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We consider first order cosmological phase transitions (PTs) happening at late times below standard

model temperatures TPT ≲ GeV. The inherently stochastic nature of bubble nucleation and the finite

number of bubbles associated with a late-time PT lead to superhorizon fluctuations in the PT completion

time. We compute how such fluctuations eventually source curvature fluctuations with universal properties,

independent of the microphysics of the PT dynamics. Using cosmic microwave background (CMB)

and large scale structure measurements, we constrain the energy released in a dark-sector PT. For

0.1 eV≲ TPT ≲ keV this constraint is stronger than both the current bound from additional neutrino

species ΔNeff , and in some cases, even CMB-S4 projections. Future measurements of CMB spectral

distortions and pulsar timing arrays will also provide competitive sensitivity for keV≲ TPT ≲ GeV.
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Phase transitions (PTs) have been studied extensively

for decades in models of baryogenesis [1–4], (asymmetric)

dark matter [5–13], extended Higgs sectors [14–17], and

spontaneously broken conformal symmetry [18–28],

among others. PTs may also generate gravitational waves

(GWs) [29–36] that can be observed in the near future.

“Late-time” PTs have garnered attention due to their

possible connections to puzzling observations from pulsar

timing arrays (PTAs) [37,38] and the “H0 tension”: a

discrepancy between the direct measurements of the

Hubble constant H0 [39] and its value inferred from the

cosmic microwave background (CMB) [40] (for a review

see [41]). These PTs occur below standard model (SM)

temperatures of a GeV (redshift z ∼ 1013) and before

matter-radiation equality (z ≈ 3400). For instance, a PT

around z ≈ 104 is motivated by the proposed new early dark

energy (NEDE) solution to the H0 problem [42–46]. Since

the Hubble tension favors such “early-time” solutions [47],

other ideas also use such PTs [48,49]. A PT at z ∼ 1010

has also been proposed as a source of the observed

stochastic GW background measured by PTAs [37,50–

53]. Even later PTs may ameliorate the cosmological

constant problem [54].

Because of constraints from big-bang nucleosynthesis

and the CMB, late-time PTs that occur entirely in a dark

sector with no significant reheating to SM particles are

favored [55]. Thus, we focus on PTs that only release GWs

and other forms of dark radiation (DR). The gravitational

backreaction on the SM sector is the only way to identify and

constrain such dark-sector PTs. For nongravitational cou-

plings between the dark sector and SM, stronger constraints

than the “model-independent” constraints that we derive in

this work could apply. Awell-known constraint on post-big-

bang nucleosynthesis dark PTs is the bound on the number

of additional neutrinos, ΔNeff < 0.29 at 95% CL [40,56],

derived from baryon acoustic oscillation (BAO) and CMB

measurements. This places an upper bound on the fraction of

DR energy density compared to the total radiation energy

density fDR ≡ ρDR=ρtot ≲ 0.04.

A PT proceeds via nucleation of bubbles of true vacuum

inside the metastable phase. To estimate the typical number

of bubbles, consider a comoving volume corresponding to

an angular scale ∼10−3 radian, the current CMB resolution.

If TPT ∼ TeV, there are an enormous number of bubbles
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inside that comoving volume: Nb ∼ ½aðTeVÞHðTeVÞ=
ð103a0H0Þ�3 ∼ fτ0=½103τðTeVÞ�g3 ∼ 1034. Here, τðTeVÞ
and τ0 are the conformal times at T ¼ TeV and today,

respectively, with the corresponding scale factors denoted

by aðTeVÞ and a0. However, if TPT ∼ keV, for example, the

number of bubbles is much less, Nb ∼ 106.

In this Letter, we demonstrate that the finite number

of bubbles involved in a PT gives rise to superhorizon

perturbations in PT completion time ∝ 1=
ffiffiffiffiffiffi

Nb

p
that even-

tually contribute to curvature perturbations. This means for

TPT ∼ TeV, the finite number contribution 1=
ffiffiffiffiffiffi

Nb

p
∼ 10−17

is negligible when compared to the standard inflationary

fluctuation ∼10−5. However, for TPT ∼ keV, the finite

number contribution ∼10−3 is relevant. We present the

first calculation of these perturbations using gauge-

invariant observables and show that on large length scales

these perturbations follow a universal power-law scaling

in the PT parameters, independent of its microscopic

details [57]. Even for a dark sector with no direct coupling

to the SM, CMB, and large scale structure () measurements

constrain the resulting curvature perturbations. This in turn

constrains fDR more strongly than the current and projected

ΔNeff limits when TPT ≲ 1 keV. Additionally, the power-

law scale dependence of this new contribution to curvature

perturbations can create distinct signatures in the CMB and

matter power spectrum, enabling us to identify the origin of

the perturbation as a late-time PT.

Superhorizon fluctuations in percolation time from

number of bubbles—A PT proceeds through bubble nucle-

ation and expansion; a point in space transitions to the true

vacuum when a bubble engulfs it. However, this process is

inherently stochastic, and therefore, not all points in space

transition to the true vacuum at the same time. To quantify

this, we can write the fraction of space in the false vacuum

as a function of time (ignoring space-time expansion;

see [63] for a recent review) as

PfðtÞ ¼ exp

�

−

Z

t

t0

dt0Γðt0ÞVðt; t0Þ
�

; ð1Þ

where t0 denotes the start of the PT and Vðt; t0Þ is the

fractional volume of bubbles at time t after being nucleated
at time t0. The nucleation rate ΓðtÞ can be written [63–66],

with β ¼ −S0ðtfÞ and bounce action SðtÞ parametrizing the

tunneling rate, as

Γ ¼ Γ0e
−SðtÞ ≈ Γ0e

−SðtfÞeβðt−tfÞ: ð2Þ

This shows that the false vacuum fraction drops exponen-

tially as Γ increases as t → tf and the PT completes. The

timescale tf, conventionally defined by when PfðtfÞ ¼ 1=e

[63], is roughly the Hubble time H−1
PT at TPT. For our

perturbation studies, the more relevant timescale is the

duration t ¼ ½tf − β−1; tf�, during which Γ grows signifi-

cantly, completing the PT. This PT duration β−1 sets the

bubble expansion time window, making the average bubble

size right before the PT completes db ≈ ð8πÞ1=3vw=β [65,66],
with vw as the bubble wall velocity. Additionally, the

perturbation of the PT time is expected to be of the order

of the PT duration ∼β−1, meaning a smaller β results in a

larger variation.

To characterize the variation in the PT completion time,

we denote the time at which a point x⃗ transitions to true

vacuum by tcðx⃗Þ, and compute the two-point function

Pδt ≡H2

PThδtcðx⃗Þδtcðy⃗Þi. Here, δtcðx⃗Þ ¼ tcðx⃗Þ − t̄c with

t̄c ≈ tf ≈ 1=ð2HPTÞ, the average time of conversion.

Practically, it is easier to write Pδt ¼ ðHPT=βÞ2 ×
β2hδtcðx⃗Þδtcðy⃗Þi and calculate the last factor, thus separat-

ing the effect of cosmic expansion from the PT dynamics.

We can quantify the perturbation with the dimensionless

Fourier transformed two-point function denoted by

PδtðkÞ ¼
k3

2π2

�

HPT

β

�

2
Z

d3r eik⃗·r⃗β2hδtcðx⃗Þδtcðy⃗Þi; ð3Þ

where r⃗ ¼ x⃗ − y⃗. This characterizes the correlation of tc
between any two points separated by a distance ∼1=k.
PδtðkÞ changes qualitatively for modes smaller or larger

than the typical bubble size ∼vw=β. For k modes smaller

than or comparable to the bubble size, we can analytically

compute PδtðkÞ. However, due to intricate fluid dynamics

and magnetohydrodynamics effects, a translation between

PδtðkÞ and sourced curvature perturbations is involved and

model-dependent. Therefore, the dependence of the curva-

ture power spectrum on k for kp ≡ k=aPT ≳ β=vw is less

universal and varies as the properties of the PT change.

(Here, kp is a physical wave number and aPT is the scale

factor at tf.) On the other hand, scales kp j β=vw have

many bubbles contributing to the correlation function

within a spatial volume of linear size 1=kp. Thus, Pδt is

more universal and less sensitive to the details of the PT

thanks to the central limit theorem.

We can understand the behavior of Pδt for kp j β=vw as

follows. In a given volume V, there are N ∼ V=d3b inde-

pendent regions where bubble nucleation can take place in

an uncorrelated fashion. As a result, the standard deviation

in PT completion time, when averaged over this entire

volume, scales as 1=
ffiffiffiffi

N
p

. Thus, given N ∼ 1=ðkpdbÞ3 for a
scale kp, we expect Pδt ∝ ðkpdbÞ3. Also, the combination

β × t is what appears in the nucleation rates in Eqs. (2)

and (1), soPδt ∝ 1=β2. Thus, for kp j β=vw andHPT j β,

the dimensionless power spectrum scales as

Pδt ∼ 8π

�

HPT

β

�

2
�

vwkp

β

�

3

¼ 8πcv3wðkτ�Þ3
�

HPT

β

�

5

; ð4Þ

with τ� ¼ 1=ðaPTHPTÞ for PTs during radiation domination

and a constant prefactor c. From the qualitative arguments

above we expect c ∼ 1; a detailed calculation in the

Supplemental Material [67] gives c ≈ 2.8, which is what

we use to derive the constraints below. Another way to
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understand the same k3 scaling of Pδt for small k is through
Eq. (3). We show in the Supplemental Material that the

correlation hδtcðx⃗Þδtcðy⃗Þi ∼ e−βraPT=2 for βraPT k 1. As a

result for kp j β=vw, the exponential phase in Eq. (3) does

not contribute, and the k dependence of Pδt comes solely

from the k3 prefactor. A similar dependence arises in the

context of primordial black holes, as studied in [70,71].

The result for Pδt is in Fig. 1, where ξ≡ kpdb ¼
ð8πÞ1=3vwðkτPTÞðHPT=βÞ. For ξ j 1, Pδt ∼ ξ3ðHPT=βÞ2,
as expected from Eq. (4). However, close to ξ ∼ 1, we

see a deviation from that scaling. Below, we only use

the result for Pδt for ξ ≤ 1 since the regime ξ k 1 is

sensitive to turbulence and magnetohydrodynamics effects.

However, these subhorizon inhomogeneities also give rise

to density perturbations. In dark sectors in which sound

waves dominantly source the GWs, the resulting con-

straints may even be stronger [72].

We have described how the PT completion time fluc-

tuates on superhorizon and “superbubble” scales. While

such fluctuations are of “isocurvature” type initially (since

they do not induce a change in energy density), eventually

they source curvature perturbations, as we discuss now.

Curvature perturbations from fluctuations in

percolation time—Consider two acausal patches, A and B,
where the PT takes place. Since our analysis relies on

ξ ∼ 0.1–1 and β=HPT ≲ 103, we are in a regime where

Pδt k As, where As ¼ 2.1 × 10−9 [73] is the magnitude of

the inflationary scalar power spectrum (we express Pδt in

terms of gauge-invariant observables below). Thus, we can

ignore effects due to As and assume the PT takes place in a

universe that is a priori homogeneous in different patches.

We will see how Pδt leads to inhomogeneities in the dark

sector and how they then feed back into the SM sector,

weighted by factors of fDR.

Take the two patches A and B to each have size vw=β and
equal energy density. ρF is their (equal) false vacuum

energy density and tAc and t
B
c their respective PT completion

times. tAc ≠ tBc in general and we define the difference

tBc − tAc ≡ δtc j tA;Bc ∼ 1=HPT, with δtc > 0. When A and

B undergo the PT, ρF is converted into DR with an energy

density ρ̃DR [74]. Right at tAc , the energy densities in A and

B are identical and the curvature perturbation is still zero.

However, there is a nonzero isocurvature perturbation

in DR at this time. This subsequently induces curvature

perturbations as time evolves since DR and vacuum energy

redshift differently. In other words, the equation of state of

the Universe is not barotropic, i.e., the total pressure is not a

definite function of the total energy, p ≠ pðρÞ. As a result,
the curvature perturbation is not constant (see, e.g., [76,77])

and evolves with time after the PT occurs.

We can write the DR energy density in the two patches at

a later time tfin as

ρA;BDR ðtfinÞ ¼ ρF

�

tA;Bc

tfin

�

2

þ ρDR0ðtfinÞ: ð5Þ

Here, ρDR0ðtfinÞ denotes the energy density in a component

of DR that does not come from the PT, and therefore is the

same for both patches. This shows that the total energy

densities of DR in the two patches are different and a

nonzero DR density perturbation has been sourced by the

DR isocurvature perturbation. (The different values of ρDR
in A and B change Hubble in the two patches, altering the

energy-density redshift, but this correction isOðδρDR=ρSMÞ
and negligible for our leading-order analysis.) We can

compute this density perturbation using Eq. (5),

δρDR=ρ̃DR ¼ 2δtc=tc. Since we are working to leading

order in perturbations, the DR energy density sourced

from ρF is given by ρ̃DR ≡ ρFðtc=tfinÞ2 and we use the

homogeneous value of tc here.

To compute the associated curvature perturbation, we

can use the spatially flat gauge (for a review, see [78]),

which amounts to comparing the energy densities in

patches A and B at a common time tfin when the scale

factors are identical. Then the curvature perturbation (on

uniform-density hypersurfaces) is

ζ ¼ −
HPTδρDR

ð ˙̃ρDR þ ρ̇DR0 þ ρ̇SMÞ
¼ 1

4
fDR

ρ̃DR

ρ̃DR þ ρDR0

δρDR

ρ̃DR

¼ 1

2
fDR

�

αPT

1þ αPT

�

δtc

tc
¼ fDR

�

αPT

1þ αPT

�

HPTδtc: ð6Þ

Here, we have used the notation αPT ¼ ρ̃DR=ρDR0 and

fDR ¼ ðρ̃DR þ ρDR0Þ=ðρ̃DR þ ρDR0 þ ρSMÞ. In terms of this

the curvature power spectrum is given by

PζðkÞ ¼ f2DR

�

αPT

1þ αPT

�

2

PδtðkÞ þ PadðkÞ: ð7Þ

S
FIG. 1. Dimensionless power spectrum of phase transition time

fluctuation, rescaled by ðβ=HPTÞ2 and plotted against comoving

wave number ratio ξ representing the perturbation mode relative

to typical bubble separation. The PT spectrum (red) derived in the

Supplemental Material is independent of ðβ; τPTÞ, unlike adia-

batic perturbations (purple, orange).
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In the last term, we have reintroduced the uncorrelated

adiabatic perturbation Pad. We take the pivot scale k� ¼
0.05 Mpc−1, As ¼ 2.1 × 10−9, and tilt ns ¼ 0.966 [40]

when calculating Pad. The constraints on PζðkÞ can then

be used to bound fDR for different dark PT parameters. For

an alternate derivation that relates Pδt to Pζ without relying

on the separate universe approach followed here, together

with a derivation using the δN formalism [79]; see the

Supplemental Material.

Since we ignored the presence of inflationary, adiabatic

perturbations while analyzing Pδt, Eq. (7) is valid only

for Pδt k Pad. In practice, given the current precision

ΔPζ=Pζ ∼ 5% on CMB scales, the above restriction puts

an upper bound fDR ≲ 0.4, above which the effects of As

would be relevant for determining Pδt. Once the PT ends,

all the dominant energy densities are in radiation, and

superhorizon ζ modes remain constant until they enter the

horizon. We note that PT also generates DR isocurvature,

with a size roughly given by Pδt, implying that isocurvature

vanishes in the limit of Pδt → 0. The Planck constraint

on DR isocurvature [80] is similar to the constraints on

curvature perturbation. Therefore, we will not consider the

effect of isocurvature perturbations separately, but rather

study the their effects via the constraints on Pζ.

Time evolution of curvature perturbations—Perturbation

modes with kτPT j 1 are outside the horizon when the PT

takes place and we can characterize their subsequent

cosmological evolution by just specifying PζðkÞ. However,
modes with ξ ≈ 1 correspond to kτPT ≈ ð8πÞ−1=3ðβ=HPTÞ×
v−1w ≳ 1 for β=HPT ≳ 10, implying such modes are already

inside the horizon when the PT takes place. To derive

constraints based on PζðkÞ for a subhorizon k mode, we

need to take into account that there is no subhorizon

evolution for a time Δτ ∼ τPT − k−1 between mode reentry

and the PT.

CMB temperature perturbations undergo diffusion

damping while inside the horizon. A delay in subhorizon

evolution by an amount Δτ implies PT-induced perturba-

tions undergo less damping for a given k compared to

lambda cold dark matter (ΛCDM) model expectations.

Starting with the same value of PζðkÞ, the CMB anisot-

ropies are larger in the PT scenario compared to ΛCDM.

In this Letter, we take a conservative approach by not

including this enhancement and leave a more precise

computation for future work.

Perturbations in dark matter experience logarithmic

growth in the radiation-dominated era upon horizon re-

entry. In ΛCDM cosmology, the power in a k mode at

the time of matter-radiation equality (τeq ≈ 110 Mpc) is

ΔDMð1=k; τeqÞ2PζðkÞ, where ΔDM denotes the matter

transfer function ΔDMðτi; τÞ ≈ 6.4 lnð0.44τ=τiÞ [81,82].

For the PT scenario, the analogous expression is

ΔDMðτPT; τeqÞ2PζðkÞ. We use a rescaled and weaker

constraint PζðkÞ × ½ΔDMðτPT; τeqÞ=ΔDMð1=k; τeqÞ�2 for

k > τ−1PT to take into account dark matter clustering bounds

such as from Lyman-α (Ly-α) and future PTA constraint on

dark matter clustering.

Cosmological constraints—In Fig. 2, we present 2σ

exclusion bounds on fDR using current constraints on

Pζ and projected future sensitivities. We translate the

comoving time τPT in Eq. (4) into the SM temperature

and redshift at the time of the PT. CMB [73] and Ly-α [83]

measurements set upper bounds on Pζ for k modes up to

k≲ 3 Mpc−1. Our analysis excludes the pumpkin orange

regions for various β=HPT since in those regions, the PT

contribution to Pζ is too large. Other constraints from

ultracompact minihalos impacting PTAs may be relevant

for TPT ≳ 1 MeV, but have unknown uncertainties related

to the time of dark matter collapse [84,85].

The TPT dependence of the constraints in Fig. 2 can

be understood as follows. During a radiation-dominated

epoch, kpeak ∝ TPT, where kpeak is the comoving wave

number of the peak in PδtðkÞ. The constraint on fDR for a

given TPT then depends on whether kpeak or the IR tail of

PδtðkÞ lies within the range probed by a given observable.

Suppose that for a range of TPT, the corresponding range of

kpeak is directly constrained by an observable. Then if the

FIG. 2. 2σ exclusion bounds on DR energy density fraction

from current observations, as derived in this work. We show

bounds using the CMB (Planck 2018 [73]) and Ly-α [83]

(orange), as well as the FIRAS constraint [86] (yellow). The

light gray region represents the existing boundΔNeff ≥ 0.29 [40],

and the dotted gray lines, the projected bounds from the Simons

Observatory (SO) ΔNeff ≥ 0.1 [87] and CMB-S4 ΔNeff ≥ 0.03

[88]. Future projections from SuperPIXIE [89] (red), assuming

sensitivity of Δργ=ργ ∼ 10−8, and PTA [90] (maroon) are also

depicted. We display the NEDE model’s preferred region [46]

(darker gray) and the PT generating the potential stochastic GW

background [50]. To assess existing NEDE model bounds, focus

on β=HPT values within the indicated bounds and disregard the

gray region representing the ΔNeff bound.
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constraint on PζðkÞ over that range of kpeak is flat, the

associated constraint on fDR is also flat with respect to TPT,

resulting in the plateaus in Fig. 2. This is because PδtðkpeakÞ
does not change as TPT varies. This is what happens for the

CMB bound for TPT ≲ 1 eV for β=HPT ¼ 10. For larger

TPT, kpeak lies outside the region probed by PζðkÞ con-

straints; constraints are only sensitive to the tail of the Pδt

distribution and ∝ f2DRk
3 [from (4) and (7)]. In those

regions, as TPT is increased, the bound on fDR goes as

1=T
3=2
PT (since TPT ∝ k). A similar transition from a plateau

behavior is also seen at ∼100 eV for Ly-α and at

∼100 MeV for PTA.

Notably, for β=HPT ≲ 400, the bounds we derive from

DR inhomogeneities are stronger than current ΔNeff con-

straints that track the homogeneous abundance of DR. For

PTs that occur before big-bang nucleosynthesis, there is a

stricter bound of ΔNeff ≲ 0.23 when applying more obser-

vational constraints; for those PTs after, the constraint

is slightly weaker at ΔNeff ≲ 0.31 [91]. Since our new

CMBþ Ly-α bounds are in the latter range, and we want

to show analogous ΔNeff constraints for CMB-S4, we plot

Fig. 2 using the well-known ΔNeff < 0.29 [40]. For

β=HPT ∼ 10 and TPT ≲ keV, our analysis using CMBþ
Ly-α constrains such PTs as much as or better than the

future Simons Observatory (SO) [87] and CMB-S4 pro-

jections on ΔNeff [88].

The NEDE model in [45,46] favors αPTfDR in the upper

(lower) dark gray region (�1σ) from the Planck18þ
BAOþ LSS fit with (without) SH0ES data. While large

values of β=HPT generally require extra model building, the

model in [46] assumes β=HPT ≳ 100 and permits β=HPT as

large as ∼103 by including a field to trigger the PT. Still,

our Pζ bound effectively disfavors the preferred NEDE

region in ðTPT; fDRÞ for all values of β=HPT ≲ 320 (230)

with (without) SH0ES data.

For a large PζðkÞ with k≲ 5400 Mpc−1 the PT can

impact the dissipation of acoustic modes in photon-baryon

perturbations, altering the photon’s blackbody spectrum

and inducing μ and y distortions [92,93],

X ≈ A

Z

∞

kmin

dk

k
PζðkÞ

h

Be−
k

5400= Mpc − Ce−ð
k

31.6= Mpc
Þ2
i

; ð8Þ

where kmin ¼ 1 Mpc−1, ðA;B;CÞX ¼ ð2.2; 1; 1Þμ and

ð0.4; 0;−1Þy. Comparing this to the FIRAS bound of

jμj < 9.0 × 10−5 and jyj < 1.5 × 10−5 [94,95], we derive

the exclusion bound labeled as “FIRAS.” When lowering

TPT, the y-distortion bound takes over the μ bound around

TPT ¼ 103 ð102Þ eV for the β=HPT ¼ 10 (100) case. In

contrast to Ref. [60], our findings indicate that the FIRAS

constraint is less stringent than the ΔNeff constraint, even

for PT with small β ¼ 10HPT [96].

Current Pζ measurements are less sensitive to PTs than

the ΔNeff constraint for TPT ≳ keV, but several proposed

searches can constrain Pζ more powerfully and constrain

weaker dark PTs. Super-PIXIE aims to measure the CMB

with a sensitivity of Δργ=ργ ∼ 10−8 [97] and the associated

constraint is shown in red. PTAs can also probe Pζ by

observing the phase shift in periodic pulsar signals mainly

caused by the Doppler effect induced by an enhanced dark

matter structure that accelerates Earth or a pulsar. The PTA

sensitivity curves (maroon) use Pζ sensitivity derived

in [90] that assumes 20 years of observations of 200

pulsars. This future sensitivity to PTs with TPT ≳MeV

may test exotic dark matter models that rely on them [12].

Also shown is the 2σ-preferred PT region for the GW

background hinted at by NANOGrav [37,50] (darker gray;

see, e.g., [98] for alternative GW spectrum assumptions).

At face value, this region conflicts with the ΔNeff con-

straint, but this prominent GW signal could largely origi-

nate from supermassive black hole mergers. With enhanced

PTA measurements, we might still detect the PT signal

within a comparable TPT range. Then PTA measurements

of Pζ could complement the GW detection.

Discussion—We have demonstrated that finite bubble

statistics can lead to superhorizon fluctuations in the

PT completion time, regardless of the PT details. These

fluctuations source curvature perturbations that affect the

CMB, LSS, and other observables. Utilizing these, we find

our constraints are in tension with some of the best fit

regions of the NEDE models proposed to ameliorate the

Hubble tension. At superhorizon scales, the (dimension-

less) power spectrum of these fluctuations has a k3-model-

independent scaling since it is just determined by Poisson

statistics. This contribution makes the total curvature

perturbation scale noninvariant. Thus, the associated

CMB phenomenology shares some similarities with the

scale noninvariant effects due to “primordial features” [99]

produced during inflation and models with “blue-tilted”

curvature perturbation [100–103].

In our analysis, we have kept the ΛCDM parameters

fixed. However, given the model-independent shape, one

can do a joint analysis where both dark-sector and ΛCDM

parameters are varied. We have also not considered con-

straints from modes that are smaller than typical bubbles as

those are more model-dependent. However, in the context

of specific models one can obtain stronger constraints from

such modes. We leave these for future work.
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