerical calculations
	Locating acoustic peak positions
	Phase shift enhancement in the CMB power spectra

	Enhanced phase shift: analytic understanding
	Sound speeds of the cosmic fluids
	A toy model analysis
	Parametric dependence from the toy model analysis
	Phase shift from N-copies of DR-DM system

	MCMC analysis
	Datasets and methodology
	Strong nu-DM interaction
	Strong DR-DM interaction
	Varying the nu-DM interaction

	Discussion and conclusion
	An example DL-nu model and constraints
	Establishing the toy model
	Additional plots for the phase shift enhancement
	Tables and triangle plots for MCMC analysis

