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Abstract
We consider rotated 𝑛-Laplace systems on the unit ball
𝐵1 ⊂ ℝ𝑛 of the form

−div
(
𝑄|∇𝑢|𝑛−2∇𝑢) = div(𝐺),

where 𝑢 ∈ 𝑊1,𝑛(𝐵1; ℝ
𝑁), 𝑄 ∈ 𝑊1,𝑛(𝐵1; 𝑆𝑂(𝑁)), and

𝐺 ∈ 𝐿

(
𝑛

𝑛−1
,𝑞
)
(𝐵1; ℝ

𝑛 ⊗ ℝ𝑁) for some 0 < 𝑞 < 𝑛

𝑛−1
. We

prove that ∇𝑢 ∈ 𝐿
(𝑛,𝑞(𝑛−1))

𝑙𝑜𝑐
with estimates. As a corol-

lary, we obtain that solutions to Δ𝑛𝑢 ∈ 1, where 1

is the Hardy space, have a higher integrability, namely,
∇𝑢 ∈ 𝐿

(𝑛,𝑛−1)

𝑙𝑜𝑐
.
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𝑛-LAPLACE SYSTEMS IN DIVERGENCE FORM 3503

1 INTRODUCTION

In the theory of critical harmonic maps into manifolds 𝑢 ∶ 𝐵2 ⊂ ℝ2 → , cf. [7, 8, 13], the Hardy
space is an important tool, since any map 𝑢 ∈ 𝑊1,2(𝐵2, ℝ𝑁) satisfying

Δ𝑢 ∈ 1

is continuous, and the Hardy space naturally appears via commutators and div-curl terms [4].
The continuity statement is false for the 𝑛-Laplacian when 𝑛 ⩾ 3: in 1995, Firoozye [5] exhibited
discontinuous maps 𝑢 ∈ 𝑊1,𝑛(𝐵𝑛, ℝ𝑁) satisfying

div(|∇𝑢|𝑛−2∇𝑢) ∈ 1.

Indeed the regularity theory for 𝑛-harmonic maps into general manifolds is an interesting and
difficult open question, see [15] for an overview and [10, 12] for two recent results.
Formally the result of [5] is not surprising: ‘Inverting’ the div (i.e., pretending it to be the half-

Laplacian), we can wishfully hope for

|∇𝑢|𝑛−1 ∈ 𝐿

(
𝑛

𝑛−1
,1
)
,

where 𝐿
(

𝑛
𝑛−1

,1
)
is a Lorentz space — since Sobolev embedding implies (−Δ)−

1
21 ⊂ 𝐿

(
𝑛

𝑛−1
,1
)
—

and thus

∇𝑢 ∈ 𝐿(𝑛,𝑛−1).

While ∇𝑢 ∈ 𝐿(𝑛,1) implies 𝑢 is continuous (this is what we have in the case 𝑛 = 2), for 𝑛 ⩾ 3,
standard function space theory tells us that there are many counterexamples 𝑢 ∈ 𝑊1,𝑛 satisfying
∇𝑢 ∈ 𝐿(𝑛,𝑛−1) but 𝑢 ∉ 𝐶0.
The purpose of this short note is to make this intuition more precise, somewhat giving a pos-

itive version of Firoozye’s example. It also extends known limiting results for the 𝑝-Laplacian in
[1, 2] (observe, however we restrict to 𝑝 = 𝑛). Our main result is the following statement, where
𝐵𝑟 = 𝐵(0, 𝑟) is the ball of ℝ𝑛 with radius 𝑟 centered at the origin.

Theorem 1.1. Let 𝑞 ∈ (0, 𝑛

𝑛−1
). There exists a small 𝜀 = 𝜀(𝑛,𝑁, 𝑞) and even smaller 𝛾 = 𝛾(𝜀), we

have the following.

Assume𝐺 ∈ 𝐿

(
𝑛

𝑛−1
,𝑞
)
(𝐵1; ℝ

𝑛 ⊗ ℝ𝑁),𝐴 ∈ 𝑊1,𝑛(𝐵1; 𝐺𝐿(𝑁)), ‖𝐴‖𝐿∞ + ‖𝐴−1‖𝐿∞ ⩽ 2𝑁2, and 𝑢 ∈

𝑊1,𝑛(𝐵1; ℝ
𝑁) satisfy the system

−div(|∇𝑢|𝑛−2𝐴∇𝑢) = div𝐺 in 𝐵1,

with the bound

‖∇𝐴−1‖𝐿𝑛(𝐵1) + ‖∇𝐴‖𝐿𝑛(𝐵1)) ⩽ 𝛾.

Then, for every 𝜃 ∈ (0, 1
4
), it holds ∇𝑢 ∈ 𝐿(𝑛,𝑞(𝑛−1))(𝐵𝜃) with the following estimate:

‖∇𝑢‖𝑛−1
𝐿(𝑛,𝑞(𝑛−1))(𝐵𝜃)

⩽ 𝑐(𝑛,𝑁, 𝑞, 𝜃)

(‖𝐺‖
𝐿(

𝑛
𝑛−1

,𝑞)(𝐵1)
+ ‖∇𝑢‖𝑛−1

𝐿𝑛−𝜀(𝐵1)

)
.
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3504 MARTINO and SCHIKORRA

Remark 1.2. We can make a few remarks on the above statement:

(1) The quantity 2𝑁2 in the bound ‖𝐴‖𝐿∞ + ‖𝐴−1‖𝐿∞ ⩽ 2𝑁2 is arbitrary and can be replaced by
any large constant depending only on 𝑛,𝑁.

(2) We include the term𝐴 ∈ 𝐺𝐿(𝑁), because the theory of 𝑛-harmonic maps allows for a change
of gauge, either the Uhlenbeck–Coulomb gauge 𝐴 ∈ 𝑆𝑂(𝑁) [17] or the Rivière’s gauge 𝐴 ∈

𝐺𝐿(𝑁) [13], for the relation, see also [14].
(3) In the case 𝑞 = 1

𝑛−1
of Theorem 1.1, we deduce that 𝑢 is continuous.

(4) The arguments of the proof only provide a constant 𝑐 in the last estimate which goes to +∞
as 𝜃 → 1

4
.

In terms of the Hardy space, we obtain the following as an immediate consequence:

Corollary 1.3. Assume 𝑓 ∈ 1
𝑙𝑜𝑐
(𝐵1; ℝ

𝑁), 𝐴 ∈ 𝑊1,𝑛(𝐵1; 𝐺𝐿(𝑁)), ‖𝐴‖𝐿∞ + ‖𝐴−1‖𝐿∞ ⩽ 2𝑁2, and
𝑢 ∈ 𝑊1,𝑛(𝐵1; ℝ

𝑁) satisfy the system

−div(|∇𝑢|𝑛−2𝐴∇𝑢) = 𝑓 in 𝐵1,

with the bound

‖∇𝐴−1‖𝐿𝑛(𝐵1) + ‖∇𝐴‖𝐿𝑛(𝐵1) ⩽ 𝛾.

Then, for every 𝜃 ∈ (0, 1
4
), it holds ∇𝑢 ∈ 𝐿(𝑛,𝑛−1)(𝐵𝜃) with the following estimate:

‖∇𝑢‖𝑛−1
𝐿(𝑛,𝑛−1)(𝐵𝜃)

⩽ 𝑐(𝑛,𝑁, 𝜃)
(‖𝑓‖1(𝐵1)

+ ‖∇𝑢‖𝑛−1
𝐿𝑛−𝜀(𝐵1)

)
.

Proof. We solve Δ𝜙 = 𝑓 in 𝐵1, with 𝜙 = 0 on 𝜕𝐵1. Since 𝑓 ∈ 1, it holds ∇𝜙 ∈ 𝐿

(
𝑛

𝑛−1
,1
)
(𝐵1).

Corollary 1.3 follows from Theorem 1.1 with 𝐺 = ∇𝜙. □

Observe that Corollary 1.3 is sharp in dimension 𝑛 = 2. We will argue that Corollary 1.3 is also
sharp in dimension 𝑛 ⩾ 3 in some sense in Section 4. Observe also that the bound 2𝑁2 in the
𝐿∞-estimate of 𝐴 is arbitrary, see Remark 1.2.
Outline: The starting point of our arguments is based on recent estimates by the authors [10],

which in turn are strongly motivated by Kuusi and Mingione’s seminal [9], combined with cover-
ing arguments to estimate level sets. Then we adapt ideas of [11] to obtain our result. In Section 2,
we recall the definition of Lorentz spaces and the necessary preliminary results. In Section 3, we
prove Theorem 1.1. In Section 4, we discuss the regularity of Firoozye’s example.

2 PRELIMINARY ESTIMATES

In this section, we define some notations and recall the necessary preliminary estimates on
Lorentz spaces, 𝑝-harmonic maps, and maximal functions.
In the rest of the paper, wewill denote𝐵(𝑥, 𝑟) ⊂ ℝ𝑛 the ball of radius 𝑟 > 0 and center 𝑥 ∈ ℝ𝑛. If

𝑥 = 0, wewill denote𝐵𝑟 = 𝐵(0, 𝑟). If 𝜆 > 0 and𝐵 = 𝐵(𝑥, 𝑟) is a ball, wewill denote 𝜆𝐵 ∶= 𝐵(𝑥, 𝜆𝑟).
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𝑛-LAPLACE SYSTEMS IN DIVERGENCE FORM 3505

We now recall the definitions and relevant properties of Lorentz spaces. For further reading,
see, for instance, [6, section 1.4]. Let Ω ⊂ ℝ𝑛 be an open set. Given a function 𝑓 ∶ Ω → ℝ, we
define its decreasing rearrangement 𝑓∗ ∶ [0, |Ω|) → [0,∞) by

∀𝑡 > 0, 𝑓∗(𝑡) ∶= inf {𝜆 ⩾ 0 ∶ |{𝑥 ∈ Ω ∶ |𝑓(𝑥)| > 𝜆}| ⩽ 𝑡}.

Given 𝑝 ∈ (0,∞) and 𝑞 ∈ (0, +∞], a function 𝑓 ∶ Ω → ℝ belongs to the Lorentz space 𝐿(𝑝,𝑞)(Ω)

if the following quantity is finite:

‖𝑓‖𝐿(𝑝,𝑞)(Ω) ∶=

⎧⎪⎨⎪⎩
(
∫ ∞
0

(
𝑓∗(𝑠)𝑠

1
𝑝

)𝑞
𝑑𝑠

𝑠

) 1
𝑞

if 𝑞 < ∞,

sup𝑠>0 𝑠
1
𝑝 𝑓∗(𝑠) if 𝑞 = ∞.

Lorentz spaces are refinements of the Lebesgue spaces in the following sense. Given 𝑝 ⩾ 1 and
0 < 𝑞 < 𝑟 ⩽ +∞ and |Ω| < ∞, it holds 𝐿(𝑝,𝑝)(Ω) = 𝐿𝑝(Ω) and 𝐿(𝑝,𝑞)(Ω) ⊂ 𝐿(𝑝,𝑟)(Ω). Given 𝑟 > 0,
𝑝 > 1, and 𝑞 ∈ (0,∞], it holds

‖𝑓𝑟‖𝐿(𝑝,𝑞)(Ω) = ‖𝑓‖𝑟
𝐿(𝑝𝑟,𝑞𝑟)(Ω)

.

From the regularity of 𝑝-harmonic maps (vectorial, but with unconstrained target), cf. [16,
Theorem 3.2], we have the following:

Theorem 2.1. Let 𝑝 ∈ (1, 𝑛] and 𝜃0 ∈ (0, 1). There exists 𝑐 = 𝑐(𝑛,𝑁, 𝑝, 𝜃0) > 0 such that the fol-
lowing holds. Consider a ball 𝐵(𝑥, 𝑟) ⊂ ℝ𝑛 and 𝑣 ∈ 𝑊1,𝑝(𝐵(𝑥, 𝑟); ℝ𝑁) such thatΔ𝑝𝑣 = 0 on 𝐵(𝑥, 𝑟).
Then it holds

Remark 2.2. The above estimate has been proved for 𝜃0 =
1

4
in [16, Theorem 3.2]. By a covering

argument, we can choose 𝜃0 ∈ (0, 1) arbitrarily, up to increasing the constant 𝑐.

The following is the initial estimate we need for our purposes, which was proved in [10,
Corollary 5.2.].

Lemma 2.3. Let 𝜎 ∈ (0, 1). There exists 𝜀1 = 𝜀1(𝑛,𝑁, 𝜎) > 0 such that the following holds.
For any 𝜀 ∈ (0, 𝜀1), there exists 𝛾1 = 𝛾1(𝑛,𝑁, 𝜀, 𝜎) > 0 with the following properties.
There exists 𝐶0 = 𝐶0(𝑛,𝑁, 𝜎, 𝜀) > 0 such that the following hold.
Assume 𝑢 ∈ 𝑊1,𝑛(𝐵(𝑥, 𝑟); ℝ𝑁) satisfies

div(𝐴|∇𝑢|𝑛−2∇𝑢) = div𝐺 in 𝐵(𝑥, 𝑟),

where 𝐴 ∈ 𝑊1,𝑛(𝐵(𝑥, 𝑟); 𝐺𝐿(𝑁)), ‖𝐴‖𝐿∞ + ‖𝐴−1‖𝐿∞ ⩽ 2𝑁2, and

‖∇𝐴‖𝐿𝑛(𝐵(𝑥,𝑟)) + ‖∇𝐴−1‖𝐿𝑛(𝐵(𝑥,𝑟)) ⩽ 𝛾1. (2.1)
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3506 MARTINO and SCHIKORRA

There exists a radius 𝜌 ∈
[
1

2
𝑟, 3

4
𝑟
]
such that if 𝑣 ∈ 𝑊1,𝑛(𝐵(𝑥, 𝜌); ℝ𝑁) satisfies

{
Δ𝑛𝑣 = 0 in 𝐵(𝑥, 𝜌),

𝑣 = 𝑢 on 𝜕𝐵(𝑥, 𝜌),

then it holds

(2.2)

Remark 2.4. In the statement of [10, Corollary 5.2], the integral quantity involving 𝐺 in the right-

hand side of (2.2) is . However, the above estimate is obtained by following step
by step the proof of [10, Lemma 4.2] in the case 𝑓 = 0. The only change is the estimate of the term
𝐼 which has to be replaced, with the notations of the proof of [10, Lemma 4.2], with the Hölder
inequality 𝐼 ⩽ 𝐶‖𝐺‖

𝐿
𝑛−𝜀
𝑛−1

‖∇𝑎‖
𝐿
𝑛−𝜀
1−𝜀

.

We will work on dyadic cubes and balls. To that extent, we give some definitions.
Given 𝑎 = (𝑎1, … , 𝑎𝑛) ∈ ℝ𝑛 and 𝓁 > 0, we consider the cube centered in 𝑎 and having side-
length 𝓁:

𝑄𝓁(𝑎) ∶=

[
𝑎1 −

𝓁
2
, 𝑎1 +

𝓁
2

]
×⋯ ×

[
𝑎𝑛 −

𝓁
2
, 𝑎𝑛 +

𝓁
2

]
⊂ ℝ𝑛.

Given 𝑟 > 0, we will denote 𝑟𝑄𝓁(𝑎) ∶= 𝑄𝑟𝓁(𝑎). Given a ball 𝐵 ⊂ ℝ𝑛, the inner cube of 𝐵 is
the cube 𝑄 ⊂ 𝐵 having the same center and maximal side-length. Dyadic subcubes of a cube
𝑄 = 𝑄𝓁(𝑎) are defined by induction as follows. We denote 0 ∶= {𝑄} and 1 the family of
subcubes of 𝑄 obtained by dividing 𝑄 in 2𝑛 cubes having disjoint interior and such that
each of them have side-length 𝓁

2
. Given an integer 𝑘 ⩾ 1, assume that 𝑘 have been defined.

We consider the family 𝑘+1 of subcubes of 𝑄 obtained by dividing each cube 𝑄̃ ∈ 𝑘 in 2𝑛

subcubes having disjoint interior and such that the side-length of each of these subcubes is
equal to half of the side-length of 𝑄̃. A subcube 𝑄̃ ⊂ 𝑄 is called dyadic if 𝑄̃ ∈

⋃
𝑘⩾1 𝑘. Given

𝑘 ⩾ 1 and 𝑄1 ∈ 𝑘, there exists a unique 𝑄0 ∈ 𝑘−1, called the predecessor of 𝑄1, such that
𝑄1 ⊂ 𝑄0. A predecessor is defined only for strict subcubes of 𝑄 and is always a dyadic subcube
of 𝑄.
We will work with a covering argument, for this we need the the following result from [3,

Lemma 1.2].

Lemma2.5. Let𝑄0 ⊂ ℝ𝑛 be a cube. Assume𝑋 ⊂ 𝑌 ⊂ 𝑄0 aremeasurable sets such that the following
properties hold:

(1) there exists 𝛿 > 0 such that |𝑋| < 𝛿|𝑄0|,
(2) if𝑄 ⊊ 𝑄0 is a dyadic subcube, then the inequality |𝑋 ∩ 𝑄| > 𝛿|𝑄| implies that the predecessor 𝑄̃

of 𝑄 is contained in 𝑌.

Then it holds |𝑋| < 𝛿|𝑌|.
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𝑛-LAPLACE SYSTEMS IN DIVERGENCE FORM 3507

We also have the following result for the uncentered, restricted maximal function operator, see
[11, Theorem 7]. Given 𝑓 ∈ 𝐿1(𝐵1), we set

Lemma 2.6. Let 𝑡 > 1 and 𝑞 ∈ (0,∞]. There exists a constant 𝑐 = 𝑐(𝑛, 𝑡, 𝑞) > 0 such that the
following holds. Consider a ball 𝐵1 ⊂ ℝ𝑛 and g ∈ 𝐿(𝑡,𝑞)(𝐵1). Then,

‖𝑀𝐵1
g‖𝐿(𝑡,𝑞)(𝐵1) ⩽ 𝑐‖g‖𝐿(𝑡,𝑞)(𝐵1).

3 LEVEL-SET ESTIMATES: PROOF OF THEOREM 1.1

In this section, we adapt the techniques of [11] to obtain a proof of Theorem 1.1. We always assume
that 𝑢, 𝐴, and 𝐺 are solutions as in Theorem 1.1.
We fix the parameter 𝜃0 ∈ (0, 1) in Theorem 2.1 for thewhole section.Wewill prove Theorem 1.1

for 𝜃 =
𝜃0
4
, see (3.10). The final result will follow from the fact that 𝜃0 is arbitrary.

Step 1: Level-set decay

Lemma 3.1. Let 𝜃 =
𝜃0
4
. There exist a universal constant Γ = Γ(𝑛,𝑁) > 1 such that the following

holds. We denote 𝑄𝜃 as the inner cube of 𝐵𝜃 .
For every 𝑇 > 1, there exists 𝜀2 = 𝜀2(𝑛,𝑁, 𝑇) ∈ (0, 1) such that the following holds.
For any 𝜀 ∈ (0, 𝜀2), there exists 𝜂 = 𝜂(𝑛,𝑁, 𝜀, 𝑇) ∈ (0, 1) and 𝛾2 = 𝛾2(𝑛,𝑁, 𝜀, 𝑇) ∈ (0, 1) such that,

if

‖∇𝐴‖𝐿𝑛(𝐵1) + ‖∇𝐴−1‖𝐿𝑛(𝐵1) ⩽ 𝛾2,

then the following holds. For any dyadic subcube 𝑄 of 𝑄𝜃 and any 𝜆 > 𝜆0, where

𝜆0 ∶=
2𝑛|𝐵1|𝜃𝑛0 ‖∇𝑢‖𝑛−𝜀𝐿𝑛−𝜀(𝐵1)

, (3.1)

the following holds.
Assume that the predecessor 𝑄̃ of 𝑄 is contained in 𝑄𝜃 and that the following inequality holds:||||𝑄 ∩

{
𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|∇𝑢|𝑛−𝜀](𝑥) > Γ𝑇𝜆, 𝑀𝐵1

[|𝐺| 𝑛−𝜀𝑛−1

]
(𝑥) ⩽ 𝜂𝜆

}|||| > 𝑇− 2𝑛
𝑛−𝜀 |𝑄|. (3.2)

Then 𝑄̃ satisfies

𝑄̃ ⊂
{
𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|∇𝑢|𝑛−𝜀](𝑥) > 𝜆
}
. (3.3)
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3508 MARTINO and SCHIKORRA

Proof. We will define 𝜃 later in (3.10), for the moment, we consider only that 𝜃 ⩽
1

4
, in order to

have 4𝑄 ⊂ 𝐵1. By contradiction, we assume that (3.2) is valid but (3.3) fails.
Since (3.3) is wrong but 𝑄̃ ⊂ 𝐵𝜃, there exists 𝑥0 ∈ 𝑄̃ such that

𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥0) ⩽ 𝜆. (3.4)

Let 𝐵 the unique ball having 3𝑄 as inner cube, 𝐵 ⊂ 4𝑄 ⊂ 𝐵1. Then we have

From (3.2), there exists 𝑥1 ∈ 𝑄 such that𝑀𝐵1

[|𝐺| 𝑛−𝜀𝑛−1

]
(𝑥1) ⩽ 𝜂𝜆. Since 𝑥1 ∈ 𝐵 ⊂ 𝐵1, we also have

From Lemma 2.3, there exists a radius 𝜌 ∈ (1
2
, 3
4
) such that the 𝑛-harmonic extension 𝑣 ∈

𝑊1,𝑛(𝜌𝐵; ℝ𝑁) of 𝑢 satisfies

(3.5)

Furthermore, it holds by Theorem 2.1

(3.6)

Combining (3.4) and (3.5), we deduce that

From (3.6), we obtain

(3.7)

Now, we have all the ingredients to estimate the quantity

||||{𝑥 ∈ 𝑄 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > Γ𝑇𝜆

}||||.
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𝑛-LAPLACE SYSTEMS IN DIVERGENCE FORM 3509

First, we compare with the more restricted maximal function

We obtain the following relation:

(3.8)

Given 𝑥 ∈ 𝐵𝜃0∕4
, we estimate the second term using that a ball 𝐵(𝑦, 𝑟) ⊄ 𝐵𝜃0∕2

containing 𝑥 must
have a radius 𝑟 ⩾

𝜃0
2
: It holds

(3.9)

We define

𝜃 ∶=
𝜃0
4

<
1

4
. (3.10)

If 𝜆 > 𝜆0, we deduce from (3.8) and (3.9):

||||{𝑥 ∈ 𝑄 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > Γ𝑇𝜆

}|||| = ||||{𝑥 ∈ 𝑄 ∶ 𝑀𝐵𝜃0∕2
[|∇𝑢|𝑛−𝜀](𝑥) > Γ𝑇𝜆

}||||
⩽

||||{𝑥 ∈ 𝑄 ∶ 𝑀𝐵𝜃0∕2
[|∇𝑣|𝑛−𝜀](𝑥) > 1

2𝑛
Γ𝑇𝜆

}||||
+

||||{𝑥 ∈ 𝑄 ∶ 𝑀𝐵𝜃0∕2
[|∇(𝑢 − 𝑣)|𝑛−𝜀](𝑥) > 1

2𝑛
Γ𝑇𝜆

}||||.
With standard estimates on maximal functions, we find

||||{𝑥 ∈ 𝑄 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > Γ𝑇𝜆

}|||| ⩽ 𝐶(𝑛)

(Γ𝑇𝜆)
2𝑛
𝑛−𝜀

∫𝑄 |∇𝑣|2𝑛 + 𝐶(𝑛)

Γ𝑇𝜆 ∫𝑄 |∇(𝑢 − 𝑣)|𝑛−𝜀.
Combining this with (3.5) and (3.7), we arrive at

|||{𝑥 ∈ 𝑄 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > Γ𝑇𝜆

}||| ⩽ 𝐶(𝑛)|𝑄|
(Γ𝑇𝜆)

2𝑛

𝑛−𝜀

((1 + 𝐶0(𝜎, 𝜀)𝜂)𝜆)
2𝑛

𝑛−𝜀

+
𝐶(𝑛)|𝑄|
Γ𝑇𝜆

(𝐶0(𝜎, 𝜀)𝜂 + 𝑐(𝑛)𝜎)𝜆

⩽
𝐶(𝑛)|𝑄|
(Γ𝑇)

2𝑛

𝑛−𝜀

(1 + 𝐶0(𝜎, 𝜀)𝜂)
2𝑛

𝑛−𝜀 +
𝐶(𝑛)|𝑄|

Γ𝑇
(𝐶0(𝜎, 𝜀)𝜂 + 𝑐(𝑛)𝜎).

(3.11)
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3510 MARTINO and SCHIKORRA

We first choose 𝜎 = 𝜎(𝑛, 𝑇) small enough in order to obtain

𝑐(𝑛)𝜎 ⩽
1

2𝑇
2𝑛
𝑛−1

−1
⩽

1

2𝑇
2𝑛
𝑛−𝜀

−1
.

This choice fixes 𝜀2 = 𝜀1(𝑛, 𝑇) thanks to Lemma 2.3. Then, for any 𝜀 ∈ (0, 𝜀2), we obtain a constant
𝛾2 = 𝛾1(𝑛,𝑁, 𝜀, 𝜎) and we choose 𝜂 = 𝜂(𝑛, 𝜀, 𝑇) small enough, so that we obtain

𝐶0(𝜎, 𝜀)𝜂 + 𝑐(𝑛)𝜎 ⩽
1

𝑇
2𝑛
𝑛−1

−1
⩽

1

𝑇
2𝑛
𝑛−𝜀

−1
,

(1 + 𝐶0(𝜎, 𝜀)𝜂)
2𝑛
𝑛−𝜀 ⩽ 2.

Coming back to (3.11) with these choices, we obtain

||||{𝑥 ∈ 𝑄 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > Γ𝑇𝜆

}|||| ⩽ 𝐶(𝑛)|𝑄|
𝑇

2𝑛
𝑛−𝜀

(
1

Γ
2𝑛
𝑛−𝜀

+
1

Γ

)
⩽

𝐶(𝑛)|𝑄|
𝑇

2𝑛
𝑛−𝜀

(
1

Γ2
+

1

Γ

)
. (3.12)

We now choose Γ = Γ(𝑛) large enough to have

𝐶(𝑛)
(
1

Γ2
+

1

Γ

)
<

1

2
. (3.13)

Hence, we obtain

||||{𝑥 ∈ 𝑄 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > Γ𝑇𝜆

}|||| ⩽ |𝑄|
2𝑇

2𝑛
𝑛−𝜀

.

This is a contradiction to (3.2), and we can conclude. □

Step 2: Application of Lemma 2.5

Lemma 3.2. Let 𝜃 =
𝜃0
4
. There exists a universal constant Γ = Γ(𝑛,𝑁) > 1 such that the following

holds. Let 𝑄𝜃 be the inner cube of 𝐵𝜃 .
For every 𝑇 > 1, there exists 𝜀2 = 𝜀2(𝑛,𝑁, 𝑇) ∈ (0, 1) such that the following holds.
For every 𝜀 ∈ (0, 𝜀2), we define

𝜆1 ∶= max

(
2𝑛Γ|𝐵1|𝜃𝑛0 , 1|𝐵𝜃|

)
𝑇

2𝑛
𝑛−𝜀 ‖∇𝑢‖𝑛−𝜀

𝐿𝑛−𝜀(𝐵1)
.

There exists 𝜂 = 𝜂(𝑛,𝑁, 𝜀, 𝑇) ∈ (0, 1) and 𝛾2 = 𝛾2(𝑛,𝑁, 𝜀, 𝑇) ∈ (0, 1) such that, if

‖∇𝐴‖𝐿𝑛(𝐵1) + ‖∇𝐴−1‖𝐿𝑛(𝐵1) ⩽ 𝛾2,
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𝑛-LAPLACE SYSTEMS IN DIVERGENCE FORM 3511

then for every 𝑘 ∈ ℕ, it holds

||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘+1𝜆1

}|||| ⩽ 1

𝑇
2𝑛
𝑛−𝜀

||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘𝜆1

}||||
+

||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀
[|𝐺| 𝑛−𝜀𝑛−1

]
(𝑥) > 𝜂(Γ𝑇)𝑘𝜆1

}||||.
(3.14)

Proof. We consider the cases where 𝜆 = (Γ𝑇)𝑘𝜆1 in Lemma 3.1 for any 𝑘 ∈ ℕ∗ and for some 𝜆1 to
be chosen later. The goal is to apply Lemma 2.5 with 𝑄0 = 𝑄𝜃, 𝛿 = 𝑇− 2𝑛

𝑛−𝜀 and the sets

𝑋 =
||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘+1𝜆1,𝑀𝐵1

[|𝐺| 𝑛−𝜀𝑛−1

]
(𝑥) ⩽ 𝜂(Γ𝑇)𝑘𝜆1

}||||, (3.15)

𝑌 =
||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘𝜆1

}||||. (3.16)

From Lemma 3.1, (2) in Lemma 2.5 is satisfied from 𝜆1 = 𝜆0. However, we need to increase 𝜆1
in order to obtain (1).
To do so,we first consider 𝜆1 of the form𝛼𝑇

2𝑛
𝑛−𝜀 𝜆0, for someuniversal constant𝛼 = 𝛼(𝑛,𝑁, 𝜃0) ⩾

Γ, in order to satisfy (1) in Lemma 2.5. From the definition of 𝜆0 in (3.1), we have from standard
estimates of maximal functions||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|∇𝑢|𝑛−𝜀](𝑥) > 𝛼𝑇
2𝑛
𝑛−𝜀 𝜆0

}|||| ⩽ 1

𝛼𝑇
2𝑛
𝑛−𝜀 𝜆0

∫𝐵1 |∇𝑢|𝑛−𝜀
⩽

|𝐵1|𝜃𝑛0
2𝑛𝛼𝑇

2𝑛
𝑛−𝜀

.

We define 𝛼 = 𝛼(𝑛,𝑁, 𝜃0) by the relation

𝛼 = max

(
Γ,

|𝐵1|𝜃𝑛0
2𝑛|𝑄𝜃|

)
.

That is, we have ||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > 𝛼𝑇

2𝑛
𝑛−𝜀 𝜆0

}|||| ⩽ |𝑄𝜃|
𝑇

2𝑛
𝑛−𝜀

.

We define 𝜆1 ⩾ 𝜆0 by the relation

𝜆1 ∶= 𝛼𝑇
2𝑛
𝑛−𝜀 𝜆0 = max

(
1|𝑄𝜃| , 2𝑛Γ|𝐵1|𝜃𝑛0

)
𝑇

2𝑛
𝑛−𝜀 ∫𝐵1 |∇𝑢|𝑛−𝜀. (3.17)

We now check (1) of Lemma 2.5 for the set 𝑋 defined in (3.15) and 𝜆1 defined in (3.17). Fix an
integer 𝑘 ⩾ 1. Since Γ𝑇 ⩾ 1, we have||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘𝜆1

}|||| ⩽ ||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > 𝜆1

}||||
⩽

|𝑄𝜃|
𝑇

2𝑛
𝑛−𝜀

.
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3512 MARTINO and SCHIKORRA

Thus, we can apply Lemma 2.5 with the choices𝑄0 = 𝑄𝜃, 𝛿 = 𝑇− 2𝑛
𝑛−𝜀 and𝑋,𝑌 defined in (3.15)–

(3.16). We obtain||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘+1𝜆1,𝑀𝐵1

[|𝐺| 𝑛−𝜀𝑛−1

]
(𝑥) ⩽ 𝜂(Γ𝑇)𝑘𝜆1

}||||
⩽

1

𝑇
2𝑛
𝑛−𝜀

||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘𝜆1

}||||.
Therefore, it holds||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘+1𝜆1

}||||
⩽
||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘+1𝜆1,𝑀𝐵1

[|𝐺| 𝑛−𝜀𝑛−1

]
(𝑥) ⩽ 𝜂(Γ𝑇)𝑘𝜆1

}||||
+

||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀
[|𝐺| 𝑛−𝜀𝑛−1

]
(𝑥) > 𝜂(Γ𝑇)𝑘𝜆1

}||||
⩽

1

𝑇
2𝑛
𝑛−𝜀

||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1
[|∇𝑢|𝑛−𝜀](𝑥) > (Γ𝑇)𝑘𝜆1

}||||
+

||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀
[|𝐺| 𝑛−𝜀𝑛−1

]
(𝑥) > 𝜂(Γ𝑇)𝑘𝜆1

}||||. □

Step 3: Lorentz spaces estimates

Proof of Theorem 1.1. Following the notations of [11], we define for any𝐻 ⩾ 0,

𝜇1(𝐻) ∶=
||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|∇𝑢|𝑛−𝜀](𝑥) > 𝐻
}||||,

𝜇2(𝐻) ∶=
||||{𝑥 ∈ 𝑄𝜃 ∶ 𝑀𝐵1

[|𝐺| 𝑛−𝜀𝑛−1

]
(𝑥) > 𝐻

}||||.
For any integer 𝑘 ⩾ 1, we write the estimate (3.14) in terms of 𝜇1 and 𝜇2

𝜇1((Γ𝑇)
𝑘+1𝜆1) ⩽ 𝜇2(𝜂(Γ𝑇)

𝑘𝜆1) + 𝑇− 2𝑛
𝑛−𝜀 𝜇1((Γ𝑇)

𝑘𝜆1). (3.18)

We define the sequences

𝑎𝑘 ∶= 𝜇1((Γ𝑇)
𝑘𝜆1),

𝑏𝑘 ∶= 𝜇2((Γ𝑇)
𝑘𝜂𝜆1).

If 𝐺 ∈ 𝐿(
𝑛

𝑛−1
,𝑞), then |𝐺| 𝑛−𝜀𝑛−1 ∈ 𝐿(

𝑛
𝑛−𝜀

,𝑞 𝑛−1
𝑛−𝜀

). By Lemma 2.6, it holds 𝑀𝐵1
[|𝐺| 𝑛−𝜀𝑛−1 ] ∈ 𝐿(

𝑛
𝑛−𝜀

,𝑞 𝑛−1
𝑛−𝜀

). We
write this in terms of 𝜇2

‖‖‖𝑀𝐵1
[|𝐺| 𝑛−𝜀𝑛−1 ]

‖‖‖𝑞 𝑛−1
𝑛−𝜀

𝐿

(
𝑛

𝑛−𝜀 ,𝑞
𝑛−1
𝑛−𝜀

)
(𝑄𝜃)

= 𝑞
𝑛 − 1

𝑛 − 𝜀 ∫
∞

0

(
𝐻

𝑛
𝑛−𝜀 𝜇2(𝐻)

)𝑞 𝑛−1
𝑛 𝑑𝐻

𝐻
< ∞.
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𝑛-LAPLACE SYSTEMS IN DIVERGENCE FORM 3513

We derive an estimate on the sequence 𝑏𝑘 from the above inequality. We start with the following
decomposition of the integral

∫
∞

𝜂𝜆1

(
𝐻

𝑛
𝑛−𝜀 𝜇2(𝐻)

)𝑞 𝑛−1
𝑛 𝑑𝐻

𝐻
=

∞∑
𝑘=0

∫
(Γ𝑇)𝑘+1𝜂𝜆1

(Γ𝑇)𝑘𝜂𝜆1

(
𝐻

𝑛
𝑛−𝜀 𝜇2(𝐻)

)𝑞 𝑛−1
𝑛 𝑑𝐻

𝐻
.

Since 𝜇2 is a nonincreasing function, we obtain

∫
∞

𝜂𝜆1

(
𝐻

𝑛
𝑛−𝜀 𝜇2(𝐻)

)𝑞 𝑛−1
𝑛 𝑑𝐻

𝐻
⩾

∞∑
𝑘=0

𝑏
𝑞 𝑛−1

𝑛

𝑘+1 ∫
(Γ𝑇)𝑘+1𝜂𝜆1

(Γ𝑇)𝑘𝜂𝜆1

(
𝐻

𝑛
𝑛−𝜀

)𝑞 𝑛−1
𝑛 𝑑𝐻

𝐻

⩾

∞∑
𝑘=0

𝑏
𝑞 𝑛−1

𝑛

𝑘+1 ∫
(Γ𝑇)𝑘+1𝜂𝜆1

(Γ𝑇)𝑘𝜂𝜆1

𝐻𝑞 𝑛−1
𝑛−𝜀

−1𝑑𝐻.

If 𝑞 < 𝑛

𝑛−1
, then up to reducing 𝜀, we also have 𝑞 < 𝑛−𝜀

𝑛−1
. Therefore, 𝑞 𝑛−1

𝑛−𝜀
− 1 < 0 and we obtain

the desired estimate on the summability of 𝑏𝑘

∫
∞

𝜂𝜆1

(
𝐻

𝑛
𝑛−𝜀 𝜇2(𝐻)

)𝑞 𝑛−1
𝑛 𝑑𝐻

𝐻
⩾

∞∑
𝑘=0

𝑏
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

−1

∫
(Γ𝑇)𝑘+1𝜂𝜆1

(Γ𝑇)𝑘𝜂𝜆1

𝑑𝐻

⩾ (Γ𝑇 − 1)

∞∑
𝑘=0

𝑏
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 .

Since 𝑇 > 1 and Γ > 1, we have the following inequality:
∞∑
𝑘=0

𝑏
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 ⩽ 𝑐(𝑛)

‖‖‖𝑀𝐵1
[|𝐺| 𝑛−𝜀𝑛−1 ]

‖‖‖𝑞 𝑛−1
𝑛−𝜀

𝐿

(
𝑛

𝑛−𝜀 ,𝑞
𝑛−1
𝑛−𝜀

)
(𝑄𝜃)

. (3.19)

We now write (3.18) in terms of the sequences (𝑎𝑘)𝑘 and (𝑏𝑘)𝑘. We obtain for any 𝑘 ⩾ 0,

𝑎𝑘+2 ⩽ 𝑏𝑘+1 +
𝑎𝑘+1

𝑇
2𝑛
𝑛−𝜀

⩽ 𝑏𝑘+1 +
𝑎𝑘+1

𝑇2
.

We raise to the power 𝑞 𝑛−1

𝑛
and multiply by

(
(Γ𝑇)𝑘+2𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 to obtain

(
(Γ𝑇)𝑘+2𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 𝑎

𝑞 𝑛−1
𝑛

𝑘+2
⩽

(
(Γ𝑇)𝑘+2𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 2𝑞

𝑛−1
𝑛

(
𝑏
𝑞 𝑛−1

𝑛

𝑘+1
+ 𝑇−2𝑞 𝑛−1

𝑛 𝑎
𝑞 𝑛−1

𝑛

𝑘+1

)
⩽ 2𝑞

𝑛−1
𝑛 (Γ𝑇)𝑞

𝑛−1
𝑛−𝜀

(
𝑏
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)
+ 2𝑞

𝑛−1
𝑛 (Γ𝑇)𝑞

𝑛−1
𝑛−𝜀 𝑇−2𝑞 𝑛−1

𝑛

(
𝑎
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)
. (3.20)

Up to reducing 𝜀 again, it holds:

𝑞
𝑛 − 1

𝑛 − 𝜀
− 2𝑞

𝑛 − 1

𝑛
= 𝑞(𝑛 − 1)

(
1

𝑛 − 𝜀
−

2

𝑛

)
⩽ 𝑞(𝑛 − 1)

(
3

2𝑛
−

2

𝑛

)
⩽ 𝑞(𝑛 − 1)

1

2𝑛
< 0.
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3514 MARTINO and SCHIKORRA

Therefore, using that Γ = Γ(𝑛) (see (3.13)), we can choose 𝑇 = 𝑇(𝑛, 𝑞) > 1 such that

2𝑞
𝑛−1
𝑛 Γ𝑞

𝑛−1
𝑛−𝜀 𝑇𝑞 𝑛−1

𝑛−𝜀
−2𝑞 𝑛−1

𝑛 ⩽ 2𝑞
𝑛−1
𝑛 Γ𝑞𝑇𝑞(𝑛−1) −1

2𝑛 ⩽
1

4
. (3.21)

Coming back to (3.20), we obtain

(
(Γ𝑇)𝑘+2𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 𝑎

𝑞 𝑛−1
𝑛

𝑘+2
⩽ 𝑐(𝑛, 𝑞)

(
𝑏
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)
+

1

4

(
𝑎
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)
.

Given any integer 𝐾 ⩾ 1, we sum the above inequalities for 𝑘 between 0 and 𝐾 to obtain

𝐾∑
𝑘=0

(
(Γ𝑇)𝑘+2𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 𝑎

𝑞 𝑛−1
𝑛

𝑘+2
⩽ 𝑐(𝑛, 𝑞)

𝐾∑
𝑘=0

(
𝑏
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)

+
1

4

𝐾∑
𝑘=0

(
𝑎
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)
.

By reindexing the sums over the 𝑎𝑘, it holds

𝐾+2∑
𝑘=2

(
(Γ𝑇)𝑘𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 𝑎

𝑞 𝑛−1
𝑛

𝑘
⩽ 𝑐(𝑛, 𝑞)

𝐾∑
𝑘=0

(
𝑏
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)

+
1

4

𝐾+1∑
𝑘=1

(
𝑎
𝑞 𝑛−1

𝑛

𝑘

(
(Γ𝑇)𝑘𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)
.

Therefore, the last sum of the right-hand side can be reabsorbed by the left-hand side, only the
term in 𝑘 = 1 remains on the right-hand side

3

4

𝐾+2∑
𝑘=2

(
(Γ𝑇)𝑘𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 𝑎

𝑞 𝑛−1
𝑛

𝑘
⩽ 𝑐(𝑛, 𝑞)

𝐾∑
𝑘=0

(
𝑏
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)

+
1

4

(
𝑎
𝑞 𝑛−1

𝑛

1 (Γ𝑇𝜂𝜆1)
𝑞 𝑛−1
𝑛−𝜀

)
.

We now consider the limit 𝐾 → ∞

3

4

∞∑
𝑘=2

(
(Γ𝑇)𝑘𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 𝑎

𝑞 𝑛−1
𝑛

𝑘
⩽ 𝑐(𝑛, 𝑞)

∞∑
𝑘=0

(
𝑏
𝑞 𝑛−1

𝑛

𝑘+1

(
(Γ𝑇)𝑘+1𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)

+
1

4

(
𝑎
𝑞 𝑛−1

𝑛

1
(Γ𝑇𝜂𝜆1)

𝑞 𝑛−1
𝑛−𝜀

)
.

Using 𝑎1 ⩽ |𝐵1|, the expression of 𝜆1 in (3.17), and the summability of (𝑏𝑘)𝑘 in (3.19), we deduce
that

3

4

∞∑
𝑘=2

(
(Γ𝑇)𝑘𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 𝑎

𝑞 𝑛−1
𝑛

𝑘
⩽ 𝑐(𝑛, 𝑞, 𝜃0)

(‖‖‖𝑀𝐵1
[|𝐺| 𝑛−𝜀𝑛−1 ]

‖‖‖𝑞 𝑛−1
𝑛−𝜀

𝐿

(
𝑛

𝑛−𝜀 ,𝑞
𝑛−1
𝑛−𝜀

)
(𝐵1)

+ ‖∇𝑢‖𝑞(𝑛−1)
𝐿𝑛−𝜀(𝐵1)

)
.
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𝑛-LAPLACE SYSTEMS IN DIVERGENCE FORM 3515

From Lemma 2.6, we deduce that

∞∑
𝑘=2

(
(Γ𝑇)𝑘𝜂𝜆1

)𝑞 𝑛−1
𝑛−𝜀 𝑎

𝑞 𝑛−1
𝑛

𝑘
⩽ 𝑐(𝑛, 𝑞, 𝜃0)

(‖𝐺‖𝑞
𝐿(

𝑛
𝑛−1

,𝑞)(𝐵1)
+ ‖∇𝑢‖𝑞(𝑛−1)

𝐿𝑛−𝜀(𝐵1)

)
.

Arguing similar to (3.19), we obtain from the above estimate an estimate in Lorentz spaces of
𝑀𝐵1

[|∇𝑢|𝑛−𝜀]
‖‖‖𝑀𝐵1

[|∇𝑢|𝑛−𝜀]‖‖‖𝑞 𝑛−1
𝑛−𝜀

𝐿

(
𝑛

𝑛−𝜀 ,𝑞
𝑛−1
𝑛−𝜀

)
(𝑄𝜃)

= 𝑞
𝑛 − 1

𝑛 − 𝜀 ∫
∞

0

(
𝐻

𝑛
𝑛−𝜀 𝜇1(𝐻)

)𝑞 𝑛−1
𝑛 𝑑𝐻

𝐻

=𝑞
𝑛 − 1

𝑛 − 𝜀

(
∫

(Γ𝑇)2𝜆1

0

(
𝐻

𝑛
𝑛−𝜀 𝜇1(𝐻)

)𝑞 𝑛−1
𝑛 𝑑𝐻

𝐻
+

∞∑
𝑘=2

∫
(Γ𝑇)𝑘+1𝜆1

(Γ𝑇)𝑘𝜆1

(
𝐻

𝑛
𝑛−𝜀 𝜇1(𝐻)

)𝑞 𝑛−1
𝑛 𝑑𝐻

𝐻

)

⩽𝑞

(|𝐵1|𝑞 𝑛−1
𝑛
(
(Γ𝑇)2𝜆1

)𝑞 𝑛−1
𝑛−𝜀 + (Γ𝑇 − 1)

∞∑
𝑘=2

𝑎
𝑞 𝑛−1

𝑛

𝑘

(
(Γ𝑇)𝑘𝜆1

)𝑞 𝑛−1
𝑛−𝜀

)

⩽ 𝑐(𝑛, 𝑞, 𝜃0)

(‖𝐺‖𝑞
𝐿(

𝑛
𝑛−1

,𝑞)(𝐵1)
+ ‖∇𝑢‖𝑞(𝑛−1)

𝐿𝑛−𝜀(𝐵1)

)
.

We conclude the proof of Theorem 1.1,

‖∇𝑢‖𝑞(𝑛−1)
𝐿(𝑛,𝑞(𝑛−1))(𝑄𝜃)

⩽ 𝑐(𝑛, 𝑞, 𝜃0)

(‖𝐺‖𝑞
𝐿(

𝑛
𝑛−1

,𝑞)(𝐵1)
+ ‖∇𝑢‖𝑞(𝑛−1)

𝐿𝑛−𝜀(𝐵1)

)
. □

4 OPTIMALITY OF COROLLARY 1.3

In this section,we study the regularity of the examples obtained in [5]. Firoozye proved that for any
𝛼 ∈

(
0, 𝑛−2

𝑛−1

)
, the function 𝑢𝛼(𝑥) = log(1∕|𝑥|)𝛼 is a solution to Δ𝑛𝑢 ∈ 1

𝑙𝑜𝑐
on a ball 𝐵1∕2 ⊂ ℝ𝑛.

Lemma 4.1. For every 1

1−𝛼
< 𝑞, it holds ∇𝑢𝛼 ∈ 𝐿(𝑛,𝑞).

Remark 4.2. Since 𝛼 < 𝑛−2

𝑛−1
, it holds 1

1−𝛼
< 𝑛 − 1. In particular, it holds ∇𝑢𝛼 ∈ 𝐿(𝑛,𝑛−1)(𝐵1∕2) for

any 𝛼. Furthermore, we have

1

1 − 𝛼
WWWWWWW→
𝛼→𝑛−2

𝑛−1

𝑛 − 1.

Thus, 𝐿(𝑛,𝑛−1) is the maximal integrability which is common to every ∇𝑢𝛼.

Proof. The norm of the gradient of 𝑢𝛼 is given by

∀𝑥 ∈ 𝐵1∕2, |∇𝑢𝛼(𝑥)| = 𝛼|𝑥| log
(

1|𝑥|
)𝛼−1

.
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3516 MARTINO and SCHIKORRA

The nondecreasing rearrangement of |∇𝑢𝛼| is given by
∀𝑡 ∈ (0, |𝐵1∕2|), 𝑓(𝑡) =

𝛼|𝐵1|− 1
𝑛 𝑡

1
𝑛

log

⎛⎜⎜⎝ 1|𝐵1|− 1
𝑛 𝑡

1
𝑛

⎞⎟⎟⎠
𝛼−1

.

The map ∇𝑢𝛼 ∈ 𝐿(𝑛,𝑞) if and only if

∫
|𝐵1∕2|

0

(
𝑡
1
𝑛 𝑓(𝑡)

)𝑞 𝑑𝑡

𝑡
< ∞.

This is equivalent to

∫
1∕2

0

𝑑𝑡

𝑡| log(𝑡)|𝑞(1−𝛼) < ∞.

This is true if and only if 𝑞(1 − 𝛼) > 1. Hence, it holds ∇𝑢𝛼 ∈ 𝐿(𝑛,𝑞)(𝐵1∕2) for every 𝑞 > 1

1−𝛼
. □
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