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1 Introduction

The concept of Primordial Black Holes (PBHs), which originate differently from standard

stellar collapse, has inspired discussion in various aspects of physics beyond the Standard

Model (SM). PBHs are considered viable candidates to either fully or partially account for

dark matter (DM) [1–4]. An intriguing feature of this DM candidate is that, depending on

the mass of the black hole, its Hawking radiation could produce SM particles like photons,

detectable through astrophysical observations.

For PBHs with asteroid-scale masses around M ∼ 1015−16 g, they can emit Hawking

radiation with temperatures TH ≈ (1016g/M) MeV∼ O(1 − 10) MeV. Their relatively short

lifetimes Ä ≈ 105(M/1016g)3 Gyrs allow for the production of observable gamma-ray signals.

These signals originate from both photons directly emitted by the PBH and secondary photons

produced through the electromagnetic interaction of Hawking radiation particles, such as

neutral pions that decay into a pair of photons. These gamma-ray signals can unveil the

properties of PBHs, presenting exciting opportunities for observation in next-generation

detectors such as AMEGO-X [5], e-ASTROGAM [6], APT [7], COSI [8], GECCO [9], and

MAST [10]. These upcoming experiments will span the gamma-ray signal energy range from

0.1 to 100 MeV, significantly enhancing signal flux sensitivity compared to the COMPTEL and

Fermi-LAT experiments [11, 12]. By integrating gamma-ray observations with data from future

gravitational wave experiments, there is potential to measure the mass spectrum of PBH and

identify the primordial curvature perturbation responsible for the PBH production [13, 14].

In addition to emitting SM particles, PBH can serve as a source for generating beyond

the SM particles, even if the new particles interact with the SM sector very weakly or

solely through gravity. For example, PBH can produce DM particles from their Hawking
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radiation [15–26] and facilitate a portal for baryogenesis [27–36]. PBHs can also produce

axion-like particles (ALP) that subsequently decay into SM photons, adding extra contribution

to gamma-ray signals [37, 38].1 The presence of a large dark sector particle population can also

modify PBH’s evaporation rate, providing ways to probe the existence of new particles [41–44].

Additionally, PBHs may be produced at the LHC [45–47], emitting SM Higgs particles and

generating distinctive signals [48, 49]. The evaporation of PBHs can also probe the lepton

sector; for more details, see [50–52] and references therein.

In the majority of the referenced literature, Hawking radiation is typically estimated

by assuming that the emitted particles have rest masses comparable to or smaller than the

Hawking temperature (e.g., [53, 54]). Consequently, the Hawking radiation particles are

moving at relativistic speeds after being produced. When the particle mass is non-negligible

relative to the Hawking temperature, two main effects need to be included for a more accurate

estimation of the emission rate. Firstly, massive particles are produced on-shell from the

PBHs, meaning their energy must be greater than their rest mass for an observer located

at infinity. Secondly, the absorption rate of massive particles differs from that of massless

particles. The effect of absorption near the horizon is embedded in the so-called greybody

factor. These effects become particularly significant in the context of massive particles

with masses exceeding the Hawking temperature, where production is most efficient in the

non-relativistic scenario due to the nature of black hole thermodynamics. In some studies,

non-relativistic corrections to the production of massive particles are speculated, with the

effect of the particle mass considered in the kinematic condition of the energy spectrum, but

without taking into account the exact greybody factors of massive particles [55, 56].

While this relativistic approximation in the greybody factor may suffice for order-of-

magnitude estimations when particles are predominantly produced relativistically, precise

energy spectrum determination — such as for gamma-rays from SM pions or ALPs with masses

comparable to the Hawking temperature — requires careful consideration of non-relativistic

corrections to the emission rate of massive particles. The Hawking radiation of massive

fermions has been discussed in literatures [57–59] with the application to the production

of fermionic DM [21]. Compared to this, although the study of massive scalar radiation

exists [57, 60–63], the result is not yet connected to the calculation of gamma-ray signals.

In sight of future prospects for precise Hawking radiation measurements with upcoming

MeV gamma-ray telescopes, the accurate calculation of PBH Hawking radiation spectra,

incorporating all non-relativistic effects, becomes increasingly important.

In this paper, we revisit the computation of Hawking radiation of massive and charge-

neutral scalar particles, showing the significance of non-relativistic corrections in pion or

ALP production when comparing resulting gamma-ray spectra to experimental sensitivities.

Alongside presenting results for benchmark model examples in the paper, we offer a code

for calculating the Hawking radiation of massive scalar particles. Our study examines the

emission of neutral scalar particles from non-rotating, chargeless black holes. However, the

calculation can be extended to black holes with charge and spin by employing a more general

equation for the scalar particle’s wave function.

1In this study, we focus on the ALP production from the Hawking radiation of PBHs. See [39, 40] for the

production of ALPs from the superradiance process.
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The outline of the paper is as follows. In section 2, we review the derivation of Hawking

radiation for massive scalar particles and contrast our findings with existing literature, which

relies on assumptions of massless particles or simplifications in energy dependence to a non-

relativistic form. In section 3, we calculate the gamma-ray spectrum from PBH’s Hawking

radiation, including contributions from the non-relativistic pion or ALP production and decay.

In section 4, we compare the gamma-ray spectrum with and without proper calculation of

non-relativistic pion or ALP production and show that the future AMEGO-X measurement

can be sensitive to the improper treatment of the scalar production. We conclude in section 5.

2 Hawking radiation rate of massive scalar particles

In this section, we discuss the calculation of the Hawking radiation rate of massive scalar

particles from a Schwarzschild PBH. We use natural unit and set ℏ = c = kB = 1 in this work.

Black holes possess thermal properties and can emit Hawking radiation [64] with energy

spectrum similar to the blackbody radiation [53]

dNωlnsq

dtdω
=

ïNωlnsqð
2Ã

=
1

2Ã

Γωlnsq

eω/TH + (−1)2s+1
, (2.1)

where ïNωlnsqð is the expected number of the particles with energy ω, angular momentum

l, azimuthal quantum number n, spin s, and electric charge q observed at infinity, and

TH = (8ÃGM)−1 is the black hole temperature with black hole mass M . The greybody

factor Γωlnsq is the correction to a black body radiation spectrum in flat spacetime and is

dependent on the properties of emitted particles and the black hole.

The curved spacetime outside the black hole’s event horizon effectively acts as a potential

barrier. Consequently, only a fraction of particles radiated by the black hole can penetrate

the barrier and reach a distant particle detector, with the transition rate being the greybody

factor Γωlnsq. The remaining fraction 1 − Γωlnsq of the particles is scattered back to the

black hole. For a more detailed description of the scattering process based on the Penrose

diagram, see appendix B.

In this study, we model PBHs as Schwarzschild black holes. This assumption is based

on the expectation of rapid PBH spin loss due to the superradiance process and rapid PBH

charge loss due to Hawking radiation. The superradiance instability is triggered when the

wavelength of the scalar particle is comparable to the horizon size of the PBH [65–67]. This

superradiance condition is naturally satisfied in the scenario where non-relativistic Hawking

radiation can be important, m ∼ O(1/GM), thus efficiently eliminating the PBH spin in

the benchmarks of this study. Regarding the PBH charge loss rate, it is found that charged

non-rotating black holes in the mass range we consider can Hawking radiate away their

charges quickly [68]. Therefore, we focus on the Hawking radiation from Schwarzschild PBHs.

Additionally, we assume that PBHs maintain constant masses in the analysis since the lifetime

of the PBHs is much longer than the observation time of the indirect detection experiments.

2.1 Greybody factor

The correction from the particle mass to the radiation is encoded in the greybody factor,

therefore in this subsection, we review the calculation of Γωlnsq for charge-neutral massive
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scalar particles (q = s = 0), following the discussion in [62], and shall omit the subscripts

s and q in Γωlnsq for simplicity.

Firstly, we define the greybody factor by the Hawking radiation process with reversed

time [64], where the particles propagate backward from infinity to the black hole. Assuming

N particles at infinity initially (r → ∞, t → +∞), then N × Γωln particles will penetrate

the potential barrier and N × (1 − Γωln) particles will be scattered back to infinity (r → ∞,

t → −∞), so the greybody factor is

Γωln = 1 − N × (1 − Γωln)

N
= 1 − number of particles at r → ∞, t → −∞

number of particles at r → ∞, t → +∞ , (2.2)

which only requires the information of the particles at r → ∞.2 Secondly, we study the

behavior of particles from Hawking radiation by treating them as classical fields [69, 70].

The number of particles is proportional to the square of the amplitude of the incoming

(r → ∞, t → +∞) and outgoing (r → ∞, t → −∞) scalar field.

The equation of motion in curved spacetime of charge-neutral massive scalar field Ψ

such as neutral pion Ã0 and ALP is

∇ν∇νΨ = m2Ψ, (2.3)

where ∇ν is the covariant derivative and m is the field mass. The following Schwarzschild

line element is used,

ds2 = f(r)dt2 − 1

f(r)
dr2 − r2dθ2 − r2sinθ2dϕ2, (2.4)

where f(r) = 1 − rs/r and rs = 2GM is the horizon radius with M being the black hole mass.

By separating the variables in spherical coordinates, the mode with energy ω propagating

backward in time can be expanded as [71]

Ψ(r, θ, ϕ, ω, M) =
∑

n,l

e+iωt R(l, r, ω, M)

r
KlnYln(θ, ϕ), (2.5)

where R(l, r, ω, M) is the radial function, Yln(θ, ϕ) is the spherical harmonics with orbital

quantum number l and azimuthal quantum number n ∈ [−l, l], and Kln is the combination

coefficient.3 The radial function R(l, r, ω, M) satisfies
[

− d2

dr∗2 + Veff(l, r) − ω2

]

R(l, r, ω, M) = 0, (2.6)

where r∗ is the tortoise coordinate defined by d
dr∗

= f(r) d
dr , and the effective potential is4

Veff(l, r) = f(r)

[

m2 +
l(l + 1)

r2
+

2GM

r3

]

, (2.7)

2The time-reversed process introduced here corresponds to a different boundary condition from the standard

Hawking radiation, which is more difficult for computational simulation.
3Note that the frequency ω is defined by ωΨ = −i(∂/∂t)Ψ, where ∂/∂t is the time-like killing vector. This

frequency can be identified with the energy E only at infinity where f(r) → 1 and the coordinate time t

approaches the proper time τ of observers. However, ω is still the most convenient parameter to label different

modes of the field since it is always constant due to the property of Killing vectors.
4Notice that in the Eddington-Finkelstein coordinate, the effective mass

√

f(r)m → 0 when r → rs so

that the particle’s world-line can exist in the narrow light cone near the horizon.
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Figure 1. The effective potential Veff normalized by r2
s

for different particle masses and angular

momenta in Schwarzschild spacetime. As rs → ∞, the potential approaches r2
s
m2. The solid lines of

rsm = 0.34 may represent the potential for Ã0 with m = 135 MeV around the Schwarzschild black

hole of 1014.5 g. Note that the larger the angular momentum, the higher the peak of the potential,

and hence the lower the transition rate (with the same energy). Therefore, s-wave dominates the

radiation in the non-relativistic limit.

which is plotted in figure 1 with different masses and angular momentum l. Note that when

M = 0, Veff is the regular potential of a scalar field, and f(r) in the front and the last term

are the corrections from curved spacetime.

We numerically solve eq. (2.6) and match the result from the viewpoint of quantum

mechanical scattering theory, where the real scattering solution R(l, r, ω, M) should be only

incoming wave at the near-horizon region (r → rs) and a mixture of incoming and outgoing

waves at the asymptotic region (r → ∞) as following

R(l, r, ω, M) =

{ √
v Tωle

−iωr∗

(r → rs) ,

e−iωvr∗

+ Rωle
iωvr∗

(r → ∞) .
(2.8)

Here v =
√

1 − m2/ω2 is the velocity of the scalar particle. We normalize the amplitude of the

incoming mode exp(−iωvr∗) to unity for the particle propagating back from infinity. Another

incoming mode exp(−iωr∗) describes the particle that penetrates the gravitational barrier

and enters the black hole with the transition amplitude Tωl. The outgoing mode exp(iωvr∗)

corresponds to the particle scattered back to infinity with the reflection amplitude Rωl.

The transition and reflection amplitudes are independent of n in the spherically symmetric

spacetime. In the numerical simulation, Tωl and Rωl are calculated by comparing the

amplitudes in front of each mode after integrating the radial equation from rs = 2GM to

a large distance [60, 72, 73] (practically more than 1000×rs). More discussion on Tωl and

Rωl can be found in appendix A.
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ω

ω

ω

Γ ω

Figure 2. Upper panel: The transition rate |Tωl|2 of massless and massive scalar particles with

different angular momenta. Lower panel: The greybody factor Γω =
∑

l
(2l + 1)|Tωl|2 of massless

and massive scalars. Note that there is a hard cutoff at ω = m (rsω = rsm = 0.34) for the massive

particle. As ω increases, the modes of higher l are excited, hence the bumps in the lower panel. Note

that rsω = ω/4ÃTH for Schwarzschild black holes.

In figure 2, we show |Tωl|2 with different l and ω for different choices of particle masses. If

we treat ω2 as an effective energy, then eq. (2.6) is a time-independent Klein-Gordon equation.

When ω2 < Veff , the transition rate comes from a quantum tunneling process, and therefore

|Tωl|2 → 0 when ω → 0. In other words, the particle’s wavelength goes to infinity when ω → 0,

thus the black hole appears as a mere point to the particle, suppressing the possibility of

transition into the black hole. When ω2 exceeds the maximum value of Veff , the wave function

describes a regular scattering process where |Tωl|2 → 1 as ω increases. We see both behaviors
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in the plot for each l-mode. Based on the definition of the greybody factor eq. (2.2), we have

Γωln = |Tωl|2, n ∈ [−l, l].

Given that the spacetime is spherically symmetric, we sum over the contributions from the

modes with different angular momenta to study the energy dependence of the greybody factor,

Γω =
∑

l

l
∑

n=−l

Γωln =
∑

l

(2l + 1)|Tωl|2. (2.9)

Note that as the transition rate of a certain mode, Γωlns < 1, but Γω can be larger than 1.

When considering the Hawking radiation process with reversed time, the absorption

cross section of the radiation for massive particles is [57, 62]

Ãmassive =
Ã

(ωv)2

∑

l

(2l + 1)|Tωl|2 =
Ã

(ωv)2
Γω . (2.10)

After summing over all contributions of angular momenta, the energy spectrum of produced

scalar particles relates to the cross section as [74]

dN

dtdω
=

1

2Ã

27G2M2ω2v2

eω/TH − 1

(

Ãmassive

27ÃG2M2

)

=
1

2Ã

Γω

eω/TH − 1
, (2.11)

where 27ÃG2M2 is the cross section in the geometric optics limit [75] (with radius
√

27
2 rs of

black hole shadow).5 We denote results calculated with eq. (2.11) for the non-relativistic

particle production as “NR calculation” in the rest of the paper. We provide a package for

the calculation of the cross section and the scalar Hawking radiation rate �. In figure 3

and 4, we show examples of the cross section and particle production rate between massless

and massive scalars with two black hole masses.

2.2 Comparison to previous estimates

As shown in figures 3 and 4, the greybody factor and particle production rate differ significantly

between massless (dashed) and massive (solid) scalars in the non-relativistic regime ω → m

and v < 1. Although |Tωl|2 remains finite as ω → m, Ã becomes infinity due to the

denominator (ωv)2 = ω2 − m2 → 0 in eq. (2.10). The idea is that when a particle is massive

and highly non-relativistic, the black hole can always trap the particle. The signal production

rate also decreases quickly when the energy is lowered to the scalar mass threshold.

Hawking radiation has been studied for producing massive scalars such as pions, Higgs,

and ALPs [37, 38]. However, previous analyses often ignore particle mass or make rough

estimates of non-relativistic corrections. To our knowledge, none use the correct method

for massive scalars. Thus, it is crucial to compare our more precise particle production

rates to these earlier estimates to determine if the differences are significant compared to

experimental sensitivity.

When ignoring the particle mass, the production rate is written as

(

dN

dtdω

)

Massless
=

1

2Ã

27G2M2ω2

eω/TH − 1

(

Ãmassless

27ÃG2M2

)

=
1

2Ã

Γmassless

eω/TH − 1
. (2.12)

5Some works also call
(

σ

27πG2M2

)

the greybody factor [76].
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ω

σ
π

Figure 3. The normalized cross section Ã/27ÃG2M2 of massless (dashed lines) and massive scalars

(solid lines). In the low-energy limit, the cross section of the massive scalar blows up, and the massless

approaches the black hole area 16ÃG2M2. In the high-energy limit, the massive and the massless

cross sections both approach the geometrical optics limit 27ÃG2M2.

ω

ω

Figure 4. The particle production rate (log-plot) measured at infinity for massless and massive

scalars. The production rates of different modes of different l are compared. The dark blue line

shows the total production rate when summing over all contributions of angular momentum, and

there is a cut-off at ω = m (rsω = rsm = 0.34) for the massive particle. The production rate of

massless particles peaks at rsω ≈ 0.2, which in the simple case of Schwarzschild black holes means

ω/TH = 4Ã × 0.2 ≈ 2.5.
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ω

ω

Figure 5. The ratio of the production rates of Ã0 calculated by different methods with M = 1014.5g

and rsm = 0.34. The blue curve is the ratio
(

dN

dtdω

)

massless
/
(

dN

dtdω

)

NR calculation
= Ãmassless/v2Ãmassive,

namely the deviation of approximating the massive greybody factor by the massless. The green curve

shows
(

dN

dtdω

)

Massless×v2
/
(

dN

dtdω

)

NR calculation
= Ãmassless/Ãmassive, which indicates the validity of the

approximation eq. (2.13). In the high-energy limit, all curves converge to 1 as indicated in figure 3

that Ãmassless → Ãmassive in the high-energy limit and meanwhile v2 = 1 − m2/ω2 → 1. However, they

differ at the non-relativistic limit, where the massless calculation gives roughly an extra 20% of the

photon numbers under the current parameters. The additional v2 factor in the Massless×v2 method

suppresses the production rate in the non-relativistic limit.

Here Γmassless denotes the greybody factor for massless scalars, and Ãmassless is calculated

following the same procedure but with particle mass m = 0. We take the numerical values of

Γmassless implemented in the package BlackHawk [55, 56]. Instead of properly including the

scalar mass, some literature includes the non-relativistic correction by keeping the velocity

v2 term while using the massless cross section [21, 77, 78]

(

dN

dtdω

)

Massless×v2

=
1

2Ã

27G2M2ω2v2

eω/TH − 1

(

Ãmassless

27ÃG2M2

)

=
1

2Ã

v2Γmassless

eω/TH − 1
. (2.13)

Eqs. (2.11), (2.12), and (2.13) agree with each other in the relativistic limit v → 1 but differ

for the non-relativistic production (ω ≈ m), as is shown in figure 5. Throughout this study,

results obtained using eq. (2.12) are referred to as “Massless”, and results obtained using

eq. (2.13) are referred to as “Massless×v2”.

2.3 Possible suppression for composite particles

The Hawking radiation of composite particles is studied in [79], and the production rate is

found to be suppressed when the tidal force effect on spatially extended objects is included.

This could result in an effective reduction of the greybody factor for composite particles,

such as pions being QCD bound states, in the low momentum regime. To estimate the

suppression in the production rate of composite particles, one must compare the particle’s

physical radius to the PBH horizon radius. Generally, the production rate is exponentially

suppressed when the particle radius is much larger than the Schwarzschild radius. Conversely,

– 9 –



J
H
E
P
1
1
(
2
0
2
4
)
0
7
1

Hawking radiation rate is also suppressed by the particle mass when its radius is much

smaller than the Schwarzschild radius. Thus, accurately determining the pion radius is

crucial for incorporating this suppression.

The definition of the pion radius varies based on how its properties are probed. For

instance, gravitational form factor studies suggest a pion light cone mass radius of around

0.3 fm [80–82]. Charge radius measurements indicate a radius of approximately
√

ïr2
πð ≃

0.8 fm [83], while the Compton wavelength of the neutral pion is about 9 fm. Given the

limited understanding of the hadronization process near the PBH horizon, the correct radius

for Hawking radiation calculations remains unclear. If we apply the suppression factor

∼ exp(− s
3.3) as discussed in [79], where s ≃ r3

π

(G M)3 , the suppression ranges from O(0.1) (for

0.3 fm) to 10−O(7000) (for 9 fm) for a 1014.5 g black hole.

Given the large uncertainty in form factor calculations, we focus on clarifying the non-

relativistic effects in this study by treating pions as fundamental particles, similar to ALPs,

in their production via Hawking radiation.

3 Gamma-ray spectrum from Hawking radiation

One important channel to examine the precise calculation of Hawking radiation spectrum

is the gamma-ray searches for PBHs. The precise calculation of Γmassive is important for

PBHs within the asteroid mass range that have Hawking temperature TH ≃ 0.1-10 MeV.

These PBHs are stable enough to produce gamma-ray signals in the present universe. The

PBH-produced SM pions and ALPs of mass from 10 to 100 MeV contain non-negligible fraction

of non-relativistic contributions. The proper inclusion of the non-relativistic correction is

therefore important for predicting the correct photon spectrum in their subsequent decay

into photons.

The visible particles emitted in the Hawking radiation process can be used to discover

the existence of PBHs and further test the Hawking radiation mechanism. There are several

studies on using indirect detection experiments to detect gamma-ray signals from PBH

evaporation in the local galaxy [84–88] as well as dwarf galaxies [87] and the intergalactic

medium [88]. Gamma-ray observations pointing at the Galactic Center (GC) has several

advantages. First, the higher DM abundance at the GC leads to a stronger gamma-ray flux.

Second, the GC gamma-rays are observed with negligible redshift and propagation effects,

allowing a better reconstruction of the original spectrum shape for the study of the Hawking

radiation rate. Therefore, we focus on the GC indirect detection signal in this work.

To calculate the flux of the galactic gamma-ray signal, we start with the photon produc-

tion rate from a single Schwarzschild PBH following [13]. The total photon flux contains

contributions from primary photons directly emitted by the PBH, and secondary photons

produced by the electromagnetic interaction of Hawking radiation products. We assume

the secondary photons are generated soon after the Hawking radiation such that we the

direction of the secondary photon is approximated with the direction of the PBH. The

primary photon emission rate is given in eq. (2.1),

dNγ,primary

dEγdt
=

1

2Ã

Γγ

eEγ/TH − 1
. (3.1)
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Here Γγ is the greybody factor for vector particles. We take the photon emission greybody

factor from BlackHawk [55, 56].

The secondary photon flux is from two sources, the particle decay and the final state

radiation (FSR). The former is from diphoton decay of neutral particles produced by Hawking

radiation. The latter contribution is from the radiation of charged particles from the PBH.

The photon energy spectrum in the diphoton decay process of the mother particle mass

mi and energy ωi is

dNi,decay

dEγ
=

Θ(Eγ − E−
i )Θ(E+

i − Eγ)

E+
i − E−

i

, (3.2)

E±
i =

1

2

(

ωi ±
√

ω2
i − m2

i

)

. (3.3)

Note we use ωi specifically for the energy of scalar particles produced by Hawking radiation

to match notations used in section 2. The decay spectrum is used to calculate photons from

neutral pions in the SM scenario and ALPs for new physics searches. The decay spectrum

is incorporated with the detailed calculation of scalar particle emission spectra from PBHs

in section 2, giving the final photon spectrum in the decay component,

dNγ,decay

dEγdt
=

∫

dωi 2
dNi

dωidt

dNi,decay

dEγ
. (3.4)

Another source of secondary photon is FSR where photon spectrum is calculated from

a charged particle of mass mi and energy Ei [89, 90],

dNi,FSR

dEγ
=

α

ÃQi
Pi→iγ(x)

[

log

(

1 − x

m2
i

)

− 1

]

, (3.5)

Pi→iγ(x) =















2(1 − x)

x
, i = Ã±

1 + (1 − x)2

x
, i = µ±, e±

, (3.6)

here x ≡ 2Eγ/Qi, µi ≡ mi/Qi and we choose the FSR energy scale Qi = 2Ei to be twice of

the energy of charged particles. This gives the FSR contribution to the total gamma-ray flux,

dNγ,FSR

dEγdt
=

∫

dEi
dNi

dEidt

dNi,FSR

dEγ
. (3.7)

With eqs. (3.1), (3.4), and (3.7), we obtain the total photon spectrum from a single PBH,

dNγ,tot

dEγdt
=

dNγ,primary

dEγdt
+

∑

i=π0,(a)

dNγ,decay

dEγdt
+

∑

i=e±,µ±,π±

dNγ,FSR

dEγdt
. (3.8)

We will use eq. (3.8) in the signal analysis for distinguishing the non-relativistic effect of

scalar particle emission. In particular, we take two example scalar particles, the neutral pion

Ã0 and the ALP a, to show the implication of this study for future gamma-ray searches. In

the neutral pion case, we only include the pion emission in the second term in eq. (3.8). The

neutral pion production rates are calculated with methods discussed in section 2 and show the
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implications for indirect detection searches in the next section. In the ALP case, we include

both the neutral pion emission and the ALP emission in the decay contribution of secondary

photons. We keep using the Massless method to calculate the neutral pion emission rate,

while varying different methods to obtain the ALP production rate. We checked the pion

production is sub-dominant with our benchmark PBH and ALP masses, and the gamma-ray

spectrum feature is mostly determined by the ALP decay. We also use the Massless method

for the Hawking radiation rate of charged pions Ã± to calculate their FSR photon flux, in

both the pion case and the ALP case. The FSR from charged pions is subdominant due to

the pion mass. The final results are shown in the following section.

4 Application to indirect detection searches

We apply the gamma-ray spectrum calculation to the searches for asteroid-mass PBHs

in indirect detection experiments. The PBHs make up a fraction fPBH of the DM relic

abundance with a monochromatic mass value M , and we assume their spatial distribution

tracks the Milky Way DM density profile. The photon flux from each PBH is isotropic.

The gamma-ray flux at the earth location is the sum of photon flux from all PBHs and

can then be averaged over the 4Ã sphere,

dΦγ

dEγ
= JD

∆Ω

4Ã

fPBH

M

dNγ,tot

dEγdt
. (4.1)

Here JD is the same J-factor of decaying DM calculated by integrating the DM density along

the line-of-sight (LOS), dl, within the observation solid angle ∆Ω.

JD =
1

∆Ω

∫

∆Ω
dΩ

∫

LOS
dlÄDM. (4.2)

We take an NFW profile [91] for the ÄDM with halo parameters rs = 11 kpc, Äs =

0.838 GeV/cm3, r200 = 193 kpc, and r⊙ = 8.122 kpc [92] for the galactic DM distribu-

tion ÄDM. We use JD = 1.597 × 1026 MeVcm−2sr−1 for our assumption of an observation

region of |R| < 5◦ from the Galactic Center, corresponding to ∆Ω = 2.39 × 10−2 sr. The

benchmark values of fPBH, defined as the fraction of DM energy density in the form of PBH,

are choose to be below the existing constraints adapted from [12, 93] and at the same time

enable the signal to be detected by future MeV scale indirect detection experiments. We use

AMEGO-X [5, 94] as an example to show the non-relativistic effect in future observations.

In figure 6, we show the instantaneous gamma-ray spectrum in the neutral pion decay

(upper panel) and the ALP decay (lower panel), calculated with different methods discussed

in section 2. In the pion decay case, the PBH mass is chosen as M = 1014.5 g, corresponding

to PBH Hawking temperature TH ≃ 33.4 MeV. We also choose PBH abundance to be

fPBH = 10−9.6. In the ALP case, we choose M = 1015 g with a Hawking temperature of

TH ≃ 10.6 MeV, fPBH = 10−8, and ma = 30 MeV with an ALP-photon coupling assumed

large enough for instantaneous diphoton decay.6 The rescaled gamma-ray constraints from

6Note in the ALP case, the contribution from neutral pion decay is calculated with the Massless method.

We checked the difference between pion decay fluxes in difference scenarios is negligible for the chosen PBH

mass in the ALP example since mπ0 ≫ TH .
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γ

γ
Φ γ γ

π  γγ

γ

γ
Φ γ γ

 γγ

Figure 6. Gamma-ray spectrum from Hawking radiation of PBHs. Upper panel: comparing different

treatments of neutral pion production from a M = 1014.5g PBH. Lower panel: comparing different

treatments of ma = 30 MeV ALP production from a M = 1015g PBH. Here we assume the tidal force

effect is negligible for the pion production.

COMPTEL obtained from [93] and Fermi observations from [12] for the assumed observation

ROI are shown with solid black curves. We also show the future sensitivity of AMEGO-X

assuming a 3-year all-sky survey [94].

We compare our massive scalar emission rate calculation from eq. (2.11) (orange, NR

calculation) with previous methods represented with color curves from eq. (2.12) (blue,

Massless), and from eq. (2.13) (green, Massless×v2). The orange curve shows the main result

of this study. The blue and green curves are obtained with the radiation rate from BlackHawk
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data for comparison. The upper panel of figure 6 shows the case of SM pion production,7

and the lower panel shows the case of a BSM ALP production. The PBH masses are chosen

such that the peak location of the Hawking radiation spectrum is close to the scalar particle

mass,8 in order to show the difference between spectra calculated with different methods. In

both examples, the difference in massive scalar particle production rates leads to a different

spectrum shape in the energy region to the left of the primary photon peak. In specific, our

NR calculation predicts a lower decay photon flux compared to the Massless method, and

a higher photon flux than the Massless×v2 method. One can see the gamma-ray signals

are much higher than the statistical uncertainty of future AMEGO-X observation, thus the

non-relativistic effect can be tested with the spectrum shape of the observed signal.

We perform a likelihood analysis on the gamma-ray spectrum to demonstrate the

possibility of using AMEGO-X to measure the massive scalar emission rate. The observation

time is assumed to be Tobs = 3 yrs for the ALP case and Tobs = 6 yrs for the pion case. We

use the effective area of AMEGO-X measurement reported in [96]. The background photon

flux is modeled with the GC component in [97] and cosmic background component in [98].

We do not include Albedo photons from the emission in the Earth’s atmosphere [99, 100]

in our background model, assuming they can be suppressed with a higher mission orbital

altitude and selection cuts on the direction of gamma-rays. The photon counts are binned

with 45 bins of equal bin width on logarithmic scale from 5 MeV to 500 MeV, corresponding

to the requirement of about 10% energy resolution. With the above assumptions, we calculate

the expected photon number in the ith bin for the true model ni and the test model κi. The

likelihood that a test model spectrum κi can replicate the true model spectrum ni is defined as

L = exp

(

∑

i

ni ln (κi) − κi − ln (ni!)

)

, (4.3)

where we assumed the gamma-ray signal is produced following Poisson statistics. We

further assume that the joint analysis of different energy bins follows a χ2 distribution.

The corresponding test statistic TS and the observation significance Ã are obtained as

follows [101–104]

TS = −2 ln

( L
Ltrue

)

= Ã2. (4.4)

Here Ltrue is the likelihood of the true model calculated with κi = ni.

In figure 7, we demonstrate that the observed gamma-ray signal can distinguish the

non-relativistic effect between our method and approximations eqs. (2.12) and (2.13) used

in the literature. We start by selecting true model PBH parameters {M, fPBH} (marked

by black stars “⋆”) and calculate the corresponding photon spectrum ni using eq. (2.11).

We then scan test models using NR calculation, Massless, and Massless×v2 calculations

7The photon spectra differ between non-relativistic pion production and ALP production from a 1014.5g

PBH. The ALP decay peak is clearly separated from the pion decay signal when ma ≲ 94 MeV, making

it distinguishable based on the photon spectrum. To detect the ALP signal, the photon coupling must be

gaγγ ≳ 4 × 10−14GeV−1(10 MeV/ma)2 to ensure the decay length is smaller than r⊙.
8For scalar particle, the peak location of the flux measured at infinity is at Es=0 ≃ 2.81 TH [95]. Note the

peak location depends on the greybody factor used in the Hawking radiation spectrum.
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π  γγ
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★

Figure 7. Fit to the true model (⋆) using different assumptions for calculating scalar productions.

The significant deviations (in Ã) for the green and blue contours highlight the difficulty of incorporating

the correct PBH mass and abundance with incorrect non-relativistic corrections. Upper panel: The

Ã0 case with benchmark values fPBH = 10−9.6 and M = 1014.5g, assuming 6 years of AMEGO-X

observation; Lower panel: The ALP case with benchmark values fPBH = 10−8 and M = 1015g,

assuming 3 years of observation. The tidal force effect on Ã0 production is assumed negligible. The

nearly parallel curves come from cutting the elliptical contours for the PBH mass window in the plot.
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to obtain Ã2 for various {M, fPBH} values. Best-fit regions are shown with color contours

indicating specific Ã values.

The orange contours, based on the correct non-relativistic calculation, are centered around

the true model point. Regions within these contours have smaller significance in Ã than

the labeled values, making the test models indistinguishable within AMEGO-X sensitivity.

Due to incorrect mass corrections, the best-fit points in the green and blue contours shift

away from the black stars, and these calculations disfavor the true {M, fPBH} values with

similar or greater significance indicated by the contours.

The upper panel of figure 7 shows the likelihood fit in the case of Ã0 production, assuming

6 years of the AMEGO-X observation. In this study, we do not consider the tidal force

effect discussed in section 2.3 for the pion production. The true PBH model we use is

{M, fPBH} = {1014.5 g, 10−9.6}, shown with the black star in the upper panel. The fit using

the NR calculation (orange) can successfully locate the true model point as the black star

is well inside the orange contour. In contrast, methods without the correct non-relativistic

correction fail to accurately fit the true PBH parameters. The true model lies outside the

3Ã contour for the Massless calculation (blue) and is only marginally within the 6Ã contour

for the Massless×v2 calculation (green). This demonstrates the importance of correct mass

correction in Ã0 production for determining PBH parameters from the AMEGO-X search.

The lower panel of figure 7 shows a similar comparison between different methods for the

ALP production, assuming 3 years of the AMEGO-X observation. The true PBH parameters

are {M, fPBH} = {1015 g, 10−8.0}. Although the mass of the ALP is a priori unknown, we

fix ma = 30 MeV for simplicity in the parameter scan. We find that the true model point

lies well within the orange contour. The true PBH parameters lie outside the 5Ã contour

for the Massless calculation and the 11Ã contour for the Massless×v2 calculation, showing

a significant deviation between the gamma-ray spectra obtained with correct and incorrect

non-relativistic corrections.

Notice that the blue contours in the plots are generally below the orange contours

because the production rate of massless particles is higher than that of massive ones with

the same PBH mass and abundance, leading to smaller predicted fPBH values. Conversely,

the Massless×v2 method (green) predicts an overly small ALP production rate, placing the

green contour in regions with larger fPBH values.

5 Discussion and conclusion

In this study, we reassess the calculation of Hawking radiation for massive scalar particles �

and extend our analysis to include their impact on Ã0 and ALP production, influencing sec-

ondary gamma-ray emissions. Our calculation reveals significant non-relativistic corrections

in scalar production signals from black holes of approximately 1015 g when compared to the

sensitivity of next-generation gamma-ray detectors like AMEGO-X. Even in the absence of be-

yond the SM particles, inaccurately incorporating the Ã0 mass can substantially impair signal

fitting. As discussed in [13], if PBHs originate from the collapse of large primordial curvature

perturbations, the observable fPBH in next-generation gamma-ray detectors will correspond to

substantial curvature perturbations, yielding significant gravitational wave signals detectable

by future gravitational wave detectors. Even if the PBH mass spectrum is not monochromatic
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as assumed in this work, the interplay between gravitational wave and gamma-ray detections

can provide good measurements of the PBH spectrum. Accurate predictions of Hawking

radiation signals, encompassing the non-relativistic particle productions discussed herein, will

be crucial for identifying PBH properties via such multi-messenger measurements. Although

the current work is focused on charge-neutral massive scalar particles and Schwarzschild

black holes, a similar analysis can be performed for general conditions.

As noted earlier, tidal forces can significantly impact Ã0 production for black hole masses

relevant to AMEGO-X measurements. If tidal forces strongly suppress pion production, ALPs

with masses close to the pion’s could mimic the expected pion signal without disruption. A

better understanding of hadron production via Hawking radiation is crucial for accurately

determining PBH properties from its emissions.

The observed photon spectrum also depends on other black hole properties, such as

spin, charge, and mass variation during evaporation. The total gamma-ray spectra can

be obtained by integrating these effects over time. Additionally, if a PBH and its emitted

particles share the same charge sign, their electromagnetic interaction can enhance production

rates, impacting the photon spectrum [74]. For rotating black holes, emissions are influenced

by angular momentum alignment with the black hole’s spin [53]. While these factors modify

the gamma-ray spectra, they complement the non-relativistic corrections discussed here.

Non-relativistic effects become relevant if heavier particles, like hadronic states, are produced

near their mass threshold. A comprehensive analysis of all these factors is left for future work.
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A Transition and reflection amplitudes

In this section, we demonstrate how to identify the physical meaning of the amplitudes in

the asymptotic solution in eq. (2.8).

First, one may assume a more general form for the asymptotic solutions,

R(l, r, ω, M) =

{

Ae−iωr∗

, rs = 2GM

Be−iωvr∗

+ Ceiωvr∗

, r∗ → r → ∞,
(A.1)

where A, B and C are unknown amplitudes. Then introducing the Wronskian operator,

W [R, R∗] := R
∂R∗

∂r∗
− R∗ ∂R

∂r∗
, (A.2)
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where R and R∗ are the radial wave function and its complex conjugate defined by eqs. (2.8)

and (2.6), and r∗ is the tortoise radial coordinate introduced before, d
dr∗ = f(r) d

dr . By the

fact that eq. (2.6) has no first-order derivative in terms of r∗, it can be proved that

∂W [R, R∗]

∂r∗
= 0,

so W [R, R∗] is a constant along r∗, which is related to the conservation of the flux. Inserting

the general solution eq. (A.1) to the Wronskian,

W [R, R∗] =

{

−2iω|A|2, rs = 2GM

−2iωv|B|2 + 2iωv|C|2, r∗ → r → ∞.
(A.3)

Therefore,

−2iω|A|2 = − 2iωv|B|2 + 2iωv|C|2

⇒ |A|2
v

+ |C|2 = |B|2. (A.4)

Physically, |C|2

|B|2
should be the reflection rate defined at infinity, so we may normalize

B as 1 and set C as the reflection amplitude Rωl correspondingly. Therefore, |A|2

v should

be the transition rate |Tωl|2. Hence the ansatz eq. (2.8).

B Hawking radiation and Penrose diagram

In this section, we describe the Hawking radiation and time-reversed propagation using

the Penrose diagram [105], which compresses spacetime into a finite region via conformal

transformation. We focus on providing a concrete picture of these processes without delving

into mathematical details, discussing only the Schwarzschild-type spacetime relevant to

our study.

The original Schwarzschild metric

ds2 = f(r)dt2 − 1

f(r)
dr2 − r2dθ2 − r2sinθ2dϕ2

covers only the region outside the black hole and extends to spatial and temporal infinities.

To show the whole spacetime in a finite size, the following new conformal coordinates (T, R)

are introduced,

tan(R − T ) = e
r∗−t
4GM ,

tan(R + T ) = e
r∗

+t
4GM , (B.1)

where r∗ = r + 2GM ln( r
2GM − 1) is the tortoise coordinate. The new coordinates are referred

to as conformal time T and conformal radius R. The special property that tan(±π
2 ) → ±∞

allows us to show the points at infinity. The Penrose diagram of a Schwarzschild black hole

is shown below (without the white hole interior and another exterior region).

The meaning of the labels on the diagram is the following,

• when r∗ = cons. and t → ±∞, one approaches to R → π
4 , T → ±π

4 , therefore the two

points on the (T, R) plane i± = (π
4 , ±π

4 ) represent the time-like future/past infinity, at

where all world-lines of massive particles converge (if not going into the black hole);
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Figure 8. A fraction of the Penrose diagram of a fully extended Schwarzschild black hole, representing

the time-reversed propagation of massive fields from i+ and massless fields from J +. Each point in

the diagram corresponds to a sphere S2 with a radius determined by its coordinate.

• when r → +∞, r∗ → +∞, andt = cons., one approaches to R → π
2 and T → 0,

therefore i0 = (π
2 , 0) represents the space-like infinity;

• when r∗ ± t = cons., we have R ± T = cons′., so all 45◦ lines represent null trajectories.

Especially, H± lines are approached when r = 2GM , r∗ → −∞, and t → ±∞, so they

represent the future and past black hole horizons. The junction O of H− and H+ is the

bifurcation surface. The left region of the future horizon H+ is the black hole interior,

while the left region of the past horizon H− is sometimes called the white hole interior

(not included). J ± are approached when r → ∞, t → ±∞, so they are the future and

past null infinity respectively, at where massless particles converge (if not going into

the black hole);

• when r = 0, one hits the singularity. When t = 0, T = 0, and tan R = er∗/4GM .

The Hawking radiation starts from some point outside H+ (effectively a tunneling

process [106] from the black hole interior to some point outside) and reaches i+ (massive)

or J + (massless). The greybody factor Γ represents the transition rate from H+ to i+ or

J +. If the radiation is propagating backward in time, the penetration rate then connects i+

(or J +) to H−. Ignoring the backreactions of Hawking radiation, the effective gravitational

barrier can be treated as time-invariant, therefore the transition rate Γ is the same and we

use the time-reversed process to calculate Γ.

The bifurcation of each curve on the diagram indicates that a fraction 1 − Γ is scattered

away and a fraction Γ penetrates the gravity barrier. However, the precise location of

bifurcations can not be determined precisely due to the spread of the effective gravity

potential and the waves so the locations are only for illustrative purpose.
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