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Numerical study of the spatial coherence of light in collective spontaneous emission
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We present a numerical study of the spatial coherence of light that is radiated from a dilute ensemble of atoms.
The spatial coherence is established as a result of the collective (cooperative) coupling of the atoms to the light
and is qualitatively different from the coherence of a laser. Specifically, the coherence in collective spontaneous
emission does not rely on population inversion and stimulated emission, is governed by antiphasing of the dipoles
(subradiance), and the key figure of merit for the observed coherence is ≈N/(L/λ). Here, N is the number of
atoms in the ensemble, L is the size of the sample, and λ is the wavelength of the emitted light.
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I. INTRODUCTION

It has been well known since the pioneering work of Dicke
[1] that the physical process of spontaneous emission can be
importantly modified as a result of the coherent interaction
of the radiators [2–14]. For example, when we have N atoms
tightly packed in a small volume that are excited to a radi-
ating state, their emissions can spontaneously synchronize,
producing a fast decay rate. This is typically referred to as
Dicke superradiance, and has been observed in a large number
of physical systems including neutral atoms [15–18], ions
[19], molecules [20], nitrogen vacancy centers [21,22], and
superconductors [23]. Superradiance relies on constructive
(in-phase) interference of the emissions. Under certain con-
ditions, the emitted light from individual radiators can also
interfere destructively (out-of-phase interference), producing
a reduced decay rate, which is referred to as subradiance.

While most early studies of collective spontaneous emis-
sion focused on dense ensembles in the Dicke limit (with
a large number of atoms per cubic wavelength of volume)
[24,25], much recent work has investigated subradiance near
or outside the Dicke limit [26–33]. Recent studies have shown
that even in the dilute regime (i.e., very few number of atoms
per cubic wavelength of volume), collective coupling of the
emitters can play an important role. For example, we have
recently demonstrated that collective decay is even relevant
in dilute clouds with a very low optical depth [34,35]. Specif-
ically, we have experimentally observed that the decay rates
can be reduced due to subradiance by as much as 20%, inside a
dilute cloud at an optical depth of 10−2 or less. In this regime,
subradiant states that are correlated across the whole ensemble
are the dominant decay mechanism, as evinced by the spatial
coherence of the emitted light. By coupling the emitted light to
a misaligned Michelson interferometer, we studied the spatial
coherence of the emission and investigated the dependence of
the spatial coherence on the number of atoms as well as the
atomic temperature [35].

In our recent experimental paper, we provided a qualitative
explanation for the observed results [35]. In this work, we
present a numerical study of the spatial coherence of light in
collective spontaneous emission, in the same regime of dilute
ensembles with a very low optical depth. As we discuss in

detail below, we consider a disordered ensemble in three di-
mensions with random atomic positions. The atomic ensemble
is initially excited with a weak resonant laser beam. After the
laser beam is switched off, we first calculate the evolution
of the collective dynamics using the dipole-dipole exchange
Hamiltonian. As the atoms are undergoing collective sponta-
neous emission, we then calculate the spatial profile of the
emitted fluorescent light in the far-field, along a direction or-
thogonal to the laser propagation direction. Initially, the light
emitted from individual atoms along the direction orthogonal
to the laser propagation is uncorrelated due to random loca-
tions of the atoms in the disordered ensemble. As a result, the
initial spatial pattern of the emitted light resembles a random
speckle pattern, displaying little spatial coherence. As the
system evolves and dipole-dipole correlations build up, the
collective wave function is driven into subradiant states that
have long-range correlations across the ensemble. Emission
from these subradiant modes then displays long-range corre-
lations; i.e., light with spatial coherence across length scales
comparable to the size of the ensemble. We investigate how
the spatial coherence evolves as a function of time, and also
study the dependence of the coherence as the parameters of
the atomic ensemble, such as the number of atoms is varied.

As we detail below, an important result of our numerical
study is that we confirm the relevant figure of merit for col-
lective spontaneous emission in dilute ensembles with a very
low optical depth. This figure of merit is not the number of
atoms, or the atomic density, or the optical depth of the atomic
ensemble. Instead, for a symmetrical three-dimensional (3D)
sample, the relevant figure of merit is ≈N/(L/λ) (N is the
number of atoms in the ensemble, L is the size of the sample,
and λ is the wavelength of the emitted light). This figure of
merit was qualitatively discussed in our recent experimental
work [35]. It is also implicit in the recently derived width
of the eigenvalue distribution of the exchange Hamiltonian
[36]. This figure of merit differentiates collective decay in
dilute ensembles from subradiance in optically thick clouds
[26–29] and the traditional understanding of large-sample su-
perradiance [2,3]. For sub- and superradiance, the important
parameter is the optical depth of the ensemble, which would
be ≈N/(L/λ)2 for a symmetrical 3D sample.
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The spatial coherence of light that is produced during
collective spontaneous emission in dilute atomic clouds is
distinctly different from the spatial coherence of a laser.
Specifically, there are three key differences [37]: (1) The spa-
tial coherence established in collective decay does not rely on
population inversion which is critically required for the oper-
ation of a laser. (2) In lasers, the phasing of the atomic dipoles
through stimulated emission is necessary. In contrast, in di-
lute ensembles experiencing collective decay, subradiance
(out-of-phase superpositions) is the dominant mechanism that
establishes correlations between the atomic dipoles. (3) In
stimulated emission, the gain-length product of the medium
(which is proportional to the optical depth) is the key figure of
merit. In contrast, as we mentioned in the previous paragraph,
in spatial coherence due to collective spontaneous emission,
the relevant figure of merit is ≈N/(L/λ).

In recent years, there has been an increased interest in col-
lective spontaneous emission, in particular within the context
of quantum information science. Some recent highlights of
theory work include highly directional mapping of quantum
information between atoms and light in two-dimensional ar-
rays [38,39], studies of broadening and photon-induced atom
recoil in collective emission [40–42], light storage in optical
lattices [43–45], collective nonclassical light emission and
hyperradiance [46,47], and improving photon storage fideli-
ties using subradiance [48]. On the experimental front, as
we mentioned above, much early work on subradiance used
disordered ultracold atomic clouds [26–33], including our
recent work which used dilute ensembles with low optical
depth [34,35]. Recent experiments using ultracold atoms have
demonstrated single atomic layer mirrors [15], phase tran-
sitions [49], as well as enhanced collective coupling using
optical cavities [50].

II. DIPOLE-DIPOLE INTERACTION
AND THE EXCHANGE HAMILTONIAN

When an atomic ensemble undergoes collective decay, one
approach to model the dipole correlations that build up across
the sample is through the reduced atomic-only exchange
Hamiltonian. This Hamiltonian is obtained by tracing out the
radiation coordinates, and has been used by other authors to
study the physics of collective decay [6,48]. A detailed deriva-
tion of this Hamiltonian has been discussed, for example, in
Ref. [36]. Briefly, the full Hamiltonian of the whole system
consisting of N two-level atoms interacting with a continuum
of radiation modes is given by (h̄ = 1) [2,3]
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2
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j
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are the atomic spin operators for the jth atom with en-
ergy eigenstates |0〉 j and |1〉 j , respectively. The quantity ωa

is the atomic transition frequency. The operators âk,ε and
â†k,ε, are the photon annihilation and creation operators for
the radiation mode with wave-vector k and polarization ε.
The quantities gk,ε are the coupling constants between pho-
tons and the atoms. The well-known Dicke limit can be
obtained from the above Hamiltonian when the size of the
sample is small compared with the radiation wavelength set
by the relevant k, i.e., k · r j → 0 ∀ 0 � j � N (r j is the
position of the jth atom). Using the Born-Markov approxi-
mation and tracing out the radiation modes, we can reduce the
above full-Hamiltonian to the following atomic-only effective
Hamiltonian Ĥeff [36]
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Here, the dipole-dipole interactions between different
atoms can be grouped as an exchange Hamiltonian Ĥexc. This
Hamiltonian is a sum is over all pairs of atoms, and operators
Ĥ jk act nontrivially only on atoms with indices j and k �= j:

Ĥ jk = Fjk σ̂
j

+σ̂ k
− + Fk j σ̂

j
−σ̂ k

+. (4)

The pairwise Hamiltonian Ĥ jk is essentially a “spin” ex-
change interaction (dipole-dipole interactions in the present
case for a pair of atoms) which is mediated by photon modes
with symmetric (but nonunitary) coupling constants of Fjk :
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(
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(5)

Here, � is the decay rate of a single isolated atom, r jk
is the distance between the two atoms, and θ jk is the angle
between the atomic dipole moment vector and the separation
vector r jk . The quantity ka is the wave vector for the radiation
modes that are energy-resonant with the atomic transition:
ka = ωa/c.

III. GENERAL SETUP OF THE SIMULATIONS

The simplified schematic of the numerical simulations is
shown in Fig. 1. We consider a disordered three-dimensional
ensemble where the atoms are distributed randomly in a cer-
tain volume, with dimensions Lx, Ly, and Lz, respectively.
The ensemble is excited with a laser beam propagating along
the x direction and the emitted light is collected at an axis
orthogonal to the laser propagation: the z axis. The laser can
be polarized along the y or the z axis. For concreteness, we
take the laser to be polarized along the y axis, which also sets
the direction of the dipoles. We have verified that the results
are very similar if the laser is instead polarized along the z
axis.

The laser beam excites the atoms and is then abruptly
turned off. With the laser beam turned off, the atoms evolve
under the effective Hamiltonian, Ĥeff which is given by Eq. (3)
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FIG. 1. The simplified schematic of the numerical simulations.
We consider a three-dimensional atomic ensemble where the atoms
are distributed randomly in a certain volume. The ensemble is excited
with a weak laser beam propagating along the x direction and the
emitted light is collected at an axis orthogonal to the laser propaga-
tion direction (the z axis). The laser excites the atoms and is then
abruptly turned off. As the ensemble undergoes collective decay and
the correlations build-up between the dipoles, we calculate the full
three-dimensional dipole emission from each radiating atom in the
far field. This far field is then imaged using a lens to the imaging
plane. We take imaging to be ideal and free of aberrations, and with
a magnification ofM = 1.

of above. As the system is evolving and the correlations are
building up between the dipoles, we calculate the full three-
dimensional dipole emission from each radiated atom in a
manner that we describe in detail below. The total far-field
electric field is the sum of the emitted waves from each atom.
This far-field radiated pattern is then imaged using a lens to
the imaging plane. We take imaging to be ideal and free of
aberrations, and with a magnification of M = 1; i.e., in the
image plane we observe a one-to-one spatial image of the
radiating atomic ensemble.

We take the excitation laser beam to be weak and restrict
the problem to the single excited subspace with the following
basis of states:

|q〉 = |100 . . . 0〉, |010 . . . 0〉, |001 . . . 0〉, . . . , |000 . . . 1〉.
(6)

This assumption is critical as it reduces the size of the
problem from the exponentially large Hilbert-space dimen-
sion of 2N to N . We discuss how we expect the results to
differ when one goes beyond the single-excited subspace,
in the conclusions section below. With these definitions and
approximations, we expand the total wave function of the

atomic ensemble in the above-mentioned basis as

|ψ (t )〉 = e−i(ωat−i�t/2)
N∑

q=1

cq(t )|q〉, (7)

where the expansion coefficients, cq(t ) evolve in time accord-
ing the Schrödinger’s equation:

i
d|ψ (t )〉

dt
= Ĥeff|ψ (t )〉 ⇒ iċ(t ) = Ĥexcc(t ) or c(t )

= exp(−it Ĥexc)c(0). (8)

Here, the quantity c(t ) is a column vector of dimension N
containing the coefficients cq(t ) as its entries. We note that due
to the non-Hermitian nature of the Hamiltonian, the norm of
the wave function in Eq. (7) is not conserved. This is because
of the collective decay of the system out of the single-excited
subspace into the overall ground state |000 . . . 0〉.

We take the laser intensity to be uniform, with a size much
larger than the size of the atomic cloud. As a result, each atom
in the ensemble initially has the same probability of being in
the excited state, but with the phase of the propagating laser
imprinted on the initial excitation amplitude, cq(t = 0):

cq(t = 0) = 1√
N

exp(iklaserxq). (9)

Here, xq is the x position of the excited atom in state |q〉.
The quantity klaser is the wave-vector of the laser, klaser =
ωlaser/c = 2π/λlaser. For simplicity, we take the laser beam to
be near-resonant with the two-level atomic transition and will
therefore assume, ωlaser = ωa and klaser = ka.

We next discuss the calculation of the far-field radiation
pattern, which is schematically displayed in Fig. 2. While
the system is evolving, each atom can be thought of as a
radiating dipole of magnitude |p| (which is given by the dipole
matrix element of the two-level transition), with time varying
amplitude, cq(t ). Because the observation plane is in the far
field, we only need to consider the far field of the radiating
dipole pattern and we can ignore the near-field contributions.
This far-field electric field that is radiated from state |q〉 in the
observation plane is

Eq(t, x, y, z = zobs)

= k3a
4πε0

exp ikarq
karq

[(r̂q × p) × r̂q]e
−iωat e−�t/2cq(t ). (10)

Here, the dipole-moment vector p is also the polarization
direction of the laser (i.e., the y axis for the simulations that
we discuss below). The quantity rq is the distance between
the radiating atom in state |q〉 and that specific observation
point, and the unit vector r̂q is the direction that connects the
radiating atom to the observation point. A detailed derivation
of Eq. (10) is given in Appendix below. While calculating the
radiated field from each atom in Eq. (10), we take the atomic
temperature to be sufficiently cold so that the atoms can be
treated as stationary during the timescales of interest. We,
therefore, ignore motional dephasing [35]. With the electric
field from each radiating atom calculated using Eq. (10), the
total field in the observation plane (which we refer to as Eobs)
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FIG. 2. The schematic for calculating the far-field radiation pattern from each dipole. p is the pointing direction of the dipole, rq is the
distance between the radiating atom in state |q〉 and that specific observation point, and the unit vector r̂q is the direction that connects the
radiating atom to the point on the observation plane. With the electric field of the emission from each atom calculated, the total field is found
by using a coherent sum of all the emitted fields.

is a coherent sum of all of the emitted fields:

Eobs(t, x, y, z = zobs) =
N∑

q=1

Eq(t, x, y, z = zobs). (11)

We note that calculation of the total field using Eqs. (9)
and (10) of above does not include multiple-scattering events.
Such multiple-scattering events would become important in
ensembles with a high optical depth. The extension of our
results to atomic clouds with a high optical depth is left
for future work. At a certain observation time, t = tobs,
the spatial coherence length is calculated by finding the
width of the equal-time cross-correlation function [51]. The
cross-correlation function can be calculated in two different
directions in the image plane; either along the x direction or
along the y direction. We refer to these two functions as Hx(x)
and Hy(y), respectively, and they are calculated using

Hx(x) =
〈 ∫

Eobs(t = tobs, x
′, y, z = zobs) ·

× E∗
obs(t = tobs, x

′ − x, y, z = zobs)dx
′
〉
y

,

Hy(y) =
〈 ∫

Eobs(t = tobs, x, y
′, z = zobs) ·

× E∗
obs(t = tobs, x, y

′ − y, z = zobs)dy
′
〉
x

. (12)

Here, the operations 〈· · · 〉x and 〈· · · 〉y correspond to taking
the spatial average along each direction, respectively. In the
simulations that we describe below, we define the coherence
length of the radiated spatial pattern, w, to be 1/e2 radius of
the cross-correlation functions Hx(x) and Hy(y). As expected,
we numerically find the behavior to be almost identical in the
two transverse axes, x and y. Therefore, we only display the
results along one transverse axis, specifically along the x axis.

IV. NUMERICAL SIMULATION RESULTS

A. Symmetric ensemble: Subradiant time evolution

We start with a symmetrical ensemble with parameters
similar to our recent experiment [35]. We consider a disor-
dered atomic cloud with an equal size of 40λ along each
direction: i.e., Lx = Ly = Lz = 40λ. We take N = 1500 atoms
which are uniformly and randomly distributed within this
volume. The ensemble is dilute with an atomic density of n =
N/(Lx × Ly × Lz ) = 0.023/λ3. Furthermore, the optical depth
of the ensemble is also very low: O.D. = nσLx = n λ2

2π Lx =
0.15. Here, the quantity σ is the on-resonant absorption cross-
section of the two-level transition.

Under these conditions, the collective decay is largely sub-
radiant, with a time constant which itself evolves as a function
of time. Figure 3 shows this result. Here we plot the norm
of the wave function as a function of time for five different
simulations, which are chosen to be representative examples.
The solid lines are the numerically calculated 〈ψ (t )|ψ (t )〉 (in
logarithmic scale), while the dashed line is the decay of an
isolated individual atom, exp (−t/τ ) (the quantity τ is the
lifetime of the excited state for an isolated individual atom,
i.e., τ = 1/�). The difference that is observed in the time
evolution (solid lines) is due to the difference in the initial
randomly chosen locations of the atoms. Initially, the decay
curves are similar to each other and follow closely to simple
exponential decay (the dashed line). However as the dipole
correlations build up, the collective decay becomes subradiant
with ever slower decay rates at later times in the evolution. In
some of the decay curves, there is early time superradiance
where the initial decay rate is slightly faster than that of a
single isolated atom. However, in this regime, the observed
superradiance effect is not large and is confined only to short
timescales: timescales of about t < τ . As a result, it is not
that relevant to the generation of spatial coherence due to col-
lective spontaneous emission, which happens at much longer
timescales, and which is predominantly driven by the subradi-
ant modes [52].
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FIG. 3. Subradiant time evolution of a symmetric disordered en-
semble with an atomic density of n = N/(Lx × Ly × Lz ) = 0.023/λ3

and an optical depth of O.D. = nσLx = n λ2

2π Lx = 0.15. The solid
lines are the numerically calculated norm of the wave function,
〈ψ (t )|ψ (t )〉 (on a logarithmic scale), while the dashed line is the ex-
ponential decay of an isolated individual atom, exp (−t/τ ). Initially,
the decay curves are similar to each other and follow closely simple
exponential decay. However as the dipole correlations build up, the
collective decay becomes subradiant with ever slower decay rates at
later times in the evolution. The difference that is observed in the
time evolution is due to the difference in the initial randomly chosen
locations of the atoms.

The large difference between the solid curves at later times
in the evolution is due to the sensitivity of the dominant
subradiant eigenstates of the system to the initial random
distribution of the atomic positions. When one looks at the
overall distribution of the eigenvalues of the Hamiltonian (i.e.,
the collective decay rates), the distribution will look similar
for different random ensembles: centered around the inde-
pendent decay rate �, with some eigenvalues lower than �

(subradiant) and some higher than � (superradiant) [36,48].
While the distributions will look similar (as expected since
we have a large number of atoms), the extreme eigenvalues
(corresponding to most subradiant and most superradiant col-
lective states) can differ substantially. This results in a large
difference in the evolution of the wave function at later times,
since the long-timescale evolution is determined by the most
subradiant modes. Not only the decay rates, but also the spatial
structure of the extreme eigenstates are substantially different.
This is the main reason for the large difference in the evolution
of the spatial radiated field for different initial conditions,
which we discuss in the next section below (Fig. 4).

B. Symmetric ensemble: Time evolution of the spatial field

We next discuss the time evolution of the spatial field
in the far-field image plane. Figure 4 shows the absolute
value of the observed radiated field, |Eobs| in the image plane
at different observation times, t = 0, 10τ , 20τ , 30τ , and
40τ , respectively. Figure 4 shows false-color plots in the x-y
plane, near the center of the ensemble: −10λ < x < 10λ and
−10λ < y < 10λ. Similar to Fig. 3, in Fig. 4, we show results
for five different simulations which are chosen to be repre-
sentative examples. At t = 0, the observed field resembles
a speckle pattern and there is very little spatial coherence.

FIG. 4. False-color plots of the absolute value of the radiated
field, |Eobs| in the image plane at different observation times, t = 0,
10τ , 20τ , 30τ , and 40τ , respectively. We show results for five differ-
ent simulations which are chosen to be representative examples. The
results are displayed in the x-y plane, near the center of the ensemble:
−10λ < x < 10λ and −10λ < y < 10λ. At t = 0, the observed field
resembles a speckle pattern and there is very little spatial coherence.
This is a result of the initial random locations of the atoms in the
ensemble. However, as the system evolves, because spatial corre-
lations between the atoms are established (due to the dipole-dipole
interaction), the emitted field forms a clear spatial pattern.

This is because of the initial random locations of the atoms
in the ensemble. However, as the system evolves, because
spatial correlations between the atoms are established (due to
the dipole-dipole interaction), the emitted field forms a clear
spatial pattern.

The specific spatial pattern that is formed at later times is
due to the system evolving into a dominant (or several promi-
nent) subradiance modes. Depending on the initial randomly
chosen location of the atoms, the specific spatial pattern that
is formed in each simulation is different. However, while the
specific pattern the system evolves in each simulation is differ-
ent, long-range correlations, and therefore spatial coherence is
established in each simulation.

C. Symmetric ensemble: Time evolution
of the cross-correlation function

We proceed with a more quantitative analysis of the estab-
lished spatial coherence. Because of the variation of the results
due to initial random distribution of the atoms in the ensemble,
in what follows, we run our simulations 20 times, and display
the average of the results over these 20 instances. Figure 5
shows the cross-correlation function, Hx(x), as a function of
the evolution time for the conditions identical to those that
were used in Figs. 3 and 4 (i.e., with N = 1500 atoms and a
cloud size of Lx = Ly = Lz = 40λ in the three axis). Here, we
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FIG. 5. log10 |Hx (x)|, at observation times of t = 0, 10τ , 20τ ,
30τ , and 40τ , respectively. As expected from the images of Fig. 4,
initially at t = 0 the cross-correlation function is sharply peaked,
displaying very little spatial coherence. However, as the system
evolves into the dominant subradiant modes, Hx (x) acquires substan-
tial width, displaying a large degree of spatial coherence.

plot the logarithm of the absolute value, log10 |Hx(x)|, at ob-
servation times of t = 0, 10τ , 20τ , 30τ , and 40τ , respectively.
As expected from the images of Fig. 4, initially (at t = 0) the
cross-correlation function is sharply peaked, displaying very
little spatial coherence. However, as the system evolves into
the dominant subradiant modes, Hx(x) acquires substantial
width, displaying a large degree of spatial coherence.

In Fig. 6, we plot the width of the cross-correlation func-
tion, w (in units of wavelength), as a function of the evolution

FIG. 6. The width of the cross-correlation function, w (in units
of wavelength) as a function of the evolution time. Up until about
t = 10τ , there is not much change in the coherence length w since
many subradiant modes continue to contribute to the emission. After
about t ∼ 10τ , there is a sharp rise in the coherence length, which
reaches its peak value at about t = 40τ and then stabilizes.

time. Up until about t = 10τ , there is not much change in the
coherence length since many collective eigenstates continue
to contribute to the emission. After about t ∼ 10τ , there is
a sharp rise in the coherence length, which reaches its peak
value at about t = 40τ and then stabilizes. This is because at
about t = 40τ the system has evolved into a few prominent
subradiant modes, which are the main contributors to the
emission pattern afterwards.

We note that in the simulations that we have discussed
above, the observed timescale for establishing the spatial co-
herence is rather long (t > 10τ ). In contrast, in our recent
experiment, the data were collected in a shorter time window
of 0 < t < 5τ after the excitation laser was switched off [35].
This discrepancy is likely due to the single-excited subspace
assumption of the numerical results that we have presented
here. The experiment was performed in the strong excitation
regime, and in this regime we would expect the timescales
for establishing the spatial coherence to get shorter. This is
because, for higher excitation subspaces, the spread of the
eigenvalues of the Hamiltonian (and therefore the spread of
the decay rates of the subradiant modes) is larger. An exten-
sion of the above numerical results to the strong excitation
regime where the wave function explores a large portion of
the Hilbert space is one future direction. One approach along
this direction would be to first study doubly and triply excited
subspaces, with dimensions of N2/2 and N3/6, respectively.
It may then be possible to extrapolate the results to the full
Hilbert space.

D. Symmetric ensemble: The figure of merit for spatial
coherence in collective spontaneous emission

We next proceed with a detailed discussion of the relevant
figure of merit (FoM) for the ensemble that determines the
degree of spatial coherence. We first note again that neither the
density, nor the optical depth of the ensemble is a good FoM
for the observed physics. As we mentioned above, for the nu-
merical simulations of Figs. 3–6, the ensemble is rather dilute,
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FIG. 7. The observed coherence length as a function of the N , the
number of atoms in the ensemble. Here, the cloud size is the same
as the simulations of Figs. 3–6 of above with Lx = Ly = Lz = 40λ
and the observation time is fixed to t = 40τ . As the atom number
increases, there is an initial increase in the spatial coherence length.
However, the established coherence reaches a plateau near N = 1500
and drops with further increase in the number of atoms. This drop
is due to the near-field interactions starting to dominate and the
eigenvectors making a transition from being global excitations across
the ensemble to local excitations.

with an atomic density of n = N/(Lx × Ly × Lz ) = 0.023/λ3,
and is also optically thin, with an O.D. = nσLx = n λ2

2π Lx =
0.15. For the spatial coherence established in collective spon-
taneous emission, it is critical that the system is dilute with a
low density. This is because, subradiant states that have long-
range correlations across the ensemble are responsible for the
observed coherence. At high densities, near-field interactions
start to dominate and the eigenvectors of the Hamiltonian
(the subradiant modes) mostly involve local excitations (i.e.,
modes with spatial correlations that are locally confined and
that do not extend to the whole ensemble).

Figure 7 shows this result. Here, the cloud size is the same
as the simulations that we have discussed above with Lx =
Ly = Lz = 40λ. Furthermore, we fix the observation time to
t = 40τ , and plot the observed coherence length as a function
of N , the number of atoms in the ensemble. As the atom
number increases, there is an initial increase in the spatial
coherence length. However, the established coherence reaches
a plateau near N = 1500 and drops with further increase in
the number of atoms. This drop is due to the near-field in-
teractions starting to dominate and the eigenvectors making a
transition from being global excitations across the ensemble
to local excitations.

In our recent experiment, we have observed and qualita-
tively explained our experimental results using the FoM ∼
N/(L/λ) [35]. The qualitative explanation relies on coherent
versus incoherent addition of the radiated field from each
atom. In coherent emission, the electric fields add-up to
produce the total radiated wave. In contrast, in incoherent
emission, the intensities are added. This result for the FoM
is consistent with the width of the eigenvalue distribution of
the exchange Hamiltonian in the large number of atoms limit,

FIG. 8. The coherence length w as a function of the number of
atoms, N , at a fixed observation time of t = 40τ . We keep the density
of the ensemble fixed at n = 0.023/λ3 and change the volume of the
symmetric sample from a size of 12.8λ × 12.8λ × 12.8λ to 55.5λ ×
55.5λ × 55.5λ. As the size of the sample is changed, the number of
atoms in the ensemble is varied from N = 50 to N = 4000 (so that
the density is kept constant). The solid line is a fit to the numerical
data using Eq. (14), with a single fitting parameter of ξ = 0.45. The
model fits the numerical calculation reasonably well, with significant
deviations especially at high atom numbers.

N → ∞, which is given by [36]

σĤ = 1

4π

√(
π + 29

12

)
N

(L/λ)
. (13)

Motivated by these results, we hypothesize that the spatial
coherence length that is achieved during collective decay after
the system evolves into dominant subradiant modes is given
by

w = wu(1 + ξσĤ ) = wu

⎛
⎝1 + ξ

1

4π

√(
π + 29

12

)
N

(L/λ)

⎞
⎠.

(14)

Here, as we discuss below, the quantity ξ is a fitting pa-
rameter with a numerical value of order unity and wu is the
spatial coherence length that is observed when there are no
dipole-dipole correlations in the system. The main idea behind
Eq. (14) is that emission from a single uncorrelated atom
produces a speckle with a width ofwu. The width of the eigen-
value distribution roughly is a measure of the average number
of correlated atoms in each of the subradiant eigenmodes. As
a result, when correlations are established, we would expect
the uncorrelated width to go up by a factor proportional to σĤ .

To test this hypothesis, we have run simulations where we
keep the density of the ensemble fixed at n = 0.023/λ3 (which
is the point where maximum coherence length is observed
from Fig. 7), and change the volume of the symmetric sample
from a size of 12.8λ × 12.8λ × 12.8λ to 55.5λ × 55.5λ ×
55.5λ. As the size of the sample is changed, the number of
atoms in the ensemble is varied from N = 50 to N = 4000
(so that the density is kept constant at the mentioned value).
In Fig. 8, we plot the coherence length w as a function of
the number of atoms, N , again at a fixed observation time of

043705-7



YAVUZ, YADAV, GOLD, WALKER, AND SAFFMAN PHYSICAL REVIEW A 110, 043705 (2024)

FIG. 9. The numerically calculated coherence length as a func-
tion of the width of the eigenvalue spectrum σĤ = 1

4π (π +
29/12)1/2[N/(L/λ)], displaying a near-linear dependence. The solid
line is the same best fit using Eq. (14) with again ξ = 0.45.

t = 40τ . The solid line is a fit to the numerical data using
Eq. (14), with the single fitting parameter ξ . The best fit is
obtained with ξ = 0.45 (solid red line) which fits the data
points reasonably well, with significant deviations especially
at high atom numbers. We note that both the data points and
the fit clearly show that the dependence of the coherence
length to the number of atoms at a fixed atomic density is not
linear.

Figure 9 shows the same numerical results that are dis-
played in Fig. 8, as well as the same fit, but plotted as a
function of the eigenvalue spectrum width σĤ of Eq. (13).
The solid line is the same best fit of the form Eq. (14) with
again ξ = 0.45. The fit is again reasonable with significant
deviations of the data points from the fit at higher values of
the spectrum width (corresponding to higher atom numbers).
In the future, by extending our simulations to atom numbers
in the 104 to 105 range, it may be possible to quantitatively
analyze the nature of the discrepancy at higher atom numbers.

E. Numerical simulation results for asymmetric ensembles

A detailed quantitative study of spatial coherence in collec-
tive spontaneous emission with different shapes of the atomic
ensemble is beyond the scope of this paper. In this section,
we present a preliminary investigation of spatial coherence
in asymmetric clouds. For this purpose, we have numerically
simulated two cases: in the first case, the atomic cloud is elon-
gated along the x axis, while in the second case the ensemble
is elongated along the z axis. For a clear comparison with
the symmetric-cloud investigations of Figs. 4–7, we have kept
the volume of the ensemble the same. Specifically, in Fig. 10,
we consider an ensemble with a size of 80λ × 40λ × 20λ,
which is elongated along the x axis. In Fig. 10(a), we plot
the spatial coherence length as a function of observation time
when the atom number is fixed at N = 1500. In Fig. 10(b),
we fix the observation time to t = 40τ and plot the coherence
length as a function of the number of atoms in the ensemble.
The results are qualitatively similar to the symmetric case

FIG. 10. Numerical results for an ensemble with a size of 80λ ×
40λ × 20λ (elongated along the x axis). The volume of the ensemble
is the same as the symmetric cloud investigations of Figs. 4–7.
(a) The spatial coherence length as a function of observation time
with the atom number fixed at N = 1500. (b) We fix the observation
time to t = 40τ and plot the coherence length as a function of the
number of atoms in the ensemble. The results are qualitatively similar
to the symmetric case (Figs. 6 and 7), with the overall degree of
spatial coherence being about 25% lower.

(Figs. 6 and 7), with the overall degree of spatial coherence
being about 25% lower.

In Fig. 11, we consider an ensemble with a size of
20λ × 40λ × 80λ, which again has the same volume as the
symmetric-ensemble simulations of above, but which is elon-
gated along the z axis. In Fig. 11(a), we plot the spatial
coherence length as a function of observation time when the
atom number is fixed at N = 1500. In Fig. 11(b), we fix the
observation time to t = 40τ and plot the coherence length as
a function of the number of atoms in the ensemble. Again the
results are qualitatively similar to the symmetric case (Figs. 6
and 7). However, in this case, the overall degree of spatial
coherence is about 50% higher. A detailed study of the spatial
coherence in collective spontaneous emission with different
shapes of the atomic ensemble is left for future work.

V. CONCLUSIONS

In conclusion, we have presented a numerical study of the
spatial coherence of light in collective spontaneous emission.
As we mentioned above, the spatial coherence of light that
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FIG. 11. Numerical results for an ensemble with a size of 20λ ×
40λ × 80λ (elongated along the z axis). (a) The spatial coherence
length as a function of observation time when the atom number is
fixed at N = 1500. (b) We fix the observation time to t = 40τ and
plot the coherence length as a function of the number of atoms
in the ensemble. Again, the results are qualitatively similar to the
symmetric case (Figs. 6 and 7), with the overall degree of spatial
coherence about 50% higher.

is produced in collective decay in dilute atomic clouds is
distinctly different from the coherence of a laser. It does not
rely on population inversion which is critically required for
the operation of a laser. Furthermore, in lasers, the phasing of
the atomic dipoles through stimulated emission is necessary.
In contrast, in dilute clouds experiencing collective decay,
subradiance (out-of-phase superpositions) is the dominant
mechanism that establishes correlations between the atomic
dipoles, and therefore the spatial coherence. Finally, the spa-
tial coherence in collective spontaneous emission is governed
by the FoM of ≈N/(L/λ) instead of the gain-length product
(or the optical depth) of the ensemble.

In our simulations, we have assumed weak excitation of the
ensemble and restricted the Hilbert space to the single-excited
subspace. An extension of these results to the strong excitation
regime where the wave function explores a large portion of
the Hilbert space is one future direction. One approach along
this direction would be to first study doubly and triply excited
subspaces, with dimensions of N2/2 and N3/6, respectively.
It may then be possible to extrapolate the results to the
full Hilbert space. As we mentioned above, we expect the

timescales for establishing the spatial coherence to get shorter,
as the system moves into subspaces with a higher dimension.
This is because, for higher excitation subspaces, the spread of
the eigenvalues of the Hamiltonian (and therefore the spread
of the decay rates of the subradiant modes) is larger [36].

On the experimental side, the spatial patterns that are es-
tablished during collective spontaneous emission (as shown
in Fig. 3) are directly related to the structure of the sub-
radiant eigenvectors of the Hamiltonian. It would be very
exciting to experimentally observe these spatial patterns. As
we discussed above, when the ensemble is disordered, the
radiated field evolves into different spatial patterns due to
random initial conditions of the atoms. It may be possible to
steer the evolution by imposing some initial structure to the
radiating cloud, for example, using an ordered array of atoms.
We note that in the strong excitation regime, even finding a
single-eigenvector of the exchange Hamiltonian is likely an
NP-hard problem due to the exponentially large dimension
of the Hilbert space [53,54]. By imaging the observed spatial
patterns in the strong excitation regime (using, for example, a
photon counter array), the experiments could give information
regarding the structure of the subradiant eigenmodes in the ex-
ponentially large Hilbert space. These subradiant eigenstates
cannot be efficiently computed using classical means.

In our simulations, we have assumed initial excitation of
the atomic ensemble by a laser beam, which was the case in
our recent experiment [35]. It is likely that these results will
extend to the case when the excitation is incoherent, since the
dipole-dipole correlations that are established (and that are
responsible for the established spatial coherence) do not rely
on the phase-coherence of the initial laser pulse. Simulating
collective decay under the conditions of incoherent excitation
to the excited level is another future direction.

Finally, we pose the following question: what are the
quantum statistics of the emitted photons during collective
spontaneous emission in the regime that we have discussed?
Both theoretical and experimental studies of the quantum-
mechanical statistics of the emitted photons is yet another
future direction. Experimentally, the fluctuations in the two
quadratures of the spontaneously emitted light can be mea-
sured by beating the radiation coming from the ensemble with
a local oscillator in a homodyne detection setup [51].
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APPENDIX: DERIVATION OF THE FAR-FIELD
RADIATION PATTERN

In this Appendix, we provide a derivation of the far-field
electric-field expressions from the ensemble, Eqs. (10) and
(11) of above. We start with the classical expression for the
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radiated electric field from a source with the current density
J(x, t ):

Erad(x, t ) = 1

4πε0c2

∫
(J̇(x′, t − r/c) × r) × r

r3
d3x′,

r = x − x′. (A1)

For the quantum treatment of the radiation from the ensemble,
we start by defining the source operator field (while working
in the Heisenberg picture):

Ĵ(x′, t ) =
N∑
i=1

δ(3)ε

(
x′ − xi

) d
dt

P̂i(t ). (A2)

Here, δ(3)ε is a three-dimensional coarse-grained δ function
such that the support length ε is much greater than the atomic
scale r0 (Bohr radius) but is still considerably smaller than
the wavelength λ of the emitted light [2]. The definition of
the dipole moment operator for atom i, P̂i(t ) (again in the
Heisenberg picture) is

P̂i(t )= εaμ̂i(t ), μ̂i(t ) =
i−1 terms︷ ︸︸ ︷

1̂ ⊗ · · · ⊗ eiĤefft μ̂e−iĤefft ⊗ · · · ⊗ 1̂.
(A3)

Here, the operators 1̂ are identity operators for all other atoms
(other than atom i.) The quantity μ̂i is the dipole moment op-
erator for the ith atom. Using Eqs. (A2) and (A3) of above, the
quantum mechanical analog of the classical radiated field is

Êrad(x, t ) = 1

4πε0c2

∫ N∑
i=1

δ(3)ε (x′ − xi )
[
d2

dt2
μ̂i(t )

]
t−r/c

(εa × r) × r
r3

d3x′

≈ 1

4πε0c2

N∑
i=1

[
d2

dt2
μ̂i(t )

]
t−ri/c

(εa × ri ) × ri
r3i

, ri = x − xi. (A4)

Using Eq. (A4), we can calculate the average radiation field at the point of observation due to the collective spontaneous emission
process:

Erad(x, t ) = 〈�(0)|Êrad(x, t )|�(0)〉. (A5)

Here, |�(0)〉 is the initial wave function of the system after the excitation laser is switched-off:

|�(0)〉 = cos (θ/2) |00 · · · 0〉 + sin (θ/2) |ψ (0)〉 . (A6)

The state |00 · · · 0〉 is the state where all the atoms are in their ground state, which is the collective atomic state before the
excitation laser is applied. The excitation laser rotates the system to a superposition of the collective ground state and the
single-excited subspace of above, with a rotation angle θ which is given by

tan θ = |��|
�

, �� = Elaser

2
〈1| μ̂ |0〉 . (A7)

Here, the quantity � is the detuning of the excitation laser beam from the atomic transition frequency. We then have

Erad(x, t ) = 1

4πε0c2

N∑
i=1

[
d2

dt2
〈�(0)| μ̂i(t ) |�(0)〉

]
t−ri/c

(εa × ri ) × ri
r3i

(A8)

= 1

4πε0c2

N∑
i=1

[
d2

dt2
〈�(t )| μ̂i |�(t )〉

]
t−ri/c

(εa × ri ) × ri
r3i

. (A9)

Using Eq. (7) of above, we then have

〈�(t )| μ̂i |�(t )〉 = sin θRe 〈00 · · · 0| μ̂i |ψ (t )〉 = sin θRe
∑
q

e−iωat e−�t/2cq(t ) 〈00 · · · 0| μ̂i |q〉 (A10)

= sin θRee−iωat e−�t/2ci(t ) 〈0| μ̂ |1〉 = |��|√
|��|2 + �2

Ree−iωat e−�t/2ci(t ) 〈0| μ̂ |1〉 . (A11)

Substituting the relation given in Eq. (A11) back into Eq. (A9), differentiating only the highly oscillatory part e−iωat (with
ωa/2π ≈ 1015 � �) twice, ignoring all other subleading terms and retarded time for long timescales of τ because �zobs/c � 1,
we obtain

Erad(x, t ) = |��|√
|��|2 + �2

Re
ω2
a

4πε0c2

N∑
i=1

eikari

ri
[(r̂i × 〈0| μ̂ |1〉 εa) × r̂i]e

−iωat e−�(t−ri/c)/2ci(t − ri/c) + O(ωa)

≈ |��|√
|��|2 + �2

Re
N∑
i=1

Ei (x,t )︷ ︸︸ ︷
k3a

4πε0

exp ikari
kari

[(r̂i × p) × r̂i]e
−iωat e−�t/2ci(t ) . (A12)
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