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Abstract

We consider minimizing harmonic maps u from Ω ⊂ Rn into a closed Rie-
mannian manifold N and prove:

(1) an extension to n ≥ 4 of Almgren and Lieb’s linear law. That is, if the
fundamental group of the target manifold N is finite, we have

Hn−3(sing u) ≤ C

∫

∂Ω

|'Tu|
n−1 dHn−1;

(2) an extension of Hardt and Lin’s stability theorem. Namely, assuming that
the target manifold is N = S2 we obtain that the singular set of u is stable
under small W 1,n−1-perturbations of the boundary data.

In dimension n = 3 both results are shown to hold with weaker hypotheses, i.e.,
only assuming that the trace of our map lies in the fractional space W s,p with
s ( ( 12 , 1] and p ( [2,∞) satisfying sp ≥ 2. We also discuss sharpness.

Received by the editor February 11, 2021, and, in revised form, May 5, 2022.
Article electronically published on October 18, 2024.
DOI: https://doi.org/10.1090/memo/1519
2020 Mathematics Subject Classification. Primary 58E20, 35J57, 35J50, 35B30.
The authors would like to thank Pawe�l Strzelecki for suggesting extending the results of [3]

to higher dimensions. The authors would also like to thank Jean Van Schaftingen for suggesting
to extend the results to manifolds with ûnite fundamental group.

During the long preparation of this manuscript the authors obtained the following ûnan-
cial support: National Science Centre Poland via grant no. 2015/17/N/ST1/02360 (KM); Na-
tional Science Centre Poland via grant no. 2016/21/B/ST1/03138 (MM); National Science Centre
Poland via grant no. 2020/36/C/ST1/00050 (MM); German Research Foundation (DFG) through
grant no. SCHI-1257-3-1 (KM, AS); Daimler and Benz foundation, grant no 32-11/16 (KM, AS);
Simons foundation, grant no 579261 (AS); Etiuda scholarship no. 2018/28/T/ST1/00117 (MM);
Mandat d’Impulsion scientiûque (MIS) F.452317 - FNRS (KM); and FSR Incoming postdoc (KM).
Part of the work was carried out while the ûrst author was visiting the University of Pittsburgh;
she thanks the Department of Mathematics for their hospitality.

c©2024 American Mathematical Society

v

Licensed to University Bielefeld.  Prepared on Sun May 18 05:26:36 EDT 2025for download from IP 195.37.234.61.



Licensed to University Bielefeld.  Prepared on Sun May 18 05:26:36 EDT 2025for download from IP 195.37.234.61.



CHAPTER 1

Introduction

A minimizing harmonic map from an n-dimensional domain Ω ⊆ Rn into N is
a map u ( W 1,2(Ω,N ) that minimizes the Dirichlet energy

E(u) :=

∫

Ω

|'u|2 dx

among all maps in W 1,2(Ω,N ) with the same boundary data ϕ : ∂Ω → N . Here,
the target manifold N is a smooth, closed (i.e., compact and without boundary)
Riemannian manifold isometrically embedded in Rd. The Sobolev spaceW 1,2(Ω,N )
is defined as

W 1,2(Ω,N ) :=
{
u ( W 1,2(Ω,Rd) : u(x) ( N almost everywhere

}
.

In such a geometrical setup, one might suspect that minimizing harmonic maps are
always smooth. However, this holds only in the case of geodesics (n = 1) and in
the conformal case (n = 2), see Morrey’s classical result [48].

In contrast, in dimensions n ≥ 3 even continuity cannot be guaranteed. Mini-
mizers of the Dirichlet energy satisfy the Euler–Lagrange system of equations

−∆u = A(u)('u,'u) in Ω,

where A is the second fundamental form of the isometric embedding N ⊂ Rd. In
the special case when N = Sd−1, this system takes the form

−∆u = |'u|2u in Ω.

For n ≥ 3, critical points, i.e., solutions to the Euler–Lagrange equations might be
everywhere discontinuous, see Rivière’s seminal [55]. Minimizers enjoy better reg-
ularity, but discontinuities may still appear. The simplest example are obstructions
of topological nature: by Hopf–Brouwer theorem we know that if the topological
degree of a boundary map ϕ : ∂B3 → S2 is not zero, there is no continuous ex-
tension u : B3 → S2. The continuity of minimizers may also fail without such
a topological obstruction. Hardt and Lin in [28] constructed a boundary datum
ϕ ( C∞(∂B3, S2) with degϕ = 0 for which all minimizers1 must have singularities.

Consequently, in dimensions n ≥ 3, the analysis of singularities of minimizing
harmonic maps is an intriguing theory. The singular set sing u of a mapping u (
W 1,2(Ω,N ) is defined as the complement of its regular set

sing u = Ω \ {x ( Ω: u is smooth on some neighborhood of x}.

For harmonic maps the analysis of the singular set started with the fundamen-
tal work of Schoen and Uhlenbeck [56]. They showed that one can estimate the

1Minimizing harmonic maps into S2 may be non-unique, consider u : Bn → S2 and−u : Bn →

S2 which have the same energy and may have the same boundary datum.

1
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2 1. INTRODUCTION

Hausdorff dimension of the singular set of minimizers. Namely,

dimH(sing u) ≤ n− 3

for any minimizing harmonic map from an n-dimensional domain Ω ⊂ Rn into an
arbitrary closed Riemannian manifold N [56, Theorem II]. They also prove in the
special case n = 3 that the H0 measure (the counting measure) of the singular set
is locally finite. The latter result was recently generalized for any n ≥ 3 by Naber
and Vatorta, see Theorem 1.3 below.

A basic example of a singular minimizing harmonic map is given by the “hedge-
hog” map

u0 : B
n → Sn−1, u0(x) =

x

|x|
.

The minimality of u0 was proved for n = 3 by Brezis, Coron, and Lieb [14, Theorem
7.1] and for all n ≥ 3 by Lin [38], see also Coron and Gulliver [16, Theorem 1.1].
This example shows the optimality of the result of Schoen and Uhlenbeck. Indeed,

let Ψ(x′, x′′) = x′

|x′| for x′ ( R3 and x′′ ( Rn−3. Then Ψ ( W 1,2(Bn, S2) is a

minimizing harmonic map with singΨ =
(
{0} × Rn−3

)
∩Bn.

Additionally, the map u0 : B
3 → S2 is the unique minimizer for its boundary

mapping id: ∂B3 → S2 [14, Theorem 7.1]. In general there is no uniqueness of
minimizing harmonic maps for a given boundary datum. For example, in [27],
Hardt, Kinderlehrer, and Lin construct a boundary map ϕ : ∂B3 → S2 for which
there exist countably many minimizing harmonic mappings or, in [30] Hardt and
Lin construct a boundary datum which admits at least two minimizers: one of
which is smooth and the other one is singular.

More quantitative results were obtained in the late 80’s of the last century —
for n = 3 and N = S2, Almgren and Lieb [3] showed that one can estimate the
number of singularities of minimizing harmonic maps in terms of their trace maps,
which became to be known as Almgren and Lieb’s linear law :

(1.1) #{singularities of u} ≤ C(Ω)

∫

∂Ω

|'Tu|
2 dH2.

Moreover, in [30] Hardt and Lin showed that for a unique2 harmonic minimizer
v ( W 1,2(Ω, S2) the number of singularities remains the same for all minimizers
whose trace is close in the Lipschitz-norm to the trace of v. This is known as Hardt
and Lin’s stability theorem.

The natural questions arise: what are the minimal regularity assumptions on
the boundary map in order to obtain a linear estimate similar to (1.1)? Is it possible
to obtain a similar bound for other target manifolds? Is it possible to extend this
result to higher dimensions of the domain?

The first named author and Strzelecki proved in [43] that singularities of min-
imizing harmonic maps from a 3-dimensional domain to S2 are not stable under
W 1,p-perturbations of the boundary data, for p < 2. Thus, combining this with
the stability result of Hardt and Lin one can wonder whether the stability theorem
of Hardt and Lin cannot be strengthened to W 1,2-perturbations of the boundary.

2By considering restrictions to a proper subset one may obtain uniqueness. In fact, the
set of boundary data ϕ : S2 → S2 admitting unique minimizers is dense in W 1,2(∂B3, S2), see
[3, Theorem 4.1].
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1. INTRODUCTION 3

To introduce our main results, let us begin with definitions of the spaces in-
volved. For s ( (0, 1) the fractional Sobolev space on the boundary of a smooth
enough set Ω is defined as

W s,p(∂Ω) := {f ( Lp(∂Ω): [f ]W s,p(∂Ω) < ∞},

where the Gagliardo seminorm is given by

[f ]W s,p(∂Ω) :=

(∫

∂Ω

∫

∂Ω

|f(x)− f(y)|p

|x− y|n−1+sp
dHn−1(x) dHn−1(y)

) 1
p

.

We note here that for s = 1 we will sometimes write

[ϕ]W 1,p(∂Ω) :=

(∫

∂Ω

|'ϕ|p dHn−1

) 1
p

.

We recall that by Gagliardo’s trace theorem [20] the fractional Sobolev spaces
are naturally related to boundary value problems: For any function f ( W 1,2(Ω)

we have φ ( W
1
2 ,2(∂Ω), where φ := f

∣∣
∂Ω

(in the trace sense) with ‖φ‖
W

1
2
,2(∂Ω)

≤

C‖f‖W 1,2(Ω). Conversely, given any ³ ( W
1
2 ,2(∂Ω) there exists an extension g (

W 1,2(Ω), g
∣∣
∂Ω

= ³ (in the trace sense) for which ‖g‖W 1,2(Ω) ≤ C‖³‖
W

1
2
,2(∂Ω)

.

However, we will be working with maps which have values in a manifold N
(with finite fundamental group). Gagliardo’s theorem [20] extends to the vectorial
case, assuring us that for any map u ( W 1,2(Ω,N ) its trace belongs to the frac-

tional space W
1
2 ,2(∂Ω,N ), but it gives us no information about the range of an

extension of a W
1
2 ,2(∂Ω,N ) map. In fact, in our case there are boundary maps

ϕ ( W
1
2 ,2(∂Ω,N ), which admit no manifold-valued extension u ( W 1,2(Ω,N ) with

u
∣∣
∂Ω

= ϕ. See discussion in Chapter 5. A reader not familiar with algebraic topol-

ogy is encouraged to think of N as of S2. Let us remark that our condition on the
target manifold applies also to N = RP2 as a target manifold, which is the most
relevant case for the theory of liquid cristals3.

Our main results are the following.

Theorem 1.1. Let Ω ⊂ Rn be a bounded smooth domain. Assume that for some
boundary map ϕ ( W 1,n−1(∂Ω, S2) there is a unique minimizer u ( W 1,2(Ω, S2).

Then, for each ε > 0, there is a ´ > 0 such that

(1.2) ‖ψ − ϕ‖W 1,n−1(∂Ω) < ´ =⇒ dW
(
Hn−3�sing v,Hn−3�sing u

)
< ε

for any minimizer v with boundary datum ψ.
Here, dW is the 1-Wasserstein distance, see (8.1), which in particular satisfies
∣∣Hn−3(sing u)−Hn−3(sing v)

∣∣ ≤ dW
(
Hn−3�sing u,Hn−3�sing v

)
.

Theorem 1.2. Let Ã1(N ) be finite and let Ω ⊂ Rn be a bounded smooth domain.
Assume that u ( W 1,2(Ω,N ) is a minimizing harmonic map with u|∂Ω = ϕ (in the
trace sense). Let us also assume that sp = n− 1 and s ( ( 12 , 1]. Then

(1.3) Hn−3(sing u) ≤ C(n,Ω, s)[ϕ]pW s,p(∂Ω).

In the case n = 3 Theorem 1.2 is optimal, in the sense it cannot be improved
to the case when sp < 2, see Lemma 10.3.

3Harmonic maps are highly simplified models of liquid crystals, see [18,25]
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4 1. INTRODUCTION

Also note that the theorem includes the limiting case s = 1, in which the
inequality closely resembles Almgren and Lieb’s linear law for n = 3:

Hn−3(sing u) ≤ C(n,Ω)

∫

∂Ω

|'ϕ|n−1 dHn−1.

A very challenging question is whether the sp = n−1 condition in Theorem 1.2
can be improved for n > 3. Technically, this condition controls each singularity
close to the boundary of Ω — but only (n − 3)-dimensional singularities appear
in the estimate. So one might be tempted to believe that a bound with sp = 2 is
sufficient in (1.3) for any dimension n. On the other hand, one might also be able
to analyze each stratum of the singular set via a different Sobolev norm along the
boundary, see a discussion in Section 10.2.

As for Theorem 1.1 our argument relies crucially on the classification of tangent
maps. For the case when the target manifold is S2 such a classification was obtained
by Brezis, Coron, and Lieb in [14, Theorem 1.2]. It is also known for S3 in the
target, see Nakajima’s [52] and also [40]. For N = S3 it was proved by Schoen
and Uhlenbeck that the estimate on the Hausdorff dimension of the singular set of
any minimizing harmonic map u ( W 1,2(Ω, S3) may be improved to dimH sing u ≤
n− 4 [58]. It is possible to extend Theorems 1.1 and 1.2 to consider Hn−4�sing u,
following the same argument. Apart for the cases N = S2 and N = S3 we do not
know whether Theorem 1.1 can be extended to any other target manifold.

For results in the higher dimension n > 3 the main new ingredient is the interior
analysis of the singular set of minimizing harmonic maps by Naber and Valtorta
[50]. The following measure bound allows us to generalize Almgren and Lieb’s
linear law to higher dimensions.

Theorem 1.3 ([50, Theorem 1.6]). For n ≥ 3, let u : B2r(y) → N be energy
minimizing and

r2−n

∫

B2r(y)

|'u|2 dx ≤ Λ.

Then there exists a constant C = C(n,N ,Λ) > 0 such that

Hn−3(sing u ∩Br(y)) ≤ Crn−3.

Let us also mention here that results on estimates of the singular sets in the
case of quasiconvex functionals were obtained earlier in [36,44].

In order to prove the stability theorem (Theorem 1.1), one needs to refine the
above measure estimates. In addition to the methods developed in [50] (discussed
in Section 4), these refinements also involve the results of the second named author,
concerned with the structure of the singular set:

Theorem 1.4 ([47, Cor. 1.5]). If n ≥ 4 and u : Bn → S2 is a minimizing
harmonic map, then the top-dimensional part sing∗ u forms an open subset of sing u
and it is a topological (n− 3)-dimensional manifold of Hölder class C0,³ with every
0 < ³ < 1.

The necessary ingredients are further discussed in Section 8.2.
Along the way we survey several results for minimizing harmonic maps, in

particular we put an emphasis to present in details proofs from [3]. For an excellent
survey on the topic of singularities of harmonic maps we refer the interested reader
to [24].
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1.2. NOTATION 5

1.1. Outline of the article

In Chapter 2 we recall the basic results on partial regularity of minimizing
harmonic maps, in particular we recall the monotonicity formula, define tangent
maps, and the stratification of the singular set.

In Chapter 3 we recall basic tools for boundary regularity, in particular we set
the notation for “straightening” the boundary.

In Chapter 4 we outline those results of Naber and Valtorta’s [50] that are the
most relevant in our case.

In Chapter 5 we discuss the properties of minimizers with values in a manifold
with finite fundamental group. In particular in Section 5.1 we recall the “extension”
property, which combined with a lifting theorem is our basic tool for comparing the
energies. As a consequence we obtain uniform local boundedness of minimizing
harmonic maps in Section 5.2 and Caccioppoli inequalities in Section 5.3.

In Chapter 6 as a consequence of the previous section we present the compact-
ness results for minimizing harmonic maps.

In Chapter 7 we present boundary regularity results. In particular we present
the improved uniform boundary regularity results for singular boundary data.

In Chapter 8 we give the proof of our first main result Theorem 1.1.
In Chapter 9, we give the proof of our second main result Theorem 1.2, which

is stated there as Theorem 9.1.
In Chapter 10 we first give examples to prove the optimality of our results in

n = 3 (Section 10.1). Next we discuss the possible improvement of our results for
n > 3 and state a conjecture in Section 10.2. Then, in Section 10.3, we briefly
discuss the case of target manifolds with infinite fundamental group.

We close the paper with Appendix A.1, where we review the trace theorems
used throughout the paper.

1.2. Notation

Throughout the paper we let N ⊂ Rd be a smooth, closed Riemannian man-
ifold, embedded into Rd and Ω ⊂ Rn be a bounded domain with at least C1-
boundary. We write B´(N ) = {x ( Rd : dist (x,N ) < ´} for the tubular neighbor-
hood of N on which the nearest point point projection map ÃN is well defined and
as smooth as the manifold N . Existence of such a neighborhood is a well-known
fact (see, e.g., [61, Appendix 2.12.3]).

Similarly, for an affine plane L we will write B´(L) to denote the tubular
neighborhood of L. We denote by Br(y) the ball centered in y with radius r. By
Rn

+ = Rn ∩ {x ( Rn : xn > 0} we denote the upper half-space. B+
r (y) is given by

B+
r (y) = Br(y)∩Rn

+. For any r > 0 we write Tr(y) = Br(y)∩{x ( Rn : xn = 0} for
the flat part and S+

r (y) = ∂Br ∩Rn
+ for the curved part of the boundary of B+

r (y).
Sometimes, we will omit the center and write only Br, Tr, or S

+
r , when it will not

cause any confusion. We will also write sometimes Bk
r (y), to emphasize that the

ball is k-dimensional.
For simplicity we use lowercase Greek letters ψ, ϕ, φ for boundary maps and

u, v, w etc. for interior maps. The letters r, R, Ä, t will be usually reserved for the
radii. We denote the tangential gradient of u (i.e., the gradient of its restriction
u|∂Ω) by 'Tu = 'u − ('u)ν ⊗ ν, where ν is the outward normal vector. The
indices s, p will be reserved for the order and integrability in the fractional Sobolev
space. Capital Greek letters Φ, Ψ will be reserved for tangent maps, θu(y, r) for
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6 1. INTRODUCTION

the rescaled energy of the map u at point y, and Θ will be the energy density of
x′/|x′|. For x ( Rn we will write x = (x′, x′′) ⊂ Rn−k × Rk unless k = 1, then
x = (x′, xn) ( Rn−1 × R. We write ωk for the measure of the k-dimensional unit
ball. In estimates we will often write A � B, which means that there exists a
constant C, not dependent on any crucial quantity, such that A ≤ CB.

We note here that we will use the letter Ã to denote several things, which might
be misleading. Here we list our usage of this letter (of course we will also use the
letter to denote the Archimedes’ constant):

(1) Ã without any index will be a Riemannian cover Ã ( C∞(Ñ ,N );
(2) ÃN will be the nearest point projection onto the manifold defined on a

tubular neighborhood of a manifold N :

ÃN : B´(N ) → N ;

(3) Ãi(N ), for i = 1, 2, . . . will denote the usual i-th homotopy group of the
manifold N . We call Ã1(N ) the fundamental group of N . As customary,
we write Ã0(N ) = 0 for connected manifolds.

Throughout the paper the term minimizer or energy minimizer will refer to an N -
valued map minimizing the Dirichlet energy among W 1,2(Ω,N ) maps with same
boundary data, unless otherwise stated.
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CHAPTER 2

Partial regularity in the interior

In this section we recall the basic regularity results for minimizing harmonic
maps, used throughout the paper.

2.1. The ε-regularity theorem

The regularity theory of harmonic maps is based on the ε-regularity theorem
from the seminal work of Schoen–Uhlenbeck, see [56, Theorem I and Theorem 3.1].

Theorem 2.1 (ε-regularity of minimizers). There exists a constant ε > 0 de-
pending on n and N such that the following holds. If u ( W 1,2(Ω,N ) is a mini-
mizing harmonic map in an open domain Ω ⊂ Rn and

R2−n

∫

BR(y)

|'u|2 dx < ε

for some ball BR(y) ⊂ Ω, then u is smooth in the smaller ball BR/2(y).

Remark 2.2. In fact in [56] the authors prove that the solutions are Hölder
continuous on smaller balls. For smoothness of the solutions we refer the reader to,
e.g., [39,49]. Moreover, if the target manifold is analytic, for example N = Sd−1,
then it can be shown that any continuous harmonic map is analytic; we refer to
[10,62].

Note that the rescaled energy R2−n
∫
BR(y)

|'u|2 appears naturally in this con-

text. In fact, one can reduce this theorem to the case BR(y) = B1 as follows.
With the assumptions as above, one easily checks that the rescaled map u(x) =
u((x− y)/R) is a minimizing harmonic map in B1 satisfying

∫
B1

|'u|2 ≤ ε. Then

smoothness of u in B1/2 implies that u is regular in BR/2(y). This rescaling argu-
ment will be used multiple times in our considerations.

2.2. Monotonicity formula

As already mentioned, the rescaled energy

(2.1) θu(y, r) := r2−n

∫

Br(y)

|'u|2 dx

is a central object in the study of singularities. We now show that it is monotone in
r. The first published version of a monotonicity formula for minimizing harmonic
maps was in Schoen and Uhlenbeck’s [56, Proposition 2.4].

7
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8 2. PARTIAL REGULARITY IN THE INTERIOR

Theorem 2.3 (Interior Monotonicity formula). Let Ω ⊂ Rn and let u (
W 1,2(Ω,N ) be a minimizing harmonic map. Then for any 0 < r < R < dist (y, ∂Ω)
(2.2)

R2−n

∫

BR(y)

|'u|2 dx− r2−n

∫

Br(y)

|'u|2 dx ≥

∫

BR(y)\Br(y)

|x− y|2−n

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dx,

where ∂u
∂ν is the directional derivative in the radial direction x−y

|x−y| .

It is now evident that r2−n
∫
Br

|'u|2 dx is constant in r if and only if u is a

0-homogeneous (i.e., radially constant) map. Minimizing harmonic maps with this
property are called tangent maps and play a special role (see Section 2.5).

Proof. We follow the original proof of Schoen and Uhlenbeck.
Without loss of generality we may assume that y = 0. For almost every � (

[r, R], the trace u|B�
belongs to W 1,2(∂B�,N ). For such �, the map v(x) = u(�· x

|x| )

lies inW 1,2(B�,N ), moreover
∫
B�

|'v|2 = �
n−2

∫
∂B�

|'Tu|2, where'Tu denotes the

differential restricted to directions tangent to ∂B�.
Since v = u on ∂B�, v is a valid competitor for u on B�. It follows from

minimality of u that
∫

B�

|'u|2 ≤
�

n− 2

∫

∂B�

|'Tu|
2.

Thus,

∂
∂�θu(0, �) = �2−n

∫

∂B�

|'u|2 − (n− 2)�1−n

∫

B�

|'u|2

≥ �2−n

∫

∂B�

|'u|2 − �2−n

∫

∂B�

|'Tu|
2

= �2−n

∫

∂B�

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

,

using the decomposition |'u|2 = |'Tu|2 +
∣∣∂u
∂ν

∣∣2 in the last line. Since θ(0, �) is an
absolutely continuous function, the claim can be obtained by integrating the above
inequality from � = r to � = R. �

As observed by Hardt and Lin in [29, Lemma 4.1], Theorem 2.3 can be strenght-
ened by considering a squeeze deformation as in [2, 2.4, 2.5] — one can prove an
equality instead of a lower bound.

Theorem 2.4. Let u, r, R be as in Theorem 2.3, then
(2.3)

R2−n

∫

BR(y)

|'u|2 dx− r2−n

∫

Br(y)

|'u|2 dx = 2

∫

BR(y)\Br(y)

|x− y|2−n

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dx.

We remark here that this result was generalized for stationary harmonic maps
(and Yang–Mills fields) by Price in [53], see also [61, Section 2.4] for a nice presen-
tation.
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2.5. TANGENT MAPS 9

2.3. Energy density

It follows from the monotonicity formula (Theorem 2.3) that the limit

(2.4) θu(x, 0) := lim
r↘0

θu(x, r) = lim
r↘0

r2−n

∫

Br(x)

|'u|2 dx

exists. We shall call it the energy density of u at y. Evidently, θu(x, 0) = 0 at
regular points.

With this in hand, the ε-regularity theorem (Theorem 2.1) can be restated as
follows:

there is ε(n,N ) > 0 s.t. θu(x, 2r) < ε ⇒ u is smooth in Br(x),

in particular, θu(x, 0) < ε ⇒ x /( sing u.

A weak version of partial regularity can now be deduced directly:

Hn−2(sing u) = 0.

Indeed, for any finite positive measure μ in Rn it is true that the set of points x ( Rn

satisfying lim infr→0
μ(Br(x))

rk
≥ ε has zero k-dimensional Hausdorff measure. In our

case, it is enough to set dμ = |'u|2 dx and k = n− 2.
As already mentioned in the introduction, it is possible to upgrade this dimen-

sion bound to dimH(sing)u ≤ n−3. For this one needs to study the so-called tangent
maps, see Section 2.5, and apply Federer’s dimension reduction as in [56, Section
5], see also [60, Theorem A.4].

2.4. Convergence of singular points

For each fixed r > 0, the function θu(y, r) is continuous in both u ( W 1,2

and y ( Ω. It is useful to note that θu(y, 0) is upper semicontinuous as it is the
pointwise infimum of these functions, thus

uk → u strongly in W 1,2(Ω,N ), yk → y in Ω ⇒ θu(y, 0) ≥ lim sup
k→∞

θuk
(yk, 0),

given that all maps u, uk are minimizing. We give a simple consequence of this
fact.

Theorem 2.5 (Singular points converge to singular points, [3, Thm 1.8 (i)]).
Assume that a sequence of energy minimizing maps uk ( W 1,2(Ω,N ) converges

strongly in W 1,2
loc to a minimizer u, and a sequence of their singularities yk ( sing uk

converges to y ( Ω. Then y is a singular point of u.

Proof. By ε-regularity, we have θuk
(yk, 0) ≥ ε for each k. Upper semiconti-

nuity now implies θu(y, 0) ≥ ε, hence y has to be a singular point. �

Remark 2.6. We would like to note here that if we work with N = S2 then a
reverse statement of Theorem 2.5 is true, see Theorem 2.10.

2.5. Tangent maps

In this subsection we recall various facts concerning tangent maps which will
be useful for future purposes. For more details we refer the interested reader to
[61, Chapter 3].
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10 2. PARTIAL REGULARITY IN THE INTERIOR

Let u ( W 1,2(Ω,N ) be a minimizing harmonic map, y ( Ω and λ > 0. We
define the rescaled maps uy,λ ( W 1,2

(
1
λ (Ω− y),N

)
by

uy,λ(x) := u(y + λx).

We say that Φ: Rn → N is a tangent map to u at point y if it is a W 1,2
loc strong

limit of uy,λ for some sequence λ ↘ 0. Another consequence of the monotonicity
formula is the following lemma on existence of tangent maps.

Lemma 2.7 (tangent maps, [56, Lemma 2.5]). For any y ( Ω and any sequence
λi ↘ 0 there is a subsequence (still denoted λi), for which uy,λi

is strongly con-

vergent in W 1,2
loc to a minimizing harmonic map Φ ( W 1,2

loc (R
n,N ). Moreover, Φ is

homogeneous of degree 0 and its energy is consistent with the energy density of u
at y:

∫

B1(0)

|'Φ|2 dx = lim
r→0

r2−n

∫

Br(y)

|'u|2 dx.

Proof. Fix a ball Br(y) ⊂ Ω. For any R > 0, the monotonicity formula (2.2)
yields the bound

∫

BR(0)

|'uy,λi
|2 dx = λ2−n

i

∫

BλiR
(y)

|'u|2 dx ≤ (r/R)2−n

∫

Br(y)

|'u|2 dx

for all large enough i (the condition λi ≤ r/R is used above). Thus, the sequence
uλi,y is bounded in W 1,2(BR(0),N ). By a diagonal argument, we can choose a

weakly convergent subsequence, i.e., uy,λi
⇀ Φ weakly in W 1,2

loc for some Φ (

W 1,2
loc (R

n,N ).
By the compactness result, Theorem 6.11 (see also [61, Section 2.9]), we infer

that the convergence is in fact strong and that the limiting map Φ is minimizing.
To show that Φ is 0-homogeneous, we take the limit i → 0 in the estimate

above. For each R > 0 we have
∫

BR(0)

|'Φ|2 dx = lim
i→∞

∫

BR(0)

|'uy,λi
|2 dx

= Rn−2 · lim
i→∞

(λiR)2−n

∫

BλiR
(y)

|'u|2 dx.

Whatever R is, the last limit is just the energy density θu(y, 0), so the rescaled
energy θΦ(0, R) does not depend on R. By monotonicity formula, this implies
∂Φ
∂ν ≡ 0, and hence Φ is 0-homogeneous. �

In the case when N is an analytical manifold and n = 3 (or more generally,
when N is analytic and there exists a tangent map Φ for which sing Φ = {0}) Simon
proved uniqueness of the tangent map [59, Section 8]. In general, the limiting map
depends on the choice of the sequence λi and its subsequence (see [64]).

1The Compactness Theorem is stated only for manifolds with ûnite fundamental group but
as noted in the introduction to Section 6, due to Luckhaus Lemma [41], the result holds true for
any closed N .
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2.6. Stratification of the singular set

Now we explain the relationship of the singular set with tangent maps. First,
we observe that y ( Ω is a regular point if there exists a constant tangent map to
u at y.

Next, we observe that for any tangent map Φ the maximum of the energy
density is attained at 0 ( Rn:

θΦ(y, 0) ≤ θΦ(0, 0) for any y ( Rn.

If we assume additionally that θΦ(y, 0) = θΦ(0, 0) then we obtain

Φ(x+ λy) = Φ(x) for any λ ( R and x ( Rn,

which leads to the definition

S(Φ) := {y ( Rn : θΦ(y, 0) = θΦ(0, 0)}.

Observe that for non-constant tangent map Φ we have S(Φ) ⊂ sing Φ.
We introduce the notion of k-symmetric maps. A map f : Rn → N is called

k-symmetric if f(λx) = f(x) for any x ( Rn, λ > 0, and there exists a linear
k-dimensional plane L ⊂ Rn such that f(x+ y) = f(x) for any x ( Rn, y ( L. The
space of such functions will be denoted by symn,k.

Next we observe

y ( sing u ⇐⇒ dimS(Φ) ≤ n− 1 for every tangent map Φ of u at y.

We define for all j ( {0, . . . , n− 1} the stratification of the singular set

Sj := {y ( sing u : dimS(Φ) ≤ j for all tangent maps Φ of u at y}

= {y ( sing u : no tangent map of u at y belongs to symn,j+1}.

Note that

S0 ⊂ S1 ⊂ . . . ⊂ Sn−4 ⊂ Sn−3 = Sn−2 = Sn−1 = sing u,

since the existence of nonconstant (n−2)-symmetric tangent maps would contradict
the weak version of partial regularity Hn−2(sing u) = 0 that we mentioned earlier.
It can be shown that

(2.5) dimH(Sj) ≤ j,

which implies in particular the partial regularity result dimH(sing u) ≤ n − 3, see
[56, Theorem II].

We will be mainly interested in the top-dimensional part of the singular set, so
for this purpose we define

sing∗ u = Sn−3 \ Sn−4.

2.7. Classification of tangent maps into S2

We recall the classification of tangent maps into S2 by Brezis–Coron–Lieb [14].

Theorem 2.8 ([14, Theorem 1.2]). Every nonconstant locally minimizing har-
monic map R3 → S2 has the form τx

|τx| for some linear isometry τ of R3.
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12 2. PARTIAL REGULARITY IN THE INTERIOR

In higher dimensions, we will use the symbol Ψ: Rn → S2 to denote the map

(2.6) R3 × Rn−3 � (x′, x′′)
Ψ

�−−−−−→
x′

|x′|
( S2.

Its energy density will be denoted by

(2.7) Θ :=

∫

B1(0)

|'Ψ|2 dx.

We remark that Θ = 8Ã for n = 3 and

Θ = 8Ã

∫

Bn−3
1

√
1− |x′′|2 dx′′ = 4Ã|ωn−2| for n ≥ 4,

but the precise value of Θ has no importance for our considerations.
We note that the map Ψ belongs to symn,k for all k = 0, 1, . . . , n − 3 but not

to symn,n−2.
The classification of tangent maps in dimension 3 (Theorem 2.8) can be used

to classify the (n− 3)-symmetric tangent maps in general (see also [31, Corollary
2.2]).

Corollary 2.9. Suppose u ( W 1,2(Ω, S2) is a minimizing harmonic map and
y ( sing∗ u, then up to isometries of Rn the only tangent map of u at y is Ψ. In
particular the energy density of u at a point from sing∗ u equals Θ.

Proof. By definition, u has a nonconstant (n− 3)-symmetric tangent map Φ
at y. Denoting the (n− 3)-dimensional plane L = S(Φ), we can represent Φ as

Φ(x′, x′′) = Φ0(x
′) for (x′, x′′) ( L⊥ × L,

where Φ0 is another nonconstant 0-homogeneous map. By [56, Lemma 5.2] we
know that Φ0 is also a locally minimizing harmonic map. Theorem 2.8 implies now

that (up to an isometry) Φ0 = x′

|x′| . This shows that indeed Φ differs from Ψ by a

composition with an isometry. �

2.8. Additional properties of singularities of minimizers into S2

In this subsection we mention a few results that hold in the special case when the
target manifold is a two dimensional sphere. Those results were used by Almgren
and Lieb [3] in their proof of the linear law. We will not use them but we present
them here to familiarize the reader with the special case n = 3 and N = S2.

In the case when N = S2 a reverse statement of Theorem 2.5 is true.

Theorem 2.10 ([3, Thm 1.8 (2)]). Assume ui ( W 1,2(Ω, S2) is a sequence of

minimizing maps in Ω ⊂ R3, which converges strongly in W 1,2
loc to u. Then, if y ( Ω

is a singular point of u, then for all sufficiently large i, ui has a singular point at
yi and yi → y.

Proof. By classification of tangent maps, Theorem 2.8, if y is a singular point
of u we know that on balls of small radius Br(y)

u ∼ τ

(
x− y

|x− y|

)
,
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for a linear isometry τ of R3. Since, the map x
|x| ( W 1,2(B3

1 , S
2) cannot be approx-

imated by C∞(B
3

1, S
2) maps, see [57, Section 4] or [5], we infer that for i ≥ i0(r),

ui must have a singular point yi ( Br(y).
Applying this reasoning for a sequence ri ↘ 0, we obtain a sequence of singu-

larities yi ( sing ui converging to y. �

The following two results exploit the classification of singularities into S2 (The-
orem 2.8) even further — here it will be important that at each singular point
y ( sing u the energy density θu(y, 0) (2.4) has the same value

∫

B3
1(0)

∣∣∣∣'
(

x

|x|

)∣∣∣∣
2

dx = 8Ã.

as noted in Corollary 2.9.

Lemma 2.11 (Liouville theorem, [3, Thm 2.2]). Let u : R3 → S2 be locally
energy minimizing in all of R3. Then, up to a translation, u is a tangent map, i.e.,

u is either constant or has the form u(x) = τ
(

x−y
|x−y|

)
for some y ( R3 and some

linear isometry τ of R3.

Proof. Let us first consider the singular case, without loss of generality we
may assume 0 ( sing u. By Theorem 5.7 (uniform boundedness), the monotone
quantity θu(0, r) is bounded, so it has a finite limit

Θ′ := lim
r→∞

θu(0, r).

Moreover, the sequence of rescaled maps ur(x) = u(rx) is bounded in W 1,2
loc (R

3, S2)
as r → ∞, and after choosing a subsequence, we can obtain in the limit an energy
minimizing limit map Φ: R3 → S2 (a tangent map at infinity). Note that for each
s > 0 we have

s−1

∫

Bs

|'Φ|2 dx = lim
r→∞

s−1

∫

Bs

|'ur|
2 dx = lim

r→∞
(rs)−1

∫

Brs

|'u|2 dx = Θ′,

in particular Φ has energy density θΦ(0, 0) = Θ′. As there is only one possible
energy density, we infer that Θ′ is equal to 8Ã = θu(0, 0). Monotonicity formula
(Theorem 2.3) now implies that u is 0-homogeneous (i.e., a tangent map), since the
monotone quantity has the same limit for r → 0 and r → ∞.

If u is smooth, most of the above discussion still applies. If Θ′ = 0, then
in particular

∫
Br

|'u|2 dx tends to zero as r → ∞, so u is constant. If Θ′ > 0,

then the obtained map Φ has a singularity at the origin, and by Theorem 2.10
the rescaled maps ur are also singular for large r. Since u is smooth, this yields a
contradiction. �

Theorem 2.12 (Uniform distance between singular points, [3, Thm 2.1]).
There is a constant c > 0 such that the following holds. Let Ω ⊂ R3 be a bounded do-
main, and u ( W 1,2(Ω, S2) a minimizing harmonic map with a singularity at y ( Ω.
Then there is no other singularity within distance cD of y, where D := dist (y, ∂Ω)
is its distance to the boundary.

Proof. Assume the claim is false. Then we can find a sequence ui (
W 1,2(Ωi, S2) with two distinct singularities xi, yi ( BDi/i(yi), where Di =
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14 2. PARTIAL REGULARITY IN THE INTERIOR

dist (yi, ∂Ωi). For each i consider the rescaled map

ũi(z) := ui (yi + |xi − yi|z) ,

which is a minimizing harmonic map in a large ball Bi(0). This map has two
singularities at 0 and xi−yi

|xi−yi|
. Using Theorem 5.7 (uniform boundedness), Theorem

6.1 (compactness of minimizers), compactness of S2, and a diagonal argument, we
obtain an energy minimizing limit map u : R3 → S2, which is singular at least in
two points 0 and x with |x| = 1. However, the possibility of two singularities is
excluded by the Liouville theorem (Lemma 2.11). �

Corollary 2.13 (Uniform bound for singularities in the interior). Let Ω ⊂ R3

be a bounded domain, and u ( W 1,2(Ω, S2) a minimizing harmonic map. Then for
any σ > 0, the number of singularities with distance to the boundary at least σ is
bounded by a constant depending only on Ω and σ:

#{x ( sing u : dist (x, ∂Ω) ≥ σ} ≤ C(Ω, σ).
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CHAPTER 3

Monotonicity formula and tangent maps

at the boundary

3.1. Notation for “straightening” the boundary

As we will be working at the boundary we need to distinguish one variable. For
a point x ( Rn we write x = (x′, xn) ( Rn−1 × R. Let us assume that Ω ⊂ Rn is a
bounded domain with a C1-boundary. This means that ∂Ω can be described by a
C1-graph on each ball BR0

(a) around a ( ∂Ω (with uniform R0 > 0).
For each a ( ∂Ω, we may choose a rigid motion (i.e., a rotation followed by a

translation) h : Rn → Rn that sends a to 0, Ta∂Ω to Rn−1×0 and the outer normal
vector to (0, . . . , 0,−1). Thus, there is a C1 function αa : Rn−1 → R such that

h(Ω ∩BR0
(a)) = {x ( BR0

(0) : xn > α(x′)},

αa(0) = 0, 'αa(0) = 0.

Since αa ( C1 and ∂Ω is compact, we may assume |'αa(x
′)| ≤ ω(|x′|) with a

uniform modulus of continuity ω (ω(t) → 0 as t → 0).
The boundary of Ω can be “straightened out” by the diffeomorphism

ςa(x
′, xn) = (x′, xn − αa(x

′)), ς−1
a (x′, xn) = (x′, xn + αa(x

′)),

i.e., ςa is a C1-diffeomorphism for which ςa(∂Ω ∩ BR0
(a)) ⊆ Rn−1 × 0. Moreover,

the estimates for αa give us

|'ςa(x)− id | ≤ |'αa(x
′)| ≤ ω(|x′|) for x ( Ω ∩BR0

.

In what follows, we will consider rescaled maps at the boundary. For this we
need to define the functions that describe the rescaled boundary. For each 0 < r ≤ 1
let

αr,a(x
′) = r−1αa(rx

′).

One can easily see that

‖αr,a‖Lip(BR) = ‖αa‖Lip(BrR)
r→0
−−−→ 0 for any R > 0.

This map describes the boundary of the set Ωr−1(a) defined as

Ωr−1(a) := {x ( BR0/r(0) : xn > αr,a(x
′)} = {x ( Rn : rx ( h(Ω)}.

We observe that as r → 0 we have αr,a → 0 =: α0,a (locally uniformly), which
motivates the definition

Ω∞(a) := {x ( Rn : xn > α0,a(x
′)} = Rn

+.

Assume that u ( W 1,2(Ω,N ) is a minimizing harmonic and let us denote its
trace by ϕ. We define the map ur,a on the domain ΩR0/r(a) by

ur,a(·) := u(rh(·) + a), in ΩR/r(a),

15
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16 3. MONOTONICITY FORMULA, TANGENT MAPS AT THE BOUNDARY

where on the portion of the boundary, ∂ΩR0/r(a)∩B1(0)=({xn=αr,a(x
′)} ∩B1(0)),

its trace is given by

ϕr,a(·) := ϕ(rh(·) + a), on ∂ΩR0/r(a) ∩B1(0),

with Lipschitz constant

‖ϕr,a‖Lip = r ‖ϕ‖Lip .

We note that ur,a is also a minimizing harmonic map and
∫

B1(0)∩Ωr−1 (a)

|'ur,a|
2 dx = r2−n

∫

Br(a)∩Ω

|'u|2 dy.

3.2. Boundary monotonicity formula

We will employ a boundary monotonicity formula of Schoen and Uhlenbeck
[57, Lemma 1.3].

In the sequel, we will only use it for Ω = B+
1 and constant boundary data (cf.,

Theorem 7.2). In this particular case, it is enough to repeat the simple argument
given for the interior monotonicity formula (Theorem 2.3) to obtain

R2−n

∫

B+
R

|'u|2 dx− r2−n

∫

B+
r

|'u|2 dx ≥

∫

B+
R\B+

r

|x− y|2−n

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dx

for 0 < r < R < 1.

For the reader’s convenience, we include the proof in full generality, with Lipschitz
boundary data. In this case, the almost-monotone quantity is slightly different.

For another proof of boundary regularity for minimizing harmonic maps we
refer the interested reader to [23, Theorem 2].

Theorem 3.1 (Boundary Monotonicity formula). Let Ω ⊂ Rn be a bounded
domain with C1-boundary, u ( W 1,2(Ω,N ) be a minimizing harmonic map with
u = ϕ on ∂Ω and ϕ ( Lip(∂Ω,N ). Then, there exists a radius R0 = R0(‖ϕ‖Lip,Ω)
such that for any a ( ∂Ω and 0 < r < R < R0

[
(1 + C�‖ϕ‖Lip)

n−2�2−n

∫

B�(a)∩Ω

|'u|2 dx

]∣∣∣∣∣

�=R

�=r

≥

∫

Ω∩BR(a)\Br(a)

|x|2−n

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dx− C‖ϕ‖Lip(R− r).

(3.1)

where C = C(n,Ω,N ).

Proof. Step 1 (flat boundary). First we assume that the boundary is
flat, i.e., BR(a) ∩ Ω = B+

R(0) = B+
R .

We will use a similar comparison map as in proof of Theorem 2.3, but we need
to change that construction so that the maps agree on the flat part of the boundary.
In order to do so we extend the map ϕ defined on T� = ∂B+

� ∩ {xn = 0} to the

whole half-ball B+
� — we let ϕ(x) = ϕ(x1, x2, . . . , xn−1, 0) and abuse the notation

slightly by using ϕ to denote the extension as well.
We define

ṽ�(x) := (u− ϕ)

(
�
x

|x|

)
+ ϕ(x), for x ( B+

� (0)
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3.2. BOUNDARY MONOTONICITY FORMULA 17

for any � < R0. One easily sees that

ṽ� = ϕ on T�

ṽ� = u on S+
� ,

where S+
� = ∂B�(0) ∩ Rn

+ is the curved part of the boundary ∂B+
� (0).

Although ṽ� does not lie in the manifold N we can estimate for x ( B+
� (0)

dist (ṽ�,N ) ≤

∣∣∣∣ṽ�(x)− u

(
�
x

|x|

)∣∣∣∣(3.2)

=

∣∣∣∣ϕ(x)− ϕ

(
�
x

|x|

)∣∣∣∣

≤

∣∣∣∣x− �
x

|x|

∣∣∣∣ ‖ϕ‖Lip

≤ �‖ϕ‖Lip.

Thus, for sufficiently small R0 the mapping ṽ� has values in B´(N ) — a neighbor-
hood of N on which the nearest point projection ÃN : B´(N ) → N is well defined.

Now we can define the comparison map as v� := ÃN ◦ ṽ�. By minimality

(3.3)

∫

B+
� (0)

|'u|2 dx ≤

∫

B+
� (0)

|'v�|
2 dx,

so we carry on with estimating the right-hand side. First, we estimate the energy
of ṽ� Using Cauchy–Schwartz inequality with ε = �‖ϕ‖Lip we estimate

∫

B+
� (0)

|'ṽ�|
2 dx ≤ (1 + ε)

∫

B+
� (0)

∣∣∣∣'
(
u

(
�
x

|x|

))∣∣∣∣
2

dx

+

(
1 +

1

ε

)∫

B+
� (0)

∣∣∣∣'
(
ϕ(x)− ϕ

(
�
x

|x|

))∣∣∣∣
2

dx

= (1 + �‖ϕ‖Lip)

∫

B+
� (0)

∣∣∣∣'
(
u

(
�
x

|x|

))∣∣∣∣
2

dx+ C�n−1‖ϕ‖Lip.

(3.4)

To estimate the energy of v�, we note that 'v�(x) = 'ÃN (v(x)) · 'ṽ�(x). For
p ( N , 'ÃN (p) is an orthogonal projection, hence |'ÃN |2 = 1 (we consider the
operator norm here). Since this is a smooth function of p, we have |'ÃN (p)|2 ≤
1 + C dist (p,N ) for p close to N . In particular,

|'ÃN (ṽ�(x))|
2 ≤ 1 + C dist (ṽ�(x),N ) ≤ 1 + C�‖ϕ‖Lip.

As |'v�(x)| ≤ |'ÃN (v(x))| · |'ṽ�(x)|, the energy of v� is at most 1 + C�‖ϕ‖Lip
times the energy of ṽ�. However, we only consider small values of �, so by enlarging
the constants in (3.4) we conclude
(3.5)∫

B+
� (0)

|'v�|
2 dx ≤ (1 + �‖ϕ‖Lip)

∫

B+
� (0)

∣∣∣∣'
(
u

(
�
x

|x|

))∣∣∣∣
2

dx+ C�n−1‖ϕ‖Lip.

Observing that
d

d�

∫

B+
� (0)

f dx =

∫

S+
�

f dHn−1,
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18 3. MONOTONICITY FORMULA, TANGENT MAPS AT THE BOUNDARY

we can now compute similarly as in the proof of Theorem 2.3
∫

B+
� (0)

∣∣∣∣'
(
u

(
�
x

|x|

))∣∣∣∣
2

dx =
�

n− 2

∫

S+
�

|'Tu|
2 dHn−1

=
�

n− 2

(
d

d�
E+

� (u)−

∫

S+
�

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dHn−1

)
,

where

(3.6) E+
� (u) :=

∫

B+
� (0)

|'u|2 dx.

Combining (3.3), (3.5), and (3.6) we obtain

E+
� (u) ≤

(1 + C�‖ϕ‖Lip)�

n− 2

(
d

d�
E+

� (u)−

∫

S+
�

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dHn−1

)
+ C�n−1‖ϕ‖Lip.

Now we can estimate the derivative
d

d�

(
(1 + C�‖ϕ‖Lip)

n−2�2−nE+
� (u)
)

= (n− 2)(1 + C�‖ϕ‖Lip)
n−3�1−n

×

(
(1 + C�‖ϕ‖Lip)�

n− 2

d

d�
E+

� (u)− E+
� (u)

)

≥ (n− 2)(1 + C�‖ϕ‖Lip)
n−3�1−n

×

(
(1 + C�‖ϕ‖Lip)�

n− 2

∫

S+
�

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dHn−1 − C�n−1‖ϕ‖Lip

)

≥ �2−n

∫

S+
�

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dHn−1 − C(1 + C�‖ϕ‖Lip)
n−3‖ϕ‖Lip

and integrate it from r to R:

(1+C�‖ϕ‖Lip)
n−2�2−nE+

� (u)
∣∣∣
R

r
≥

∫

B+
R(0)\B+

r (0)

|x|2−n

∣∣∣∣
∂u

∂ν

∣∣∣∣
2

dx−C‖ϕ‖Lip(R− r).

This finishes the proof in the case of the flat boundary.
Step 2 (general boundary). The general case, when the boundary of Ω

is not necessary flat, differs from the flat case in a few details (see for example
[29, Proof of Lemma 5.6]), which we sketch here.

Choose a point a ( ∂Ω at the boundary. As described already, up to a rigid
motion, we may assume that a = 0 and ∂Ω ∩ BR0

is described by a C1 function
α : Rn−1 → R:

Ω ∩BR0
= {x ( BR : xn > α(x′)},

with α(0) = 0, 'α(0) = 0. Then ς(x′, xn) = (x′, xn−α(x′)) is a C1-diffeomorphism
for which ς(∂Ω ∩BR0

) ⊆ Rn−1 × 0.
Again, we extend the map ϕ to the whole domain by letting it be constant on

vertical lines. However, since the rays from 0 to Ω∩∂B� possibly cross the boundary,
the definition of ṽ� needs to be altered. We solve this problem by considering the
curves t �→ ς−1(t · ς(x)) instead. Hence, we take:

ṽ� := (u− ϕ)

(
ς−1

(
�(x)

ς(x)

|ς(x)|

))
+ ϕ(x).
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3.3. TANGENT MAPS AT THE BOUNDARY 19

Note that we also replaced � by �(x), as the image ς(Ω∩∂B�) is no longer a part of
a sphere. One can define �(x) as the length of the ray from 0 to ς(Ω∩∂B�) passing
through x.

By previous considerations, ς is C1-close to identity, in consequence also �(x)
is C1-close to �. With some care, one can check that this altered version of ṽ� also
satisfies the required estimates. �

3.3. Tangent maps at the boundary

Similarly as in the interior case, for any point at the boundary y ( ∂Ω we
can consider boundary tangent maps at y, which will arise as limits of rescaled
mappings. Here we will consider only the case when Ω = B+

1 (0) has a flat boundary.

Lemma 3.2 (Boundary tangent maps, [57, Lemma 1.4]). Let u (
W 1,2(B+

1 (0),N ) be a minimizing harmonic map with u = ϕ on T1 and let ϕ be
continuous at a ( T1. Then there exists a sequence {λi}, λi ↘ 0 and a map
Φ ( W 1,2(B+

1 (0),N ) such that

uλi,a(·) := u(λi ·+a) → Φ(·) in W 1,2(B+
1 (0).N )

Moreover, Φ is a minimizing harmonic map, homogeneous of degree 0, and Φ
∣∣
T1

=

u(a) = ϕ(a).
We call Φ a boundary tangent map to u at a.

Proof. First we note that∫

B+
1 (0)

|'uλi,a|
2 dx =

∫

B+
1 (0)

|'(u(λix+ a))|2 dx = λ2−n
i

∫

B+
λi

(a)

|'u|2 dy.

By the boundary monotonicity formula, Theorem 3.1, we know that

sup
λi>0

λ2−n
i

∫

B+
λi

(a)

|'u|2 dy < ∞,

thus supλi>0 ‖uλi,a‖W 1,2(B+
1 (0)) < ∞. The proof of strong convergence follows from

Theorem 6.1 (2), the proof of homogeneity follows from the proof of Lemma 2.7
with the monotonicity formula replaced by the boundary monotonicity inequality
(3.1). Finally, Φ

∣∣
T1

= ϕ(a) follows from the continuity of ϕ. �

The following result, due to [57], states that there exist no nonconstant bound-
ary tangent maps. This is the main reason why at the boundary we have full
regularity for certain boundary data, see Section 7. We refer the reader for the
proof of this fact to [29, Theorem 5.7].

Lemma 3.3 (Nonexistence of nonconstant boundary tangent maps). Assume
that u ( W 1,2(B+

1 (0),N ) is a minimizing harmonic map, homogeneous of degree 0
and constant at the flat part of the boundary, i.e., u

∣∣
T1

= const. Then u is constant.

Licensed to University Bielefeld.  Prepared on Sun May 18 05:26:36 EDT 2025for download from IP 195.37.234.61.



Licensed to University Bielefeld.  Prepared on Sun May 18 05:26:36 EDT 2025for download from IP 195.37.234.61.



CHAPTER 4

Refined estimates by Naber and Valtorta

Here we discuss the results of Naber and Valtorta [50] needed in the sequel. A
simplified presentation of these is available in their later article [51].

The main ingredient is Theorem 1.3. In the special case of manifolds N with
finite fundamental group, uniform boundedness of minimizers, Theorem 5.7, implies
that the energy assumption in Theorem 1.3 is redundant.

Corollary 4.1. If u : B2r(y) → N is energy minimizing and Ã1(N ) is finite,
then Hn−3(sing u ∩Br(y)) ≤ Crn−3 with some constant C(n,N ) > 0.

In particular, whenever Ω′ ⊂⊂ Ω and u is a minimizing harmonic map on Ω,
then

Hn−3(sing u ∩ Ω′) < ∞.

In order to prove the stability theorem, Theorem 1.1, one needs more subtle
measure estimates. Note that for the tangent map Ψ, the singular set is an (n−3)-
plane and so Hn−3(singΨ ∩ Br) = ωn−3r

n−3. If u is close to Ψ, one could expect
its singular set to have similar measure, see Lemma 8.7. To this end, we will need
two more results, which are essential ingredients of [50].

To state them, we first recall the definition of Jones’ height excess β-numbers.
Choosing a Borel measure μ in Rn, a dimension 0 < k < n and an exponent p ≥ 1,
we can define for each ball Br(x)

βμ,k,p := inf
L

(
r−k−p

∫

Br(x)

dist (y, L)p dμ(y)

)1/p

,

where the infimum is taken over all k-dimensional affine planes L ⊂ Rn. This
measures how far the support of μ is from a k-dimensional plane (on the ball
Br(x)). However, we shall not work directly with this definition, but rather rely
on the two theorems below, since they encompass all the geometric information we
need.

The first theorem is a general geometric result that gives sharp measure esti-
mates.

Theorem 4.2 (Rectifiable Reifenberg [50, Theorem 3.3]). For every ε > 0 there
is a ´ = ´(n, ε) > 0 such that the following holds. Let S ⊂ Rn be an Hk-measurable
subset and assume that for each ball Br(x) ⊂ B2

∫

Br(x)

∫ r

0

βμ,k,2(y, s)
2 ds

s
dμ(y) ≤ ´rk,

where μ denotes the measure Hk�S. Then μ(B1) ≤ (1 + ε)ωk.

21
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22 4. REFINED ESTIMATES BY NABER AND VALTORTA

As a side remark, let us note that in our application the set S will satisfy the
so-called Reifenberg condition and so one could work with the W 1,p-Reifenberg
theorem [50, Theorem 3.2] instead.

Theorem 4.3 (L2-best approximation [50, Theorem 7.1]). For every ε > 0
there are ´(n, ε) > 0 and C(n, ε) > 0 such that the following holds. If u : B10(0) →
S2 is energy minimizing,

dist L2(B10(0))(u, symn,0) ≤ ´,

dist L2(B10(0))(u, symn,k+1) ≥ ε,

then for any finite measure μ on B1(0) we have

βμ,k,2(0, 1)
2 ≤ C

∫

B1(0)

(θu(y, 8)− θu(y, 1)) dμ(y).

Again, the formulation in [50] involves an energy bound. However, Theo-
rem 5.7 shows a uniform bound on

∫
B9(0)

|'u|2 dx and thus we obtain the stronger

formulation above.
Since we shall only consider k = n − 3, p = 2 and μ = Hn−3�sing u from now

on, we abbreviate βμ,n−3,2 by β; this should not cause any confusion.
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CHAPTER 5

Extension property and its consequences

In this section, we collect the results concerning local uniform boundedness of
minimizers into manifolds with finite fundamental group. One of its many conse-
quences is that every sequence of minimizing harmonic maps has a subsequence
that converges locally weakly (and in fact strongly, see Theorem 6.1).

We recall that N is a smooth closed connected Riemannian manifold. We let
Ñ be its universal covering, and Ã ( C∞(Ñ ,N ) be a Riemannian covering. We

recall that Ñ is compact if and only if the fundamental group of N is finite, we

also recall that Ã1(Ñ ) = 0, whereas the higher order homotopy groups of N and

Ñ are the same. Of course if N is simply connected then Ñ = N and Ã = id.
For further properties of the universal covering we refer the interested reader, e.g.,

to [32]. From now on, we assume that Ñ is isometrically embedded into some
Euclidean space, which is possible by Nash’s embedding theorem.

We will use the following lifting theorem of Bethuel and Chiron.

Theorem 5.1 ([7, Theorem 1]). If Ω is simply connected (e.g., a ball) and u (

W 1,2(Ω,N ), then there exists ũ ( W 1,2(Ω, Ñ ) such that u = Ã ◦ ũ. Moreover, this
ũ is unique up to the action of an element of Ã1(N ) and satisfies a.e. |'ũ| = |'u|.

We note also that in [3, Remark 6.2] it was noted that the results of the paper [3]
can be translated, using a lifting argument, into the case when the target manifold
is N = RP2 (i.e., to the case of a manifold which is not simply connected1, but has
a finite fundamental group).

5.1. Extension lemma

An underlying tool used in [3] is the following W 1,2-extension property of
W 1/2,2 maps into simply connected manifolds N . This is a result of Hardt and
Lin [29, Theorem 6.2], which holds for even more general class of W 1,p-maps into
�p − 1�-connected manifolds2. However, it was first published (and acknowledged
to [29]) in the paper by Hardt–Kinderlehrer–Lin [25, p.556] (see also [26, Lemma
A.1]), where it was stated for N = S2. This result was also extended by Gastel
[21, Proposition 4.3] for W k,p maps and manifolds with sufficiently simple topology
(see also the earlier extension to the case N = Sd−1 and k, p = 2 by Hong and
Wang [33, Lemma 2.1]).

Theorem 5.2 (Extension property: Unconstrained energy dominates con-
strained energy). Let Ω ⊂ Rn be a bounded domain and N ⊂ Rd be a simply con-
nected submanifold. Assume that we have a map v ( W 1,2(Ω,Rd) with v(x) ( N

1Simply connected manifolds are manifolds that satisfy π0(N ) = π1(N ) = 0.
2
k-connected manifolds are manifolds that satisfy π0(N ) = π1(N ) = . . . = πk(N ) = 0.

23
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24 5. EXTENSION PROPERTY AND ITS CONSEQUENCES

for a.e. x ( ∂Ω. Then there exists a map u ( W 1,2(Ω,N ),

u
∣∣∣
∂Ω

= v
∣∣∣
∂Ω

with the estimate

‖'u‖L2(Ω) ≤ C ‖'v‖L2(Ω)

for a uniform constant C.

Remark 5.3. We note that, unlike in the unconstrained case, it is not true for
a general target manifold N that every boundary map ϕ ( W 1/2,2(∂Ω,N ) has an
extension in W 1,2(Ω,N ). A counterexample was provided by Hardt and Lin [30,
Section 6.3]. They prove that the map ψ ( W 1/2,2(S2, S1) given by ψ(x1, x2, x3) =
(x1,x2)
|(x1,x2)|

cannot be extended to a map in W 1,2(B3
1(0), S

1).

More generally, every ϕ(W
1
2 ,2(∂Ω,N ) can be extended to a map u(W 1,2(Ω,N )

with u
∣∣
∂Ω

= ϕ (in the trace sense) if and only if Ã1(N ) = 0 ([8, Theorem 4]).
For general obstructions for the existence of an extension and discussion of

traces of manifold valued Sobolev maps we refer the reader to [6,46].

We recall the key ingredient in the proof of Theorem 5.2.

Lemma 5.4 ([29, Lemma 6.1]). Assume that N ⊂ Rd is a closed simply con-
nected submanifold, contained in a large cube [−R,R]d. Then, there exists a finite
(d − 3)-dimensional Lipschitz complex Y ⊂ [−2R, 2R]d and a locally Lipschitz re-
traction P : [−2R, 2R]d \ Y → N such that

(1) for some small � > 0, the restriction P
∣∣
B�(N )

is the nearest point projec-

tion to N ;
(2) |'P (x)| ≤ C dist (x, Y )−1 for x /( Y ;
(3)
∫
[−2R,2R]d

|'P (x)|2 dx < ∞.

Remark 5.5. Such a retraction is easy to construct if the target manifold is
the standard sphere Sd−1 ⊂ Rd with d ≥ 3. Indeed, one can check that the radial
projection P : Rd \ {0} → Sd−1, P (x) = x

|x| gives the retraction from Lemma 5.4.

This lemma was several times reproved, see e.g., [12,34]. For readers conve-
nience we include a proof here.

Proof of Lemma 5.4. Denote the �-neighborhood of N by

B�(N ) = {x ( Rd : dist (x,N ) < �};

let us fix some small � > 0 for which the nearest point projection ÃN : B2�(N ) → N
is well-defined and smooth. We also fix the decomposition Q of [−2R, 2R]d into
(4N)d cubes of side length R/N , where N is chosen large enough to ensure that
the family of cubes

U := {Q ( Q : Q ⊂ B2�(N )}

covers B�(N ). For j = 0, 1, . . . , d, we let Qj be the family of j-dimensional faces of
cubes in Q (in particular, Qd = Q) and distinguish the j-cubes not covered by U :

Wj :=
{
Q ( Qj : Q �

⋃
U
}
.

Note that all cubes in Q are partitioned into U and Wd, hence
⋃
U ∪
⋃
Wd =

[−2R, 2R]d.
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5.1. EXTENSION LEMMA 25

We now proceed with an inductive contruction of maps

Υj : Wj ∪
⋃

U → N for j = 0, . . . , d

that extend the nearest point projection ÃN :
⋃
U → N .

A well-known construction (see [32, Lemma 4.7]) shows that continuous maps
into simply connected manifolds can be continuously extended to 2-dimensional
CW complexes. We use it here to extend ÃN :

⋃
U → N to a Lipschitz map

Υ2 : W2 ∪
⋃

U → N .

Fixing an arbitrary point ξ ( N , we define Υ0(x) := ξ for all {x} ( W0. Since
N is path-connected, we can define Υ1 on each segment Q ( W1 by taking the
geodesic inN (or any other Lipschitz curve) joining the two points Υ0(∂Q). Finally,
since Ã1(N ) = 0, for each Q ( W2 the Lipschitz boundary map Υ1 : ∂Q → N is
homotopically trivial and can be extended to a Lipschitz map Υ2 : Q → N . The
Lipschitz constant of Υ2 can be bounded depending on the submanifold N ⊂ Rd

only.
Without additional topological assumptions on N (i.e., vanishing of higher-

dimensional homotopy groups), we cannot extend Υ2 continuously to a higher-
dimensional complex, yet we are able to define singular extensions Υj for j =
3, . . . , d such that

(5.1) |'Υj(x)| ≤ Cj(1 + dist (x, Yj ∩Q)−1) for each Q ( Qj and x ( Q \ Yj ,

where Yj is a finite (j − 3)-dimensional Lipschitz complex.
Assuming that Υj−1 satisfying (5.1) is already constructed, we only need to

extend it to the interior of each j-cube Q ( Wj . To this end, we take the standard
radial projection PQ : Q \ {yQ} → ∂Q, which is Lipschitz except for the center yQ
of Q, and define Υj = Υj−1 ◦ PQ on Q.

Let us check the estimate (5.1) for Υj . The set of discontinuities of Υj in Q is
exactly

Yj ∩Q = {yQ} ∪ P−1
Q (Yj−1 ∩ ∂Q),

which only adds one dimension to Yj−1. Now choose a point x ( Q \Yj and denote
by Q′ the face of Q onto which x is projected; there are two possibilities. If Υj−1

happens to be regular on Q′, we simply have

|'Υj(x)| � |'PQ(x)| � |x− yQ|
−1 ≤ dist (x, Yj ∩Q)−1.

If Υj−1 is not regular, the inductive assumption (5.1) gives us a weaker estimate

|'Υj(x)| ≤ |'PQ(x)| · |'Υj−1(PQ(x))| � |x− yQ|
−1 · dist (PQ(x), Yj−1 ∩Q′)−1.

Noting a similarity of triangles, we obtain

dist (x, Yj ∩Q)

|x− yQ|
≤

dist (x, P−1
Q (Yj−1 ∩Q′))

|x− yQ|
=

dist (PQ(x), Yj−1 ∩Q′)

|PQ(x)− yQ|

and since |PQ(x)− yQ| ≥
R
2N , the inductive claim (5.1) follows.

As the outcome of this inductive construction, we finally obtain the map P =
Υd which is locally Lipschitz outside the finite (d−3)-dimensional Lipschitz complex
Y := Yd. Recall that

⋃
U ∪
⋃
Wd = [−2R, 2R]d, and so P is defined on the whole

large cube. Since Y is non-empty, one can drop the constant term in (5.1) and infer
the Lipschitz estimate

|'P (x)| ≤ C dist (x, Y )−1 for x /( Y.
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To derive the W 1,2-estimate, first observe that Y is contained in a union of finitely
many affine subspaces L1, . . . , Ls, each of dimension at most d− 3. Since

∫

[−2R,2R]d

dx

(dist (x, Li))2
< ∞ for i = 1, . . . , s

by Fubini’s theorem, it follows that
∫

[−2R,2R]d
|'P (x)|2 dx �

∫

[−2R,2R]d

dx

(dist (x, Y ))2
< ∞.

Actually, it is this W 1,2-estimate that we shall use later. �

With the retraction P in hand, one could hope to simply take the map P ◦v as
the required extension. It may happen however that v takes values very near the
set of singularities Y , and in result P ◦ v does not lie in W 1,2. For this reason, we
consider the family of maps Pa(x) = P (x− a) (with singularities shifted to Y + a)
and compose with Pa for some generic value of a. The details of this construction
are given below.

Proof of Theorem 5.2. Fitting N ⊂ Rd into some cube [−R,R]d, we can
choose P and � as in Lemma 5.4. We also assume that v takes values in [−R,R]d;
the general case follows by a simple reduction argument explained at the end of the
proof.

Since the restriction ÃN : N → N is the identity and N is compact, we can
choose 0 < r < � such that the maps

N � x �→ ÃN (x− a) ( N

are uniformly bi-Lipschitz for all a ( Br. For a ( Br we let Pa(x) = P (x− a) and
consider the composition Pa ◦ v. Since

|' (Pa ◦ v)| ≤ |'Pa(v)| · |'v|,

we can check that Pa ◦ v ( W 1,2(Ω,N ) for almost every a ( Br(0). Indeed,
∫

Br(0)

∫

Ω

|' (Pa ◦ v) |
2 dx da ≤

∫

Ω

|'v|2
∫

Br(0)

|'Pa(v)|
2
da dx

≤

∫

Ω

|'v|2
∫

Br(0)

|'P (v − a)|2 da dx

≤

∫

Ω

|'v|2
∫

[−2R,2R]d
|'P (y)|2 dy dx

≤ C

∫

Ω

|'v|2 dx < ∞

with the constant C depending only on N . We infer that there is a0 ( Br(0) such
that

(5.2)

∫

Ω

|' (Pa0
◦ v) |2 dx ≤ C|Br(0)|

−1

∫

Ω

|'v|2 dx.

To fully justify that 'Pa(v)'v is indeed the distributional gradient, one should
first carry out these estimates for a sequence of smooth maps Pε → P and then
pass to the limit, but we leave this standard step to the reader.
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Composing v with Pa0
, we have unnecessarily altered v on the set where it

already maps into N , so we need a small correction. It follows from our previous
discussion that Pa0

∣∣
N

is invertible and

(5.3) |'
(
Pa0

∣∣
N

)−1
| ≤ C

for a uniform constant C. We set

u =
(
Pa0

∣∣
N

)−1
◦ Pa0

◦ v ( W 1,2(Ω,N ),

hence combining (5.2) with (5.3) gives us
∫

Ω

|'u|2 dx ≤ ‖'
(
Pa0

∣∣
N

)−1
‖2L∞

∫

Ω

|' (Pa0
◦ v) |2 dx ≤ C

∫

Ω

|'v|2 dx.

It is evident that u ≡ v on the whole set {v(x) ( N}, and this will be used in the
sequel. One can also check that u

∣∣
∂Ω

= v
∣∣
∂Ω

follows in the sense of traces.

For the general case of an unbounded v, consider the retraction PR : Rd →
[−R,R]d given by the identity on [−R,R]d and by the radial projection outside
of this cube; note that PR is Lipschitz with constant 1. One can then apply the
previous construction to v := PR ◦ v and replace v by v in the final claim, as these
two maps agree on ∂Ω and the W 1,2-energy of v does not exceed that of v. �

5.2. Uniform boundedness

We will show how Theorem 5.2 combined with trace inequalities Theorem A.4
implies a uniform bound for the minimizers. Due to the lifting theorem Theorem 5.1
of Bethuel and Chiron this result holds additionally for target manifolds whose
fundamental group is finite.

This is a counterpart of [3, Theorem 1.1].

Corollary 5.6. Assume that Ã1(N ) is finite and that Ω is a bounded Lipschitz
domain. There exists a constant C(Ω,N ) such that for any minimizing harmonic
map u ( W 1,2(Ω,N ) we have

(5.4) ‖'u‖L2(Ω) ≤ C(Ω,N )
√
‖'Tu‖L2(∂Ω).

In particular, if u : Br → N is a minimizing harmonic map, then the following
estimate holds

(5.5) ‖'u‖L2(Br) �

√
r

n−1
2 ‖'Tu‖L2(∂Br).

Let Ω ⊂ Rn be a bounded domain with a C1-boundary and let y0 ( ∂Ω be any point
on the boundary. If u : Br(y0)∩Ω → N is a minimizing harmonic map with u = ϕ
on Br(y0) ∩ ∂Ω, then the following estimates hold

(5.6) ‖'u‖L2(Br(y0)∩Ω) �

√
r

n−1
2 ‖'Tu‖L2(∂Br(y0)∩Ω) + r

n−1
2 ‖'ϕ‖L2(Br(y0)∩∂Ω)

and for any s > 1
2 , p > 1, sp > 1, and 1 < θ < 2

(5.7) ‖'u‖L2(Br(y0)∩Ω)

�

√
r(3−n) θ

2+(n−2)‖'Tu‖θL2(∂Br(y0)∩Ω)+r(sp−(n−1)) θ
sp+n−2[ϕ]

θ
s

W s,p(L2(Br(y0)∩∂Ω)).
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Proof. In order to prove (5.4) we apply Theorem 5.1 to u ( W 1,2(Ω,N ), we

obtain the existence of a map ũ ( W 1,2(Ω, Ñ ) such that u = Ã ◦ ũ. Now, since

Ã1(N ) is finite we know that the universal cover Ñ is compact and since it is the

universal cover of N we have Ã1(Ñ ) = 0. Thus, we may apply Theorem 5.2 to

ũ and obtain the existence of a manifold valued map ṽ ( W 1,2(Ω, Ñ ) satisfying
ṽ
∣∣
∂Ω

= ũ
∣∣
∂Ω

with the estimate

(5.8) ‖'ṽ‖L2(Ω) � ‖'ũh‖L2(Ω),

where ũh is the harmonic extension of ũ
∣∣
∂Ω

. By Theorem A.4, (equation (A.8)),
we know that

(5.9) ‖'ũh‖L2(Ω) ≤ C(Ω)‖ũ‖
1
2

L∞(∂Ω)‖'T ũ‖
1
2

L2(∂Ω) ≤ C(Ω, Ñ )‖'Tu‖
1
2

L2(∂Ω),

in the last estimate we used that Ñ is compact, ũ
∣∣
∂Ω

( Ñ , and that a.e. |'u| =
|'ũ|.

On the other hand we set v = Ã ◦ ṽ ( W 1,2(Ω,N ) and we have |'v| = |'ṽ|
a.e., thus,

‖'v‖L2(Ω) = ‖'ṽ‖L2(Ω).

Since Ã is a local isometry, we have v
∣∣
∂Ω

= Ã ◦ ṽ
∣∣
∂Ω

= Ã ◦ ũ
∣∣
∂Ω

= u
∣∣
∂Ω

and thus v
is a good comparison map and we obtain from the minimality of u

‖'u‖L2(Ω) ≤ ‖'v‖L2(Ω).

Combining this with the above inequalities we obtain

‖'u‖L2(Ω) ≤ ‖'v‖L2(Ω) = ‖'ṽ‖L2(Ω) � ‖'ũh‖L2(Ω) � ‖'Tu‖
1
2

L2(Ω).

This finishes the proof of (5.4). The estimate (5.5) follows from scaling.
We proceed similarly to obtain the other inequalities: we apply Theorem 5.2

to the lifted map ũ = Ã−1 ◦ u ( W 1,2(B+
r , Ñ ), then (5.6) follows from (A.8) and

(5.7) follows from (A.10). �

Theorem 5.7 (Uniform Boundedness of Minimizers, [3, Theorem 2.3 (2)]). Let
Ã1(N ) be finite. Then the following assertions hold:

(1) Let u ( W 1,2(BR,N ) be a minimizing harmonic map. Then for any
r < R,

r2−n

∫

Br

|'u|2 dx ≤ C
R

R − r
,

where C(n,N ) is an absolute constant.

(2) Let Ω be a bounded domain with a C1 boundary. Then, there exists an
R := R(Ω) such that the following holds: assume u ( W 1,2(B2r(y0)∩Ω,N )
is a minimizing harmonic map, where y0 ( ∂Ω, then

(5.10) r2−n

∫

Br(y0)∩Ω

|'u|2 dx ≤ C
(
1 + r

3−n
2 ‖'ϕ‖L2(B2r(y0)∩∂Ω)

)
,

for 0 < r ≤ R.
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(3) The last statement can be strengthened, assume additionally that s > 1
2 ,

p > 1, and sp > 1. Then for any 1 < θ < 2,

(5.11) r2−n

∫

Br(y0)∩Ω

|'u|2 dx ≤ C
(
1 + r(sp−(n−1)) θ

sp [ϕ]
θ
s

W s,p(B2r(y0)∩∂Ω)

)
,

for 0 < r ≤ R.

Proof. Let D(Ä) :=
∫
Bρ(y0)∩Ω

|'u|2 dx, where y0 ( Ω. This is an absolutely

continuous function of r ( [0, R] and by the fundamental theorem of calculus we
have for a.e. r ( [0, R]

d

dÄ

(∫

Bρ(y0)∩Ω

|'u|2 dx

)
=

d

dÄ

(∫

Bρ(y0)

|'u|2χΩ dx

)

=
d

dÄ

(∫ ρ

0

∫

∂Br(y0)

|'u(ξ)|2χΩ(ξ) dH
n−1(ξ) dr

)

=

∫

∂Bρ(y0)∩Ω

|'u|2 dHn−1.

(5.12)

Proof of (1):

By minimality of u we may apply Corollary 5.6 (equation (5.5)) and we get

D(Ä) :=

∫

Bρ

|'u|2 dx ≤ C Ä
n−1
2

(∫

∂Bρ

|'Tu|
2 dHn−1

) 1
2

,

for a uniform constant C > 0. This gives

D(Ä) ≤ Ä
n−1
2 C

√
D′(Ä).

Taking the square, we obtain

1

C2
Ä1−n ≤

D′(Ä)

D(Ä)2
.

Integrating the last inequality from r to R we obtain

(
r2−n −R2−n

) 1

C2(n− 2)
≤

1

D(r)
−

1

D(R)
.

In particular,

r2−nD(r) ≤ C2(n− 2)
Rn−2

Rn−2 − rn−2
≤ C2(n− 2)

R

R− r
.

Proof of (2):

Denote D(Ä) := ‖'u‖2L2(Br(y0)∩Ω) and A := r
n−1
2 ‖'ϕ‖L2(B2r(y0)∩∂Ω). Using

(5.12) we can restate (5.6) as

D(Ä) ≤ C
(
Ä

n−1
2

√
D′(Ä) +A

)
for 0 < Ä ≤ 2r.

Since our aim is an estimate D(r) � rn−2 + A, we may assume that D(r) ≥ 2CA
with C as above. Then

D(Ä) ≤ 2CÄ
n−1
2

√
D′(Ä) for r ≤ Ä ≤ 2r.
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Rewriting this as the differential inequality (−D(Ä)−1)′ ≥ 4C−2Ä1−n and integrat-
ing, we obtain

D(r)−1 −D(2r)−1 ≥ 4C−2

∫ 2r

r

Ä1−n dÄ.

The final claim now follows from D(2r)−1 ≥ 0.
Proof of (3):

The proof follows almost exactly as the proof of (2). The only difference is that
in place of (5.6) we use (5.7) which leads us to the inequality:

D(Ä) ≤ C
(
Ä(3−n) θ

2+(n−2) (D′(Ä))
θ
2 +B

)
for 0 < Ä ≤ 2r,

where B := r(sp−(n−1)) θ
s+n−2[ϕ]pW s,p(B2r(y0)∩∂Ω). Reasoning as before and having

in mind that by assumption 1 < θ < 2 we may rewrite the latter inequality as
(
D(Ä)−

2
θ+1
)′

≥ C̃Ä3−n− 2
θ (2−n).

Integrating over (r, 2r), we finish the proof. �

Remark 5.8. Theorem 5.7 does not hold for general target manifolds, it is
not true for example for S1 and T2. A simple counterexample is due to Hardt–
Kinderlehrer–Lin [26, p.22]: the energy minimizers uj ( W 1,2(Bn, S1), uj(x) =
(cos jx1, sin jx1) have unbounded energies on each subdomain.

5.3. Caccioppoli inequality and higher local integrability

In this section we derive the Caccioppoli inequality for minimizing harmonic
maps. A Caccioppoli type inequality was obtained by Schoen and Uhlenbeck in
their pioneering work [56, Lemma 4.3] in order to obtain strong convergence of
minimizers. Later on, this result was generalized by Hardt and Lin to the case of
minimizing p-harmonic maps [29, Corollary 2.3]. As observed there, in case the
target manifold is simply connected, the result might be strengthened — the small
oscillation condition from [56, Lemma 4.3] can be omitted (see also [25, Lemma
2.3]). Finally, thanks to Luckhaus Lemma [41, Lemma 1], it was proved that the
smallness condition can be also omitted for a general target manifold N . We refer
the interested reader to [61, Section 2.8, Lemma 1].

The W 1,2-extension property (Theorem 5.2) will play here a crucial role as it
provides a tool to compare energies of maps that agree on the boundary but do not
have to take values in the manifold. We remark that this could also be done using
Luckhaus Lemma. We will use a variant of an iteration lemma, see [22, Chapter
V, Lemma 3.1].

Lemma 5.9 (Iteration lemma). Let 0 ≤ a < b < ∞ and f : [a, b] → [0,∞) be
a bounded function. Suppose that there are constants θ ( (0, 1), A, Λ, α > 0 such
that

(5.13) f(s) ≤ θf(t) +
A

(t− s)α
+ Λ for all a ≤ s < t ≤ b.

Then we obtain the bound

f(r) ≤ C
A

(b− r)α
+

Λ

1− θ
for all a ≤ r < b

with some constant C(θ, α) > 0.
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Proof. We fix a ≤ r < b and define the sequence ri by r0 = r and ri+i − ri =
(1−τ )τ i(b−r), with τ ( (0, 1) to be chosen later. By iterating the inequality (5.13)
�-times, we obtain

f(r0) ≤ θf(r1) +
A

(r1 − r0)α
+ Λ = θf(r1) +

A

(1− τ )α(b− r)α
+ Λ

≤ θ

(
θf(r2) +

A

(1− τ )ατα(b− r)α
+ Λ

)
+

A

(1− τ )α(b− r)α
+ Λ ≤ . . .

≤ θ
f(r
) +
A

(1− τ )α(b− r)α


−1∑

i=0

θiτ−iα + Λ


−1∑

i=0

θi.

Now we choose τ in such a way that τ−αθ < 1 and let � → ∞ in the above
inequality. �

Proposition 5.10 (Caccioppoli inequality). Let N be such that Ã1(N ) is finite

and let Ã : Ñ → N be its universal covering. Then there is a constant C(n,N ) > 0
such that the following holds:

(1) Let u ( W 1,2(Ω,N ) be a minimizing harmonic map and let u = Ã ◦ ũ,

ũ ( W 1,2(Ω, Ñ ), B2r(y) ⊂⊂ Ω, then
∫

Br(y)

|'u|2 dx ≤ Cr−2

∫

B2r(y)

|ũ− (ũ)B2r(y)|
2 dx,

where (ũ)B2r(y) denotes the mean value of ũ on B2r(y).

(2) Assume Ω⊂Rn is a bounded domain with C1-boundary. Let u(W 1,2(Ω,N )

be a minimizing harmonic map, and let ϕ ( W
1
2 ,2(∂Ω,N ) be the trace of

u on ∂Ω. Then for all r > 0 and y0 ( ∂Ω we have
∫

Br(y0)∩Ω

|'u|2 dx ≤ Cr−2

∫

B2r(y0)∩Ω

|ũ(x)− ϕ̃ext(x)|2 dx

+ C

∫

B2r(y0)∩Ω

|'ϕ̃ext(x)|2 dx,

where u = Ã ◦ ũ, ũ ( W 1,2(Ω, Ñ ), ϕ = Ã ◦ ϕ̃, ϕ̃ ( W
1
2 ,2(∂Ω, Ñ ) and

ϕ̃ext ( W 1,2(B2r(y0)∩Ω) is any map with ϕ̃ext = ϕ̃ = ũ on B2r(y0)∩∂Ω.

Proof. The proofs of these two statements are similar; we will treat the bound-
ary case (2) here.

We use Theorem 5.1 and lift u = Ã ◦ ũ, where ũ ( W 1,2(Ω, Ñ ) and Ñ is
simply connected and compact (by the assumption that Ã1(N ) is finite). Since Ã
is a local isometry we have ϕ = Ã ◦ ϕ̃ on ∂Ω and we take any extension ϕ̃ext (
W 1,2(B2r(y0) ∩ Ω) with ϕ̃ext = ϕ̃ on B2r(y0) ∩ ∂Ω.

Fix r ≤ Ä < R ≤ 2r and let

ṽ(x) = η(x)ϕ̃ext(x) + (1− η(x))ũ(x),

where η ( C∞
c (BR(y0), [0, 1]) is a cutoff function such that η ≡ 1 in Bρ(y0), η ≡ 0

outside BR(y0) and |'η| ≤ C
R−ρ . It follows that ṽ ( W 1,2(B2r(y0) ∩ Ω) coincides

with ũ on ∂(B2r(y0) ∩ Ω). Therefore, by applying Theorem 5.2 we obtain a map
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w̃ ( W 1,2(B2r(y0) ∩ Ω, Ñ ) with w̃ = ṽ on ∂(B2r(y0) ∩ Ω) with the estimate
∫

B2r(y0)∩Ω

|'w̃|2 dx ≤ C

∫

B2r(y0)∩Ω

|'ṽ|2 dx.

We define now w = Ã ◦ w̃ ( W 1,2(B2r(y0) ∩ Ω,N ) and as before observe that
|'w| = |'w̃| a.e. and that w

∣∣
∂(B2r(y0)∩Ω)

= u
∣∣
∂(B2r(y0)∩Ω)

thus, w is a good

comparison map and from the minimality of u we get
(5.14)∫

BR(y0)∩Ω

|'u|2 ≤

∫

BR(y0)∩Ω

|'w|2 =

∫

BR(y0)∩Ω

|'w̃|2 ≤ C

∫

BR(y0)∩Ω

|'ṽ|2 dx.

We compute

'ṽ(x) = (1− η(x))'ũ(x)−'η(x)(ũ(x)− ϕ̃ext(x)) + η(x)'ϕ̃ext(x),

thus, from (5.14) and |'u| = |'ũ| a.e., we have
∫

Bρ(y0)∩Ω

|'u|2 dx ≤ C

∫

(BR(y0)\Bρ(y0))∩Ω

|'ũ|2 dx

+
C

(R− Ä)2

∫

BR(y0)∩Ω

|ũ(x)− ϕ̃ext(x)|2 dx

+ C

∫

BR(y0)∩Ω

|'ϕ̃ext(x)|2 dx

= C

∫

(BR(y0)\Bρ(y0))∩Ω

|'u|2 dx

+
C

(R− Ä)2

∫

BR(y0)∩Ω

|ũ(x)− ϕ̃ext(x)|2 dx

+ C

∫

BR(y0)∩Ω

|'ϕ̃ext(x)|2 dx.

By a hole-filling argument, there is a 0 < θ < 1 such that
∫

Bρ(y0)∩Ω

|'u|2 dx ≤ θ

∫

BR(y0)∩Ω

|'u|2 dx

+
C

(R− Ä)2

∫

BR(y0)∩Ω

|ũ(x)− ϕ̃ext(x)|2 dx

+ C

∫

BR(y0)∩Ω

|'ϕ̃ext(x)|2 dx

for all r ≤ Ä < R ≤ 1.
Thus, by Lemma 5.9 we obtain

∫

Bρ(y0)∩Ω

|'u|2 dx ≤
C

(R− Ä)2

∫

BR(y0)∩Ω

|ũ(x)− ϕ̃ext(x)|2 dx

+ C

∫

BR(y0)∩Ω

|'ϕ̃ext(x)|2 dx.

We conclude our claim by taking Ä = r and R = 2r. �

As consequences of Poincaré inequality, Sobolev embedding, and Gehring
Lemma we readily obtain the following, see also [26, Theorem 4.1].
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Corollary 5.11 (Higher integrability). Let Ω ⊂ Rn be a bounded domain with
a C1 boundary, Ã1(N ) be finite, and let u ( W 1,2(Ω,N ) be a minimizing harmonic
map. There exist constants q > 2 and C > 0 such that:

(1) If B2r(y) ⊂⊂ Ω, then

(
rq−n

∫

Br(y)

|'u|q dx

)1/q

≤ C

(
r2−n

∫

B2r(y)

|'u|2 dx

)1/2

and the constants q, C do not depend on Ω;
(2) If u

∣∣
∂Ω

= ϕ ( W s,p(∂Ω,N ), s > 1
2 , and p > 1, then for all r > 0, y0 ( ∂Ω

we have

(
rq−n

∫

Br(y0)∩Ω

|'u|q dx

)1/q

≤ C

(
r2−n

∫

B2r(y0)∩Ω

|'u|2 dx

)1/2

+ Cr(sp−(n−1)) 1
2sp [ϕ]

1
2s

W s,p(B2r(y0)∩∂Ω).

Proof. Applying Theorem 5.1 we have u = Ã ◦ ũ, where ũ ( W 1,2(Ω, Ñ ) and

ϕ = Ã ◦ ϕ̃ with ϕ̃ ( W s,p(∂Ω, Ñ ).
We begin with the proof of (1). We have by Poincaré-Sobolev inequality

∫

B2r(y)

|ũ− (ũ)B2r(y)|
2 dx ≤ Cr2

(∫

B2r(y)

|'ũ|
2n

n+2 dx

)n+2
n

= Cr2

(∫

B2r(y)

|'u|
2n

n+2 dx

)n+2
n

,

(5.15)

where we used that |'u| = |'ũ| a.e..
Combining this with Proposition 5.10 (1), we obtain

∫

Br(y)

|'u|2 dx ≤

(∫

B2r(y)

|'u|
2n

n+2 dx

)n+2
n

.

Thus applying Gehring lemma [22, p.122] (see also [35]) we conclude.
In order to prove part (2) we estimate

∫

B2r(y0)∩Ω

|ũ(x)− ϕ̃h(x)|2 dx � r2

(∫

B2r(y0)∩Ω

|'u|
2n

n+2 dx

)n+2
n

in the same way as (5.15).
Applying Proposition 5.10 (2) with ϕ̃ext = ϕ̃h, where ϕ̃h : B2r(y0)∩Ω → Rd is

the harmonic extension of ϕ̃ : B2r(y0) ∩ ∂Ω → Ñ

∫

Br(y0)∩Ω

|'u|2 dx �

(∫

B2r(y0)∩Ω

|'u|
2n

n+2 dx

)n+2
n

+

∫

B2r(y0)∩Ω

|'ϕ̃h|2 dx.
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Thus we may apply Gehring lemma and obtain existence of a number q > 2 such
that

(
rq−n

∫

Br(y0)∩Ω

|'u|q dx

) 1
q

�

(
r2−n

∫

B2r(y0)∩Ω

|'u|2 dx

) 1
2

+

(
r2−n

∫

B2r(y0)∩Ω

|'ϕ̃h|2 dx

) 1
2

.

Additionally, we have by the trace inequality, the Gagliardo–Nirenberg inequality

for any s > 1
2 , p > 1, and by the compactness of Ñ
(
r2−n

∫

B2r(y0)∩Ω

|'ϕ̃h|2 dx

) 1
2

� r
2−n
2 [ϕ̃]

W
1
2
,2(B2r(y0)∩∂Ω)

� r(sp−(n−1)) 1
2sp ‖ϕ̃‖

1− 1
2s

L∞(B2r(y0)∩∂Ω)[ϕ̃]
1
2s

W s,p(B2r(y0)∩∂Ω)

� r(sp−(n−1)) 1
2sp [ϕ]

1
2s

W s,p(B2r(y0)∩∂Ω),

where in the last inequality we used the Lipschtiz continuity of the universal cover

Ã : Ñ → N . This finishes the proof. �
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CHAPTER 6

Strong convergence for minimizers

and its consequences

Historically, compactness of minimizers has been a huge challenge. Partial re-
sults in this direction were obtained by Schoen–Uhlenbeck [56, Lemma 4.3] (tangent
maps), then by Hardt–Lin [29, Theorem 6.4] (target manifolds with Ã1(N ) = 0),
and finally the general case was solved with the help of the celebrated Luckhaus
Lemma [41, Lemma 1]. In our special case when Ã1(N ) is finite we may lift our

initial map, and since the universal cover Ñ is compact we can apply the extension
property (Theorem 5.2), similarly as in [25]. This simplifies the situation. Here we
present a proof inspired by [29, Theorem 6.4].

This is a counterpart of [3, Theorem 1.2].

Theorem 6.1 (Strong convergence of minimizers). Let Ã1(N ) be finite. Then
the following assertions hold:

(1) Let Ω ⊂ Rn be a bounded domain with a C1-boundary and ui ( W 1,2(Ω,N )
be a sequence of minimizing harmonic maps. Then, up to taking a sub-
sequence i → ∞, we find u ( W 1,2(Ω,N ) which is a minimizer in any

subdomain Ω′ � Ω and ui → u strongly in W 1,2
loc (Ω,N ).

(2) Let ui ( W 1,2(B+
1 (0),N ) be a sequence of minimizing harmonic maps.

Set ϕi := ui on T1 and assume additionally that

sup
i∈N

[ϕi]W s,p(T1) < ∞

for some s > 1
2 , p > 1, and sp > 1.

Then, up to taking a subsequence i → ∞, we find u : B+
1 (0) → N

such that u ( W 1,2(B+
r (0),N ) for any r ( (0, 1) and ui → u strongly in

W 1,2(B+
r (0),N ). Moreover, for every r ( (0, 1), the map u is a minimiz-

ing harmonic map in B+
r (0).

(3) Let the domain Ω and the maps ui be as in (1). Assume additionally that
their traces ϕi are uniformly bounded in W s,p(∂Ω,N ) for some s > 1

2 ,
p > 1, sp > 1. Then up to taking a subsequence, ui → u strongly in
W 1,2(Ω,N ) and u is minimizing in Ω.

We will need the following lemma.

Lemma 6.2 (Poincaré-type Lemma). Let f ( W 1,2(B+
1 (0)) be such that f = 0

on T3/4 in the sense of trace. Then, for any ´ ( (0, 12 ),∫

T3/4×(0,´)

|f |2 dx ≤ ´2
∫

T3/4×(0,´)

|'f |2 dx.

35
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36 6. STRONG CONVERGENCE FOR MINIMIZERS AND ITS CONSEQUENCES

Proof. If a function ϕ : [0, ´] → R is absolutely continuous, the fundamental
theorem of calculus implies

∫ ´

0

|ϕ(t)− ϕ(0)|2 dt ≤ ´2
∫ ´

0

|ϕ′(t)|2 dt.

Since f is absolutely continuous on almost all lines, for almost all x′ ( T3/4 we have

∫ ´

0

|f(x′, t)|2 dt =

∫ ´

0

|f(x′, t)− f(x′, 0)|2 dt ≤ ´2
∫ ´

0

|'f(x′, t)|2 dt.

Integrating this over T3/4, we obtain our claim. �

Proof of Theorem 6.1. The proof of (1) follows in a manner similar to (2),
see for example [29, Theorem 6.4]. For this reason, we skip the details and concen-
trate on (2).

Proof of (2): From Theorem 5.7 (3) we have for any θ ( (1, 2) and any r < 1

(6.1)

∫

B+
r (0)

|'ui|
2 dx � rn−2 + r(sp−(n−1)) θ

sp+n−2[ϕi]
θ
s

W s,p(T2r)
.

If sp > θ then (sp− (n− 1)) θ
sp +n− 2 > 1, thus since (6.1) holds for any 1 < θ < 2

and since sp > 1 we can take θ small enough so that sp > θ. Thus,
∫

B+
r (0)

|'ui|
2 dx � 1 + [ϕi]

θ
s

W s,p(T2r)
.

By assumption the boundary maps ϕi are uniformly bounded in W s,p(T1), conse-
quently

sup
i∈N

[ui]W 1,2(B+
r (0)) < ∞ for any r ( (0, 1).

In particular, up to taking a subsequence and diagonalizing we find u : B+
1 (0) → N

which is a weak W 1,2-limit, and strong L2-limit of ui in each ball B+
r (0), and ϕ is

the weak W s,p-limit of ϕi on each Tr, such that ϕ is the trace of u.
We need to show that u is a minimizer in B+

r (0) and that ui → u strongly
with respect to the W 1,2-norm in B+

r (0) for every r ( (0, 1). For simplicity of the
notation we shall assume that r = 1

2 .
Since the boundary maps ϕi are uniformly bounded in W s,p, Corollary 5.11 (2)

implies uniform higher integrability of ui. Namely, for some fixed q > 2 we have

(6.2) sup
i

∫

B+
3/4

(0)

|'ui|
q dx < ∞.

Fix a competitor v ( W 1,2(B+
3/4(0),N ), i.e., a map coinciding with u outside

B+
1/2(0), in particular u = v on T3/4(0).

Using v, we construct a competitor for ui. We do so by an interpolation on a
set I´ which separates Ω´ and �´, which are defined as follows:

Ω´ := B+
1/2(0) \

(
Rn−1 × (0, 2´)

)
;

I´ := B+
1/2+´(0) \

(
Ω´ ∪

(
Rn−1 × (0, ´)

))
;

�´ := B+
3/4(0) \ (I´ ∪ Ω´) .

(6.3)
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�´

Ω´

Iδ

Figure 6.1. Cut-off regions used in constructing a competitor for ui

Observe that ∂I´ is separated into two parts, the inner part being ∂Ω´ and
the outer being ∂(I´ ∪ Ω´). Choose a cut-off function η ( C∞ such that η ( [0, 1],
η´ ≡ 1 in Ω´, η´ ≡ 0 in �´, and |'η´| �

1
´ .

We glue v with ui by defining the map

v´,i := η´v + (1− η´)ui = ui + η´(v − ui),

However, w´,i does not map into N in the intermediate region I´. This can be
fixed by using the extension theorem (Theorem 5.2). First we need to lift the maps

u = Ã ◦ ũ, v = Ã ◦ ṽ, ui = Ã ◦ ũi where ũ, ṽ, ũi ( W 1,2(B+
3/4(0), Ñ ) and define

(6.4) ṽ´,i = η´ ṽ + (1− η´)ũi.

Now, recalling that Ñ is a simply connected compact manifold we may apply
Theorem 5.2 on the region I´ and obtain existence of a manifold valued map

w̃´,i ( W 1,2(I´, Ñ ) which agrees with ṽ´,i on the boundary w̃´,i

∣∣
∂I·

= ṽ´,i
∣∣
∂I·

and

(6.5)

∫

I·

|'w̃´,i|
2 dx ≤ C

∫

I·

|'ṽ´,i|
2 dx

with a constant independent of i and ´. We extend w̃´,i into B+
3/4(0) by setting

w̃´,i ≡ ṽ in Ω´, w̃´,i ≡ ũi in �´. Now we define w´,i = Ã ◦ w̃´,i ( W 1,2(B+
3/4(0),N )

and note that w´,i

∣∣
∂B+

3/4
(0)

= ui

∣∣
∂B+

3/4
(0)

. In particular, w´,i is a competitor for ui

in B+
3/4(0), and the minimizing property of ui implies

∫

B+
3/4

(0)

|'ui|
2 dx ≤

∫

B+
3/4

(0)

|'w´,i|
2 dx

=

∫

Ω·

|'v|2 dx+

∫

�·

|'ui|
2 dx+

∫

I·

|'w´,i|
2 dx

=

∫

Ω·

|'v|2 dx+

∫

�·

|'ui|
2 dx+

∫

I·

|'w̃´,i|
2 dx.

(6.6)

We observe that∫

�·

|'ui|
2 dx ≤

∫

B+
3/4

(0)\B+
1/2

(0)

|'ui|
2 dx+

∫

T1/2×(0,´)

|'ui|
2 dx,
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38 6. STRONG CONVERGENCE FOR MINIMIZERS AND ITS CONSEQUENCES

thus, after enlarging Ω´ to B+
1/2, (6.6) becomes

∫

B+
1/2

(0)

|'ui|
2 dx ≤

∫

B+
1/2

(0)

|'v|2 dx+

∫

T1/2×(0,´)

|'ui|
2 dx+

∫

I·

|'w̃´,i|
2 dx.

(6.7)

Moreover, by (6.5) and (6.4)

∫

I·

|'w̃´,i|
2 dx �

∫

I·

|'ṽ´,i|
2 dx

�

∫

I·

|'ũi|
2 dx+

∫

I·

|'ṽ|2 dx+
1

´2

∫

I·

|ũi − ṽ|2 dx

�

∫

I·

|'ui|
2 dx+

∫

I·

|'v|2 dx

+
1

´2

∫

I·

|ũ− ṽ|2 dx+
1

´2

∫

I·

|ũi − ũ|2 dx,

where ũ = Ã ◦ ũ and ũ ( W 1,2(B+
3/4(0), Ñ ).

Observe that ũ ≡ ṽ outside B+
1/2 and on T3/4, in consequence

1

´2

∫

I·

|ũ− ṽ|2 dx ≤
1

´2

∫

T3/4×(0,2´)

|ũ− ṽ|2 dx

�

∫

T3/4×(0,2´)

|'(ũ− ṽ)|2 dx

�

∫

T3/4×(0,2´)

|'(u− v)|2 dx

by an application of Lemma 6.2. Moreover, higher integrability of ui (6.2) allows
us to use Hölder’s inequality and estimate

∫

T1/2×(0,´)

|'ui|
2 dx+

∫

I·

|'ui|
2 dx �

∣∣T1/2 × (0, ´)
∣∣1− 2

q + |I´|
1− 2

q � ´1−
2
q

with some positive exponent 1− 2
q > 0.

Of course, we also have

1

´2

∫

I·

|ũi − ũ|2 dx �
1

´2

∫

I·

|ui − u|2 dx.

Thus, we arrive at

∫

B+
1/2

(0)

|'ui|
2 dx ≤

∫

B+
1/2

(0)

|'v|2 dx+ C´1−
2
q + C

∫

I·

|'v|2 dx

+ C

∫

T3/4×(0,2´)

|'(u− v)|2 dx+
C

´2

∫

I·

|ui − u|2 dx.

(6.8)
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6.1. STRONG CONVERGENCE WITH VARIABLE BOUNDARY 39

This estimate holds for all i and ´, so may take the limit superior i → ∞. Recalling
strong convergence ui → u in L2(B+

3/4(0)), we obtain

lim sup
i→∞

∫

B+
1/2

(0)

|'ui|
2 dx ≤

∫

B+
1/2

(0)

|'v|2 dx+ C´1−
2
q

+ C

∫

I·

|'v|2 dx+ C

∫

T3/4×(0,2´)

|'(u− v)|2 dx.

(6.9)

In the limit ´ → 0, the last two integrals vanish by absolute continuity of the
integral, and hence we arrive at the estimate

(6.10) lim sup
i→∞

∫

B+
1/2

(0)

|'ui|
2 dx ≤

∫

B+
1/2

(0)

|'v|2 dx.

Employing weak lower semicontinuity of the Dirichlet energy, we can now easily
conclude both strong convergence of ui and minimality of u. Indeed, after integrat-
ing the identity

|'ui −'u|2 = |'ui|
2 + |'u|2 − 2'ui · 'u

over B+
1/2(0) and taking the limit superior on both sides, we obtain

lim sup
i→∞

∫

B+
1/2

(0)

|'ui −'u|2 dx = lim sup
i→∞

∫

B+
1/2

(0)

|'ui|
2 − |'u|2 dx ≤ 0

due to the weak convergence 'ui ⇀ 'u in L2(B+
1/2(0)) and the estimate (6.10)

applied with v ≡ u. This shows that 'ui → 'u strongly in L2(B+
1/2(0)). But now

the left-hand side of (6.10) is just the energy of u, and the minimality of u follows.
Proof of (3): Let a ( ∂Ω be any point on the boundary.

Exactly as in proof of (2), we find that for an R > 0 (up to a subsequence) ui

converges weakly to u in W 1,2(BR(a)∩Ω), strongly in L2(BR(a)∩Ω), and a.e.. We
will show that the convergence is in fact strong and that u ( W 1,2(BR/2(a),N ) is
a minimizing harmonic map. To do so we proceed exactly as in proof of (2), the
only difference is that we have to redefine the sets in (6.3) in terms of the distance
to the boundary:

Ω´ := (B+
R/2(a) ∩ Ω) \ {x ( Ω: dist (x, ∂Ω) < 2´};

I´ := B+
R/2+´(a) \ (Ω´ ∪ {x ( Ω: dist (x, ∂Ω) < ´}) ;

�´ := B+
3R/4(a) \ (I´ ∪ Ω´) .

(6.11)

Since ∂Ω is compact, a covering argument leads to the conclusion. �

6.1. Strong convergence with variable boundary

A technical modification of this reasoning allows us to consider in Theorem 6.1
a sequence of maps ui defined on converging Lipschitz domains with non-flat bound-
aries. This will be used in Theorem 7.4 and Theorem 7.13.

Proposition 6.3. Let N be a manifold with finite fundamental group and

Ωi := {x ( BR : xn > αi(x
′)},
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40 6. STRONG CONVERGENCE FOR MINIMIZERS AND ITS CONSEQUENCES

where the sequence of functions αi ( C1(Rn−1,R) converges to zero in C1. Assume
that ui ( W 1,2(Ωi,N ) is a sequence of minimizing harmonic maps with boundary
maps ϕi := ui

∣∣
∂Ωi∩BR

satisfying the uniform bound

sup
i∈N

[ϕi]W s,p(∂Ωi∩BR) < ∞ for some s <
1

2
, p > 1, sp > 1.

Let us choose C1-diffeomorphisms ςi : BR → BR that map Ωi into the half-ball B+
R

and converge to identity in C1.
Then, up to taking a subsequence i → ∞, ui ◦ ς−1

i converges strongly in
W 1,2(B+

r ,N ) (for each r < R) to a map u : B+
R → N which is minimizing in each

ball B+
r . In consequence, the traces also converge: ϕi ◦ ς

−1
i → u

∣∣
Tr

in W
1
2 ,2(Tr,N ).

The proof will be based on the following lemma.

Lemma 6.4. Let B ⊂ Rn and ςi : B → B be a sequence of diffeomorphisms
convergent to identity in C1. If u ( L2(B), then u ◦ ςi → u in L2(B).

Proof. Let us fix ε > 0. One can then choose v ( C∞
c (B) such that

(6.12) ‖u− v‖L2(B) ≤ ε.

Since ςi is C
1-close to identity, we also have for large enough i

(6.13) ‖u ◦ ςi − v ◦ ςi‖L2(B) = ‖(u− v) ◦ ςi‖L2(B) ≤ 2ε.

Moreover, since v ( C1, the difference v ◦ ςi − v converges uniformly to 0, in
consequence for large enough i

(6.14) ‖v ◦ ςi − v‖L2(B) ≤ ε.

Thus, by triangle inequality and (6.12), (6.13), and (6.14) we obtain

‖u− u ◦ ςi‖L2(B) ≤ ‖u− v‖L2(B) + ‖v − v ◦ ςi‖L2(B) + ‖v ◦ σi − u ◦ ςi‖L2(B)

≤ 4ε. �

Proof of Proposition 6.3.
Step 1. Repeating the reasoning from the proof of Theorem 6.1 (2), we are

able to establish the following convergence for each r < R:

(6.15)
uiχΩi∩Br

i→∞
−−−→ uχB+

r
strongly in L2(Br);

'uiχΩi∩Br

i→∞
−−−→ 'uχB+

r
strongly in L2(Br).

Unfortunately, this does not suffice to conclude convergence of boundary maps ϕi.
Using Lemma 6.4 we will upgrade the convergence to ui ◦ ς

−1
i → u strongly in

W 1,2(B+
r ).

Step 2. Strong convergence of ui ◦ ς
−1
i in L2(B+

r ).

Recall that ςi, ς
−1
i → id on Br. Since ς

−1
i : B+

r → Ωi ⊂ B+
R , we have by triangle

inequality

(6.16) ‖ui ◦ ς
−1
i − u‖L2(B+

r ) ≤ ‖u ◦ ς−1
i − u‖L2(B+

r ) + ‖ui ◦ ς
−1
i − u ◦ ς−1

i ‖L2(B+
r ).

By Lemma 6.4 (with Ω = B+
R and Ω′ = B+

r ) we obtain limi→∞ ‖u◦ς−1
i −u‖L2(B+

r ) =

0. As for the second term of (6.16) we have from Step 1.

lim
i→∞

‖ui ◦ ς
−1
i − u ◦ ς−1

i ‖L2(B+
r ) � lim

i→∞
‖uiχΩi∩Br

− uχB+
r
‖L2(B+

r ) = 0.
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Step 3. Strong convergence of the gradients. We first note that

'(ui ◦ ς
−1
i ) =

(
('ui) ◦ ς

−1
i

)
· '(ς−1

i ),

here by · we mean the multiplication of the Jacobian matrices. Since ς−1
i → id

in C1, we have the uniform convergence I − 'ς−1
i → 0, where I ( Mn×n is the

identity matrix. This gives

‖'(ui ◦ ς
−1
i )− ('ui) ◦ ς

−1
i ‖L2(B+

r ) ≤ ‖
(
('ui) ◦ ς

−1
i

)
·
(
I −'(ς−1

i )
)
‖L2(B+

r )

� ‖'ui‖L2(B+
r ) · ‖I −'(ς−1

i )‖L∞(B+
r )

i→∞
−−−→ 0.

(6.17)

Thus,

‖'(ui ◦ ς
−1
i )−'u‖L2(B+

r )

≤ ‖'(ui ◦ ς
−1
i )− ('ui) ◦ ς

−1
i ‖L2(B+

r ) + ‖('ui) ◦ ς
−1
i −'u‖L2(B+

r ).
(6.18)

The convergence of the first term of the left-hand side of (6.18) follows from (6.17).
In order to obtain the convergence of the second term, ‖('ui) ◦ ς

−1
i −'u‖L2(B+

r )

we proceed exactly as in Step 2. This finishes the proof. �
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CHAPTER 7

Boundary regularity

for smooth and singular

boundary data in W
1,n−1

It is a classical result by Schoen and Uhlenbeck that minimizing harmonic maps
with C2,α boundary data are C2,α in a neighborhood of the boundary [57].

One of the quite surprising results of Almgren and Lieb in [3] is that even possi-
bly singular boundary data (they consider W 1,2(∂B3

1(0), S
2)) prevents singularities

from reaching the boundary.
In this section we extend this result to larger trace space and general dimension.
First of all we notice the interior regularity, which is a corollary of the com-

pactness result, Theorem 6.1 (3), and Theorem 2.5.

Theorem 7.1 (interior regularity for almost constant boundary data). Assume
Ã1(N ) is finite, s > 1

2 , and sp > 1. For each bounded domain with C1-boundary
Ω ⊂ Rn and each σ > 0 there exist an ε = ε(Ω, σ) > 0 such that the following holds:

If u ( W 1,2(Ω,N ) is a minimizing harmonic map with trace ϕ := u
∣∣∣
∂Ω

and assume

that for s > 1
2 , p > 1, and sp > 1 we have

[ϕ]pW s,p(∂Ω) ≤ ε,

then u is smooth in the interior region {x ( Ω: dist (x, ∂Ω) > σ}.

Proof. Assume on the contrary that there exists a σ > 0 and sequence of
minimizing maps ui ( W 1,2(Ω,N ) with ui

∣∣
∂Ω

= ϕi and

[ϕi]
p
W s,p(∂Ω) ≤

1

i

such that each ui has a singular point yi ( {x ( Ω: dist (x, ∂Ω) > σ}.
Then by the strong convergence of minimizers, Theorem 6.1 we would obtain

the existence of a minimizing harmonic map u ( W 1,2(Ω,N ) such that, up to a
subsequence, ui → u strongly inW 1,2(Ω,N ) with u

∣∣
∂Ω

= const. Thus u itself would
be a constant map and therefore have no singularities. On the other hand, from
the sequence yi of singular points of ui we could choose a subsequence converging
to a point y ( {x ( Ω: dist (x, ∂Ω) ≥ σ} ⊂ Ω and from Theorem 2.5 (Singular
points converge to singular points) we would know that y must be a singular point
of the limiting map u, which gives a contradiction. �

7.1. Uniform boundary regularity for constant boundary data

The first step is uniform boundary regularity for constant boundary data, see
[3, Theorem 1.10].

43
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Theorem 7.2 (Boundary regularity). Assume Ã1(N ) is finite. There exists a
uniform constant λ > 0 such that the following holds: Let u ( W 1,2(B+

1 (0),N ) be

a minimizer. Moreover, assume that ϕ = u
∣∣∣
T1

is constant. Then u is smooth in

(0, λ)× T1/2.

The main ingredient in Theorem 7.2 is the following.

Lemma 7.3. For any ε > 0 there is a uniform constant R0(ε) ( (0, 12 ) so that

the following holds. Let u ( W 1,2(B+
1 (0),N ) be a minimizer, where N has finite

fundamental group, and assume that ϕ = u
∣∣∣
T1

is constant. Then for any x0 ( T1/2

sup
r<R0(ε)

r2−n

∫

B+
r (x0)

|'u|2 dx < ε.

Proof. Assume that the claim is false for some ε > 0, then we find a sequence
Ri → 0, xi ( T 1

2
, and a sequence of minimizers ui with boundary data ui

∣∣
T1

= ϕi (

N constant on the flat part of the boundary, such that

R2−n
i

∫

B+
Ri

(xi)

|'ui|
2 dx ≥ ε.

By the boundary monotonicity formula, Theorem 3.1,

inf
r≥Ri

r2−n

∫

B+
r (xi)

|'ui|
2 dx ≥ ε.

By Theorem 5.7 (2) we know that maps ui are uniformly bounded and thus by
strong convergence of minimizing harmonic maps, Theorem 6.1 (2), up to taking a
subsequence, we find in the limit a minimizing harmonic map u ( W 1,2(B+

1 (0),N )
and a limit point x0 ( T 1

2
of {xi}

∞
i=1 such that

(7.1) inf
r≥0

r2−n

∫

B+
r (x0)

|'u|2 dx ≥
ε

2
.

Now take any sequence ri → 0 such that, by Lemma 3.2, we have

uri,x0
(·) := u(x0 + ri ·)

i→∞
−−−→ Φ(·) in W 1,2(B+

1 (0)).

From Lemma 3.3 we find that Φ is constant. Thus, for small enough r > 0 we have

r2−n

∫

B+
r (x0)

|'u|2 dx =

∫

B+
1 (0)

|'(u(x0 + rx))|2 dx <
ε

2
,

contradicting (7.1). �

Proof of Theorem 7.2. For any given ε > 0 let R0(ε) be the radius from
Lemma 7.3 and set λ := R0(ε)/2. For x0 ( (0, λ)×B 1

2
(0) denote by x1 ( T1/2 the

projection of x0 onto T1/2. Then for Ä := |x0 − x1| < λ we have
∫

Bρ(x0)

|'u|2 dx ≤

∫

B2ρ(x1)

|'u|2 dx ≤ ε(2Ä)n−2

due to Lemma 7.3. Choosing ε > 0 small, we infer smoothness of u in Bρ/2(x0)
from Theorem 2.1 (ε-regularity). Now u is regular in (0, λ)×T1/2, since this region
is covered by balls of this type. �
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7.2. Uniform boundary regularity for singular boundary data

Theorem 7.4 (Uniform boundary regularity for singular boundary data). As-
sume s > 1

2 , p > 1, and sp > 1. Let Ω ⊂ Rn be a bounded domain with a

C1-boundary and let N be a manifold with finite fundamental group. There are
constants R = R(Ω) and ε = ε(Ω) such that the following holds:

Take any minimizing harmonic map u ( W 1,2(Ω,N ) and denote its trace on
∂Ω by ϕ.

If for some x0 ( ∂Ω and some Ä0 < R we have the estimate

(7.2) Λ := sup
Bρ(y)⊂Bρ0

(x0)

Äsp−(n−1)[ϕ]pW s,p(Bρ(y)∩∂Ω) ≤ ε

then u is smooth in Bλρ0
(x0) ∩ Ω, where λ is a uniform constant.

We first prove Theorem 7.4 for flat boundary.

Proposition 7.5. There exist uniform constants R and ε such that the follow-
ing holds. Take any minimizing harmonic map u : B+

1 (0) → N with Ã1(N ) finite
and denote the trace of u on T1 by ϕ. Let also s > 1

2 , p > 1, sp > 1.
If for some Ä0 < R we have the estimate

(7.3) Ä
sp−(n−1)
0 [ϕ]pW s,p(Tρ0

) ≤ ε

then u is smooth in

Bλρ0
(0) ∩ {xn ≥ λ Ä0/2},

where λ is taken from Theorem 7.2.

Remark 7.6. In particular one can take
∫
Tρ0

|'ϕ|n−1 dHn−1 ≤ ε as the small-

ness condition in (7.3).

Proof of Proposition 7.5. Assume the claim is false. Then we find a se-
quence Äk → 0, a sequence of minimizing harmonic maps uk ( W 1,2(B+

1 (0),N )

with trace ϕk = uk

∣∣∣
T1

satisfying

Ä
sp−(n−1)
k [ϕk]

p
W s,p(Tρk

) ≤
1

k

however there is a singularity

yk ( Bρkλ(0) ∩ {(x1, . . . , xn) ( Rn : xn ≥ Äkλ/2}.

We rescale, setting vk(x) := uk(Äk x), ψk(x) := ϕk(Äk x), and find vk (
W 1,2(B+

1 (0),N ), which is a minimizing harmonic map with trace ψk on T1 sat-
isfying

(7.4) [ψk]
p
W s,p(T1)

≤
1

k
.

(We note that here we used the scale invariance.) Moreover, vk has a singularity

zk =
1

Äk
yk ( Bλ(0) ∩

{
x ( Rn : xn ≥

λ

2

}
.

Thus, by strong convergence of minimizers, Theorem 6.1 (2) and by convergence
of singularities, Theorem 2.5, up to taking a subsequence, we find in the limit a
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minimizing harmonic map v ( W 1,2(B+
1 (0),N ) which in view of (7.4) is constant

on T1, but has a singularity

z = lim
k→∞

zk ( Bλ(0) ∩

{
x ( Rn : xn ≥

λ

2

}
.

This contradicts Theorem 7.2. �

The proof of Theorem 7.4 follows now from Proposition 7.5 by a blowup argu-
ment.

Proof of Theorem 7.4. Take ε, λ, R0 from Proposition 7.5. Assume on the
contrary that we have a sequence of minimizing harmonic maps ui : Ω → N with
traces ui

∣∣
∂Ω

= ϕi such that for any Äi <
1
i and xi ( ∂Ω

Ä
sp−(n−1)
i [ϕi]

p
W s,p(Bρi

(xi)∩∂Ω) ≤ ε

and each ui has a singular point yi ( B 1
8λR0ρi

∩ Ω.

First of all we can assume that |yi − xi| =
1
4λR0Äi and dist (yi, ∂Ω) >

1
8λR0Äi

(this can be done by choosing Äi possibly smaller and moving xi to the projection
of yi onto the boundary ∂Ω).

Now define vi(x) = ui (xi + Äix). We observe that, as in Section 3.1, up to a
rigid motion we may assume that for large enough i we have

Ωi := {x ( B1(0) : xn > Ä−1
i α(Äix

′)}

where α ( C1(Rn−1,R) is the C1 function which “straightens out” the boundary
of Ω around xi ( ∂Ω and α(0) = 0, 'α(0) = 0. (For large enough i we have
Ωi ⊂ B+

1 (0)). We note that vi
∣∣
∂Ωi

= ψi are still satisfying

[ψi]
p
W s,p(B1(0)∩∂Ωi)

≤ ε.

(Observe for this to hold true we only use the scale invariance of the expression).

Ωi

0

Thus, by Proposition 6.3, we obtain a minimizing harmonic map v : B+
1 (0) → N

which by Theorem 2.5 has a singularity y in B+
1
4λR0

(0) with yn ≥ 1
8λR0. But

v
∣∣
T1

= ψ satisfies

[ψi]
p
W s,p(T1(0))

≤ ε.

This contradicts Proposition 7.5. �

As a corollary from Theorem 7.4 we also obtain that the (n − 3)-dimensional
Hausdorff measure of the singular set of a minimizing harmonic map into manifolds
with finite fundamental group is finite even if the boundary data is non-smooth.

Corollary 7.7. Let Ω ⊂ Rn be a bounded domain with a C1-boundary and
let Ã1(N ) be finite. If u : Ω → N is a minimizing harmonic map with trace ϕ (
W s,p(∂Ω,N ) with s ( ( 12 , 1] and sp = n− 1, then Hn−3(sing u) < ∞.
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Proof. Since ϕ ( W s,p(∂Ω,N ) and for sp = n−1 this space is scale invariant,
we can take ε > 0 from Theorem 7.4 and find a Ä > 0 such that

sup
x0∈∂Ω

[ϕ]pW s,p(Bρ(x0)∩∂Ω) ≤ ε

and obtain a λÄ-neighborhood of ∂Ω on which the minimizer u is smooth. By
Corollary 4.1 we know that Hn−3(sing u ∩ Ωλρ/2) < ∞, where Ωλρ/2 := {x (
Ω: dist (x, ∂Ω) > λÄ/2}. This finishes the proof. �

Later, in Theorem 9.1 we obtain a more precise bound on size of the singular
set in terms of the boundary data.

Example 7.8. As noted in the introduction, Ψ: Bn(0) → S2 defined by

Ψ(x′, x′′) = x′

|x′| for x′ ( R3 and x′′ ( Rn−3 is a minimizing harmonic map with

the singular set of dimension (n − 3). For n ≥ 4 the singular set of Ψ touches
the boundary of ∂Bn(0) but the trace ψ = Ψ

∣∣
∂Bn(0)

does not satisfy (7.2) in Theo-

rem 7.4. Indeed, ψ ( W 1,p(∂Bn(0), S2) for any p < 3 but not for p = 3, so if n ≥ 4
then ψ �( W s,p(∂Bn(0)) for sp = n− 1.

7.3. Hot spots

The following is a generalization of the [3, Theorem 2.3 (v)], it shows how to
control the energy over an annulus centered in a point at the boundary by a term
that depends on the boundary term ϕ but not on the minimizer.

Theorem 7.9 (Bridge theorem). Let Ω ⊂ Rn be a bounded domain with a C1-
boundary let also s > 1

2 , p > 1, and sp > 1. There exists a number r0 = r0(Ω) > 0
with the following property.

For x0 ( ∂Ω let A(Ä, r)(x0) := {x ( Rn : Ä < dist (x, x0) < r}. Suppose also
that Ã1(N ) is finite and that u ( W 1,2(Ω,N ) is a minimizer in Ω having boundary
map ϕ. Then, whenever 0 < r < r0, we have for any 1 < θ < 2

(7.5) r2−n

∫

A(r,2r)(x0)∩Ω

|'u|2 dx ≤ C + Cr(sp−(n−1)) θ
sp [ϕ]

θ
s

W s,p(A( r
2 ,

5r
2 )(x0)∩∂Ω)

,

where C = C(s, p, θ) > 0 is a constant independent of Ω, u, and ϕ.

Remark 7.10. Replacing Theorem 5.7 (3) by Theorem 5.7 (2) we get in place
of (7.5)

r2−n

∫

A(r,2r)(x0)∩Ω

|'u|2 dx ≤ C + Cr3−n

∫

A( r
2 ,

5r
2 )(x0)∩∂Ω

|'ϕ|2 dHn−1.

Proof of Theorem 7.9. Since Ω is bounded with a C1-boundary, we may
choose r0 so small, that the boundary ∂Ω ∩ Br0(x) is almost uniformly flat for

all x ( ∂Ω. Then we can find points (xi)
M1
i=1 (with M1 a uniform combinatorial

number) satisfying the following properties:

M1⋃

i=1

Br/4(xi) ∩ ∂Ω ⊃ A(r, 2r)(x0) ∩ ∂Ω

and

dist

(
∂Ω, A(r, 2r)(x0) \

M1⋃

i=1

Br/4(xi)

)
≥

r

8
.
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A(r, 2r)

Ω

∂Ω

Figure 7.1. Covering ∂Ω by
⋃M1

i=1 Br/4(xi)

Also, there exists a uniform number M2 such that we always find (yj)
M2
j=1 so

that Br/6(yj) ⊂ Ω and

Ω ⊃
M2⋃

j=1

Br/8(yj) ⊃ Ω ∩ A(r, 2r)(x0) \Br/8(∂Ω).

From Theorem 5.7 (3) we obtain for any 1 < θ < 2

r2−n

∫

Br/4(xi)∩Ω

|'u|2 dx � 1 + r(sp−(n−1)) θ
sp [ϕ]

θ
s

W s,p(Br/2(xi)∩∂Ω),

Summing over all the xi we obtain
(7.6)

r2−n

∫

A(r,2r)(x0)∩(Ω∩Br/8(∂Ω))

|'u|2 dx � M1+M1r
(sp−(n−1)) θ

sp [ϕ]
θ
s

W s,p(Br/2(xi)∩∂Ω).

From Theorem 5.7 (1) we obtain

r2−n

∫

Br/8(yj)

|'u|2 dx �
r
8

r − r
8

≈ 1.

and thus summing over yj ,

(7.7) r2−n

∫

A(r,2r)(x0)∩(Ω\Br/8(∂Ω))

|'u|2 dx � M2.

Together (7.6) and (7.7) give the claim. �

With this uniform energy bound, we can actually show that boundary energy in
small balls cannot induce distant singularities [3, Thm. 2.4]. In the contradiction
argument, the hot spot tends to zero in size and disappear completely in the limit.

Theorem 7.11 (regularity away from “hot spots”). Let s > 1
2 , p > 1, and

sp > 1. There is an ε(n) > 0 such that the following holds. Suppose N is a
manifold with finite fundamental group, u ( W 1,2(B+

1 (0),N ) is a minimizer with
trace ϕ on T1, and

(7.8) [ϕ]pW s,p(T1\B¸(x0))
≤ ε
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for some ball Bε(x0). Then u is smooth in

T1/2 × (μ/2, μ),

where μ > 0 is a small constant depending on n and N .

Proof. We argue by contradiction. Assume that ui : B
+
1 (0) → N is a sequence

of minimizers with boundary maps ϕi such that

[ϕi]
p
W s,p(T1\B¸i

(xi))
≤ εi

for a sequence of balls Bεi(xi) and εi
i→∞
−−−→ 0. For ri ≤ εi we have

(7.9) r
(sp−(n−1))
i [ϕi]

p
W s,p(T1\Bri

(xi))
≤ εir

(sp−(n−1))
i

Setting ri := (εi)
1
κ , where

κ =
sp

θ
+ (n− 1)

and θ ( (1, 2) we have κ > 0, (thus in particular ri < εi), and from (7.9) we get

(7.10) (ri)
(sp−(n−1)) θ

sp [ϕi]
θ
s

W s,p(T1\Bri
(xi))

≤ ri

where ri
i→∞
−−−→ 0, and up to taking a subsequence, ri < 2−i.

Now, we assume (by contradiction) that each ui has at least one singularity
yi ( T1/2 × (μ/2, μ).

By Theorem 7.9, for large enough i and for any r ≥ 2−i

r2−n

∫

B+
1 ∩A(r,2r)(xi)

|'ui|
2 dx ≤ C.

Thus, for every 1 ≤ k ≤ i,
∫

B+
1 ∩A(2−k,2−k+1)(xi)

|'ui|
2 dx ≤ C 2−k(n−2).

Up to taking another subsequence we can assume that xi → x0, and for convenience
also |xi − x0| ≤ 2−i. Then, from the above estimate we have

(7.11)

∫

B+
4/5

\B2−2i (x0)

|'ui|
2 dx ≤ C

i∑

k=1

2−k(n−2) ≤ C.

In particular by a diagonal argument and the strong convergence of minimizers,
Theorem 6.1, we obtain a minimizer u in W 1,2(B+

3/4(0) \Br(x0),N ) for any r > 0.

Moreover, its trace, which we shall call ϕ ( W 1,2
loc (T1 \ {x0},N ) is the limit of ϕi.

Observe that ϕ is constant on T1 by (7.10).
Moreover, by Theorem 2.5 the sequence of singular points yi can be assumed

to converge to a singular point of u, which we call y ( T1/2 × [μ/2, μ].
To reach a contradiction with Theorem 7.2, one needs to solve the subtle is-

sue of minimality around x0. To this end, we note that by (7.11) the energy∫
B+

3/4
\Br(x0)

|'ui|2 dx is uniformly bounded for all r > 0, and hence by monotone

convergence u ( W 1,2(B+
3/4(0),N ). In view of Lemma 7.12 below, the singularity

x0 is removable, and so u is a minimizing harmonic map in B+
3/4(0) with a constant

boundary map ϕ. This contradicts the singularity at y. �
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To complete the proof of Theorem 7.11, we need the following removability
lemma.

Lemma 7.12 (Removability of points for minimizing harmonic maps). Assume
that Ã1(N ) is finite and u ( W 1,2(B+

1 (0),N ) is a minimizer away from the origin,
i.e., for any ´ > 0 and any v ( W 1,2(B+

1 (0),N ) satisfying v = u on ∂B+
1 (0) and

v ≡ u on B+
´ (0) we have

(7.12)

∫

B+
1 (0)\B+

· (0)

|'u|2 dx ≤

∫

B+
1 (0)\B+

· (0)

|'v|2 dx.

Then u is a minimizing harmonic map in all of B+
1 (0).

Proof. Let w ( W 1,2(B+
1 (0),N ) with u ≡ w on ∂B+

1 (0). We need to show
that

(7.13)

∫

B+
1 (0)

|'u|2 dx ≤

∫

B+
1 (0)

|'w|2 dx.

Let us lift w = Ã ◦ w̃, u = Ã ◦ ũ as in Theorem 5.1, where w̃, ũ ( W 1,2(B+
1 (0), Ñ )

and Ñ is the universal cover of N and we have a.e. |'w| = |'w̃| and |'u| = |'ũ|.
For ´ > 0, let η´ ( C∞

c (B2´(0)) be a standard cut-off function satisfying η´ ≡ 1 in
B´(0) and |'η´| ≤

2
´ . We define ṽ´ ( W 1,2(B+

1 (0),R
d) as

ṽ´ := (1− η´)w̃ + η´ũ;

this function satisfies ṽ´ = ũ on ∂B+
1 (0), ṽ´ ≡ ũ in B+

´ (0) and ṽ´ ≡ w̃ in B+
1 \B2´(0).

Since Ñ is compact and simply connected we may apply Theorem 5.2, applied

in B+
2´(0) \ B´(0) and find w̃´ ( W 1,2(B+

2´(0) \ B´(0), Ñ ) such that w̃´ = ṽ´ on

∂(B+
2´(0) \B´(0)) and

(7.14)

∫

B+
2·(0)\B·(0)

|'w̃´| dx ≤

∫

B+
2·(0)\B·(0)

|'ṽ´|
2 dx.

We extend w̃´ to the whole half-ball B+
1 (0) by setting w̃´ ≡ ũ in B+

´ (0) and w̃´ = w̃

in B+
1 (0) \ B2´(0)). Now let us define w´ := Ã ◦ w̃´ ( W 1,2(B+

1 (0),N ) and note
that we have

w´ =

⎧
⎪«
⎪¬

u in B+
´ (0)

w in B+
1 (0) \B2´(0)

u on ∂B1(0)

and from (7.14)
∫

B+
2·(0)\B·(0)

|'w´|
2 dx =

∫

B+
2·(0)\B·(0)

|'w̃´|
2 dx ≤

∫

B+
2·(0)\B·(0)

|'ṽ´|
2 dx.

In particular, w´ is a competitor in the sense of (7.12), and we have
∫

B+
1 (0)\B·(0)

|'u|2 dx ≤

∫

B+
1 (0)\B·(0)

|'w´|
2 dx

=

∫

B+
1 (0)\B2·(0)

|'w´|
2 dx+

∫

B+
2·(0)\B·(0)

|'w´|
2 dx

≤

∫

B+
1 (0)\B2·(0)

|'w|2 dx+ C

∫

B+
2·(0)

|'ṽ´|
2 dx.
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Since u, and w ( W 1,2(B+
1 (0)) using the absolute continuity of the integral we find

that

(7.15)

∫

B+
1 (0)

|'u|2 dx ≤

∫

B+
1 (0)

|'w|2 dx+ C lim inf
´→0

∫

B+
2·(0)

|'ṽ´|
2 dx.

Now∫

B+
2·(0)

|'ṽ´|
2 dx �

1

´2

∫

B+
2·(0)

|ũ− w̃|2 dx+

∫

B+
2·(0)

|'ũ|2 dx+

∫

B+
2·(0)

|'w̃|2 dx.

Observe that we are in dimension n ≥ 3 and since ũ, w̃ have values in the compact

manifold Ñ , we get
1

´2

∫

B+
2·(0)

|ũ− w̃|2 dx � ´.

Thus, using again the absolute continuity of the integral and that ũ, w̃ ( W 1,2 we
find

lim
´→0

∫

B+
2·(0)

|'w̃´|
2 dx = 0.

Plugging this into (7.15) we conclude. �

In the applications, we will use the following global version of Theorem 7.11
(see [3, Cor. 2.7]).

Theorem 7.13 (boundary regularity with hot spots). Let s ( ( 12 , 1], p > 1, and
sp > 1. Let us also assume that Ã1(N ) is finite. For each bounded domain Ω ⊂ Rn

with C1-boundary, there are small constants σ, ε, λ > 0, Λ > 1, (σ depending on N
and the geometry of Ω, the others only on n and N ) so that the following statement

holds true for any minimizer u ( W 1,2(Ω,N ) with trace ϕ := u
∣∣∣
∂Ω

.

For any singular point y ( sing u with r := dist (y, ∂Ω) < σ and for any ball
B ⊂ Rn with radius λr, we have

(7.16) rsp−(n−1)[ϕ]pW s,p(∂Ω∩(BΛr(y)\B)) ≥ ε.

Proof. In principle, this is a rescaled version of Theorem 7.11, only with a
non-flat boundary.

Assume to the contrary that we have a sequence of minimizing harmonic maps,

ui ( W 1,2(Ω,N ) with trace ϕi := ui

∣∣∣
∂Ω

and singularities yi ( sing ui with ri :=

dist (yi, ∂Ω) <
1
i , but there exists a ball Bi ⊂ Rn of radius λri with

r
sp−(n−1)
i [ϕi]

p

W s,p(∂Ω∩(BΛri
(yi)\Bi))

< ε.

After rescaling vi(x) := ui(yi + rix), in view of Theorem 6.1 and Proposition 6.3
we find in the limit a map which contradicts Theorem 7.11 . �
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CHAPTER 8

Hardt and Lin’s stability

of singularities for n ≥ 3

This section is concerned with stability of singularities. By this we mean that
if two boundary maps ϕ, ϕ′ : ∂Ω → S2 are close in the right Sobolev norm, then
the singularities of their corresponding minimizers u, u′ : Ω → S2 are close as well.
Since minimizers are in general non-unique, the precise statement is a little more
subtle — e.g., by assuming uniqueness a priori.

In any case, let us discuss the right notions of closeness. In dimension n = 3,
when the singular set consists of finitely many points, Hardt and Lin [30] considered
the Lipschitz norm for boundary data, and showed that small perturbations do
not change the number of singularities. Moreover, they constructed a bi-Lipschitz
diffeomorphism η : Ω → Ω (close to identity in Lipschitz norm) such that u is close
to u′ ◦ η in some Cβ norm. These results were recently extended to the case of
W 1,2-perturbations of boundary data by Li [37].

In higher dimension n ≥ 3, we consider perturbations in the W 1,n−1 norm.
Since the singular set is a rectifiable set of codimension 3, we prove its stability
with respect to a version of Wasserstein metric (see [63]) also referred to as the flat
metric:

(8.1) dW (μ, ν) = sup

{∫

Rn

h dμ−

∫

Rn

h dν : h : Rn → R, |h| ≤ 1, |'h| ≤ 1

}
,

i.e., we show that the distance between measures Hn−3�sing u and Hn−3�sing u′ is
small. Since taking h ≡ 1 in the definition yields

|μ(Rn)− ν(Rn)| ≤ dW (μ, ν),

we obtain in particular that the size of the singular set Hn−3(sing u) is also stable
under W 1,n−1-perturbations of boundary data.

Theorem 8.1 (stability of singularities). Let Ω ⊂ Rn be a bounded domain
with a C1-boundary and let u ( W 1,2(Ω, S2) be a minimizer with boundary data
ϕ ( W 1,n−1(∂Ω, S2). If uk is a sequence of minimizers with boundary data ϕk and

(8.2) uk → u in W 1,2(Ω), ϕk → ϕ in W 1,n−1(∂Ω),

then

Hn−3�sing uk
dW−−→ Hn−3�sing u,

in particular Hn−3(sing uk) → Hn−3(sing u).

Under the assumption of uniqueness, we obtain immediately Theorem 1.1

Proof of Theorem 1.1. For the sake of contradiction, let uk be a sequence
of minimizers with boundary data ϕk satisfying ϕk → ϕ in W 1,n−1(∂Ω, S2) but not
satisfying the claim. Taking a subsequence, by Theorem 6.1 (3) we may assume that

53
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uk converges inW 1,2(Ω, S2) to a minimizer u with boundary data ϕ. By uniqueness,
u = u and Theorem 8.1 implies that Hn−3�sing uk tends to Hn−3�sing u. Thus, we
obtain a contradiction for large enough k. �

We would like to emphasize that here we work only with the target manifold
N = S2 and we could not generalize the argument to the case of simply connected
manifolds. The reason behind this is the Brezis–Coron–Lieb [14] classification of
tangent maps for S2 and its generalization Corollary 2.9, from which we deduce
that all (n− 3)-dimensional tangent maps have the same energy density.

The singularities were also classified for N = S3 by Nakajima [52], see also
[40]. It was shown by Schoen and Uhlenbeck [58] that in the case when the target
manifold is a 3-dimensional sphere, then dimH sing u ≤ n − 4. This is why it is
possible to extend Theorem 1.1, following the same arguments, in the terms of the
stability of the highest stratum, which in this case is a (n− 4)-dimensional set. In
other words, it is possible to consider Hn−4�sing u in place of Hn−3�sing u.

8.1. Outline

In analogy to the original argument of Hardt and Lin [30], the heart of the
argument lies in the special case when u is the tangent map Ψ as in (2.6) given by

R3 × Rn−3 � (x′, x′′)
Ψ

�−−−−−→
x′

|x′|
( S2.

Establishing a stability result for the singular set (which for Ψ is an (n − 3)-
dimensional plane) requires some care. Here we adopt the notion of ´-flatness
introduced in [47], which combines topological and analytic conditions for a mini-
mizer to be close to Ψ. In Section 8.2 we cite the necessary results and also show
that the condition for ´-flatness is stable under W 1,2-perturbations of the minimizer
(Proposition 8.6).

With this in hand, we are able to modify the original arguments of Naber and
Valtorta [50] and improve on them in the special case of maps into S2. In result,
we obtain the stability result for Ψ mentioned earlier (Lemma 8.7).

Since aroundHn−3-almost every singular point, any energy minimizer is close to
the map Ψ (composed with an isometry), this stability result can be seen as a local
case for Theorem 8.1. Indeed, in Section 8.4 we cover most of the singular set of u
by balls on which Lemma 8.7 can be applied. An argument based on Proposition 8.6
then shows that the same covering works for both sing u and sing uk, and the global
estimate follows.

8.2. Behavior of top-dimensional singularities

This subsection gathers the results of [47], which allow us to study further the
top-dimensional part of the singular set.

Recall the tangent map Ψ from (2.6) with its energy density Θ from (2.7),
and the rescaled energy θu from (2.1). We introduce the following property, which
basically says that u is close to Ψ (up to an isometry) on the ball Br(x).

Definition 8.2 (´-flatness). We say that an energy minimizer u : Ω → S2 is
´-flat in the ball Br(x) ⊂ Ω if

(1) x is a singular point of u and Θ ≤ θu(x, 0) ≤ θu(x, r) ≤ Θ+ ´,
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(2) for some (n− 3)-dimensional affine plane L through x, sing u ∩ Br(x) ⊂
Br/10(L),

(3) u restricted to (x+ L⊥) ∩ ∂Br/2(x) has degree ±1 as a map to S2.

Note that this definition is scale-invariant in the following sense: u is ´-flat in
Br(x) if and only if the rescaled map u(y) = u(x+ry) is ´-flat in B1. Also note that
u is smooth outside the tube around L by (2) and thus the degree is well-defined.

Definition 8.2 is strongly reminiscent of [47, Def. 4.3]. There, Reifenberg flat-
ness is additionally assumed, but it follows from

Lemma 8.3 ([47, Lemma 5.1]). Assume that sing u∩Br(x) ⊂ Bεr(L) for some
0 < ε < 1

2 and some (n − 3)-dimensional plane L through x. Moreover, assume

that u restricted to (x+ L⊥) ∩ ∂Br/2(x) has degree ±1 as a map from S2 to itself.
Then

L ∩B(1−ε)r(x) ⊂ ÃL(sing u ∩Br(x)).

Here and henceforth, ÃL denotes the nearest-point projection from Rn onto L.

In particular, it follows from our definition of ´-flatness that L ∩ Br(x) ⊂
Br/5(sing u). This allows us to apply the results of [47].

The first important point is that around each point in top-dimensional part of
the singular set, sing∗ u, the map u satisfies the ´-flatness property on sufficiently
small balls.

Lemma 8.4 ([47, Cor 5.4, Lem 5.8]). Let x ( sing∗ u. Then for each ´ > 0
there is r0 > 0 such that u is ´-flat in Br(x) for all r ( (0, r0].

Below we also note various consequences of ´-flatness proved in [47]. For sim-
plicity, we only deal with the unit ball, but one can easily obtain the corresponding
statement for any ball using the scale-invariance.

Theorem 8.5. For each ε > 0 there is ´ > 0 such that the following holds. If
u is ´-flat in B2, then

(1) for some tangent map of the form Ψ = Ψ◦τ (with Ψ as in (2.6) and some
linear isometry τ) we have

‖u−Ψ‖2W 1,2(B1)
≤ ε,

(2) for the (n− 3)-dimensional linear plane L′ := singΨ,

sing u ∩B1 ⊂ Bε(L
′) and L′ ∩B1−ε ⊂ ÃL′(sing u ∩B1),

(3) all singular points in B1 lie in the top-dimensional part sing∗ u, and u is
ε-flat in each of the balls Br(z) with z ( sing u ∩B1 and 0 < r ≤ 1/2.

Proof. Due to Lemma 8.3, we may apply the results of [47] directly.
Points (1) and (2) are essentially the content of [47, Lem 5.3], except for the

condition L ∩B1−ε ⊂ ÃL(sing u∩B1), which again follows from Lemma 8.3. Point
(3) comes from combining [47, Prop 5.6] and its corollary [47, Cor 5.7]. �

The last ingredient is another consequence of the arguments in [47]. It is to
some extent the higher-dimensional analogue of [3, Theorem 1.8, (2)].

Proposition 8.6 (Stability of ´-flatness). For each ε > 0 there is ´ > 0 such

that the following holds. If u is ´-flat in the ball B1 and uk
k→∞
−−−−→ u in W 1,2(B1),

then for k large enough there is xk ( sing uk ∩ Bε such that uk is ε-flat in the ball
B1−ε(xk).
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Proof. Choose ε′(n, ε) > 0 small enough, more precisely such that

ε′ < ε/2, (1− 2ε′)2−n(Θ + ε/2) ≤ Θ+ ε.

By taking ´ small enough, we may assume by Theorem 8.5 that

sing u ∩B1−ε′/2 ⊂ Bε′/2(L)

for some (n − 3)-dimensional linear plane L. Since singular points converge again
to singular points, Theorem 2.5, we have for all large k,

(8.3) sing uk ∩B1−ε′ ⊂ Bε′/2(L)

By [56, Proposition 4.6], we have locally uniform convergence outside the singular
set, and thus

uk ⇒ u in B1−ε′ \Bε′/2(L).

In particular, uk and u restricted to L⊥ ∩ ∂B1/2 have the same homotopy type for
large k.

By Lemma 8.3

L ∩B1−2ε′ ⊂ ÃL(sing uk ∩B1−ε′).

Combined with (8.3) this means that uk has many singular points near L. Since
Hn−3-a.e. singular point lies in sing∗ u (see (2.5)), we find xk ( sing∗ uk with
|xk| ≤

1
2ε

′. In particular, we already have θuk
(xk, 0) = Θ, by Corollary 2.9.

The last condition to show is θuk
(xk, 1 − ε) ≤ Θ + ε. By strong convergence,

for large enough k, ∫

B1−¸′

|'uk|
2 ≤ ε/4 +

∫

B1

|'u|2.

Thus

(1− 2ε′)2−n

∫

B1−2¸′(xk)

|'uk|
2 ≤ (1− 2ε′)2−n

(
ε/4 +

∫

B1

|'u|2
)

≤ (1− 2ε′)2−n(Θ + ´ + ε/4),

which does not exceed Θ + ε if only ´ ≤ ε/4. By the monotonicity formula, we
conclude that θuk

(xk, 1− ε) ≤ θuk
(xk, 1− 2ε′) ≤ Θ+ ε and hence that uk is ε-flat

in the ball B1−ε(xk). �

8.3. Local case

The lemma below can be thought of as a local version of the stability theorem.
It says that perturbing the tangent map Ψ a little does not change the size of the
singular set much.

Lemma 8.7. For each ε > 0 there is ´ > 0 such that the following is true. If
u : B80 → S2 is energy minimizing and ´-flat in B80 (see Definition 8.2), then

(1− ε)ωn−3 ≤ Hn−3(sing u ∩B1) ≤ (1 + ε)ωn−3.

Here ωn−3 = Hn−3(singΨ ∩B1) is the volume of the (n− 3)-dimensional ball.

It is natural that in order to conclude the right estimate on B1, one needs to
make assumptions on a larger ball. The ball B2 would be enough here, but working
with B80 saves us from an additional covering argument.
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Proof. The lower bound follows from a simple topological argument. Fix
ε′ = ε

n−2 , then apply Theorem 8.5 to find that there is an (n − 3)-dimensional
linear plane L such that

L ∩B1−ε′ ⊂ ÃL(sing u ∩B1),

provided ´ is small enough. Since the orthogonal projection ÃL is 1-Lipschitz, this
shows

Hn−3(sing u ∩B1) ≥ Hn−3(L ∩B1−ε′) = (1− ε′)n−3ωn−3 ≥ (1− ε)ωn−3.

A rough upper bound follows from Naber and Valtorta’s work [50], namely
Corollary 4.1,

(8.4) Hn−3(sing u ∩Br(z)) ≤ C(n)rn−3

for each ball B2r(z) ⊂ B2.
To obtain the sharp upper bound, we will follow the general outline of Naber

and Valtorta’s work [50, Sec. 1.4]. When the target manifold is S2, the original
reasoning can be made significantly easier due to topological control of singularities
(analyzed in [47]). In particular, we we will be able to apply Rectifiable Reifenberg
Theorem 4.2 to the whole singular set in B1, without decomposing it into many
pieces.

With ´1 > 0 to be fixed later, by Theorem 8.5 we can choose ´ small enough
so that all singular points in B40 lie in the top-dimensional part sing∗ u, moreover
u is also ´1-flat in each ball Br(z) with z ( sing u ∩B40 and 0 < r ≤ 20.

We can now apply the L2-best approximation Theorem 4.3 on these balls; for
simplicity, we consider the ball B10 first. By Theorem 8.5, u is W 1,2-close to a map
of the form Ψ = Ψ ◦ τ (with Ψ as in (2.6) and some linear isometry τ ). Note that
Ψ lies in symn,0 and the value

ε0 := dist L2(B10)(Ψ, symn,n−2) > 0

depends only on the dimension n (not on the choice of τ ). Hence, by taking ´1
small enough we can ensure that

dist L2(B10)(u, symn,0) ≤ ´2,

dist L2(B10)(u, symn,n−2) ≥ ε0/2

with ´2 = ´2(ε0) chosen according to Theorem 4.3. Then we obtain

β(0, 1)2 ≤ C(n)

∫

B1

(θu(y, 8)− θu(y, 1)) dμ(y),

where μ := Hn−3�sing u and β = βμ,n−3,2. Similarly,

(8.5) β(z, s)2 ≤ C(n)s−(n−3)

∫

Bs(z)

(θu(y, 8s)− θu(y, s)) dμ(y)

for each ball Bs(z) ⊂ B2 with z ( sing u. To see this, one simply needs to consider
the rescaled map u(x) = u(z + rx) and apply scaling-invariance of ´-flatness and
β-numbers.

Now we verify the hypotheses of Rectifiable Reifenberg Theorem 4.2. Fix a ball
Br(x) ⊂ B2; we only need to check that

(8.6)

∫

Br(x)

∫ r

0

β(z, s)2
ds

s
dμ(z) ≤ ´3r

n−3
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with ´3(ε) > 0 chosen according to Theorem 4.2.
First, we integrate the estimate (8.5) over Br(x) and exchange the order of

summation:∫

Br(x)

β(z, s)2 dμ(z) � s−(n−3)

∫

Br(x)

∫

Bs(z)

(θu(y, 8s)− θu(y, s)) dμ(y) dμ(z)

≤ s−(n−3)

∫

B2r(x)

∫

Bs(y)

(θu(y, 8s)− θu(y, s)) dμ(z) dμ(y)

�

∫

B2r(x)

(θu(y, 8s)− θu(y, s)) dμ(y)

Note that in the last step we used the weak upper bound (8.4) on the ball Bs(y).
When the above is integrated with respect to s, we obtain a telescopic sum.

In order to estimate it, first recall that u is ´1-flat in each ball B8r(y) such that
y ( sing u and Br(y) ⊂ B2, in particular

θu(y, 8r)− θu(y, 0) ≤ ´1

on the support of μ. Thus, the substitution s �→ 8s together with monotone con-
vergence θu(y, s) ↘ θu(y, 0) give us

∫ r

0

(θu(y, 8s)− θu(y, s))
ds

s
=

∫ 8r

r

(θu(y, s)− θu(y, 0))
ds

s

≤ ln(8)´1.

Now we are ready to combine the above estimates:
∫

Br(x)

∫ r

0

β2
μ,2(z, s)

ds

s
dμ(z) �

∫ r

0

∫

B2r(x)

(θu(y, 8s)− θu(y, s)) dμ(y)
ds

s

≤

∫

B2r(x)

ln(8)´1 dμ(y)

� ´1r
n−3,

where we used (8.4) again in the last line. Assuming ´1 ≤ ´3(ε)/C(n), we have
verified the assumption (8.6) and we infer the upper estimate

Hn−3(sing u ∩B1) = μ(B1) ≤ (1 + ε)ωn−3.

�

8.4. Global case

The idea of the proof is to cover most of sing u by good balls, on which u is
´-flat and thus the measure of sing u is controlled by Lemma 8.7. The rest of the
singular set is to be covered by bad balls, whose total mass is small. To achieve
this, we will need the following simple covering lemma.

Lemma 8.8. Let S ⊆ Rn be a compact set of finite Hk-measure and let B be
a family of open balls such that for each point p ( S, all small enough balls around
p belong to B. Then, given any ε > 0, S can be covered by the union of two finite
families of open balls Good, Bad, where Good ⊆ B consists of pairwise disjoint balls
and Bad = Brj (pj) is a small family in the sense that

(8.7)
∑

j

rkj ≤ ε.
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Proof. One way to construct this covering is by using Vitali’s covering the-
orem for Radon measures (e.g., [42, Theorem 2.8]). Applying it to the measure

μ := Hk�S, we obtain a countable family of pairwise disjoint balls A =
{
Brs(ps)

}
,

covering μ-almost all S and satisfying B2rs(ps) ( B for each s. Since the measure
μ is finite, we can divide A into two subfamilies Good′, Bad′, where Good

′ is finite
and Bad

′ is small, i.e., μ
(⋃

Bad
′
)
≤ ε. To obtain the desired properties, we still

need to alter these families a little.
First, we define Good to be the balls of Good′ slightly enlarged to open balls,

but still pairwise disjoint and still belonging to B.
Now, the remaining part S \

⋃
Good is a compact set and

μ
(
S \
⋃

Good

)
≤ μ
(⋃

Bad
′
)
≤ ε.

By definition of Hausdorff measure, this set can be covered by a finite family of
open balls Bad satisfying the smallness condition (8.7). �

Proof of Theorem 8.1. Fix ε > 0. For the sake of clarity, we focus on
showing that the difference |Hn−3(sing uk)−Hn−3(sing u)| is controlled by ε for k
large enough. The estimate for Wasserstein distance follows the same lines; it is
briefly discussed at the end of the proof.

Step 1 (boundary regularity). Choose ε0 > 0 according to the boundary
regularity theorem, Theorem 7.4. Fix Ä > 0 such that

sup
x∈∂Ω

∫

Bρ(x)

|'ϕ|n−1 ≤ ε0/2.

Then u is smooth in a λÄ-neighborhood of ∂Ω. By strong convergence of ϕk to ϕ
in W 1,n−1(∂Ω), we may assume w.l.o.g. for all k ( N,

sup
k

sup
x∈∂Ω

∫

Bρ(x)

|'ϕk|
n−1 ≤ ε0.

As a consequence, we may assume each uk is also smooth in the same fixed neigh-
borhood of ∂Ω.

Step 2 (covering the low-dimensional part). Recall the stratification,
Section 2.5,

S0 ⊂ . . . ⊂ Sn−4 ⊂ Sn−3 = sing u,

in which the k-th stratum Sk has Hausdorff dimension k or smaller. We will consider
separately the set Sn−4 and the top-dimensional part

sing∗ u := Sn−3 \ Sn−4.

Since sing u is compact and sing∗ u is an open subset of sing u (see Theorem 8.5),
Sn−4 is also compact. At the same time, it has a uniform distance from ∂Ω and
Hn−3(Sn−4) = 0, so it can be covered by a finite family Bad1 = {Bri(pi)} of open
balls satisfying the smallness condition (8.7)

∑

i

rn−3
i ≤ ε

and such that B2ri(pi) ⊂ Ω for each i.
On each such ball Corollary 4.1 yields Hn−3(sing u ∩ Bri(pi)) ≤ Crn−3

i , with
C depending only on the dimension n. Summing over all balls, we obtain

Hn−3
(
sing u ∩

⋃
Bad1

)
≤ Cε.
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The same estimate holds verbatim for each uk, by the same application of Corollary
4.1.

Step 3 (covering the top-dimensional part and estimating
Hn−3(sing u)). Here, we use the covering lemma (Lemma 8.8) for the set S :=
sing u \

⋃
Bad1. Thanks to Step 1, sing u has positive distance from the boundary,

so it is a compact set of finite Hn−3-measure due to Corollary 4.1. We choose B to
be

B = {Br(p) : p ( sing∗ u, u is ´-flat in B81r(p)} ,

where ´(ε) > 0 is chosen according to Lemma 8.7. Since Sn−4 is already covered by
Bad1, we know that S ⊂ sing∗ u and hence small enough balls around each point
in S lie in B by Lemma 8.4.

Having checked the properties required by Lemma 8.8, we can cover S by the
union of a finite disjoint family Good ⊂ B and another finite family Bad2 satisfying
(8.7). We add the latter to Bad1 to obtain the family of bad balls Bad := Bad1∪Bad2,
which still satisfies the smallness condition (8.7).

Repeating the reasoning from Step 2, we have again via Corollary 4.1,
(8.8)

Hn−3
(
sing u ∩

⋃
Bad

)
≤ 2Cε, Hn−3

(
sing uk ∩

⋃
Bad

)
≤ 2Cε for all k.

By assumption, the map u is ´-flat in B80rs(ps) for each ball Brs(ps) ( Good.
By Lemma 8.7, we now obtain

(1− ε)ωn−3r
n−3
s ≤ Hn−3(sing u ∩Brs(ps)) ≤ (1 + ε)ωn−3r

n−3
s

for each s. To finish the proof, we need to show that a similar comparison holds
for uk if k is large.

Step 4 (estimating Hn−3(sing uk)). Since uk → u in W 1,2(Ω) and sing u is
covered by the open families Good,Bad, Theorem 2.5 (singular points converge to
singular points) implies that the same holds for uk if k is large enough (from now
on we assume it is). For bad balls, the rough estimate (8.8) will be enough, so we
focus on good balls.

By Proposition 8.6, we can assume (by taking k large and ´ small) that for each
Brs(ps) ( Good there is pks ( sing uk such that |pks − ps| ≤ εrs and uk is ´′-flat in
the ball B80(1+ε)rs(p

k
s). Here, the value of ´′ is chosen to be ´(ε) from Lemma 8.7.

Applying Lemma 8.7 to uk on balls B(1−ε)rs(p
k
s) and B(1−ε)r(p

k
s), we obtain

(1− ε)n−2ωn−3r
n−3
s ≤ Hn−3(sing uk ∩B(1−ε)rs(p

k
s))

≤ Hn−3(sing uk ∩Brs(ps))

≤ Hn−3(sing uk ∩B(1+ε)rs(p
k
s))

≤ (1 + ε)n−2ωn−3r
n−3
s ,

which is only slightly worse that the estimate for Hn−3(sing u).
Step 5 (comparison). Recalling that Good is a disjoint family, we can sum

the above estimate over all s to obtain

(1− ε)n−2A ≤ Hn−3(sing uk ∩
⋃

Good) ≤ (1 + ε)n−2A,

where A :=
∑

s ωn−3r
n−3
s . Combining it with the estimate for bad balls (8.8), we

finally obtain

(1− ε)n−2A ≤ Hn−3(sing uk) ≤ (1 + ε)n−2A+ 2Cε.
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Exactly the same estimate is true for u. Combining these two yields
∣∣Hn−3(sing uk)−Hn−3(sing u)

∣∣ ≤
(
(1 + ε)n−2 − (1− ε)n−2

)
A+ 2Cε

≤

(
(1 + ε)n−2

(1− ε)n−2
− 1

)
Hn−3(sing u) + 2Cε.

Evidently the right-hand side tends to zero when ε → 0, which ends the proof of
stability of Hn−3(sing u).

Step 6 (Wasserstein distance estimate). With just a little bit more
care, the Wasserstein distance estimate follows. Let us decompose the measure
μ := Hn−3�sing u into μ = μb +

∑
s μs, where

μb = μ�
(⋃

Bad \
⋃

Good

)
, μs = μ�Brs(ps) for each ball Brs(ps) ( Good.

The estimate for μb is simply dW (μb, 0) ≤ μ (
⋃
Bad) ≤ 2Cε, whereas on each good

ball Brs(ps) we have the inequalities
∫

Rn

h dμs − ωn−3r
n−3
s h(ps) =

∫

Brs (ps)

(h− h(ps)) dμ

+ (μ(Brs(ps))− ωn−3r
n−3
s )h(ps)

≤ rsμ(Brs(ps)) + |μ(Brs(ps))− ωn−3r
n−3
s |

≤ (rs + 2ε)ωn−3r
n−3
s .

for any function h : Rn → R satisfying |h| ≤ 1 and |'h| ≤ 1. Thus

dW (μk, ωn−3r
n−3
s ´ps

) ≤ 3εωn−3r
n−3
s ,

if only each radius is smaller than ε. By triangle inequality, dW (μ, ν) ≤ 3εA+2Cε,
where ν =

∑
s ωn−3r

n−3
s ´ps

is the packing measure associated to Good and once
again A = ν(Rn). Applying the same reasoning to uk, we conclude as before. �

8.5. The case n = 3

We close this section with the proof in the special case when the domain is
three dimensional. In this case, using the results of previous sections and adapting
the arguments of Hardt and Lin from [30] the proof is quite quick.

The counter-example by Strzelecki and the first-named author in [43] implies
that there is no stability result for W 1,p with p < 2 perturbations of the boundary.
In this sense the following Theorem 8.9 is the sharp limit case.

Theorem 8.9. Let Ω ⊂ R3 be a bounded domain with a C1-boundary.
Assume that v ( W 1,2(Ω, S2) is the unique minimizing harmonic map with

boundary data v|∂Ω = ψ and let ψ ( W s,p(∂Ω, S2), where sp = 2, s ( ( 12 , 1],
p ( [2,∞).

Then for any ε > 0 there is a ´ = ´(ε,Ω, ψ) > 0 such that whenever u is a

minimizing harmonic map u ( W 1,2(Ω, S2) with trace ϕ := u
∣∣∣
∂Ω

close to ψ,

(8.9) [ψ − ϕ]W s,p(∂Ω) ≤ ´

then u has the same number of singularities as v. Moreover,

(8.10) ‖u− v‖W 1,2(Ω) ≤ ε.
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Proof. We first prove the statement (8.10). Assume the claim is false for a
given unique minimizer v and for some ε > 0. Then we find a sequence of minimizers
ui with traces ϕi which satisfy

[ϕi − ψ]pW s,p(∂Ω) ≤
1

i
but

(8.11) ‖ui − v‖W 1,2(Ω) > ε.

Now we obtain a contradiction since by strong convergence of minimizers, Theo-
rem 6.1, the sequence ui converges to the unique minimizer v in W 1,2. In particular
(8.11) cannot be true for all i ( N.

Regarding the same number of singularities we recall that by Corollary 7.7 for
boundary data in W s,p(∂Ω) with sp = 2 and s > 1

2 there can only be finitely many
singularities. Let us assume that the theorem is false for a unique minimizer v
which has exactly N < ∞ singularities x1, . . . , xN .

Then we find a sequence ui ( W 1,2(Ω, S2) of minimizing harmonic maps with

traces ϕi := ui

∣∣∣
∂Ω

( W s,p(∂Ω, S2) with

(8.12) [ψ − ϕi]
2
W s,p(∂Ω) ≤

1

i

and such that either all ui have M < N singularities (yi,k)
M
k=1 or all ui have at

least N + 1 singularities (yi,k)
N+1
k=1 .

From the strong convergence of minimizing harmonic maps, Theorem 6.1, and
the uniqueness of v, we may assume, up to a subsequence, that

ui → v in W 1,2(Ω, S2).

If each ui had M < N singularities we find a contradiction to Theorem 2.10,
since all the singularities of v have to come as limits of singularities of ui.

So we may assume that each ui has at least M > N singularities. Since, by
Theorem 2.5, singularities of ui which do not approach the boundary ∂Ω converge
to singularities of v, and two different singularities of ui cannot converge to the same
singularity of v by uniform distance (proportional to the distance of the boundary)
of singularities, Theorem 2.12, the only way this is possible is if singularities of ui

approach the boundary ∂Ω.
However, we can rule this out simply by the assumption (8.9). Since ψ (

W s,p(∂Ω, S2) we may find a � > 0 such that

sup
x0∈∂Ω

[ψ]pW s,p(∂Ω∩Bρ(x0))
<

ε

2p
,

where ε is as in the uniform boundary regularity Theorem 7.4. By (8.12) we have
for ϕi

sup
x0∈∂Ω

[ϕi]
p
W s,p(∂Ω∩Bρ(x0))

< 2p−1

(
ε

2
+

1

i

)
.

Thus for sufficiently large i the singularities of ui and v cannot approach the λÄ-
neighborhood of the boundary, where λ is a uniform constant. �
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CHAPTER 9

Almgren and Lieb’s linear law:

Size of the singular set

Here we obtain a higher-dimensional counterpart and at the same time a sharp-
ened version of Almgren–Lieb’s linear estimate on the number of singularities. Let
us stress that the fundamental result that makes such estimates possible is Naber
and Valtorta’s interior measure bound (Corollary 4.1).

Theorem 9.1. Let us assume that the fundamental group of N is finite. Let
Ω ⊂ Rn be a bounded domain with a C1 boundary and let u ( W 1,2(Ω,N ) be a
minimizing map with u|∂Ω = ϕ. Assume that ϕ ( W s,p(∂Ω,N ) for s ( ( 12 , 1] and
p > 1 with sp = n− 1. Then

(9.1) Hn−3(sing u) ≤ C[ϕ]pW s,p(∂Ω).

Remark 9.2. In particular, we recall that we denoted

[ϕ]n−1
W 1,n−1(∂Ω) =

∫

∂Ω

|'ϕ|n−1 dHn−1,

thus if ϕ ( W 1,n−1(∂Ω,N ), then we have

Hn−3(sing u) ≤ C

∫

∂Ω

|'ϕ|n−1 dHn−1.

Remark 9.3. As shown in Section 10.1 the result is optimal in the case n = 3
in the sense that it fails for sp < 2.

The study of singularities near the boundary involves the following covering
lemma, which we here cite from [3, Theorem 2.8, 2.9].

Theorem 9.4 (Covering lemma). Let B be a family of closed balls in Rn, μ be
a Borel measure over Rn, and let τ, ω ( (0, 1). Moreover, assume that the following
two hypotheses hold:

(1) For any two different Br(p), Bs(q) ( B we have

|p− q| ≥ ωmin(r, s).

(2) Suppose that Br(p) ( B and q ( Rn is an arbitrary point, then

μ (Br(p) \Bτr(q)) ≥ 1.

Then

#balls in B ≤ Cμ(Rn),

for a constant C(ω, τ, n) > 0.

63
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64 9. ALMGREN AND LIEB’S LINEAR LAW: SIZE OF THE SINGULAR SET

Proof of Theorem 9.1. Choose σ > 0 (depending on the geometry of ∂Ω)
according to Theorem 7.1 and Theorem 7.13. We first estimate the measure of the
set

A1 := {z ( sing u : r(z) ≤ σ}, where r(z) = 1
2 dist (z, ∂Ω),

which is covered by balls Br(z)(z). Then choose a Vitali subcovering such that the
balls Brj (zj) cover A1 and the balls Brj/5(zj) are disjoint; let B be the family of
balls Brj/λ(zj) with λ as in Theorem 7.13. The first condition from Theorem 9.4
with ω = λ/5 follows: for any two distinct balls in our collection we have

|zi − zj | ≥
1
5 (ri + rj) ≥

λ
5 max(ri/λ, rj/λ).

Now for an open U ⊂ Rn we define the Borel measure μ as follows:
Case 1: s ( ( 12 , 1), p > 1, sp = n− 1

(9.2) μ(U) :=
1

ε

∫

U∩∂Ω

∫

∂Ω

|ϕ(x)− ϕ(y)|p

|x− y|2n−2
dx dy.

Obviously, μ is a measure and we have

μ(U) ≥
1

ε

∫

U∩∂Ω

∫

U∩∂Ω

|ϕ(x)− ϕ(y)|p

|x− y|2n−2
dx dy.

Case 2: s = 1, p = n− 1

μ =
1

ε
|'ϕ|n−1 Hn−1�∂Ω, i.e., μ(U) =

1

ε

∫

∂Ω∩U

|'ϕ|n−1 dHn−1.

In both cases ε > 0 is the constant from Theorem 7.13. If we set τ = λ2, then the
second condition of Theorem 9.4 with k = n− 3 follows from Theorem 7.13 and we
infer that

#B ≤ C[ϕ]pW s,p(∂Ω).

On each ball Brj (zj) Corollary 4.1 implies Hn−3(sing u∩Brj (zj)) ≤ Crn−3
j ≤ C(Ω).

Summing over all balls, we obtain

Hn−3(A1) ≤ C[ϕ]pW s,p(∂Ω).

Next we estimate the set

A2 := {z ( sing u : r(z) ≥ σ}.

For each ball Bσ(y) with dist (y, ∂Ω) ≥ 2σ we have a bound Hn−3(sing u∩Bσ(y)) ≤
Cσn−3 by Corollary 4.1. The set A2 can be covered by finitely many such balls
(the number of balls depending only on σ and the geometry of Ω), which gives us
an estimate

Hn−3(A2) ≤ C0.

Taking C0 as above and ε as in Theorem 7.1, we have two possibilities. Either the
smallness condition [ϕ]pW s,p(∂Ω) ≤ ε is satisfied and Hn−3(A2) = 0 follows, or

Hn−3(A2) ≤ C0 ≤
C0

ε
[ϕ]pW s,p(∂Ω).

In both cases, combining the estimates for A1 and A2 ends the proof. �
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CHAPTER 10

Final remarks

10.1. Examples

We present two examples that show that the linear law we obtain in dimension
n = 3 is sharp. Our examples will be based on the following method of installing
singular points from [3], see also [43, Section 2].

Definition 10.1. Let ψ : S2 → S2 be smooth near y ( S2 and let r > 0 be
a fixed number. We denote by 〈ψ〉y,r : S2 → S2 a smooth boundary map which
arises from ψ by a small deformation in a neighborhood of y so that the following
conditions are satisfied:

(a) 〈ψ〉y,r(x) = ψ(x) whenever |x− y| ≥ r;
(b) 〈ψ〉y,r(x) ≡ ψ(y) if |x− y| = r/2;
(c) The restriction of 〈ψ〉y,r to the annular region r

2 < |x − y| < r satisfies
the Lipschitz condition with a Lipschitz constant Lψ which depends only
on ψ and not on r;

(d) 〈ψ〉y,r is a diffeomorphism of the spherical cap {|x− y| < r/2} ∩ S2 onto
the punctured sphere S2 \ {ψ(y)} such that the boundary Dirichlet integral
energy of 〈ψ〉y,r on this cap equals 8Ã + o(1) as r → 0.

The existence of maps described in Definition 10.1 is well known, the proof
follows for example a modification of [1, Appendix A.2].

Theorem 10.2 ([3, Theorem 4.3]). Suppose u : B3
1 → S2 is a minimizer which

is unique for its boundary mapping ψ : S2 → S2 and which has k interior singular-
ities at x1, . . . , xk ( B3

1 . Moreover, assume that
∫
S2
|'ψ|2 dH2 < ∞ and that ψ

is smooth near y0 ( S2. Let ψj : S2 → S2 be any sequence of continuous boundary
mappings such that ψj = 〈ψ〉y0,2/j for all j sufficiently large.

Finally, let uj be any minimizer in B3
1 with boundary mapping ψj. Then, for all

sufficiently large j, the mapping uj will have at least k + 1 interior singular points
y0,j and x1,j , . . . , xk,j such that y0,j → y0 and x
,j → x
 (for each � = 1, . . . , k) as
j → ∞.

In the first example, Lemma 10.3, we show that there cannot be any linear law
(or a similar result, e.g., a power law) for boundary energies [ϕ]W s,p(∂Ω) if sp < 2.
See a similar construction in [43, Remark 3.9].

Lemma 10.3. Assume that the following holds for 0 < s ≤ 1, p ≥ 1: for every
ε > 0 there exists a ´ such that if u ( W 1,2(B3

1 , S
2) is a minimizer with trace ϕ and

(10.1) [ϕ]W s,p(∂B1) ≤ ´

65
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66 10. FINAL REMARKS

then

(10.2) # {singularities of u} ≤ ε.1

Then sp ≥ 2.

Proof. Let ϕ0 : S2 → S2 be a constant map, which admits a constant map as
the unique smooth minimizer B3

1 → S2. Let us fix a point N ( S2 and modify ϕ0 in
order to insert a singularity – consider the map ϕ´ = 〈ϕ0〉N,´. Then, for sufficiently
small ´, we have by Definition 10.1

∫

S2

|'ϕ´|
2 dH2 =

∫

D·(N)

|'ϕ´|
2 dH2 ≤ 10Ã.

Assume to the contrary that q := sp < 2. Then, by Hölder’s inequality we get

(10.3)

∫

S2

|'ϕ´|
q dH2 ≤

(∫

D·(N)

|'ϕ´|
2 dH2

) q
2

|D´(N)|1−
q
2 � ´2−q.

Combining this with ϕ´ ( S2, we obtain from Gagliardo–Nirenberg’s inequality [15]
(for θ = 1− s)

(10.4) [ϕ´]W s,p(S2) ≤ ‖ϕ´‖
θ
L∞‖'ϕ´‖

1−θ
Lq � ´

2−q
p .

Since q = sp < 2, the seminorm [ϕ´]W s,p(S2) can be made arbitrarily small and
so (10.1) is satisfied. On the other hand, by Theorem 10.2 any minimizer with
boundary data ϕ´ must have at least one singularity, thus (10.2) fails.

�

If we modify this example further, it is also possible to construct a minimizing
harmonic maps with infinitely many singularities (with finite W 1,2−ε-energy at the
boundary).

Theorem 10.4. Let ε > 0 be any positive number. There is a boundary map
ϕ ( W 1,2−ε(∂B3

1 , S
2), such that the following holds:

there is a minimizer u : B3
1 → S2 with u

∣∣
∂B3

1
= ϕ and u has countably infinitely

many singularities.

In order to prove Theorem 10.4 we will modify Almgren and Lieb’s “boiling
water example” [3, Theorem 4.4].

We will need the following Lemma, which shows how we can use a small modifi-
cation of the boundary data in order to guarantee that the corresponding minimizer
is unique, see [3, Theorem 3.2] and also [43, Lemma 3.8].

Lemma 10.5. Given a map ϕ ( C∞(S2, S2) and a small spherical cap D´(y0),
one may find a new map ϕ̃ which differs from ϕ only on D´(y0), ‖ϕ−ϕ̃‖W 1,2(∂B3) <

10´ and – most importantly – there exists exactly one minimizer ũ : B3
1 → S2 with

ũ
∣∣
∂B3

1
= ϕ̃.

Proof of Theorem 10.4. Fix 0 < ε < 1. We divide the sphere S2 into infin-
itely many disjoint regions near which the singularities will appear (and infinitely
many disjoint regions near which we make small corrections in order to ensure that
the boundary data will admit only one minimizer).

1In fact, for small ε we simply conclude that u has no singularities at all.
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We choose two sequences of points on the sphere {yj}∞j=1 and {ỹj}∞j=1, yj , ỹj (

S2. We also choose a sequence of radii {�j}∞j=1 with �j < 2−j , such that all of the

discs from
⋃∞

j=1D�j
(yj) and

⋃∞
j=1 D�j

(ỹj) are pairwise disjoint, where D�k
(yk) :=

B�j
(yj) ∩ S2 stands for the disc on the sphere S2.
The regions nearD�j

(yj) will be the regions near which singularities will appear
and the discs D�j

(ỹj) will be used to correct the boundary map, using Lemma 10.5,
in such a way that the boundary map will admit a unique minimizer.

We begin with a constant map ϕ0 : S2 → S2 and we will modify it until we
obtain the desired boundary map. Since ϕ0 is smooth and admits only one mini-
mizer, i.e., the constant map, we can install a singularity using Theorem 10.2, by
modifying the map ϕ0 in the following way

ϕ1 :=

{
〈ϕ0〉y1,�1

for x ( D�1
(y1),

ϕ0(x) for x ( S2 \D�1
(q1).

for �1 < 2−1 small enough so that Theorem 10.2 would guarantee that any mini-
mizer u1 with u1

∣∣
∂B3

1
= ϕ1 has an interior singularity x1 ( B�1

(y1) ∩B3
1 .

For any ε ( (0, 1) by Hölder’s inequality and conditions (c) and (d) in the
Definition 10.1 we have

∫

D�1
(y1)

|'ϕ1|
2−ε dH2 =

∫

D �1
2

(y1)

|'ϕ1|
2−ε dH2 +

∫

D�1
(y1)\D �1

2
(y1)

|'ϕ1|
2−ε dH2

≤ (8Ã + o(1))
2−¸
2 Ã

¸
2

(�1
2

)ε
+ L2−ε

ϕ0
Ã
3

4
�21,

(10.5)

where o(1) → 0 as Ä1 → 0.
In order to install the next singularity, we need to modify the first map ϕ1 in

such a way that the new boundary map will admit only one minimizer. For this we
use Lemma 10.5 and modify ϕ1 in a small disc D�1

(ỹ1), away from the disc D�1
(y1)

in order to obtain ϕ1 ( C∞(S2, S2) with the properties:

(P1.1) ϕ1 ≡ ϕ1 outside D�1(ỹ1);

(P1.2) There exists exactly one minimizer u1 with u1

∣∣
∂B3

1
= ϕ1;

(P1.3) u1 has at least one singularity x1 ( B�1(y1) ∩B3
1 ;

(P1.4) ‖ϕ1 − ϕ1‖W 1,2(S2) < 10�1.

For ϕ1 we have
∫

S2

|'ϕ1|
2−ε dH2 =

∫

D�1
(ỹ1)

|'ϕ1|
2−ε dH2 +

∫

S2\D�1
(ỹ1)

|'ϕ1|
2−ε dH2

≤

(∫

D�1
(ỹ1)

|'ϕ1|
2 dH2

) 2−¸
2

Ã
¸
2 �ε1

+ (8Ã + o(1))
2−¸
2 Ã

¸
2

(�1
2

)ε
+ L2−ε

ϕ0
Ã
3

4
�21.

(10.6)

By (P1.4) and since ϕ1 ≡ const on D�1
(ỹ1), we have

(10.7)

∫

D�1
(ỹ1)

|'ϕ1|
2 dH2 ≤ 2

∫

D�1
(ỹ1)

|'(ϕ1 − ϕ1)|
2 dH2 ≤ 20�1.
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Thus, combining (10.6) with (10.7) we get

(10.8)

∫

S2

|'ϕ1|
2−ε dH2 ≤ (20)

2−¸
2 Ã

¸
2 �

2+¸
2

1 +(8Ã+o(1))
2−¸
2 Ã

¸
2

(�1
2

)ε
+L2−ε

ϕ0
Ã
3

4
�21.

Now we proceed by induction and repeat this procedure in order to install another
singularity near the point yj ( S2 . Let j ( {1, 2, . . .}, assume we have already
defined the boundary map ϕj , which satisfies:

(Pj.1) ϕj admits only one minimizer uj : B
3
1 → S2;

(Pj.2) uj has at least j singular points: x1,j , . . . , xj,j , such that xk,j ( B�k
(yk)∩

B3
1 for each k ( {1, . . . , j};

(Pj.3) outside of the union of the discs
⋃j

k=1 D�k
(yk)∪D�k

(ỹk) we have ϕj ≡ ϕ0;
(Pj.4) ϕj satisfies the estimate

∫

S2

|'ϕj |
2−ε dH2 ≤

j∑

k=1

C(ε)
(
�

2+¸
2

j + �εj + �2j

)
�

j∑

k=1

�εj .

Then, we define the map ϕj+1 : S
2 → S2 by

ϕj+1 :=

{
〈ϕj〉yj ,�j

for x ( D�j+1
(yj+1),

ϕj for x ( S2 \D�j+1
(yj+1).

We define also the correction ϕj+1, to make sure that there is exactly one minimizer
corresponding to the boundary map, by applying Lemma 10.5 to ϕj+1 on a small
disk D�j+1

(ỹj+1). Obtaining a boundary map for which

(10.9) ‖ϕj+1 − ϕj+1‖
2
W 1,2(S2) = ‖ϕj+1 − ϕj‖

2
W 1,2(D�j+1

(ỹj+1))
≤ 100�2j+1,

for a �j+1 < 2−(j+1) small enough so that Theorem 10.2 would guarantee that
any minimizer uj+1 corresponding to ϕj+1 has an interior singularity xj+1,j+1 (
B�j+1

(yj+1) ∩ B3
1 and at least j other singular points x1,j+1, . . . , xj,j+1, such that

each xk,j+1 ( B�k
(yk) ∩B3

1 for k ( {1, . . . , j}.
We have exactly as in (10.5)

∫

D�j+1
(yj+1)

|'ϕj+1|
2−ε dH2 ≤ (8Ã + o(1))

2−¸
2 Ã

¸
2

(�j+1

2

)ε
+ L2−ε

ϕ0
Ã
3

4
�2j+1,

(10.10)

where o(1) → 0 as Ä1 → 0. The Lipschitz constant appearing in (10.10) is again
Lϕ0

as the map ϕj+1 = ϕj = ϕ0 in D�j
(yj).
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We also have from (10.9) and (Pj.4)

∫

D�j+1
(ỹj+1)

|'ϕj+1|
2−ε dH2

≤ 2

(∫

D�j+1
(ỹj+1)

|'(ϕj+1 − ϕj)|
2−ε dH2 +

∫

D�j+1
(ỹj+1)

|'ϕj |
2−ε dH2

)

�

(∫

D�j+1
(ỹj+1)

|'(ϕj+1 − ϕj)|
2 dH2

) 2−¸
2

�εj+1 +

j∑

k=1

�εk

≤ �εj+1 +

j∑

k=1

�εk =

j+1∑

k=1

�εk.

(10.11)

Thus, by (10.10), (10.11), and ((Pj.4))

∫

S2

|'ϕj+1|
2−ε dH2

≤

∫

D�j+1
(ỹj+1)

|'ϕj+1|
2−ε dH2 +

∫

D�j+1
(yj+1)

|'ϕj+1|
2−ε +

∫

S2

|'ϕj |
2−ε dH2

�

j+1∑

k=1

�εk + (8Ã + o(1))
2−¸
2 Ã

¸
2

(�j+1

2

)ε
+ L2−ε

ϕ0
Ã
3

4
�2j+1 +

j∑

k=1

�εk �

j+1∑

k=1

�εk.

(10.12)

Now we pass with j → ∞ in order to obtain ϕ ( W 1,2−ε(S2, S2) with

∫

S2

|'ϕ|2−ε �

∞∑

k=1

�εk ≤
∞∑

k=1

2−kε < ∞.

Moreover, ϕ admits a minimizer u (any limit point of uj) that has infinitely many
singular points xk ( B�k

(yk) ∩B3
1 , these singularities accumulate at q∞ ( S2.

We note also that ϕ /( W 1,2(S2, S2).
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q0

q1

q2

q3
q4

q5
q6

q7
q∞

Figure 10.1. The singularities appear somewhere in the red bubbles

�

10.2. Remarks about the optimal boundary norm in higher dimensions

We do not know if our results are optimal for n > 3. However, we can construct
the following.

Example 10.6. We recall that by [58], for maps into S3 the singular set has
dimension less or equal (n− 4).

There exist ϕk : S3 → S3 homotopically nontrivial (deg(ϕk) = 1) such that for
any p < 3 ∫

S3

|'ϕk|
p dH3 → 0,

implying H0(singuk) ≥ 1, where uk : B
4
1 → S3 are minimizers corresponding to the

boundary data ϕk, i.e., uk

∣∣
S3

= ϕk.

This in particular, implies that the linear law with W 1,2 cannot be true for the
stratum Sn−4 and singularities are not stable under W 1,p for p < 3 perturbations
of the boundary.

Motivated by this example we conjecture the following.

Conjecture 10.7. Let Ω ⊂ Rn, N be such that Ã1(N ) is finite and let u (
W 1,2(Ω,N ) be a minimizing harmonic map with u

∣∣
∂Ω

= ϕ. Then for each k =
3, . . . , n we have

Hn−k(Sn−k) ≤ C

∫

∂Ω

|'ϕ|k−1 dHn−1.
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A starting point to study this problem would be to develop a theory for each
strata Sn−k similar to the one for Sn−3 = sing u by [50], in particular a counterpart
of Theorem 1.3. Note that even for k = 3 our conjecture suggests an improvement
from W 1,n−1 to W 1,2-control of the boundary data.

10.3. Remarks about other target manifolds

In the case when the target manifold is an orientable surface (dimN = 2),
since our results cover the case when Ã1(N ) is finite, we are left with the case when
genus of the target manifold is positive (genus(N ) ≥ 1). In this situation, we have
as a consequence of a maximum principle — the result of Wood [65,66].

Theorem 10.8 ([65, Theorem 3.3 (ii)] & Erratum [66]). Let M, N be compact
orientable surfaces and assume that genus(M) = 0 and genus(N ) > 0. Then the
only harmonic maps w : M → N are constant maps.

One can see that this result implies sing u = Sn−4 and hence Hn−3(sing u) = 0
in the case where u is a minimizing harmonic map into a compact orientable surface
N of genus ≥ 1. Indeed, at each point in the top-dimensional part of the singular
set sing∗ u = Sn−3 \ Sn−4 there is a nonconstant (n − 3)-symmetric tangent map
w : Rn → N . Due to its symmetries, such a map reduces to a harmonic map
w : S2 → N . The genus of S2 is 0 and hence w cannot be constant by the above
theorem.

Thus, the linear law of Almgren and Lieb Theorem 9.1 holds for every compact
connected orientable surface in the target.

We note here also two special cases of manifolds with infinite fundamental
group: N = S1 and N = T2. In the first case if we consider harmonic maps (not
necessarily minimizing) u ( W 1,2(B, S1), where B ⊂ Rn is a simply connected

domain, with given boundary data u
∣∣
∂B

= φ ( W
1
2 ,2(∂B, S1), then we have by a

lifting argument (see [9,11]) u = eiũ with ũ ( W 1,2(B,R) and one can easily check
that ũ is a solution to {

−∆ũ = 0 in B

ũ = eiφ̃ on ∂B,

where φ̃ is a lifting of φ, i.e., φ = eiφ̃. Thus, u has no singularities.
Moreover, Rivière showed that if we consider a harmonic map u : B ⊂ Rn →

T2, where T2 = S1 × S1 is a torus of revolution (i.e., with metric of the form
λ(φ) dθ2 + dφ2), then u must be smooth (u does not have to be minimizing). See
[54].

Thus, in the case when N = S1 or N = T2 not only minimizing harmonic maps
have no singularities but all weakly harmonic maps are regular.
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APPENDIX A

Trace theorems

A.1. A trace theorem

In this section we review the trace theorems used throughout the paper. Here
we present the results for domains in Rn for n ≥ 3. The main point is to set the
trace separately for two parts of the boundary and obtain estimates without the
interaction term.

We will employ the following notation. For a point y0 ( ∂Ω on the boundary
we will consider intersection of balls Br(y0) with the domain Ω. We distinguish two
parts of the boundary of ∂(Br(y0) ∩ Ω) and write:

∂(Br(y0) ∩ Ω) = ∂Ω+
r (y0) ∪ TΩr(y0),

where ∂Ω+
r (y0) := ∂Br(y0) ∩ Ω and TΩr(y0) := Br(y0) ∩ ∂Ω.

If the center of the ball will play no role we will omit y0 in the above notation
and write simply ∂Ω+

r and TΩr
.

Lemma A.1. Let Ω ⊂ Rn be a C1 domain. Then, there exists an R = R(Ω)
such that for every y0 ( ∂Ω and r < R the following is true:

Let u ( W 1,2(Br(y0) ∩ Ω) be a solution to

⎧
⎪«
⎪¬

∆u = 0 in Br(y0) ∩ Ω

u = 0 on ∂Ω+
r (y0) = ∂Br(y0) ∩ Ω

u = ψ on TΩr(y0) = Br(y0) ∩ ∂Ω.

Then for any s satisfying s > 1
2 we have

(A.1) ‖'u‖L2(Br(y0)∩Ω) � r
−1+2s

2 [ψ]W s,2(TΩr(y0)).

Proof. We begin by noting that since the Ω is of class C1 there exists an
R = R(Ω) for which we have for every y0 ( ∂Ω and r < R

(A.2) |x− y| ≥ C dist (x, ∂TΩr(y0)), for x ( TΩr(y0), y ( ∂Ω+
r (y0),

where C is a constant independent of Ω. In what follows we will omit y0 in the
notation.

x ( TΩr

y ( ∂Ω+
r

y0

73
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By the trace theorem [20] (see also [4, §20] or [45, Section 12.2]) and Poincaré
inequality we have

∫

Br∩Ω

|'u|2 dx � [u]2
W

1
2
,2(∂(Br∩Ω))

� [u]2W s,2(∂(Br∩Ω)).

Moreover, since u = 0 on ∂Ω+
r we have

[u]2W s,2(∂(Br∩Ω)) = [ψ]2W s,2(TΩr )
+ 2

∫

TΩr

∫

∂Ω+
r

|ψ(x)|2

|x− y|n−1+2s
dy dx.

For the latter term we have using (A.2)

∫

TΩr

∫

∂Ω+
r

|ψ(x)|2

|x− y|n−1+2s
dy dx

�

∫

TΩr

|ψ(x)|2
∫

∂Ω+
r

1

|x− y|n−1+2s
dy dx

�

∫

TΩr

|ψ(x)|2
∫

|z|≥dist (x,∂TΩr )

1

|z|n−1+2s
dy dx

�

∫

TΩr

|ψ(x)|2

dist (x, ∂TΩr
)2s

dx.

Now, since 2s > 1 we can apply Hardy’s inequality [17]. Observe that since χTΩr
ψ

is the trace of a W 1,2 function, it can be approximated by functions in C∞
c (simply

by scaling the support inside and convolution). Thus

∫

TΩr

|ψ(x)|2

dist (x, ∂TΩr
)s2

dx �

∫

TΩr

∫

TΩr

|ψ(x)− ψ(y)|2

|x− y|n−1+s2
dx dy = [ψ]2W s,2(TΩr )

.

This proves (A.1).
�

As a consequence we can obtain a trace inequality, which depends only on the
behavior of the boundary map of the curved part of the boundary ∂Br(y0)∩Ω and
the “flat” part Br(y0) ∩ ∂Ω but not on the interaction term.

Lemma A.2. Let Ω ⊂ Rn be a C1 domain. Then, there exists an R = R(Ω)
such that for every y0 ( ∂Ω and r < R the following is true:

Let u ( W 1,2(Br(y0) ∩ Ω) be a solution to

⎧
⎪«
⎪¬

∆u = 0 in Br(y0) ∩ Ω

u = ϕ on ∂Ω+
r (y0)

u = ψ on TΩr(y0).

Then for any s > 1
2 we have

‖'u‖L2(Br(y0)∩Ω) � r
−1+2s

2

(
[ψ]W s,2(TΩr(y0)) + [ϕ]W s,2(∂Ω+

r (y0))

)
.

Proof. Again, in what follows we will omit y0.
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First we note that we can extend ϕ to all of ∂(Br ∩ Ω) with1

(A.3) [ϕ]W s,2(∂(Br∩Ω)) � [ϕ]W s,2(∂Ω+
r ).

Now we solve the equation
{
∆v = 0 in Br ∩ Ω

v = ϕ on ∂(Br ∩ Ω).

Then, again by the classical trace inequality, Poincaré inequality, and (A.3) we have

(A.4) ‖'v‖L2(Br∩Ω) � [ϕ]W s,2(∂Ω+
r ).

On the other hand we have⎧
⎪«
⎪¬

∆(u− v) = 0 in Br ∩ Ω

u− v = 0 on ∂Ω+
r

u− v = ψ − ϕ on TΩr
.

By Lemma A.1,

‖'(u− v)‖L2(Br∩Ω) � [ψ − ϕ]W s,2(TΩr )

� [ψ]W s,2(TΩr )
+ [ϕ]W s,2(TΩr )

� [ψ]W s,2(TΩr )
+ [ϕ]W s,2(∂Ω+

r ).

(A.5)

Together, (A.4) and (A.5) imply the claim. �

We also need the following Gagliardo–Nirenberg type inequality

Lemma A.3. Let Γ ⊂ Rn−1 be a compact domain. For every ϕ ( W 1,2∩L∞(Γ)
the following interpolation inequality holds for a constant independent of ϕ:

(A.6) [ϕ]2
W

1
2
,2(Γ)

� ‖ϕ‖L∞(Γ) ‖'ϕ‖L2(Γ).

Proof. We have by the Gagliardo–Nirenberg inequality, [15]

[ϕ]
W

1
2
,2(Γ)

� ‖ϕ‖
1
2

L2(Γ)‖'ϕ‖
1
2

L2(Γ).

Since Γ is compact, we also have

‖ϕ‖L2(Γ) � ‖ϕ‖L∞(Γ).

�

From the above lemmata we obtain the following trace estimates.

Theorem A.4 (Trace Theorem). Let Br ⊂ Rn, n ≥ 3, be a ball of radius r > 0
and ϕh : Br → Rd be the harmonic extension of ϕ : ∂Br → Rd, then

(A.7)

∫

Br

|'ϕh|2 �

∫

∂Br

∫

∂Br

|ϕ(x)− ϕ(y)|2

|x− y|n
dx dy

and

(A.8)

∫

Br

|'ϕh|2 � r
n−1
2 ‖ϕ‖L∞(∂Br) ‖'ϕ‖L2(∂Br).

1For Sn−1
+ we would proceed in the following way — we extend by an even reüection the map

ϕ into the whole sphere Sn−1, this way the seminorm on the interaction term may be estimated
by [ϕ]

Ws,2(Sn−1
+ )

, then we may project Sn−1
−

into T1 and we obtain the desired estimate. For

∂(Br ∩ Ω) we proceed similarly.
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Let Ω ⊂ Rn be a bounded domain with a C1-boundary and let y0 ( ∂Ω. If
ϕh : Br(y0) ∩ Ω → Rd is the harmonic extension of ϕ : ∂(Br(y0) ∩ Ω) → Rd, then

(A.9)

∫

Br(y0)∩Ω

|'ϕh|2 �

∫

∂(Br(y0)∩Ω)

∫

∂(Br(y0)∩Ω)

|ϕ(x)− ϕ(y)|2

|x− y|n
dx dy.

Moreover, for any 1 < θ < 2, s > 1
2 , p > 1, sp > 1, we have

∫

Br(y0)∩Ω

|'ϕh|2 � r
(3−n)θ

2 +n−2 ‖ϕ‖2−θ

L∞(∂Ω+
r (y0))

‖'ϕ‖θ
L2(∂Ω+

r (y0))

+ r(sp−(n−1)) θ
sp+n−2‖ϕ‖

2− θ
s

L∞(TΩr(y0))
[ϕ]

θ
s

W s,p(TΩr(y0))
.

(A.10)

Proof. (A.7) and (A.9) are classical trace inequalities (see [20]). The inequal-
ity (A.8) is a consequence of Lemma A.3 and (A.7).

For the clarity of the presentation we write the proof of (A.10) for the case
Br(y0) ∩ Ω = B+

1 . Applying Lemma A.2 we get for any 1 < θ < 2

(A.11)

∫

B+
1

|'ϕh|2 � [ϕ]2
W

θ
2
,2(S+

1 )
+ [ϕ]2

W
θ
2
,2(T1)

By Gagliardo–Nirenberg inequality we have

[ϕ]2
W

θ
2
,2(S+

1 )
� ‖ϕ‖2−θ

L2(S+
1 )
‖'ϕ‖θ

L2(S+
1 )

� ‖ϕ‖2−θ

L∞(S+
1 )
‖'ϕ‖θ

L2(S+
1 )
.

Applying Gagliardo–Nirenberg inequality for an s0 > θ
2 to the second term of (A.11)

we obtain

[ϕ]2
W

θ
2
,2(T1)

� ‖ϕ‖
2− θ

s0

L∞(T1)
[ϕ]

θ
s0

W
s0, θ

s0 (T1)
.

Applying once again Gagliardo–Nirenberg inequality for any s > s0 and any p > 1
we get

[ϕ]
θ
s0

W
s0, θ

s0 (T1)
� ‖ϕ‖

θ
s0
(1− s0

s )
Lp1 (T1)

[ϕ]
θ
s

W s,p(T1)
� ‖ϕ‖

θ
s0
(1− s0

s )
L∞(T1)

[ϕ]
θ
s

W s,p(T1)
,

where s0
θ =

1−
s0
s

p1
+ s0

sp .

Combining the last two inequalities gives

[ϕ]2
W

θ
2
,2(T1)

� ‖ϕ‖
2− θ

s

L∞(T1)
[ϕ]

θ
s

W s,p(T1)
.

Thus, ∫

B+
1

|'ϕh|2 � ‖ϕ‖2−θ

L∞(S+
1 )
‖'ϕ‖θ

L2(S+
1 )

+ ‖ϕ‖
2− θ

s

L∞(T1)
[ϕ]

θ
s

W s,p(T1)
.

The general statement follows from rescaling. �

A.2. A Counterexample

The above trace theorem, part (A.10), does not hold with W
1
2 ,2. Indeed, this

follows essentially from a counterexample to Hardy–Sobolev inequality on bounded
domains for W

1
2 ,2 by Dyda [17] (attributed to an idea by Bogdan). For an overview

on available Hardy–Sobolev inequalities see also [13].
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Lemma A.5. There does not exist a constant C > 0 such that the following
holds.

Assume u ( W 1,2(B+
1 ) is a harmonic function in B+

1 ⊂ Rn, n ≥ 3 with
⎧
⎪«
⎪¬

∆u = 0 in B+
1

u = ϕ on T2

u = ψ on S+
1 ,

where ϕ ( W
1
2 ,2(T2) and ψ ( W 1,2(S+

1 ). Then

(A.12) ‖'u‖2
L2(B+

1 )
≤ C

(∫

T2

∫

T2

|ϕ(x)− ϕ(y)|2

|x− y|n
dx dy +

∫

S+
1

|'Tψ|
2

)
.

Proof.
Step 1. There exist two sequences of functions {ϕ1

i }
∞
i=1 and {ϕ2

i }
∞
i=1 with the

following properties: for each i = 1, 2, . . . we have ϕ1
i , ϕ

2
i : T2 → R, supp ϕ1

i ⊂ T1− 1
i
,

ϕ1
i = ϕ2

i in T1,

lim
i→∞

∫

T2

∫

T2

|ϕ1
i (x)− ϕ1

i (y)|
2

|x− y|n
dx dy = ∞,

and

lim sup
i→∞

∫

T2

∫

T2

|ϕ2
i (x)− ϕ2

i (y)|
2

|x− y|n
dx dy < ∞.

Indeed, the sequence {ϕ1
i }

∞
i=1 is constructed by Dyda in [17]. More precisely, he

obtains a sequence of smooth functions ϕ1
i ( C∞

c (T1) such that

lim
i→∞

∫

T1

∫

T1

|ϕ1
i (x)− ϕ1

i (y)|
2

|x− y|n
dx dy = 0,

but

lim
i→∞

∫

T2

∫

T2

|ϕ1
i (x)− ϕ1

i (y)|
2

|x− y|n
dx dy = ∞.

On the other hand T1 is an extension domain, see [67], so there exists an extension

ϕ2
i of ϕ1

i

∣∣∣
T1

such that

lim sup
i→∞

∫

T2

∫

T2

|ϕ2
i (x)− ϕ2

i (y)|
2

|x− y|n
dx dy < ∞.

Step 2. Now consider the solution ui ( C∞(B+
1 ) to

⎧
⎪«
⎪¬

∆ui = 0 in B+
1

ui = 0 on S+
1

ui = ϕ1
i on T1.

By Gagliardo’s trace theorem [20](which was originally proved for Lipschitz do-
mains), we have

(A.13) ‖'ui‖
2
L2(B+

1 )
≈

∫

∂B+
1

∫

∂B+
1

∣∣χT1
(x)ϕ1

i (x)− χT1
(y)ϕ1

i (y)
∣∣2

|x− y|n
dx dy.
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Let now N ( ∂B1 be the north pole. There is a bi-lipschitz map τ : T2 → ∂B+
1 \

B 1
100

(N) which is the identity on T1. Then we have

∫

∂B+
1

∫

∂B+
1

∣∣χT1
(x)ϕ1

i (x)− χT1
(y)ϕ1

i (y)
∣∣2

|x− y|n
dx dy

≥

∫

τ(T2)

∫

τ(T2)

∣∣χT1
(x)ϕ1

i (x)− χT1
(y)ϕ1

i (y)
∣∣2

|x− y|n
dx dy

�

∫

T2

∫

T2

∣∣χT1
(τ (x))ϕ1

i ◦ τ (x)− χT1
(τ (y))ϕ1

i ◦ τ (y)
∣∣2

|x− y|n
dx dy

=

∫

T2

∫

T2

∣∣ϕ1
i (x)− ϕ1

i (y)
∣∣2

|x− y|n
dx dy.

(A.14)

Here we used the change of variables formula which holds for bi-Lipschitz maps,
see e.g., [19, §3.3.3, Theorem 2]. Thus, combining (A.13) with (A.14) we get

lim
i→∞

‖'ui‖
2
L2(B+

1 )
= ∞.

On the other hand, since ϕ1
i = ϕ2

i on T1, we have
⎧
⎪«
⎪¬

∆ui = 0 in B+
1

ui = 0 on S+
1

ui = ϕ2
i on T1.

Therefore, if (A.12) was true, we would obtain

lim sup
i→∞

‖'ui‖
2
L2(B+

1 )
� lim sup

i→∞

∫

T2

∫

T2

∣∣ϕ2
i (x)− ϕ2

i (y)
∣∣2

|x− y|n
dx dy < ∞,

a contradiction. �
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Linéaire 5 (1988), no. 4, 297–322. MR963102 ↑23, 30, 32

[27] Robert Hardt, David Kinderlehrer, and Fang Hau Lin, The variety of configurations of static

liquid crystals, Variational methods (Paris, 1988), Progr. Nonlinear Differential Equations
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Ph.D. Thesis, Université de Paris VI, 1993. 71
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