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Abstract: A phase shift in the acoustic oscillations of cosmic microwave background (CMB)

spectra is a characteristic signature for the presence of non-photon radiation propagating

differently from photons, even when the radiation couples to the Standard Model particles

solely gravitationally. It is well-established that compared to the presence of free-streaming

radiation, CMB spectra shift to higher ℓ-modes in the presence of self-interacting non-photon

radiation such as neutrinos and dark radiation. In this study, we further demonstrate that the

scattering of non-photon radiation with dark matter can further amplify this phase shift. We

show that when the energy density of the interacting radiation surpasses that of interacting

dark matter around matter-radiation equality, the phase shift enhancement is proportional to

the interacting dark matter abundance and remains insensitive to the radiation energy density.

Given the presence of dark matter-radiation interaction, this additional phase shift emerges

as a generic signature of models featuring an interacting dark sector or neutrino-dark matter

scattering. Using neutrino-dark matter scattering as an example, we numerically calculate

the amplified phase shift and offer an analytical interpretation of the result by modeling

photon and neutrino perturbations with coupled harmonic oscillators. This framework also

explains the phase shift contrast between self-interacting and free-streaming neutrinos. Fitting

models with neutrino-dark matter or dark radiation-dark matter interactions to CMB and

large-scale structure data, we validate the presence of the enhanced phase shift, affirmed by

the linear dependence observed between the preferred regions of the sound horizon angle ¹s

and interacting dark matter abundance. An increased ¹s and a suppressed matter power

spectrum is therefore a generic feature of models containing dark matter scattering with

abundant dark radiation.
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1 Introduction

Cosmology provides a distinct opportunity to investigate new physics with minimal interactions

with Standard Model (SM) particles. Whether the interaction is solely gravitational, the

existence of new particles with substantial energy density in the early universe can modify

the anisotropy of photons and baryons. This impact on the cosmic microwave background

(CMB) and large-scale structure (LSS) provides valuable insights into the propagation and

clustering behavior of these particles, shedding light on their interactions. The ability to

probe interactions between particles that couple weakly to the SM is crucial in studying

neutrino and dark sector physics. It is shown that an efficient neutrino self-scattering could
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persist during the CMB time to modify temperature and polarization perturbations while

satisfying existing bounds from collider searches [1–5]. Dark sector models containing new

massless non-abelian gauge bosons [6–8] or dark photons interacting with other massless

dark sector particles [9] provide candidates for interacting DR that can also change the CMB

perturbations. The idea of self-interacting neutrinos and dark radiation has drawn much

attention in addressing the H0 problem [1–4, 10–13]

A phase shift in the acoustic oscillations of CMB spectra, compared to free-streaming

radiation scenarios, is a generic signature of these interacting radiation models [12, 14–26]

Fluctuations in the radiation background, whether arising from cosmic neutrinos or dark

radiation, are known to induce phase shifts in the acoustic peaks of the CMB. Compared

to ΛCDM model without neutrinos, the presence of free-streaming neutrinos (or additional

free-streaming dark-radiation) shifts the phase towards lower ℓ modes, and the effect has

been observed in the Planck data [15, 27]. On the contrary, the acoustic peaks experience a

shift towards higher ℓ modes when the neutrino or additional dark radiation propagates as a

perfect fluid. As discussed in ref. [15], this phase shift in the CMB spectrum can only come

from two origins: either due to the different propagation sound speeds of radiations or due

to radiations carrying isocurvature perturbations. In models with adiabatic perturbations,

the limited origins of the phase shift make it a distinct signature for identifying radiations

with exotic propagation properties.

Beyond self-interactions, both dark radiation and neutrino exhibit delayed propagation

in presence of scattering with dark matter particles. Such interactions exist in scenarios

like interacting dark matter [6–9, 28–30] and atomic dark matter [31–46] models, often

proposed to address issues such as the H0 [47] and S8 [48–57] tensions, the Higgs hierarchy

problem, and similarity between the baryon and dark matter abundance [58, 59]. Similar

setups are considered for neutrino models featuring dark matter scatterings to also tackle

challenges like the Hubble tension and small-scale structure anomalies [19, 60–63]. While

existing cosmological discussions on these dark sector models predominantly focus on signals

such as additional light degrees of freedom ∆Neff or matter power spectrum suppression

due to the dark acoustic oscillation process [35, 64], we emphasize that the propagation

of interacting radiation within the dark matter medium also presents another distinctive

signal in the form of CMB phase shift.

In this study, we demonstrate that a loading effect from dark matter (DM) on radiation

propagation, akin to the baryon-loading effect that slows down the photon sound speed,

results in a positive shift in ℓ-modes and surpasses that of self-interacting radiation scenario.

As we show, the phase shift corresponds to a larger sound horizon angle ¹s from fitting the

CMB data. An observation of non-zero ∆Neff , a suppressed matter power spectrum (S8),

and a larger ¹s compared to the fit from the self-interacting radiation model will hint at

the presence of DM-dark radiation scattering. While previous studies such as refs. [19, 39]

have discussed the presence of a phase shift in models with radiation-DM scatterings, the

contribution from DM-loading, leading to an additional phase shift in these models, has been

overlooked. Here, we use the interacting neutrino scenario to observe the extra phase shift

due to the DM-loading effect, and the discussions on the parametric dependence of the signal

can be extended to scenarios with dark radiation-DM interactions.

– 2 –
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By comparing results from full numerical calculations and semi-analytical approximations,

we demonstrate that the phase shift between interacting neutrinos with and without DM-

loading, referred to as DM-loading neutrinos (DL-¿) and self-interacting neutrinos (SI-¿),1

can be approximated by treating photon and neutrino perturbations as harmonic oscillators

coupled via gravity perturbations. This approximation reveals that the observed phase shift

arises from the slowing down of the neutrino sound speed due to DM-loading, with the shift’s

magnitude proportional to the scattering dark matter abundance. Detecting this additional

phase shift provides a means to measure the DM-loading effect and uncover the medium effect

on neutrino and dark radiation propagations. The analytical discussion of the DL-¿ phase shift

can also be applied to the phase difference between SI-¿ and free-streaming neutrino (FS-¿),

offering a simple picture of coupled harmonic oscillators to explain the origin of the phase shift.

The paper is organized as follows. In section 2, we introduce the interacting neutrino

scenario with DM-loading and define its parameters. In section 3, using calculations from the

Cosmic Linear Anisotropy Solving System (CLASS) [65, 66], we illustrate examples of the phase

shift between DL-¿ and SI-¿ scenarios in the CMB TT and EE spectra. We demonstrate

the linear dependence of the phase shift on the interacting dark matter abundance and its

insensitivity to the interacting neutrino abundance. Section 4 explains how the evolutions

of photon and neutrino perturbations can be described by coupled harmonic oscillators,

providing insights into the origin and parametric dependence of the phase shift. We discuss

the generalization of the results to models with N secluded dark sectors with interacting DR.

In section 5, we conduct a Markov Chain Monte Carlo (MCMC) analysis, demonstrating that

the fitting result with current cosmological data does reveal a phase shift in the form of the

sound horizon angle ¹s that linearly increases with the scattering dark matter abundance.

We conclude in section 6.

2 Interacting radiation with DM-loading

In general, a relativistic fluid can be formed in the dark sector from the efficient scattering of

dark radiation (DR) with dark matter. We aim to study how the presence of dark matter

interaction in such a fluid before recombination can produce an observable phase shift in

the CMB power spectrum, and derive a simple mechanism that captures the physics behind

this DM-loading effect.

As a concrete example of DM-loading effects, we study the DM-¿ interaction. Massless

neutrinos act identically as free-streaming DR as far as cosmological observables are concerned.

Therefore, for concreteness, we begin the discussion by focusing on a particular example

where neutrinos play the role of DR and introduce interaction with a fraction of dark matter.

Cosmology provides the best constraints on the DM-¿ interaction parameter for asymmetric

dark matter models through its effects on the CMB and matter power spectrum. In the

following, we will summarize the essential features of the interaction model.

1In this work, by SI-ν we mean all the neutrinos are coupled till today. This is equivalent to neutrinos

behaving as perfect-fluid. Although, if the neutrinos are coupled only till recombination we get a very similar

effect on CMB compared with SI-ν. In the literature, SI-ν sometimes refers to ‘Strongly-Interacting Neutrino

mode’ where, due to finite interaction strength, neutrinos are only coupled approximately till matter-radiation

equality (e.g. ref. [2]).
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The DM-loading effects are also present in DM-DR scattering. As we will see later, the

effects of phase shift due to DM-loading are independent of the DR energy density. Thus

the effects are visible in the CMB even when a small amount of DR interacts with the dark

matter. Due to their similarities, the expressions given below for DM-¿ interactions are

also applicable to DM-DR interactions as well.

2.1 Models with DM-radiation interactions

Consider multi-component dark matter and neutrino sectors, where a fraction of the neutrinos

¿ scatters with a fraction of the dark matter Ç, with all remaining dark matter as cold dark

matter (CDM) and all remaining neutrinos free-streaming. The multi-component neutrino

sector serves as a proxy for either scattering DR in the presence of free-streaming neutrinos or

flavor-specific DM-Neutrino interaction. The fraction of interacting dark matter is quantified

by the parameter fÇ = ÄÇ/ÄDM where ÄDM = ÄÇ + ÄCDM, while the fraction of interacting

neutrinos that participate in the scattering (out of the total radiation energy) is denoted

by f¿ = Äint
¿ /(Äµ + Ä¿) where Ä¿ = Äint

¿ + Äfs
¿ is the total neutrino density consisting of both

scattering and free-streaming neutrinos. The strength of the coupling between Ç and the

interacting neutrinos ¿ is quantified by the interaction parameter y, which will be defined

below. A schematic of this multi-component system is provided in figure 1.

In the case of multicomponent DR-DM interaction, fÇ still denotes the fraction of total

dark matter interacting with DR. The parameter f¿ , in that case, will denote fDR which is the

ratio of the scattering DR energy density to the total radiation energy density. In summary,

fÇ =
ÄÇ

ÄDM

, f¿ =
Äint

¿

Ärad,tot

=























Äint
¿

Äµ + Äint
¿ + Äfs

¿

: ¿ − DM

Äint
DR

Äµ + Äfs
¿ + Äint

DR

: DR − DM

(2.1)

Many beyond the Standard Model (BSM) scenarios involve interactions between dark

matter and SM neutrinos as has been discussed in the introduction. If such ¿-DM scattering

significantly alters neutrino propagation for redshift z ≲ 105, it can imprint a DM-loading

effect on the CMB spectrum. Our cosmological analysis will maintain a general approach to

¿-DM scattering, avoiding focus on a particular BSM model. In appendix. A, we present a

specific example of ¿-DM scattering induced by a dimension-five operator (L̄H̃ÈÇ)/Λ [19, 67],

discussing the necessary mass and coupling for efficient scattering, along with associated

collider constraints.

The ¿-DM scattering rate can depend differently on the neutrino temperature T¿ . For

concreteness, let us consider the case where the velocity averaged scattering cross-section

Ã = ïÃÇ¿vð is independent of T¿ [60, 67]. As is discussed in appendix A, the scenario can exist

if the mass difference between dark matter and the mediator that generates the scattering

is smaller than the neutrino temperature. In this case, the comoving ¿-DM scattering rate

(equivalently for DR-DM scattering) can be parameterized as,

»̇DR−DM ≡ a ÃfÇ

(

ÄDM

mÇ

)

= 2.4 · 10−2 y

(

fÇ

0.01

)(

ÉDM

0.12

)(

z

4 · 104

)2

Mpc−1 , (2.2)
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Figure 1. Schematic of multi-component dark matter and radiation system with interactions shown.

The interacting dark matter fraction fÇ of the total DM, and interacting neutrino (dark radiation)

fraction f¿ (fDR) of the total radiation are denoted.

where the interaction parameter y is defined as,

y =

(

Ã

GeV−2

)

(

GeV

mÇ

)

. (2.3)

This is related to the uÇ parameter often used in the dark matter neutrino interaction literature

by y = 17.08uÇ [19, 60–62, 67, 68]. CMB power spectrum at ℓ ∼ 103 is mainly supported by

perturbation modes with comoving wavenumbers kℓ∼103 ∼ 0.1 Mpc−1, which enter horizon

at comoving time k−1

ℓ∼103 around z = 4 · 104. The scattering remains efficient, meaning

»̇DR−DMk
−1

ℓ∼103 ≳ 1, if the cross-section and dark matter mass are below the GeV scale.

When discussing cosmological perturbations, we work in the conformal Newtonian gauge

where È and ϕ characterize the two scalar perturbations on the background metric [69]

ds2 = a2(Ä)[−(1 + 2È)dÄ2 + (1 − 2ϕ)¶ijdx
idxj ] , (2.4)

where Ä denotes conformal time. We use H to denote the Hubble parameter in Ä . The

Boltzmann equations describing the motion of the interacting ¿ (will be denoted by the

subscript DR since those are equivalent systems) and Ç components resemble that of the

photons and baryons in fiducial cosmology.

¶̇DR +
4

3
¹DR − 4ϕ̇ = 0 , (2.5)

¹̇DR + k2

(

ÃDR − 1

4
¶DR

)

− k2È = »̇DR−DM(¹DR − ¹Ç) , (2.6)

ḞDR,ℓ +
k

2ℓ+ 1
((ℓ+ 1)FDR,ℓ+1 − ℓFDR,ℓ−1) = ³ℓ»̇DR−DMFDR,ℓ , (ℓ g 2) (2.7)

– 5 –
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The overhead dot (·) represents the derivative with respect to conformal time d/dÄ . ¶DR ≡
¶ÄDR/ǞDR , ¹DR ≡ ∂iv

i
DR, and ÃDR are the density perturbation, velocity divergence, and

shear stress of DR, respectively. FDR,ℓ is the ℓth moment of DR perturbation. For the example

of the temperature-independent cross-section Ã that we are considering, the scattering rate

»̇DR−DM is given in eq. (2.2), and ³ℓ≥2 = 1 if the scattering comes from a tree level scalar

mediator. On the other hand, the Boltzmann equations governing the interacting dark

matter perturbations are

¶̇Ç + ¹Ç − 3ϕ̇ = 0, (2.8)

¹̇Ç +
ȧ

a
¹Ç − c2

Çk
2¶Ç − k2È = −4ÄDR

3ÄÇ
»̇DR−DM(¹Ç − ¹DR) . (2.9)

where cÇ j 1 represents the adiabatic sound speed of the non-relativistic Ç. CLASS computes

cÇ when generating power spectra, but we do not consider this sound speed in the semi-

analytical discussions in section 4.3.

The cosmologically relevant quantity from the DR-DM interaction model is the scatter-

ing rate which appears in the Boltzmann equations above. Similar to the photon-baryon

interaction in ΛCDM, this governs the rate of momentum transfer between particles and is

independent of the attractive or repulsive nature of the interaction.2 The DR-DM scattering

is efficient to modify the DR perturbation when Ä »̇DR−DM ≳ 1. In the tightly coupled regime

Ä »̇DR−DM k 1, scattering events occur frequently enough compared to the Hubble rate

to maintain momentum equilibrium between the radiation and dark matter, so that the

radiation and dark matter perturbations have the same velocity divergence and propagate

together as a fluid. More specifically, the slip term »̇DR−DM(¹DR − ¹Ç) dominates the ¹DR

equation, such that ¹DR ≈ ¹Ç and the higher ℓ g 2 moments of the DR perturbation get

turned off. As in the standard treatment of baryon-photon plasma, we can approximate

the DR-DM system in the tightly coupled regime by re-writing the perturbation equations

into a second-order DR equation [70]

¶̈DR + H RDR

1 +RDR

¶̇DR +
k2

3(1 +RDR)
¶DR = 4ϕ̈+ 4H RDR

1 +RDR

ϕ̇− 4k2

3
È . (2.10)

Here RDR = 3ÄÇ/4ÄDR, and the frequency divided by k can be identified as the sound

speed of tightly coupled fluid

c2
DR =

1

3(1 +RDR)
. (2.11)

Just as the presence of baryons in the photon-baryon plasma led to a baryon loading effect that

suppressed the photon sound speed over time (with an increasing Rµ), there is an analogous

suppression effect in the DL-¿ or DL-DR fluid due to the presence of ÄÇ. We therefore refer to

the RDR suppression of the DR sound speed as dark-matter loading. As a reference case, we

will also consider the self-interacting SI-¿ and SI-DR cases which, in the efficient scattering

regime, can be interpreted as the fÇ → 0 limit of the DL-DR fluid with negligible DM-loading.

2For the particular DL-ν interaction model considered in appendix. A, the interaction rate would be

proportional to the fourth power of the coupling and would thus be insensitive to the sign of coupling.

– 6 –
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Model Dark Matter Neutrinos DR (∆Neff) Radiation Scattering

1 ΛCDM CDM Free-Streaming — —

2 SI-¿ CDM Int(f¿) + FS — ¿ self-interaction

3 DL-¿ Int(fÇ) + CDM Int(f¿) + FS — ¿ interacting with DM

4 SI-DR CDM Free-Streaming Int(fDR) DR self-interaction

5 DL-DR Int(fÇ) + CDM Free-Streaming Int(fDR) DR interacting with DM

Table 1. Summary of models, parameterized by the fÇ and f¿ (or fDR) fractions. Here, we denote

Int = “Interacting” and FS = “Free-Streaming”. Variations in the interaction parameter y will be

studied in section 5.4 for DL-¿ with later time decoupling. This work mainly focuses on the enhanced

phase shift between models 3 and 2, as well as between models 5 and 4. In general matter-loading

effects will enhance phase-shift where radiation is scattering with non-relativistic species compared to

self-scattering radiation with equivalent interaction strength.

In table 1, we summarize the models that are considered in this paper. Models 2-5

describe scenarios with non-photon radiation scattering. In the SI-x cases (models 2 and 4)

the scattering is coming only from the self-interaction of the radiation, while in the DL-x

cases (models 3 and 5) it is coming only from scattering with DM. These are compared

against model 1 when finding the phase shift with respect to the base ΛCDM model with

all ¿ free-streaming. When isolating the phase shift enhancement due specifically to the

DM-loading effect in the scattering radiation fluid, we compare model 3 against model 2 for

the DL-¿ case and model 5 against model 4 for the DL-DR case.

For the DL-¿ discussion, we will first focus on very strongly interacting DL-¿ »̇DR−DM k
aH for the entirety of the neutrino evolution. Later, in the MCMC section, we will relax

this assumption and allow y (and hence »̇DR−DM) to vary. However, as will be seen later,

the effects of the DM-loading are still visible with DL-¿ decoupling at a later time. We also

show results for the DL-DR scenario from the MCMC study. An efficient DR-DM scattering

is easier to model build since all the dynamics occur in the dark sector, and there is no

coupling with SM besides gravity.

2.2 Implementation in CLASS

For numerical calculations, we use the built-in interacting DM-DR (‘idm_idr’) module in

CLASS to implement both the DL-¿ and DL-DR scenarios. This implementation is based on

an effective theory of structure formation, known as ETHOS [71].

We make use of the following ‘idm_idr’ parameters: firstly, the f_idm parameter

is the energy density ratio of the interacting dark matter component out of the total DM,

which corresponds directly to the dark matter fraction fÇ defined in eq. (2.1). In terms of

CLASS variables and using the ETHOS parametrization, N_ur is the number of free-streaming

radiation species, which is equal to the number of neutrinos in the base ΛCDM cosmology,

while N_idr is the amount of interacting DR. We use the N_idr parameter to denote the

interacting neutrino species for the DL-¿ model and the interacting DR in the DM-DR model.

Since the radiation species in both cases do not have self-interaction, we set the self-interaction

parameter b_idr = 0. We treat the neutrinos to be massless and, therefore, they can be

– 7 –
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described by either N_ur or N_idr when they have interaction. Since in the DL-¿ case

neutrino free-streaming properties get modified when neutrinos are relativistic, neutrino

mass has a negligible effect on the mechanism that we will be discussing. To implement the

DL-¿ system, we fix N_idr + N_ur = 3.046, the total number of neutrinos.3 The ratio of

interacting neutrinos out of the total radiation energy is then parameterized by

f¿ =

(

N_idr

N_idr +N_ur

)

Ä¿,total

Äµ + Ä¿,total

, (2.12)

where Ä¿,total/(Äµ + Ä¿,total) = 0.41 for N_idr + N_ur = 3.046. For the subsequent

implementation of the DL-DR system, the DR fraction is defined as

fDR =

(

N_idr

N_idr + 3.046

)

ÄDR + Ä¿,total

Äµ + ÄDR + Ä¿,total

, (2.13)

where the SM free streaming neutrinos are fixed to N_ur = 3.046. The a_idm_dr

parameter in ETHOS corresponds to the scattering cross-section between the interacting

radiation and dark matter components in both DL-¿ and DM-DR. In the discussions of

section 3 and 4, we simply set the a_idm_dr parameter to a very large value 104 − 106

to ensure efficient scattering for all time with no decoupling. For the subsequent MCMC

analysis in section 5, we also consider varying a_idm_dr where the DL-¿ system decouples

before recombination. We focus on the example with temperature-independent scattering

cross section and map the ETHOS parameters to eqs. (2.2) and (2.3) as

a_idm_dr = 1.13 × 106 y, nindex_idm_dr = 2, alpha_idm_dr = 1. (2.14)

The idr_nature flag determines whether the radiation component is free-streaming

or propagates as a perfect fluid. We set this to free-streaming for both the DL-¿ and

DM-DR scattering cases so that the effects come only from the scattering with DM. We

set the choice to fluid only when implementing the purely self-interacting radiation fluid

case, whether this is composed of ¿ in the SI-¿ scenario or of DR in the SI-DR scenario.

For this pure radiation reference case, we additionally set a_idm_dr = 0. Finally, we

use the fixed ΛCDM parameters

(100¹s, Éb, Écdm, 109As, ns, Äreio) = (1.0453, 0.02238, 0.1201, 2.1006, 0.9661, 0.05431)

(2.15)

when studying the origin of the phase shift in section 3 and 4 and will allow the parameters

to flow when performing the MCMC study in section 5.

3 Enhanced phase shift: numerical calculations

In this section, we show the results of CMB phase shift between the DL-¿ and SI-¿ models

obtained from CLASS and discuss the parametric dependence of the phase shift result. We

will discuss the origin of the phase shift and explain the parametric dependence of the

result in section 4.

3Recent studies have found the contribution of the SM neutrinos to the relativistic degrees of freedom to

be 3.044 [72–75]. This difference will have no impact on our results.

– 8 –
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3.1 Locating acoustic peak positions

To quantify the phase shift in the calculated CMB power spectrum, we determine how the

positions of the acoustic peaks change relative to different models (ΛCDM, DL-¿, or SI-¿).

However, one difficulty in extracting the location of acoustic peaks in either DT T,EE
ℓ spectra

or the transfer function Tµ(k) is that the diffusion damping, together with the discrete ℓ

and k points output from CLASS, makes it tricky to determine the peak location at high ℓ

(or high k) with precision ¶ℓ ∼ 1 (¶k ∼ 10−5 Mpc−1) for seeing the signal. We hence need

to implement the following scheme to fit the peak locations:

1. For DT T,EE
ℓ , we include the lensing correction in the spectra when finding the peak

locations. Since ℓ is an integer, the digitized peak positions are found by searching for

the values of ℓ that correspond to local maxima in the Dℓ’s, with the condition that

these points be larger than all other points within an interval of [ℓ− 10, ℓ+ 10]. As the

peak structure gets less well-defined at larger ℓ’s due to diffusion damping, the positions

of the larger ℓ peaks are excluded as unreliable. The resulting shift in peak positions ∆ℓ,

which are only resolved up to integer level, may experience some numerical fluctuation

due to rounding uncertainty. Instead of looking at the individual ∆ℓ points, we analyze

the mean and standard deviation of several points to quantify the average phase shift

in the Dℓ’s for each model for the high-ℓ peaks. Further investigation of the phase shift

signal would involve fitting the CMB spectra with a template designed to capture the

shifts in ℓ-peaks [76], which we leave for future work.

2. The peak structure of the photon transfer function Tµ(k) allows us to monitor the

generation of photon phase shift at different redshifts and is important for understanding

the origin of the phase shift. We adjust the CLASS settings to ensure a high density

of points for the Tµ(k) output. However, due to the limitation of the computation

time, we can only obtain the spectrum down to step size ∆k ∼ 2 × 10−4kp, where

kp represents the peak location, and find the precise peak positions by fitting with a

Gaussian function f(k) = A exp(−(k − kp)2/2Ã2) + b. The fitting is done over a range

of 100 to 400 points on each side of the maxima to extract the mean value kp as the

true peak position — as many points as possible are included in the fit to obtain a

symmetric profile for the peak region while aiming for the variance in the fitting of the

mean to satisfy a threshold of
√

Var[kp]/kp ≲ 10−6 − 10−5.4 As damping at larger k

smears out the peak structure, the Gaussian fit for the larger k-peaks with kÄ ≳ 45 is

excluded as unreliable.

3.2 Phase shift enhancement in the CMB power spectra

In figure 2, we show the ∆ℓ shift for each acoustic peak in the lensed DT T
ℓ (circle) and

DEE
ℓ (triangle) spectra of the SI-¿ (blue) and DL-¿ scenarios compared to the ΛCDM model.

Among the total neutrino number 3.046, we assume either one-third (labeled as 1¿), two-

thirds (labeled as 2¿), or all of the neutrinos (labeled as 3¿) are interacting. We see certain

general features in the CMB phase shift by plotting the ∆ℓ’s as a function of the ΛCDM

4Here we define Var[kp] as the diagonal element of the covariant matrix for the mean value of the Gaussian,

obtained as an output from fitting with scipy curve_fit in Python [77].
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Figure 2. CMB phase shift enhancement from CLASS for one (upper) and two (lower) species of

scattering neutrinos. The ∆ℓ shift in peaks in the DT T
ℓ (circle) and DEE

ℓ (triangle) lensed spectra

for SI-¿ (blue) and fÇ = 2.5% DL-¿ (orange) fluids were taken with respect to ΛCDM, where ℓ is

an integer. Lines connecting the points have been provided to help guide the eye, but should not be

directly interpreted as having physical meaning due to the integer-level rounding fluctuations of the

points. For the five peaks larger than ℓ = 1250 (black vertical line), the asymptotic mean (“asymp

mean”) ∆ℓ and standard deviation Ã of the ∆ℓ’s in the deep radiation era were calculated. The

∆ℓ± 1Ã band was plotted for each case.
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Figure 4. ∆ℓ shift in peaks in the DT T
ℓ (circle) and DEE

ℓ (triangle) lensed spectra for large

fÇ = 10% − 20% DL-¿ fluid with all three neutrinos scattering. The shifts were taken with respect to

ΛCDM. The integer-valued ∆ℓ points are joined by lines for visual clarity.
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Figure 5. fÇ-dependence of the ∆ℓ enhancement on top of SI-¿ (fÇ = 0) for respective numbers

of scattering ¿’s, where ∆ℓ is the mean value of the ∆ℓ’s for the five peaks larger than ℓ = 1250.

Error bars correspond to the standard deviation Ãdiff in the differences between the computed ∆ℓ’s,

quantifying the relative integer rounding fluctuation of points with respect to SI-¿. A linear fit to the

first 5-7 points in fÇ is provided for each f¿ .

peak positions in ℓ. First, in both interacting neutrino models, there is a positive ∆ℓ that

grows with ℓ across both the DTT
ℓ and DEE

ℓ spectra, indicating that there is a phase shift to

higher ℓ-modes from neutrino scattering. The phase shift gets more pronounced for modes

entering the horizon deeper in the radiation era.

Conversely, ∆ℓ goes to zero as ℓ goes to zero, which is to be expected since the low-ℓ

modes only enter the horizon in the deep matter-dominated era. At this time, the metric

perturbations would be dominated by non-oscillating contributions coming from the clumping

of cold dark matter, making the contributions of the SI-¿ and DL-¿ acoustic oscillations to the

metric negligible in comparison. We do not have a clear analytic understanding of the interim

period between the deep radiation domination and deep matter domination eras, although

we can reasonably expect the ∆ℓ values to interpolate between the two extremes. We see

this in the full CLASS result (which remain valid in the interim period) where ∆ℓ steadily

declines as we go from larger to smaller ℓ modes. To study the phase shift in Dℓ, we focus

on the deep radiation era and consider only ∆ℓ values for larger ℓ modes, as this is where

analytical understanding is feasible and numerical calculations show the largest phase shift.

As shown in figures 2 and 3, when comparing models with the same number of scattering

neutrinos, there is a noticeable positive ∆ℓ enhancement from the DL-¿ model (orange) on

top of the SI-¿ (blue). We show this additional ℓ-peak shift in figure 4, which increases

with the fraction of interacting dark matter fÇ and continues to grow for fÇ g 15% when

the sound speed of the DL-¿ is slower than the photon sound speed. We will discuss the
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relationship between neutrino sound speed and phase shift in section 4.1. To better quantify

this additional ∆ℓ shift produced in the deep radiation-dominated era, we focus on the

modes ℓ > 1250 (black vertical line) mainly contributed by perturbations entering the horizon

before matter density becomes significant. To account for numerical fluctuations due to the

integer-level rounding of the peak positions, we average the shift ∆ℓ of the larger ℓ peaks

(ℓ > 1250) and obtain the standard deviation Ã of the ∆ℓ points about this average. The

significance of this effect is indicated by the separation of the ±1Ã bands in figure 2.

In figure 5, we show the average and standard deviation of DL-¿’s ∆ℓ shift relative to the

SI-¿ case against fÇ, where fÇ = 0 corresponds to the SI-¿ case. A clear linear dependence of

the average ∆ℓ in fÇ is observed until fÇ gets larger ≈ 6%. However, as we show in section 5,

current CMB data favors fÇ ≲ 1%, restricting us to the regime where the interacting neutrino

density dominates over the interacting dark matter density around matter-radiation equality,

and the linear dependence in fÇ holds well. Despite an increasing fraction of interacting

neutrinos f¿ leading to a larger phase shift compared to the ΛCDM model (figure 2 and 3),

the additional phase shift compared to the SI-¿ model remains insensitive to the fraction

of interacting neutrinos (figure 5) in this regime.

4 Enhanced phase shift: analytic understanding

By solving the Boltzmann equations, we find that neutrino-DM scattering further shifts the

acoustic oscillation peaks to higher ℓ-modes. In this section, we show that the mechanism

underlying the DM-induced phase shift can be explained by coupled harmonic oscillators

between photon and neutrino perturbations. This insight helps us to understand the linear

dependence on fÇ and the insensitivity to f¿ in the additional phase shift.

As we explain below, the phase shift is determined by perturbation evolution right after

horizon re-entry. For perturbations with ℓ ≳ 103, we can assume a radiation-dominated

Universe in the following discussion.

4.1 Sound speeds of the cosmic fluids

Earlier studies on the CMB phase shift [14, 15] have shown that a phase shift is generated

in the photon fluid if we have non-photon radiation with sound speed larger than photons,

or if the radiation carries isocurvature fluctuations. These earlier studies were done in the

context of a radiation-dominated universe with negligible matter content. In this paper, we

focus on adiabatic fluctuations and consider the phase shift due to the propagation behavior

of radiation inside the horizon when matter-loading effects are taken into account. The

key quantity of interest is the adiabatic sound speed c2
g = ¶Pg/¶Äg describing the speed at

which the fluctuations propagate, where g is a general index that may denote any particular

component or combination of components. This can be related to the equation of state

Ég = Pg/Äg by the general relation [78]:

c2
g = Ég + Äg

dÉg
dÄg

= Ég − É̇g
3H(1 + Ég)

. (4.1)

In a radiation-dominated universe, the overall equation of state is a constant É = 1/3.

The total sound speed reduces to c2
s = É and ref. [15] shows that there is no phase shift
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Figure 6. Illustration of the time-dependence of the tightly-coupled radiation sound speeds in the

presence of matter loading. The curves were obtained using the sound speed formula (2.11) and the

background densities from CLASS for all neutrinos scattering and a range of fÇ. The corresponding

sound speed of the photon-baryon plasma c2
µ is included for reference.

if c2
s < c2

µ . In a universe containing both radiation and matter, É would instead exhibit

a time-dependence:

É =
1

3

Ärad

Ätotal
=

1

3

1

1 + a(Ä)
aeq

, (4.2)

where aeq is the scale factor at matter-radiation equilibrium. This results in a non-zero É̇

and the total sound speed becomes:

c2
s =

1

3

1

1 + 3
4
a(Ä)
aeq

. (4.3)

While c2
s = É holds true only at a(Ä) j aeq, time evolution due to the presence of matter

in the background leads us into the c2
s ̸= É regime discussed in ref. [15] where a phase shift

can be generated, albeit without isocurvature.

To understand the mechanism behind the phase shift effect we obtained from CLASS, it

is important to consider the relative sizes of the individual radiation sound speeds. Applying

eq. (4.1) to a cosmic fluid consisting of tightly coupled radiation and matter components

yields the sound speed formula (2.11) from before. The Ä -dependence of the sound speed

for various tightly coupled fluids can be obtained by plugging in the background densities

from CLASS into the energy ratio in eq. (2.11), with Rµ = 3Äb/4Äµ for the photon-baryon

– 14 –



J
C
A
P
0
1
(
2
0
2
5
)
0
5
8

plasma and R¿ = 3ÄÇ/4Ä¿ for the efficiently scattering DL-¿ fluid. These are plotted in

figure 6 for a range of fÇ for Ä f 120 Mpc when the tight-coupling approximation for the

photon-baryon plasma holds well.

As expected, the DL-¿ fluids exhibit a DM-loaded suppression in the sound speed over

time compared to the pure SI-¿ fluid (purple dash-dotted line). For the fraction of scattering

dark matter fÇ ≲ 10%, the sound speeds follow the order:

cµ < cDL−¿
¿ < cSI−¿

¿ < cFS−¿
¿ , (4.4)

where cSI−¿
¿ = 1/

√
3 for the SI-¿ fluid with zero DM-loading.5 Notably, the ordering in the

neutrino sound speeds c¿ coincides with the relative sizes of the phase shift calculated in

section 3, with slower sound speeds corresponding to larger positive shifts in ℓ. Comparing

figures 4 and 6, the phase shift induced by DM-loading continues to rise for fÇ ≳ 15%, even

when the corresponding DL-¿ sound speed now follows the ordering cDL−¿
¿ < cµ . While this

implies that the total sound speed cs < cµ in the absence of any other radiation component,

we reiterate that this is not in contradiction with the discussion in ref. [15] since c2
s ̸= É.

4.2 A toy model analysis

To obtain a qualitative understanding of the enhanced phase shift, we construct a toy model

mimicking the evolution of photon and neutrino perturbations from the CLASS calculation.

We first examine the scenario where all neutrinos undergo scattering with a fraction of DM,

then discuss the case where some neutrinos remain free-streaming.

The temperature perturbation of photons ¶Tµ/T̄µ results from a combination of energy

density perturbation ¶µ ≡ ¶Äµ/Ǟµ and metric perturbation ϕ. However, in the radiation-

dominated era, ϕ decays upon entering the horizon and contributes significantly less to

temperature perturbations, especially for the high-ℓ modes we are considering. As a result,

we can simplify the discussion by focusing on ¶µ instead of the gauge invariant ¶Tµ/T̄µ . As

we discussed in more details in appendix. B, under the tight coupling approximation, the

perturbations of fluids in the µ − b and DL-¿ (or SI-¿) systems can be described by a pair

of gravitationally coupled oscillators

¶̈µ(Ä) + k2c2
µ(Ä)¶µ(Ä) =

4H2(Ä)

1 + a(Ä)
aeq

[fµ¶µ(Ä) + f¿¶¿(Ä)] , (4.5)

¶̈¿(Ä) + k2c2
¿(Ä)¶¿(Ä) =

4H2(Ä)

1 + a(Ä)
aeq

[fµ¶µ(Ä) + f¿¶¿(Ä)] . (4.6)

cµ,¿ are the photon and neutrino sound speeds c2
µ,¿ = [3(1 + Rµ,¿(Ä))]−1 with

Rµ(Ä) =
3

4

fb
fµ

a(Ä)

aeq
, R¿(Ä) =

3

4
fÇ
fDM

f¿

a(Ä)

aeq
. (4.7)

5Beginning at horizon re-entry, the evolution of the FS-ν perturbation diverges from that of the SI-ν

perturbation as the shear perturbation begins to grow. In section 4.3, we will show that the sound speed

cFS−ν

ν
in the FR-ν perturbation equation starts around ≈ 1/

√
3 at horizon re-entry and accelerates to ≈ 1

through diffusion damping.
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fi = Äi/Ärad for i = µ, ¿, and fi = Äi/Äm for i = b,DM, are the background density ratios

of the components in the radiation and matter respectively. The background density ratios

fi were taken from the CLASS background output. To the two decimal places, they are

fDM = 0.84, fb = 0.16, fµ = 0.59 and f¿ = 0.41 for all neutrinos scattering. Eqs. (4.5)

and (4.6) are derived based on four assumptions described below that offer reasonable

approximations of ¶µ,¿ evolution right after horizon re-entry. This is when ¶µ obtains a phase

shift, as we will show. The coupled oscillators can effectively reproduce several qualitative

features observed in the CLASS results. Nevertheless, these approximations have limitations,

and deviations between this toy model and the CLASS results are to be expected.

• (Assumption 1) The system does not contain free-streaming radiation, hence there is

no anisotropic stress and metric perturbations ϕ = È. The toy model cannot capture

diffusion-damping effects in the CMB, especially near recombination, where photon

and baryon perturbations decouple from each other starting from the higher k-modes.

Deviations from CLASS are hence anticipated near recombination. When considering

some neutrinos as free-streaming, as discussed at the end of section 4.3, since the shear

perturbation Ã has not undergone significant growth in the early evolution, the toy

model still captures the main features of the full result that we focus on.

• (Assumption 2) The matter loading gives a minor correction to photon and neutrino

propagation, with Rµ,¿ j 1 when a perturbation mode enters the horizon. This

condition holds true for the perturbation modes we consider when fÇ < f¿ at matter-

radiation equality. This assumption allows for the neglect of Hubble damping and

simplification of the Einstein equations, as discussed in appendix B.

• (Assumption 3) The toy model focuses on the evolution of perturbations inside the

horizon (kÄ > 1), where ϕ ∝ Ä−2 holds in the radiation-dominated era. It does not

accurately represent the behavior close to horizon re-entry (kÄ ≲ 1), leading to expected

deviations from CLASS for the location of low-k peaks.

• (Assumption 4) The energy density perturbation is dominated by photons and

neutrinos, a valid approximation for modes entering the horizon during the radiation-

dominated era. This assumption simplifies the setup as a closed system with ¶µ,¿ .

However, the toy model cannot capture contributions to the phase shift arising from

dark matter acoustic oscillations (DAO), which become more pronounced at later

times. Consequently, the toy model can underestimate the phase shift compared to the

CLASS result, with the underestimation amplifying over time and with increasing fÇ/f¿ .

In this work, we concentrate on scenarios where fÇ/f¿ < 1 until recombination, and

the DAO produce a minor correction to the phase shift.

To validate the toy model, we compare the phase shift in ¶µ(k) with the results obtained

from CLASS using Hubble expansion rates and energy densities Äi (i = µ, ¿, b,DM) from

CLASS output. We set the initial conditions ¶µ,¿(Äin) = 1 and ¶̇µ,¿(Äin) = 0 for kÄin = 1 to

approximate the CLASS perturbations starting from horizon re-entry. When studying the phase

shift signal, the choice of initial conditions only determines the initial amplitude and phase of

the oscillation, which is identical among DL-¿ and SI-¿ scenarios. The difference in the phase
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Figure 7. CLASS (solid) vs toy model (dotted) comparison of ∆k for fÇ = 1.25% (blue) and

2.5% (orange) DL-¿ with respect to SI-¿ for 3 scattering neutrinos in the radiation-dominant era

(Ä ≈ 40 Mpc). The peak locations of the toy model (cross points) lie within +10% of the peaks from

CLASS (solid dots), as demarcated by the grey vertical bands.

shift is therefore insensitive to the choice of initial conditions. To obtain transfer functions

in k modes, we solve the toy model across a range of k-values, evaluating until redshifts

z∗ = 10800, 3400, and 1070, corresponding to the deep radiation-dominated era (Ä ≈ 40 Mpc),

the matter-radiation equality (Ä ≈ 113 Mpc), and recombination (Ä ≈ 280 Mpc), respectively.

The transfer function is obtained from ¶µ(Ä(z∗)) values over k.

In figures 7 and 8, we present the shift of ¶µ(k) peaks relative to the scattering neutrino

scenario (fÇ = 0 and c2
¿ = 1

3), calculated by the toy model (dotted) with fÇ = 1.25% (blue)

and 2.5% (orange). For comparison, we include results from the CLASS calculation (solid),

with connected points for visual clarity. The toy model predicts peak positions within +10%

deviation from the respective CLASS peaks in all cases (shown as the grey vertical bands).

This discrepancy mainly arises from the initial evolution of the metric perturbation ϕ and the

neglect of matter perturbations (Assumptions 3 & 4), which affect the time-dependence of

ϕ and hence the ¶µ oscillations in the complete Boltzmann equations.6 However, since we are

only concerned with the relative phase shift between DL-¿ and SI-¿ scenarios, deviations in

the peak locations relative to CLASS that appear in both scenarios, in the same way, would

cancel and hence do not matter to the discussion.

The toy model solution reasonably approximates the enhanced phase shift obtained in

the full result, demonstrating a linear dependence on fÇ and insensitivity to f¿ as in figure 9.

6The deviation in the peak location is consistent with the discussion in ref. [70], where an analytic

approximation of the acoustic oscillations obtained by ignoring contributions from the time-dependence of φ

predicted peak locations at higher k-modes that lie within 10% from the full numerical solution.
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Figure 8. Same as figure 7 but with Ä ≈ 110 Mpc at matter-radiation equality (upper) and

Ä ≈ 280 Mpc at recombination (lower).
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Figure 9. Toy model fÇ-dependence of the shift in the peak at k ≈ 0.43/Mpc, obtained in the

radiation-dominant era (Ä ≈ 40 Mpc) for different numbers of scattering neutrinos. The lines were

obtained by varying fÇ continuously from 0 − 5% (no linear fit).

As expected from (Assumption 3), the toy model does not replicate the horizon entry

behavior precisely enough to reproduce low-k modes’ phase shift to the ∆k/kpeak ∼ 10−5

level precision. We therefore only consider ¶k results starting from the second oscillation peak

in Ä so that the perturbation modes fully enter the horizon. (Assumption 4) also suggests

increasing deviations between toy model and CLASS at later times, exacerbated for larger fÇ.

At recombination, a deviation grows with k, as anticipated from (Assumption 1). We leave

additional plots for the DL-¿ scenarios with one and two interacting neutrinos in appendix. C.

Given the toy model’s reasonable approximation and simultaneous reproduction of fÇ
and f¿ dependence, it serves for analytical understanding of the full result.

4.3 Parametric dependence from the toy model analysis

Eqs. (4.5) and (4.6) describe two harmonic oscillators ¶µ and ¶¿ with natural frequencies kcµ
and kc¿ and couple to each other via gravitational interaction

Fdriv(Ä) ≡ 4H2(Ä)

1 + a(Ä)
aeq

≈ 4

Ä2(1 + Ä
Äeq

)
(4.8)

with H = Ä−1 for being in the deep radiation-dominated era. To focus on the parametric

dependence on fÇ for the DM-loading effect, we ignore baryon-loading (fb/fµ j 1) in cµ
to simplify the discussion, such that c2

µ = 1
3 . While baryon-loading changes ¶µ oscillation

and corrects its peak positions, the resulting phase shift shows up equally in the DL-¿ and

SI-¿ scenarios. When comparing phase shifts between the two scenarios, the baryon-loading

corrections cancel out, leaving the enhanced phase shift that we focus on.
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Figure 10. Evolution of the photon transfer function from CLASS calculations, comparing the

free-streaming neutrino scenario (black) to the DL-¿ scenario with fÇ = 0.1 (red). Perturbations grow

mildly outside the horizon (grey region). The two curves evolve similarly when kcµ ≲ 2

Ä
(eq. (4.8),

green region) until perturbations begin oscillating around the peak in the white region. As kcµÄ k 2

(yellow), oscillations resemble freely propagating waves. The blue curve represents a plane wave fit to

the DL-¿ curve in the yellow region, characterized by a constant É = 0.97
√

3
k. The phase shift between

the black and red curves is determined within the white time window, where the driving force Fdriv(Ä)

approaches k2c2
µ,¿ . Vertical lines mark peak locations in the DL-¿ (red) and free-streaming (black)

scenarios, showing a positive phase shift in the DL-¿ curve.

Considering small DM-loading with fÇ j f¿ (Assumption 2), or equivalently ÄÇ j Ä¿
at matter-radiation equality, we have c¿ = cµ − ¶c, where

¶c(Ä) = R¿(Ä)
c2
¿(Ä)

cµ + c¿(Ä)
j cµ . (4.9)

DM-loading slows down c¿ as the universe expands, which drives the oscillation frequencies

between ¶µ and ¶¿ apart over time. As depicted in figure 10 obtained using CLASS, the

evolution of the photon’s transfer function unfolds in three steps. Initially, the perturbations

only grow mildly before fully entering the horizon (grey region). Between kÄ ≈ 1 and

kcµÄ ≈ 2 (green region), the perturbations start to grow, and the evolutions of ¶µ,¿ are

governed by the same gravitational interaction Fdriv(Ä) in eqs. (4.5) and (4.6). This gives

identical evolution for all fluids, whether neutrinos are free-streaming or interacting with or

without DM-loading. Conversely, gravitational interaction becomes negligible as kcµÄ k 2

(yellow region), and ¶µ,¿ oscillates with their natural frequencies kcµ,¿ . There is no further

change in the phase shift upon this point. As a result, we can fit the oscillation frequency

and phase in the interacting neutrino scenario with constants (blue curve). As depicted in

the white region, ¶µ with DM-loading (red) develops a positive phase shift compared to the

free-streaming neutrino case (black) when kcµÄ ≈ 2.
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In the radiation-dominated era, Fdriv ≈ k2c2
µ happens when kcµÄ ≈ 2[1 − (kcµÄeq)−1].

Since the decoupling of the driving force Fdriv(Ä) happens right after this time scale, to

simplify the discussion, we define a fixed O(1) number ³ such that the phase shift is fixed

around time Ä³

kcµÄ³ = 2³

(

1 − 1

kcµÄeq

)

. (4.10)

As discussed in appendix B, we find ³ ≈ 1.5 by matching the oscillation phase of the numerical

solutions of eqs. (4.5) and (4.6) to harmonic oscillator solutions. Given Äeq ≈ 110 Mpc, when

considering modes with k = O(0.1) Mpc−1, the k-dependent term in the parenthesis only

introduces an O(10)% percent level correction to the result. The interplay between the

weakening of Fdriv and the growth of ¶c dictates the evolution of the phase shift. Despite the

toy model offering a more concise approximation of the CLASS result, the time-dependence in

Fdriv(Ä) and ¶c(Ä) still complicates obtaining analytical insights on the parametric dependence

of the phase shift. To further simplify the system, we exploit the fact that at the timescale Ä³
we focus on, both the changing rate of |Ḟdriv/Fdriv| ≈ Ä−1

³ = (2³)−1kcµ and the difference in

the oscillation frequency k¶c are slower than the natural oscillation frequency ≈ kcµ . We then

assume Fdriv and k¶c to be constants in time when deriving corrections to the ¶µ oscillation.

While this assumption is somewhat crude, given that Ä−1
³ is not significantly smaller than

kcµ , it serves as a useful approximation for identifying the parametric dependence of the

phase shift from otherwise intricate equations.

In the SI-¿ scenario (¶c = 0), eqs. (4.5) and (4.6) around Ä³ can be approximated as7

¶µ(k, Ä) = ¶¿(k, Ä) ≈ cos(ÉÄ) , É = kcµ . (4.11)

See appendix B for more discussions. Once the neutrino sound speed decreases due to

DM-loading, ¶c slows down the neutrino’s oscillation frequency to É − k¶c, hence altering

the driving force of the photon oscillation:

Fdriv [fµ cos(ÉÄ) + f¿ cos((É − k¶c)Ä)] ≈ Fdriv [cos(ÉÄ) + f¿k ¶c Ä sin(ÉÄ)] . (4.12)

We use fµ + f¿ = 1 and the small angle approximation, incorporating sin(k¶cÄ) ≈ k¶cÄ in

the second equation. As the oscillation from k¶c is much slower than É, we treat kÄ = kÄ³
as static. The presence of the sin(ÉÄ) oscillation generates a phase shift cos(ÉÄ + ∆ϕload)

to the initially cosinusoidal driving force with

∆ϕload ≈ −f¿
(

¶c

cµ

)

2³

(

1 − 1

kcµÄeq

)

= −3³2fÇfDM

kcµÄeq

(

1 − 1

kcµÄeq

)2
c2
¿

cµ(cµ + c¿)
, (4.13)

where we use the correction to the sound speed in eq. (4.9). When absorbing the angle

as a shift to the oscillation, the solution cos(ÉÄ + ∆ϕload) still satisfies eq. (4.5) under the

7As discussed below eq. (B.8), the approximation should come with an initial phase φin = 2α +

tan
−1

(

1+
√

33

4α

)

in the oscillation. The phase is determined by matching the initial power-law solution

of eq. (4.5), when Fdriv k k2c2
γ , to the cosine solution starting at τα. Given our interest solely in the phase

difference among different models, the overall phase φin becomes irrelevant for comparison. We hence omit φin

in the subsequent discussion and concentrate on the additional phase generated from DM-loading.

– 21 –



J
C
A
P
0
1
(
2
0
2
5
)
0
5
8

0 20 40 60 80 100
SI-  Fluid Peak Location in k [1/Mpc]

0

2

4

6

8

k 
w.

r.t
. S

I-
 F

lu
id

 [1
0

5 /M
pc

]

Toy Model k for 3  Scattering at z= 10800: Large k
Toy Model f = 1.25%
Toy Model f = 2.5%
A/(k+ a) + b : A=50, a=10, b=0.05
A/(k+ a) + b : A=90, a=10, b=0.30

Figure 11. Toy model: large k dependence of ∆k for fÇ = 1.25% (blue) and 2.5% (orange) DL-¿ with

respect to SI-¿ for 3 scattering neutrinos. Points are obtained by solving the toy model numerically up

to k = 100/Mpc at redshift z = 10800. Functions A/(k+ a) − b, where A, a, b are constant parameters,

are plotted to show the inverse k dependence at large k.

approximation of static Fdriv and cµ . The phase shift becomes

∆ϕload ≈ −3³2fDM

2cµÄeq

fÇ
k + a

, a =
1

cµÄeq

(

2 +
3

4

³fDM

f¿
fÇ

)

. (4.14)

When considering modes with k = O(0.1) Mpc−1, the estimate gives a phase shift between

DL-¿ vs. SI-¿ with size ∆ϕload ∼ −0.1fÇ, and the shift of the k pole a ∼ 10−2 Mpc−1.

At a later time Ä , the acoustic peaks in the perfect fluid scenario exist when ÉÄ ≈
kpeakcµÄ = nÃ. In the radiation-dominated era, the peak location in k obtains a positive

shift with size

¶k ≈ −∆ϕload

cµÄ
≈ 3³2fDM

2c2
µÄeq

fÇ
(k + a)Ä

≈ 0.07fÇ(kÄ)−1 Mpc−1 (4.15)

if taking ³ = 1.5 in the last expression. Considering comoving time and wave number with

kÄ ≈ 30 in figure 7, the estimated ¶k ≈ 2 × 10−3fÇ Mpc−1 aligns with the order of magnitude

of the CLASS results (solid curves). Although in the analytical approximation we treat the

photon sound speed cµ in eq. (4.15) as a constant at later times, it decreases by about 10%

from the deep radiation-dominated era to Äeq in the CLASS calculation. We hence expect ¶k

to increase over time by ≈ 20% when comparing results with the same kÄ between figures 7

and 8.Nevertheless, the estimate from eq. (4.15) effectively captures the order of magnitude

for ¶k and explains the linear dependence on fÇ.

The k−1 dependence in eq. (4.15) suggests a decoupling limit for ¶k to vanish at large k.

This limit is anticipated because ¶c is smaller at an earlier time when a perturbation mode
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with higher k enters the horizon. While it is challenging to obtain ¶k from CLASS for large

enough k-modes due to the severe diffusion damping of ¶µ , the toy model provides a glimpse

of the k-suppression. In figure 11, we show the phase shift obtained by numerically solving the

toy model at Ä = 40 Mpc for large k-modes, and the ¶k ∝ (k + a)−1 dependence in eq. (4.15)

does capture the suppression pattern of the phase shift. Our analytical approximation

does not reproduce the oscillation in the phase shift. We suspect it comes from the time

dependence in cµ(Ä) since the oscillations disappear when setting cµ as a constant. We leave

a more detailed understanding of the large-k dependence for future work. Considering CMB

measurements, we also do not anticipate observing the phase shift at such large k-modes.

In the flat-sky approximation, the shift in the acoustic peaks of CTT,EE
ℓ spectra is related

to the k-modes as ¶ℓ/∆ℓpeak ≈ ¶k/∆kpeak ≈ 0.07cγ

Ãk
fÇ, where ∆ℓpeak and ∆kpeak are the

distance between oscillation peaks at recombination. For modes entering the horizon in

the radiation-dominated era, ∆ℓpeak ≈ 330, our analytical estimate gives ¶ℓ ≈ 120fÇ with

k ≈ 0.1 Mpc−1, which is not far from fitting the CLASS result ¶ℓ ≈ 80(1 ± 0.5)fÇ in figure 5.

When considering scenarios where only a fraction f int
¿ of neutrinos are interacting, and

f fs
¿ fraction are free-streaming (with f int

¿ + f fs
¿ = f¿), the modified driving force for photon

oscillation is given by:

Fdriv

[

fµA cos(ÉÄ) + f int
¿ A cos(É̃intÄ) + f fs

¿ A cos(É̃fsÄ)
]

, (4.16)

where É̃int ≈ É − k¶c as before. The free-streaming neutrino has É̃fs → 1 at later evolution,

significantly different from the É of interacting radiation. However, as illustrated in figure 12,

before ¶¿ (orange) reaches its first oscillation peak at kc¿Ä ≈ Ã, the shear Ã¿ (red dotted) has

not increased significantly. The diffusion damping has not started yet, and É̃fs ≈ É. Since

the phase shift is also fixed right before kc¿Ä³ = 2³ ≈ Ã, we can write É̃fs = É + ¶Éfs with

É k ¶Éfs > 0. The driving force around the Ä³ time we consider approximates

FdrivA
[

cos(ÉÄ) + (f int
¿ k ¶c− f fs

¿ ¶Éfs)Ä³ sin(ÉÄ)
]

(4.17)

with fµ + f¿ = 1. When considering the phase shift between DL-¿ and SI-¿ with the

same fraction f int
¿ of interacting neutrinos, the phase shift from f fs

¿ ¶Éfs cancels out, and the

enhanced phase shift is still approximated as eq. (4.12) if fÇ j f int
¿ . The phase shift between

the two scenarios therefore remains insensitive to f int
¿ as shown in figures 5 and 9. Applying

the same approximation, the phase shift of FS-¿ compared to SI-¿, commonly discussed in

the literature, can be approximated as cos(ÉÄ + ∆ϕint) for an initially cosinusodial wave with

∆ϕint ≈ ³

(

¶Éfs

kc¿

)

f fs
¿ = O(0.1) × f fs

¿ . (4.18)

This FS-¿ shift is in the opposite direction compared to the DL-¿ shift in eq. (4.14). In

the second equality we use the fact that ³ ≈ 1.5, É ≈ kc¿ , and (¶Éfs/É) = O(0.1) from

the numerical solution depicted in figure 12. This linear dependence is similar to the

approximation ∆ϕint ≈ 0.191Ãf fs
¿ derived in [15], up to first order in f fs

¿ . However, to

determine the pre-factor, a more precise estimation of ¶Éfs from the diffusion damping process

is necessary, as discussed in refs. [14, 15].
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Figure 12. CLASS: evolution of ¶¿ perturbations in conformal time for FS-¿ and SI-¿ at two different

k-modes, with k = 0.1/Mpc on the top and k = 0.2/Mpc below. For comparison, the dipole ¹¿/k and

shear Ã¿ for FS-¿ are included.

4.4 Phase shift from N-copies of DR-DM system

DR-DM scattering has been extensively explored in studies of dark sector cosmology. Our

analysis of the phase shift in the DL-¿ scenario is readily applicable to these DR-DM models.

In this context, one can substitute f int
¿ in eq. (4.16) with f int

DR = Äint
DR/(Äµ + Äfs

¿ + Äint
DR),

representing the fraction of interacting DR. The enhanced phase shift due to DM-loading

emerges as a generic feature across dark sector models featuring DR-DM scattering.

To examine the phase shift in the DR-DM system, we incorporate interacting DR within

the ETHOS framework in CLASS [71]. We assume all SM neutrinos as free-streaming and

introduce an extra DR component that undergoes scattering with Ç for the DM-loading DR
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Figure 13. CMB phase shift enhancement from CLASS for interacting DR-DM, with NDR = 0.4

and all neutrinos free-streaming. Top: ∆ℓ shift in peaks in DT T
ℓ and DEE

ℓ lensed spectra for SI-DR

(blue) and fÇ = 2.5% DL-DR (orange), with respect to ΛCDM. Lines connecting the points have

been provided to help guide the eye. As in figure 2, the asymptotic mean (“asymp mean”) ∆ℓ and

standard deviation Ã of the ∆ℓ’s in the deep radiation era are shown. Bottom: fÇ-dependence of the

∆ℓ enhancement on top of SI-DR (fÇ = 0). Error bars correspond to the standard deviation Ãdiff in

the differences between the computed ∆ℓ’s, quantifying the relative integer rounding fluctuation of

points with respect to SI-DR. A linear fit to the first 5 points is provided.
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(DL-DR) scenario. This is compared to the self-interacting DR (SI-DR) for an additional

phase shift. In figure 13 left, we show the phase shift of DL-DR (orange) and SI-DR (blue)

models relative to the free-streaming DR (FS-DR) scenario, assuming a large ∆Neff = 0.4

that has been considered to address the H0 problem [79, 80] and fÇ = 2.5%. The enhanced

phase shift in the DL-DR model is evident. Similar to the interacting neutrino case, the

extra phase shift from DR-DM scattering is proportional to fÇ (figure 13 right), as long

as fÇ j f int
DR ≈ 5% in this case.

The study of the DL-¿ and DL-DR gives us insights into how a ‘loaded’ fluid can generate

an additional phase in the photon acoustic peaks, and we can generalize the idea for N

isolated dark sectors, each with their own interacting DR-DM system. For concreteness, let

us consider multiple efficiently scattering relativistic fluids DRi −Çi, indexed by i = 1, . . . , N ,

where the DR component DRi can include scattering ¿. The toy model then describes

N + 1 coupled oscillators for the photon-baryon fluid and the N dark sector fluids. Consider

again the solution with initial conditions ¶µ,DR(Äin) = 1, ¶̇µ,DR(Äin) = 0, and drop the same

initial phase ϕi and amplitude A

¶µ(Ä) = cos(kcµÄ) , ¶DRi
(Ä) = cos(kcDR,iÄ) (4.19)

with DR sound speed cDR,i = cµ − ¶ci. Assuming ¶ci j cµ for small deviations from photon

oscillations for all i, the driving force contribution in eq. (4.5) is given by

Fdriv[fµ¶µ(Ä) +
∑

i

fDR,i¶DRi
(Ä)] ≈ Fdriv[cos(kcµÄ) + kÄ³

(

∑

i

fDR,i¶ci

)

sin(kcµÄ)] , (4.20)

where we apply the small angle approximation for kÄ³¶ci = 2³
(

¶ci

cγ

)

j 1 with ³ being

an order one number. Given that 2³
(

¶ci

cγ

)

≈ 3³fχ,ifDM

2fDR,i

Äα

Äeq
, the total phase shift from the

dark sectors becomes

∆ϕtotal ≈ 3³2

kcµÄeq

∑

i

fÇ,i . (4.21)

Therefore, in the case where all dark sectors are dominated by the DR energy, i.e., fDM,i j
fDR,i, the additional phase shift compared to the SI-DR should be linearly proportional to the

sum of interacting dark matter energy density, not the individual dark sectors. To numerically

confirm the statement with CLASS, it is necessary to generalize the interacting dark matter

module to include multiple copies of DR-DM system, and we defer the task to future studies.

5 MCMC analysis

In this section, we investigate the impact of the phase shift induced by DM-loading on

cosmological data. As illustrated in figures 5 and 13, the variation in the sound speed due to

DM-loading leads to a shift in CMB multipole peaks (∆ℓ), exhibiting a linear relationship

with fÇ when fÇ ≲ f¿,DR at matter-radiation equality. Additionally, for a fixed fÇ, we observe

an approximately linear relation between ∆ℓ and ℓ up to ℓ ≈ 1200, beyond which ∆ℓ begins

to plateau or grow slower than ℓ at higher ℓ modes as can be seen from figure 2 and 13.

Although we cannot extract the ∆ℓ shifts for high-ℓ modes due to diffusion damping, the
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intuition from the toy model analysis (figure 11) suggests that the shift should vanish for

very high k which corresponds to high-ℓ modes.

One signature of modification of the acoustic phase shift in CMB is a shift in the angular

sound horizon ¹s [19]. The locations of the acoustic peaks of the CMB correspond to the

extremas of the photon transfer function which can be approximated as cos(krs + ϕ) where k

is the corresponding wavenumber, rs is the sound horizon and ϕ is the phase shift. In the

multipole space, the location of the m-th acoustic peak corresponds to,

ℓm = kmDA =
mÃ − ϕ

rs
DA =

mÃ − ϕ

¹s
, (5.1)

where DA is the angular diameter distance and ¹s = rs/DA. Since the observed peak positions

are very well measured in CMB experiments, eq. (5.1) implies that a change in the phase

shift ∆ϕ will result in a shift, ∆¹s/¹s ≈ −∆ϕ/mÃ, for a good fit of the CMB data. Models

that modify neutrino induced phase of the CMB, such as DL-¿ interaction and neutrino-self

interaction, all predict a significant shift in the ¹s from its ΛCDM value [12, 18, 19].

Compared to the typically assumed FS-¿ scenario in the ΛCDM model, the DL-¿ or

DL-DR scenarios experience phase shifts from two sources.

1. Phase shift from self-interacting neutrinos: the dominant modification of the acoustic

phase shift originates because the ¿ scattering stops neutrinos from free-steaming. The

modification of the phase shift w.r.t. the ΛCDM with FS-¿ is,

∆ϕint − ∆ϕΛCDM ∝ Äfs
¿

Äµ + Äint
¿ + Äfs

¿

− Ä¿
Äµ + Ä¿

∼ (f fs
¿ − 0.41) , (5.2)

where f fs
¿ is the amount of scattering radiation as defined in eq. (4.18). Thus, this effect

is proportional to the amount of scattering radiation fraction i.e, f¿ . Note that, this is

the sole modification of the phase shift where the neutrino only interacts with itself to

stop free streaming such is the SI-¿ case.

2. Additional phase shift from DM-loading: the phase shift from DM-loading represents

an additional contribution where neutrinos (or DR) are scattered by non-relativistic

particles like dark matter (or baryons), reducing the sound speed of the DL-¿ fluid

below the threshold of a perfect fluid, as illustrated in figure 6. The modification of the

phase shift due to this effect, as shown in eq. (4.15), is independent of the amount of

scattering by neutrinos (f¿) when fÇ ≲ f¿ at matter-radiation equality, and depends

linearly on fÇ:

∆ϕload ∝ −fÇ . (5.3)

In the subsequent analysis, we probe ∆ϕload using MCMC analysis with cosmological data.

As outlined earlier in this section, ∆ϕ leads to changes in ¹s. Thus, any deviation of ¹s from

the ΛCDM value will indicate the presence of a phase shift. A positive correlation between

¹s and fÇ from the MCMC analysis will suggest the existence of DM-loading effects in our

study. Noting that while many of the scenarios described here have been explored in the

literature, the physics of DM-loading has been largely overlooked, to our knowledge. Our
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primary aim with the MCMC analysis is not to update bounds with new datasets, but rather

to highlight the DM-loading effects that should already exist in these models. For instance,

if future data like CMB-S4 shows additional radiation energy, we could compare the fitted

values of ¹s and the suppression of matter power spectrum to see if they align with a non-zero

fÇ. A match would strongly support the presence of DR-DM scattering.

5.1 Datasets and methodology

We use the combination of the following datasets for our MCMC analysis.

• Planck: the Planck 2018 dataset which consists of low-ℓ (ℓ < 30) TT, EE and high-ℓ

(ℓ g 30) TT,TE,EE measurement [81]. It also includes the Planck Lensing likelihood [82].

• BAO:8 The BAO dataset consists of measurements from 6DF Galaxy survey [84], SDSS-

DR7 MGS data [85], and the BOSS measurement of BAO scale and fÃ8 from DR12

galaxy sample [86].

• Ext (SH0ES + KV450): the other datasets (EXT) contains the Hubble constant

measurement (H0 = 73.04 ± 1.04km/s/Mpc) from the SH0ES collaboration [47] and

matter power spectrum shape measurement from KiDS + Viking 450 (KV450) [48].

For KV-450 we use data up to kmax = 0.3h Mpc−1 limiting the analysis from the region

where non-linear effects are important.

We use MontePython to perform the MCMC analysis with the Metropolis-Hastings

algorithm [87–89]. We use GetDist for analysis and plotting of the MCMC samples [90].

5.2 Strong ν-DM interaction

To demonstrate the ¹s dependence on DM-loading, we first focus on DL-¿ scenario with

a very strong coupling and assume all SM neutrinos to interact with fÇ fraction of DM.9

Since neutrinos never free-stream in this model, (∆ϕint − ∆ϕΛCDM) is non-zero but fixed.

However, the contribution from ∆ϕload will depend on the corresponding value of fÇ. We

performed two types of MCMC runs, one set of runs with fÇ set to 1.25%, 2.5%, 5%, 10%

and another set where we vary fÇ continuously between [0, 1].

In figure 14 we show the marginalized 2D contours on ¹s and fÇ for varying fÇ runs.

Overlay-ed on the plot are also the values of ¹s with 1Ã errorbar for the fixed fÇ runs. Both

these graphs show a linear correlation between ¹s and fÇ, which is the characteristic signature

of DM-loading effects explained in eq. (4.14) and 5.1 from fitting fixed location of ℓ-peaks. In

the right panel of the plot, we show the decrease in Ã8 with increasing fÇ, which is another

generic signature of interacting dark matter models.

8Non-standard phase shift does modify the perturbation template with which BAO peak location is

extracted from sky surveys. However, ref. [83] showed that these effects do not introduce any significant bias

in the conventional BAO analysis and it’s safe to use BAO scales derived from those analyses. Note that ‘DNI’

models ref. [83] does contain DM-loading effects and particularly ‘DNI-2’ where 2% of DM is interacting with

neutrinos. See also refs. [17, 20, 21] for effects of phase shift on the shape and amplitude of the BAO spectrum.
9In the ETHOS parameterization, we set N_idr = 3.046, N_ur = 0, a_idm_dr = 10

4/fχ with T 2
ν

dependent interaction and varied fχ. Note that the exact Tν-dependence of the scattering rate κ̇DR−DM does

not have any impact as long as κ̇DR−DMτ k 1.
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Figure 14. Proof-of-principle demonstration of correlations using strong ¿-DM example. Datasets

include Planck (with lensing) and BAO. Marginalized contours up to 3Ã are shown in the plots. Mean

values for fixed fÇ runs with ±1Ã error bars are overlaid on top of the contour plots and joined with

lines for visual clarity. Left: ¹s vs fÇ showing positive linear correlation. Right: Ã8 vs fÇ showing

negative linear correlation.

The purpose of this particular analysis is to demonstrate that DM-loading indeed leads to

a linear positive (negative) correlation between ¹s (Ã8) and fÇ. When assessing the goodness

of fit to the Planck+BAO data, models with SI-¿ (fÇ = 0) already exhibit a poorer fit

compared to the FS-¿ model. The blue contours highlight additional tensions in fitting the

data relative to the SI-¿ case, as a large fÇ is disfavored due to the change of perturbations

from dark matter scattering. In the following, we will consider more realistic scenarios where

we will try to demonstrate the DM-loading effects.

5.3 Strong DR-DM interaction

We consider a scenario where DR interacts strongly with a fraction of dark matter in the

universe. Due to the large interaction strength, the DR propagates as perfect fluid till today

unless fÇ = 0. This is similar to the DL-¿ case discussed above, but the DR constitutes a

small fraction of the total Neff . In the MCMC analysis, we fix the free streaming neutrino

contribution to N¿ = 3.046 and vary the DR abundance NDR.10 In this scenario, the phase

shift relative to ΛCDM arises from ϕ = ∆ϕint − ∆ϕΛCDM + ∆ϕload, where ∆ϕint varies

with f¿ and ∆ϕload varies with fÇ. We provide the mean model parameters obtained from

the MCMC study in appendix D, along with the triangular plot and the minimum ∆Ç2

compared to the ΛCDM model. In the following discussion, we focus on the parametric

dependencies between ¹s, NDR, and fÇ.

Figure 15 shows the marginalized 2D contours of ¹s and fÇ where the points are color-

coded with the corresponding NDR values (we will call this kind as 3D plot from now on). By

10In terms of ETHOS parameters, we set N_ur = 3.046, a_idm_dr = 10
6 with T 2

ν dependent interaction

and vary N_idr and fχ.
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Figure 15. Strong DR-DM scenario: efficient scattering in the dark sector with all neutrinos

free-streaming. Plots were obtained by varying both NDR and fÇ. The fÇ → 0 limit for NDR > 0

corresponds to the SI-DR fluid case. Top Row: Planck and BAO datasets. Filter NDR > 0.1 applied

on the right plot to isolate points corresponding to DL-DR fluid. Bottom row: Planck, BAO and

Ext = SH0ES + kv450 datasets. Filter applied on the right plot to isolate two separate bands with

high and low NDR respectively.

including the SH0ES data that prefers larger NDR, as is shown in the lower-left plot, a positive

correlation between ¹s and fÇ shows up for each color of NDR points. The linear relation

is even more obvious when we separate the points by different NDR values (lower-right),

which signifies the presence of DM-loading effects. However, due to the constraint on the

fÇ coming from the physics of dark acoustic oscillations, the increase of ¹s is limited to

∼ 0.1%-level correction to ¹s (¶ℓ ∼ 1). Additionally, an overall shift in the ¹s distribution

between black and red points at fÇ → 0 is attributed to the different fractional abundance of

free-streaming radiation between these samples. Although we only add fluid-like DR, this

raises the total Neff and consequently reduces the energy fraction f fs
¿ in eq. (4.18), causing

a smaller ϕ and larger ¹s from eq. (5.1). The red points therefore distributed with a bit

larger ¹s than the black points.
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Figure 16. Strong DR-DM scenario: efficient scattering in the dark sector with all neutrinos

free-streaming. Plots were obtained by varying both NDR and fÇ. Plot shows Ã8 vs fÇ contours up to

3Ã for Planck, BAO and Ext = SH0ES + kv450 datasets. The fÇ → 0 limit here corresponds to the

SI-DR fluid case, since the bestfit point corresponds to a significantly non-zero value of NDR for this

dataset (appendix. D).

The upper plots, derived from Planck+BAO data, illustrate a linear correlation between

fÇ and ¹s for slightly larger values of NDR (ranging from light blue to red). Conversely, smaller

values of NDR (darker blue) exhibit no significant correlation between these parameters. This

deviation from linear correlation occurs in the small NDR region, where we observe minimal

phase shift, allowing for larger values of fÇ due to reduced effects from dark matter scattering.

To highlight the linear correlation between ¹s and fÇ for higher NDR, we present a 3D plot of

the Planck dataset in the upper right panel, focusing solely on MCMC points with NDR > 0.1.

In figure 16, we show the marginalized 2D contours for Ã8 and fÇ with respect to the

self-interacting DR model. As discussed in ref. [9], DM-DR scattering leads to suppression

of the matter power spectrum with increasing fÇ, resulting in a reduction of Ã8, which

represents the root mean square of matter fluctuations around the 8h−1 Mpc scale. The

positive correlation between ¹s and fÇ, along with the negative correlation between Ã8 and

fÇ, provides a distinct signature of dark matter density scattering with DR or neutrinos.

The primary constraint on fÇ in this analysis comes from the suppression of dark matter

perturbations, setting the maximum allowed phase shift ∆ϕint indicated by the data.

5.4 Varying the ν-DM interaction

In this subsection, we explore scenarios of DL-¿ with varying scattering cross sections to allow

neutrinos to decouple at later times. We employ the temperature-independent cross-section

detailed in section 2 and allow for variations in both fÇ and the interaction strength y.

In the MCMC scan, we fix the effective number of interacting neutrinos at 3.046.11

11In terms of ETHOS parameters, N_idr= 3.046, N_ur= 0, and we vary fχ×a_idm_dr with Tν independent

cross-section (nindex_idm_dr= 2, alpha_idm_dr= 1) according to the model outlined in section 2.
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at late times with decoupling time controlled by yfÇ in the scattering rate eq. (2.2). The 2D plots on

the left were obtained by varying y for fixed fÇ, showing contours up to 2Ã for a range of fÇ values.

The plots on the right were obtained by varying both fÇ and yfÇ. Top row: Planck and BAO datasets.

Bottom Row: Planck, BAO and Ext = SH0ES + kv450 datasets.

This scenario has previously been studied in the context of H0 tension by alleviating the

tension with neutrino-induced phase shift [19]. The scattering rate between neutrinos and

dark matter depends on the product yfÇ. To expedite convergence in our runs, we vary

yfÇ and fÇ as primary parameters in the MCMC analysis.12 Additionally, we conduct a

series of MCMC analyses with fixed fÇ = 10−4, 0.01, 0.02, and 0.03 to highlight the phase

shift’s dependence on yfÇ. For fÇ = 10−4, the DM-loading effect is negligible and can be

considered an approximation to the SI-¿ case. We present more complete results from the

MCMC scan in appendix. D.

First focusing on the fixed fÇ runs, the left plots of figure 17 display marginalized 2D

contours for ¹s vs. yfÇ with Planck+BAO (top) and Planck+BAO+Ext (bottom). The

12Given that aidm_dr varies linearly with y according to eq. (2.14), varying fχaidm_dr is equivalent to varying

yfχ. Thus, we vary fχaidm_dr in the scan and derive yfχ as an output parameter.
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positive correlation between ¹s and yfÇ observed with fÇ = 10−4 (green) comes from the

phase shift induced by self-interacting neutrinos (∆ϕint − ∆ϕΛCDM). Larger values of yfÇ
delay the ¿-DM decoupling to later redshifts, causing a phase shift that starts at lower

ℓ-modes and results in a more pronounced change in the ¹s fit. The shift in ∆ℓ due to

changes in sound speed is not constant across ℓ (figures 4 and 13). Due to the domination of

matter energy density at later times, this phase shift roughly scales as ∝ ℓ at lower modes

and begins to plateau for ℓ ≳ 1000. This ℓ-dependence differs from the ∆ℓ change due to ¹s
shift, which behaves as ∆ℓ ∝ ∆¹sℓ (eq. (5.1)). However, partial compensation between these

phase shifts occurs because the power spectrum at very high ℓ-modes is suppressed due to

diffusion damping, thus allowing for less constraint on the different phase shifts arising from

radiation interaction versus ¹s shift. These different changes in ∆ℓ, nevertheless, still limit how

∆ϕint + ∆ϕload from radiation interaction can address the Hubble tension by raising H0 [19].

The curves for larger fÇ obtain larger ¹s from ∆ϕloading with the same size of coupling.

Large fÇ additionally brings in more constraints due to the effects of dark matter

scattering on the matter power spectrum. For larger fÇ, the 1Ã and 2Ã contours shrink along

the yfÇ direction due to the additional constraints on fractional dark matter scattering that

suppresses the matter density perturbations. This also limits the amount of total phase-shift

as the extent of the 2Ã contours in the left panels of figure 17 along ¹s direction is smaller

for larger fÇ. This effect is also seen table 4 and 5, where larger fÇ results in a smaller H0

due to the lesser extent of the ¹s shift. Larger fÇ cases also do not seem to provide a good

fit to the data from the ∆Ç2 values. The triangle plot for all the parameters for the fixed-f

runs are shown in figure 21 and 22 in appendix. D.

In the right column of figure 17, we present 3D plots of ¹s, fÇ, and yfÇ for the runs with

continuously varying fÇ. By focusing on a fixed interaction strength yfÇ (indicated by fixed

color), we observe a positive correlation between ¹s and fÇ, characteristic of DM-loading.

As discussed earlier, ¹s also increases with yfÇ, which delays the decoupling time. The plot

further suggests that ¹s exhibits a consistent correlation with fÇ across different values of

yfÇ, indicating that the DM-loading phase shift is insensitive to the effective number of

scattering neutrinos f¿ . Although we do not directly vary f¿ in ¿-DM scattering, smaller

values of yfÇ effectively correspond to a lower fraction of neutrinos with efficient scattering.

Similar to the fixed fÇ analysis, for larger yfÇ values the allowed range of fÇ is smaller due

to constraints from the dark matter scattering. Table. 3 and figure 20 show the constraints

on the parameters for this scenario.

It is reasonable to ask how our results would change for a temperature-dependent cross

section, where the scattering rate scales as ÃnÇ ∝ Tn for more general n.13 Given that the

enhanced phase shift only occurs for perturbation modes that enter the horizon when the

¿-DM scattering is efficient, the relevant factor is the decoupling time when the scattering

rate falls below the Hubble rate, which scales as H ∝ T 2. A temperature-dependent cross

section can lead to an earlier or later decoupling of the scattering, which changes which

ℓ-peaks experience the enhanced phase shift. The size of this enhanced phase shift due to

DM-loading, however, remains unchanged as long as the scattering is efficient. As shown in

13The temperature-independent case considered in this section corresponds to n = 3 since all the scaling

comes from the DM number density nχ ∝ T 3.
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the right column of figure 17, when the scattering decouples earlier (smaller yfÇ, indicated

by darker blue), the linear dependence of ¹s on fÇ disappears. However, for values of yfÇ
that result in efficient scattering, the linear dependence reappears, and ¹s increases with fÇ
at the same rate for each yfÇ, as seen in the different color bands.

6 Discussion and conclusion

In this study, we explore how the phase shift in CMB acoustic oscillations acts as a probe

for neutrinos and dark radiation propagation, affecting CMB anisotropy solely through

gravitational effects. Specifically, we focus on the enhanced phase shift resulting from

radiation-dark matter scattering compared to the self-interacting radiation scenarios.

We first demonstrate the presence of this enhanced phase shift in the TT and EE spectra

through the CLASS calculations, revealing a linear dependence to the interacting dark matter

abundance ∆ℓ ∝ fÇ, with ∆ℓ being insensitive to radiation abundance (f¿ or NDR) when

radiation’s energy density dominates over dark matter around matter-radiation equality. To

understand these parametric dependencies, we approximate the evolution of photon and

interacting radiation fluctuations using coupled harmonic oscillators. The analysis shows that

the delayed radiation sound speed, due to dark matter scattering, enhances the phase shift.

Our analytical framework extends to scenarios with multiple dark sectors, each featuring its

own interacting DM-dark radiation. In such cases, the total enhanced phase shift is expected

to scale proportionally with the sum of interacting dark matter abundance. We also conduct

MCMC studies to obtain constraints on the interacting neutrino and dark radiation models

with the Planck and BAO data. The effect of the enhanced phase shift from DM-loading

shows up as an enhanced ¹s proportional to fÇ.

The enhanced phase shift amplifies with fÇ (figure 15) due to the slowing down of neutrinos

and dark radiation by dark matter scattering. From the DM’s perspective, interacting

radiation delays its structure formation process, resulting in suppression of the matter

power spectrum as illustrated in the Ã8 plot (figure 16). Consequently, cosmological models

incorporating dark matter scattering to neutrinos or abundant dark radiation commonly

exhibit two characteristics: an enhanced ¹s and a reduced Ã8 compared to models lacking

efficient radiation-DM scattering. Identifying both of these features in cosmological data

could ultimately pave the way for discovering non-minimal dark sectors even without non-

gravitational interactions with the Standard Model.
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A An example DL-ν model and constraints

An example of a new physics model featuring DM-¿ coupling is described in [19, 67]. In this

model, the effective DM-¿ coupling with a heavy mediator È is generated during electroweak

symmetry breaking:

L £ yij
Λ

(H†li)(ÈjÇ) ⇒ ¸ij¿iÈjÇ , where ¸ij =
yijv√

2Λ
. (A.1)

Notice that when expanding the Higgs around its vacuum expectation value and absorbing

the phase of Goldstone bosons into left-handed leptons ensures that the operator H†l only

involves neutrino couplings among all SM particles, which is important for circumventing

constraints related to charged leptons [67]. If the dark matter Ç is a scalar, then the mediator

È is a fermion, and vice versa. The dimension five coupling can be mediated by massive

vector-like fermions N :

L £ YN,ijNi(H
†lj) + YN̄,ijN

c
i (ÈjÇ) +MN,ijNiN

c
j , where

yij
Λ

∼ 2
YN,ikYN̄,kj

MN
. (A.2)

Further details regarding the charge assignment and flavor symmetry structure of the model

can be found in ref. [19]. The ¿-DM scattering remains independent of T¿ (as illustrated in

section 2 to section 4) when the dark matter and mediator masses are close (m2
È −m2

Ç) j
2mÇT¿ . Under these conditions, the leading-order cross-section (zeroth order in (T¿/mÇ))

and corresponding interaction parameter y in eq. (2.3) are:

Ã = 1.7 × 10−6
(

¸

0.1

)4
(

GeV

mÇ

)2

GeV−2 , y = 1.1

(

¸

0.3

)4
(

50 MeV

mÇ

)3

, (A.3)

where benchmark parameters are selected to ensure efficient ¿-DM scattering until z ∼ 4×104,

impacting modes in the CMB spectra with ℓ ≳ 1000.

Given that the cross-section scales as m−2
Ç , efficient ¿-DM scattering imposes an upper

limit on mÇ ≲ O(10) MeV. Collider constraints to consider for the Higgs and neutrino

coupling with light particles È and Ç include:

1. Invisible Higgs and Z decays: h(Z) → ¿ÈÇ: the branching ratio for the Higgs process

is approximately O(1%), which is consistent with the current limit of about 18% (95%

C.L.) from the CMS search [91]. Invisible Z decay measurements from the LHC put a

constraint of ¸ ≲ 1(0.2) for dark matter and mediator masses of 50(10) Mev [92]

2. Kaon decay K → (µ, e)ÇÈ via virtual ¿µ,e: while there has not been a specific search for

this process to the best of our knowledge, some studies have examined Kaon decays into

(µ, e)ϕ¿, where ϕ is a light mediator with a coupling giiϕ¿̄i¿i. For 1 ≲ mϕ ≲ 100 MeV,

the kaon bound requires gµµ,ee ≲ (3 × 10−3, 10−2) [4]. A similar bound should also

apply to ¸, limiting the size below y ≲ 0.1. Alternatively, one can avoid the kaon bound

by considering an ¸ coupling only to ¿Ä since bound on gÄÄ for neutrino self-interaction

is rather weak (gÄÄ ≲ 0.3) [4]. A more focused study of the kaon bound on the ¸¿ÈÇ

coupling is needed, which we defer to future investigations.
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We emphasize that the model involving scattering with all neutrinos was utilized earlier

solely to illustrate the DM-loading effect. As discussed in section 3, the enhancement of

phase shift in the DL-¿ case also occurs with just 1 or 2 neutrinos scattering. Additionally,

appendix C demonstrates that the agreement between CLASS and the toy model for DL-¿

phase shift enhancement compared to SI-¿ is maintained even with only 1 neutrino scattering.

Furthermore, similar phase shift enhancements and fÇ dependencies are observed in scenarios

involving DR-DM interaction, which effectively circumvents experimental constraints relying

on non-gravitational SM - dark sector couplings.

B Establishing the toy model

The efficient scattering of neutrinos with dark matter is modelled after the Boltzmann

system for the photons and baryons under the tight coupling approximation, following

the approach used in ref. [70]. Working in the conformal Newtonian gauge, we follow the

convention for the energy ratio Rr = 3Äm/4Är, where (r,m) now denotes either (µ, b) or

(¿, Ç), to obtain

¶̈r + H Rr
1 +Rr

¶̇r +
k2

3(1 +Rr)
¶r = 4ϕ̈+ 4H Rr

1 +Rr
ϕ̇− 4k2

3
È

Using the definition of the sound speed from eq. (2.11), it is straightforward to rewrite Rr
in terms of c2

r to obtain the coupled equations

¶̈µ + H(1 − 3c2
µ)¶̇µ + k2c2

µ¶µ = ggrav(Ä) (B.1)

¶̈¿ + H(1 − 3c2
¿)¶̇¿ + k2c2

¿¶¿ = ggrav(Ä) (B.2)

where ggrav(Ä) = 4ϕ̈+ 4H(1 − 3c2
r)ϕ̇− 4k2

3
È (B.3)

where ggrav(Ä) denotes the gravitational coupling between the two tightly coupled fluids. This

system is still not easy to solve since we would still need to solve the Einstein equations for

ϕ and È, which are sourced by the total perturbations. To obtain a closed set of equations

in the ¶r, we make four further assumptions.

(Assumption 1) No free-streaming radiation.

Assume that all neutrinos are efficiently scattering before recombination. Then all

radiation components are fluid-like and so the total shear vanishes Ã = 0 in the absence of

free-streaming radiation components. We can then use the Einstein equation for Ã to set ϕ = È.

(Assumption 2) Small matter loading.

Suppose that the matter loading effect is small, which occurs deep in the radiation era

where 1 − 3c2
r = 1 − 1

1+Rr
≃ Rr j 1. Then the Hubble damping term in the Boltzmann

equations will be negligible

H(1 − 3c2
r)¶̇r j k2¶r , ¶̈r

Similarly, the Hubble damping can be ignored in the gravitational coupling term

H(1 − 3c2
r)ϕ̇ j k2ϕ , ϕ̈ ⇒ ggrav(Ä) ≃ 4ϕ̈− 4k2

3
ϕ
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(Assumption 3) Sub-horizon.

Consider the Einstein equations for the density and pressure perturbations

−4ÃGa2¶Ä = k2ϕ+ 3H(ϕ̇+ Hϕ)

4ÃGa2¶P = ϕ̈+ 3H(ϕ̇− HÉϕ)

where we used the second Friedmann equation to write (2Ḣ + H2) = −8ÃGa2P = −3H2É.

Assume that we only consider k-modes that have entered the horizon kÄ > 1 during radiation

era, where the metric behaves as ϕ ∼ 1/Ä2. Plugging this ansatz for ϕ into the Einstein

equations, we find that

4ÃGa2(¶Ä+ 3¶P ) = −k2ϕ (B.4)

The gravitational coupling term also simplifies

ggrav(Ä) ≃ −4k2

3
ϕ =

16ÃGa2

3
(¶Ä+ 3¶P )

since the ϕ̈ term in ggrav(Ä) would be 1/k2Ä2 suppressed compared to k2ϕ.

(Assumption 4) Perturbations in radiation only.

Staying within the radiation-dominated era, suppose that the metric perturbations are

only sourced by perturbations in the radiation component so that we ignore the effect of

matter perturbations on the metric. Then

ggrav(Ä) ≃16ÃGa2

3

∑

r=µ,¿

(¶Är + 3¶Pr) =
16ÃGa2

3

∑

r=µ,¿

(1 + 3Ér)¶Är

where for adiabatic perturbations, equation (4.1) implies that ¶Pr = Ér¶Är in the radiation.

The presence of matter in the background serves as a dilution factor to the radiation density as:

Ärad(Ä)

Ä(Ä)
=

Ärad(Ä)

Ärad(Ä) + Ämat(Ä)
=

1

1 + a(Ä)
aeq

where Ärad, Ämat are the total radiation and matter densities respectively. Using the Friedmann

equation

ggrav(Ä) ≃ 2H2 1

1 + a(Ä)
aeq

∑

r=µ,¿

(1 + 3Ér)
Är
Ärad

¶Är
Är

= 2H2 (1 + 3Ér)

1 + a(Ä)
aeq

(fµ¶µ + f¿¶¿) =
4H2

1 + a(Ä)
aeq

(fµ¶µ + f¿¶¿)

where Ér = 1/3 and the radiation ratios fr = Är/Ärad are constant.

Plugging this form of ggrav(Ä) back into the tightly coupled equations (B.1)–(B.2) and

neglecting the Hubble damping terms yields the toy model equations (4.5)–(4.6).

For the rest of this appendix, we provide more details about the solution in eq. (4.11)

used for the analytical examination of eqs. (4.5) and (4.6). In particular, we provide an

analytic expression for ¶µ(Ä) at early times which we can use to approximate the initial
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phase of the oscillator by matching with the late time solutions. While our primary focus

is on the phase shift of the oscillating solution post gravitational driving force decoupling,

it is essential to note that initially, the Fdriv ∼ 4/Ä2 term in eq. (4.8) dominates over the

oscillation frequency k2c2
µ . As a result, the early time evolution is governed by

¶̈µ(Ä) ≈ 4

Ä2
¶µ(Ä) . (B.5)

With initial conditions ¶µ(Äin) = 1 and ¶̇µ(Äin) = 0 at kÄin = 1, considering the regime kÄin ≳ 1

assumed for the toy model, the early-time solution is given by

¶early
µ ≈ 1

2
(kÄ)

1+
√

33
2

[(

1 +
1√
33

)

(kÄ)−
√

33 +

(

1 − 1√
33

)]

. (B.6)

The power-law growth ¶early
µ (Ä) ≈ 1

2(kÄ)
1+

√

33
2 persists at kÄ > 1 until

Ä³ =
2³

kcµ
. (B.7)

After a numerical factor ³ times the moment when k2c2
µ = 2Fdriv(Ä), the oscillating solution

begins to dominate and can be expressed as:

¶late
µ (Ä) = A cos[kcµÄ − ϕin] . (B.8)

Aligning the two approximated solutions ¶early
µ (Ä³) = ¶late

µ (Ä³) and ¶̇early
µ (Ä³) = ¶̇late

µ (Ä³) sets

the initial phase ϕin = 2³ + tan−1
(

1+
√

33
4³

)

. Note that ϕin is a fixed phase introduced to

match the later time solution (Ä > Ä³), when the perturbation starts to oscillate as a plane

wave. Since ϕin is common for models with and without DM-loading, the specific value of

ϕin is unimportant when considering the enhanced phase difference due to DM-loading. We

hence drop the phase in eq. (4.11) in the analytical discussion.

Numerical solutions of eqs. (4.5) and (4.6) for the toy model indicate ³ ≈ 1.5 reproduces

the oscillation phase in the later time solution of ¶µ(Ä). We therefore use Ä³ with ³ ≈ 1.5 to

indicate the timescale for the photon perturbation transitioning into a harmonic oscillator

and acquiring a phase. Note that ³ increases with ∆³ ∼ 0.1fÇ, which is the enhanced

phase shift we discuss in section 4.3 due to the DM-loading effect. In this case, the solution

takes the form (with ³ ≈ 1.5)

¶late
µ,DL−¿(Ä) ≈ A cos[kcµÄ − ϕin − 2.5∆³] . (B.9)

C Additional plots for the phase shift enhancement

Here we present more plots comparing the phase shift in the photon transfer function

obtained from both CLASS and the toy model.

Figure 18 shows the shift of transfer function peaks for the cases where either one or two

neutrinos scatter with DM. For the CLASS calculation, the rest of the neutrinos free-stream,

while in the toy model only the fraction f¿ of interacting neutrinos is accounted for. Notably,

the toy model peak locations and ∆k enhancement in DL-¿ with respect to SI-¿ maintains

a similar level of agreement with CLASS as compared to the three neutrino scattering case

presented in the main text (figures 7 and 8).
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(b) Equilibrium (z = 3400).
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(c) Recombination (z = 1070).

Figure 18. CLASS (solid) vs toy model (dotted) comparison of ∆k in photon transfer function for

fχ = 1.25% (blue) and 2.5% (orange) DL-¿ with respect to SI-¿. Same as figures 7 and 8, but for 1

interacting neutrino (left column) and 2 interacting neutrinos (right column).
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Planck + BAO Planck + BAO + Ext

Parameter Best Fit Mean±Ã Best Fit Mean±Ã

10−2Éb 2.248 2.241+0.014
−0.017 2.276 2.280 ± 0.015

Écdm 0.11966 0.12115+0.00097
−0.0024 0.1263 0.1258 ± 0.0027

ns 0.9666 0.9663 ± 0.0039 0.9752 0.9728 ± 0.0037

H0(km/s/Mpc) 68.15 68.31+0.39
−0.83 71.43 71.10 ± 0.82

10−9As 2.098 2.106+0.028
−0.033 2.086 2.099+0.029

−0.034

Ä reio 0.0544 0.0557+0.0067
−0.0078 0.0573 0.0583+0.0068

−0.0079

fχ 0.853 < 0.248 0.00162 < 0.00370

NDR 8 × 10−5 < 0.0605 0.44 0.39 ± 0.13

Ã8 0.817 0.802+0.027
−0.0095 0.8245 0.8208+0.0088

−0.0077

100¹s 1.04194 1.04202 ± 0.00032 1.04233 1.04247 ± 0.00031

∆Ç2
−1.38 −11.5

Table 2. Strong DR-DM scenario with varying NDR and fχ: best fits and mean values to 68%

confidence. The ∆Ç2 = Ç2
− Ç2

ΛCDM
for each fit is also provided.

D Tables and triangle plots for MCMC analysis

In this appendix, we provide the triangle plots and tables of mean values with 1Ã errors for

the MCMC analysis done in sections 5.3 and 5.4. We also provide best fit values for the scans

where we varied NDR and fχ (table 2) and yfχ and fχ (table 3). The ∆Ç2 with respect to

the ΛCDM for each model fit is also provided in the tables.
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Planck + BAO Planck + BAO + Ext

Parameter Best Fit Mean±Ã Best Fit Mean±Ã

10−2Éb 2.245 2.244 ± 0.014 2.248 2.260 ± 0.014

Écdm 0.1204 0.1216 ± 0.0013 0.1202 0.1197 ± 0.0011

ns 0.9504 0.9488+0.0040
−0.0073 0.9466 0.9502+0.0037

−0.0057

H0(km/s/Mpc) 68.64 68.25+0.47
−0.53 69.27 69.40 ± 0.47

10−9As 2.012 2.028+0.038
−0.047 1.990 2.009+0.034

−0.045

Ä reio 0.0516 0.0536 ± 0.0070 0.0546 0.0562 ± 0.0072

fχ 0.0048 < 0.0217 0.0037 < 0.0111

y ∗ fχ 0.109 0.141+0.058
−0.13 0.27 0.23+0.10

−0.16

Ã8 0.824 0.818+0.013
−0.0084 0.826 0.819+0.010

−0.0065

100¹s 1.0442 1.0444+0.0015
−0.0011 1.0458 1.0454+0.0013

−0.00082

∆Ç2 +0.28 −7.4

Table 3. Varying ¿-DM scenario with varying yfχ and fχ: best fits and mean values to 68% confidence.

The ∆Ç2 = Ç2
− Ç2

ΛCDM
for each fit is also provided.

Mean±Ã for fixed fχ (Planck + BAO)

Parameter fχ = 10−4 fχ = 0.01 fχ = 0.02 fχ = 0.03

10−2Éb 2.240 ± 0.014 2.242 ± 0.013 2.244 ± 0.014 2.247 ± 0.014

Écdm 0.1205 ± 0.0010 0.1215 ± 0.0011 0.1220+0.0013
−0.0011 0.1223+0.0015

−0.0012

ns 0.9484+0.0044
−0.0085 0.9478+0.0039

−0.0065 0.9485+0.0038
−0.0065 0.9495+0.0038

−0.0071

H0(km/s/Mpc) 68.55 ± 0.52 68.36 ± 0.46 68.16 ± 0.44 68.03 ± 0.43

10−9As 2.020+0.040
−0.050 2.019+0.034

−0.045 2.027+0.034
−0.041 2.037+0.034

−0.043

Ä reio 0.0524 ± 0.0069 0.0532 ± 0.0070 0.0536 ± 0.0070 0.0541 ± 0.0070

y ∗ fχ 0.152+0.060
−0.15 0.162+0.042

−0.16 0.134+0.038
−0.13 0.110+0.038

−0.11

Ã8 0.8299 ± 0.0066 0.8230 ± 0.0062 0.8158 ± 0.0062 0.8089 ± 0.0061

100¹s 1.0443+0.0016
−0.0012 1.0446+0.0014

−0.00098 1.0445+0.0014
−0.00091 1.0443+0.0015

−0.00094

∆Ç2
−0.62 −0.08 +0.32 +1.44

Table 4. Varying ¿-DM scenario for fixed fχ (Planck + BAO): mean values to 68% confidence. We

vary y for each fixed fχ, but present the y ∗ fχ values for meaningful comparison between the cases.

The ∆Ç2 = Ç2
− Ç2

ΛCDM
for each fit is also provided.
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Mean±Ã for fixed fχ (Planck + BAO + Ext)

Parameter fχ = 10−4 fχ = 0.01 fχ = 0.02 fχ = 0.03

10−2Éb 2.258 ± 0.014 2.259 ± 0.013 2.263 ± 0.013 2.265 ± 0.014

Écdm 0.11919 ± 0.00097 0.11988 ± 0.00099 0.1203+0.0012
−0.0010 0.1203+0.0016

−0.0012

ns 0.9482+0.0039
−0.0049 0.9504+0.0037

−0.0051 0.9520+0.0035
−0.0059 0.9542+0.0037

−0.0077

H0(km/s/Mpc) 69.64 ± 0.45 69.34 ± 0.43 69.11 ± 0.41 68.96 ± 0.41

10−9As 1.992+0.033
−0.041 2.010+0.032

−0.042 2.024+0.031
−0.043 2.042+0.037

−0.045

Ä reio 0.0541 ± 0.0071 0.0566 ± 0.0072 0.0572 ± 0.0070 0.0576+0.0068
−0.0077

y ∗ fχ 0.29+0.11
−0.17 0.231+0.090

−0.15 0.174+0.076
−0.15 0.121+0.048

−0.12

Ã8 0.8266 ± 0.0063 0.8194 ± 0.0061 0.8121 ± 0.0059 0.8048 ± 0.0063

100¹s 1.0456+0.0011
−0.00082 1.0454+0.0012

−0.00080 1.0451+0.0014
−0.00081 1.0446+0.0017

−0.00098

∆Ç2
−6.86 −5.74 −5.50 −3.86

Table 5. Varying ¿-DM scenario for fixed fχ (Planck + BAO + Ext): mean values to 68% confidence.

We vary y for each fixed fχ, but present the y ∗ fχ values for meaningful comparison between the

cases. The ∆Ç2 = Ç2
− Ç2

ΛCDM
for each fit is also provided.
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Figure 19. Strong DR-DM scenario with varying NDR and fχ.
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Figure 20. Varying ¿-DM scenario with varying yfχ and fχ.
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Figure 21. Varying ¿-DM scenario for fixed fχ (Planck + BAO). Here y is varied for each fixed fχ,

but we present the y ∗ fχ values for meaningful comparison between the cases.
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Figure 22. Varying ¿-DM scenario for fixed fχ (Planck + BAO + Ext). Here y is varied for each

fixed fχ, but we present the y ∗ fχ values for meaningful comparison between the cases.
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