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Abstract

We consider minimizing harmonic maps u from @ C R" into a closed Rie-
mannian manifold A" and prove:

(1) an extension to n > 4 of Almgren and Lieb’s linear law. That is, if the
fundamental group of the target manifold N is finite, we have

H" 3 (sing u) < C’/ |Vru|"t dH™
o0

(2) an extension of Hardt and Lin’s stability theorem. Namely, assuming that
the target manifold is A" = S? we obtain that the singular set of u is stable
under small W"~lperturbations of the boundary data.

In dimension n = 3 both results are shown to hold with weaker hypotheses, i.e.,
only assuming that the trace of our map lies in the fractional space WP with
s € (%, 1] and p € [2, 00) satisfying sp > 2. We also discuss sharpness.
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CHAPTER 1

Introduction

A minimizing harmonic map from an n-dimensional domain Q C R” into A is
amap u € WH2(Q, M) that minimizes the Dirichlet energy

E(u) ::/Q|Vu|2d:v

among all maps in W12(Q, N) with the same boundary data ¢: 9Q — A. Here,
the target manifold N is a smooth, closed (i.e., compact and without boundary)
Riemannian manifold isometrically embedded in RY. The Sobolev space W2(Q, N)
is defined as

WhHQN) == {ue W"(QRY): u(z) € N almost everywhere} .

In such a geometrical setup, one might suspect that minimizing harmonic maps are
always smooth. However, this holds only in the case of geodesics (n = 1) and in
the conformal case (n = 2), see Morrey’s classical result [48].

In contrast, in dimensions n > 3 even continuity cannot be guaranteed. Mini-
mizers of the Dirichlet energy satisfy the Euler-Lagrange system of equations

—Au = A(u)(Vu, Vu) in Q,

where A is the second fundamental form of the isometric embedding ' C R%. In
the special case when V' = S%~1, this system takes the form

~Au = |Vul*u in Q.

For n > 3, critical points, i.e., solutions to the Euler-Lagrange equations might be
everywhere discontinuous, see Riviere’s seminal [55]. Minimizers enjoy better reg-
ularity, but discontinuities may still appear. The simplest example are obstructions
of topological nature: by Hopf-Brouwer theorem we know that if the topological
degree of a boundary map ¢: 0B3 — S? is not zero, there is no continuous ex-
tension u: B3> — S2. The continuity of minimizers may also fail without such
a topological obstruction. Hardt and Lin in [28] constructed a boundary datum
p € C>*(0B3,S?) with deg ¢ = 0 for which all minimizers' must have singularities.

Consequently, in dimensions n > 3, the analysis of singularities of minimizing
harmonic maps is an intriguing theory. The singular set singu of a mapping u €
W12(Q,N) is defined as the complement of its regular set

singu = Q\ {z € Q: u is smooth on some neighborhood of z}.
For harmonic maps the analysis of the singular set started with the fundamen-
tal work of Schoen and Uhlenbeck [56]. They showed that one can estimate the
1 Minimizing harmonic maps into S? may be non-unique, consider : B” — S? and —u: B" —
S? which have the same energy and may have the same boundary datum.

1
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2 1. INTRODUCTION

Hausdorff dimension of the singular set of minimizers. Namely,
dimy (singu) <n —3

for any minimizing harmonic map from an n-dimensional domain Q C R" into an
arbitrary closed Riemannian manifold N [56, Theorem II]. They also prove in the
special case n = 3 that the H° measure (the counting measure) of the singular set
is locally finite. The latter result was recently generalized for any n > 3 by Naber
and Vatorta, see Theorem 1.3 below.

A basic example of a singular minimizing harmonic map is given by the “hedge-
hog” map

ug: B™ = S"7Y wg(z) = -

|z
The minimality of uy was proved for n = 3 by Brezis, Coron, and Lieb [14, Theorem
7.1] and for all n > 3 by Lin [38], see also Coron and Gulliver [16, Theorem 1.1].
This example shows the optimality of the result of Schoen and Uhlenbeck. Indeed,

’

let ¥(a/,2") = % for 2/ € R® and 2’ € R"3. Then ¥ € W%(B",S?) is a

']

minimizing harmonic map with sing ¥ = ({0} x R"~3) N B™.

Additionally, the map ug: B3> — S? is the unique minimizer for its boundary
mapping id: 0B® — S? [14, Theorem 7.1]. In general there is no uniqueness of
minimizing harmonic maps for a given boundary datum. For example, in [27],
Hardt, Kinderlehrer, and Lin construct a boundary map ¢: B3 — S? for which
there exist countably many minimizing harmonic mappings or, in [30] Hardt and
Lin construct a boundary datum which admits at least two minimizers: one of
which is smooth and the other one is singular.

More quantitative results were obtained in the late 80’s of the last century —
for n = 3 and N = S?, Almgren and Lieb [3] showed that one can estimate the
number of singularities of minimizing harmonic maps in terms of their trace maps,
which became to be known as Almgren and Lieb’s linear law:

(1.1) #{singularities of u} < C’(Q)/ |Vru|> dH2.
0

Moreover, in [30] Hardt and Lin showed that for a unigue? harmonic minimizer
v € WH2(Q,S?) the number of singularities remains the same for all minimizers
whose trace is close in the Lipschitz-norm to the trace of v. This is known as Hardt
and Lin’s stability theorem.

The natural questions arise: what are the minimal regularity assumptions on
the boundary map in order to obtain a linear estimate similar to (1.1)? Is it possible
to obtain a similar bound for other target manifolds? Is it possible to extend this
result to higher dimensions of the domain?

The first named author and Strzelecki proved in [43] that singularities of min-
imizing harmonic maps from a 3-dimensional domain to S? are not stable under
WlP_perturbations of the boundary data, for p < 2. Thus, combining this with
the stability result of Hardt and Lin one can wonder whether the stability theorem
of Hardt and Lin cannot be strengthened to W'2-perturbations of the boundary.

2By considering restrictions to a proper subset one may obtain uniqueness. In fact, the
set of boundary data ¢: S2 — S? admitting unique minimizers is dense in W1:2(9B3,S?), see
[3, Theorem 4.1].
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1. INTRODUCTION 3

To introduce our main results, let us begin with definitions of the spaces in-
volved. For s € (0,1) the fractional Sobolev space on the boundary of a smooth
enough set € is defined as

WP(0R2) = {f € LP(O): [flwsr(a0) < 00},

where the Gagliardo seminorm is given by

weriony = ([ [ AL a0y ane-i )

‘We note here that for s = 1 we will sometimes write

[‘P]Wl,p(ag) = (/ |v¢‘p den—1>
o0

We recall that by Gagliardo’s trace theorem [20] the fractional Sobolev spaces
are naturally related to boundary value problems: For any function f € W12(€)

we have ¢ € W22(9Q), where ¢ = f|8Q (in the trace sense) with H(b”w%'?(aﬂ) <

Cllfllwr2(q). Conversely, given any v € W%’Q(GQ) there exists an extension g €
Wh2(Q), 9‘89 = v (in the trace sense) for which [|g|lw1.2(q) < C||7‘|W%‘2(89)'

However, we will be working with maps which have values in a manifold N
(with finite fundamental group). Gagliardo’s theorem [20] extends to the vectorial
case, assuring us that for any map u € WhH2(Q,N) its trace belongs to the frac-
tional space W%’Z(ﬁQ,J\/’ ), but it gives us no information about the range of an
extension of a W%’Q(BQ,J\/' ) map. In fact, in our case there are boundary maps
@ € W2:2(dQ, V'), which admit no manifold-valued extension u € W2(Q, V') with
u‘ a0 = - See discussion in Chapter 5. A reader not familiar with algebraic topol-
ogy is encouraged to think of A" as of S?. Let us remark that our condition on the
target manifold applies also to ' = RP? as a target manifold, which is the most
relevant case for the theory of liquid cristals®.

Our main results are the following.

THEOREM 1.1. Let Q C R"™ be a bounded smooth domain. Assume that for some
boundary map o € WHn=1(08,S?) there is a unique minimizer u € W12(Q,S?).
Then, for each € > 0, there is a § > 0 such that

(1.2) [ — @llwrn-100) <0 = dw (K" isingv, H" PLsingu) < e

for any minimizer v with boundary datum .
Here, dyw is the 1-Wasserstein distance, see (8.1), which in particular satisfies

|H" 3 (sing u) — H" > (sing v)| < dw (K" PLsingu, H" Lsingv) .

THEOREM 1.2. Let w1 (N) be finite and let Q@ C R™ be a bounded smooth domain.
Assume that u € W12(Q,N) is a minimizing harmonic map with u|aq = ¢ (in the
trace sense). Let us also assume that sp=n—1 and s € (%, 1]. Then

(1.3) H" 3 (singu) < C(n,Q, s)[p [ (o0)-

In the case n = 3 Theorem 1.2 is optimal, in the sense it cannot be improved
to the case when sp < 2, see Lemma 10.3.

3Harmonic maps are highly simplified models of liquid crystals, see [18,25]
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4 1. INTRODUCTION

Also note that the theorem includes the limiting case s = 1, in which the
inequality closely resembles Almgren and Lieb’s linear law for n = 3:

H" 3 (singu) < C’(n,Q)/ [Ve|"tdH™ L.
00

A very challenging question is whether the sp = n—1 condition in Theorem 1.2
can be improved for n > 3. Technically, this condition controls each singularity
close to the boundary of Q@ — but only (n — 3)-dimensional singularities appear
in the estimate. So one might be tempted to believe that a bound with sp = 2 is
sufficient in (1.3) for any dimension n. On the other hand, one might also be able
to analyze each stratum of the singular set via a different Sobolev norm along the
boundary, see a discussion in Section 10.2.

As for Theorem 1.1 our argument relies crucially on the classification of tangent
maps. For the case when the target manifold is S? such a classification was obtained
by Brezis, Coron, and Lieb in [14, Theorem 1.2]. It is also known for S? in the
target, see Nakajima’s [52] and also [40]. For N' = S? it was proved by Schoen
and Uhlenbeck that the estimate on the Hausdorff dimension of the singular set of
any minimizing harmonic map u € W12(£2,S%) may be improved to dimy, sing u <
n — 4 [58]. Tt is possible to extend Theorems 1.1 and 1.2 to consider H"*Lsing u,
following the same argument. Apart for the cases N' = S? and /' = S? we do not
know whether Theorem 1.1 can be extended to any other target manifold.

For results in the higher dimension n > 3 the main new ingredient is the interior
analysis of the singular set of minimizing harmonic maps by Naber and Valtorta
[50]. The following measure bound allows us to generalize Almgren and Lieb’s
linear law to higher dimensions.

THEOREM 1.3 ([50, Theorem 1.6]). For n > 3, let u: Ba.(y) — N be energy
minimizing and

TQ_”/ |Vu|? dz < A.
B27‘(y)

Then there exists a constant C = C(n,N,A) > 0 such that
H" 3 (singu N B,(y)) < Cr" 3.

Let us also mention here that results on estimates of the singular sets in the
case of quasiconvex functionals were obtained earlier in [36,44].

In order to prove the stability theorem (Theorem 1.1), one needs to refine the
above measure estimates. In addition to the methods developed in [50] (discussed
in Section 4), these refinements also involve the results of the second named author,
concerned with the structure of the singular set:

THEOREM 1.4 ([47, Cor. 1.5]). If n > 4 and u: B"™ — S? is a minimizing
harmonic map, then the top-dimensional part sing, u forms an open subset of singu
and it is a topological (n — 3)-dimensional manifold of Hélder class C*7 with every
0<y<l1.

The necessary ingredients are further discussed in Section 8.2.

Along the way we survey several results for minimizing harmonic maps, in
particular we put an emphasis to present in details proofs from [3]. For an excellent
survey on the topic of singularities of harmonic maps we refer the interested reader
to [24].
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1.2. NOTATION 5

1.1. Outline of the article

In Chapter 2 we recall the basic results on partial regularity of minimizing
harmonic maps, in particular we recall the monotonicity formula, define tangent
maps, and the stratification of the singular set.

In Chapter 3 we recall basic tools for boundary regularity, in particular we set
the notation for “straightening” the boundary.

In Chapter 4 we outline those results of Naber and Valtorta’s [50] that are the
most relevant in our case.

In Chapter 5 we discuss the properties of minimizers with values in a manifold
with finite fundamental group. In particular in Section 5.1 we recall the “extension”
property, which combined with a lifting theorem is our basic tool for comparing the
energies. As a consequence we obtain uniform local boundedness of minimizing
harmonic maps in Section 5.2 and Caccioppoli inequalities in Section 5.3.

In Chapter 6 as a consequence of the previous section we present the compact-
ness results for minimizing harmonic maps.

In Chapter 7 we present boundary regularity results. In particular we present
the improved uniform boundary regularity results for singular boundary data.

In Chapter 8 we give the proof of our first main result Theorem 1.1.

In Chapter 9, we give the proof of our second main result Theorem 1.2, which
is stated there as Theorem 9.1.

In Chapter 10 we first give examples to prove the optimality of our results in
n = 3 (Section 10.1). Next we discuss the possible improvement of our results for
n > 3 and state a conjecture in Section 10.2. Then, in Section 10.3, we briefly
discuss the case of target manifolds with infinite fundamental group.

We close the paper with Appendix A.1, where we review the trace theorems
used throughout the paper.

1.2. Notation

Throughout the paper we let A” C R? be a smooth, closed Riemannian man-
ifold, embedded into R? and © C R™ be a bounded domain with at least C'-
boundary. We write Bs(N) = {z € R?: dist (z,N) < §} for the tubular neighbor-
hood of N on which the nearest point point projection map s is well defined and
as smooth as the manifold /. Existence of such a neighborhood is a well-known
fact (see, e.g., [61, Appendix 2.12.3]).

Similarly, for an affine plane L we will write Bs(L) to denote the tubular
neighborhood of L. We denote by B,.(y) the ball centered in y with radius r. By
R? =R"N{z € R": 2, > 0} we denote the upper half-space. B, (y) is given by
B (y) = Br(y)NRY. For any r > 0 we write T,.(y) = B,(y) N{x € R": x,, = 0} for
the flat part and S;f(y) = 0B, NR’}. for the curved part of the boundary of B;f (y).
Sometimes, we will omit the center and write only B, T}, or S}, when it will not
cause any confusion. We will also write sometimes B¥(y), to emphasize that the
ball is k-dimensional.

For simplicity we use lowercase Greek letters 1, ¢, ¢ for boundary maps and
u, v, w etc. for interior maps. The letters 7, R, p,t will be usually reserved for the
radii. We denote the tangential gradient of u (i.e., the gradient of its restriction
uloq) by Vru = Vu — (Vu)r @ v, where v is the outward normal vector. The
indices s, p will be reserved for the order and integrability in the fractional Sobolev
space. Capital Greek letters ®, ¥ will be reserved for tangent maps, 6, (y,r) for
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6 1. INTRODUCTION

the rescaled energy of the map u at point y, and © will be the energy density of
7'/|z'|. For z € R we will write x = (2/,2”) C R"™* x R unless k = 1, then
r = (2/,7,) € R"1 x R. We write wy, for the measure of the k-dimensional unit
ball. In estimates we will often write A < B, which means that there exists a
constant C, not dependent on any crucial quantity, such that A < CB.

We note here that we will use the letter 7 to denote several things, which might
be misleading. Here we list our usage of this letter (of course we will also use the
letter to denote the Archimedes’ constant):

(1) 7 without any index will be a Riemannian cover 7 € C (N, N);
(2) mn will be the nearest point projection onto the manifold defined on a
tubular neighborhood of a manifold N:

wn: Bs(N) = N;

(3) m(WN), for i = 1,2,... will denote the usual i-th homotopy group of the
manifold A'. We call 71 (N') the fundamental group of A/. As customary,
we write mo(N) = 0 for connected manifolds.

Throughout the paper the term minimizer or energy minimizer will refer to an N-
valued map minimizing the Dirichlet energy among W12(Q, V') maps with same
boundary data, unless otherwise stated.
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CHAPTER 2

Partial regularity in the interior

In this section we recall the basic regularity results for minimizing harmonic
maps, used throughout the paper.

2.1. The e-regularity theorem

The regularity theory of harmonic maps is based on the e-regularity theorem
from the seminal work of Schoen—Uhlenbeck, see [56, Theorem I and Theorem 3.1].

THEOREM 2.1 (e-regularity of minimizers). There exists a constant € > 0 de-
pending on n and N such that the following holds. If u € WY2(Q,N) is a mini-
mizing harmonic map in an open domain £ C R™ and

RQ‘”/ |Vu?dz < e
Br(y)

for some ball Br(y) C Q, then u is smooth in the smaller ball Bg/2(y).

REMARK 2.2. In fact in [56] the authors prove that the solutions are Holder
continuous on smaller balls. For smoothness of the solutions we refer the reader to,
e.g., [39,49]. Moreover, if the target manifold is analytic, for example N' = S¢~1,
then it can be shown that any continuous harmonic map is analytic; we refer to
10, 62].

Note that the rescaled energy R?*~™ [ Br() |Vu|? appears naturally in this con-
text. In fact, one can reduce this theorem to the case Bgr(y) = Bi as follows.
With the assumptions as above, one easily checks that the rescaled map u(x) =
u((z — y)/R) is a minimizing harmonic map in Bj satisfying fBl |Vu|? < e. Then
smoothness of % in By, implies that u is regular in Bg/5(y). This rescaling argu-
ment will be used multiple times in our considerations.

2.2. Monotonicity formula

As already mentioned, the rescaled energy
(2.1) Ou(y,7) = T27”/ |Vu|? dz
Br(y)

is a central object in the study of singularities. We now show that it is monotone in
r. The first published version of a monotonicity formula for minimizing harmonic
maps was in Schoen and Uhlenbeck’s [56, Proposition 2.4].

7
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8 2. PARTIAL REGULARITY IN THE INTERIOR

THEOREM 2.3 (Interior Monotonicity formula). Let Q@ C R™ and let u €
WE2(Q,N) be a minimizing harmonic map. Then for any 0 < r < R < dist (y,99)

(2.2)

R2_"/ |Vu\2dx—r2_"/ |Vul|? dz > / |z —y[2™"
Br(y) Br(y) Br(y)\Br(y)

z—y

where g—’y‘ is the directional derivative in the radial direction o=yl

2

0
au dz,

ov

r

It is now evident that 72" I |Vu|? dz is constant in 7 if and only if u is a
0-homogeneous (i.e., radially constant) map. Minimizing harmonic maps with this
property are called tangent maps and play a special role (see Section 2.5).

Proor. We follow the original proof of Schoen and Uhlenbeck.

Without loss of generality we may assume that y = 0. For almost every g €
[r, R], the trace u|g, belongs to W2(8B,, ). For such p, the map v(z) = u(o- ﬁ)
lies in W12 (B,, N), moreover fBQ Vol = -5 faBQ |Vrul?, where Vru denotes the
differential restricted to directions tangent to 9B5,.

Since v = w on 9B, v is a valid competitor for © on B,. It follows from

minimality of u that
/ Vul? < L/ IVl
B n—2Jop

e e

Thus,

20,(0,0) = 0 / Vul? — (n - 2)g' " / VP
OB

e e

2 QQ—n/ |vu‘2 _QQ—n/ |VT’IL|2
0B, oB

[«
2
0B,

o
using the decomposition |Vu|? = |Vul? + |% |2 in the last line. Since 6(0, p) is an
absolutely continuous function, the claim can be obtained by integrating the above
inequality from o =r to o = R. O

)

As observed by Hardt and Lin in [29, Lemma 4.1], Theorem 2.3 can be strenght-
ened by considering a squeeze deformation as in [2, 2.4, 2.5] — one can prove an
equality instead of a lower bound.

THEOREM 2.4. Let u, r, R be as in Theorem 2.3, then
(2.3)

szn/ |Vu\2dx—r2*"/ |Vu|2dx:2/ |z —y|>™
Br(y) By (y) Br(y)\Br(y)

We remark here that this result was generalized for stationary harmonic maps
(and Yang-Mills fields) by Price in [53], see also [61, Section 2.4] for a nice presen-
tation.

2

% dzx.

ov
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2.5. TANGENT MAPS 9

2.3. Energy density

It follows from the monotonicity formula (Theorem 2.3) that the limit

2.4 0, (2,0) == lim 6, (z,r :limrQ*”/ Vul|? dz
(24 (0:0) = Ty uasr) = T [Vl

exists. We shall call it the energy density of v at y. Evidently, 6,(z,0) = 0 at
regular points.

With this in hand, the e-regularity theorem (Theorem 2.1) can be restated as
follows:

there is €(n,N) > 0 s.t. 0,(z,2r) < e = u is smooth in B,(x),
in particular, 6, (x,0) < € = z ¢ sing u.
A weak version of partial regularity can now be deduced directly:
H" % (singu) = 0.

Indeed, for any finite positive measure p in R™ it is true that the set of points x € R™
satisfying lim inf, g % > ¢ has zero k-dimensional Hausdorff measure. In our
case, it is enough to set dy = |Vu|?dz and k =n — 2.

As already mentioned in the introduction, it is possible to upgrade this dimen-
sion bound to dimy (sing)u < n—3. For this one needs to study the so-called tangent
maps, see Section 2.5, and apply Federer’s dimension reduction as in [56, Section
5], see also [60, Theorem A.4].

2.4. Convergence of singular points

For each fixed r > 0, the function 6,(y,r) is continuous in both u € W12
and y € Q. It is useful to note that 0,(y,0) is upper semicontinuous as it is the
pointwise infimum of these functions, thus
up — w strongly in WH2(QN), yr, =y in Q= 0,(y,0) > limsup b, (yx,0),

k—o0

given that all maps u, uy are minimizing. We give a simple consequence of this
fact.

THEOREM 2.5 (Singular points converge to singular points, [3, Thm 1.8 (i)]).
Assume that a sequence of energy minimizing maps ur € WH2(Q,N) converges
strongly in Wllof to a minimizer u, and a sequence of their singularities yy, € sing uy
converges to y € Q. Then y is a singular point of u.

PROOF. By e-regularity, we have 0,, (yx,0) > ¢ for each k. Upper semiconti-
nuity now implies 0,(y,0) > e, hence y has to be a singular point. ([l

REMARK 2.6. We would like to note here that if we work with N' = S? then a
reverse statement of Theorem 2.5 is true, see Theorem 2.10.
2.5. Tangent maps

In this subsection we recall various facts concerning tangent maps which will
be useful for future purposes. For more details we refer the interested reader to
[61, Chapter 3].
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10 2. PARTIAL REGULARITY IN THE INTERIOR

Let u € WH2(Q, N) be a minimizing harmonic map, y € Q and A > 0. We
define the rescaled maps u, , € W2 (%(Q - y),J\/) by

uy A (2) = u(y + Az).

We say that ®: R™ — N is a tangent map to u at point y if it is a Wlif strong
limit of w, » for some sequence A \, 0. Another consequence of the monotonicity
formula is the following lemma on existence of tangent maps.

LEMMA 2.7 (tangent maps, [56, Lemma 2.5]). For anyy € Q and any sequence
Ai \( O there is a subsequence (still denoted X;), for which wy x, is strongly con-
vergent in Wlif to a minimizing harmonic map ® € Wllo’f(R",N ). Moreover, ® is
homogeneous of degree 0 and its energy is consistent with the energy density of u

at y:
/ |V®|?dx = lim r2_"/ |Vu|? da.
B1(0) r=0 B, (y)

ProOF. Fix a ball B,(y) C 2. For any R > 0, the monotonicity formula (2.2)
yields the bound

/ |vuy7)\i
Br(0)

for all large enough 4 (the condition A; < r/R is used above). Thus, the sequence
uy,,y is bounded in W?(Bg(0),N). By a diagonal argument, we can choose a
Weiﬂ;ly convergent subsequence, i.e., u, ), — ® weakly in Wﬁ)j for some ¢ €
Wlo’c (Rn>N)
By the compactness result, Theorem 6.1! (see also [61, Section 2.9]), we infer
that the convergence is in fact strong and that the limiting map ® is minimizing.
To show that ® is 0-homogeneous, we take the limit ¢ — 0 in the estimate

above. For each R > 0 we have

de = /\f—”/ |Vu|* dz < (r/R)Q_”/ |Vu|? d
Bx;r(y) B (y)

2dz

/ VO[> dx = lim |V A,
Br(0)

1— 00 BR (O)

=R"%. lim ()\l—R)Q*"/ |Vul|? dz.
troo By, r(v)

Whatever R is, the last limit is just the energy density 6,(y,0), so the rescaled

energy 04(0, R) does not depend on R. By monotonicity formula, this implies

g—‘f = 0, and hence ® is 0-homogeneous. O

In the case when N is an analytical manifold and n = 3 (or more generally,
when N is analytic and there exists a tangent map @ for which sing ® = {0}) Simon
proved uniqueness of the tangent map [59, Section 8]. In general, the limiting map
depends on the choice of the sequence \; and its subsequence (see [64]).

1The Compactness Theorem is stated only for manifolds with finite fundamental group but
as noted in the introduction to Section 6, due to Luckhaus Lemma [41], the result holds true for
any closed .
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2.7. CLASSIFICATION OF TANGENT MAPS INTO §? 11

2.6. Stratification of the singular set

Now we explain the relationship of the singular set with tangent maps. First,
we observe that y € € is a regular point if there exists a constant tangent map to
u at y.

Next, we observe that for any tangent map ® the maximum of the energy
density is attained at 0 € R™:

03 (y,0) < 05(0,0) for any y € R™.
If we assume additionally that 6g(y,0) = 04(0,0) then we obtain
O(z+ Ay) = D(z) for any A € R and z € R",
which leads to the definition
S(@) = {y € B": 0a(y,0) = 0(0,0)}.

Observe that for non-constant tangent map ® we have S(®) C sing ®.

We introduce the notion of k-symmetric maps. A map f: R® — N is called
k-symmetric if f(Ax) = f(z) for any x € R™, A > 0, and there exists a linear
k-dimensional plane L C R™ such that f(z+y) = f(x) for any x € R, y € L. The
space of such functions will be denoted by sym,, ;.

Next we observe

y € singu <= dim S(®) <n—1 for every tangent map ® of u at y.
We define for all j € {0,...,n — 1} the stratification of the singular set
S; = {y € singu: dim S(®) < j for all tangent maps ® of u at y}
= {y € singu: no tangent map of u at y belongs to symn7j+1}.
Note that
SoCS1C...CS—4CSp_3=>5,_2=25,_1=singu,

since the existence of nonconstant (n—2)-symmetric tangent maps would contradict
the weak version of partial regularity #"~2(singu) = 0 that we mentioned earlier.
It can be shown that

(2.5) dimy(5;) < J,

which implies in particular the partial regularity result dimy (singu) < n — 3, see
[56, Theorem IT].

We will be mainly interested in the top-dimensional part of the singular set, so
for this purpose we define

sing, 1 = Sy \ Sn_s.

2.7. Classification of tangent maps into S?

We recall the classification of tangent maps into S? by Brezis—Coron-Lieb [14].

THEOREM 2.8 ([14, Theorem 1.2]). Every nonconstant locally minimizing har-

monic map R> = S? has the form % for some linear isometry T of R3.
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12 2. PARTIAL REGULARITY IN THE INTERIOR

In higher dimensions, we will use the symbol ¥: R® — S? to denote the map

!
(2.6) R3 x R"3 5 (z/,2") —2—s ‘x—,‘ €S2,
X

Its energy density will be denoted by

(2.7) 0= V|2 da.
B1(0)

We remark that © = 87 for n = 3 and
6= 87r/ V1= |2"]2dz" = 4r|w,_o for n > 4,
Bp~3

but the precise value of © has no importance for our considerations.

We note that the map ¥ belongs to sym,, , for all k = 0,1,...,n — 3 but not
to sym,, ,,_».

The classification of tangent maps in dimension 3 (Theorem 2.8) can be used
to classify the (n — 3)-symmetric tangent maps in general (see also [31, Corollary
2.2]).

COROLLARY 2.9. Suppose u € W12(Q,S?) is a minimizing harmonic map and
y € sing, u, then up to isometries of R™ the only tangent map of u at y is ¥. In
particular the energy density of u at a point from sing, u equals ©.

PROOF. By definition, u has a nonconstant (n — 3)-symmetric tangent map o
at y. Denoting the (n — 3)-dimensional plane L = S(®), we can represent ® as

(', 2") = ®g(x) for (z',2") € LT x L,

where ®( is another nonconstant 0-homogeneous map. By [56, Lemma 5.2] we
know that @ is also a locally minimizing harmonic map. Theorem 2.8 implies now

/

that (up to an isometry) ®g = %. This shows that indeed ® differs from ¥ by a

e
composition with an isometry. |

2.8. Additional properties of singularities of minimizers into S?

In this subsection we mention a few results that hold in the special case when the
target manifold is a two dimensional sphere. Those results were used by Almgren
and Lieb [3] in their proof of the linear law. We will not use them but we present
them here to familiarize the reader with the special case n = 3 and N = S2.

In the case when N = S? a reverse statement of Theorem 2.5 is true.

THEOREM 2.10 ([3, Thm 1.8 (2)]). Assume u; € W12(Q,S?) is a sequence of
minimizing maps in @ C R, which converges strongly in Wllof tou. Then, ify € Q
s a singular point of u, then for all sufficiently large i, u; has a singular point at
y; and y; = y.

PROOF. By classification of tangent maps, Theorem 2.8, if y is a singular point
of u we know that on balls of small radius B,(y)

(5=4)
u~NT | — |,
|z — vy
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2.8. PROPERTIES OF SINGULARITIES OF MINIMIZERS INTO §2 13

for a linear isometry 7 of R3. Since, the map \JCTI € Wh2(B$,S?) cannot be approx-

imated by C“(ET,SQ) maps, see [57, Section 4] or [5], we infer that for i > ig(r),
u; must have a singular point y; € B,(y).

Applying this reasoning for a sequence r; \, 0, we obtain a sequence of singu-
larities y; € singu; converging to y. ]

The following two results exploit the classification of singularities into S? (The-
orem 2.8) even further — here it will be important that at each singular point
y € sing u the energy density 6, (y,0) (2.4) has the same value

Jo 7 ()
B3(0) |z]

LeEMMA 2.11 (Liouville theorem, [3, Thm 2.2]). Let u: R® — S? be locally
energy minimizing in all of R3. Then, up to a translation, u is a tangent map, i.e.,

z—y
|z—yl

2
dx = 8.

as noted in Corollary 2.9.

u is either constant or has the form u(x) =7 ( ) for some y € R? and some

linear isometry T of R3.

PRrROOF. Let us first consider the singular case, without loss of generality we
may assume 0 € singu. By Theorem 5.7 (uniform boundedness), the monotone
quantity 6,,(0,r) is bounded, so it has a finite limit

0 = Tlgnolo 6.,.(0,7).

Moreover, the sequence of rescaled maps u,(x) = u(rz) is bounded in Wﬁ)f (R3,S?%)
as r — oo, and after choosing a subsequence, we can obtain in the limit an energy
minimizing limit map ®: R® — S? (a tangent map at infinity). Note that for each

s > 0 we have

571/ |V®[?dr = lim 571/ |Vu,|*dz = lim (1"5)71/ |Vu?dz = @/,
. T—>00 s T—>00 Brs
in particular ® has energy density 04(0,0) = ©’. As there is only one possible
energy density, we infer that ©’ is equal to 87 = 6,,(0,0). Monotonicity formula
(Theorem 2.3) now implies that u is 0-homogeneous (i.e., a tangent map), since the
monotone quantity has the same limit for » — 0 and r — oc.

If w is smooth, most of the above discussion still applies. If © = 0, then
in particular fBT |Vu|? dz tends to zero as r — oo, so u is constant. If © > 0,
then the obtained map ® has a singularity at the origin, and by Theorem 2.10
the rescaled maps u, are also singular for large r. Since u is smooth, this yields a
contradiction. ]

THEOREM 2.12 (Uniform distance between singular points, [3, Thm 2.1]).
There is a constant ¢ > 0 such that the following holds. Let Q C R3 be a bounded do-
main, and u € WH2(Q,S?) a minimizing harmonic map with a singularity aty € €.
Then there is no other singularity within distance c¢D of y, where D := dist (y, 9Q)
is its distance to the boundary.

PrOOF. Assume the claim is false. Then we can find a sequence u; €
W12(€;,S?) with two distinct singularities z;,1y; € Bp,/i(yi), where D; =
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14 2. PARTIAL REGULARITY IN THE INTERIOR

dist (y;, 092;). For each i consider the rescaled map
ai(2) = wi (yi + |zi — yil2)
which is a minimizing harmonic map in a large ball B;(0). This map has two

singularities at 0 and ‘?:yi . Using Theorem 5.7 (uniform boundedness), Theorem

1|
6.1 (compactness of minimizers), compactness of S?, and a diagonal argument, we
obtain an energy minimizing limit map w: R® — S2, which is singular at least in
two points 0 and z with || = 1. However, the possibility of two singularities is
excluded by the Liouville theorem (Lemma 2.11). O

COROLLARY 2.13 (Uniform bound for singularities in the interior). Let Q C R3
be a bounded domain, and u € W2(Q,S?) a minimizing harmonic map. Then for
any o > 0, the number of singularities with distance to the boundary at least o is
bounded by a constant depending only on  and o:

#{x € singu: dist (z,00) > o} < C(Q,0).
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CHAPTER 3

Monotonicity formula and tangent maps
at the boundary

3.1. Notation for “straightening” the boundary

As we will be working at the boundary we need to distinguish one variable. For
a point x € R” we write x = (2/,z,,) € R"! x R. Let us assume that Q C R" is a
bounded domain with a C!'-boundary. This means that 92 can be described by a
Cl-graph on each ball Bg,(a) around a € 9Q (with uniform Ry > 0).

For each a € 012, we may choose a rigid motion (i.e., a rotation followed by a
translation) h: R™ — R™ that sends a to 0, 7,052 to R"~! x 0 and the outer normal
vector to (0,...,0,—1). Thus, there is a C! function a,: R"~1 — R such that

h(2N Br,y(a)) = {x € Bg,(0): z,, > a(z')},
aq(0) =0, Vau(0) =0.
Since o, € C' and 99 is compact, we may assume |Va,(z')| < w(|2’|) with a
uniform modulus of continuity w (w(t) — 0 as t — 0).
The boundary of €2 can be “straightened out” by the diffeomorphism
Sa(2',2n) = (2,20 — aa(2')), gt;l(x’,xn) = (2,2 + aa(2')),
i.e., ¢, is a C'-diffeomorphism for which ¢,(9Q N Bg,(a)) € R*™! x 0. Moreover,
the estimates for «, give us
|Veu(z) —id | < [Vau(2')] < w(|2']) for x € QN Bg,.

In what follows, we will consider rescaled maps at the boundary. For this we
need to define the functions that describe the rescaled boundary. Foreach0 < r <1

let

-1

ro(2') =1 g (ra’).

One can easily see that
r—0
HarvaHLip(BR) = leallnip(p, ) 250 forany R > 0.
This map describes the boundary of the set €2,.-1(a) defined as
Q,-1(a) = {x € Bry/r(0): x > apq(z')} = {z € R" : rz € h(Q)}.

We observe that as r — 0 we have a,, — 0 = a9, (locally uniformly), which
motivates the definition

Qoo(a) ={z € R": 2, > v o(2')} = RY.

Assume that u € W12(Q, V) is a minimizing harmonic and let us denote its
trace by ¢. We define the map u, o on the domain Qg /.(a) by

ur,a(') =u(rh(-)+a), in QR/r(a)a

15
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16 3. MONOTONICITY FORMULA, TANGENT MAPS AT THE BOUNDARY

where on the portion of the boundary, 0Qg, /- (a)NB1(0) = ({xn, =, 4 (2")} N B1(0)),
its trace is given by
Oral-) = @(rh(-) +a), on INg,/r(a) N Bi(0),
with Lipschitz constant
H‘Pr,a”Lip =T H@HLip .
We note that u, , is also a minimizing harmonic map and

/ |V, o|* dz = 1"27”/ |Vu|? dy.
B1(0)NQ,.—1(a) B, (a)NQ

3.2. Boundary monotonicity formula

We will employ a boundary monotonicity formula of Schoen and Uhlenbeck
[67, Lemma 1.3].

In the sequel, we will only use it for 2 = B}" and constant boundary data (cf.,
Theorem 7.2). In this particular case, it is enough to repeat the simple argument
given for the interior monotonicity formula (Theorem 2.3) to obtain

szn/ |Vu|? de —7"2*”/ |Vu|? dz 2/ |z —y[2™"
B B Bi\B}

R

2

@dx

ov

for0O<r<R<1.

For the reader’s convenience, we include the proof in full generality, with Lipschitz
boundary data. In this case, the almost-monotone quantity is slightly different.

For another proof of boundary regularity for minimizing harmonic maps we
refer the interested reader to [23, Theorem 2].

THEOREM 3.1 (Boundary Monotonicity formula). Let Q C R™ be a bounded
domain with C'-boundary, v € WY2(Q,N) be a minimizing harmonic map with
u = on N and ¢ € Lip(dN,N). Then, there exists a radius Ry = Ro(||¢|Lip, 2)
such that for any a € 02 and 0 <r < R < Ry

(3.1)
o=R

(1+ Collpllip)™20%" /

|Vu|? dx]
By (a)n$2

o=r
2

ou
——| dz — Cll¢[|lLip(R —1).

ov

>

|x‘27n

/QﬂBR(a)\BT(a)
where C = C(n, Q,N).

PROOF. STEP 1 (FLAT BOUNDARY). First we assume that the boundary is
flat, i.e., Br(a) N = B} (0) = Bf.

We will use a similar comparison map as in proof of Theorem 2.3, but we need
to change that construction so that the maps agree on the flat part of the boundary.
In order to do so we extend the map ¢ defined on T, = B} N {x, = 0} to the
whole half-ball B — we let p(z) = (21, 22,...,7,-1,0) and abuse the notation
slightly by using ¢ to denote the extension as well.

We define

U,(x) = (u — L T or x *
(o) = (=) (o) +ola), for o€ B0)
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3.2. BOUNDARY MONOTONICITY FORMULA 17

for any o0 < Rg. One easily sees that
Uy =¢ onT,
b, =u on Sy,

where S} = 0B,(0) "R is the curved part of the boundary 0B/ (0).
Although @, does not lie in the manifold A we can estimate for z € B/ (0)

(3.2) dist (3, N) < |0,(2) — u <g|%> ’

=lp(@) —¢ (@%) ‘

X
. QE‘ el

IN

< ollellip-

Thus, for sufficiently small Ry the mapping ¥, has values in Bs(N') — a neighbor-
hood of N on which the nearest point projection mar: Bs(N) — N is well defined.
Now we can define the comparison map as v, := Ty 0 ¥,. By minimality

(3.3) / |Vu|? dz < /
B{(0) B}

e

|V, |? d,
(0)

so we carry on with estimating the right-hand side. First, we estimate the energy
of 9, Using Cauchy-Schwartz inequality with € = gl|¢||Lip We estimate

(3.4)
/Bm Vi, 2 de < (14 2) /B;m) v <u (g%))
v (@ -¢ (o))

i (1 " é) /B:w)
(o))

— @+ el [
B (0)

To estimate the energy of v,, we note that Vu,(z) = Van(v(z)) - Vi,(x). For

p € N, Vmn(p) is an orthogonal projection, hence |Vmps|> = 1 (we consider the

operator norm here). Since this is a smooth function of p, we have |V (p)|? <

1+ Cdist (p, V) for p close to N. In particular,

V7 (T(2))|* < 1+ Cdist (3,(2), ) < 1+ Collguip.

As [V, (x)] < |Van(v(z))] - [VU,(2)|, the energy of v, is at most 1 + Coll¢||Lip
times the energy of v,. However, we only consider small values of p, so by enlarging
the constants in (3.4) we conclude

(3.5)

L. el < 0 olielhan) | -

Observing that

2
dx

2
dx

2
dz + Co™ l¢llLip-

2
dz + Co™ lollLip-

a fdx:/ fdH™ !,
do JB7 (0 st
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18 3. MONOTONICITY FORMULA, TANGENT MAPS AT THE BOUNDARY

we can now compute similarly as in the proof of Theorem 2.3

2
/ v (u (Qi)>‘ de = 2 / |Vru|? dH" 1
B{(0) |z n—2Jsi
__0 A iy
_n—2<d9EQ(u) /s;
where

(3.6) Ef(u) = / |Vu|? dz.
B (0)

Combining (3.3), (3.5), and (3.6) we obtain
(1+ Coll¢lluip)e [ d
B < Sl (L - [

ou

ov

2
dHn1> ,

ou

- n—2 do ¢ ov

2
d“rl"‘1> +Co" YllLip-
Now we can estimate the derivative
d _o o9
— (1 + Collelluip)" 2> " Ef (u))

do
= (n—2)(1+ CollpllLip)" 20"

> (n—2)(1+ Coll@lluip)" " "

« (1+CQ||SO||Lip)Q/ Ou
n—2 SZ'

v
2
> 2—n d n—l_cl C ; n—3 ;
207 [ G| 0T =00+ Collelhan el
and integrate it from r to R:

2
anmt - CQ"_1|¢|L1p>

ou

R
Z / |x‘27n
" B (0\BF(0)

This finishes the proof in the case of the flat boundary.

STEP 2 (GENERAL BOUNDARY). The general case, when the boundary of Q
is not necessary flat, differs from the flat case in a few details (see for example
[29, Proof of Lemma 5.6]), which we sketch here.

Choose a point a € 002 at the boundary. As described already, up to a rigid
motion, we may assume that @ = 0 and 9Q N Bpg, is described by a C* function
a: R 5 R:

ou|?
%" 4o — Cllglluip(R— 7).

n—2 2—n
(1+CollpllLip)" 2" "By (u) £y

QN Bg, ={z € Br: x, > a2},
with (0) = 0, Va(0) = 0. Then ¢(2/,z,,) = (2,2, —a(z’)) is a C'-diffeomorphism
for which ¢(0Q N Br,) C R"™1 x 0.

Again, we extend the map ¢ to the whole domain by letting it be constant on
vertical lines. However, since the rays from 0 to 2N0J B, possibly cross the boundary,
the definition of ¥, needs to be altered. We solve this problem by considering the
curves t — ¢~ (- ¢(x)) instead. Hence, we take:

= =9 (7 (o) 5 ) ) + ol
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3.3. TANGENT MAPS AT THE BOUNDARY 19

Note that we also replaced g by o(z), as the image (2N 9dB,) is no longer a part of
a sphere. One can define p(z) as the length of the ray from 0 to (2N 9B,) passing
through x.

By previous considerations, ¢ is C'-close to identity, in consequence also o(x)
is C'-close to p. With some care, one can check that this altered version of ©, also
satisfies the required estimates. (I

3.3. Tangent maps at the boundary

Similarly as in the interior case, for any point at the boundary y € 9Q we
can consider boundary tangent maps at y, which will arise as limits of rescaled
mappings. Here we will consider only the case when 2 = B} (0) has a flat boundary.

LEMMA 3.2 (Boundary tangent maps, [57, Lemma 1.4]). Let u €
WL2(Bf(0),N) be a minimizing harmonic map with u = ¢ on Ty and let ¢ be
continuous at a € Ty. Then there exists a sequence {N\;}, N\ \y 0 and a map
® € Wh2(B;(0),N) such that

uy, o(?) = u(\; - +a) = () in WH2(B](0).N)
Moreover, ® is a minimizing harmonic map, homogeneous of degree 0, and @‘Tl =

u(a) = p(a).
We call ® a boundary tangent map to u at a.

PRrROOF. First we note that

/ |Vuki,a\2df/ IV (u(Aa + )P do = X2~ / [Vl dy.
B (0) B{ (0) By (a)

By the boundary monotonicity formula, Theorem 3.1, we know that

sup )\12_”/ |Vul? dy < oo,
Ai>0 B;ri(a)

thus supy <¢ [[ux;,a |W1’2(Bf(0)) < 00. The proof of strong convergence follows from
Theorem 6.1 (2), the proof of homogeneity follows from the proof of Lemma 2.7
with the monotonicity formula replaced by the boundary monotonicity inequality

(3.1). Finally, fI>| = ©(a) follows from the continuity of . O

The following result, due to [57], states that there exist no nonconstant bound-
ary tangent maps. This is the main reason why at the boundary we have full
regularity for certain boundary data, see Section 7. We refer the reader for the
proof of this fact to [29, Theorem 5.7].

LEMMA 3.3 (Nonexistence of nonconstant boundary tangent maps). Assume
that u € Wl’z(Bf(O),J\/') is a minimizing harmonic map, homogeneous of degree 0
and constant at the flat part of the boundary, i.e., u|T1 = const. Then u is constant.
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CHAPTER 4

Refined estimates by Naber and Valtorta

Here we discuss the results of Naber and Valtorta [50] needed in the sequel. A
simplified presentation of these is available in their later article [51].

The main ingredient is Theorem 1.3. In the special case of manifolds A" with
finite fundamental group, uniform boundedness of minimizers, Theorem 5.7, implies
that the energy assumption in Theorem 1.3 is redundant.

COROLLARY 4.1. If u: Bo.(y) — N is energy minimizing and w1 (N) is finite,
then H"3(singu N B,.(y)) < Cr"=3 with some constant C(n,N') > 0.

In particular, whenever ' CC Q and u is a minimizing harmonic map on 2,
then

H" 3 (singu N Q) < oo.

In order to prove the stability theorem, Theorem 1.1, one needs more subtle
measure estimates. Note that for the tangent map ¥, the singular set is an (n — 3)-
plane and so H" 3(sing ¥ N B,.) = w,_3r" 3. If u is close to ¥, one could expect
its singular set to have similar measure, see Lemma 8.7. To this end, we will need
two more results, which are essential ingredients of [50].

To state them, we first recall the definition of Jones’ height excess S-numbers.
Choosing a Borel measure p in R™, a dimension 0 < k£ < n and an exponent p > 1,
we can define for each ball B,.(x)

1/p
Bu,p = inf | r7*7P / dist (y, L)? du(y) ,
L B, (2)

where the infimum is taken over all k-dimensional affine planes L C R™. This
measures how far the support of p is from a k-dimensional plane (on the ball
B, (x)). However, we shall not work directly with this definition, but rather rely
on the two theorems below, since they encompass all the geometric information we
need.

The first theorem is a general geometric result that gives sharp measure esti-
mates.

THEOREM 4.2 (Rectifiable Reifenberg [50, Theorem 3.3]). For every e > 0 there
is a § = 6(n,e) > 0 such that the following holds. Let S C R™ be an H*-measurable
subset and assume that for each ball B,(x) C Bs

" o ds Kk
/ / Bruk2(y, )" — du(y) < or”,
B, (z) JO $

where p denotes the measure H*LS. Then p(By) < (1+ €)wg.

21
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22 4. REFINED ESTIMATES BY NABER AND VALTORTA

As a side remark, let us note that in our application the set S will satisfy the
so-called Reifenberg condition and so one could work with the W'P-Reifenberg
theorem [50, Theorem 3.2] instead.

THEOREM 4.3 (L2-best approximation [50, Theorem 7.1]). For every e > 0
there are §(n,e) > 0 and C'(n,e) > 0 such that the following holds. If u: B1o(0) —
S? is energy minimizing,

dist L2(Bw(0))(u, symmo) S 5,
dist L2(B10(O))(ua Symn,kﬂ) 2 €,
then for any finite measure p on B1(0) we have
ka0 <C [ (008 =00, 1) duty)
1

Again, the formulation in [50] involves an energy bound. However, Theo-
rem 5.7 shows a uniform bound on fBg(O) |Vu|? dz and thus we obtain the stronger
formulation above.

Since we shall only consider k = n — 3, p = 2 and p = H" 3Lsing v from now
on, we abbreviate 8, ,—32 by B; this should not cause any confusion.
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CHAPTER 5

Extension property and its consequences

In this section, we collect the results concerning local uniform boundedness of

minimizers into manifolds with finite fundamental group. One of its many conse-
quences is that every sequence of minimizing harmonic maps has a subsequence
that converges locally weakly (and in fact strongly, see Theorem 6.1).
_ We recall that N is a smooth closed connected Riemannian manifold. We let
N be its universal covering, and 7 € C*°(N,N) be a Riemannian covering. We
recall that A is compact if and only if the fundamental group of N is finite, we
also recall that m; (/\7 ) = 0, whereas the higher order homotopy groups of N’ and
N are the same. Of course if A is simply connected then N = A and 7 = id.
For further properties of the universal covering we refer the interested reader, e.g.,
to [32]. From now on, we assume that N is isometrically embedded into some
Euclidean space, which is possible by Nash’s embedding theorem.

We will use the following lifting theorem of Bethuel and Chiron.

THEOREM 5.1 ([7, Theorem 1]). If Q is simply connected (e.g., a ball) and u €
W2(Q,N), then there exists i € WH2(Q,N) such that u = 7 o . Moreover, this
@ is unique up to the action of an element of m1(N') and satisfies a.e. |Vu| = |Vul.

We note also that in [3, Remark 6.2] it was noted that the results of the paper [3]
can be translated, using a lifting argument, into the case when the target manifold
is N = RP? (i.e., to the case of a manifold which is not simply connected®, but has
a finite fundamental group).

5.1. Extension lemma

An underlying tool used in [3] is the following W'2-extension property of
W1'/22 maps into simply connected manifolds A/. This is a result of Hardt and
Lin [29, Theorem 6.2], which holds for even more general class of W!P-maps into
|p — 1]-connected manifolds?. However, it was first published (and acknowledged
to [29]) in the paper by Hardt-Kinderlehrer-Lin [25, p.556] (see also [26, Lemma
A.1]), where it was stated for N’ = S2. This result was also extended by Gastel
[21, Proposition 4.3] for W*» maps and manifolds with sufficiently simple topology
(see also the earlier extension to the case N’ = S?~! and k, p = 2 by Hong and
Wang [33, Lemma 2.1]).

THEOREM 5.2 (Extension property: Unconstrained energy dominates con-
strained energy). Let @ C R™ be a bounded domain and N C RY be a simply con-
nected submanifold. Assume that we have a map v € WH2(Q,R?) with v(z) € N

1Simply connected manifolds are manifolds that satisfy 7o(N) = 71 (N) = 0.
2k-connected manifolds are manifolds that satisfy mo(N) = m(N) = ... = 7 (N) = 0.

23
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24 5. EXTENSION PROPERTY AND ITS CONSEQUENCES

for a.e. x € 9. Then there exists a map u € WH2(Q, N),
o =vl
a0 ETy)
with the estimate
IVullL2@) < C Vo2 (o)

for a uniform constant C.

REMARK 5.3. We note that, unlike in the unconstrained case, it is not true for
a general target manifold N that every boundary map ¢ € Wl/Q’Z(GQ,N) has an
extension in W12(Q,N). A counterexample was provided by Hardt and Lin [30,
Section 6.3]. They prove that the map ¢ € W/22(S2,SY) given by ¢(x1,xa,23) =
(@1.22) cammot be extended to a map in Wh2(B3(0),S1).

[(z1,22)]

More generally, every @EW%’Q((‘)Q,N) can be extended to a map ueW2(Q, N)
with U}OQ = ¢ (in the trace sense) if and only if 71 (N) =0 (|8, Theorem 4]).

For general obstructions for the existence of an extension and discussion of
traces of manifold valued Sobolev maps we refer the reader to [6,46].

We recall the key ingredient in the proof of Theorem 5.2.

LEMMA 5.4 ([29, Lemma 6.1]). Assume that N' C R? is a closed simply con-
nected submanifold, contained in a large cube [—R, R]?. Then, there exists a finite
(d — 3)-dimensional Lipschitz complezx Y C [-2R,2R]* and a locally Lipschitz re-
traction P: [-2R,2R]4\'Y — N such that

(1) for some small o > 0, the restriction P|BQ(N) is the nearest point projec-
tion to N;
(2) |[VP(z)| < C dist (z,Y)™! forz ¢ Y;
(3) f[—2R,2R]d |VP(z)]?dr < oo.
REMARK 5.5. Such a retraction is easy to construct if the target manifold is

the standard sphere S?-1 < R? with d > 3. Indeed, one can check that the radial
projection P: R4\ {0} — S~ P(z) = ro gives the retraction from Lemma 5.4.

This lemma was several times reproved, see e.g., [12,34]. For readers conve-
nience we include a proof here.

PROOF OF LEMMA 5.4. Denote the g-neighborhood of N by
B,(N) = {z € R*: dist (z,N) < 0};
let us fix some small p > 0 for which the nearest point projection mar: Boy(N) — N
is well-defined and smooth. We also fix the decomposition Q of [-2R,2R]¢ into

(4N)? cubes of side length R/N, where N is chosen large enough to ensure that
the family of cubes

U={Q € Q:Q C By(N)}
covers B,(N). For j =0,1,...,d, we let @7 be the family of j-dimensional faces of
cubes in @ (in particular, @ = Q) and distinguish the j-cubes not covered by U:

wi={Qeo:qgzJu}.

Note that all cubes in Q are partitioned into & and W9, hence JU U |JW? =
[—2R,2R]%.
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5.1. EXTENSION LEMMA 25

We now proceed with an inductive contruction of maps
YWwul Ju—-N forj=0,....d

that extend the nearest point projection mar: JU — N.

A well-known construction (see [32, Lemma 4.7]) shows that continuous maps
into simply connected manifolds can be continuously extended to 2-dimensional
CW complexes. We use it here to extend mp: (JU — N to a Lipschitz map

wrul Ju - N

Fixing an arbitrary point £ € N, we define T°(z) := £ for all {z} € WP°. Since
N is path-connected, we can define T! on each segment Q € W!' by taking the
geodesic in NV (or any other Lipschitz curve) joining the two points Y°(0Q). Finally,
since 71 (N) = 0, for each @ € W? the Lipschitz boundary map Y': 9Q — N is
homotopically trivial and can be extended to a Lipschitz map Y2: Q — N. The
Lipschitz constant of T2 can be bounded depending on the submanifold N' C R¢
only.

Without additional topological assumptions on A (i.e., vanishing of higher-
dimensional homotopy groups), we cannot extend Y? continuously to a higher-
dimensional complex, yet we are able to define singular extensions Y7 for j =
3,...,d such that

(5.1) |VY(2)] < Cj(1+dist (z,Y;NQ)"") foreach Q € Q7 and x € Q\ Y,

where Y is a finite (j — 3)-dimensional Lipschitz complex.

Assuming that Y/~! satisfying (5.1) is already constructed, we only need to
extend it to the interior of each j-cube Q € WY. To this end, we take the standard
radial projection Pg: @ \ {yo} — 0Q, which is Lipschitz except for the center yg
of @, and define Y/ = T/~ o Py on Q.

Let us check the estimate (5.1) for T7. The set of discontinuities of T/ in @Q is
exactly

Y;NQ = {yg} U Py (Y;-1N3Q),
which only adds one dimension to Y;_1. Now choose a point z € @\ Y; and denote
by Q' the face of @ onto which z is projected; there are two possibilities. If Y71
happens to be regular on @', we simply have

VY (2)] S [VP()| S o —yo| ™" < dist (2, Y;n Q)™
If Y7~ is not regular, the inductive assumption (5.1) gives us a weaker estimate
VY (2)] < [VPq()| - VYT (Po(2))] S |z — yol " - dist (P (x), Y1 NQ") ™"
Noting a similarity of triangles, we obtain
dist (2, ;N Q) _ dist (z, P, (V-1 N Q")) _ dist (P(2).Y;-1 N Q)
[z —yol T~ [z = yol [Po () = yal

and since |Pg(z) — yg| > 5%, the inductive claim (5.1) follows.

As the outcome of this inductive construction, we finally obtain the map P =
Y% which is locally Lipschitz outside the finite (d—3)-dimensional Lipschitz complex
Y = Yy. Recall that JU UUW? = [-2R,2R]%, and so P is defined on the whole
large cube. Since Y is non-empty, one can drop the constant term in (5.1) and infer

the Lipschitz estimate
|VP(z)| < C dist (z,Y)™! forxz¢Y.
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26 5. EXTENSION PROPERTY AND ITS CONSEQUENCES

To derive the W!2-estimate, first observe that Y is contained in a union of finitely
many affine subspaces L1, ..., Ls, each of dimension at most d — 3. Since

/ dx
(—2r,2r)e (dist (2, L;))?

by Fubini’s theorem, it follows that

<o fori=1,...,s

dz
VP(2)[2 dr < / .
/[—2R,2R]d (—2r,2r)e (dist (,Y))?
Actually, it is this W1 2-estimate that we shall use later. O

With the retraction P in hand, one could hope to simply take the map Pow as
the required extension. It may happen however that v takes values very near the
set of singularities Y, and in result P o v does not lie in W2, For this reason, we
consider the family of maps P,(z) = P(x — a) (with singularities shifted to Y + a)
and compose with P, for some generic value of a. The details of this construction
are given below.

PROOF OF THEOREM 5.2. Fitting N' C R? into some cube [—R, R]¢, we can
choose P and ¢ as in Lemma 5.4. We also assume that v takes values in [—R, R]%;
the general case follows by a simple reduction argument explained at the end of the
proof.

Since the restriction ma: N — N is the identity and N is compact, we can
choose 0 < r < p such that the maps

Noz—=ay(z—a)eN

are uniformly bi-Lipschitz for all « € B,. For a € B, we let P,(z) = P(x — a) and
consider the composition P, owv. Since

IV (Paov)| <[V (v)]-[Vvl,
we can check that P, ov € Wh2(Q, N) for almost every a € B,.(0). Indeed,

/ /|V(Paov)\2dxda§/ \VU|2/ VP, (v))* dadz
B,(0) Ja Q B,(0)

\VU|2/ IVP(v —a)|* dadz
Q B,.(0)

< [Iwek [P dyds
Q [—2R,2R]4
SC/ |Vo|? dz < oo
Q

with the constant C' depending only on A/. We infer that there is ag € B,.(0) such
that

(5.2) /\V 0 0 0) |2dx < C|B,(0)|” 1/ V|2 da.
To fully justify that VP,(v)Vv is indeed the distributional gradient, one should

first carry out these estimates for a sequence of smooth maps P. — P and then
pass to the limit, but we leave this standard step to the reader.
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5.2. UNIFORM BOUNDEDNESS 27

Composing v with P,,, we have unnecessarily altered v on the set where it
already maps into N, so we need a small correction. It follows from our previous
discussion that Py, ’ - 1s invertible and

-1

(5.3) IV (Pu|y) ' <C

%
for a uniform constant C'. We set

= (Paglp) " 0 Pag 0w € WHQUN),

hence combining (5.2) with (5.3) gives us

[ Va1V (P ) e [ 19 (Pag o) o< [ V0P da.
Q Q Q

It is evident that u = v on the whole set {v(z) € N}, and this will be used in the
sequel. One can also check that u| o = v| 90 follows in the sense of traces.

For the general case of an unbounded v, consider the retraction Pp: R? —
[~R, R]? given by the identity on [~R, R]? and by the radial projection outside
of this cube; note that Pg is Lipschitz with constant 1. One can then apply the
previous construction to ¥ := Pg o v and replace ¥ by v in the final claim, as these
two maps agree on 02 and the W'2-energy of ¥ does not exceed that of v. O

5.2. Uniform boundedness

We will show how Theorem 5.2 combined with trace inequalities Theorem A.4
implies a uniform bound for the minimizers. Due to the lifting theorem Theorem 5.1
of Bethuel and Chiron this result holds additionally for target manifolds whose
fundamental group is finite.

This is a counterpart of [3, Theorem 1.1].

COROLLARY 5.6. Assume that w1 (N) is finite and that Q is a bounded Lipschitz
domain. There exists a constant C(Q,N') such that for any minimizing harmonic
map u € WH2(Q, N') we have

(5-4) IVullr2(0) < C(Q,N)\/IVrullz200)-

In particular, if u: B, — N is a minimizing harmonic map, then the following
estimate holds

(5.5) IVullas,) 3P IV rul 2 os,).

Let  C R™ be a bounded domain with a C*-boundary and let yo € OQ be any point
on the boundary. If u: B.(y0) NQ — N is a minimizing harmonic map with u = ¢
on B,.(yo) N 0N, then the following estimates hold

(5.6) IVullrz(s, yo)ne) 3 \/T%HVTUHLZ’(BBT(Z;O)HQ) +777 Vol 2B, (yo)non)

andforanys>%,p>l, sp>1,and1 <6 <2

(5.7)  [Vul z2(B, (yo)ne)

—n) e (n— sp—(n—1)) L 4+n—2 %
5\/r(3 DNVl o, (oot T T e (22, (o0
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28 5. EXTENSION PROPERTY AND ITS CONSEQUENCES

PROOF. In order to prove (5.4) we apply Theorem 5.1 to u € W2(Q, N), we
obtain the existence of a map % € WH2(Q, ) such that u = 7 o @& Now, since
m1(N) is finite we know that the universal cover A is compact and since it is the

universal cover of N/ we have m(N) = 0. Thus, we may apply Theorem 5.2 to
@ and obtain the existence of a manifold valued map & € W12(Q2, ) satisfying
17|8Q = ﬂ‘ag with the estimate

(5.8) V3| 200y 2 IVE" 120,

where @" is the harmonic extension of ﬁ‘ag. By Theorem A.4, (equation (A.8)),
we know that

1 o1 ~ 1
(59)  IVE" |2 < CO ooy IV 78l 2 o2y < COUN) V] Fa gy

in the last estimate we used that N is compact, ﬂ|aQ € /\77 and that a.e. |Vu| =
|Va.

On the other hand we set v = w00 € WH?(Q, ) and we have |Vv| = |V
a.e., thus,

Vol 220y = VOl L2(q)-

Since 7 is a local isometry, we have ’U‘aﬂ =T7o ﬁ’asz =T7o ﬂ’asz = u‘{m and thus v

is a good comparison map and we obtain from the minimality of «
Vullp2 o) < [IVollL2 ()

Combining this with the above inequalities we obtain
1
IVull 29y < IVllz@) = IVEllL2(@) R IVE" 20) 3 I1Vrull 22 q)-

This finishes the proof of (5.4). The estimate (5.5) follows from scaling.

We proceed similarly to obtain the other inequalities: we apply Theorem 5.2
to the lifted map @ = 7 o u € WY2(B;}, ), then (5.6) follows from (A.8) and
(5.7) follows from (A.10). O

THEOREM 5.7 (Uniform Boundedness of Minimizers, [3, Theorem 2.3 (2)]). Let
m1(N) be finite. Then the following assertions hold:

(1) Let w € WY2(Bg,N) be a minimizing harmonic map. Then for any
r < R,

R
2—n 2

Vul*de < C——
o [ vaPds <ot

where C(n,N) is an absolute constant.
(2) Let Q2 be a bounded domain with a C* boundary. Then, there exists an
R := R(Q) such that the following holds: assumeu € W12(Ba,(yo)NQ, N)

is a minimizing harmonic map, where yo € 0S), then

3—n
(5.10) r2—"/B( - Vul? de < C (1477 IVellza(5,, onom) )
r{Yo

for 0 <r <R.
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5.2. UNIFORM BOUNDEDNESS 29

(3) The last statement can be strengthened, assume additionally that s > %,
p>1, and sp > 1. Then for any 1 <60 < 2,

2-n 2 sp—(n—1)) L 12
(511) r /B.(UO)QQ ‘V’U,| de < C (1 + 7'( p—(n—1))5; [@]W5=P(Bgr(yo)ﬁ39)) ’

for0<r <R.

PROOF. Let D(p) == [4 ()2 |Vu|? dz, where yo € Q. This is an absolutely
P
continuous function of r € [0, R] and by the fundamental theorem of calculus we
have for a.e. r € [0, R]

(5.12)
2 d 2
/ [Vu|*dz | = — / |Vu|*xq dz
By (y0)nQ dp \JB, (o)

4
D
d ’ 2 n—1
Cdp </0 /aBr(y[)) [Vu(©) P xal6) K" (6) dr)

z/ |Vaul? dH" .
9B, (y0)NQ
PRrROOF OF (1):

By minimality of v we may apply Corollary 5.6 (equation (5.5)) and we get

D@w:/ vmﬂus0p%1</
B OB

=

|VTu|2dH"1> ,

P 3

for a uniform constant C' > 0. This gives

D(p) < p™= C/D'(p).

Taking the square, we obtain

Lo D'(p)
— n< .
¢’ = Dpp
Integrating the last inequality from r to R we obtain
1 1 1
2—n 2—n
- R < — .
(r ) 2= = D)~ D)
In particular,
. Rn—2 R
7"2 D(T)SCQ(TL—2)W§02(”_2)R—T

PROOF OF (2):
n—1 .
Denote D(p) = HVUH%Q(BT(W)OQ) and A = 777 ||Vl L2(B,, (yo)no0)- Using
(5.12) we can restate (5.6) as

D(p) <C (p%1 VD' (p) + A) for 0 < p < 2r.

Since our aim is an estimate D(r) < 7"~2 + A, we may assume that D(r) > 2CA
with C as above. Then

D(p) < QCP% D'(p) for r < p < 2r.
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Rewriting this as the differential inequality (—D(p)~1)" > 4C~2p'~™" and integrat-
ing, we obtain

27
D(r)~t = D(2r)"' > 40_2/ pt"dp.
T

The final claim now follows from D(2r)~! > 0.

PROOF OF (3):

The proof follows almost exactly as the proof of (2). The only difference is that
in place of (5.6) we use (5.7) which leads us to the inequality:

D(p) < C( (B=m)$+(n=2) (D/(p))% + B) for 0 < p < 2r,

where B = r(SP*(”*l))§+”*2[¢]€Vs,p(32r(yo)mam. Reasoning as before and having
in mind that by assumption 1 < # < 2 we may rewrite the latter inequality as

(o) > i
Integrating over (r,2r), we finish the proof. O

REMARK 5.8. Theorem 5.7 does not hold for general target manifolds, it is
not true for example for S' and T2. A simple counterexample is due to Hardt—
Kinderlehrer-Lin [26, p.22]: the energy minimizers u; € W12(B",SY), u;(z) =
(cos jx1,sin jx1) have unbounded energies on each subdomain.

5.3. Caccioppoli inequality and higher local integrability

In this section we derive the Caccioppoli inequality for minimizing harmonic
maps. A Caccioppoli type inequality was obtained by Schoen and Uhlenbeck in
their pioneering work [56, Lemma 4.3] in order to obtain strong convergence of
minimizers. Later on, this result was generalized by Hardt and Lin to the case of
minimizing p-harmonic maps [29, Corollary 2.3]. As observed there, in case the
target manifold is simply connected, the result might be strengthened — the small
oscillation condition from [56, Lemma 4.3] can be omitted (see also [25, Lemma
2.3]). Finally, thanks to Luckhaus Lemma [41, Lemma 1], it was proved that the
smallness condition can be also omitted for a general target manifold A/. We refer
the interested reader to [61, Section 2.8, Lemma 1].

The Wh2-extension property (Theorem 5.2) will play here a crucial role as it
provides a tool to compare energies of maps that agree on the boundary but do not
have to take values in the manifold. We remark that this could also be done using
Luckhaus Lemma. We will use a variant of an iteration lemma, see [22, Chapter
V, Lemma 3.1].

LEMMA 5.9 (Iteration lemma). Let 0 < a < b < oo and f: [a,b] — [0,00) be
a bounded function. Suppose that there are constants 6 € (0,1), A, A, « > 0 such

that
(5.13) f(s)gﬁf(t)—kﬁ—l—l\ foralla<s<t<b.
_Sa
Then we obtain the bound
f(r)<C—7— A + — A f lla<r<b
b= 10 oralla<r

with some constant C (0, a) > 0.
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ProOOF. We fix a < r < b and define the sequence r; by rg =7 and r;4; —1; =
(1—7)7i(b—7), with 7 € (0,1) to be chosen later. By iterating the inequality (5.13)
f-times, we obtain

A A

f(ro) <O0f(r) + 1 —r0)° +A=0f(r)+ m +A
A
§9<9f(r2)+(1—7)a7a(b—r)a+A)+W+AS”'
) A =1 =1
<4 f(T‘e) + m ;QzT—Za +A;9'L

Now we choose 7 in such a way that 770 < 1 and let / — oo in the above
inequality. ]

PRrROPOSITION 5.10 (Caccioppoli inequality). Let N be such that w1 (N) is finite
and let m: N' — N be its universal covering. Then there is a constant C(n,N') > 0
such that the following holds:

(1) Let uw € WH2(Q,N) be a minimizing harmonic map and let u = 7 o @,
@ e Wh2(Q,N), By, (y) CC Q, then

/ |Vau|? dz < CT?Q/ @ — (@) B,y ()| de,
B (y) Bar(y)

where (@), () denotes the mean value of @ on Ba,(y).

(2) Assume QCR" is a bounded domain with C*-boundary. Let ueW2(Q, N)
be a minimizing harmonic map, and let ¢ € W%’Q(aQ,N) be the trace of
u on 08). Then for all v > 0 and yo € 02 we have

/ Vul? de < cw?/ i) — ¢°t (2)[2 da
B, (y0)NQ Bar (y0)NQ

+C Vet (z) [ da,
Bar(yo)NS2
where w = mow, U € WLQ(Q,./\N/), p=Top, P E W%’Q((?Q,./\N/) and
¢t € W2(Ba,(y0) N Q) is any map with $°** = $ = @ on Ba,(yo) N ON.

PROOF. The proofs of these two statements are similar; we will treat the bound-
ary case (2) here.

We use Theorem 5.1 and lift w = 7 o u, where @ € Wl’Q(Q,./V) and N is
simply connected and compact (by the assumption that 71 (N) is finite). Since 7
is a local isometry we have ¢ = 7o ¢ on 9§ and we take any extension @¢** €
Wl’z(BQT(yo) N Q) with @ewt = @ on BQT(yO) N on.

Fix r < p < R <2r and let

0(x) = n(2)¢*" (x) + (1 - n(x))a(z),

where n € C°(Br(yo), [0, 1]) is a cutoff function such that n =1 in B,(yo), n =0
outside Br(yo) and [Vn| < z=. It follows that 0 € W12(Ba,.(yo) N ) coincides
with @ on 9(Ba,(yo) N ). Therefore, by applying Theorem 5.2 we obtain a map
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W € WE2(Byy (o) N Q,N) with @ = & on 8(Ba,(yo) N ) with the estimate

/ |V dz < C |Vo|? da.
Bar(y0)NQ2 Bar(y0)NQ

We define now w = mow € WH2(Ba,(yo) N Q,N) and as before observe that
|Vw| = |Vw| a.e. and that w’a(BQT(yO)mQ) = Uy gy (e HUS: W is a good

comparison map and from the minimality of u we get
(5.14)

/ Vul? < / Vul? = / Vil < C IVi[2 da.
Br(y0)NS2 Br(yo)N2 Br(yo)NS2 Br(yo)NS2

‘We compute

Vi(z) = (1 = n())Vi(z) — Vi) (@(z) — () + n(2) Ve (z),
thus, from (5.14) and |Vu| = |Vi| a.e., we have

/ |Vul?dz < C’/ |Va|? do
B, (yo)NQ (Br(y0)\ By (y0))NQ

C / ~ ~ext 2
4+ — u(x) — @ (z)|* dz
(R—p)? BR(yo)ﬁﬂl (=) @)

+C V3t (2)]? da
Br(yo)NQ

=C |Vu|? dw
(Br(y0)\ By (y0))N&
C

P / () — () da
(R - p)2 BR(yo)ﬁQ

+C (Ve ()] da.
Br(yo)N$2

By a hole-filling argument, there is a 0 < 6§ < 1 such that

/ |Vul? dz SQ/ |Vul? dz
B, (y0)NQ2 Br(yo)NQ

C / ~ ~ext 2
4+ — u(x) — @ (z)|* dz
(R—p)? BR(yo)ﬁﬂl (=) @)

+C V@t (2)]? da
Br(yo)NQ

forallr < p< R<I.
Thus, by Lemma 5.9 we obtain

C
Vi de < S [ i) - g @) da
/Bp@o)rm (B =p)* JBr@ore

+C |V ()] da.
Br(yo)n&

We conclude our claim by taking p =r and R = 2r. ([l

As consequences of Poincaré inequality, Sobolev embedding, and Gehring
Lemma we readily obtain the following, see also [26, Theorem 4.1].
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COROLLARY 5.11 (Higher integrability). Let Q C R™ be a bounded domain with
a C boundary, m1(N') be finite, and let u € WH2(Q, N) be a minimizing harmonic
map. There exist constants ¢ > 2 and C > 0 such that:

(1) If Bay(y) CC Q, then

1/q 1/2
(rq_”/ Vu|qda:> <C (7‘2_"/ |Vul? da:)
BT(y) BZr(y)

and the constants q, C do not depend on §);
(2) Ifu|aQ =p e WsP(OQ,N), s > %, and p > 1, then for allr > 0, yo € 002
we have

1/q 1/2
rqfn/ |Vul|?dx <C 1"27”/ |Vu|? dx
Br(yo)ﬂQ BQr(yo)ﬂQ

1 oplsp=(n=1) :

1
I 0B (v0)r00)°

PRrROOF. Applying Theorem 5.1 we have u = 7w o %, where @ € Wl’z(Q,./\?) and
© =mo @ with p € WP(9Q,N).
We begin with the proof of (1). We have by Poincaré-Sobolev inequality

n+2

n
2
nil2 dx

/ i — ()5, (| dz < Or? (/ Vi
Bar(y) Ba.(y)
n+2

= Cr? / \Vu|w2_$2 dx ,
BQT(y)
where we used that |Vu| = |V a.e..

Combining this with Proposition 5.10 (1), we obtain

/ |Vu|? dz < (/ |Vu|n2% dx)
Br(y) B2T(y)

Thus applying Gehring lemma [22, p.122] (see also [35]) we conclude.
In order to prove part (2) we estimate

(5.15)

n+2

n

n+2

n

/ i(z) — ¢"(2) [ dz = r? / \Vu|"2 dz
Bzr(yo)ﬁﬂ BQr(yO)mQ

in the same way as (5.15).
Applying Proposition 5.10 (2) with ¢ = ¢" where @": Ba,.(yo) N Q — R? is
the harmonic extension of @: Ba,(yo) N9 — N

/ |Vu|? dz 3 / [Vu
B,-(y0)NQ Bar(y0)NQ2

n+2

w2 dg +/ V@2 da.
BQT(’yo)ﬁQ
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Thus we may apply Gehring lemma and obtain existence of a number ¢ > 2 such

that
1 1
q 2
qun/ [Vul?dz | = T27”/ |Vu|? dz
Br(yo)mﬂ Bgr(yo)mﬂ
+ 7“2_"/ IVE"|* da
BQT(yO)nQ

Additionally, we have by the trace inequality, the Gagliardo—Nirenberg inequality
for any s > %, p > 1, and by the compactness of A/

T2—n/ |V(,5h|2 dz
B2r(yO)mQ

2—n

2

2

" [¢]W%’2(B2r(yo)ﬁaﬂ)

A

1

—(n—1))5t 5 1= 55 2
ST NG LT oo [P o)

1 1
2P [‘p]%;w(Bz,.(yo)ﬂaﬂ)’

P (sp—(n=1))

A

where in the last inequality we used the Lipschtiz continuity of the universal cover
m: N — N. This finishes the proof. O
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CHAPTER 6

Strong convergence for minimizers
and its consequences

Historically, compactness of minimizers has been a huge challenge. Partial re-
sults in this direction were obtained by Schoen—Uhlenbeck [56, Lemma 4.3] (tangent
maps), then by Hardt-Lin [29, Theorem 6.4] (target manifolds with m (A) = 0),
and finally the general case was solved with the help of the celebrated Luckhaus
Lemma [41, Lemma 1]. In our special case when 71 (N) is finite we may lift our
initial map, and since the universal cover N is compact we can apply the extension
property (Theorem 5.2), similarly as in [25]. This simplifies the situation. Here we
present a proof inspired by [29, Theorem 6.4].

This is a counterpart of [3, Theorem 1.2].

THEOREM 6.1 (Strong convergence of minimizers). Let w1 (N) be finite. Then
the following assertions hold:

(1) LetQ C R™ be a bounded domain with a C*-boundary and u; € W2(Q, N)
be a sequence of minimizing harmonic maps. Then, up to taking a sub-
sequence i — oo, we find u € WH2(Q,N) which is a minimizer in any
subdomain Q' € Q and u; — u strongly in W22 (Q, N).

(2) Let u; € WH2(B(0),N) be a sequence of minimizing harmonic maps.
Set ; = u; on Ty and assume additionally that

sup[;lws.p (1) < 00
ieN

for some s > %, p>1, and sp > 1.

Then, up to taking a subsequence i — oo, we find u: B (0) — N
such that uw € WY2(B;F(0), N') for any r € (0,1) and u; — u strongly in
WL2(B}(0),N). Moreover, for every r € (0,1), the map u is a minimiz-
ing harmonic map in B (0).

(3) Let the domain Q2 and the maps u; be as in (1). Assume additionally that

their traces p; are uniformly bounded in WSP(0Q,N) for some s > %,

p > 1, sp > 1. Then up to taking a subsequence, u; — u strongly in
WL2(Q,N) and u is minimizing in Q.
We will need the following lemma.

LEMMA 6.2 (Poincaré-type Lemma). Let f € WH2(B{(0)) be such that f =0

on Ty, in the sense of trace. Then, for any § € (0, %),

/ If|?dx < 52/ |V |2 da.
T3/4%(0,6) T3/4%(0,9)

35
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ProoF. If a function ¢: [0,0] — R is absolutely continuous, the fundamental
theorem of calculus implies

/|g0 |2dt<52/ |’ (t)|* dt.

Since f is absolutely continuous on almost all lines, for almost all 2" € T5,, we have

)
/|fas P2dt = /\fx £ — fla' 0)\2dt<62/ IV (02 dt.

Integrating this over 73,4, we obtain our claim. O

PROOF OF THEOREM 6.1. The proof of (1) follows in a manner similar to (2),
see for example [29, Theorem 6.4]. For this reason, we skip the details and concen-
trate on (2).

PROOF OF (2): From Theorem 5.7 (3) we have for any 6 € (1,2) and any r < 1

n— Sp n— £ n—
(6.1) /BHO)Vuidejr 2 4 psp—(n=1)5+ 2[<P1]WSP(T2T)

If sp > 6 then (sp— (n— 1))% +n—2 > 1, thus since (6.1) holds for any 1 < 6 < 2
and since sp > 1 we can take 6 small enough so that sp > 6. Thus,

0
/Bw) |V [de 21+ [oiliyen(zy,)-

By assumption the boundary maps ¢; are uniformly bounded in W*P?(T}), conse-
quently

S,gg[ui]Wm(Bi(O)) < oo foranyr € (0,1).

7
In particular, up to taking a subsequence and diagonalizing we find u: Bf (0) = NV
which is a weak W!2-limit, and strong L2-limit of u; in each ball B;"(0), and ¢ is
the weak W*P-limit of ¢; on each T}, such that ¢ is the trace of u.

We need to show that u is a minimizer in B, (0) and that u; — u strongly
with respect to the W'2-norm in B;f(0) for every r € (0,1). For simplicity of the
notation we shall assume that r = %

Since the boundary maps ¢; are uniformly bounded in W*?, Corollary 5.11 (2)
implies uniform higher integrability of u;. Namely, for some fixed ¢ > 2 we have

(6.2) sup/ [Vu;|7dz < oo.
274(0)

%

Fix a competitor v € VVLZ(B;F/AI(O),/\/)7 i.e., a map coinciding with u outside
Bf'/z(O), in particular u = v on Tj/4(0).

Using v, we construct a competitor for u;. We do so by an interpolation on a
set Is which separates €25 and Ug, which are defined as follows:

Qs = Bl,(0)\ (R" x (0,26)) ;
(63) I5 = Bl/2+5(0) \ (Q5 U (Rn71 X (Oa 5))) ;
Us = 3/4(0) \ (L; @] Q(s) .
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Gs

Qs

FIGURE 6.1. Cut-off regions used in constructing a competitor for u;

37

Observe that 0Is is separated into two parts, the inner part being 0€2s and
the outer being 9(I5 U Qs). Choose a cut-off function n € C* such that n € [0, 1],

ns = 1in Q5,75 = 0 in Uy, and [Vns| 2 5.
We glue v with u; by defining the map

vsi = N5V + (1 —ns)ui = ui +ns(v — ui),

However, ws; does not map into N in the intermediate region I5. This can be
fixed by using the extension theorem (Theorem 5.2). First we need to lift the maps

w=mol,v=mou, u; =7 o l; where u, v,uU; € W1’2(B;r/4(0),/\7) and define

(6.4) Vs,g = Ns¥ + (1 — 775)0'1‘-

Now, recalling that Nis a simply connected compact manifold we may apply
Theorem 5.2 on the region Is and obtain existence of a manifold valued map

Ws,; € W172(L;,./\~/') which agrees with o5, on the boundary ws o1, = Vs.i oI,

(6.5) / |V de < C | |Vis,]? da
15 Ié

and

with a constant independent of ¢ and §. We extend ws,; into B;'/4(O) by setting

Ws,; = 0 in Qs, Ws; = U; in Us. Now we define ws,; = mows,; € Wl’z(B?J)r/4(O),N)

and note that w;;

ot
in B3/4

= U;
‘aB;M(o) g ’aB;/4(o)

(0), and the minimizing property of u; implies

/33/4(0) a/a(

(6.6) :/ \Vv|2dx—|—/ \Vui|2dx—|—/ |Vws ;|* d
Qs U5 Is

\Vui|2dx§/+ |Vws; | da
B, (0)

:/ \Vv|2das—|—/ \Vui|2dx+/ | Vs ;| d.
Qs s Is

‘We observe that

/ |Vui|2d:z:§/ \Vui|2dx—|—/ |V, | dz,
Gs B;—/4(0)\B?—/2(0) T1/2><(0#6)
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thus, after enlarging s to B1/2’ (6.6) becomes

(6.7)

/ |V, |* do < /
B,)5(0) By

|W\2dx+/ |Vu;|*dz + [ |Vabs,|* da.

1/2(0) Ty /2 %(0,6) Is

Moreover, by (6.5) and (6.4)

/|vw5,i|2dx§/ |Vis,i | d
15 15

1
5/ \Vﬂi|2dx+/ |V€)\2dx+—2/ |ii; — 0| dx
Is I 5 Is

\Vu|*dz + [ |Vo|*dz
Is Is

1 - ~12 1 ~ ~12
+5—2/16|u—v dx—|—5—2/16|ui—u| dz,

where &t = mo@ and @ € W 2(3;/4(0) N).

Observe that u = v outside B 172 and on T34, in consequence

2/ |a — v|2dx<—/ |t — o] dz
4 Ty 4% (0,26)
</ V(i — 5)[ da
T3/4><(0,25)

5/' IV (u — ) da
Ty 4% (0,25)

by an application of Lemma 6.2. Moreover, higher integrability of u; (6.2) allows

us to use Holder’s inequality and estimate

_2
/ |Vui\2dx+/ [Vu|* dz 3| T2 x (0,5)|1 I N T
Ty /2 %(0,0) Is

with some positive exponent 1 — % > 0.
Of course, we also have

1

57/ |ul —al?dz 3 |uZ — ul? dz.

Thus, we arrive at

/+ |V, |* da S/+ |VU‘2d.T+C(517_ +C [ |Vv)*de
BY,(0

(6.8) 1/2 1/2(0) Is

C
+C IV (u—v)*de + = |ui—u|2 da.
Ty/4%(0,2) g
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6.1. STRONG CONVERGENCE WITH VARIABLE BOUNDARY 39

This estimate holds for all 7 and §, so may take the limit superior ¢ — co. Recalling
strong convergence u; — u in L?(B7,,(0)), we obtain

3/4
limsup/ |Vu;)? dz §/ |Vv\2dx+0517§
Goy A R
+C [ |Vv)Pdz+C |V (u — )| da.
Is Ty/4%(0,26)

In the limit § — 0, the last two integrals vanish by absolute continuity of the
integral, and hence we arrive at the estimate

(6.10) lim sup /
Bt

i—00 12 (0)

|V, |? do < / |Vo|? da.
B,)5(0)

Employing weak lower semicontinuity of the Dirichlet energy, we can now easily
conclude both strong convergence of u; and minimality of . Indeed, after integrat-
ing the identity

|Vu; — Vul? = |Vug|? + |Vu|*> — 2Vu; - Vu

over B

1/2 (0) and taking the limit superior on both sides, we obtain

limsup/ |Vu; — Vul*dz = limsup/ |Vug)? — |Vul*dz <0
Bt BT, (0)

1—00 1/2(0) 11— 00 12

due to the weak convergence Vu; — Vu in L2(Bl+/2(0)) and the estimate (6.10)

applied with v = u. This shows that Vu; — Vu strongly in L2(Bf'/2(0)). But now
the left-hand side of (6.10) is just the energy of u, and the minimality of u follows.

PROOF OF (3): Let a € 99 be any point on the boundary.

Exactly as in proof of (2), we find that for an R > 0 (up to a subsequence) u;
converges weakly to u in W12(Bg(a)NQ), strongly in L?(Bg(a) ), and a.e.. We
will show that the convergence is in fact strong and that u € W2?(Bg/s(a),N) is
a minimizing harmonic map. To do so we proceed exactly as in proof of (2), the
only difference is that we have to redefine the sets in (6.3) in terms of the distance
to the boundary:

Q5 = (B;E/Q(a) NQ)\ {z € Q: dist (z,00) < 20};

(6.11) I5 = B§/2+6(a) \ (s U{z € Q: dist (x,00) < 6});
U5 = B;_R/4(a) \ (L; U Qg).
Since 0f2 is compact, a covering argument leads to the conclusion. O

6.1. Strong convergence with variable boundary

A technical modification of this reasoning allows us to consider in Theorem 6.1
a sequence of maps u; defined on converging Lipschitz domains with non-flat bound-
aries. This will be used in Theorem 7.4 and Theorem 7.13.

PROPOSITION 6.3. Let N be a manifold with finite fundamental group and

Q; ={x € Br: z, > a;(2')},
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where the sequence of functions o;; € C*(R" ™1 R) converges to zero in C*. Assume
that u; € W12(Q;, N) is a sequence of minimizing harmonic maps with boundary

maps p; == ui‘BQ,ﬂBR satisfying the uniform bound

S.gg[%]ws‘p(agmBR) < oo for some s < %, p>1, sp>1.
K3
Let us choose C'-diffeomorphisms ¢;: Br — Bg that map €; into the half-ball B;g
and converge to identity in C*.

Then, up to taking a subsequence i — 00, u; 0 g;l converges strongly in
WL2(B},N) (for each v < R) to a map u: Bl — N which is minimizing in each
ball B;F. In consequence, the traces also converge: Lpiogi_l — u’TT mn W%vQ(TT,./\/').

The proof will be based on the following lemma.

LEMMA 6.4. Let B C R™ and ¢;: B — B be a sequence of diffeomorphisms
convergent to identity in C1. If u € L*(B), then uos; — u in L?(B).

PRrROOF. Let us fix € > 0. One can then choose v € C¢°(B) such that
(6.12) lu—vlr2m) < e
Since ¢; is C'-close to identity, we also have for large enough 4
(6.13) [uoc —vog|rzm) = [[(u—"0)odllLm < 2.

Moreover, since v € C', the difference v o g; — v converges uniformly to 0, in
consequence for large enough 4

(6.14) lvog —vl2m) <e.
Thus, by triangle inequality and (6.12), (6.13), and (6.14) we obtain
lu—woqllrzm < llu—vllrzm) + v —vosillLap) + lveoi —uogllrzs
< 4e. O
PROOF OF PROPOSITION 6.3.

STEP 1. Repeating the reasoning from the proof of Theorem 6.1 (2), we are
able to establish the following convergence for each r < R:

(6.15) Ui XQ,NB, oo, Ux g+ strongly in L?(B,);
. Vuixa,nB, 1z, Vuxp+  strongly in L?(B,).
Unfortunately, this does not suffice to conclude convergence of boundary maps ;.
Using Lemma 6.4 we will upgrade the convergence to u; og; 1 u strongly in
W2(B).
STEP 2. Strong convergence of u; o; ' in L?(B;).
Recall that ¢;, gi_l — id on B,.. Since gi_lz Bf - Q; C BE, we have by triangle
inequality

(6.16) |lujos* — ull 2 gy < flue Gt - ull 2 gy + llus o Gl —wuo gi_1||L2(Bi)'

By Lemma 6.4 (with Q = B} and ' = B;'") we obtain lim;_, Huo%_l_“”m(si) =
0. As for the second term of (6.16) we have from Step 1.

. 1 1 .
Zlggo Juioq " —uog HL2(BT+) 3 Zlggo luixe.ns, — uXBj”m(B:r) =0.
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6.1. STRONG CONVERGENCE WITH VARIABLE BOUNDARY 41

STEP 3. Strong convergence of the gradients. We first note that
V(wiog ) = ((Vu) o t) - V()

here by - we mean the multiplication of the Jacobian matrices. Since gfl — id
in C!, we have the uniform convergence I — Vc{l — 0, where I € M™ ™ is the
identity matrix. This gives

(6.17)
IV (ui 067 = (Vui) o 67 oy < IH(Vua) o 71) - (1= V(GH) ey
SIVuill o sy I = VG o) > 0
Thus,
(6.18) V(i 0 7) = Vaull 2 s
< V(i 067 = (V) 0 67 gy + (V) 0 67 =Vl -
The convergence of the first term of the left-hand side of (6.18) follows from (6.17).

In order to obtain the convergence of the second term, ||(Vu;) ot — Vullp2p
we proceed exactly as in Step 2. This finishes the proof.
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CHAPTER 7

Boundary regularity
for smooth and singular
boundary data in W!"~!

It is a classical result by Schoen and Uhlenbeck that minimizing harmonic maps
with C%“ boundary data are C*® in a neighborhood of the boundary [57].

One of the quite surprising results of Almgren and Lieb in [3] is that even possi-
bly singular boundary data (they consider W12(9B3(0),S?)) prevents singularities
from reaching the boundary.

In this section we extend this result to larger trace space and general dimension.

First of all we notice the interior regularity, which is a corollary of the com-
pactness result, Theorem 6.1 (3), and Theorem 2.5.

THEOREM 7.1 (interior regularity for almost constant boundary data). Assume
w1 (N) is finite, s > %, and sp > 1. For each bounded domain with C*-boundary
Q2 C R™ and each o > 0 there exist an e = €(Q, o) > 0 such that the following holds:

Ifu e WH2(Q, N) is a minimizing harmonic map with trace o == u ) and assume
Q
that for s > %, p>1, and sp > 1 we have

[99]%/547(89) <e,

then w is smooth in the interior region {x € Q: dist (z,00) > o}.

PRrROOF. Assume on the contrary that there exists a ¢ > 0 and sequence of
minimizing maps u; € WH2(Q, N) with u; ; and
1

< -
i

|8Q =

[%]};Vs,p(ag)

such that each u; has a singular point y; € {x € Q: dist (z,00) > o}.

Then by the strong convergence of minimizers, Theorem 6.1 we would obtain
the existence of a minimizing harmonic map u € W12(€, V) such that, up to a
subsequence, u; — u strongly in W12(Q, N') with u’aﬂ = const. Thus u itself would
be a constant map and therefore have no singularities. On the other hand, from
the sequence y; of singular points of u; we could choose a subsequence converging
to a point y € {x € Q: dist (z,09) > o} C Q and from Theorem 2.5 (Singular
points converge to singular points) we would know that y must be a singular point
of the limiting map u, which gives a contradiction. O

7.1. Uniform boundary regularity for constant boundary data

The first step is uniform boundary regularity for constant boundary data, see
[3, Theorem 1.10].

43
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44 7. REGULARITY FOR SMOOTH, SINGULAR BOUNDARY DATA IN whn—1

THEOREM 7.2 (Boundary regularity). Assume m1(N) is finite. There exists a
uniform constant A\ > 0 such that the following holds: Let uw € W2(B{ (0),N) be

a minimizer. Moreover, assume that ¢ = u| is constant. Then u is smooth in
T

(0, )\) X T1/2'
The main ingredient in Theorem 7.2 is the following.

LEMMA 7.3. For any € > 0 there is a uniform constant Ro(e) € (0,3) so that

the following holds. Let w € WH2(B{(0),N) be a minimizer, where N has finite

is constant. Then for any xo € T} /2
T

fundamental group, and assume that ¢ = u
sup r27"/ |Vu|?>dz < e.
r<Ro(g) B (z0)

PrOOF. Assume that the claim is false for some € > 0, then we find a sequence
R, —0,z; € T%, and a sequence of minimizers u; with boundary data u; ’Tl =; €
N constant on the flat part of the boundary, such that

Rffn/ |Vug|? dz > e.
Bgi(wi)
By the boundary monotonicity formula, Theorem 3.1,

inf 7‘2_"/ |V, | do > e.
rzRi Bif ()

By Theorem 5.7 (2) we know that maps w; are uniformly bounded and thus by
strong convergence of minimizing harmonic maps, Theorem 6.1 (2), up to taking a
subsequence, we find in the limit a minimizing harmonic map u € W42(B; (0), )
and a limit point 2o € T of {x;}72; such that

(7.1) inf rz_"/ |Vul|* do > =
r=0 B (zo0) 2

Now take any sequence r; — 0 such that, by Lemma 3.2, we have
Ura () = ulwo +7i) =5 @()in WHA(BT(0)).

From Lemma 3.3 we find that ® is constant. Thus, for small enough r > 0 we have
r2_”/ |Vu|? dz = / IV (u(zo + 7)) > de < i,
B} (wo) B (0) 2

contradicting (7.1). O

PROOF OF THEOREM 7.2. For any given € > 0 let Ry(e) be the radius from
Lemma 7.3 and set A := Ry(e)/2. For o € (0,A) x B1(0) denote by 1 € Ty > the

projection of xg onto Tj 5. Then for p := |zg — 1| < X we have
/ |Vu|* dz < / |Vu|? dz < e(2p)" 2
B, (z0) Bz, (1)

due to Lemma 7.3. Choosing ¢ > 0 small, we infer smoothness of u in B,/ (o)
from Theorem 2.1 (e-regularity). Now w is regular in (0, A) x T} /9, since this region
is covered by balls of this type. O
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7.2. UNIFORM BOUNDARY REGULARITY FOR SINGULAR BOUNDARY DATA 45

7.2. Uniform boundary regularity for singular boundary data

THEOREM 7.4 (Uniform boundary regularity for singular boundary data). As-
sume s > %, p > 1, and sp > 1. Let Q C R™ be a bounded domain with a
Cl-boundary and let N be a manifold with finite fundamental group. There are
constants R = R(Q2) and € = () such that the following holds:

Take any minimizing harmonic map u € W12(Q,N) and denote its trace on
o by .

If for some xg € I and some py < R we have the estimate

(7.2) A= sup PPVl (noa) S €
B, (y)CByp (z0)

then u is smooth in B),,(xo) N, where X is a uniform constant.
We first prove Theorem 7.4 for flat boundary.

PROPOSITION 7.5. There exist uniform constants R and e such that the follow-
ing holds. Take any minimizing harmonic map u: Bf (0) — N with 71 (N) finite
and denote the trace of uw on Ty by p. Let also s > %, p>1,sp>1.

If for some py < R we have the estimate

sp—(n—1
(7.3) o W yener,,) S €
then u is smooth in
B)\PO (0) n {xn > APO/Q},

where X\ is taken from Theorem 7.2.

REMARK 7.6. In particular one can take [, |Vo|" "t dH" < e as the small-
PO
ness condition in (7.3).
PROOF OF PROPOSITION 7.5. Assume the claim is false. Then we find a se-
quence pr — 0, a sequence of minimizing harmonic maps u;, € WH2(B{ (0),N)

with trace ¢ = uk‘ satisfying
Ty

s —(n—l)[

1
pkp ka?]?;‘/s,p(Tpk) < %

however there is a singularity

Y € Bpa(0) N {(z1,...,2n) € R": 2, > ppA/2}.

We rescale, setting vp(z) = wugp(prx), Yr(z) = erp(prz), and find v, €
Wh2(B;(0),N), which is a minimizing harmonic map with trace s, on T} sat-
isfying

1
(7'4) [wk]svs,p(ﬂ) < E

(We note that here we used the scale invariance.) Moreover, vy has a singularity
1 N A
zp=—yr EBANO)N 2z ER™: 2z, > = 5.
Pk 2

Thus, by strong convergence of minimizers, Theorem 6.1 (2) and by convergence
of singularities, Theorem 2.5, up to taking a subsequence, we find in the limit a
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46 7. REGULARITY FOR SMOOTH, SINGULAR BOUNDARY DATA IN whn—1

minimizing harmonic map v € W2(B;(0), V) which in view of (7.4) is constant
on T, but has a singularity

z= lim z; € BA(0)N {I eR™: z, > i}
k—oo 2
This contradicts Theorem 7.2. O

The proof of Theorem 7.4 follows now from Proposition 7.5 by a blowup argu-
ment.

PrOOF OF THEOREM 7.4. Take €, A\, Ry from Proposition 7.5. Assume on the
contrary that we have a sequence of minimizing harmonic maps u;: Q — N with

traces u;|,, = @i such that for any p; < % and z; € 09

sp—(n—1)

P [%]Zﬁvs,p(g‘,i (ei)nan) =€

and each u; has a singular point y; € BéARopi N Q.

First of all we can assume that |y; — z;| = %)\Ropi and dist (y;, 09) > %/\Ropi
(this can be done by choosing p; possibly smaller and moving z; to the projection
of y; onto the boundary 01).

Now define v;(x) = u; (x; + p;x). We observe that, as in Section 3.1, up to a
rigid motion we may assume that for large enough ¢ we have

Q= {x € B1(0): @, > p; "a(pia’)}

where o € C1(R"1,R) is the C! function which “straightens out” the boundary
of Q around z; € 9Q and «(0) = 0, Va(0) = 0. (For large enough i we have
Q; C B{ (0)). We note that Ui|aQ,- = 1); are still satisfying
['(/)i];;{/s,p(]gl(o)magi) <e.

(Observe for this to hold true we only use the scale invariance of the expression).

Thus, by Proposition 6.3, we obtain a minimizing harmonic map v: B; (0) — A
which by Theorem 2.5 has a singularity y in B;\RO (0) with y, > %)\RO. But
U|T1 = 1) satisfies

[wi]%/s,p(Tl(o)) <e.
This contradicts Proposition 7.5. (]

As a corollary from Theorem 7.4 we also obtain that the (n — 3)-dimensional

Hausdorff measure of the singular set of a minimizing harmonic map into manifolds
with finite fundamental group is finite even if the boundary data is non-smooth.

COROLLARY 7.7. Let Q C R™ be a bounded domain with a C*-boundary and
let m(N) be finite. If u: Q@ — N is a minimizing harmonic map with trace ¢ €
WeP(9Q,N) with s € (3,1] and sp=n — 1, then H"3(singu) < oco.
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PROOF. Since ¢ € W*P(9Q, N') and for sp = n—1 this space is scale invariant,
we can take € > 0 from Theorem 7.4 and find a p > 0 such that

v <
ziggﬂ [SD} WP (By(x0)NOY) — £

and obtain a Ap-neighborhood of 92 on which the minimizer u is smooth. By
Corollary 4.1 we know that H"3(singu N Qp/2) < 00, where Qy,/0 = {z €
Q: dist (z,0Q) > Ap/2}. This finishes the proof. O

Later, in Theorem 9.1 we obtain a more precise bound on size of the singular
set in terms of the boundary data.

EXAMPLE 7.8. As noted in the introduction, ¥: B"(0) — S? defined by

Uz z") = |£:| for ' € R and 2" € R"™3 is a minimizing harmonic map with
the singular set of dimension (n — 3). For n > 4 the singular set of U touches

the boundary of 0B™(0) but the trace ¢ = \I/‘BB”(O) does not satisfy (7.2) in Theo-

rem 7.4. Indeed, p € WHP(0B™(0),S?) for any p < 3 but not forp =3, so ifn >4
then v ¢ W*P(0B™(0)) for sp =n — 1.

7.3. Hot spots

The following is a generalization of the [3, Theorem 2.3 (v)], it shows how to
control the energy over an annulus centered in a point at the boundary by a term
that depends on the boundary term ¢ but not on the minimizer.

THEOREM 7.9 (Bridge theorem). Let Q C R™ be a bounded domain with a C*-
boundary let also s > %, p>1, and sp > 1. There exists a number ro = r9(2) > 0
with the following property.

For zg € 09 let A(p,r)(xo) = {z € R": p < dist (z,z9) < r}. Suppose also
that w1 (N) is finite and that u € WH2(Q,N) is a minimizer in Q having boundary
map ¢. Then, whenever 0 < r < rg, we have for any 1 < 0 < 2
2]

2-n 2 (sp=(n=1)) 115
v8) = /A(r 2r) (20)NQ Vol dw < O+ Or ’ [w]Ws’P(A(%%)(zo)masz)’

where C = C(s,p,0) > 0 is a constant independent of 0, u, and .

REMARK 7.10. Replacing Theorem 5.7 (3) by Theorem 5.7 (2) we get in place
of (7.5)

7’2_"/ Vul* dz < C + Cr3_"/ [Vel? dH" .
A(r,2r)(z0)NQ (

A(Z,58) (w0)NON
PROOF OF THEOREM 7.9. Since ) is bounded with a C'-boundary, we may
choose 19 so small, that the boundary 9Q N B,,(z) is almost uniformly flat for
all x € 9Q. Then we can find points (ﬂﬁi)i]\iﬁ (with M7 a uniform combinatorial
number) satisfying the following properties:

My
U By y4(x) N0Q D A(r, 2r)(20) N O
i=1

and

My
dist (39, A(r, 2r) (o) \ U BT/4(:Ei)> >

=1

r
8.
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A(r, 2r)

FIGURE 7.1. Covering 9 by U?ill By 4(x;)

Also, there exists a uniform number Ms such that we always find (yj)j.v[jl SO
that B, 6(y;) C £ and
Mo
Q> U Br/8(yj) o>an A(Tv ZT)(IO) \Br/S(aQ)
j=1
From Theorem 5.7 (3) we obtain for any 1 < 6 < 2

2]

—-n sp—(n—1))< s
a / |vu|2 dz 31+ rler [QO]WS’p(Br/Q(Ii)ﬂaQ),
BT/4(E,‘,)QQ
Summing over all the z; we obtain
(7.6)

r2-n |Vu|2 dz 2 M, +M1T(sp_(n_1))% 0]
A(T‘727’)(w0)ﬂ(QﬂBr/g(ag))

From Theorem 5.7 (1) we obtain

0
S
We:P(B,. /o (z:)NON)"

-
r2_”/ Vul?dz 3 —8— ~ 1.
B,./s(y5) r—s
and thus summing over y;,

(7.7) |Vu|?dz < M.

r2—n/
A(r,2r) (20)N(Q\ B,/ (99))
Together (7.6) and (7.7) give the claim. O

With this uniform energy bound, we can actually show that boundary energy in
small balls cannot induce distant singularities [3, Thm. 2.4]. In the contradiction
argument, the hot spot tends to zero in size and disappear completely in the limit.

THEOREM 7.11 (regularity away from “hot spots”). Let s > %, p > 1, and
sp > 1. There is an €(n) > 0 such that the following holds. Suppose N is a
manifold with finite fundamental group, u € W2(B; (0),N) is a minimizer with

trace ¢ on Ty, and

(7.8) [Pl \B. (o)) = €
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for some ball B.(xg). Then u is smooth in
T1/2 X (/L/Q,N)a
where p > 0 is a small constant depending on n and N.

PRrROOF. We argue by contradiction. Assume that u; : Bf (0) — N is a sequence
of minimizers with boundary maps ; such that

[%]Iv)vs,p(Tl\Bai (i) S &

1—00

for a sequence of balls B.,(z;) and &; —— 0. For r; < &; we have
sp—(n—1 sp—(n—1
(79) ,’A’E 14 ( ))[<Pi]€VS~P(T1\Bri (Iz)) S Ei’l"g p—( ))
Setting r; := (g;)*, where
k=L, (n—1)
9

and 0 € (1,2) we have k > 0, (thus in particular r; < g;), and from (7.9) we get

Np—(n—1)) & [ ¢ _
(7.10) (7”1) [@Z]Ws,p(Tl\Bri (xz)) S T’L

where r; im0, 0, and up to taking a subsequence, r; < 27°.

Now, we assume (by contradiction) that each w; has at least one singularity
Yi € Thya X (/2, ). ‘

By Theorem 7.9, for large enough ¢ and for any r» > 27*

7"2_”/ |V, | dz < C.
B nA(r,2r)(z;)

Thus, for every 1 < k < 1,

/ |V |2 de < ¢ 27km=2),

B NA(2=k,2-k+1)(z;)

Up to taking another subsequence we can assume that x; — ¢, and for convenience
also |z; — xo| < 27". Then, from the above estimate we have

(7.11) / Vu; P dz < C Y 272 < ¢
31/5\32—27?(9”0) k=1

In particular by a diagonal argument and the strong convergence of minimizers,
Theorem 6.1, we obtain a minimizer u in WLQ(B;F/ZL(O) \ By (z0),N) for any r > 0.

Moreover, its trace, which we shall call ¢ € VV&)C2 (T1 \ {zo}, N) is the limit of ;.
Observe that ¢ is constant on 7; by (7.10).

Moreover, by Theorem 2.5 the sequence of singular points y; can be assumed
to converge to a singular point of u, which we call y € Ty /5 x [1/2, p].

To reach a contradiction with Theorem 7.2, one needs to solve the subtle is-
sue of minimality around zo. To this end, we note that by (7.11) the energy

= \ B, (o) |Vu;|? dz is uniformly bounded for all r > 0, and hence by monotone
3/4\ T

convergence u € WLQ(B;M(O),N). In view of Lemma 7.12 below, the singularity
;/4(0) with a constant

boundary map ¢. This contradicts the singularity at y. ([

xo is removable, and so u is a minimizing harmonic map in B
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To complete the proof of Theorem 7.11, we need the following removability
lemma.

LEMMA 7.12 (Removability of points for minimizing harmonic maps). Assume
that 71 (N) is finite and u € WY2(B; (0),N) is a minimizer away from the origin,
i.e., for any § > 0 and any v € WH2(B(0),N) satisfying v = u on 0B, (0) and
v =wu on Bf (0) we have

(7.12) / |Vu|? dz < / |Vo|? da.
B (0)\B; (0) B (0)\B; (0)

Then wu is a minimizing harmonic map in all of B (0).

PrOOF. Let w € W12(B;{(0),N) with u = w on 9B (0). We need to show

that
(7.13) / Vul? de < / Vul? de.
B (0) B{(0)
Let us lift w = oW, u = wo @ as in Theorem 5.1, where W, % € Wl’Q(Bf(O),./V)
and N is the universal cover of N and we have a.e. |Vw| = |V@| and |Vu| = |Vil.

For 6 > 0, let ns € C°(B25(0)) be a standard cut-off function satistying ns = 1 in
Bs(0) and |Vns| < 2. We define 05 € W'2(Bj (0),R?) as

U5 = (1 = ms)W + 1573
this function satisfies o5 = @ on B; (0), ¥5 = @ in By (0) and 95 = @ in Bf"\ Bas(0).
Since N is compact and simply connected we may apply Theorem 5.2, applied
in B;;5(0) \ Bs(0) and find ws € WH2(BS;(0) \ Bs(0),N) such that ws = 95 on
O(B3,(0) \ Bs(0)) and

(7.14) / |Viis| do < / |Vis|? d.
B5(0)\B5(0) B35 (0)\B5(0)

We extend s to the whole half-ball B (0) by setting ws; = @ in By (0) and w5 = @
in B (0)\ Bas(0)). Now let us define ws :== 7o w5 € WH2(B{ (0),N') and note
that we have

u in B; (0)
ws = w in B (0)\ Bas(0)
u on dB1(0)

and from (7.14)

/ |Vws|? da :/ |Vibs|? da g/ Vs da.
B;(0)\Bs(0) B;(0)\Bs(0) B35(0)\B5(0)

In particular, ws is a competitor in the sense of (7.12), and we have

/ |Vu|* dr < / |Vws|* dz
B (0)\B5(0) By (0)\B5(0)
:/ |Vws|? dx—l—/ |Vws|* d
B{ (0)\Bz25(0) B5(0)\B5(0)

g/ |Vw\2dx+0/ V552 da.
B (0)\B25(0) B3;(0)
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Since u, and w € W12(B; (0)) using the absolute continuity of the integral we find

that

(7.15) / |Vu|? dz < / |Vw|?dz + C 1iminf/ |Vis|* da.
B (0) B{ (0) 020 JBj;(0)

Now

\Va\2dx+/
(0) By (

25

1
/ |Vis|? do 2 —2/ |11—1D|2da:+/
B3 (0) 0% JB%(0) B,

26

|Vao|? da.
0)

Observe that we are in dimension n > 3 and since u, w have values in the compact
manifold AV, we get

1

0* /B0
Thus, using again the absolute continuity of the integral and that @,w € W2 we
find

lim | Vs | dz = 0.

5—0 B;{S(O)
Plugging this into (7.15) we conclude. O

In the applications, we will use the following global version of Theorem 7.11
(see [3, Cor. 2.7]).

THEOREM 7.13 (boundary regularity with hot spots). Let s € (3,1], p > 1, and
sp > 1. Let us also assume that w1 (N) is finite. For each bounded domain Q C R™
with Ct-boundary, there are small constants o,e,\ > 0, A > 1, (o depending on N
and the geometry of Q, the others only on n and N') so that the following statement
holds true for any minimizer u € WH2(Q, N) with trace ¢ = u’

o0
For any singular point y € singu with r = dist (y,00Q) < o and for any ball
B C R™ with radius \r, we have
(7.16) Tspi(nil)[@]ng(asm(BAr(y)\B)) 2 &

PROOF. In principle, this is a rescaled version of Theorem 7.11, only with a
non-flat boundary.

Assume to the contrary that we have a sequence of minimizing harmonic maps,
u; € WH2(Q, N) with trace o; = u; 0 and singularities y; € singu; with r; =
dist (y;, 00Q) < %, but there exists a ball B; C R™ of radius Ar; with

rsp*(nfl)[

1P
L)OZ}WS,P(BQI'T(BAM(yi)\Bi)) =<

After rescaling v;(z) = u;(y; + riz), in view of Theorem 6.1 and Proposition 6.3
we find in the limit a map which contradicts Theorem 7.11 . ]
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CHAPTER 8

Hardt and Lin’s stability
of singularities for n > 3

This section is concerned with stability of singularities. By this we mean that
if two boundary maps ¢, ¢’: 92 — S? are close in the right Sobolev norm, then
the singularities of their corresponding minimizers u, v’ : Q — S? are close as well.
Since minimizers are in general non-unique, the precise statement is a little more
subtle — e.g., by assuming uniqueness a priori.

In any case, let us discuss the right notions of closeness. In dimension n = 3,
when the singular set consists of finitely many points, Hardt and Lin [30] considered
the Lipschitz norm for boundary data, and showed that small perturbations do
not change the number of singularities. Moreover, they constructed a bi-Lipschitz
diffeomorphism 7: © — € (close to identity in Lipschitz norm) such that u is close
to v/ o7 in some C” norm. These results were recently extended to the case of
W2 perturbations of boundary data by Li [37].

In higher dimension n > 3, we consider perturbations in the W1"~! norm.
Since the singular set is a rectifiable set of codimension 3, we prove its stability
with respect to a version of Wasserstein metric (see [63]) also referred to as the flat
metric:

(8.1) dW(u,l/):sup{/ hd,u—/ hdv: h: R" =R, |h| <1, |Vh|§1},

i.e., we show that the distance between measures H" 3Lsing u and H" 3Lsing v/ is
small. Since taking A = 1 in the definition yields

[n(R"™) — v(R™)| < dw (p, v),
we obtain in particular that the size of the singular set H" 3(sing u) is also stable

under W™~ l_perturbations of boundary data.

THEOREM 8.1 (stability of singularities). Let Q@ C R™ be a bounded domain
with a C'-boundary and let w € W12(Q,S?) be a minimizer with boundary data
© € Whn=1(9Q, S?). If uy is a sequence of minimizers with boundary data i, and

(8.2) up — u in WH(Q),  op — ¢ in WHTH(09Q),
then
H" 3 sing up W5 H" 3 sing u,
in particular H" 3 (sing ug) — H" 3 (sing u).
Under the assumption of uniqueness, we obtain immediately Theorem 1.1

PrOOF OF THEOREM 1.1. For the sake of contradiction, let u; be a sequence
of minimizers with boundary data ;. satisfying o5 — ¢ in W1?=1(9€,S?) but not
satisfying the claim. Taking a subsequence, by Theorem 6.1 (3) we may assume that

53
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uy, converges in W12(€, S?) to a minimizer 7 with boundary data . By uniqueness,
% = u and Theorem 8.1 implies that "~ 3_sing u;, tends to H"3_sing u. Thus, we
obtain a contradiction for large enough k. (Il

We would like to emphasize that here we work only with the target manifold
N = §?% and we could not generalize the argument to the case of simply connected
manifolds. The reason behind this is the Brezis—Coron-Lieb [14] classification of
tangent maps for S? and its generalization Corollary 2.9, from which we deduce
that all (n — 3)-dimensional tangent maps have the same energy density.

The singularities were also classified for N' = S* by Nakajima [52], see also
[40]. It was shown by Schoen and Uhlenbeck [58] that in the case when the target
manifold is a 3-dimensional sphere, then dimy singu < n — 4. This is why it is
possible to extend Theorem 1.1, following the same arguments, in the terms of the
stability of the highest stratum, which in this case is a (n — 4)-dimensional set. In
other words, it is possible to consider H" “Lsing v in place of H" 3Lsing u.

8.1. Outline

In analogy to the original argument of Hardt and Lin [30], the heart of the

argument lies in the special case when w is the tangent map ¥ as in (2.6) given by

!
R3 x R"3 5 (¢, 2") —— ‘i—/‘ € S%
Establishing a stability result for the singular set (which for ¥ is an (n — 3)-
dimensional plane) requires some care. Here we adopt the notion of J-flatness
introduced in [47], which combines topological and analytic conditions for a mini-
mizer to be close to ¥. In Section 8.2 we cite the necessary results and also show
that the condition for 5-flatness is stable under W2-perturbations of the minimizer
(Proposition 8.6).

With this in hand, we are able to modify the original arguments of Naber and
Valtorta [50] and improve on them in the special case of maps into S2. In result,
we obtain the stability result for ¥ mentioned earlier (Lemma 8.7).

Since around H"3-almost every singular point, any energy minimizer is close to
the map ¥ (composed with an isometry), this stability result can be seen as a local
case for Theorem 8.1. Indeed, in Section 8.4 we cover most of the singular set of u
by balls on which Lemma 8.7 can be applied. An argument based on Proposition 8.6
then shows that the same covering works for both sing u and sing ug, and the global
estimate follows.

8.2. Behavior of top-dimensional singularities

This subsection gathers the results of [47], which allow us to study further the
top-dimensional part of the singular set.

Recall the tangent map ¥ from (2.6) with its energy density © from (2.7),
and the rescaled energy 6, from (2.1). We introduce the following property, which
basically says that u is close to ¥ (up to an isometry) on the ball B, (z).

DEFINITION 8.2 (d-flatness). We say that an energy minimizer u: Q — S? is
d-flat in the ball B,(x) C Q if

(1) z is a singular point of u and © < 0,(x,0) < O,(x,r) <O 44,
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(2) for some (n — 3)-dimensional affine plane L through x, singu N B, (z) C
B’I"/IO(L))
3) w restricted to (x + L) N OB, o(x) has degree 1 as a map to S2.
/

Note that this definition is scale-invariant in the following sense: w is é-flat in
B, (x) if and only if the rescaled map u(y) = u(x+ry) is 6-flat in B;. Also note that
u is smooth outside the tube around L by (2) and thus the degree is well-defined.

Definition 8.2 is strongly reminiscent of [47, Def. 4.3]. There, Reifenberg flat-
ness is additionally assumed, but it follows from

LEMMA 8.3 ([47, Lemma 5.1]). Assume that singuN B,.(xz) C B (L) for some
0<e< % and some (n — 3)-dimensional plane L through x. Moreover, assume
that u restricted to (x + L) N 0B, /5(x) has degree £1 as a map from S? to itself.
Then

LN Bu_oy,(x) Cmp(singu N By(x)).

Here and henceforth, wy, denotes the nearest-point projection from R™ onto L.

In particular, it follows from our definition of d-flatness that L N B,(x) C
B, 5(singu). This allows us to apply the results of [47].

The first important point is that around each point in top-dimensional part of
the singular set, sing, u, the map wu satisfies the d-flatness property on sufficiently
small balls.

LEMMA 8.4 ([47, Cor 5.4, Lem 5.8]). Let = € sing, u. Then for each § > 0
there is ro > 0 such that u is 0-flat in B.(x) for all v € (0, ro].

Below we also note various consequences of d-flatness proved in [47]. For sim-
plicity, we only deal with the unit ball, but one can easily obtain the corresponding
statement for any ball using the scale-invariance.

THEOREM 8.5. For each € > 0 there is § > 0 such that the following holds. If
u s 0-flat in Bs, then
(1) for some tangent map of the form ¥ = ot (with ¥ as in (2.6) and some
linear isometry T) we have
lu =Ty 25,) < e,
(2) for the (n — 3)-dimensional linear plane L' = sing ¥,
singuN By C B:(L') and L'NB;_. C mp(singun By),
(3) all singular points in By lie in the top-dimensional part sing, u, and u is

e-flat in each of the balls B,(z) with z € singuN By and 0 < r < 1/2.

PROOF. Due to Lemma 8.3, we may apply the results of [47] directly.

Points (1) and (2) are essentially the content of [47, Lem 5.3], except for the
condition L N By_. C wr(singu N By), which again follows from Lemma 8.3. Point
(3) comes from combining [47, Prop 5.6] and its corollary [47, Cor 5.7]. O

The last ingredient is another consequence of the arguments in [47]. It is to

some extent the higher-dimensional analogue of [3, Theorem 1.8, (2)].

PROPOSITION 8.6 (Stability of d-flatness). For each € > 0 there is 6 > 0 such

that the following holds. If u is §-flat in the ball By and uy 52w in Wh2(By),
then for k large enough there is xy € sing ur N Be such that uy is e-flat in the ball
Blfg(l‘k).
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PRrROOF. Choose €'(n,e) > 0 small enough, more precisely such that
e <ef2, (1-2)"(O+¢/2) <O +e.
By taking § small enough, we may assume by Theorem 8.5 that
singu N By_.r/2 C Berja(L)

for some (n — 3)-dimensional linear plane L. Since singular points converge again
to singular points, Theorem 2.5, we have for all large k,

(8.3) singuy N B1—or C Berya(L)
By [56, Proposition 4.6], we have locally uniform convergence outside the singular
set, and thus
up 2w in By_o \ Beja(L).
In particular, uj and u restricted to L+ N OB, /2 have the same homotopy type for

large k.
By Lemma 8.3

LNBy_ 9 C WL(sing U N Bl—s’)-
Combined with (8.3) this means that uj, has many singular points near L. Since
H"3-a.e. singular point lies in sing, u (see (2.5)), we find z), € sing, ux with
lzg| < %6/. In particular, we already have 6., (xx,0) = O, by Corollary 2.9.
The last condition to show is 0y, (zx,1 — ) < © 4+ €. By strong convergence,

for large enough k,
/s

(1-— 25’)2*”/ |Vug? < (1 —2¢")2™ <5/4+/ Vu|2)
By _s.r(wk) B1
< (1-2)2""(O 46 +¢/4),

|Vug|? < 5/4+/ |Vul?.

By

1—¢’

Thus

which does not exceed © + ¢ if only 6 < ¢/4. By the monotonicity formula, we
conclude that 0y, (x5, 1 —¢) < 0y, (x5, 1 — 2¢’) < O + ¢ and hence that uy, is e-flat
in the ball By_.(zy). O

8.3. Local case

The lemma below can be thought of as a local version of the stability theorem.
It says that perturbing the tangent map ¥ a little does not change the size of the
singular set much.

LEMMA 8.7. For each € > 0 there is 6 > 0 such that the following is true. If
u: Bgg — S? is energy minimizing and §-flat in Bgo (see Definition 8.2), then

(1 —&)wp_3 <H" 3(singun By) < (1 +&)w,_3.
Here w,_3 = H" 3(sing ¥ N By) is the volume of the (n — 3)-dimensional ball.

It is natural that in order to conclude the right estimate on Bj, one needs to
make assumptions on a larger ball. The ball Bs; would be enough here, but working
with Bgg saves us from an additional covering argument.
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PRrOOF. The lower bound follows from a simple topological argument. Fix
!

¢/ = —%5, then apply Theorem 8.5 to find that there is an (n — 3)-dimensional
linear plane L such that

LNB;_o C7p(singun By),

provided ¢ is small enough. Since the orthogonal projection 7y, is 1-Lipschitz, this
shows

H"3(singun By) > H" 3(LNBi_o)=(1—&)"Bw,_3> (1 —&)w,_s.

A rough upper bound follows from Naber and Valtorta’s work [50], namely
Corollary 4.1,

(8.4) H"3(singu N B,.(z)) < C(n)r" 3

for each ball By,.(z) C Bs.

To obtain the sharp upper bound, we will follow the general outline of Naber
and Valtorta’s work [50, Sec. 1.4]. When the target manifold is S?, the original
reasoning can be made significantly easier due to topological control of singularities
(analyzed in [47]). In particular, we we will be able to apply Rectifiable Reifenberg
Theorem 4.2 to the whole singular set in By, without decomposing it into many
pieces.

With é; > 0 to be fixed later, by Theorem 8.5 we can choose § small enough
so that all singular points in By lie in the top-dimensional part sing, u, moreover
u is also d;-flat in each ball B,.(z) with z € singu N By and 0 < r < 20.

We can now apply the L?-best approximation Theorem 4.3 on these balls; for
simplicity, we consider the ball Byq first. By Theorem 8.5, u is W'2-close to a map
of the form ¥ = W o 7 (with ¥ as in (2.6) and some linear isometry 7). Note that
¥ lies in sym,, o and the value

go = dist 12(p,0) (7, sym,, ,, o) >0

depends only on the dimension n (not on the choice of 7). Hence, by taking d;
small enough we can ensure that

dist 12(p,,) (u, symn,o) < b,
dist 2(B,,)(u, sym,, , o) > €0/2
with d2 = d2(g9) chosen according to Theorem 4.3. Then we obtain
B0 < Cn) [ (0,00:8) = 0u(0.1)) o).

1
where p = H"3Lsingu and 8 = B,,,_3,. Similarly,
85 A <Cos Y [ (0,0085) - (w.5) duty)

B;(z)

for each ball Bs(z) C By with z € singu. To see this, one simply needs to consider
the rescaled map u(x) = u(z + rx) and apply scaling-invariance of J-flatness and
[-numbers.

Now we verify the hypotheses of Rectifiable Reifenberg Theorem 4.2. Fix a ball
B,.(z) C Ba; we only need to check that

(8.6) /B . /0 892 duz) < g
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with d3(e) > 0 chosen according to Theorem 4.2.
First, we integrate the estimate (8.5) over B,(z) and exchange the order of
summation:

2.8)2 z s (n=3) s) — s z
L@f&)dM)S A%%Lwme> 6.(y. ) duly) dpu(2)

< s~ (n=3) 0, (y,85) — 0.y, s)) du(z)d
< émméwf(y> (v, 8)) du(2) du(y)
s/ (0u(4.85) — 0u(y, %)) du(y)

BQr(x)

Note that in the last step we used the weak upper bound (8.4) on the ball B (y).
When the above is integrated with respect to s, we obtain a telescopic sum.
In order to estimate it, first recall that u is d;-flat in each ball Bg,(y) such that
y € singu and B, (y) C Bz, in particular
eu(ya ST) - eu(yv 0) S 61
on the support of u. Thus, the substitution s — 8s together with monotone con-
vergence 0y, (y, s) N\ 0. (y, ) give us

r s 8r s
[ 089 = 0050 S = [ 0009 - 6u(0.0)
0 T

S
S 111(8)(51

Now we are ready to combine the above estimates:

Lo [ et Saners [ 059 - 0 ) aun

_/ In(8)6: du(y)
Bay(x)

n—3
5 617’ )

where we used (8.4) again in the last line. Assuming §; < d3(g)/C(n), we have
verified the assumption (8.6) and we infer the upper estimate

H" 3 (singun By) = u(B1) < (14 &)wn_3.

8.4. Global case

The idea of the proof is to cover most of singu by good balls, on which u is
6-flat and thus the measure of singu is controlled by Lemma 8.7. The rest of the
singular set is to be covered by bad balls, whose total mass is small. To achieve
this, we will need the following simple covering lemma.

LEMMA 8.8. Let S C R™ be a compact set of finite H*-measure and let B be
a family of open balls such that for each point p € S, all small enough balls around
p belong to B. Then, given any € > 0, S can be covered by the union of two finite
families of open balls Good, Bad, where Good C B consists of pairwise disjoint balls
and Bad = By, (p;) is a small family in the sense that

(8.7) er <e.
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PrROOF. One way to construct this covering is by using Vitali’s covering the-
orem for Radon measures (e.g., [42, Theorem 2.8]). Applying it to the measure

p = H*_S, we obtain a countable family of pairwise disjoint balls A = {BTS (ps)},

covering p-almost all S and satisfying Ba,, (ps) € B for each s. Since the measure
p is finite, we can divide A into two subfamilies Good’, Bad’, where Good’ is finite
and Bad’ is small, i.e., u (U Bad/) < e. To obtain the desired properties, we still
need to alter these families a little.

First, we define Good to be the balls of Good’ slightly enlarged to open balls,
but still pairwise disjoint and still belonging to B.

Now, the remaining part S\ |J Good is a compact set and

I (S \ U Good) <pu (U Bad/) <e.

By definition of Hausdorff measure, this set can be covered by a finite family of
open balls Bad satisfying the smallness condition (8.7). O

ProoF OF THEOREM 8.1. Fix ¢ > 0. For the sake of clarity, we focus on
showing that the difference |H"~3(sing uy) — H"3(sing u)| is controlled by ¢ for k
large enough. The estimate for Wasserstein distance follows the same lines; it is
briefly discussed at the end of the proof.

STEP 1 (BOUNDARY REGULARITY). Choose g9 > 0 according to the boundary
regularity theorem, Theorem 7.4. Fix p > 0 such that

sup / Vol < co/2.
eI B,(z)

Then w is smooth in a Ap-neighborhood of 0. By strong convergence of ¢y to ¢
in W1n=1(9Q), we may assume w.l.o.g. for all k € N,

sup sup / |Vor|"™! < €.
k x€o B,(z)

As a consequence, we may assume each uy is also smooth in the same fixed neigh-
borhood of 09.
STEP 2 (COVERING THE LOW-DIMENSIONAL PART). Recall the stratification,
Section 2.5,
SoC...CS8,_4CS,_3= Singu,
in which the k-th stratum S} has Hausdorff dimension & or smaller. We will consider
separately the set S,,_4 and the top-dimensional part

sing, u == Sp,_3 \ Sn—4.
Since sing v is compact and sing, u is an open subset of singu (see Theorem 8.5),
Sn_4 is also compact. At the same time, it has a uniform distance from 90 and
H"3(S,—4) = 0, so it can be covered by a finite family Bad; = {B,,(p;)} of open
balls satisfying the smallness condition (8.7)
St

and such that Ba,, (p;) C § for each 1.

On each such ball Corollary 4.1 yields H" 3(singu N By, (p;)) < Crl"~®, with
C depending only on the dimension n. Summing over all balls, we obtain

3 (sing wr|J Badl) < Ce.
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The same estimate holds verbatim for each uy, by the same application of Corollary
4.1.

STEP 3 (COVERING THE TOP-DIMENSIONAL PART AND ESTIMATING
H"3(singu)). Here, we use the covering lemma (Lemma 8.8) for the set S =
sing v \ JBad;. Thanks to Step 1, singu has positive distance from the boundary,
so it is a compact set of finite #"~3-measure due to Corollary 4.1. We choose B to
be

B={B,(p): pé€sing,u, uis d-flat in Bg1,(p)},
where 0(g) > 0 is chosen according to Lemma 8.7. Since S,,_4 is already covered by
Bad;, we know that S C sing, u and hence small enough balls around each point
in S lie in B by Lemma 8.4.

Having checked the properties required by Lemma 8.8, we can cover S by the
union of a finite disjoint family Good C B and another finite family Bady satisfying
(8.7). We add the latter to Bad; to obtain the family of bad balls Bad := Bad;UBads,
which still satisfies the smallness condition (8.7).

Repeating the reasoning from Step 2, we have again via Corollary 4.1,

(8.8)

H 3 (singu n U Bad) <2Ce, H" 3 (sing ug N U Bad) < 2Ce for all k.

By assumption, the map w is d-flat in Bgg,, (ps) for each ball B, (ps) € Good.
By Lemma 8.7, we now obtain

(1 o €)wn,3r:_3 < Hn_S(Singu N Brs (ps)) < (1 + E)wn,y”_?’

for each s. To finish the proof, we need to show that a similar comparison holds
for wuy if k is large.

STEP 4 (ESTIMATING H"3(singuy)). Since up — u in WH2(Q) and singu is
covered by the open families Good, Bad, Theorem 2.5 (singular points converge to
singular points) implies that the same holds for wy, if k is large enough (from now
on we assume it is). For bad balls, the rough estimate (8.8) will be enough, so we
focus on good balls.

By Proposition 8.6, we can assume (by taking k large and ¢ small) that for each
B, (ps) € Good there is p* € singuy such that [p¥ — ps| < ery and uy, is §'-flat in
the ball Bgg(14¢)r, (p¥). Here, the value of ¢’ is chosen to be 6(¢) from Lemma 8.7.

Applying Lemma 8.7 to uy, on balls B(1_.),, (p¥) and B(l,e)r(p’;), we obtain

(1= )" Pwn—gry ™ < H"(sing ur N B—o)r, (11))
< H" 3 (sing uk N By, (ps))
< Hn_g(smg U N B(1+6)T5 (p’;))
< (14 )" 2w,_gr™ 3,

which is only slightly worse that the estimate for H"~3(sing u).
STEP 5 (COMPARISON). Recalling that Good is a disjoint family, we can sum
the above estimate over all s to obtain

(1—¢)"2A < H" 3(singuy, N U Good) < (14¢)" 2 A,

where A := > w,_3r?"3. Combining it with the estimate for bad balls (8.8), we
finally obtain

(1—e)"2A <H" 3(singug) < (14+¢)" 24+ 2Ck.
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Exactly the same estimate is true for u. Combining these two yields
|13 (singuy) — H" P (singu)| < (1+¢e)" % — (1 —¢)" %) A+2Ce

n—2
< (% — 1) H" 3 (sing u) + 2Ck.

Evidently the right-hand side tends to zero when € — 0, which ends the proof of
stability of H"3(singu).

STEP 6 (WASSERSTEIN DISTANCE ESTIMATE). With just a little bit more
care, the Wasserstein distance estimate follows. Let us decompose the measure
p=H""3singu into g = pp + >, fs, Where

Ly = HIL (U Bad \ U Good) . ps = pB, (ps) for each ball B, (ps) € Good.

The estimate for pp is simply dw (up, 0) < p (| Bad) < 2C¢, whereas on each good
ball B, (ps) we have the inequalities

/ hdps — wp—37" 2h(ps) = / (h — h(ps)) dp
" Br.g (pS)

+ (1(Br, (ps)) — wn—3r2"*)h(ps)
< rsu(Br, (ps)) + [1(Br, (ps)) — wn—srt ™

< (rs+ 25)wn,3r?_3.

for any function h: R™ — R satisfying |h| <1 and |[Vh| < 1. Thus

-3 -3
dW(,Ufkawnfyﬂg 5115) < 35‘*)71737'? )

if only each radius is smaller than e. By triangle inequality, dyw (s, v) < 3e¢ A+ 2Ce,
where v = > w,_3r73,, is the packing measure associated to Good and once
again A = v(R™). Applying the same reasoning to ug, we conclude as before. O

8.5. The case n =3

We close this section with the proof in the special case when the domain is
three dimensional. In this case, using the results of previous sections and adapting
the arguments of Hardt and Lin from [30] the proof is quite quick.

The counter-example by Strzelecki and the first-named author in [43] implies
that there is no stability result for W? with p < 2 perturbations of the boundary.
In this sense the following Theorem 8.9 is the sharp limit case.

THEOREM 8.9. Let Q C R3 be a bounded domain with a C*-boundary.

Assume that v € W12(Q,S?) is the unique minimizing harmonic map with
boundary data vlpg = ¥ and let v € W*P(0Q,S?), where sp = 2, s € (%,1],
p € [2,00).

Then for any € > 0 there is a § = 0(e,Q,%) > 0 such that whenever u is a

minimizing harmonic map v € W12(Q,S?) with trace ¢ == u . close to Y,

(8.9) [V — @lwsr0) <0
then u has the same number of singularities as v. Moreover,

(8.10) HU_UHW1,2(Q) <e.
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PRrOOF. We first prove the statement (8.10). Assume the claim is false for a
given unique minimizer v and for some € > 0. Then we find a sequence of minimizers
u; with traces ¢; which satisfy

1
[@i - d}]ngﬂ’(BQ) < ;

but
(811) ||u1 — UHWLQ(Q) > e€.

Now we obtain a contradiction since by strong convergence of minimizers, Theo-
rem 6.1, the sequence u; converges to the unique minimizer v in W2, In particular
(8.11) cannot be true for all i € N.

Regarding the same number of singularities we recall that by Corollary 7.7 for
boundary data in W#P?(9€2) with sp =2 and s > % there can only be finitely many
singularities. Let us assume that the theorem is false for a unique minimizer v
which has exactly N < oo singularities x1,...,TN-

Then we find a sequence u; € WH2(,S?) of minimizing harmonic maps with

traces ; = u; 0 € W*P(09Q,S?) with

—_

(8.12) [ — @ilivenon) <

and such that either all u; have M < N singularities (yi’k)fe\/le or all u; have at
least N + 1 singularities (y; 1) -
From the strong convergence of minimizing harmonic maps, Theorem 6.1, and

the uniqueness of v, we may assume, up to a subsequence, that
u; — v in WH3(Q,S?).

If each u; had M < N singularities we find a contradiction to Theorem 2.10,
since all the singularities of v have to come as limits of singularities of u;.

So we may assume that each u; has at least M > N singularities. Since, by
Theorem 2.5, singularities of u; which do not approach the boundary 92 converge
to singularities of v, and two different singularities of u; cannot converge to the same
singularity of v by uniform distance (proportional to the distance of the boundary)
of singularities, Theorem 2.12, the only way this is possible is if singularities of u;
approach the boundary 0).

However, we can rule this out simply by the assumption (8.9). Since ¢ €
WP(09,S?) we may find a o > 0 such that

1

€
sup [Y]7y., z0) < 557
roGBQ[ ]W 709N B, (20)) 2p
where € is as in the uniform boundary regularity Theorem 7.4. By (8.12) we have
for ¢;
sup ]! <S4l
wocon OB (o)) 2 i)
Thus for sufficiently large ¢ the singularities of u; and v cannot approach the Ap-
neighborhood of the boundary, where X is a uniform constant. ]
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CHAPTER 9

Almgren and Lieb’s linear law:
Size of the singular set

Here we obtain a higher-dimensional counterpart and at the same time a sharp-
ened version of Almgren—Lieb’s linear estimate on the number of singularities. Let
us stress that the fundamental result that makes such estimates possible is Naber
and Valtorta’s interior measure bound (Corollary 4.1).

THEOREM 9.1. Let us assume that the fundamental group of N is finite. Let
Q C R" be a bounded domain with a C' boundary and let uw € WL2(Q,N) be a
minimizing map with ulpo = . Assume that o € W*P(OQ,N) for s € (3,1] and
p>1 withsp=n—1. Then

(9.1) H" P (sing u) < Clellyn(on)-

REMARK 9.2. In particular, we recall that we denoted

(it o = [ [Tel" dwn
a9
thus if ¢ € WHn=1(9Q, ), then we have

H" 3 (singu) < C V|~ tdH" L.
a0

REMARK 9.3. As shown in Section 10.1 the result is optimal in the case n = 3
in the sense that it fails for sp < 2.

The study of singularities near the boundary involves the following covering
lemma, which we here cite from [3, Theorem 2.8, 2.9].

THEOREM 9.4 (Covering lemma). Let B be a family of closed balls in R™, p be
a Borel measure over R™, and let T,w € (0,1). Moreover, assume that the following
two hypotheses hold:

(1) For any two different B,.(p), Bs(q) € B we have
lp — q| = wmin(r, s).
(2) Suppose that B,.(p) € B and g € R™ is an arbitrary point, then
1 (Br(p) \ Brr(q)) = 1.
Then
#balls in B < Cp(R"),
for a constant C(w,T,n) > 0.

63
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64 9. ALMGREN AND LIEB’S LINEAR LAW: SIZE OF THE SINGULAR SET

PrROOF OF THEOREM 9.1. Choose o0 > 0 (depending on the geometry of 9Q2)
according to Theorem 7.1 and Theorem 7.13. We first estimate the measure of the
set

Ay ={z esingu: r(z) < o}, where r(z) = 3 dist (z,09),
which is covered by balls B,.(.)(z). Then choose a Vitali subcovering such that the
balls B, (2;) cover A; and the balls B, /5(z;) are disjoint; let B be the family of
balls B, /x(2;) with A as in Theorem 7.13. The first condition from Theorem 9.4
with w = A/5 follows: for any two distinct balls in our collection we have

|2i — zj] = L(ri + ;) = 2 max(ri/A,7; /).

Now for an open U C R™ we define the Borel measure p as follows:
CasE 1: s€ (3,1),p>1,sp=n—1

le(z) — )P
9.2 / / dx dy.
6:2) UnoQ J oo |$— |2” 2

Obviously, p is a measure and we have

le(@) — ()P
dzx dy.
/UmaQ/UmaQ |$— y[Pn—2
Case 2: s=1,p=n—-1

1 1
= ~|Vp|" P H"ILOQ, e, u(U) = —/ |Ve|? L dH™ L.
€ € Joonu

In both cases € > 0 is the constant from Theorem 7.13. If we set 7 = A2, then the
second condition of Theorem 9.4 with & = n — 3 follows from Theorem 7.13 and we
infer that

#B < C[ ]Wg p(@Q)

On each ball B, (z;) Corollary 4.1 implies %"~ (sing uN B, (z;)) < Cr}l_?’ < C(Q).
Summing over all balls, we obtain

M2 (Ar) < Clely

Next we estimate the set

Wep(9Q)"

Ag == {z €singu: r(z) > o}.
For each ball B, (y) with dist (y, 9Q) > 20 we have a bound H" 3 (sing uN B, (y)) <
Co™3 by Corollary 4.1. The set Ay can be covered by finitely many such balls
(the number of balls depending only on ¢ and the geometry of ), which gives us
an estimate
H"3(Ay) < Cy.

Taking Cy as above and ¢ as in Theorem 7.1, we have two possibilities. Either the
smallness condition [¢]}. , (o0) < € is satisfied and H"3(Az) = 0 follows, or

- C
H3(A3) < Cp < ?O[Sﬁmzs,p(asz)'

In both cases, combining the estimates for A; and A, ends the proof. O
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CHAPTER 10

Final remarks

10.1. Examples

We present two examples that show that the linear law we obtain in dimension
n = 3 is sharp. Our examples will be based on the following method of installing
singular points from [3], see also [43, Section 2].

DEFINITION 10.1. Let ¢: S? — S? be smooth near y € S? and let v > 0 be
a fized number. We denote by (), ,: S* = S* a smooth boundary map which
arises from 1 by a small deformation in a neighborhood of y so that the following
conditions are satisfied:

(a) (V)y.r(z) =1(z) whenever |z —y| > r;

(b) (V)yr(x) =¥(y) if [z —yl =7/2;

(c) The restriction of (1), to the annular region § < |z —y| < r satisfies
the Lipschitz condition with a Lipschitz constant Ly, which depends only
on ¥ and not on r;

(d) W)y, is a diffeomorphism of the spherical cap {|x —y| < r/2} N S? onto
the punctured sphere S?\ {1(y)} such that the boundary Dirichlet integral
energy of (¥)y,r on this cap equals 87 + o(1) as r — 0.

The existence of maps described in Definition 10.1 is well known, the proof
follows for example a modification of [1, Appendix A.2].

THEOREM 10.2 ([3, Theorem 4.3]). Suppose u: B} — S? is a minimizer which
is unique for its boundary mapping v: S* — S? and which has k interior singular-
ities at x1,...,x, € BY. Moreover, assume that [, |Vip|> dH? < oo and that 1
is smooth near yo € S*. Let 1;: S* — S* be any sequence of continuous boundary
mappings such that 1 = (1), 2/; for all j sufficiently large.

Finally, let u; be any minimizer in B} with boundary mapping 1;. Then, for all
sufficiently large j, the mapping u; will have at least k + 1 interior singular points
Yo,; and T1j,..., Tk such that yo; — yo and x¢; — x¢ (for each £ =1,...,k) as
j — o0.

In the first example, Lemma 10.3, we show that there cannot be any linear law
(or a similar result, e.g., a power law) for boundary energies [p]ys.»(a0) if sp < 2.
See a similar construction in [43, Remark 3.9].

LEMMA 10.3. Assume that the following holds for 0 < s <1, p > 1: for every
e > 0 there exists a § such that if u € WH2(B3,S?) is a minimizer with trace ¢ and

(10.1) [lwsr@ap) <0
65
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66 10. FINAL REMARKS

then
(10.2) # {singularities of u} < e.!
Then sp > 2.

PROOF. Let ¢o: S? — S? be a constant map, which admits a constant map as
the unique smooth minimizer B} — S?. Let us fix a point N € §? and modify ¢ in
order to insert a singularity — consider the map ¢s = (po)n,s5. Then, for sufficiently
small ¢, we have by Definition 10.1

/ [Vis|* dH? :/ |Vips|? dH? < 10m.
2 Ds(N)

Assume to the contrary that ¢ := sp < 2. Then, by Hélder’s inequality we get

q

3
(10.3) / |Vs|?dH? < / [Vs|2dH? | |Ds(N)|'2 <6279
s2 Ds(N)
Combining this with s € S?, we obtain from Gagliardo-Nirenberg’s inequality [15]
(for 6 =1—3s)
_ 2-q
(10.4) [oslwens) < llsll 2= Vesllza’ 3677 .

Since ¢ = sp < 2, the seminorm [ps]ys»s2) can be made arbitrarily small and
so (10.1) is satisfied. On the other hand, by Theorem 10.2 any minimizer with
boundary data s must have at least one singularity, thus (10.2) fails.

|

If we modify this example further, it is also possible to construct a minimizing
harmonic maps with infinitely many singularities (with finite W!?~¢-energy at the
boundary).

THEOREM 10.4. Let € > 0 be any positive number. There is a boundary map
o € WH2=¢(9B3,S?), such that the following holds:
there is a minimizer u: B3 — S? with u|633 = and u has countably infinitely
1

many singularities.

In order to prove Theorem 10.4 we will modify Almgren and Lieb’s “boiling
water example” [3, Theorem 4.4].

We will need the following Lemma, which shows how we can use a small modifi-
cation of the boundary data in order to guarantee that the corresponding minimizer
is unique, see [3, Theorem 3.2] and also [43, Lemma 3.8].

LEMMA 10.5. Given a map ¢ € C*°(S*,S?) and a small spherical cap Ds(yo),
one may find a new map ¢ which differs from @ only on Ds(yo), |l —@|lw1.20m8) <
106 and — most importantly — there exists exactly one minimizer i: B} — S* with

ﬂ}an’ A

PrOOF OF THEOREM 10.4. Fix 0 < ¢ < 1. We divide the sphere S? into infin-
itely many disjoint regions near which the singularities will appear (and infinitely
many disjoint regions near which we make small corrections in order to ensure that
the boundary data will admit only one minimizer).

11n fact, for small € we simply conclude that u has no singularities at all.
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We choose two sequences of points on the sphere {y;}52; and {g;}32,, y;, ¥, €
S%. We also choose a sequence of radii {p; 521 with g; < 277, such that all of the
discs from U2, Dy, (y;) and U2, Dy, (;) are pairwise disjoint, where Dy, (yx) =
By, (y;) N'S? stands for the disc on the sphere S2.

The regions near D, (y;) will be the regions near which singularities will appear
and the discs D, (77;) will be used to correct the boundary map, using Lemma 10.5,
in such a way that the boundary map will admit a unique minimizer.

We begin with a constant map o: S? — S? and we will modify it until we
obtain the desired boundary map. Since ¢( is smooth and admits only one mini-
mizer, i.e., the constant map, we can install a singularity using Theorem 10.2, by

modifying the map ¢ in the following way

By = <900>y1,91 for z € DQI (y1)>
! wo(x) for x € S%\ Dy, (q1).

for o1 < 27! small enough so that Theorem 10.2 would guarantee that any mini-
mizer uy, with @ |8B3 = 1, has an interior singularity 7, € B,, (y1) N B}.
1
For any ¢ € (0,1) by Hoélder’s inequality and conditions (c¢) and (d) in the
Definition 10.1 we have

(10.5)

[ wepeee= [ vepeans [ Vg
Dy, (y1) Doy (y1) Doy (y1)\D gy (v1)

2—¢ ¢ o € _ 3
< (8t +0(1) % (2) + 1% n el

where o(1) — 0 as p; — 0.

In order to install the next singularity, we need to modify the first map @, in
such a way that the new boundary map will admit only one minimizer. For this we
use Lemma 10.5 and modify @, in a small disc D, (§1), away from the disc D, (y1)
in order to obtain ¢; € C°°(S%,S?) with the properties:

(P1.1) o1 =, outside D,, (5,);
(P1.2) There exists exactly one minimizer u; with wu; ’833 = 1;
1
(P1.3) uy has at least one singularity x; € B N B3;
(P1.4) || — prllwrz(sz) < 1001

For ¢; we have

o1(y1)

[valeawe = [ wapcaes [ wp e
S2 Dgl(gl) 82\D91 (gl)
2—¢
2
(10.6) < (/ Vnp1|2d7-12> w0}
DQ1(?§1)
87+ o(1)) 7 75 (L) 4 1252 2
+ (87 +o(1) T w (5) + 12wl
By (P1.4) and since @; = const on D,, (41), we have
(10.7) / |Vir[2dH? < 2/ V(o1 — 3,2 dH? < 200;.
D91(gl) Del(gl)
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68 10. FINAL REMARKS

Thus, combining (10.6) with (10.7) we get

2—€ = 2+e —€ £ € 3
(10.8) /S Vo1 22 dH2 < (20)°F 78,7 +(8m+o(1)) % rf (%) +L3, el

Now we proceed by induction and repeat this procedure in order to install another
singularity near the point y; € S* . Let j € {1,2,...}, assume we have already
defined the boundary map ¢;, which satisfies:

(Pj.1) ¢; admits only one minimizer u;: B} — S?;

(Pj.2) u; has at least j singular points: 1 j,...,x; ;, such that x ; € By, (yx) N
B3 for each k € {1,...,j}; '

(Pj.3) outside of the union of the discs (J;_; D, (yx)UD,, (Jx) we have ¢; = po;

(Pj.4) ¢, satisfies the estimate

<.

j 2+e
/Sz Vi P dH> <) Cle) (ng + 05 +Q§) 3>
k=1

Then, we define the map @;,,: S* — S* by

? — <50j>yg;£)j for z € DQ]+1 (yj+1)7
=
7 Pj for z € S \D9j+1 (yj+1)'

We define also the correction ¢;41, to make sure that there is exactly one minimizer
corresponding to the boundary map, by applying Lemma 10.5 to ©;,, on a small
disk D, (#j+1). Obtaining a boundary map for which

(10.9) lpjt1 = Pjpallfieey = lwj — <Pj|\%zv1,2(DQjH(gj+1)) < 10007+,

for a gj+1 < 2-0+1) small enough so that Theorem 10.2 would guarantee that
any minimizer u;11 corresponding to ¢;41 has an interior singularity ;41 ;41 €
By, (yj1) N B} and at least j other singular points @1 j41,...,2j j+1, such that
each @y j11 € By, (yx) N B} for k€ {1,...,j}.

We have exactly as in (10.5)

(10.10)
/D ( V341> dH? < (87 +0(1) T
ejr1\Yi+1

o

0j+1\° 2-c 3 o
( 2 ) +L<ﬂo€7rzgj+1’

where o(1) — 0 as py — 0. The Lipschitz constant appearing in (10.10) is again
Ly, as the map 3,1 = ¢; = po in Dy, (yj)-
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We also have from (10.9) and (Pj.4)

(10.11)

/ V[P dH?
DQJ'+1 (gj+1)

<2 (/ IV(pj11 — )P = dH? +/ [Vep;*~° dHQ)
Doy (F5+1) Doy (Fi+1)

2—e

2 J
3 </ V(541 — 0j)I d”H2> 0541+ D 0%
D9j+1 (F5+1) k=1
J
S it Z

s
O-

7M+‘

Thus, by (10.10), (10.11), and ((Pj.4))

(10.12)
[ vesafeane

<[ Vs e i+ VB [ Ve an?
Dojy1 (Fi+1) Doy iy (Yi41) §2

j+1

J J+1
2= e (0j+1\°
330+ o) T (L) hr2 el + Y6 36
k=1 k=1 k=1

Now we pass with j — 0o in order to obtain ¢ € W275(S? S?) with

Moreover, ¢ admits a minimizer u (any limit point of u;) that has infinitely many

singular points z; € B, (yx) N B}, these singularities accumulate at g, € S%.
We note also that ¢ ¢ W12(S?, §?).
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FiGURE 10.1. The singularities appear somewhere in the red bubbles

O

10.2. Remarks about the optimal boundary norm in higher dimensions

We do not know if our results are optimal for n > 3. However, we can construct
the following.

EXAMPLE 10.6. We recall that by [58], for maps into S® the singular set has
dimension less or equal (n — 4).

There exist i S* — S® homotopically nontrivial (deg(px) = 1) such that for
any p <3

/ |Vor P dH? — 0,
§3

implying HO (singuy) > 1, where uy,: Bf — S are minimizers corresponding to the
boundary data @i, i.e., uk|83 = Q.

This in particular, implies that the linear law with W2 cannot be true for the
stratum S,,_y4 and singularities are not stable under WP for p < 3 perturbations
of the boundary.

Motivated by this example we conjecture the following.

CONJECTURE 10.7. Let Q C R™, N be such that w1 (N) is finite and let u €
WE2(Q,N) be a minimizing harmonic map with u|3Q = @. Then for each k =
3,...,n we have

H (S, ) < C / VlE~t a1,
o0
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A starting point to study this problem would be to develop a theory for each
strata S,_, similar to the one for S,,_3 = sing u by [50], in particular a counterpart
of Theorem 1.3. Note that even for k = 3 our conjecture suggests an improvement
from Wm~1 to W1 2-control of the boundary data.

10.3. Remarks about other target manifolds

In the case when the target manifold is an orientable surface (dimN = 2),
since our results cover the case when 71 (N) is finite, we are left with the case when
genus of the target manifold is positive (genus(A) > 1). In this situation, we have
as a consequence of a maximum principle — the result of Wood [65, 66].

THEOREM 10.8 ([65, Theorem 3.3 (ii)] & Erratum [66]). Let M, N be compact
orientable surfaces and assume that genus(M) = 0 and genus(N) > 0. Then the
only harmonic maps w: M — N are constant maps.

One can see that this result implies singu = S,,_4 and hence H"3(singu) = 0
in the case where v is a minimizing harmonic map into a compact orientable surface
N of genus > 1. Indeed, at each point in the top-dimensional part of the singular
set sing, u = S,_3 \ Sp—4 there is a nonconstant (n — 3)-symmetric tangent map
w: R" — N. Due to its symmetries, such a map reduces to a harmonic map
w: S? — N. The genus of S? is 0 and hence w cannot be constant by the above
theorem.

Thus, the linear law of Almgren and Lieb Theorem 9.1 holds for every compact
connected orientable surface in the target.

We note here also two special cases of manifolds with infinite fundamental
group: N' = S! and V' = T?2. In the first case if we consider harmonic maps (not
necessarily minimizing) v € W2(B,S'), where B C R" is a simply connected
domain, with given boundary data u‘aB =¢ € W%72(8B, S!), then we have by a
lifting argument (see [9,11]) u = €' with @ € W1?(B,R) and one can easily check
that u is a solution to

i = e on 0B,

where é is a lifting of ¢, i.e., ¢ = e'®. Thus, u has no singularities.

Moreover, Riviere showed that if we consider a harmonic map u: B C R" —
T2, where T2 = S' x S! is a torus of revolution (i.e., with metric of the form
A(¢) d6? + d¢?), then u must be smooth (u does not have to be minimizing). See
[54].

Thus, in the case when N' = S' or N = T? not only minimizing harmonic maps
have no singularities but all weakly harmonic maps are regular.
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APPENDIX A

Trace theorems

A.1. A trace theorem

In this section we review the trace theorems used throughout the paper. Here
we present the results for domains in R™ for n > 3. The main point is to set the
trace separately for two parts of the boundary and obtain estimates without the
interaction term.

We will employ the following notation. For a point yy € 92 on the boundary
we will consider intersection of balls B, (yo) with the domain 2. We distinguish two
parts of the boundary of (B, (yo) N Q) and write:

A(By(yo) N Q) = Y (yo) U Tq, (ys)

where 0 (y0) = 0B, (yo) N Q and T, () = B;(yo) N K.
If the center of the ball will play no role we will omit gy in the above notation
and write simply 9Q;F and Ty, .

LEMMA A.1. Let Q C R™ be a C' domain. Then, there exists an R = R({2)
such that for every yo € 02 and r < R the following is true:
Let u € WH2(B,.(yo) N ) be a solution to

Au=0 in B.(y0) NQ
u=0 ondQ (yo) =IB,(yo) NN
u =1 onTq (y) = Br(yo) N

Then for any s satisfying s > % we have

—142s

(A1) IVullz2(s,o)n0) 3772 [Plwe2(g, ()

PROOF. We begin by noting that since the ) is of class C' there exists an
R = R(Q) for which we have for every yp € 9Q and r < R

(A.2) |z —y| > C dist (z, 8T9r(y0)), for x € Ta, (yo), ¥ € o (yo),

where C' is a constant independent of 2. In what follows we will omit yq in the
notation.

73
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74 A. TRACE THEOREMS

By the trace theorem [20] (see also [4, §20] or [45, Section 12.2]) and Poincaré
inequality we have

2 2
/B o [Vul*dz 3 [u ]W§ 2(3(B.nQ)) ~ 2 [u ]Wsﬂ(a(BmQ))-

Moreover, since u = 0 on 9§ we have

P(a)]?
s = s +2 7d dz.
[u ]W 2(8(BrNR)) ['(/)]W 2(Ta,) /TQT /asz* |z — y|n—142s yar

For the latter term we have using (A.Q)

dydx
I
S ow@P [ e dude
g, paf |v —y[nites
1
S [ ower [ e dyds
/TQ,, 2| >dist (2,070, ) 1277128
2
j/ ' [t ()] —da.
T, dist (z,07Tq, )

Now, since 25 > 1 we can apply Hardy’s inequality [17]. Observe that since xr, 9
is the trace of a W12 function, it can be approximated by functions in C2° (simply
by scaling the support inside and convolution). Thus

_ @P / / [(@) = v :
5dz 3 dx dy = [Y]iys, .
/TQ dist (x BTQ Ta, JTa, |:v _y‘n 1+s2 [lw 2(Ta,.)

This proves (A.1).
O

As a consequence we can obtain a trace inequality, which depends only on the
behavior of the boundary map of the curved part of the boundary 9B, (yo) N and
the “flat” part B, (yo) N0 but not on the interaction term.

LEMMA A.2. Let Q C R™ be a C' domain. Then, there exists an R = R({)
such that for every yo € 02 and r < R the following is true:
Let u € WH2(B,.(yo) N ) be a solution to

Au=0 in B.(yo) N
u=¢ on I (yo)

u =1 on Tgr(yo).

Then for any s > % we have

—1+2€
IVull L2 (B, (yo)ne) ST (W]W5=2(Tm<yo>) + [W]Ws@(anj(yo))) :

PROOF. Again, in what follows we will omit .

Licensed to University Bielefeld. Prepared on Sun May 18 05:26:36 EDT 2025for download from IP 195.37.234.61.



A.1. A TRACE THEOREM 75

First we note that we can extend ¢ to all of (B, N Q) with!
(A.3) [elw=2a(B.n0)) 3 [lwezoat)-
Now we solve the equation
Av=0 in B, NQ
v=¢ ond(BNQ).
Then, again by the classical trace inequality, Poincaré inequality, and (A.3) we have
(A4) [VollL2(,n0) 2 [SD]Wsz(an)-
On the other hand we have
Alu—v)=0 in B, NN
u—v=0 on 9Ot

u—v=9%—¢ onlqy,.

By Lemma A.1,
IV (u— U)”L?(Bmﬂ) S - <P]st2(TQT)
(A.5) 3 [Wlwee(rg,) + [plwsz(rg,)
2 [Wlwee(rg,) + [‘P]Wsa(agjr)'
Together, (A.4) and (A.5) imply the claim. O

We also need the following Gagliardo—Nirenberg type inequality

LEMMA A.3. LetT' C R"! be a compact domain. For every o € W12NL>(T)
the following interpolation inequality holds for a constant independent of ¢:

(A.6) )2

W%,z(m 3 ||50||Loo(r) ||V<P||L2(r)~

PROOF. We have by the Gagliardo—Nirenberg inequality, [15]
1 1
Lol 32y S NP E2 ) IVl 22 -
Since I' is compact, we also have

H@HL?(F) =3 ||80||Loo(r)-

From the above lemmata we obtain the following trace estimates.

THEOREM A.4 (Trace Theorem). Let B, C R™, n > 3, be a ball of radius r > 0
and ©": B, — R? be the harmonic extension of @: OB, — RY, then

(A7) / |V<ph‘2 =< / / |90(:E) _ @(y)|2 dxdy
B, ~ Jop, JoB, |l —y|

and

n—1
(A8) / e P T L

T

1For 8171 we would proceed in the following way — we extend by an even reflection the map

 into the whole sphere S» !, this way the seminorm on the interaction term may be estimated

by [cp}WS,z(an), then we may project S* ! into Ty and we obtain the desired estimate. For
+

O(Br N Q) we proceed similarly.
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Let Q C R™ be a bounded domain with a C'-boundary and let yog € 9Q. If
©": B,(y0) NQ — R? is the harmonic extension of ¢: (B, (yo) N Q) — RZ, then

_ 2
(A.9) / IVo"|? 3 / / M dz dy.
B, (50)nQ2 (B (yo)n9) Jo(Bo (o)) 1T — Y

Moreover, for any 1 < 6 <2, s > %, p>1, sp>1, we have

n)

h|2 +n—2 %
|VSD | j ||<p||Loo 3Q+(y )) ||VQPHL2(der(yO))

(A.10) /Br(yo)ﬂQ

4 plep—(-1) %

gvkb

+n—2
T ||€0HL<>0(TQ (yo))[ Pl 2P (Ta,(yo))”

PRrROOF. (A.7) and (A.9) are classical trace inequalities (see [20]).
ity (A.8) is a consequence of Lemma A.3 and (A.7).

For the clarity of the presentation we write the proof of (A.10) for the case
B,(yo) N Q = Bf". Applying Lemma A.2 we get for any 1 < 6 < 2

h2 < 2
(A1) L 19 S g, + g

—

The inequal-

By Gagliardo-Nirenberg inequality we have

2 g

(I

ST e | TR 12 O T S

Applying Gagliardo—Nirenberg inequality for an sy > g to the second term of (A.11)

we obtain
2]
2 - 30
612 g5y 3 Wby 915
Applying once again Gagliardo—Nirenberg inequality for any s > sg and any p > 1
we get
R 9(1—“"0) 0 i(l—m) 9
- ’ " 5, P j 7o ’ i s,p )
[(p]w””%(ﬂ) ) [@]Ws, (Ty) (Ty) [‘P]W (Ty)

1—20
where 3¢ = s S0,

1 s
Combining the last two inequalities gives

2 s s
[@]W%’z’(Tl) j HSDHLoo(Tl)[QO]Ws,p(Tl)'
Thus,
2-¢ ¢
/ VP SN2 o 190l 5y + 10l [
The general statement follows from rescaling. O

A.2. A Counterexample

The above trace theorem, part (A.10), does not hold with W22, Indeed, this
follows essentially from a counterexample to Hardy—Sobolev inequality on bounded
domains for W =2 by Dyda [17] (attributed to an idea by Bogdan). For an overview
on available Hardy—Sobolev inequalities see also [13].
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A.2. A COUNTEREXAMPLE 7

LEMMA A.5. There does not exist a constant C > 0 such that the following
holds.
Assume u € WY2(BY) is a harmonic function in B C R™, n > 3 with

Au=0 in By
= on Th
=1 on ST,

where ¢ € W22(Ty) and ¢ € WH2(S;). Then

_ 2
(A12)  [|Vul?, 0 <C //dedw/ Vo)
! Ty J Ty |z —y[" sy

PROOF.
STEP 1. There exist two sequences of functions {p!}22, and {?}5°, with the
following properties: for each i = 1,2, ... we have ¢}, p?: Ty — R, supp ¢ C T}_1,

o1 = @7 in Ty,
2
o1 ()l drdy = oo

. |pi () —pi(W)]?
Ty J Ty Yy

2
1imsup/ / \901 vi () dxdy < oo.
i—oo JTy JTy ‘x_y|n

Indeed, the sequence {¢}}2°; is constructed by Dyda in [17]. More precisely, he
obtains a sequence of smooth functions ap} € C¢°(T1) such that

2
lim/ / |<'0’ 21 (y) dxdy =0,
i=oo Jpy Jmy |3?— |"
2
AP 4 - o

. o (x
ilir&/ / S P T |x— |n
T J Ty Yy

On the other hand T} is an extension domain, see [67], so there exists an extension

and

but

©? of p}| such that
T

2
limsup/ / \901 ( ) dx dy < oo.
i—soo JTy JTy ‘«T—

STEP 2. Now consider the solution u! € C* (Bf) to
Aut =0 in Bf
u'=0 onS;
ut =¢! onTj.

By Gagliardo’s trace theorem [20](which was originally proved for Lipschitz do-
mains), we have

2

xr, (2)e; (@) — xr (W) ei (V)|
Al ’ 1 1 1 1 .
(A.13) V|2, (B~ /aB+ /83+ P— dz dy
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78 A. TRACE THEOREMS

Let now N € 0B be the north pole. There is a bi-lipschitz map 7: Th — 9B \
B_1_(N) which is the identity on 7;. Then we have

2
X1, ()0} () — X7, (W)} (1)
dz dy
oBf JoB; \37 —y|™

1 2
/ / Ix1, ()0} () — X1, (W)} ()] e dy
(T2) (T2)

Iw -yl
(A.14) )

o[ [ hntlepeter) xnCoiaterl g,
TQ T2

|z —y|™

// ‘% ’dxdy
Ty JTy \37—21|"

Here we used the change of variables formula which holds for bi-Lipschitz maps,
see e.g., [19, §3.3.3, Theorem 2]. Thus, combining (A.13) with (A.14) we get

i [Vl iy = oo
On the other hand, since ¢} = ¢? on T, we have
Aul =0 in Bf
ut'=0 on Sy
ut=¢? onTj.
Therefore, if (A.12) was true, we would obtain

11msup||VuZ||L2 B+)thsup/ / |‘Pz ; y|n | dz dy < oo,
Ty J Ty -

11— 00

a contradiction. O
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