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Abstract
We consider rotated n-Laplace systems on the unit ball
B, C R" of the form

—div(Q|Vu|"?Vu) = div(G),

where u € WH(B;RY), Q € WL(B;;SO(N)), and

Ge L(m’q (By;R" @ RY) for some 0 < g < ﬁ We

Ll(gc’q("_l)) with estimates. As a corol-

prove that Vu €
lary, we obtain that solutions to A,u € H!, where H'
is the Hardy space, have a higher integrability, namely,

vu e LD,

loc
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n-LAPLACE SYSTEMS IN DIVERGENCE FORM 3503

1 | INTRODUCTION

In the theory of critical harmonic maps into manifolds u : B> C R? — M, cf. [7, 8, 13], the Hardy
space is an important tool, since any map u € W2(B2, RN) satisfying

Au e H!

is continuous, and the Hardy space naturally appears via commutators and div-curl terms [4].
The continuity statement is false for the n-Laplacian when n > 3: in 1995, Firoozye [5] exhibited
discontinuous maps u € W1"(B", RV) satisfying

div(|Vu|"?Vu) € H .

Indeed the regularity theory for n-harmonic maps into general manifolds is an interesting and
difficult open question, see [15] for an overview and [10, 12] for two recent results.

Formally the result of [5] is not surprising: ‘Inverting’ the div (i.e., pretending it to be the half-
Laplacian), we can wishfully hope for

vurt e L),

n 1 n
where L(H’l> is a Lorentz space — since Sobolev embedding implies (—A) 2 H! C L(H’l) —
and thus

Vu e LD,

While Vu € LD implies u is continuous (this is what we have in the case n = 2), for n > 3,
standard function space theory tells us that there are many counterexamples u € W satisfying
Vu € LD but u ¢ CO.

The purpose of this short note is to make this intuition more precise, somewhat giving a pos-
itive version of Firoozye’s example. It also extends known limiting results for the p-Laplacian in
[1, 2] (observe, however we restrict to p = n). Our main result is the following statement, where
B, = B(0,r) is the ball of R"” with radius r centered at the origin.

Theorem 1.1. Let g € (0, ﬁ). There exists a small € = e(n, N, q) and even smaller y = y(e), we
have the following.

Assume G € L<E’q)(31; R" @ RN), A € WY(By; GL(N)), ||Allje + [|A7 ||; < 2N% andu €
WLR(By; RN) satisfy the system

—div(|Vu|"*?AVu) = divG in By,
with the bound
IVA™ I as,) + IVAll s,y < 7-

Then, for every 6 € (0, }—l), it holds Vu € L("’q(”‘l))(Be) with the following estimate:

n-1 n—1
1Vl 1) < €N, G, e)(anL(ﬂl,q) b HlIVu Ln_s(Bl))
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3504 | MARTINO and SCHIKORRA

Remark 1.2. We can make a few remarks on the above statement:

(1) The quantity 2N? in the bound ||Al|;« + [|A™!|| .« < 2N? is arbitrary and can be replaced by
any large constant depending only on n, N.

(2) Weinclude the term A € GL(N), because the theory of n-harmonic maps allows for a change
of gauge, either the Uhlenbeck-Coulomb gauge A € SO(N) [17] or the Riviére’s gauge A €
GL(N) [13], for the relation, see also [14].

(3) Inthecaseq = nL of Theorem 1.1, we deduce that u is continuous.

(4) The arguments of the proof only provide a constant c in the last estimate which goes to +oo
asf — i.

In terms of the Hardy space, we obtain the following as an immediate consequence:

Corollary 1.3. Assume f € H| (B;;RY), A€ WH(Bj;GLIN)), [|Allp + [IA7" |1 < 2N?, and
u € WH(By; RN) satisfy the system

—div(|Vu|"?AVu) = f in By,
with the bound
IVA™ s, + VAN, < ¥

Then, for every 6 € (0, %), it holds Vu € L("’"‘l)(Bs) with the following estimate:
IVullh g, < N O (I s, + VUl ).

Proof. We solve A¢ = f in By, with ¢ = 0 on dB,. Since f € H!, it holds V¢ € L( )(Bl)
Corollary 1.3 follows from Theorem 1.1 with G = V¢. O

Observe that Corollary 1.3 is sharp in dimension n = 2. We will argue that Corollary 1.3 is also
sharp in dimension 7 > 3 in some sense in Section 4. Observe also that the bound 2N 2 in the
L*-estimate of A is arbitrary, see Remark 1.2.

Outline: The starting point of our arguments is based on recent estimates by the authors [10],
which in turn are strongly motivated by Kuusi and Mingione’s seminal [9], combined with cover-
ing arguments to estimate level sets. Then we adapt ideas of [11] to obtain our result. In Section 2,
we recall the definition of Lorentz spaces and the necessary preliminary results. In Section 3, we
prove Theorem 1.1. In Section 4, we discuss the regularity of Firoozye’s example.

2 | PRELIMINARY ESTIMATES

In this section, we define some notations and recall the necessary preliminary estimates on
Lorentz spaces, p-harmonic maps, and maximal functions.

In the rest of the paper, we will denote B(x, ) C R" the ball of radiusr > 0 and center x € R". If
x = 0,wewilldenote B, = B(0,r).IfA > 0and B = B(x, r)isaball, we will denote AB := B(x, Ar).
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We now recall the definitions and relevant properties of Lorentz spaces. For further reading,
see, for instance, [6, section 1.4]. Let Q C R" be an open set. Given a function f : Q — R, we
define its decreasing rearrangement f* : [0, |Q|) — [0, ) by

Vi>0, f5):=inf{1>20:|{xeQ:|f(x)| >} <t

Given p € (0,0) and g € (0, +o0], a function f : Q — R belongs to the Lorentz space L(P9(Q)
if the following quantity is finite:

o (st ) @)
1 1y += </o <f (s)s > S) ifq < oo,

1
SUP,q 57 £(5) if g = oo.

Lorentz spaces are refinements of the Lebesgue spaces in the following sense. Given p > 1 and
0<q<r<+ooand |Q| < o, it holds LP-P)(Q) = LP(Q) and LP-D(Q) c LP7)(Q). Given r > 0,
p > 1,and g € (0, ], it holds

”fr”L(p,q)(Q) = ”f”;,(l”‘sq’)(ﬂ)'

From the regularity of p-harmonic maps (vectorial, but with unconstrained target), cf. [16,
Theorem 3.2], we have the following:

Theorem 2.1. Let p € (1,n] and 6, € (0, 1). There exists c = c¢(n, N, p,8,) > 0 such that the fol-
lowing holds. Consider a ball B(x,r) C R" and v € WVP(B(x,r); RN) such that A,p=00n B(x,r).
Then it holds

1

p
VUl Bx6,r) < € <][ |VU|p> .
B(x,r)

Remark 2.2. The above estimate has been proved for 6, = i in [16, Theorem 3.2]. By a covering
argument, we can choose 6, € (0, 1) arbitrarily, up to increasing the constant c.

The following is the initial estimate we need for our purposes, which was proved in [10,
Corollary 5.2.].

Lemma 2.3. Let o € (0,1). There exists ¢; = ¢;(n,N, ) > 0 such that the following holds.
Forany e € (0,¢,), there exists y; = y,(n,N,e,0) > 0 with the following properties.
There exists Cy = Cy(n, N, a,€) > 0 such that the following hold.

Assume u € WH(B(x, r); RN) satisfies
div(A|Vu|*?Vu) = divG in B(x,r),

where A € WH(B(x,r); GL(N)), [|All e + [|A7 || < 2N?, and

IVAI Loy + IVA iy < 71- (2.1)
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3506 | MARTINO and SCHIKORRA

There exists a radius p € [%r %r] such that ifv € W(B(x, p); RN) satisfies

A,v =0 in B(x,p),
v=u ondB(x,p),

then it holds

][ |Vu — Vo|*—* < Cy(o,¢) ][ |G|E +o ][ |Vu|"—¢ .2
B(x,p) B(x,r) B(x,r)

Remark 2.4. In the statement of [10, Corollary 5.2], the integral quantity involving G in the right-

hand side of (2.2) is (f Beer) |G| put ) ". However, the above estimate is obtained by following step

by step the proof of [10, Lemma 4.2] in the case f = 0. The only change is the estimate of the term
I which has to be replaced, with the notations of the proof of [10, Lemma 4.2], with the Holder
inequality I < C||G||L% ||Va||Lg.

We will work on dyadic cubes and balls. To that extent, we give some definitions.
Given a = (a;,...,a,) € R" and # > 0, we consider the cube centered in a and having side-
length ¢:

an—g,an+§] C R™

X oo X

Q/(a) := [al — g,al +§
Given r > 0, we will denote rQ,(a) := Q,,(a). Given a ball B C R", the inner cube of B is
the cube Q C B having the same center and maximal side-length. Dyadic subcubes of a cube
Q = Q,(a) are defined by induction as follows. We denote C, :={Q} and C; the family of
subcubes of Q obtained by dividing Q in 2" cubes having disjoint interior and such that
each of them have side-length g. Given an integer k > 1, assume that C;, have been defined.
We consider the family Cy,; of subcubes of Q obtained by dividing each cube Q € C; in 2"
subcubes having disjoint interior and such that the side-length of each of these subcubes is
equal to half of the side-length of Q. A subcube Q C Q is called dyadic if Q € |J;, Cx. Given
k>1 and Q, € C;, there exists a unique Q, € C;_;, called the predecessor of Q;, such that
Q; C Qq. A predecessor is defined only for strict subcubes of Q and is always a dyadic subcube
of Q.
We will work with a covering argument, for this we need the the following result from [3,
Lemma 1.2].

Lemma2.5. Let Q, C R" bea cube. AssumeX CY C Q,are measurable sets such that the following
properties hold:

(1) there exists & > 0 such that |X| < §]|Q,
(2) ifQ € Qy is a dyadic subcube, then the inequality |X N Q| > §|Q| implies that the predecessor Q
of Q is contained in Y.

Then it holds | X| < 8|Y]|.

A ‘11 $20T “0T1T69%1
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‘We also have the following result for the uncentered, restricted maximal function operator, see
[11, Theorem 7]. Given f € L'(B,), we set

MBlf(x)::sup{][ |f|:xeB(y,r)CBl}.
B(y.r)

Lemma 2.6. Let t > 1 and q € (0, ]. There exists a constant ¢ = c(n,t,q) > 0 such that the
following holds. Consider a ball B, C R" and g € L*9(B,). Then,

”A/IB1 g”L(t.q)(Bl) < C”QHL(t,q)(Bl)-

3 | LEVEL-SET ESTIMATES: PROOF OF THEOREM 1.1

In this section, we adapt the techniques of [11] to obtain a proof of Theorem 1.1. We always assume
that u, A, and G are solutions as in Theorem 1.1.
We fix the parameter 6, € (0, 1) in Theorem 2.1 for the whole section. We will prove Theorem 1.1

for6 = %", see (3.10). The final result will follow from the fact that 8, is arbitrary.

Step 1: Level-set decay

Lemma 3.1. Let 6 = 2. There exist a universal constant T = I'(n,N) > 1 such that the following
holds. We denote Qg4 as the inner cube of Bg.

Forevery T > 1, there exists €, = €,(n,N,T) € (0, 1) such that the following holds.

Foranye € (0, ¢,), thereexistsn = n(n,N,e,T) € (0,1)andy, = y,(n,N,¢,T) € (0, 1) such that,
if

IVAIlLrs,) + IVA  Ning,) < 720
then the following holds. For any dyadic subcube Q of Qg and any A > A, where

n
2 n—e

0 = m”vul L"=£(B,)’ (31)

the following holds.
Assume that the predecessor Q of Q is contained in Qg and that the following inequality holds:

‘Q n{x € Qs : My, [IVu"¥166) > TTA, My [1G15 |0) < 77/1}‘ ST QL (3.2)
Then Q satisfies

0c {x € Qg : Mg [|Vul"™*](x) > /1}. (3.3)

A ‘11 $20T “0T1T69%1
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3508 | MARTINO and SCHIKORRA

Proof. We will define 6 later in (3.10), for the moment, we consider only that 6 < %, in order to
have 4Q C B;. By contradiction, we assume that (3.2) is valid but (3.3) fails.
Since (3.3) is wrong but Q C By, there exists x, € Q such that
M, [[Vuul"1(xo) < 4. (34)

Let B the unique ball having 3Q as inner cube, B C 4Q C B;. Then we have

][ |Vul"= < 1.
B

From (3.2), there exists x,; € Q such that M [lGlE] (x;) < nA.Since x; € B C B;, we also have

][ Gl < pA.
B

From Lemma 2.3, there exists a radius p € (%, %) such that the n-harmonic extension v €
WL (oB; RN) of u satisfies

][ Vi — Vo] < Co(a,z)][ 1G] + a][ | V|7
0B B B (3.5)
< Cy(o,ent + oA

Furthermore, it holds by Theorem 2.1

Vou|?" ng Vo|"—¢ (3.6)
<][%B| ol ) C(")<7[;B' ol >

2

Combining (3.4) and (3.5), we deduce that

<][ |Vv|"-f)"_53c<][ |V(u_u)|"-€)n_z+c(][|w|"-€>"'g
3B PB B

< ((c(n) + Co(o, €y )=

From (3.6), we obtain

][ 6 [Vu]?" < e(n)((1 + Cy(o, s)n)/l)nz_:- (3.7)
2B

2

Now, we have all the ingredients to estimate the quantity

{x €eqQ: MBl[qul"‘E](x) > FTA}’.

A ‘11 $20T “0T1T69%1
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n-LAPLACE SYSTEMS IN DIVERGENCE FORM 3509

First, we compare with the more restricted maximal function
MBSO/2[|Vu|”‘E](x) :=sup {][ |[Vu|"=¢ : x € B(y,r) C BQU/Z} .
B(y.r)
We obtain the following relation:

Mp [IVu|"*](x) = max <M390/2[IVuI”‘5](X); sup {][ [Vul"™ : x € B(y,r) ¢ B%/z}) .
B

)
(3.8)
Given x € By /4, we estimate the second term using that a ball B(y, r) ¢ By ,, containing x must
have a radius r > =22: It holds
2"
sup ][ [Vul"= : B(x,r) € By 2 ¢ < B—G”” ulli S,y =+ Ao (3.9)
B(x,r) |B1l 0
We define
6
6:= 21 (3.10)
4 4

If 1 > A, we deduce from (3.8) and (3.9):

{x €Q : My [|Vu|"*](x) > rm}’ -

{x €Q: My, ,[IVul"¥](x) > rm}‘

_ 1
< {x €Q: M360/2[|Vv|" 1(x) > Z—HFTA}‘

+

{x €Q: MBGO/Z[IV(u —0)|"f)(x) > ZinI‘T/l}‘.

With standard estimates on maximal functions, we find

C(I’l) 2n C(I’l) n—e
Vol [V(u—0v)|"".
(FT/l)n : / T2 /Q e

{x € Q : Mg [IVul|"*](x) > FT/I

Combining this with (3.5) and (3.7), we arrive at

C(n)|Q|
(TTA)n=

N C(:)lQl (Cy(o, O + c(n)o)A

< SO 4 ¢y, + S
T

|{x €Q : My [|Vul"1(x) > rm}| =LA+ oo, i)

(Co(@, ) + c(n)a).

G.11)
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3510 | MARTINO and SCHIKORRA

We first choose 0 = o(n, T) small enough in order to obtain

c(n)o < —— < —

2n ‘
2Tw1 1 2Tt

This choice fixes €, = €;(n, T) thanks to Lemma 2.3. Then, for any ¢ € (0, ¢,), we obtain a constant
v, =y1(n, N, ¢,0) and we choose ) = 5(n, ¢, T) small enough, so that we obtain

1 < 1
2n = 2n _q
Tn—l Tn—s

Colo,e)n + c(n)o <

5

2n
1+ Cy(o,e)m)n— < 2.

Coming back to (3.11) with these choices, we obtain

) T—2_<r_2— * f) S —z_n<ﬁ + f). (3.12)

n—e

{x €Q 1 My [IVul™¥1(x) > rn}

We now choose I' = I'(n) large enough to have

C(n)(% + %) < % (3.13)

Hence, we obtain

Q-

2T n—

<

{x €Q 1 My [IVul™¥1(x) > rm}

This is a contradiction to (3.2), and we can conclude. O

Step 2: Application of Lemma 2.5

Lemma 3.2. Let6 = %0. There exists a universal constant T = T'(n, N) > 1 such that the following
holds. Let Qg be the inner cube of Bg.

Forevery T > 1, there exists ¢, = €,(n,N, T) € (0, 1) such that the following holds.

For every € € (0, €,), we define

2"T 1 2n _
A :=max< ,—>Tn—s||Vu||"nfE .
! |B,16" |Bg| Lr=(By)

There exists ) = n(n,N,e,T) € (0,1) and y, = y,(n,N,¢,T) € (0,1) such that, if

IVAllncs,) + IVA e, < Vas

A ‘11 $20T “0T1T69%1
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n-LAPLACE SYSTEMS IN DIVERGENCE FORM 3511

then for every k € N, it holds

{x € Qo & My [IVul"¥1(x) > (FT)"“/ll} < {x € Qo : My [IVul"¥1(x) > (FT)k/ll}

2n

T n—e

+ {x €Q,: M[|G|ﬁ](x) > n(FT)k/ll}

(3.14)

Proof. We consider the cases where A = (I'T)¥4, in Lemma 3.1 for any k € N* and for some 4, to

be chosen later. The goal is to apply Lemma 2.5 with Q, = Qq, 6 = T_% and the sets

X= , (3.15)

{x € Qo : My [IVul"™1(x) > (TT)**' 2, M, [|G|ﬁ](x) < n(FT)k/ll}

Y = {x € Qo : My [IVu"*](x) > (I‘T)k/ll} . (3.16)

From Lemma 3.1, (2) in Lemma 2.5 is satisfied from 1, = 4,. However, we need to increase 4,
in order to obtain (1).

To do so, we first consider 4, of the form aTﬁ/lo, for some universal constant ¢ = a(n, N, 6;) >
T, in order to satisfy (1) in Lemma 2.5. From the definition of 4, in (3.1), we have from standard
estimates of maximal functions

{x € Qo1 My, [IVul™100) > aT72, |

1 _
< —/ V|
aT =, 7B

B, |6"
< | 1| Zon )
2nqT n—c
We define @ = a(n, N, 6,)) by the relation
|B;16;
a = max <F, A).
2"Qg]

That is, we have

. n—e 2 Qe
{ere : MBI[|Vu| ](x)>fxTn—s/10} < —
T n—
We define 1, > A, by the relation
2n 12T z_n/ -
A i=aTln—<ly=max | —, —— |Tn—= |Vu|"¢. (3.17)
! ° <|Qe| |Bl|eg> 5,

We now check (1) of Lemma 2.5 for the set X defined in (3.15) and 4, defined in (3.17). Fix an
integer k > 1. Since I'T > 1, we have

<

{x € Qo : My [IVul™1(x) > (FT)k/ll}

{x€Qs: My VU106 > 2, }

|Qgl

S
T n=¢

A ‘11 $20T “0T1T69%1
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3512 | MARTINO and SCHIKORRA

2n
Thus, we can apply Lemma 2.5 with the choices Qy = Q4,8 = T n— and X, Y defined in (3.15)-
(3.16). We obtain

{x € Qs : My [IVul"¥100) > ()12, M 161 |0 < mrT)fn, |

<

{x € Qs : My, [IVuI™10) > (T2, }

2n

T n—

Therefore, it holds

{x € Qo 1 My [IVu"*100 > (112, }

<

{x € Qo : My [Vl 1(x) > (TT)**'2,, M, [|G|E](x) < n(FT)k/ll}

+ {x €Qp: M[|G|3—Zi](x) > n(FT)k/ll}

<

{x € Qs : My, [IVuI™10) > T2, }

2n

T n—

+

{x €Qp: M[|G|ﬁ](x) > n(FT)k/ll}

: (]

Step 3: Lorentz spaces estimates

Proof of Theorem 1.1. Following the notations of [11], we define for any H > 0,

w(H) =

{x € Qe : My [IVul™100) > H}‘

Uy(H) 1=

{x € Qo : My, [|G|E](x) > H}‘
For any integer k > 1, we write the estimate (3.14) in terms of y; and u,
(T 2) < s (TTYRAY) + T 7%y (CTYAy). (318)
We define the sequences
ap = :ul((FT)k/ll),

by 1= ﬂz((FT)kU/ll)-

n n—e n n—1 n—e n n—1
If G € L9, then |G|»1 € L' . By Lemma 2.6, it holds My [|G|+1] € L'i=9=. We
write this in terms of u,

-1

i n—1 [/, n 9" dH
n on-1 = q / <H”—EILLZ(H)> ? < 0.
Loqk o

==

“MBIHGlﬁ]

-f)«:)e) nh—e

A ‘11 $20T “0T1T69%1
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We derive an estimate on the sequence b, from the above inequality. We start with the following
decomposition of the integral

i EAH o [T 9" dH

JR GO Wi (H7epan) "
Nk k=07 (TT)kna,

Since u, is a nonincreasing function, we obtain

. L R I L A L N
/ (H= D) " G > Fb] / G
7 — (TT)kniy

X ot @D .
> Yb / HOE
k=0 (FT)kn/h

If g < —, then up to reducing ¢, we also have g < — Therefore q— — 1 < 0 and we obtain
the de51red estimate on the summability of by,

© L AH g 1y Dk
Hieuy(H)) " == 2 Y b, " ((TT)*pa,) = dH
H F k+1 (
=0

nh ITYnl,

X gl n-1
>(IT-1) ) b, " (CTY*pa,) .
k=0

Since T > 1 and I" > 1, we have the following inequality:

0 n—1 n—1 n-1
qT qn—e n €
X b (O 9a) = < e(m)|| My, 1617 (L 1) (3.19)
k=0 - Qe )
We now write (3.18) in terms of the sequences (a; ), and (b, ),. We obtain for any k > 0,
Kk Kk
Aet1 Q41
Az S bpgq + _;l < by + T_;L
T n=
n-1
We raise to the power q L and multiply by ((TT)<*252,)%"= to obtain
ply by 7
k+2 il gt RN = SOLE Ve PLE N
((rT) ’7}‘1) a s < (@O pa) et (b L+ T et
n-1 n-1 (gl n-l
217w (TT) = <bk+"1 ((FT)k“n/ll)q"-f)
n=1 nol _ pnel k1, gt
295 (IT)dn=T "% < a. ((FT) *niy) —> (3.20)

Up to reducing ¢ again, it holds:

n—1 n—1 1 2
e an (- 2)
qn—s qn q(n )n—s n

<qtn-1(5 - 2)

n

< q(n—l)% < 0.
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3514 | MARTINO and SCHIKORRA

Therefore, using that T’ = T'(n) (see (3.13)), we can choose T = T(n, q) > 1 such that

- -1
QI PO T 2 o0 paanDg ¢ L (3.21)

N

Coming back to (3.20), we obtain

n—1 n-1 n*I n-1
((FT)k+277/11)q” faz+2 <c(n, q)< or (@192 )q”‘5>

#3(af7 (@),

Given any integer K > 1, we sum the above inequalities for k between 0 and K to obtain

K n-1 n—l K n_—l
3 (@) oy <ena 3 (o5 (@)
k=0 k=0
1 ¢ [ g% i
LB )

By reindexing the sums over the ay, it holds

K+2 n-1

Z (rT)ena,)’ “a " <cln, q)Z( e (@Y 1ga,) e )

Therefore, the last sum of the right-hand side can be reabsorbed by the left-hand side, only the
term in k = 1 remains on the right-hand side

=
+
o

n—1 n—1

((FT)kn/‘ll)qn_—gaZT c(n q)z< k+1 (FT)k+1 ) Z_:l)

H~lw
~
||
)

1 nnl il
+ Z (FT?’)/‘Ll) n—e

We now consider the limit K — oo

N

I
D8

((FT)k,?,ll) ar= Iz”; <cn, q)2< o ((CTY+152 )q';—:l)

k=2

1( o= nl
+3 (a1 (TTnA,)Tn= >
Using a; < |B,|, the expression of 4, in (3.17), and the summability of (b, ), in (3.19), we deduce
that

n 1 n—1

2> (@) " ay <, q,eo><||MB 611
k=2

w

. ||Vu||§£’i:§;1)>-

.\MH

i

.|;

T1>(31
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From Lemma 2.6, we deduce that

_1

oo n—.
X q m q g(n—1)
Z (TT) ;7/11 a " <cn,qg, 60)<||G|| + ”V“”L”—E(Bl))'

(nl )Bl

Arguing similar to (3.19), we obtain from the above estimate an estimate in Lorentz spaces of
My, [|Vu|"~]

M, 11 Va1

n—e

(IT)2A, n-1 o A(ITF14 a1

n—1 n 9= dH n w dH

=q / (Hn—%(H)) —+ Z / (H" %(H)) -
n—e 0 H k=2 (FT)kﬂ.l H

n-1

o /Ooo (Hﬁ/«ﬁ(H))anild—H

<q<|B1|q ((FT)Z/ll) e +(FT—1)Za (k4 ) 1)

<c(n,q, 90)(|IGIIq + 1Vl 2 >

=2 )(B1 Lr=(By)

We conclude the proof of Theorem 1.1,

Va4 D < c(n, q,90)<|IGI|q

q(n-1)
LOa(=D)(Qy) + [[Vul| > .

gy

4 | OPTIMALITY OF COROLLARY 1.3

In this section, we study the regularity of the examples obtained in [5]. Firoozye proved that for any
ae (0 ) the function u,(x) = log(1/|x|)* is a solution to A ,u € 7-[1 onaball B, ,, CR".

Lemma 4.1. For every ﬁ < g, itholds Vu, € L),

Remark 4.2. Since a < ==, it holds — < n — 1. In particular, it holds Vu, € L"""~1(B, ;,) for
any a. Furthermore, we have

1
——n-1
1-a g2

Thus, L"»"~1) is the maximal integrability which is common to every Vu,,.

Proof. The norm of the gradient of u,, is given by

a 1\
Vx € Bl/Z’ |Vua(x)| = m 10g <m> .
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3516 | MARTINO and SCHIKORRA

The nondecreasing rearrangement of |Vu,| is given by

1
Vi e (0. 1By, f(1) = —E— log

11
By Tren 1By

The map Vu, € L9 if and only if

’/0|B1/2| (t%f(t))q% ‘o

This is equivalent to

/1/2 dt
_— < 0.
o t]log(n)]a0-)

This is true if and only if g(1 — o) > 1. Hence, it holds Vu, € L(”’Q)(Bl/z) for every q > ﬁ O
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