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Emergent flat band and topological Kondo
semimetal driven by orbital-selective
correlations

Lei Chen1, Fang Xie1, Shouvik Sur 1, Haoyu Hu1,2, Silke Paschen 1,3,
Jennifer Cano 4,5 & Qimiao Si 1

Flat electronic bands are expected to show proportionally enhanced electron
correlations, which may generate a plethora of novel quantum phases and
unusual low-energy excitations. They are increasingly being pursued in d-
electron-based systems with crystalline lattices that feature destructive elec-
tronic interference, where they are often topological. Such flat bands, though,
are generically located far away from the Fermi energy, which limits their
capacity to partake in the low-energy physics. Here we show that electron
correlations produce emergent flat bands that are pinned to the Fermi energy.
We demonstrate this effect within a Hubbard model, in the regime described
by Wannier orbitals where an effective Kondo description arises through
orbital-selective Mott correlations. Moreover, the correlation effect coop-
erates with symmetry constraints to produce a topological Kondo semimetal.
Our results motivate a novel design principle for Weyl Kondo semimetals in a
new setting, viz. d-electron-based materials on suitable crystal lattices, and
uncover interconnections among seemingly disparate systems that may
inspire fresh understandings and realizations of correlated topological effects
in quantum materials and beyond.

Certain crystalline lattices feature flat bands, via frustration caused by
destructive interference in electron motion1, which are increasingly
being explored in d-electron-based systems2,3. The reduced bandwidth
correspondingly enhances the effect of electron correlations. In
addition, such flat bands are often topologically nontrivial. As such,
these systems represent a new platform to uncover novel physics for
both correlation and topology as well as their interplay4. For example,
kagome metals may host flat bands and have been the subject of
considerable recent interest for realizing unusual forms of charge-
density-wave order5–10. They have also been implicated to exhibit a
type of strange metal behavior11–14 that resembles what has been
extensively studied in quantum-critical heavy fermion metals4,15,16.

In order to strongly influence the low-energy physics, the flat
bands need to be placed near the Fermi energy. However, this typically
is not the case at the level of bare (noninteracting) electron band
structure. There havebeen considerable recent experimental efforts to
tune the bare flat bands to the vicinity of the Fermi energy. With the
rare exception coming from materials search13, the tuning study has
met with only limited success17,18. Because the flat bands are associated
with d-electrons, the energy scales that determine the flat band pla-
cement (with respect to the Fermi energy) are relatively large, and, as a
result, it is challenging to achieve the required tuning. We are thus
motivated to ask the following important questions: Can electron
correlations generate emergent flat bands at the Fermi energy in d-
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electron-based systems? And, if so, to what extent do the resulting
phases display nontrivial correlation and/or topological physics?

We address both issues in a Hubbard model in which the non-
interacting limit features a topologically nontrivial flat band that is far
away from the Fermi energy. Due to a well-separated hierarchy in the
widths of the flat band andwide bands that it is coupled to, and through
the formation of compact molecular orbitals19, orbital-selective Mott
correlations develop11. We show that such orbital-selective correlations
lead to emergent flat bands that are pinned to the Fermi energy. More-
over, using symmetry constraints in interacting settings20, which are
based on Green’s function eigenstates (as opposed to Bloch states21–25),
wedemonstrate that theemergentflatbands lead toa topologicalKondo
semimetal. The latter is in the same family as Weyl Kondo semimetals
that appear in topological Kondo-lattice models26,27 and materials28,29 of
both existing and designed20,30 heavy fermion systems. The qualitative
physics is illustrated in Fig. 1a–c. Importantly, our approach is based on
an exact construction of molecular orbitals and an exact mapping to a
heavy fermiondescription; this is in addition to the exact constraints that
symmetry places, which will also come into our analysis. Our results
motivate a design principle for the Weyl Kondo semimetals in the new
setting of d-electron-based systems and point to the realization of frac-
tional Chern insulators31 in transition-metal compounds.

Results
One-orbital Hubbard model on the clover lattice
For a proof-of-principle demonstration, we consider a variant of the
kagome lattice, the two-dimensional (2D) clover lattice. As shown in

Fig. 1d, it contains five sublattices per unit cell. Leaving the details of
themodel to be given in theMethods and in Supplementary Note 1, we
note that this lattice features a flat band (Supplementary Note 2). As a
case study, the model is simplified while preserving the topological
nature of the flat band; we do so by removing the C3 symmetry of the
clover lattice (Methods), leaving only a mirror symmetry Mx. There is
one orbital per site. The Hubbard model takes the form H=H0 +H1,
where H0 is the kinetic term and H1 represents the onsite Hubbard
interaction.We consider the generic setting that has not been analyzed
before, namely with the flat band of the noninteracting Hamiltonian
being far away from the Fermi energy, as illustrated in Fig. 1a and
shown in Fig. 2a.

The lattice can be divided into two groups of sublattices (denoted
by blue and yellow dots in Fig. 1d), which contain different numbers of
sites per unit cell. The flat-band formation can be seen by considering
only the nearest neighbor hopping between the blue and yellow sites,
reflecting a destructive interference of the electronic wavefunction on
the lattice32 (see Supplementary Note 2). The flat band overlaps with
the wide bands.

Molecular orbitals, effective extended Hubbard model, and the
solution method
A flat band that is topologically nontrivial cannot by itself be repre-
sented by exponentially localized symmetry-preserving (Kramers-
doublet) Wannier orbitals25. Such a Wannierization only becomes
possible when other bands are considered along with the flat band. In
addition, a flat band coming from destructive interference comprises

Fig. 1 | Illustration of the bare and emergent flat bands and lattice geometry.
a In the noninteracting case, a flat band (red solid line) appears far away from the
Fermi energy. b In the presence of orbital-selective correlations, an interaction-
driven flat band emerges at the Fermi energy (red solid line), while leaving inco-
herent excitations far away from the Fermi energy (red dashed lines). c The emer-
gent flat band crosses a dispersive band, leading to a topological Kondo semimetal

with symmetry-protected Dirac/Weyl nodes that are pinned close to the Fermi
energy, within an effective Kondo energy scale.dGeometry of the clover latticewith
5 sublattices per unit cell. The lattice does not have inversion symmetry. This can be
seen from the mismatch between the (dark) blue sublattices and their inversion
counterparts (dots in light blue). e The Wannier orbitals are near the geometric
centers (shaded blue circles) of the unit cells, which form a triangular lattice.
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states frommultiple (inequivalent) atomic sites. If oneWannier orbital
is to primarily capture this flat band, this Wannier orbital (and, by
extension, the others accompanying it) must involve multiple atomic
orbitals. In other words, in this case, the Wannier orbitals are neces-
sarily molecular orbitals. We again stress that the mapping we use
is exact.

In our case, we can restrict to three bands (see Supplementary
Note 3). We find the centers of the three localized Kramers-doublet
Wannier orbitals to be located near the geometric center of the unit
cell, which forms a triangular lattice (see Fig. 1e). Importantly, one
Wannier orbital primarily captures the flat band11; it is the most loca-
lized and isdenoted as thedorbital. Theother twoWannier orbitals are
dominated by the wide bands; they decay much more slowly and are
marked as c orbitals. The large difference in the width of the flat band
(Dflat) and the wide bands (Dwide) opens up a range of interactions that
are in between. In this range, the electron correlations are strongly
orbital-selective and the system affords a Kondo/Anderson-lattice
model description11.

We project the Hubbard model of the original lattice to the
Wannier basis. This leads to the effective model expressed in terms of
the d and c Wannier orbitals with Heff =H0 +Hint. The kinetic term is
specified in the Methods. For the interaction terms, we keep the most
dominant interactions on the Wannier basis. They include the onsite
Hubbard interaction among the d electrons and the density-density
interactions between the d and c electrons:

Hint =Hd +HF

=
X
i

u
2

nd
i" +n

d
i# � 1

� �2
+
X
i,α

Fα n
d
i n

cα
i

ð1Þ

where na
i,σ =a

y
iσaiσ , with a = d, cα, α = 1, 2, and na

i =
P

σn
a
σ . The onsite

Hubbard interaction on the d-orbital, u, is the most dominant one,
given the much more localized nature of this Wanner orbital. The
density-density interactions between the d and c electrons, Fα, are
weaker but also sizable: F1/u ≈0.3 and F2/u ≈0.25. These effective
interaction parameters are determined by those of the original
Hubbard model (see Supplementary Note 3). The interactions among
the c electrons are relatively small compared to their bandwidths and,
accordingly, will be unimportant.

To take into account the effect of the interactions, we use the U(1)
slave spin (SS)method33. Given that only the onsite interaction of the d
orbital is important, we need to introduce an SS representation for the
d orbital only: dy

iσ = o
y
iσf

y
iσ , where the auxiliary bosonic and fermionic

operators, o† and f yσ , carry the charge and spin degrees of freedom,
respectively. We treat the SS formulation at the saddle-point level and
self-consistently solve the corresponding Hamiltonians for the SS and
the auxiliary fermion parts. The SS method is also used to obtain the
contributions to the single-electron excitations from the (interaction-
driven) incoherent part of the spectrum. The details are found in the
Methods and Supplementary Note 6.

Emergent flat band at the Fermi energy
We are now in position to discuss the effect of interactions on the
single-electron excitations. Consider first the density of states (DOS).
In the noninteracting case, as shown in Fig. 2a, the d electron DOS (the
red curve) has a sharp peak compared with the background (purple
color) c electron component. This reflects the d electrons as primarily
describing the flat band. As can be seen, the peak is located far away
from the Fermi level, which also reflects its origin from the non-
interacting flat band (see Supplementary Note 1).

Importantly, under the influence of electron correlations, a new
flat band emerges. This is demonstrated in Fig. 2b with u = 1.6. The
emergent flat band is pinned to the Fermi energy, as captured by the
coherent peak (the red solid lines) in the DOS. The background DOS
associated with the conduction c electrons is largely unchanged from
its noninteracting counterpart. Varying the interaction strongly influ-
ences the spectral weight of the emergent flat band (see Supplemen-
tary Note 7): This part of the spectral weight is reduced as the
interaction increases (comparing Fig. 2b and Supplementary Fig. S5a);
the reduced spectral weight is transferred to the incoherent part (the
red dashed lines). This form persists until the weight of the coherent
peak is completely lost and the system goes through an orbital-
selective Mott transition. When that happens, the incoherent parts of
the single-electron excitations develop into the full-fledged lower and
upper Hubbard bands (see Supplementary Note 7 and Fig. S5b).

Orbital-selective Mott correlations
To expound the origin of the emergent flat band, we further analyze
the orbital-selective Mott correlations in the regime of interactions of
our interest, viz. Dflat < u <Dwide. As shown in Fig. 3, the metal-to-
insulator transition of the d electrons occurs at uc = 2.4. We reiterate
that the range of the interactions being considered here is weaker than
the width of the wide bands associated with the c electrons (see Sup-
plementary Fig. S3). Thus, the c electrons are fully itinerant. This jus-
tifies the neglect of the interactions among the c electrons, as we have
done, so that the quasiparticleweight of the c-electrons remains to be 1
as seen in Fig. 3. The existence of an orbital-selective Mott transition is
further illustrated in the nature of the Fermi surface. As shown in Fig. 3
(insets), the Fermi surface undergoes a dramatic change across the
transition. This change parallels the electron localization-
delocalization (Kondo destruction) physics of heavy fermion
systems34–38. The phase with the d-electrons being itinerant corre-
sponds to the Kondo-screened phase, in which the local moment is
converted into (fragile, or heavy) electronic excitations that hybridize
with the conduction electrons to form the quasiparticles. By contrast,
the orbital-selective Mott phase (OSMP) is analogous to the Kondo-
destroyed phase of the heavy fermion systems, in which the Fermi
surface is formed entirely from the conduction electrons. The fact that
our noninteracting flat band is, to begin with, far away from the Fermi
energy makes the parallel with the heavy Fermion systems especially

Fig. 2 | Bare and emergent flat bands. a The DOS of the d and c electrons for the
noninteracting case. b The corresponding result at u = 1.6; here the red solid
(dashed) lines denote the coherent (incoherent) part of the d-electron excitations.
The purple backgrounds mark the DOS of the conduction c electrons.

Fig. 3 | Orbital-selective correlations. The quasiparticle weights of the d and c
electrons, Zd and Zc, as a function of the effective interaction u. The left (right) inset
plots the Fermi surface for the values of interactions right below (above) uc = 2.4.
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clear. Our analysis of this flat-band system provides a realization of the
Kondo physics in a one-band Hubbardmodel that physically describes
a d-electron-based system.

More specifically, the value of the interaction illustrated in Fig. 2b
is marked by an arrow in Fig. 3. The differentiation between the qua-
siparticle weights of the d and c electrons at this interaction char-
acterizes the orbital-selective nature of the electron correlations. This
is reflected in the d-electron spectral weight: as seen in Fig. 2b, the
incoherent peaks (the red dashed lines) are well formed, which cor-
responds to the precursor of the lower and upper Hubbard bands of
the OSMP (see Supplementary Fig. S5b). The coherent spectral weight,
i.e., the central peak (the red solid line of Fig. 2b) is thus described in
terms of the Kondo resonance of a Kondo-lattice model, in which the
local moments correspond to the effective spin degrees of freedom
associated with the lower and upper Hubbard bands. This description
makes precise the notion that the flat band at the Fermi energy is
emergent, driven by the orbital-selective Mott correlations.

Topological Kondo semimetal
The energy dispersion of the electronic states is shown in Fig. 4. From
the dispersion of the interacting (u = 1.6) case, we again see that a
Fermi-energy-bound flat band emerges in the interacting case.

We are then in a position to analyze the symmetry constraints21–25.
In the noninteracting limit, the three Wannier orbitals have different
Mx eigenvalues. The flat d orbital has the Mx eigenvalue +1, while the
two c orbitals have theMx eigenvalues of −1 and +1 respectively11. In the
presence of time-reversal symmetry, along the Γ −K line, the flat band
from the d orbital has a symmetry-protected Dirac crossing with the c
orbital of the opposite mirror eigenvalue. This same symmetry con-
straint also applies to the Kondo-driven flat band. The Dirac node for
the emergent flat band is shown in Fig. 4b. A node from the flat band
close to the Fermi energy allows a high tunability. As shown in Fig. 4d, a
relatively small Zeemancoupling (illustrated herewithm = 0.03, which
is small compared to the width of the emergent flat band of ~0.1)
causes a substantial separation of the nodes. These nodes now have
two-fold degeneracy.

The orbital-selective Mott correlations are caused by local corre-
lations. While we have provided a case study of how such correlations
give rise to emergent flat bands in a particular 2D model, a similar
conclusion is expected in general cases, including for models in three

dimensions (3D). There is an important distinction though. In 3D,
topological nodes develop in the presence of SOC under symmetry
constraints25,39. For noncentrosymmetric systems, or for centrosym-
metric systems with the breaking of time-reversal symmetry, we can
then expect the emergent flat bands to featureWeyl nodes leading to a
Weyl Kondo semimetal.

To further expound on the generality of our theoretical results, we
note that the metallic regime with strong orbital-selective correlations
can be viewed through the Kondo analogy. From this perspective, the
emergent flat band describes low-energy coherent electronic excitations
associated with the Kondo-driven composite fermions. Because low-
energy electronic excitations are always Fermi-energy bound, and also
based on the well-established understanding that Kondo-driven com-
posite fermions occur in the immediate vicinity of the Fermi energy, the
emergent flat bands that develop through our proposed mechanism
must be pinned near the Fermi energy. This represents a general prin-
ciple. To explicate on this generality, we have mapped out a phase dia-
gram to show that the proposed mechanism operates over an extended
region in theu-ϵ0d parameter space (region “II" of thephasediagramgiven
in Supplementary Note 8 and Fig. S6). Furthermore, we have carried out
related calculations in a more general setting and found a similar devel-
opment of an emergent flat band when the noninteracting flat band is
located substantially away from the Fermi energy; the details of this
analysis appear in Supplementary Note 9 and Fig. S7.

Design principle for Weyl Kondo semimetals in physical d-elec-
tron systems
Weyl Kondo semimetals have so far been explored in f-electron-based
materials, Ce3Bi4Pd3

28,29, and several newly proposed Ce-, Pr- and
U-based compounds20,30. The present work leads us to propose a
design principle for realizingWeyl Kondo semimetals in a new setting.
Importantly, our theoretical results are expected to be robust against
the effect of the residual interactions among the quasiparticles. This is
so because the origin of the topological nodes lies in the symmetry
constraints, which have recently been shown to operate on the
eigenvectors of the matrix associated with the exact single-electron
Green’s function of an interacting system20.

Accordingly, our proof-of-principle demonstration enables us to
advance a newmaterials design procedure forWeyl Kondo semimetals
in the setting of d-electron-based systems. The procedure would start
from 3D lattices that can host flat bands from quantum interference.
Examples include the pyrochlore lattice40, the perovskite lattices41, and
other 3D versions of the bipartite crystalline lattices42. We seek mate-
rials with d-elements and utilize orbital-selective correlations to drive
interacting flat bands that are Fermi-energy-bound. Symmetry con-
straints can then lead to either Dirac or (with the breaking of inversion
or time-reversal symmetry) Weyl nodes in these emergent flat bands.
The latter case corresponds to a Weyl Kondo semimetal.

The procedure for this materials identification approach goes
beyond that for Weyl Kondo semimetals in f-electron-based systems30.
In addition to the requirement for both correlations and crystalline
symmetry constraints, it also involves the crystal lattice conditions for
the formation of flat bands in the bare dispersion.We reiterate that the
noninteracting flat bands are not required to be near the Fermi energy.
This is an important feature in theproposedmaterials designprinciple,
given that the noninteracting flat bands in relevant materials are gen-
erically away from their Fermi energy.

Implications for fractional Chern insulators
Fractional Chern insulators, with a fractional quantum Hall effect and
the associated fractional charge in a lattice setting, havebeenproposed
in correlated models with an appropriate (such as 1/3) filling ratio of a
flat band when the latter crosses the Fermi energy43–45. Experimental
evidence has recently been identified in twisted bilayer graphene31, in
which the moiré bands are located near the Fermi energy, in a small

Fig. 4 | TopologicalKondo semimetal. aThe noninteracting band structure.bThe
dispersion of the single-electron excitations at u = 1.6. The red solid curve denotes
the emergent flat band close to the Fermi energy. The grey lines mark the inco-
herent single-electron excitations. c The zoomed-in view of the emergent flat band.
d The band structure at u = 1.6 with a Zeeman splitting mz =0.03.
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external magnetic field. Our results on the Fermi-energy-bound emer-
gent flat bands raise the possibility of another potential platform to
realize the fractional Chern insulators, namely in d-electron-based 2D
systems. Indeed, when a spin-orbit coupling is included in the 2D
model, the Dirac node is gapped leading to flat Z2 topological bands
(see Supplementary Note 4). The residual interactions (which develop
beyond the saddle-point analysis in the slave-spin approach that we
have carried out) could be ferromagnetic (see Supplementary Note 5).
In that case, theflat band candevelop anonzeroChernnumber and can
be analyzed for a lattice realization of fractional quantum Hall effect46.
Indeed, the combination of the flatness of the associated bands (see
Supplementary Fig. S4) and the aforementioned residual interactions
among the heavy quasiparticles represents a condition that is similar to
what happens in the moiré systems31; however, the Z2 nature of the flat
bands makes them distinct and rare47. Accordingly, with appropriate
fillings, our results suggest that the corresponding d-electron-based 2D
materials provide a new setting for realizing a fractional Chern insu-
lator. The naturalness of the emergent flat band crossing the Fermi
energy makes our proposal robust. Thus, this represents a promising
new direction for a systematic examination.

Discussion
Our work opens a new bridge between topological flat bands and
correlation physics. The interaction effect tends to localize the
molecular orbital that has the most overlap with the flat band. As a
result, these molecular orbitals play the role of local moments, by
analogy with the local spins of Kondo systems. Our work provides a
rare non-perturbative way to address the interplay between corre-
lations and topology effects in such flat band systems and a variety of
correlatedmaterials48. As such, it promises to elucidate thephysics of
correlated kagome transition-metal compounds2,3,13,14 and related
materials. We also expect that our analysis will inspire new under-
standings of the correlation effects in moiré structures, which are
increasingly being viewed from a Kondo perspective49–53, as well as in
other flat band systems54. Our work has also allowed us to advance a
newmaterials design principle to identify Weyl Kondo semimetals in
the new setting of d-electron-based systems. We expect the inter-
connections that our work reveals among seemingly disparate sys-
tems to inspire new realizations and understandings of correlated
topological effects in a wide variety of quantum materials and
structures. Finally, we note that our theoretical result for the emer-
gent flat band is now supported by experiment: In a frustrated-lattice
material, an emergent flat band has been observed by angle-resolved
photoemission spectroscopy at the Fermi energy, even though the ab
initio noninteracting band structure predicts a flat band that is con-
siderably away from the Fermi energy12.

Methods
Hubbard model on the clover lattice
The clover lattice has been discovered in realmaterials such as the van
derWaals systemFe5GeTe2

32,55. As shown in Fig. 1d, it contains five sites
in each unit cell, which are reclassified into two groups as marked by
the yellow and blue colors. For an illustrative purpose, we restrict our
model to have only a dz2 orbital on each site. The case with other d-
orbitals, such as dxz/dyz, have a similar realization of the geometry-
induced flat bands32. We consider the Hubbard model written as
H=H0 +H1, where H0 is the kinetic term that connects the two dif-
ferent groups of sublattices and H1 represents the onsite one-orbital
Hubbard interaction. We label the orbitals based on the group of
sublattices to be A/B and C/D/E respectively. For each site, we consider
the onsite Hubbard interaction,

H1 =U
X
i,α

nηα
i,"n

ηα
i,# , ð2Þ

where ηα (α = 1∼ 5) goes through all the five orbitals in each unit cell.
The kinetic Hamiltonian is written as

H0 =
X
ij,αβ,σ

tηy
iασηjβσ � μ0

X
iασ

ηy
iασηiασ +

X
i,σ,α2fC,D,Eg

mηy
iασηiασ

+
X

iσα2fD,Eg
γηy

iασηiασ :
ð3Þ

Here t denotes the nearest neighbor hopping between the two sites
that are connected by the solid lines shown in Fig. 1d, and μ0 is the
chemical potential. In addition, m denotes the energy splitting
between the two groups of sublattices, which have a different local
environment and thus generically have different energy levels. Finally,
γ represents an additional energy splitting between C and D/E, which
breaks the C3 rotational symmetry. Asmentioned earlier, we work with
the case that breaks C3 symmetry to simplify the symmetry char-
acterization and, thus, theWannier construction. It is possible that this
C3 symmetry breaking spontaneously appears as a result of interac-
tions that drive a nematic order, although, for our illustrative purpose,
we do not pursue this route specifically. A detailed analysis of the
dispersion is shown in Supplementary Note 1.

Effective extended Hubbard model
We project the Hubbard model of the original lattice to the Wannier
basis. This leads to the effectivemodel expressed in terms of the d and
c Wannier orbitals with Heff =H0 +Hint. The kinetic term takes the fol-
lowing form:

H0 =Hd +Hc +HV

=
X
ij,σ

tij dy
iσdjσ +h:c:

� �
�
X
i

μdy
iσdiσ

+
X
ij,αβ,σ

tαβij cyiασcjβσ +h:c:
� �

+
X
iασ

ðΔα � μÞcyiασciασ

+
X
ij,ασ

Vα
ij dy

iσcjασ +h:c:
� �

:

ð4Þ

Here, dy
iσ (cyiασ) creates a heavy (light) electron at the position i with

spin σ (and orbital α). In addition, tij (t
αβ
ij ) denotes the hopping para-

meter between the d (c) electrons at the positions i and j (orbitals α and
β). Moreover, Vα represents the hybridization between the light orbital
α and the heavy orbital. Finally, Δα describes the difference in the
energy levels between the d orbital and c orbitals, and μ specifies the
chemical potential. We will focus on the case with the d-electron level
being deep below the Fermi energy and will show that the interaction
effect creates a heavy band near the Fermi energy. The noninteracting
dispersion is shown in Fig. 4a, where there is a Dirac crossing between
the flat band and lower wide band located deep below the Fermi
energy; the crossing is protected by the Mx lattice symmetry25.

Slave spin method and self-consistent equations
We describe the U(1) slave spin approach33. Because the bandwidth of
the heavy orbital is much smaller than those of the light orbitals, the
interaction effect is most pronounced on the d orbital. We therefore

only introduce the SS representation on the d orbital: dy
iσ = o

y
iσf

y
iσ . The

auxiliary bosonicfield oyσ =P
+ S +

σ P
� is representedby the spinoperator

accompaniedwith the projection operatorsP ±
iσ =

1ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=2 ± Sziσ

p suitable for a

system that is away from half filling. We treat the SS formulation at the
saddle-point level by fully decoupling the SS and auxiliary fermion
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operators. This leads to the decoupled Hamiltonian:

H f =
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k f

y
kσ f kσ +

X
kσ
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and ϵf (k) and Vα
k are the Fourier transforms of tij and Vα

ij , respectively,

~ϵf =
P

kϵf ðkÞhf ykf ki, and ~Vα =
P

kV
α
khf ykcki. In addition,

Oσ = hP + iS +
σ hP�i, λ0σ = 2 �ϵf +

P
α
�Vα

� �
ησ with �ϵf = ~ϵf hOσihOy

σi+ c:c:,
�V = ~V hOy

σi+ c:c: and ησ =
1
2

nf
σ�1=2

ð1�nf
σ Þnf

σ

. Finally, we introduce the Lagrangian

multiplier λσ to remove theunphysicalHilbert space (see Supplementary
Note 6). The pseudo-spin carries the U(1) charge degree of freedom; the
quasiparticle weight associated with the coherent part near the Fermi

level is describedbyZ = hOσihOy
σi. An (orbital-selective)Mott localization

transition happens when some quasiparticle weight Z goes to zero.
In addition to the coherent quasiparticle peak, the SS method also

calculates thecontributions fromthe incoherent excitations.TheGreen’s
functionof thedelectronGd is obtainedby the convolutionof theSS and
the auxiliary fermions, with Gðk,iωnÞ=

P
iΩm

GSðiΩmÞGf ðk,iωn � iΩmÞ,
where GSðτÞ= hTτoσðτÞoyσ ð0Þi and Gf ðτÞ= � hTτf σðτÞf yσð0Þi. The spectral

function is then obtained from Aðk,ωÞ= �1
π =GR

dðk,ωÞ.
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