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Data-driven approaches now allow for systematic mappings from materials microstructures to materials

properties. In particular, diverse data-driven approaches are available to establish mappings using varied

microstructure representations, each posing different demands on the resources required to calibrate

machine learning models. In this work, using active learning regression and iteratively increasing the data

pool, three questions are explored: (a) what is the minimal subset of data required to train a predictive

structure–property model with sufficient accuracy? (b) Is this minimal subset highly dependent on the

sampling strategy managing the datapool? And (c) what is the cost associated with the model

calibration? Using case studies with different types of microstructure (composite vs. spinodal),

dimensionality (two- and three-dimensional), and properties (elastic and electronic), we explore these

questions using two separate microstructure representations: graph-based descriptors derived from

a graph representation of the microstructure and two-point correlation functions. This work

demonstrates that as few as 5% of evaluations are required to calibrate robust data-driven structure–

property maps when selections are made from a library of diverse microstructures. The findings show

that both representations (graph-based descriptors and two-point correlation functions) can be effective

with only a small quantity of property evaluations when combined with different active learning

strategies. However, the dimensionality of the latent space differs substantially depending on the

microstructure representation and active learning strategy.

The holy grail of materials science is to nd the function that
explains the relationship between structure and property (SP).
In conventional materials science, the experimental or compu-
tational cost of designing materials with both the desired
internal structure and required properties is typically high,
requiring a great deal of human expertise, experimental
resources and/or computational resources. This typically leads
to low throughput capabilities and, oen, insufficient data to
calibrate useful data-driven models for the SP relationships.
However, a cultural shi in materials data management is
resulting in access to more carefully curated data stored in open
databases that follow FAIR (Findable-Accessible-Interoperable-
Reusable) principles.1 This shi is providing a wider source of

data for articial intelligence (AI) applications in materials
science and re-purposing of data to calibrate SP models so that
the underlying AI models can be applied across a wider range of
applications. This paper aims to dene and develop a workow
for calibrating SP maps in the case when a large dataset of
microstructures is available, but the cost associated with eval-
uating the properties associated with each microstructure is
expensive. The workow involves using active learning (AL)
alongside a machine learning (ML) model to optimize the
experimental design associated with calibrating the SP map. AL
is the subset of ML in which a learning algorithm suggests the
next set of experiments to evaluate. In this work, the goal is to
identify the smallest subset of microstructures required to
calibrate the data-driven SP map. At each AL iteration, one (or
a small xed batch of) microstructure is annotated with its
property and then added to the data pool, which is then used to
re-calibrate the SP model. This process continues until the
required accuracy of the model is achieved (or the budget is
used). A sampling algorithm chooses the next microstructure
selection for evaluation at each iteration. In this work, three
types of sampling strategies are used: uncertainty sampling,
core-set sampling, and random sampling. Each strategy relies
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on information from different sources: the re-calibrated model
in the case of uncertainty sampling, the input space congu-
ration in the case of core-set sampling, and complete inde-
pendence from information in the case of random sampling.
The ability to choose the source of information is important as
it impacts the data demand and type of ML model required for
the SP map.

The previous paragraph discussed the importance of
sampling strategy in AL, but an equally important consideration
is the choice of how the microstructure is represented in the ML
model. One particular choice of representation is simply the raw
image data (e.g., bit formatted arrays), but this generally exists
in a very high dimensional space and is not easily digested by
standard ML models. The form of the microstructure repre-
sentations inuences the ML model capability to predict
microstructure-sensitive properties. The choice of representa-
tion must consider the overall dimensionality reduction of the
data, the ability of the representation to capture the critical
aspects of the microstructures as well as the computational cost
associated with these transformations.

In prior work,2 the authors demonstrated methods to step
through several representation layers of microstructure data,
each having a gradual decrease in data dimensionality, but also
preserving the essential character of the microstructures for the
ML model. In particular, graph-based descriptors derived from
a graph representation of the microstructure and two-point
correlation functions were compared. The work demonstrated
that expert knowledge when selecting important features has
a signicant inuence on the ML model outcome. The study in
this paper asks a related but, as yet, unanswered question,
which is, “Given a microstructure dataset, what is the minimal
subset of the data needed to calibrate the data-driven model?”.
To address this question, an AL workow is dened and
deployed. As in the prior work, two types of microstructure
representations are utilized: graph-based descriptors and two-
point correlation functions. The study in this paper demon-
strates that robust data-driven SP relationships can be cali-
brated with as little as 5% of the entire training data set when
using diverse sets (e.g., a 10-fold size difference between the
nest and coarsest microstructure matrix for the elastic 2D
data) of previously evaluated microstructures and associated
properties.

1 Method
This section provides an overview of the methods used in this
work. The description is kept generic as it broadly applies to
any microstructure–property (SP) mapping. The methods are
then applied to the SP mapping in two case studies: elastic
properties of two-phase composite microstructures and
photovoltaic properties of two-phase organic-blend micro-
structures. The details of the case studies are provided in the
results section. In both cases, the microstructure is a two-
phase microstructure, represented as a binary image and
stored as a binary matrix. However, this workow applies to
any general microstructure exhibiting variations in phases,
composition, and orientation.

1.1 Problem statement

Given a set of microstructures, the aim of the AL workows is to
identify a subset of microstructures that can be used to train
a SP model that is accurate over the full dataset. Very generally,
we consider the SP relationship to be a regression model
between somemicrostructure features and a desired property of
interest. Fig. 1 depicts the AL workow with two different
settings for the active learning pipeline (with and without
automated feature selection). AL accompanied by a regression
analysis is a semi-supervised learning method that labels data
incrementally during the training phase. The AL algorithms
select the next sample based on the likely improvement in the
model, label that sample using high-delity simulations
(usually called the oracle), and then update the data pools. The
choice of microstructure representation and consequent
reduction in dimensionality is critical in inuencing the AL
performance.

In this work, three levels of microstructure representation
are employed (see Fig. 1) as outlined in our prior work.2 The rst
transformation (RL0 / RL1) converts microstructures in the
raw format (RL0) into an alternative representation (RL1), rep-
resented by either graph-based descriptors or statistical func-
tions (two-point correlation functions). The transformation
from RL0 to RL1 ensures that the inherently high dimension-
ality of RL0 is reduced whilst preserving data invariance.
Further dimensionality reduction is still benecial and this
work uses feature engineering to achieve this (as shown in
Fig. 1). Ideally, the dimensionality reduction is executed at
a single instance at an early stage of the workow (setting 1 in
Fig. 1). However, in some instances, the feature engineering

Fig. 1 Workflow: given the dataset of L microstructures and two
representations (vector of descriptors and two-point correlations), find
the salient features of the target properties and the associated SP
relationship using active learning.
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may require continuous updates with a set frequency (setting 2
in Fig. 1). Thus, in this paper, AL workows use two different
congurations: setting 1 with feature engineering only at the
initial stage and setting 2 with continuous cycles of feature
engineering during the workow. In setting 1, the assumption
of prior knowledge of the salient features informs the sub-
selection of descriptors, or for the two-point correlation func-
tions, a Principal Components Analysis (PCA) further reduces
the dimensionality of the data. In setting 2, no prior knowledge
is assumed, and feature selection occurs on the input space
with a specied frequency. Setting 1 is used for both micro-
structure representations (descriptors and statistical functions),
while setting 2 is applied only to the descriptor-based repre-
sentation. Nevertheless, in both congurations, during each
iteration, the surrogate model is retrained, the pool of candi-
dates is queried, the sample is selected for the oracle to eval-
uate, and then the training data pool is updated for the next AL
iteration.

Below, we describe four critical elements of the workow: the
microstructure representation that denes the input to the
model, the oracle that labels the microstructure with the true
label, the surrogate model of the microstructure-property map
and the sampling strategies.

1.2 Microstructure representations

Formally, the input raw data (i.e., image data) consists of L
microstructures as X ¼ fX1; .; XLg, where microstructure Xi

is represented by a (nx × ny) bitmap (or nx × ny × nz bitmap for
3D microstructures) with bitmap pixel Xi(x, y) ˛ {0, 1} (Xi(x, y, z)
˛ {0, 1} for 3D) at position (x, y) (or (x, y, z) for 3D). The raw data
is transformed into two mathematical representations: graph-
based descriptors and a two-point correlation function. The
set of descriptors is typically application specic3 but are
physically meaningful, explainable, and interpretable. Exam-
ples include volume fractions, interfacial area per unit volume,
connected components density, average domain sizes, tortu-
osity of the paths, and percent contact area with boundaries.
Formally, each descriptor is denoted as di and constitutes the
vector of descriptors of a microstructure:

D ¼
!
d1; d2; d3; .; dnd

"
(1)

where nd is the total number of descriptors. The dimensionality
of this descriptor vector is usually much smaller than the
dimensionality of the input microstructure and can be further
reduced to the vector of salient descriptors D̃= {d1, d2,., dñd} of
length ñd (<nd). The salient descriptors are determined through

the method of feature selection. We refer to our prior work4 for
a detailed description of these descriptors and ESI† for the list
of descriptors (Table 1 in ESI†). The descriptors are computed
for each microstructure, and descriptors subset is used as the
feature vector, g, in the surrogate model (see Subsection 1.4).

For the second representation, we use two-point spatial auto-
correlations (also known as two-point statistics). For the two-
phase material system under consideration, only one auto-
correlation of the electron-accepting phase is needed.5,6

Consider a microstructure, Xi. Letms denote this microstructure
as an array, where s indexes each pixel, and the values of ms

reect the volume fraction of one phase in the pixel s. In the
microstructures considered in this work, each pixel is fully
occupied by one of the two phases present in the microstruc-
ture. Hence,ms takes values of zero or one. The auto-correlation
of interest is dened as:

fr ¼
1

Sr

X

s

msmsþr and Fi ¼ ffr cr˛Srg (2)

where fr denotes the auto-correlation array indexed by a set of
discrete vectors r. The total number of valid placements of the
discrete vector r used in evaluating the spatial statistics is
denoted as Sr,7,8 and Fi corresponds to auto-correlation array of
microstructure Xi in X . The size of the auto-correlation array of
microstructure is of the same size as the input microstructure
and can be further reduced through dimensionality reduction
techniques. In this work, similar to our prior work,2 the prin-
cipal component analysis is used to determine the R principal
component (PC) bases that become the feature vector, g, used in
the surrogate model in Subsection 1.4.

1.3 Oracle of microstructure sensitive properties

In this work, the property of the microstructure P is computed
using physics-based models – usually called the oracle – that we
consider as the ground truth. Typically, the cost of property
evaluation is high, which warrants the need for AL workows.

1.4 Surrogate model of microstructure–property
relationship

The central element of the data-driven approach is the model
used to represent the SP map. In this work, we use Gaussian
process regression (GP)9 due to the inherent uncertainty
measures associated with the model predictions used in the
sampling (see the next subsection). The regression model M(g)
is specied by its mean function m(g) and covariance function

Table 1 Comparison between two case studies in terms of number of microstructures, dimensionality of the representation layers

OPV 2D with known
features

OPV 2D with unknown
features Elastic 2D Elastic 3D

# Microstructures 1708 1708 2000 8900
# Microstructures used in AL 500 500 800 1600
Dimensionality RL0 401 × 101 401 × 101 51 × 51 51 × 51 × 51
Dimensionality RL1 21 21 51 × 51 51 × 51 × 51
Dimensionality RL2 5 8–9 15 15
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(or kernel) k(g, g0), of the GP, where g and g0 are the vectors of
salient features of the input microstructure. Based on the
representation layer RL1 used, the data points g and g* corre-
spond to the vectors of salient descriptors or the vectors of R
principal components for statistical function representation –
as explained in the previous subsection. The regression model
is not only used to predict the properties P but also to estimate
the uncertainty of property prediction on the query point g*:

Pðg*Þ ¼ KT
*N

#
KNN þ s2I

$%1
PN (3)

and the variance of the predicted value:

Var½Pðg*Þ' ¼ kðg*; g*Þ % KT
*N

#
KNN þ s2I

$%1
K*N (4)

where K*N denotes the vector of covariances (kernel values)
between the query point g* and all N training points, PN is the
vector of all properties in the training set of size N, KNN is the
matrix of covariances (kernel values) evaluated on all pairs of
training points. s2 is the Gaussian noise, and I is the identity
matrix. In this work, Matern kernel and zero mean function
have been used to calculate the covariance function of the
model.

1.5 Pool-based sampling strategies

Given the microstructure representation, the surrogate model,
and the general workow of active learning, we close this
section by describing pool-based sampling strategies. Pool-
based sampling is the scenario where a pool of unlabeled data
points exists, and at each iteration, additional data points are
selected from that pool and labeled. Among the pool-based
sampling strategies, we investigate (A) uncertainty-based
sampling and (B) coreset sampling and compare them with
random sampling that serves as a baseline. The strategies differ
in terms of the criterion used to choose the most benecial
unlabeled point.

(A) Uncertainty-based sampling is one of the most commonly
used strategies in active learning settings. The data point
exhibiting the highest variance when evaluated by the surrogate
model is chosen to be labeled by the oracle and then added to
the training data pool:

g* ¼ argmaxðVT Þ (5)

where g* is the selected point, and VT is the vector of variances
for all unlabeled T points, where the variance is computed using
eqn (4). As a reminder, query points correspond to all T = L − N
unlabeled microstructures. Each unlabeled data point is eval-
uated using the most recent version of the structure–property
Gaussian process model to compute the variance of the pre-
dicted property.

(B) Sampling based on the coreset selection problem is
closely related to choosing the optimal subset of points. Intui-
tively, the coreset is a succinct, small summary of large data
sets, so solutions found using the small summary are compet-
itive with solutions found in the full data pool. It has been
shown that a sparse greedy approximation algorithm can be
used to approximate the corset problem selection,10 which is an
NP-hard problem.10 demonstrated the utility of the greedy

algorithms by minimizing the coreset radius, dened as the
maximum distance of any unlabelled point from its nearest
labeled point. Such an example coreset is depicted in Fig. 2. The
top panel shows the sketch of the coreset concept, highlighting
the radius for each coreset element (red points) approximating
the surrounding points (blue points). Determining the coreset
is an optimization problem that is also problem-dependent
since the selection of the summary points needs to be evalu-
ated in the context of the entire data pool. For that reason,
approximation approaches based on distances and greedy
sampling have been proposed.10 In essence, the aim is to
identify the points that are the farthest away from all previously
selected samples. As a consequence, the diversity of sampled
points increases. The bottom panel of Fig. 2 demonstrates the
low-dimension space for our input space of the rst case study.
Each blue point in the panel corresponds to onemicrostructure,
where coordinates correspond to the rst two PCs learned from
the descriptor-based representation. The red points indicate the
rst points selected by the coreset sampling method. Note the
balanced selection of the point in the low-dimensional
embedding space, with points being selected uniformly across
the entire microstructural two-dimensional subspace.

In this work, we investigate three greedy approximations of
the coreset selection for sampling strategies: greedy sampling
on the inputs (GSx), greedy sampling on the output (GSy), and

Fig. 2 Schematic of coreset concept where each red square repre-
sents the neighboring blue points within the circle of radius shown (top
panel) and the visualization of example coreset points of microstruc-
ture dataset used in this work (bottom panel). In both panels, the
coreset points are marked red and represent the neighboring points. In
the bottom panel, each point denotes one microstructure, where
coordinates correspond to the first two PCs of descriptor
representation.
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improved greedy sampling (iGS) that uses both input and
output.11,12 The major difference between them is the distance
calculation between points that involves computing the
distance only in the input space, only in the outputs space, and
both spaces. Below, we provide more details:

( GSx only considers the input space of data and chooses the
points by computing the Euclidean distance between the
labeled data points and unlabeled data points. The micro-
structures with the largest distance from the current labeled
data points will be selected as the next point that needs to be
labeled:

Dg
ij ¼ kgi % gjk; i ¼ 1;.; N; j ¼ N þ 1; .; L (6)

g* ¼ argmax
i

%
min

j

#
Dg

ij

$&
(7)

where Dg
ij is the matrix of distances between labeled data points

and unlabeled data points, gi and gj are the labeled data points
and unlabeled data points, respectively. As an outcome, g* is
selected for labeling. Intuitively, this is the point that is the
farthest away from N already labeled points, where N = T0 + T.
The size of the matrix Dij is N × (L − N). Similar to the previous
sampling strategy, g corresponds to the vector of salient
descriptors or the vector of R PCs of the statistical function.

( GSy uses a similar criterion, but it computes the distance
between the output of the regression model. Because for the
unlabeled data points true value of the property is not available,
the most current regression model is used to estimate the
properties. Formally, the microstructure for labeling g* is
determined using analogous criterion:

DP
ij ¼ kPi % P

#
gj

$
k; i ¼ 1; .; N; j ¼ N þ 1; .; L (8)

g* ¼ argmax
i

%
min

j

'
DP

ij

(&
(9)

where DP
ij is the matrix with distances between properties of

labeled data points and unlabeled data points, Pi and PðgjÞ.
Specically, Pi are true values for labeled data points, and PðgjÞ
are the predicted properties on unlabeled data points.

( iGS integrated GSx and GSy with the following criterion:

DgP

i ¼ min
j

'
Dg

ijD
P
ij

(
; i ¼ 1; .; N; j ¼ N þ 1; .; L (10)

g* ¼ argmax
i

'
DgP

i

(
(11)

where the element-wise product of two distance matrices from
the previous samplings is used to choose the next microstruc-
ture for labeling, g*.

Finally, we contrast the above strategies with random sampling,
where the points are added to the training set randomly. Random
sampling does not belong to the active learning type of algorithm,
but we include it as a baseline for this work.

1.6 Active learning for regression

Given the initial raw data set (microstructures) and property of
the microstructures, the initial regression model M 0 is

calibrated using randomly selected T0 data points. In each
iteration of active learning, one microstructure is evaluated for
the target properties by the oracle and then added to the data
pool used to update the SP model – as outlined in Fig. 3. At
a given iteration i, T = i + T0 labeled points are used for model
recalibration. The process continues until the budget expires or
other end criteria are reached (e.g., set tolerance on uncertainty,
the model accuracy, etc.).

1.7 Active feature selection

Active feature selection means the salient features are updated
as a part of an active learning campaign. In such a scenario, the
labeled data pool is iteratively increased following steps from
Fig. 3, and the salient features are updated. With the specied
frequency, DT, the feature selectionmethod is performed on the
labeled pool to update the salient features. Consequently, the
regression model is updated at each iteration of the active
learning campaign as more points are added. But input feature
space (salient features) can change as well, depending on the
outcome of feature selection.

2 Results
In this work, we consider two case studies with different prop-
erties. The rst case study considers the short circuit current of
solar cell devices with a moderate dataset size of two-
dimensional microstructures. The second case study
considers the effective stiffness parameter of composite
microstructures. In the second case study, two and three-

Fig. 3 The workflow of active learning method: X and X 0 is the
dataset with microstructures and the initial data set of raw micro-
structures, respectively. The property of interest P0 is evaluated at the
initial pool of microstructures X 0. The initial dataset X 0 refers to the
raw microstructures, but in practice, the model uses either the vector
of descriptors or a finite number of PCs transformed from the statis-
tical function representation. The regression model M i is calibrated at
any iteration i.
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dimensional microstructures are analyzed. In both cases, one
microstructure and its property constitute one data point for
building and validating the desired surrogate model.

2.1 Organic solar cells device property and spinodal
decomposition dataset

The rst case study considers constructing SP maps for organic
photovoltaics (OPV) applications. This dataset consists of 1708
OPV microstructures generated using a Cahn–Hilliard equation
solver.13 The microstructure is a two-dimensional, two-phase
microstructure of size 401 × 101 pixels and it constitutes the
active layer of OPV. Fig. 4 depicts example microstructures used
in this work. Microstructure consists of two phases, one as an
efficient electron donor and the other as an efficient electron
acceptor material. The active layer being modeled is sand-
wiched between two electrodes: an anode and a cathode. Each
microstructure in this dataset is annotated by one property, the
short circuit current – Jsc. The Jsc is derived using a physics-
based computational model that is computationally
demanding. The model solves the excitonic dri-diffusion
equations. The model focuses on the charge transport
through the microstructure (based on a well-studied material
system, P3HT:PCBM blend‡ mixture). It solves the spatial
distribution of excitons, electrons, holes, and the electric
potential across the active layer of the OPV device. This micro-
structural dataset is of moderate size, but predicting properties
required substantial resources.14 Additional details on data
generation and the computational models are presented in our
prior work.13,15 The short circuit current is considered the
ground truth values for Jsc, and its values for individual
microstructures are used to calibrate data-driven SP models
examined in this paper.

2.2 Elastic properties and composite data

The second case study considers the elastic property of
composite microstructures for 2D and 3D data sets. Both data
sets use similar methods for generating the microstructures16–19

as well as computing the effective property.20,21 In the 3D case,

8900 microstructures are generated with grid sizes of 51 × 51 ×

51. In the 2D case, 2000 data samples are generated with grid
sizes of 51 × 51. Fig. 5 depicts the examples of microstructures
from the 2D dataset. The dataset contains both isotropic and
anisotropic microstructures. The gure shows examples of
lamellar-like microstructures as well as more equiaxed grains.
The discrepancy in dataset size is related to the much larger
dimensionality of the microstructure in 3D, which demands
larger datasets for model calibration.

The material system used in this study is a high-contrast
elastic composite microstructure, which leads to a longer
range and more complex non-linear interactions at the micro-
scale. The micro-scale constituents (only two phases in this
work) are assumed to exhibit an isotropic elastic response. A
contrast of 50 is chosen by setting the Young moduli of each
phase to E1 = 120 GPa and E2 = 2.4 Gpa, respectively. However,
Poisson ratios are kept the same for both phases, i.e., n1 = n2 =

0.3. The targeted property of interest is selected as the effective
stiffness parameter, Ceff

11.

2.3 Technical details

In this work, two relatively inexpensive approaches are used to
featurize the microstructures. Firstly, the GraSPI soware4 is
used to compute descriptors for the OPV data. GraSPI computes
the graph representation of the microstructure and then
generates twenty-one descriptors for each sample.22 In the case
of the OPV data set (constructed using the GraSPI approach),
the run times are approximately two seconds to reduce
a microstructure of size 400 × 100 to 21 descriptors. The short
circuit current of organic solar cells is the property of interest
and it is computed using dri-diffusion model. The analysis is
performed only for two-dimensional microstructures due to the
prohibitively high computational cost of three-dimensional

Fig. 4 Examplemicrostructures generated for the OPV active learning
workflow. Each microstructure is of size 401 × 101 pixels.

Fig. 5 Example microstructures generated for the 2D elastic property
active learning workflow. Each microstructure is of size 51 × 51 pixels.
In this work, lamellar-like microstructures are aligned in either vertical
or horizontal directions.

‡ P3HT:PCBM is poly(3-hexylthiophene) and
1-(3-methoxycarbonyl)-propyl-1-phenyl-[6,6]C61.
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analysis. The simulation for each 2D microstructure takes
around 20–40 minutes on four CPUs and 8 GB of memory. In
contrast, a 3D analysis of the rst case study for a single
microstructure takes 12 h on 36 CPUs.

Secondly, the PyMKS (Materials Knowledge System in Python)
soware is used to compute the two-point correlations function
and subsequent dimensionality reduction on the elastic data sets.23

Only the rst 15 PC scores are used to calculate the subsequent GP
model. For the 2D case, the generate_multiphase function from the
PyMKS package23 implements the synthetic generation. The
process involves a random eld with a Gaussian blurring lter that
generates specied microstructure sizes with a normal distribu-
tion. The 2D synthetic microstructure has a 10-fold size difference
between the coarsest and nest microstructure matrix. The 3D
synthetic generation method is analogous to the Gaussian lter
method available in the PyMKSpackage.However, a prior dataset is
used from previous work24 due to the high computational cost of
regenerating the associated property predictions.

In the case of the elastic data sets, the calculation takes 5
seconds using 10 cores to compute both the two point correlations
and PCA analysis for 2000 samples of size 51× 51. For the 3D data
(8900 samples of size 51 × 51 × 51), the same calculation takes
269 s using 10 cores. The effective stiffness (a single value for each
microstructure) is calculated using the Sfepy nite element tool.25

The solve_fe function (which uses Sfepy internally) from PyMKS is
used to generate the data.23 Details of the simulations can be seen
in prior work.26,27 The simulation for each 3D sample takes around
15 min with 4 CPUs and 32 GB of memory. This computational
cost is reasonable. The Jupyter Notebooks and code implementa-
tion for generating the microstructure data and calculating the
active learning curves are available.28

2.4 Active learning settings and data split

During the generation of the active learning (AL) curves, data is
standardized, and an 80/20 train/test split is used. The train/test

split is reordered for each repetition of the AL curves. Initially,
T0 = 10 samples are randomly assigned to the initial pool of
samples, and then the training set is iteratively increased. The
nal number of pool samples is 500 for the OPV data set. It is
800 and 1600 for the 2D and 3D elastic data sets, respectively.
The performance reported for each AL curve is the mean value
at each iteration using 20 repetitions for all data sets. The same
initial pool of data and train/test split is used across each of the
AL techniques for any given repetition. This guarantees that the
mean averaged curves (shown in the gures) have the same
starting location and are trained with the same starting
conditions.

2.5 Active learning curves for the OPV 2D dataset

We start the results with the learning curves for various
sampling strategies. The learning curve depicts the evolution of
the model performance as the size of the training size increases.
Fig. 6 shows two panels of model performance for the ve
sampling strategies for the rst dataset and OPV device
performance. The mean absolute error (MAE) is depicted for all
sampling strategies. For each dataset, the data is standardized.
Fig. 6(a) shows curves for active learning with known salient
features (setting 1). Fig. 6(b) depicts the learning curves for
active feature selection with salient features learned during the
active learning campaign (setting 2).

In setting 1, we choose 5 features: d3, d11, d20, d21, d2 as the
salient features (see Table 1 in ESI† for the complete list). Aer
50 iterations, three sampling strategies (iGS, GSx, and uncer-
tainty sampling) converge to themodels of comparable accuracy
with MAE = 0.14. Moreover, at this point, the uncertainty of the
MAE is small (±0.011). The other two sampling strategies
converge much slower (random and GSy) than the top strate-
gies. The variance for GSy and random sampling is also higher
than the remaining three strategies. Moreover, aer 50 itera-
tions, GSy showed performance and a rate of convergence

Fig. 6 Active learning curves for the OPV dataset for (a) setting 1 active learning with known features: note that the uncertainty-based sampling
requires the least number of data points to construct the model with optimal accuracy; (b) setting 2 active learning coupled with the feature
selection. The top plot in both panels depicts the average performance of 5 sampling strategies for the first 50 iterations of the active learning
campaign. The results are obtained from 20 repetitions of the workflow. In both panels, the black dashed line denotes the optimal model derived
from 20 repetitions of 80/20% split of all the data. The error bars represent a single standard deviation.
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comparable to that of random sampling. We attribute this high
uncertainty of GSy sampling to the limited scope of information
used for model calibration with data points taken from the
narrow range PC2 of the input space. Results presented in
Fig. 7(b) illustrate this observation. Red points highlight the
microstructures projected to the two PC subspaces that have
been selected aer 20 iterations of the active learning strategy.
For GSy, the points are selected from the wide range of PC1
subspaces but are centered around central values of PC2
subspaces. Such distribution of the microstructural points is
aligned with the strategy used, as GSy strategy chooses the
points that are the farthest away from already selected points in
the property space. The color of the point codes the value of the
property, with the red points spanning the wide range of the
property values. In contrast, for the iGS sampling strategy
(Fig. 7(c)), the red points are distributed fairly uniformly across
the two PC subspaces and the property space. Moving to
uncertainty sampling (Fig. 7(d)), points are selected from the
outskirts of the input space. This is because uncertainty
sampling chooses the next points based on the uncertainty of
the model prediction. In the early stages of the GP model cali-
bration, the points on the boundaries of the input space typi-
cally are assigned with relatively high uncertainty.
Consequently, with the GP's default settings, in the early stages
of exploration, these points are more likely to be selected for
labeling. In our comparative analysis, the tendency to select
points for exploration at the boundaries affects the performance
of this sampling strategy. The same observation can bemade for
distance-based sampling (GSx, GSy, iGS) because, in the initial
iterations, distance-based samplings (like coreset) tend to

choose the points with the longest distance from those already
selected. Closing with the random sampling, points are selected
randomly in the input space without any clear pattern – as
visualized with red points in Fig. 7(e). The latent space distri-
bution for setting 2 mimics the results presented in Fig. 7 and,
hence, these results are included in the ESI.†

To provide a more quantitative analysis of the sampling
strategy, three metrics are selected (denitions are included in
the ESI†):

(i) Wasserstein distance between two data distributions: the
dataset at a given iteration and the complete dataset. This
metric provides insight into the representativeness of the
current subset of data. With the increased number of samples,
the distance should decrease. The short distance between data
distribution is expected is data pool is representative of entire
dataset.

(ii) The entropy of the variable (microstructure dataset) is
a measure of the variable's uncertainty or information content.
When the entropy of the variable is low, samples in the subset
are relatively similar; when the entropy of the variable is high,
the samples in a given dataset are diverse.

(iii) Mean uncertainty is dened as the mean, standard
deviation of property prediction over all unselected data at each
iteration. A GP regression model is used to compute the stan-
dard deviation of predicted property for each unselected sample
and then averaged. Intuitively, when uncertainty is high, the
model offers an exploratory opportunity.

Fig. 8 visualizes a comparison of ve sampling strategies
used in this work on the descriptor-based microstructure
representation. We start the analysis with the Wasserstein

Fig. 7 Visualization of query point selection using different sampling strategies: (a) GSx, (b) GSy, (c) iGS, (d) uncertainty sampling, and (e) random
sampling with known salient features. Each panel highlights 20 points selected using a given strategy (marked red), and also includes remaining
points that are color-coded using the property of interest-Jsc. Note that each point corresponds to one microstructure projected into the first
two principal components of descriptor-based representation.
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distance between the current distribution of microstructure and
the complete microstructural dataset. The distance is computed
for the input space only – the low dimensional 3 PC subspace of
the descriptor-based microstructural representation. The
shortest distance we observe for the random sampling and the
longest for the uncertainty-based and GSx samplings. This
agrees with the intuition. Random sampling chooses the points
that are representative of the entire population; hence, the
distance is short. For the uncertainty sampling and GSx
sampling, the most uncertain points and the most unrepre-
sentative points in the input space are chosen; hence, the
distance is long. However, iGS is the only sampling strategy to
yield intermediate Wasserstein distances.

Moving now to the entropy of the microstructure distribu-
tion, we see a different grouping of the sampling strategies.
Uncertainty-based and GSx sampling strategies exhibit the
largest entropy, with the maximum value at around 100
samples. GSy and random sampling show the lowest entropy
that very quickly converge to the value of the entire dataset.
Finally, iGS shows an intermediate trend – which is a similar
ranking to the Wasserstein distance analysis. We attribute the
highest entropy values of the GSx and uncertainty-based
samplings to the inherent feature of selecting points from the
underexplored regions of the input space – as demonstrated in
Fig. 7. Sampling iGS also chooses the underexplored regions of
the spaces and balances information about input and output
space.

We close with the analysis of the last metric – the mean
uncertainty of the property prediction – see Fig. 8(c).
Uncertainty-based and GSx sampling show the lowest value of
the uncertainty of the property prediction, while GSy and
random show the highest values of this metric. Sampling iGS
exhibits the intermediate trend – as is consistent across all three
metrics. The low uncertainty value in uncertainty-based
sampling agrees with the intuition, as this sampling aims to
choose points that balance exploration and exploitation and
minimize the uncertainty of the prediction. The reason to
calculate this metric is to assess how other metrics compare

with each other. The analysis of the trends for three metrics
indicates that iGS offers a good balance between representative,
diversity, and uncertainty of the data points selected for the
labeling. In three panels of Fig. 8, iGS places in the middle.

Next, we analyze the results for setting 2 (Fig. 6(b)), where the
feature selection is applied for every 10 iterations. The feature
selection technique used in this work is the embedded method
– Random Forest (RF). As a consequence, the input features may
change with this frequency. The learning curves (Fig. 6(b))
demonstrate that iGS is still the best strategy, with the MAE
converging the fastest among the ve sampling strategies.
However, compared to active learning with known salient
features (Fig. 6(b)), the overall converging rate in this setting is
slower than in the le panel. Moreover, the uncertainty of active
learning strategies is higher than in setting 1 (0.012 compared
to 0.0093). The most important features selected by active
learning methods become stable aer about 60 iterations,
which is consistent with learning curves in Fig. 6. The salient
features selected by the feature selection method are not stable
at the beginning stage of active learning (due to the small
number of samples selected), and the learning curves reach
a plateau at a higher number of iterations compared to other
strategies. The changes in the selected features are provided in
the ESI – see Fig. S2.† The evolving salient features also have
a direct impact on the converging rate of the learning curves in
setting 2. Initially, sixteen features are selected for the GPmodel
calibration. With the subsequent iterations, the required
number of features decreases to nine (which is higher than
assumed in setting 1). The increasing number of features has
a direct impact on the distance calculations in the corset-based
sampling strategies (GSx, GSy, iGS) and on the GP model cali-
bration as the number of dimensions increases. Nevertheless,
all sampling strategies converge to a low MAE error of the
model. The differences between the learning curves are small,
which suggests that when salient features are unknown priori,
even with the simplest sampling strategy, the model reaches low
error fairly quickly. Our results suggest either GSx or iGS
sampling as the best strategy.

Fig. 8 The three metrics used to assess the active learning algorithms and random method when salient features are known – setting 1. Each
curve represents the mean of 20 repetitions for 500 iterations. The error bar represents a single standard deviation. In the panel (a), Wasserstein
distance is calculated for 5 different sampling techniques. In the panel (b), the entropy for the salient feature vectors is calculated. The entropy for
the whole data set is shown as the dashed line. In the right (c), the uncertainty of property prediction is calculated. The error bars represent
a single standard deviation.
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2.6 Active learning curves for the elastic 2D and 3D datasets

Fig. 9(a) and 10(a) display the AL curves for the 2D and 3D data
sets, respectively. Both gures show the iGS strategy performing
well, but there are some signicant differences. In particular,
The iGS method outperforms all other sampling methods for
the 3D data set. Notice that in both cases, the GSx method
performs well over the initial regime (rst z 30 iterations) but
then tails off considerably. Initially, the GSy method performs
poorly but then begins to accelerate faster than GSx at later
iterations. In both cases, the GSx method follows the trajectory
of the uncertainty sampling method quite closely. This indi-
cates that the GSx method is very similar to uncertainty
sampling for these data sets. This is conrmed by plots (b), (c)
and (d) for both Fig. 9 and 10 discussed in the following para-
graphs. As the iGS method embeds both the GSx and GSy
methods within its algorithm, it can benet from both sampling
methods at different regimes along the AL curves. During the
initial phase, the iGS method uses GSx and keeps parity with
uncertainty sampling but then starts to use the acceleration

from GSy to move past uncertainty sampling. This occurs in
both the 2D and 3D data, but earlier and much more signi-
cantly in the case of the 3D data set. For the 3D data set, the iGS
method is the only method to approach the optimal accuracy
aer 1600 iterations of AL.

Fig. 9(b) and 10(b) display the Wasserstein distance calcu-
lations. Note that we are only considering the Wasserstein
distances from the optimal transport in the PCA subspace of the
input microstructures, not the output space. The GSy method
has the largest distance from the data at a given iteration to the
complete data set. This is unsurprising as the GSy method is
only sampling using information about the property (output
space) – not the microstructure (input space). In both cases,
random sampling is the best method to generate a model close
to the PCAs from the full data set in the same way that random
sampling is a good way to reconstruct a probability density
function. In Fig. 9(b) during the very early iterations (<10), the
Wasserstein distance for the iGS method decreases, indicating
that it is sampling based on the PCA space. Aer this early stage,

Fig. 9 Active learning curves for the 2D elastic data set (2000 samples of 51 × 51 voxels). Random sampling is included as a reference. Each
curve represents themean of 20 repetitions, each with a randomly selected 20% test hold-out data set. The error bars represent a single standard
deviation. Subplot (a) displays the mean absolute error (MAE) versus the number of samples for different sampling techniques. The “optimal”
curve is not an active learning curve but a single value derived from 20 repetitions of an 80/20% train/test split of all the data. It represents the
optimal value that can be reached by the active learning curves. Subplot (b) displays the Wasserstein distance versus the number of samples. The
Wasserstein distance is calculated as using both the PCA scores for the sample subset at a given number of samples and the entire PCA data set.
Subplot (c) displays the entropy estimate versus the number of samples calculated using a kernel density estimator. This gives an estimate of the
variance of the selected sub-spaces. The black dotted line shows the variance for the entire data set. Subplot (d) displays the mean uncertainty
versus the number of samples calculated from the GP model.
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it samples from a mixture of the PCA and output space
(switching between GSx and GSy) and then eventually mostly
from the output space.

Fig. 9(c) and 10(c) display the entropy calculations. In
essence, this is a measure of how even or at the microstructure
distributions for the selected samples are when projected into
the PC subspace. In both cases, uncertainty sampling creates
the largest entropy, indicating that it is optimizing for this
property in particular. Uncertainty sampling is optimizing
samples based on capturing the support of the data distribution
rather than the values of the distribution in that range. Note
that some sampling methods overshoot the overall entropy
value in the 2D case but fail to overshoot in the 3D case aer
1600 iterations. However, we anticipate that uncertainty
sampling and GSx will overshoot at just aer 1600 iterations in
the 3D case. Both GSy and random sampling have lower entropy
values than the other sampling methods as both sampling
methods are not optimized for an even or at PDF, but in the
case of random sampling, only model the overall PDF
(capturing the values or shape). Unsurprisingly, the iGS method

lies between the GSx and GSy methods for the entropy calcu-
lation (as indeed it does for the Wasserstein calculation)
demonstrating how this method balances between both
approaches to achieve better overall accuracy.

Fig. 9(d) and 10(d) display the mean uncertainty calculated
from the GPmodel. Clearly, at early times, uncertainty sampling
decreases the uncertainty of the predicted model at the fastest
rate. In the 2D case, uncertainty sampling attens out aer the
initial decrease. This is due to the calculated uncertainty
calculated by the GP model being very even across all the
samples. This makes it difficult to optimize the AL via uncer-
tainty only. In the 3D case, the overall uncertainty is much
higher than in the 3D case. Aer 1600 iterations each method is
still decreasing its predicted mean uncertainty. In both the 2D
and 3D plots, the GSx method decreases the uncertainty below
that of uncertainty sampling. This indicates that the maximum
uncertainty value is no longer the best choice for the next
sample in the AL. This is due to the uncertainty becoming more
even across samples at later iterations. Spatial conguration
considerations of the PCA and output spaces become more

Fig. 10 Active learning curves for the 3D elastic data set (8900 samples of 51 × 51 × 51 voxels). Random sampling is included as a reference.
Each curve represents the mean of 20 repetitions, each with a randomly selected 20% test hold-out data set. The error bars represent a single
standard deviation. Subplot (a) displays the mean absolute error (MAE) versus the number of samples for different sampling techniques. The
“optimal” curve is not an active learning curve but a single value derived from 20 repetitions of an 80/20% train/test split of all the data. It
represents the optimal value that can be reached by the active learning curves. Subplot (b) displays theWasserstein distance versus the number of
samples. The Wasserstein distance is calculated as using both the PCA scores for the sample subset at a given number of samples and the entire
PCA data set. Subplot (c) displays the entropy estimate versus the number of samples calculated using a kernel density estimator. This gives an
estimate of the variance of the selected sub-spaces. The black dotted line shows the variance for the entire data set. Subplot (d) displays themean
uncertainty versus the number of samples calculated from the GP model.
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efficient at decreasing the uncertainty (and increasing model
accuracy) at the later stages. Note that, as in the previous plots,
the iGS method achieves a balance between the GSx and GSy
methods.

2.7 Comparative analysis of two case studies

Two case studies involve different types of microstructure
(composite vs. spinodal), dimensionality (two- and three-
dimensional), and properties (elastic and electronic). More-
over, two separate microstructures representations are evalu-
ated: graph-based descriptors derived from a graph
representation of the microstructure and two-point correlation
functions. This work is part of a more extensive study, with
a more detailed comparison between two representations
provided in our prior work.2 This paper aims to ask the question
of the minimal number of samples needed to construct a robust
SP map given a library of microstructure. Below, we provide
a brief comparison in terms of data available and the dimen-
sionality of three representation layers (Table 1). We also
compare the observation made for two case studies in terms of
a minimal number of samples needed (Table 2).

Table 1 details the data availability and the dimensionality of
three representation layers, which provides a comparative anal-
ysis of two case studies – OPV 2D and elastic materials. The OPV
2D datasets, with both known and unknown features, comprise
1708 microstructures each, utilizing 500 iterations in active
learning (AL). The elastic datasets, with 2000 microstructures for
2D and 8900 for 3D, use 800 and 1600 iterations in AL, respec-
tively. The initial dimensionality (RL0) is 401 × 101 for OPV 2D
compared to elastic 2D: 51 × 51, and elastic 3D: 51 × 51 × 51.
Subsequent RL1 and RL2 representation layers reduce the
dimensionality in OPV 2D, notably to 21 and 5 (8–9 in unknown
features setting§). In OPV 2D case, the dimensionality reduction
from RL0 to RL1 is through physical descriptors derived from
graph-based model. And from RL1 to RL2 is through the feature
selection method. Meanwhile, elastic datasets maintain higher
dimensions through RL1 (dimensionality remains the same as
RL0), and the dimensionality at RL2 reduces to 15 PCs.

Table 2 summarizes the sampling strategies by extracting the
number of samples required to observe improvement in the
accuracy of the model (80% improvement from the initial
accuracy value to the optimal value). The criterion is arbitrary,
but it allows comparing the sampling strategies for each case

study, as the initial model and optimal model are independent
of the strategies taken. The table lists the required number of
iterations to achieve the criterion and the corresponding frac-
tion of the complete dataset. For the rst case study and OPV-
setting 1 (known salient features), our analysis indicates that
iGS sampling stands out for its efficiency, requiring the smallest
number of iterations. Nevertheless, uncertainty and GSx strat-
egies require a comparable number of iterations. The two
remaining strategies, random and GSy, require a signicantly
higher number of iterations. In setting 2 of the OPV case study
(unknown salient features), the AL workow requires more
iteration, but the ordering of the sampling shows a less clear
trend. Uncertainty, iGS, and GSx sampling strategies required
fewer iterations than random and GSy strategies to reach the
criterion. But the difference is minor.

For the second case study, uncertainty sampling is the best
approach for the 2D elastic data set requires only half as many
iterations to reach an equivalent accuracy as the other sampling
methods. In the case of the 3D data set, the iGSmethod requires
less then half the number of iterations as any of the other
sampling methods to reach the cutoff accuracy.

In summary, given the varying size of the dataset, the
dimensionality of each microstructure, and different properties
(two case studies), active learning workow signicantly
reduces the number of physics-based evaluations. Our work
reports that, on average, 10% of data is needed to calibrate
a robust surrogate SP model. Sampling strategies can further
reduce the requirement to 3–4% (depending on the case study).
Sampling using information about input and output spaces –
iGS – offers the best performance across four studies; however,
it is the most complex sampling strategy. GSx is worth high-
lighting as it performs reasonably well. However, it only oper-
ates on the input space information and requires no update
from the surrogate model. Hence, using GSx, the microstruc-
tures can be fairly easily ordered for property evaluation without
overhead of property estimation.

3 Conclusions
We presented a comparative analysis of two microstructure
representations and ve sampling strategies of active learning
method on three datasets. We learned that regardless of the
strategy or problem, at least 5% of the microstructure library is
required to construct a robust data-driven model of a micro-
structure–property map. This observation is valid for the
scenario where a large library of microstructures is available for

Table 2 The number of iterations required to reach an 80% improvement, icutoff, from the initial accuracy value towards the optimal accuracy
value. Values in parentheses represent the fraction of the dataset represented by the number of samples

Sampling method
OPV 2D with known
features

OPV 2D with unknown
features Elastic 2D Elastic 3D

Random 131 (8%) 80 (5%) 454 (23%) 965 (11%)
Uncertainty 45 (3%) 58 (4%) 107 (5%) 1042 (12%)
GSx 48 (3%) 55 (4%) 191 (10%) 1087 (12%)
GSy 142 (9%) 82 (5%) 270 (14%) 937 (11%)
iGS 44 (3%) 60 (4%) 221 (11%) 422 (5%)

§ The number of features depends on data and algorithm in AL.
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labeling, and information about the distribution of the micro-
structures can be leveraged to choose the samples for labeling.
Our ndings showed that both microstructure representations
can be effective in such a small data regime when combined
with active learning strategies. However, the dimensionality of
the latent space varies. We also learned that the choice of the
sampling strategy is agnostic to the representation and
problem. Sampling iGS performed the best across all the data-
sets and microstructure representation selection. We attributed
the superior performance of this strategy to the balanced
information used about the distribution of data in the input
and output spaces.

Data availability
The source code for the analysis is available in two separate
GitHub repositories. The source code for the OPV 2D dataset
workow is available in a GitHub repository.29 The source code
for the elastic 2D and 3D dataset workows are available in
a separate GitHub repository.28 This repository contains the
microstructure data and corresponding responses for both the
2D and 3D datasets. The elastic 2D data is available in the
subdirectory 2D/data-gen/data-500.npz, while the elastic 3D
data is available in the subdirectory 3D/data_shuffled.npz. The
entire soware stack required for the elastic 2D and 3D dataset
workow is listed in requirements.txt. The source code for
analysis is available in Github: https://github.com/usnistgov/
active-learning, https://github.com/hliu56/Active-Learning-
Using-variousrepresentations.
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