
The Bitcoin Backbone Protocol: Analysis and Applications

JUAN GARAY, Texas A&M University College Station, College Station, United States

AGGELOSKIAYIAS, School of Informatics, University of Edinburgh, Edinburgh, United KingdomofGreat

Britain and Northern Ireland and IOG, Edinburgh, United Kingdom of Great Britain and Northern Ireland

NIKOS LEONARDOS, School of Electrical and Computer Engineering, National Technical University of

Athens, Athens, Greece

Bitcoin is the first andmost popular decentralized cryptocurrency to date. In this work, we extract and analyze
the core of the Bitcoin protocol, which we term the Bitcoin backbone, and prove three of its fundamental
properties which we call Common Prefix, Chain Quality, and Chain Growth in the static setting where the
number of players remains fixed. Our proofs hinge on appropriate and novel assumptions on the “hashing
power” of the protocol participants and their interplay with the protocol parameters and the time needed
for reliable message passing between honest parties in terms of computational steps. A takeaway from our
analysis is that, all else being equal, the protocol’s provable tolerance in terms of the number of adversarial
parties (or, equivalently, their “hashing power” in our model) decreases as the duration of a message passing
round increases.
Next, we propose and analyze applications that can be built “on top” of the backbone protocol, specifically

focusing on Byzantine agreement (BA) and on the notion of a public transaction ledger. Regarding BA, we
observe that a proposal due to Nakamoto falls short of solving it, and present a simple alternative whichworks
assuming that the adversary’s hashing power is bounded by 1/3. The public transaction ledger captures the
essence of Bitcoin’s operation as a cryptocurrency, in the sense that it guarantees the liveness and persistence
of committed transactions. Based on this notion, we describe and analyze the Bitcoin system as well as a more
elaborate BA protocol and we prove them secure assuming the adversary’s hashing power is strictly less than
1/2. Instrumental to this latter result is a technique we call 2-for-1 proof-of-work (PoW) that has proven to be
useful in the design of other PoW-based protocols.

CCS Concepts: • Security and privacy →Mathematical foundations of cryptography;

Additional Key Words and Phrases: Blockchain protocols, proof of work, cryptocurrencies, consensus

ACM Reference Format:

Juan Garay, Aggelos Kiayias, and Nikos Leonardos. 2024. The Bitcoin Backbone Protocol: Analysis and Ap-
plications. J. ACM 71, 4, Article 25 (August 2024), 49 pages. https://doi.org/10.1145/3653445

Aggelos Kiayias and Nikos Leonardos’ research was supported by in part by ERC project CODAMODA, #259152; Juan

Garay’s research was supported in part by NSF grant no. 2055694.
Authors’ Contact Information: Juan Garay, Texas A&M University College Station, College Station, Texas, United States;

e-mail: garay@tamu.edu; Aggelos Kiayias, School of Informatics, University of Edinburgh, Edinburgh, Edinburgh, United

Kingdom of Great Britain and Northern Ireland and IOG, Edinburgh, United Kingdom of Great Britain and Northern Ire-

land; e-mail: akiayias@inf.ed.ac.uk; Nikos Leonardos, School of Electrical and Computer Engineering, National Technical

University of Athens, Athens, Greece; e-mail: nikos.leonardos@gmail.com.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2024 Copyright held by the owner/author(s).

ACM 0004-5411/2024/08-ART25

https://doi.org/10.1145/3653445

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

HTTPS://ORCID.ORG/0000-0003-0366-7110
HTTPS://ORCID.ORG/0000-0003-2451-1430
HTTPS://ORCID.ORG/0000-0003-3909-7914
https://doi.org/10.1145/3653445
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3653445
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3653445&domain=pdf&date_stamp=2024-08-01

25:2 J. Garay et al.

1 Introduction

Bitcoin, introduced in [59], is a decentralized payment system that is based onmaintaining a public
transaction ledger in a distributed manner. The ledger is maintained by anonymous participants
(parties, “players”) called miners, executing a protocol that maintains and extends a distributed
data structure called the blockchain. The protocol requires fromminers to solve a “proof of work”
(PoW, aka “cryptographic puzzle”—see, e.g., [5, 31, 48, 70]), which essentially amounts to brute-
forcing a hash inequality based on SHA-256, in order to generate new blocks for the blockchain.
The blocks that comprise the blockchain contain sets of transactions that are generated at will by
owners of bitcoins, who issue transactions that credit any entity of their choice who accepts pay-
ments in bitcoin. Payers broadcast transactions and miners include the transactions they receive
into the blocks they generate. Miners are rewarded for maintaining the blockchain by receiving
bitcoins; it is in this manner bitcoins are created and distributed among the miners who are the
first recipients of newly minted bitcoins.
An important concern in Bitcoin (or any e-payment system for that matter) is the prevention of

double-spending attacks. Specifically, in the context of Bitcoin, a double-spending attack can occur
when the attacker initially credits an account, receives service or goods by the account holder, but
then manages to reorganize the transaction ledger so that the transaction that credits the account
holder is reverted. In this way, the attacker keeps her bitcoin while receiving services and thus she
is able to spend it again somewhere else.
Nakamoto [59] provides an initial set of arguments of why the Bitcoin system will prevent
double-spending attacks. Specifically, he argues that if a payee waits for the transaction that gives
her credit to be succeeded in the blockchain by a number of k blocks, then the probability that
an attacker can build an alternative blockchain that “reorganizes” the public blockchain (which
contains the credit transaction) drops exponentially with k . Nakamoto argues this by modeling
the attacker and the set of honest players as two competing actors performing a random walk
moving toward a single direction with probabilistic steps. He demonstrates that the k blocks the
payee waits are enough to ensure a negligible (in k) probability of the attacker catching up with
the honest players.
Nevertheless, the above analysis can be easily seen to be oversimplified: for example, it does not
account for the fact that in Bitcoin’s decentralized setting the attacker may attempt to introduce
disagreement between the honest miners, thus splitting their hashing power on different PoW
instances. Nakamoto himself appeared to recognize the relevance of agreement in the context
of Bitcoin, arguing in a forum post [60] that actually “Bitcoin’s basic concept” of building and
exchanging a blockchain is capable of solvingByzantine agreement (BA) [57, 68] in the presence
of an actively malicious adversary.1 However, a thorough analysis establishing the exact security
properties of the Bitcoin system has yet to appear.

Our results. In this article, we present the first formal treatment of Bitcoin’s core protocol. In
more detail, we extract, formally describe, and analyze this protocol, which we call the Bitcoin
backbone, as we describe it in a way that is versatile and extensible and can be used to solve other
problems, in addition to maintaining a public transaction ledger. The Bitcoin backbone protocol
is executed by players (the miners) that build a blockchain following the Bitcoin source code [61],
allowing them to maintain a blockchain in a distributed fashion. The protocol is parameterized

1In [60], Nakamoto refers to the problem as “Byzantine Generals,” which is often used to refer to the single-source version

of the problem. Note that since more than one general may propose a time to attack, his description is a closer match to

the setting where every party has an input value, that is, BA. In fact, in an anonymous setting such as Bitcoin’s, the single-

source variant of the problem is nonsensical. Note that in the traditional cryptographic setting, with trusted setup, the two

problems are not equivalent in terms of the number of tolerated misbehaving parties t (t < n vs. t < n/2, respectively).

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:3

by three external functions V (·), I (·),R(·) which we call the content validation predicate, the input
contribution function, and the chain reading function, respectively. At a high level,V (·) determines
the proper structure of the information that is stored into the blockchain, I (·) specifies how the
contents of the blocks are formed by the players, and R(·) determines how a blockchain is sup-
posed to be interpreted in the context of the application. Note that the structure, contents, and
interpretation of the blockchain are not important for the description of the backbone protocol
and are left to be specified by the three external functions above, which are application-specific
(we provide examples of these functions in Section 5).

Analysis of the Bitcoin backbone protocol. We analyze the protocol in a static setting when the
participants operate in a synchronous communication network (more details below and in Sec-
tion 2; see also Section 7 for an extension of the analysis to a model with bounded delays [30, 66])
in the presence of an adversary that controls a subset of the players. We assume that the protocol is
executed by a fixed number of players denoted by n; note, however, that this number is not known
to the protocol participants. The players themselves cannot authenticate each other and therefore
there is no way to know the source of a message; we capture this by allowing the adversary to
“spoof” the source address of any message that is delivered. We assume that messages are eventu-
ally delivered and all parties in the network are able to synchronize in the course of a “round.” The
notion of round is not important for the description of the backbone protocol (which can also be
executed in a loose and asynchronous fashion in the same way that Bitcoin works), however, it is
important in terms of Bitcoin’s inherent computational assumption regarding the players’ ability
to produce PoWs.
Specifically, we assume that in a single round, all parties involved are allowed the same number
of queries to a cryptographic hash function, as well as to communicate with the other participants.
The hash function is modeled as a random oracle [10]. For simplicity we assume a “flat model,”
where all parties have the same quota of hashing queries per round, say q; the non-flat model
where parties have differing hashing power capabilities can be easily captured by clustering the
flat-model parties into larger virtual entities that are comprised bymore than one flat-model player.
In fact “mining pools” in Bitcoin can be thought of such aggregations of flat-model players. The
adversary itself represents such pool as it controls t < n players; for this reason, the adversary’s
quota per round is t · q hashing queries. Note that in this setting, t < n/2 directly corresponds
to the adversary controlling strictly less than half of the system’s total “hashing power” that all
players collectively harness, thus, we will use terms such as “honest majority” and “(1/2)-bounded
adversary” interchangeably.
In our analysis of the Bitcoin backbone protocol, we formalize and prove three fundamental
properties it possesses. The properties are quantified by the parameter f that represents the prob-
ability of a successful PoW calculation by an honest party during a round of protocol execution.

— The common prefix property. We prove that if t
n−t
is suitably bounded below 1, then the

blockchains maintained by the honest players will possess a large common prefix. More
specifically, if an honest party “prunes” (i.e., cuts off) k blocks from the end of its local chain,
the probability that the resulting pruned chain will not be a prefix of another honest party’s
chain drops exponentially in the security parameter (see Definition 3.1 for the precise formu-
lation of the property and Theorem 4.10 for the precise statement). The parameter f plays a
critical role in the analysis of the property and should be small in order to approximate hon-
est majority, that is, allowing t to be close to n/2. A small choice for f , suggests also that the
network synchronizes significantly faster than the rate of finding PoWs. On the other hand,
when f gets closer to 1 and the network “desynchronizes,” provably achieving a common
prefix would be much more challenging—if even possible.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:4 J. Garay et al.

Fig. 1. An overview of the backbone protocol’s applications: Nakamoto’s BA protocol Πnak
BA

, our BA protocols Π
1/3
BA

and Π
1/2
BA

, and the public ledger protocol ΠPL. All properties must be satisfied with overwhelming probability. In

each box we state the name of the property as well as the maximum ratio of the adversarial hashing power that

we can prove the protocol withstands (based on the corresponding backbone property). The value ϵ stands for a

negligible quantity.

—The chain quality property. We prove that the ratio of blocks in the chain of any honest player
that are contributed by malicious players is bounded by t

n−t
. Again observe that in an hon-

est majority setting, that is, where t is bounded below n/2, we obtain that the blockchain
maintained by honest players is guaranteed to have few, but still some, blocks contributed by
honest players; a higher ratio would be necessary to guarantee bigger percentages of blocks
contributed by honest players in the blockchain. We also prove that this result is basically
tight, that is, that the adversary is capable of following a strategy (that deviates from the strat-
egy of honest players) that enables the introduction of that many blocks in the blockchain,
under a favorable (for the adversary) assumption on the propagation of adversarial blocks
in the network.
— The chain growth property.We prove that after any consecutive s rounds, the length of any
party’s chain grows by a number of blocks at least τ · s , for a parameters τ ∈ R. that is,
this property guarantees that honest parties make progress and their chains grow as they
execute the protocol.2

While the above security propertiesmay seem rather abstract since they refer to properties of the
data structure that is maintained distributedly by the parties, we demonstrate that they are in fact
quite powerful and show that the Bitcoin backbone protocol armed with the above properties can
be used as a basis for solving other problems, including the problem of distributively maintaining
a “robust” public transaction ledger. In Figure 1, we show how the two properties relate to the
properties of the applications that are explained below.

BA for (1/3)-bounded adversaries.As a first application, we show how a randomized BA protocol
can be built on top of the Bitcoin backbone protocol in a reasonably direct fashion. We instantiate
the V (·), I (·),R(·) functions so that parties form blockchains and act according to the following
rules: each party i attempts to insert its own input vi ∈ {0, 1} into the blockchain; a blockchain is
valid only if blocks contain elements in {0, 1}; the protocol terminates at a predetermined number

2In our original exposition [40], this property was not identified explicitly but rather proven and used directly in the form

of a lemma. As observed in follow-up work [51], identifying it as a separate property, allows making our proofs arguments

more modular.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:5

of rounds where, with high probability, the blockchain has reached a sufficient length due to chain
growth. Each honest party reads its local blockchain and prunes k elements from its end, returning
the majority bit appearing in the resulting blockchain’s prefix. We show how the common prefix
property and the chain quality property of the backbone protocol ensure Agreement and Validity
(BA’s basic properties; see Section 2) with high probability, thus turning the Bitcoin backbone
protocol into a probabilistic BA protocol.
Observe that for the above protocol to work, the chain quality property should ensure that a
majority of blocks in the blockchain originate from the honest players (otherwise validity is lost).
Our chain quality property enables this with overwhelming probability assuming the adversarial
power is suitably bounded below 1/3. This approach is different from Nakamoto’s proposal [60]
for BA, which, as we also show, only guarantees Validity with overwhelming probability if the ad-
versary has a negligible amount of hashing power. On the positive side, we stress that Nakamoto’s
protocol fails gracefully when the adversarial power is larger and even close to 50% as Validity can
be shown with constant probability (but not overwhelming, as one would wish from a randomized
BA protocol).

Public transaction ledgers and BA for honest majority. Next, we focus on how a “robust public
transaction ledger” can be built on top of the Bitcoin backbone. We instantiate the V (·), I (·),R(·)
functions so that parties form blockchains and act according to the following rules: each party
(which in this context is called a “miner”) receives a set S of transactions on its input tape and
attempts to insert those in its blockchain, omitting any transactions in S that are already included
in it. (A Bitcoin transaction is, for example, a statement of the type “account A credits account
B a z number of bitcoins,” which is signed using the secret key that corresponds to account A’s
Bitcoin address; each account has a unique Bitcoin address.) Reading a blockchain, on the other
hand, amounts to returning the total sequence of transactions that is contained in the blockchain
of the miner (and note that miners may disagree about the chain they report).
We show how the common prefix property and the chain quality property ensure two proper-
ties needed by the ledger, which we call Persistence and Liveness, assuming an honest majority and
arbitrary adversarial behavior. Persistence3 states that once a transaction goes more than k blocks
“deep” into the blockchain of one honest player, then it will be included in every honest player’s
blockchain with overwhelming probability, and it will be assigned a permanent position in the
ledger. On the other hand, Liveness says that all transactions originating from honest account
holders will eventually end up at a depth more than k blocks in an honest player’s blockchain, and
hence the adversary cannot perform a selective denial of service attack against honest account
holders. For both properties to hold we require an honest majority (i.e., that the adversary’s hash-
ing power is strictly less than 50%) assuming high network synchronicity (i.e., the duration of a
round in terms of the number of computational steps the parties take towards finding a PoW is
close to 0). If this is violated, persistence requires stricter bounds on adversarial hashing power in
order to be preserved following the bounds of the common prefix property.
The problem of constructing robust transaction ledgers is related to the classical state machine

replication (SMR) problem [71] (see Remark 12 for further discussion). In the context of Bitcoin,
our analysis implies that the Bitcoin backbone provides an operational transaction ledger under
the assumptions: (i) the adversary controls less than half of the total hashing power, and (ii) the
network synchronizes much faster relative to the PoW solution rate, (iii) digital signatures cannot
be forged. On the other hand, when the network desynchronizes our results cannot support that
the ledger is maintained by assuming an honest majority. This negative result is consistent with the
experimental analysis provided by Decker andWattenhoffer [25], who predicted a drop below 50%

3This property is also called Consistency. We use the term “persistence” to emphasize the immutable aspect of the ledger.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:6 J. Garay et al.

in the required adversarial bound for any setting when information propagation is problematic.
Our result also provides some justification for the “slow” rate of 10-minute increments used in
Bitcoin block generation. Specifically, information propagation in the Bitcoin network is on the
order of a few seconds so the ratio (essentially f) of this time window over the average 10-minute
period is reasonably close to zero and thus transaction persistence can be shown for roughly an
honest majority. On the other hand, cryptocurrencies including Litecoin, Primecoin and others,
reacting to the demand to offer faster transaction processing, opted for a faster response rate (some
as small as 1 minute), which results in more precarious situations, for example, f > 0.1, which is
far from being sufficiently close to 0 and thus cannot support our analysis that a common prefix
would be guaranteed by merely assuming an honest majority.
We finally note that the persistence and liveness properties we put forth and prove should not
be interpreted as proofs that all Bitcoin’s objectives are met or that they embody all the properties
that Bitcoin was intended to offer. For example, they do not guarantee that miners are properly
incentivized to carry out the backbone protocol, and they can only offer guarantees in a setting
of an honest majority amongst a fixed number of players as opposed to a setting where there is an
ever changing population of parties acting rationally; see related work below as well as Section 8
for further discussion.
Next, we present a BA protocol assuming an honest majority, by suitably exploiting the prop-
erties of the robust transaction ledger above. The protocol substitutes Bitcoin’s transactions with
a type of transactions that are themselves based on PoWs and carry the parties’ inputs. Hence
this protocol uses PoWs in two distinct ways: for the maintenance of the ledger and for recording
the users’ inputs in the ledger. We show that the ledger’s persistence implies agreement, and that
liveness implies validity, because assuming the ledger is maintained for long enough, a majority
of transactions originating from the honest parties will be included (despite the fact that honest
parties may control a minority of blocks in the blockchain) and as a result applying the majority
function on the submitted inputs will recover the honest parties’ input, if they all start with the
same bit value. The protocol requires special care in the way it employs PoWs since the adversary
should be incapable of “shifting” work between the two PoW tasks that it faces in each round. To
solve this problem, we introduce a special strategy for PoW-based protocol composition which we
call “2-for-1 PoWs.”

The Bitcoin backbone in the bounded-delay model.We sketch how to extend our analysis for the
synchronous model to a bounded-delay model, where, in a nutshell, instead of messages sent in
a round being guaranteed to arrive by the end of the round, there is an upper bound of Δ rounds
for each message delivery event that is unknown to the honest parties (cf. [30, 66]). This analysis
is presented in Section 7. It shows that the protocol is secure provided the difficulty level is in a
favorable relation with respect to Δ. Treating Δ as a separate parameter bounding the message
passing delay enables to express the honest majority assumption also as a function of Δ showing
how approaching the 1/2 bound hinges on Δ being sufficiently small.

Related work. Realizing a digital currency with a centralized entity but while achieving a
degree of privacy was proposed early on by Chaum in [21]. A number of other works improved
various aspects of this concept, however the approach remained centralized. Nakamoto [59]
proposed the first decentralized currency system based on PoWs while relaxing the anonymity
property of the payment system to mere pseudonymity. This work was followed by a multitude
of other related proposals including Litecoin,4 Ethereum,5 to mention a few. Our analysis of the

4http://www.litecoin.com
5https://www.ethereum.org

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

http://www.litecoin.com
https://www.ethereum.org

The Bitcoin Backbone Protocol: Analysis and Applications 25:7

Bitcoin backbone covers many of these systems as well, as they are based on the same protocol
with only parameter adjustments.
It is interesting to juxtapose our positive results to the results of Eyal and Sirer [32], who intro-
duce an attack strategy called “selfish mining” that shows how the number of blocks contributed
to the blockchain by an adversary can exceed the percentage of the hashing power the adversary
possesses. Their results are consistent with and complementary to ours. The crux of the issue is
(in our terminology) in terms of the chain quality property, as its formulation is quite permissive:
in particular we show that if the adversary controls a suitably bounded amount of hashing power,
then it is also suitably bounded in terms of the number of blocks it has managed to insert in the
blockchain that honest players maintain. Specifically, recall that we prove that the adversary may
control at most a t

n−t
percentage of the blocks in the chain (a bound we prove it is tight). For

instance, if the adversary has less than 1/3 of the hashing power, then it will provably control less
than 50% of the blocks in the honest players’ blockchain. It follows that this does not guarantee
that the rate of a party’s hashing power translates to an equal rate of rewards (recall that in
Bitcoin the rewards are linearly proportional to the number of blocks that a party contributes in
the chain). We define as ideal chain quality the property that for any coalition of parties (following
any mining strategy) the percentage of blocks in the blockchain is exactly proportional to their
collective hashing power, that is, t

n
. The chain quality property that we prove is not ideal and the

results of [32] show that in fact there is a strategy that magnifies the percentage of blocks that a
malicious coalition contributes to the blockchain. Still, their selfish mining strategy in our model
does worse than our bound. Closing this gap, we show a simple mining strategy that matches our
upper bound and hence our chain quality result is tight6 assuming the number of honest parties
is large.
BA aka “consensus” [57, 68] considers a set of n parties connected by reliable and authenticated
pair-wise communication links and with possible conflicting initial inputs that wish to agree on
a common output in the presence of the disruptive (even malicious) behavior of some of them.
The problem has received a considerable amount of attention under various models. In this article,
we are interested in randomized solutions to the problem (e.g., [11, 14, 33, 35, 49, 69])7 as in the
particular setting we are in (where running time should be sublinear in the number of parties),
deterministic BA algorithms are not possible. In more detail, we consider BA in the anonymous
synchronous setting, that is, when processors do not have identifiers and cannot correlate mes-
sages to their sources, even across rounds, and, further, there is no trusted setup nor a limit to
the number of messages delivered per round. Okun, motivated by earlier work [15], considered
a slightly weaker model called “anonymous model without port awareness,” which matches the
above except for imposing a limit on the number of messages per round and proved the aforemen-
tioned impossibility result, namely that deterministic algorithms are impossible for even a single
failure [63, 64]. In addition, Okun showed that probabilistic BA is feasible in his setting by suitably
adapting Ben-Or’s protocol [11] for the standard, non-anonymous setting (cf. [64]);8 the protocol,
however, takes exponentially many rounds. It turns out that by additionally assuming that the
parties are “port-aware” (i.e., they can correlate messages to sources across rounds), deterministic
protocols are possible and some more efficient solutions were proposed [65].

6Our model allows the unfavorable event of adversarial messages winning all head-to-head races in terms of delivery with

honestly generated messages in any given round.
7We remark that, in contrast to the approach used in typical randomized solutions to the problem, where achieving BA is

reduced to (the construction of) a shared random coin, the probabilistic aspect here stems from the parties’ likelihood of

being able to provide proofs of work. In addition, as our analysis relies on the random oracle model [10], we are interested

in computational/cryptographic solutions to the problem.
8Hence, BA in this setting shares a similar profile with BA in the asynchronous setting [34].

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:8 J. Garay et al.

The anonymous synchronous setting for BA without limits on messages per round and hence
prone to Sybil attacks [28], was considered by Aspnes et al. [3] who pointed to the potential use-
fulness of proofs of work (e.g., [5, 31, 48, 70]) as an identity assignment tool, in such a way that
the number of identities assigned to the honest and adversarial parties can be made proportional
to their aggregate computational power, respectively. For example, by assuming that the adver-
sary’s computational power is less than 50%, one of the algorithms in [3] results in a number of
adversarial identities less than half of the total identities obtained. By running this procedure in a
pre-processing stage, it is then suggested that a standard authenticated BA protocol could be run.
Such protocols, however, would require the establishment of a consistent PKI (as well as of digital
signatures), details of which are not laid out in [3].
In contrast, and as mentioned above, building on our analysis of the Bitcoin backbone protocol,
we propose two BA protocols solely based on PoWs that operate in O(k) rounds with error prob-
ability e−Ω(k). The protocols solve BA with overwhelming probability under the assumption that
the adversary controls less than 1/3 and 1/2 of the computational power, respectively. Note that
our BA protocols do not require the assignment of identities to parties; furthermore, they require
no cryptographic assumption other than the RO model.
The connection between Bitcoin and probabilistic BAwas also considered byMiller and LaViola
in [58] where they take a different approach compared to ours, by not formalizing how Bitcoin
works, but rather only focusing on Nakamoto’s suggestion for BA [60] as a standalone protocol.
As we observe here, and also recognized in [58], Nakamoto’s protocol does not quite solve BA since
it does not satisfy validity with overwhelming probability. The exact repercussions of this fact are
left open in [58], while with our analysis, we provide explicit answers regarding the transaction
ledger’s actual properties and the level of security that the Bitcoin backbone realization can offer.
Finally, related to the anonymous setting, the feasibility of secure computation without authen-
ticated links was considered by Barak et al. in [9] in a more extreme model where all messages
sent by the parties are controlled by the adversary and can be tampered with and modified (i.e., not
only source addresses can be “spoofed,” but also messages’ contents can be altered and messages
may not be delivered). It is shown in [9] that it is possible to limit the adversary so that all it can
do is to partition the network into disjoint sets, where in each set the computation is secure, and
also independent of the computation in the other sets. Evidently, in such system, one cannot hope
to build a global ledger.
We refer to [39] for a systematic overview of the consensus problem in the context of blockchain
protocols.

Summary of differenceswith [40]. Themost important difference in the current version of the
article compared to the original one [40] is the complete rewrite of all our proofs, which now follow
a much more streamlined and easier presentation. In particular, this version incorporates the con-
cept of a typical execution that we have in fact introduced in [41] (analysis of the backbone protocol
with chains of variable difficulty) and which greatly simplifies our probabilistic analysis, concen-
trating it on a single theorem (specifically, Theorem 4.5, showing that most executions are typical).
The present version also includes the explicit treatment of security against adaptive adversaries,
showing how to reduce the analysis to the case of static adversaries (Section 4.4). We also present
an analysis sketch of the Bitcoin backbone protocol in the bounded-delay model against static
adversaries, where an (unknown) upper bound is imposed on message delivery (cf. Section 7).
This model was considered by Pass et al. [66] and was tackled with a different proof technique;
nevertheless, here, we show how our analysis can also extend to the bounded-delay setting and
our proof strategy using typical executions can provide a simple security proof. This suggests that
the notion of typical executions of [41] and the associated analysis approach are useful tools with
the potential of wider applicability in the analysis of blockchain protocols.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:9

In the current version, we refer to the length of the hash function output κ as the (sole) security
parameter, and refer to λ—typically the number of consecutive rounds for which a statement would
hold—as the tail-bounds parameter. This way, making λ polylogarithmic in the security parameter
(e.g., Ω(log2(κ))) allows us to clearly express how blockchain properties and applications (e.g.,
consensus) are satisfied except with negligible probability after that many rounds. Finally, we note
that the model in this version makes explicit an upper bound on the number of computation and
verification queries to the hash function/random oracle functionality for both honest parties and
the adversary.

Organization of the article. The rest of the article is organized as follows. In Section 2, we
present our model within which we formally express the Bitcoin backbone protocol and prove
its basic properties. The backbone protocol builds “blockchains” based on a cryptographic hash
function; we introduce notation for this data structure as well as the backbone protocol itself in
Section 3, followed by its analysis in Section 4. Sections 5 and 6 are dedicated to the applications
built on top of the backbone protocol—(simple) BA protocols and a robust transaction ledger, re-
spectively. Specifically, Section 5 covers Nakamoto’s suggestion for BA as well as our solution
for 1/3 adversarial power, while in Section 6, we present our treatment of a robust public ledger
(Section 6.1) formalizing the properties of Persistence and Liveness and how they apply to Bitcoin
(Section 6.2). We also include in this section (Section 6.3) our BA protocol for 1/2 adversarial power.
The extension of our analysis to the bounded-delay model is presented in Section 7, while some
directions for future research are offered in Section 8.

2 Model and Definitions

In this section, we define our notion of protocol execution and provide a definition of BA in our
model. We will describe and analyze our protocols in a multiparty setting that employs elements
from previous formulations of secure multiparty computation (MPC) (specifically, Canetti’s
formulation of “real world” execution as in [17] and [18–20]).We adopt the notation and definitions
of [20],9 while we also employ ideas regarding the formulation of synchronous, proceeding in
rounds, secure MPC from [50].

Programs involved in a protocol execution. The execution of a protocol Π is driven by an “envi-
ronment” programZ that may spawnmultiple instances running the protocol Π. The programs in
question can be thought of as “interactive Turing machines” (ITM) that have communication,
input and output tapes. An instance of an ITM running a certain program will be referred to as
an ITM instance or ITI. The spawning of new ITI’s by an existing ITI as well as the interaction
between them is at the discretion of a control program which is also an ITM and is denoted by C .
The pair (Z,C) is called a system of ITMs [18]. As in this latter article, we will be restricting our
exposition to “locally polynomial-bounded” systems of ITM’s which ensures a polynomial-time ex-
ecution overall [18, Proposition 3]. Moreover, we will be using a more stringent control program
C that will be forcing the environment to perform a “round-robin” participant execution sequence
for a fixed set of parties.
Specifically, the execution driven byZ is defined with respect to a protocol Π, an adversaryA
(also an ITM) and a set of parties P1, . . . , Pn ; these are hardcoded in the control program C . The
protocol Π is defined in a “hybrid” setting and has access to two “ideal functionalities,” which are

9We find the notation and formulation handy, in particular the existence of an environment and a control program, and

as a consequence we inherit the designation of parties as spawned instances of ITMs, with input/output tapes, and so on.

For simplicity, we choose to keep their operation at a somewhat informal level. Further, we note that we do not perform

an analysis in the Universal Composability setting of [18–20].

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:10 J. Garay et al.

two other ITM’s to be defined below, called the random oracle and the diffusion channel. They are
used as subroutines by the programs involved in the execution (the ITI’s of Π andA) and they are
accessible by all parties once they are spawned.
Initially, the environmentZ is restricted by C to spawn the adversary A. Each time the adver-
sary is activated, it may send one or more messages of the form (Corrupt, Pi) to C . The control
program C will register party Pi as corrupted, only provided that the environment has previously
given an input of the form (Corrupt, Pi) to A and that the number of corrupted parties is less or
equal t , a bound that is also hardcoded inC . The first ITI party to be spawned running protocolΠ is
restricted byC to be party P1. After a party Pi is activated, the environment is restricted to activate
party Pi+1, except when Pn is activated in which case the next ITI to be activated is always the
adversaryA. Note that when a corrupted party Pi is activated the adversaryA is activated instead.

Communication and “hashing power.” We describe next the two functionalities that are accessible
to the parties. These functionalities will reflect the parties’ ability (i) to communicate with each
other and (ii) to calculate values of a hash function H (·) : {0, 1}∗ → {0, 1}κ concurrently. We note
that they share a state and thus they can be viewed as a single functionality, nevertheless it is
convenient to describe them as separate entities.

— The random oracle (RO) functionality.When queried by honest party Pi with a value x
marked for “calculation” for the function H (·) (in pseudocode we denote this by s ← H (x)),
assuming x has not been queried before, it returns a value y which is selected at random
from {0, 1}κ ; furthermore, it stores the pair (x ,y) in the table of H (·). Each party Pi is al-
lowed to ask q calculation queries in each round as determined by the “diffuse” functionality
(see below). On the other hand, each party is given unlimited queries for “verification” for the
functionH (·) (in pseudocode,H (x) = s). (We do not model directly Denial of Service attacks
in our model, hence we allow honest parties sufficient time to weed out invalid messages.) In
a similar vein, the adversaryA is given t ·q calculation queries in each round as determined
by the diffuse functionality, where t is the number of corrupted parties, and polynomially
many verification queries. Note that q is a function of κ. We note that the functionality may
maintain tables for functions other than H (·) as well (for instance, in our protocol descrip-
tions, we will utilise a functionG(·)), but, by convention the functionality will impose query
quotas to function H (·) only.
— The diffuse functionality. Initially, the functionality sets a variable round to be 1. It also
maintains a Receive string defined for each party Pi . A party is allowed at any moment to
fetch the contents of its personal Receive string. Moreover, when the functionality receives
an instruction to diffuse a messagem from party Pi it marks the party as complete for the
current round; note that m is allowed to be empty. At any moment, the adversary A is
allowed to receive the contents of all messages for the round and specify the contents of
the Receive string for each party Pi . The adversary has to specify when it is complete for
the current round. When all parties are complete for the current round, the functionality
inspects the contents of all Receive strings and includes any messagesm that were diffused
by the parties in the current round but not contributed by the adversary to the Receive
tapes. The variable round is then incremented. We note that by convention, if a party does
not want to “speak” in a given round, it will still diffuse the “⊥” symbol to signal that it has
completed its program for the current round.10

We note that by adopting the resource-bounded computation modeling of systems of ITM’s by
[20] we obviate the need of imposing a strict upper bound on the number of messages that may

10See [39] for a comparison of this primitive vis-à-vis point-to-point channels.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:11

be transmitted by the adversary in each activation. In our setting, honest parties, at the discretion
of the environment, are given sufficient time to process all messages delivered via the diffuse
functionality including all messages that are injected by the adversary. This is also facilitated by
the fact that the q bound that is imposed on queries to H (·) is not imposed for hash verification
(with foresight, the q-bound will be only imposed for hash computations during the PoW stage of
the protocol).
Note that the above formulation also reflects the fact that the communication graph is not fully
connected and messages are delivered through “diffusion”, a communication means that reflects
Bitcoin’s peer-to-peer structure. As evidenced by the above, our adversarial model in the network
is “adaptive,” meaning that the adversary is allowed to take control of parties on the fly, and “rush-
ing,” meaning that in any given round the adversary gets to see all honest players’ messages be-
fore deciding his strategy, and, furthermore, there is no definite source information that can be
guaranteed for each delivered message. Note that the adversary cannot change the contents of
the messages sent by honest parties nor prevent them from being delivered as restricted by the
diffuse functionality. Effectively, this parallels communication over TCP/IP in the Internet where
messages between parties are delivered reliably, but nevertheless malicious parties may “spoof”
the source of a message they transmit and make it appear as originating from an arbitrary party
(including another honest party) in the view of the receiver. Note that the adversary is permitted
to abuse the diffusion mechanism and attempt to confuse honest parties by sending and delivering
inconsistent messages to them (thus diffuse does not constitute a reliable broadcast).11

The parties’ inputs are provided by the environmentZ which also receives the parties’ outputs.
Parties that receive no input from the environment remain inactive, in the sense that they will
not act when their turn comes in each round. The environment activates parties in each round by
writing to their input tape. Note that C forces the environment to give all parties an activation in
round-robin fashion. In our exposition, we will denote by Input the input tape of each party.

The q-bounded synchronous setting. Based on the above, we will use the notation

{viewP,t,n
Π,A,Z

(z)}z∈{0,1}∗ to denote the random variable ensemble describing the view of party P

after the completion of an execution with environmentZ, running protocol Π, and adversary A,
on auxiliary input z ∈ {0, 1}∗. The view contains all messages sent to and received from the two
functionalities the party P has access to, as well as the environment.
In our exposition, we are concerned with a “stand-alone” execution of Π and thus we will
consider z to be fixed to 1κ for κ ∈ N. For this reason, we will simply refer to the ensemble

by viewP,t,n
Π,A,Z

. If n parties P1, . . . , Pn execute Π, the concatenation of the view of all parties

〈viewPi ,t,n
Π,A,Z

〉i=1, ...,n is denoted by view
t,n
Π,A,Z

(the views of corrupted parties, by convention, are

empty). With foresight, we note that, in contrast to the standard setting where parties are aware
of the number of parties executing the protocol, we are interested in protocols Π that do not make
explicit use of the number of parties n or their identities. Further, note that because of the unau-
thenticated nature of the communicationmodel the parties may never be certain about the number
of participants in a protocol execution. Nonetheless note that the number of parties is fixed during
the course of the protocol execution, as this is hardcoded in the control program C .
The parties’ limited ability to produce PoWs is reflected in the limit imposed to all parties in
their access of the function H (·). Parties are allowed to perform a number of queries q per round.

11In the conference version of this article [40], we used the term Broadcast instead of Diffuse to mean the same thing.

Given that this leads to some misunderstanding we changed the terminology to employ the term “Diffuse” instead of

“Broadcast.” As in the conference version, note that “Diffuse” remains an atomic operation and hence the corruption of a

party may not happen while the operation is taking place (cf. [38, 47]).

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:12 J. Garay et al.

We remark that this is a “flat-model” interpretation of the parties’ computation power, where all
parties are assumed equal. In the real world, different honest parties may have different “hashing
power;” nevertheless, our flat-model does not sacrifice generality since one can imagine that real
honest parties are simply clusters of some arbitrary number of honest flat-model parties. The ad-
versary A is allowed to perform t ′ · q queries per round, where t ′ ≤ t is the number of corrupted
parties. The environmentZ, on the other hand, is not permitted any queries toH (·). The rationale
for this is that we would like to bound the “CPU power” [59] of the adversary to be proportional
to the number of parties it controls while making it infeasible for them to be aided by external
sources or by transferring the hashing power potentially invested in concurrent or previous pro-
tocol executions. This underscores the fact that our analysis is in the standalone setting, where a
single protocol instance is executed in isolation.
We will refer to all the above restrictions on the environment, the parties and the adversary as
the q-bounded synchronous setting.

Properties of protocols. In our theorems, we will be concerned with properties of protocols Π in
the q-bounded synchronous setting. Such properties will be defined as predicates over the random
variable viewt,n

Π,A,Z
by quantifying over all possible adversaries A and environments Z that are

polynomially bounded. Note that all our protocols will only satisfy properties with a small proba-
bility of error in κ as well as in potentially other parameters. The probability space is determined
by the random choices of the random oracle functionality as well as the private coins of all ITI’s.

Definition 2.1. Given a predicate Q and a bound q, t ,n ∈ N with t < n, we say that the protocol
Π satisfies property Q in the q-bounded setting for n parties assuming the number of corruptions is
bounded by t , provided that for all polynomial-time Z,A, the probability that Q(viewt,n

Π,A,Z
) is

false is negligible in κ.

Note that we will only consider properties that are polynomial-time computable predicates.

Remark 1. We remark that the above framework is sufficiently expressive to capture both
“safety” and “liveness” properties in our model, since viewt,n

Π,A,Z
captures a concept of time via

the interaction of parties with the diffuse functionality, which also acts as a round synchronizer.

BA. As a simple illustration of the formulation above we define the properties of a BA protocol.

Definition 2.2. AprotocolΠ solves BA in theq-bounded synchronous setting provided it satisfies
the following two properties:

—Agreement. There is a round after which all honest parties return the same output if queried
by the environment.
— Validity. The output returned by an honest party P equals the input of some party P ′ at round
1 that is honest at the round P ’s output is produced.

We note that in our protocols, the participants are capable of detecting agreement and further-
more they can also detect whether other parties detect agreement, thus termination can be easily
achieved by all honest parties. In the traditional cryptographic setting with no trusted setup, it is
known that the problem does not have a solution if t ≥ n

3 [16]. Interestingly, one of our PoW-based
BA protocols works for t < n

2 (in the Random Oracle model), assuming only a simultaneous start
without a PKI, the same bound that is achievable when a PKI is available.
The formulation of Validity above is intended to capture security/correctness against adaptive
adversaries. The notion (specifically, the requirement that the output value be one of the honest
parties’ inputs) has also been called “Strong Validity” [62], but the distinction is only important in
the case of non-binary inputs. In either case, it is known that in the synchronous cryptographic

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:13

setting with trusted setup the problem has a solution if and only if n > |V |t , where V is the
input/decision domain [35]. Our PoW-based protocol also achieves this bound.

Remark 2. One may consider a model where a certain percentage of the honest parties is not
always able to receive all messages broadcast on the network. We point out that such a situation is
subsumed by our adversarial model: simply we let the adversary control these players and simulate
them honestly while dropping messages from their incoming tape arbitrarily. Of course, to apply
the theorems we prove, one should adjust the total power of the adversary accordingly and add
these parties to the adversarial ones.

3 The Bitcoin Backbone Protocol

We start by introducing blockchain notation. Let G(·),H (·) be cryptographic hash functions with
output in {0, 1}κ . A block is any triple of the form B = 〈s,x , ctr 〉where s ∈ {0, 1}κ ,x ∈ {0, 1}∗, ctr ∈

N are such that satisfy predicate validblockTq (B) defined as follows:

(H (ctr ,G(s,x)) < T) ∧ (ctr ≤ q).

The parameter T ∈ N is also called the block’s difficulty level. The parameter q ∈ N is a bound
that in the Bitcoin implementation determines the size of the register ctr ; in our treatment, we
allow this to be arbitrary, and use it to denote the maximum allowed number of hash queries in
a round. We do this for convenience and our analysis applies in a straightforward manner to the
case that ctr is restricted to the range 0 ≤ ctr < 232 and q is independent of ctr .
A blockchain, or simply a chain is a sequence of blocks and their hash values in the form of pairs

(B, s). The rightmost block and its hash value is the head of the chain, denoted head(C). Note that
the empty string ε is also a chain; by convention we set head(ε) = ε . A chain C with head(C) =
(〈s ′,x ′, ctr ′〉, s) can be extended to a longer chain by appending a valid block B = 〈s,x , ctr 〉 and its
hash value H (ctr ,G(s,x)). In case C = ε , by convention, any valid block of the form B = 〈s,x , ctr 〉
may extend it. Note that in this case s can be an arbitrary string12 and we may refer to B as
the “genesis” block. In either case, we have an extended chain Cnew = C||(B, snew) that satisfies
head(Cnew) = (B, snew). Note that, for brevity, we may simply write B instead of (B, snew).
The length of a chain len(C) is its number of blocks. Given a chain C that has length len(C) =

n > 0 we can define a vector xC = 〈x1, . . . ,xn〉 that contains all the x-values that are stored in the
chain such that xi is the value of the ith block.
Consider a chain C of length m and any nonnegative integer k . We denote by C
k the chain
resulting from the “pruning” the k rightmost blocks. Note that for k ≥ len(C), C
k = ε . If C1 is a
prefix of C2 we write C1 � C2.
We note that Bitcoin uses chains of variable difficulty, that is, the value T may change across
different blocks within the same chain according to some rule that is determined by the x values
stored in the chain.13 This is done to account for the fact that the number of parties (and hence the
total hashing power of the system) is variable from round to round (as opposed to the unknown
but fixed number of parties n we assume). See Section 8 for further discussion. We are now ready
to describe the protocol.

12Note that we do not consider pre-computation attacks in our model; such attacks would require choosing s in a way it is

unpredictable. For instance, the actual deployment of Bitcoin used the headline of The Times of Jan. 3, 2009, “Chancellor

on brink of second bailout for banks.”
13In Bitcoin, every 2016 blocks the difficulty is recalibrated according to the time-stamps stored in the blocks so that the

block generation rate remains at approximately 10 minutes per block.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:14 J. Garay et al.

Fig. 2. Overview of the basic operation of the Bitcoin backbone protocol. MinerM1 receives from the environment

a Read instruction that results in the application of the R(·) function on the contents of its chain which are equal
to the vector 〈x1,x2,x3,x4,x5〉. Miner M2 receives from the environment an Insert instruction and uses the

function I (·) to determine the value y5 that it subsequently successfully inserts in its local block chain by solving

a proof of work; this results in a broadcast of the newly extended chain. Finally miner M3 receives the newly
extended chain and validates it both structurally as well as using the input validation predicate V (·). M3 will
adopt this chain if M3 deems it better than its local chain as specified by the backbone protocol. Note that the

joint view ofM1,M2,M3 is inconsistent but there is agreement on the prefix 〈x1,x2,x3〉.

3.1 The Backbone Protocol

The Bitcoin backbone protocol is executed by an arbitrary number of parties over an unauthenti-
cated network. For concreteness, we assume that the number of parties running the protocol is n;
however, parties need not be aware of this number when they execute the protocol. As mentioned
in Section 2, communication over the network is achieved by utilizing a send-to-all Diffuse func-
tionality that is available to all parties (and maybe abused by the adversary in the sense of deliver-
ing different messages to different parties). Each party maintains a blockchain, as defined above,
starting from the empty chain and mining a block that contains the value sinit (by convention this
is the “genesis block”). Each party’s chain may be different, but, as we will prove, under certain
well-defined conditions, the chains of honest parties will share a large common prefix. (Figure 2
depicts the local view of each party as well as the shared portion of their chains.)
In the protocol description, we intentionally avoid specifying the type of values that parties try
to insert in the chain, the type of chain validation they perform (beyond checking for its structural
properties with respect to the hash functions G(·),H (·)), and the way they interpret the chain.
In our description, these actions are abstracted by the external functions V (·), I (·),R(·) which
are specified by the application that runs “on top” of the backbone protocol. We will purposely
leave these functions undetermined in our description assuming they conform to the following

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:15

specifications. We will provide explicit instantiations of them in Section 5. Briefly, they are
described as follows:

— Content validation predicateV (·). The content validation predicate receives as input the con-
tent of a chain C, denoted by xC , and will return 1 if and only if the contents are consistent
with the intended application implemented on top of the chain. In its simplest form,V (·) can
ensure that the elements of xC are of the proper type.
— Input contribution function I (·). It receives as input a tuple, (st ,C, round, Input,Receive),
that stands, respectively, for state data st , current chain C, current round round , contents
of input tape Input and contents of network tape Receive. Given these, it will produce an
updated state st ′ as well as an input x that should be the next input to be inserted in a
block. For instance, I (·) can be as simple as copying the contents of the input tape into x and
keeping st = ϵ , or performing a more complex operation that involves parsing C or even
maintaining old input values that have not yet been processed as part of the state st .
— Chain reading function R(·). It receives as input a chain C and provides an interpretation of
it. In the simplest case it can be just returning xC and leaving it to the callee to process the
contents of the chain.

In general our treatment will be independent of the exact operation ofV , I ,R apart from requir-
ing the following minimal set of conditions.

(1) Input Validity. The input contribution function should produce values that are deemed
acceptable by the content validation predicate. Formally, for any chain C with xC =

〈x1, . . . ,xn〉, the value x produced by an invocation of I (·,C, ·, ·, ·) should satisfy
V (〈x1, . . . ,xn ,x〉) = 1. By convention, V (ε) = 1.

(2) Input Entropy. The probability of the event that two independent invocations of
I (st ,C, round,v,w), where st ,C, round,v,w are arbitrary values consistent with the input
of I (·), result in the same output value x is negligible in κ. With foresight we note that this
property is needed to break the symmetry between honest participants.

The Bitcoin backbone protocol is specified as Algorithm 4. Before describing it in detail, we first
introduce the protocol’s three supporting algorithms.

Chain validation. The first algorithm, called validate performs a validation of the structural prop-
erties of a given chain C, cf. Algorithm 1. It is given as input the values q and T , as well as a hash
function H (·). It is parameterized by the content validation predicate V (·). For each block of the
chain, the algorithm checks that the PoW is properly solved, that the counter ctr does not exceed
q and that the hash of the previous block is properly included in the block. It further collects all
the inputs from the chain’s blocks and assembles them into a vector xC . If all blocks verify and
V (xC) is true then the chain is valid; otherwise it is rejected. As mentioned we purposely leave the
predicate V (·) undetermined.

Chain comparison. The objective of the second algorithm, called maxvalid, is to find the “best
possible” chain when given a set of chains, cf. Algorithm 2. The algorithm is straightforward and
is parameterized by a max(·) function that applies some ordering in the space of chains. The most
important aspect is the chains’ length, in which case max(C1,C2) will return the longest of the
two. In case len(C1) = len(C2), some other characteristic can be used to break the tie. In our
case, max(·, ·) will always return the first operand14; alternatively, other options exist, such as

14Note that the way we deploy maxvalid, amounts to parties always giving preference to their local chain as opposed to

any incoming chain. This is consistent with current Bitcoin operation; however, some debate about alternate tie-breaking

rules has ensued in Bitcoin forums, for example, see [24].

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:16 J. Garay et al.

ALGORITHM 1: The chain validation predicate, parameterized by q,T , the hash functions
G(·),H (·), and the content validation predicate V (·). The input is C.

1: function validate(C)
2: b ← V (xC)

3: if b ∧ (C � ε) then � The chain is non-empty and meaningful w.r.t. V (·)

4: (〈s,x , ctr 〉, s ′) ← front(C)
5: sfront ← s ′

6: repeat

7: if validblockTq (〈s,x , ctr 〉) ∧ (H (ctr ,G(s,x)) = s ′) ∧ (sfront = s
′) then

8: sfront ← s � Retain hash value
9: C ← C
1 � Remove the head from C

10: (〈s,x , ctr 〉, s ′) ← head(C)
11: else

12: b ← False
13: end if

14: until (C = ε) ∨ (b = False)
15: end if

16: return (b ∧ (sfront = sinit))
17: end function

ALGORITHM 2: The function that finds the “best” chain, parameterized by function max(·). The
input is {C1, . . . ,Ck }.

1: function maxvalid(C1, . . . ,Ck)
2: temp ← ε
3: for i = 1 to k do

4: if validate(Ci) then

5: temp ← max(Ci , temp)
6: end if

7: end for

8: return temp
9: end function

lexicographic order or picking a chain at random. The analysis we will perform will essentially be
independent of the tie-breaking rule.15

Proof of work. The third algorithm, called pow, is themain “workhorse” of the backbone protocol,
cf. Algorithm 3. It takes as input a chain and a value x and attempts to extend it via solving a PoW.
This algorithm is parameterized by two hash functions H (·),G(·) (which in our analysis will be
modeled as random oracles),16 as well as two positive integers q,T ; q represents the number of

15It is worth to point out that the behavior ofmaxvalid(·) is associated with some stability aspects of the backbone protocol

and currently there are proposals to modify it (e.g., by randomizing it — cf. [32]). It is an interesting question whether any

improvement in our results can be achieved by randomizing the maxvalid operation.
16In reality the same hash function (SHA-256) instantiates both G and H ; however, it is notationally more convenient to

consider them as distinct.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:17

ALGORITHM 3: The PoW function, parameterized by q,T , sinit and hash functionsH (·),G(·). The
input is (x ,C).

1: function pow(x ,C)
2: if C = ε then � Determine PoW instance
3: s ← sinit � Genesis block initialization
4: else

5: (〈s ′,x ′, ctr ′〉, s) ← head(C)
6: end if

7: ctr ← 1
8: B ← ε
9: h ← G(s,x)
10: while (ctr ≤ q) do
11: snew ← H (ctr ,h) � This H (·) invocation subject to the q bound
12: if (snew < T) then
13: B ← 〈s,x , ctr 〉
14: break

15: end if

16: ctr ← ctr + 1
17: end while

18: if B � ε then
19: C ← C||(B, snew) � Extend chain
20: end if

21: return C

22: end function

times the algorithm is going to attempt to brute-force the hash function inequality that determines
the PoW instance, and T determines the “difficulty” of the PoW. The algorithm works as follows.
Given a chain C and a value x to be inserted in the chain, it hashes these values to obtain h and
initializes a counter ctr . Subsequently, it increments ctr and checks to see whether H (ctr ,h) < T ;
this is the only invocation of H (·) that is subject to the bound q. If a suitable ctr is found then the
algorithm succeeds in solving the PoW and extends chain C by one block inserting x as well as
ctr (which serves as the PoW). If no suitable ctr is found, the algorithm simply returns the chain
unaltered. (See Algorithm 3.)

The backbone protocol. Given the three algorithms above, we are now ready to describe the
Bitcoin backbone protocol, cf. Algorithm 4. This is the protocol that is executed by the miners and
which is assumed to run “indefinitely” (our security analysis will apply when the total running
time is polynomial in κ). It is parameterized by two functions, the input contribution function I (·)
and the chain reading function R(·), which is applied to the values stored in the chain.
Each miner starts a round with a local chain C (we say that the miner has chain C at this round)
and checks its communication tape Receive to see whether a “better” chain has been received and

in such case it adopts it resulting in chain C̃ (we say that the miner adopts chain C̃ at this round).

Choosing the chain C̃ is done using themaxvalid function; note that it could be that C = C̃. Then,

the miner attempts to extend C̃ by running the PoW algorithm pow described above.
The value that the miner attempts to insert in the chain is determined by function I (·). The input
to I (·) is the state st , the current chain C, the contents of the miner’s input tape Input (recall that

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:18 J. Garay et al.

ALGORITHM 4: The Bitcoin backbone protocol’s main loop, executed every round when a party
is activated by the environment, parameterized by the input contribution function I (·) and the chain
reading function R(·). At the onset it is assumed “init= True”.

1: if (init) then
2: C ← ε
3: st ← ε
4: round ← 1
5: init ← False
6: else

7: C̃ ← maxvalid(C, any chain C′ found in Receive)
8: if Input contains Read then
9: write R(C̃) to Output � Produce necessary output before the PoW stage.
10: end if

11: 〈st ,x〉 ← I (st , C̃, round, Input,Receive) � Determine the x value.
12: Cnew ← pow(x , C̃)
13: if C � Cnew then

14: C ← Cnew

15: Diffuse(C) � Send the chain in case of adoption/extension.
16: else

17: Diffuse(⊥) � Signals the end of the round to the diffuse functionality.
18: end if

19: round ← round + 1
20: end if

they can be written by the environmentZ at the beginning of any round) and communication tape
Receive, as well as the current round number round . The protocol expects two types of entries in
the input tape, Read, and (Insert,value); other inputs are ignored.
As mentioned, we purposely leave the functions I (·),R(·) undetermined in the description of the
backbone protocol, as their specifics will vary according to the application. When the input x is
determined by I (·), the protocol attempts to insert it into the chain C by invoking pow. In case
the local chain C is modified during the above steps, the protocol transmits (“broadcasts”) the new
chain to the other parties. Finally, in case a Read symbol is present in the communication tape,
the protocol applies function R(·) to its current chain and writes the result onto the output tape
Output. The round ends when the algorithm diffuses a message (⊥ in case no message is to be
diffused).

3.2 (Desired) Properties of the Backbone Protocol

We next define the two main properties of the backbone protocol that we will prove. The first
property is called the common prefix property and is parameterized by a value k ∈ N. It considers
an arbitrary environment and adversary in the q-bounded setting, and it holds as long as removing
k blocks from an honest party’s chain results to a prefix of another honest party’s chain.

Definition 3.1 (Common Prefix Property). The common prefix property Qcp with parameter k ∈

N states that for any pair of honest players P1, P2 adopting the chains C1,C2 at rounds r1 ≤ r2,

respectively, for any r1, r2, it holds that C

k
1 � C2.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:19

We note that this is a stronger version of the common prefix property compared to the one
originally considered in [40], where the property was stated for r1 = r2. The stronger formulation
enables a more modular proof of the Persistence property in Section 6.1 and for this reason we opt
for it here. This was observed in [66]. Note also that P1 and P2 could be the same party.
The second property, which we call the Chain Quality property, aims at expressing the number
of honest-player contributions that are contained in a sufficiently long and continuous part of an
honest player’s chain. Specifically, for parameters � ∈ N and μ ∈ (0, 1), the rate of adversarial block
contributions in a continuous part of an honest party’s chain of length at least � is bounded by
1− μ.17 This is intended to capture that at any moment that an honest player looks at a sufficiently
long part of its blockchain, that part will be of sufficient “quality,” that is, the number of adversarial
blocks present in that portion of the chain will be suitably bounded.

Definition 3.2 (Chain Quality Property). The chain quality property Qcq with parameters μ ∈ R

and � ∈ N states that for any honest party P adopting a chain C at some round, it holds that for
any � consecutive blocks of C the ratio of honest blocks is at least μ.

It is easy to see that, in the absence of an adversary, any set of, say, h honest parties, obtain as
many blocks as their proportion of the total hashing power, that is, h/n. We say that a protocol Π
satisfies ideal chain quality if this is the case for adversarial parties as well, that is, μ = 1−t/n with
respect to those parties. The ideal chain quality is not achieved by the Bitcoin backbone protocol,
cf. Theorem 4.13.
A third property that is convenient to consider in conjunction with the above two and was
introduced in follow up work, [51], to our original exposition is chain growth.

Definition 3.3 (Chain Growth Property). The chain growth property Qcg with parameters τ ,τ
′ ∈

R and s ∈ N states that for any honest party P that has a chain C at some round, it holds that after
any s consecutive rounds it adopts a chain that is at least τ · s blocks longer than C.

Asmentioned in the introduction, in our original exposition [40] this propertywas not identified
explicitly but rather proven and used directly in the form of a lemma. Nevertheless, as observed in
[51], identifying it as a separate property, allows making more modular our proof arguments and
for this reason we adopt it here as well. As expressed above, a lower bound is only required for
chain growth, however, we note that we also prove an upper bound.

4 Analysis of the Bitcoin Backbone

In this section, we perform the analysis of the protocol presented in the previous section. We will
first consider the case of static adversaries; then, in Section 4.4, we will show how an adaptive
adversary reduces to a static one.

4.1 Definitions and Preliminary Lemmas

Recall {0, 1}κ is the range ofH (·). Recall thatn is the number of parties, t of which can be corrupted
by the adversary. In the analysis, we are going to assume that the honest parties are sufficiently
greater in number than the parties the adversary controls. In particular, we are going to require
the following (cf. Table 1 for the definition all of the relevant parameters).

Honest Majority Assumption. There exist ϵ,δ , f ∈ (0, 1] such that a number of t
out of n parties are corrupted with t ≤ (1 − δ)(n − t) and 3f + 3ϵ < δ .

17For the sake of readability, wemodified the original formulation in [40] from μ to 1−μ so that the chain quality coefficient

μ is increasing in favor of the honest parties.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:20 J. Garay et al.

Table 1. The Parameters in Our Analysis

κ: security parameter; length of the hash function output
λ: tail-bounds parameter
n: number of parties mining; t out of which are controlled by the adversary
T : the target hash value used by parties for solving PoWs
t : number of parties controlled by the adversary
δ : advantage of honest parties, (t/(n − t) ≤ 1 − δ)
f : probability at least one honest party succeeds in finding a PoW in a round
ϵ : quality of concentration of random variables in typical executions, cf. Definition 4.4
k : number of blocks for the common prefix property
�: number of blocks for the chain quality property
μ: chain quality parameter
s : number of rounds for the chain growth property
τ : chain growth parameter
ν : min-entropy of I (·)
L: the total run-time of the system
Q : an upper bound on the number of computation or verification queries to G,H
ϵtyp: probability of error in a typical execution.

Positive integers n, t, L, Q, s, �, T , k, κ where logT is linearly related to κ ; positive reals f , ϵ, δ, μ, ν, τ , λ, where

f , ϵ, δ, μ, ν ∈ (0, 1).

Remark 3. It is worth noting in the above assumption the influence of round duration. Intuitively,
the longer the round duration, the higher the value of f is and hence the assumption becomes
stronger in terms of the bound imposed on the adversary.

It will be useful for verifying some calculations to note that 3f +3ϵ < δ ≤ 1 implies (1+ϵ)(1+f) <
(1 − ϵ)(1 − f)(1 + δ) < (1 − ϵ)(1 − f)/(1 − δ) and f , ϵ < δ

3 ≤ 1/3.
We will call a query of a party successful if it submits a pair (ctr ,h) such that H (ctr ,h) ≤ T .
For a positive integer k , let [k] = {1, 2, . . . ,k}. For each round i , j ∈ [q], and k ∈ [t], we define
Boolean random variables Xi ,Yi and Zi jk as follows. If at round i an honest party obtains a PoW,
then Xi = 1, otherwise Xi = 0. If at round i exactly one honest party obtains a PoW, then Yi = 1,
otherwise Yi = 0. Regarding the adversary, if at round i , the jth query of the kth corrupted party is
successful, then Zi jk = 1, otherwise Zi jk = 0. Define also Zi =

∑t
k=1

∑q
j=1 Zi jk . For a set of rounds

S , let X (S) =
∑

r ∈S Xr and similarly define Y (S) and Z (S). Further, if Xi = 1, we call i a successful
round and if Yi = 1, a uniquely successful round. Uniquely successful rounds have the following
important property.

Lemma 4.1. Suppose the kth block B of a chain C was computed by an honest party in a
uniquely successful round. Then the kth block of a chain C′ either is B or has been computed by the
adversary.

Proof. Suppose B′ is the kth block of a chain C′ that has been computed by an honest party
and B′ is not B. Since B was computed in a uniquely successful round, B and B′ cannot have been
computed in the same round. Let r be the earliest round on which B or B′ was computed. Since it
was computed by an honest party, every other honest party will receive it in the next round and
so will adopt a chain of length at least k . It follows that every block computed after round r will
be extending a chain of length more than k . �

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:21

An important parameter of the protocol is the probability that at least one honest party computes
a solution at given round. We denote this parameter by f and for any round i we have

(1 − f)pq(n − t) < f = E[Xi] = 1 − (1 − p)q(n−t) < pq(n − t), (1)

where p = T /2κ is the probability of success of a single query. The upper bound follows by
Bernoulli’s inequality. The derivation of the lower bound is as follows.

f

1 − f
=
1 − (1 − p)q(n−t)

(1 − p)q(n−t)
= (1 − p)−q(n−t) − 1 > (1 + p)q(n−t) − 1 > pq(n − t).

The first inequality is because 1/(1 − x) > 1 + x for any x ∈ (0, 1) and the second is Bernoulli’s
inequality.
We now provide bounds for the random variables defined above,18 which relate their expecta-
tions to f . With respect to the honest parties we have

E[Yi] ≥ q(n − t)p(1 − p)q(n−t)−1 > pq(n − t)[1 − pq(n − t)] ≥ f (1 − f) >
(
1 −

δ

3

)
f . (2)

For the first inequality we estimate from below pretending that honest parties make all q queries
even after a successful one and summing over all queries the probability that it is the only suc-
cessful one. The next inequality follows after multiplying by 1 − p and applying Bernoulli’s in-
equality. The last inequality follows from the fact that x �→ x(1 − x) is increasing in (0, 12), since

f < pq(n − t) < f /(1 − f) < δ
3 /(1 −

δ
3) ≤

1
2 (we used the bounds on f above and the assumption

3ϵ + 3f < δ ≤ 1). With respect to the expected number of blocks the adversary can compute in a
single round we note the bound

E[Zi] = pqt =
t

n − t
· pq(n − t) <

t

n − t
·

f

1 − f
<

(
1 +

δ

2

)
· f ·

t

n − t
. (3)

The inequality follows from the bounds in (1) and f < δ/3 ≤ 1/3.
We next prove the Chain Growth Lemma. It states that, at any round, the length of any honest
party’s chain will be at least as large as the number of successful rounds. As a consequence, the
chain of honest parties will grow at least at the rate of successful rounds, no matter what strategy
the adversary employs.

Lemma 4.2 (Chain Growth Lemma). Suppose that at round r an honest party has a chain of

length �. Then, by round s ≥ r , every honest party has adopted a chain of length at least � +
∑s−1

i=r Xi .

Proof. By induction on s − r ≥ 0. For the basis (s = r), observe that if at round r an honest
party has19 a chain C of length �, then that party diffused C at a round earlier than r . It follows
that every honest party will receive C by round r .
For the inductive step, note that by the inductive hypothesis every honest party has received
a chain of length at least �′ = � +

∑s−2
i=r Xi by round s − 1. When Xs−1 = 0 the statement follows

directly, so assume Xs−1 = 1. Observe that every honest party queried the oracle with a chain of

18In previous versions of this article, including [40], we expressed the analysis using parameters α = pq(n − t), β =

pqt, γ = α − α 2, f = pqn. Observe that using this notation and for the random variables Xi , Yi , Zi defined above, it

holds that E[Xi] ≤ α , E[Yi] ≥ γ , E[Zi] ≤ β , leading to a more refined analysis. Also, the previous choice of f is an upper-

bound on E[Xi + Zi]. Instead, now, we opt to define f as E[Xi] and drop the notation α, β, γ . We believe the new choice

of f is more versatile and highlights the role of the parameter better while dropping α, β, γ simplifies the conditions of

the security theorems. Moreover, it unifies our exposition with our follow up work [41].
19Recall that we say a party “has” a chain C∗ at round r , if the value of variable C at line 7 of Algorithm 4 is C∗, while it

“adopts” a chain C∗ if the value of variable C̃ is equal to C∗.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:22 J. Garay et al.

length at least �′ at round s −1. If follows that all honest parties successful at round s −1 broadcast
a chain of length at least �′ + 1. Since �′ + 1 = � +

∑s−1
i=r Xi , this completes the proof. �

We now define our typical set of executions. Informally, this set consists of those executions
with polynomially many rounds and with the property that the sum of the X ,Y ,Z variables over
any λ = Ω(κ) consecutive rounds does not deviate too much from its expectation.
First, we define a few bad events relevant to the properties of the hash function. In the random
oracle model (as long as the execution is polynomially bounded in κ), these events occur with
probability exponentially small in κ.

Definition 4.3. An insertion occurswhen, given a chain Cwith two consecutive blocksB andB ′, a
block B∗ created after B′ is such that B,B∗,B′ form three consecutive blocks of a valid chain. A copy
occurs if the same block exists in two different positions. A prediction occurs when a block extends
one which was computed at a later round. A guess occurs when a verification query H (x) = y
returns true, while no computation query for x precedes it.

Remark 4. Non-occurrence of all the above events will allow us to assume in the analysis that
all adversarial blocks have been computed using oracle queries in a certain sequence of rounds.

Definition 4.4 (Typical Execution). An execution is (ϵ, λ)-typical (or just typical), for ϵ ∈ (0, 1)
and integer λ ≥ 2/f , if, for any set S of at least λ consecutive rounds, the following hold.

(a) (1 − ϵ)E[X (S)] < X (S) < (1 + ϵ)E[X (S)] and (1 − ϵ)E[Y (S)] < Y (S).
(b) Z (S) < E[Z (S)] + ϵE[X (S)].
(c) No insertions, no copies, no guesses, and no predictions occurred.

Theorem 4.5. An execution is not typical with probability less than

ϵtyp = 4L
2e−Ω(ϵ

2λf) + 3Q22−κ + [(n − t)L]22−ν .

Proof. First we note that the input entropy requirement on the input contribution function
I (·), allows us to condition our probability space on the event that no two honest parties in a
polynomially bounded execution queried the H (·) oracle with the same input. Since there are at

most (n − t)L honest queries, the probability this event does not occur is at most
((n−t)L
2

)
2−ν <

[(n − t)L]22−ν . In this space, the variables Xi (and similarly Yi) are independent Bernoulli trials. It
follows from the standard Chernoff bound, that each of the four bounds in parts (a) and (b) fails

for any S with probability at most e−Ω(ϵ
2λf).

For part (c) and i ∈ {1, 2, 3}, let Bi = 〈si ,xi , ctri 〉 and дi = G(si ,xi). There are at most Q
queries posed to G and H , see Table 1. It follows that the probability of a collision occurring is

at most
(Q
2

)
2−κ < Q22−κ . We observe now that if a block extends two distinct blocks, then a

collision has occurred. To see this, suppose block B3 extends two distinct blocks B1 and B2. Then
s3 = H (ctr1,д1) = H (ctr2,д2), implying a collision either in H or in G, since B1 and B2 are distinct.
It is not hard to see that an insertion or a copy imply the existence of a block that extends two
distinct blocks (consider the first time such an event occurs). Next, suppose a prediction occurs and
block B2 extends a block B3 computed at a later round. This means that the hash value the oracle
assigned B3 equals s2, which should be an answer of the oracle to a previous query. It follows that
the probability a prediction occurs is at most Q2/2κ . Finally, suppose a guess occurs involving x .
The probability this happens at the jth query is less than 1/(2κ − j+1). Since at mostQ verification
queries are allowed, then the probability a guess occurs is at most

1

2κ
+
1

2κ − 1
+ · · · +

1

2κ −Q + 1
≤

∫ 2κ
2κ−Q

1

x
dx = ln

(2κ
2κ −Q

)
<

Q

2κ
+
(Q
2κ

)2
<

Q2

2κ
.

The statement of the theorem follows easily by applying the union bound. �

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:23

Remark 5. Choosing λ = Ω(log2 κ), the execution fails to be typical with negligible probability in
the security parameterκ. We are going to show that all the properties required for our applications
hold for a typical execution.

The next lemma is simple, but will make convenient the appeal to the properties of a typical
execution.

Lemma 4.6. The following hold for any sequence S of at least λ consecutive rounds in an (ϵ, λ)-
typical execution.

(a) (1 − ϵ)f |S | < X (S) < (1 + ϵ)f |S | and
(
1 − δ

3

)
f |S | < (1 − ϵ)f (1 − f)|S | < Y (S).

(b) Z (S) < t
n−t

·
f

1−f · |S | + ϵ f |S | ≤
(
1 − 2δ3

)
f |S |.

(c) For S = {i : r < i < s} and S ′ = {i : r ≤ i ≤ s}, Z (S ′) < Y (S).

Proof. (a) The first set of inequalities in part (a) follows by the bounds of (1), since by linearity
of expectation E[X (S)] = f |S |. For the second set of inequalities use linearity of expectation on
the sum Y (S), consult (2), and verify that by the Honest Majority Assumption (1 − ϵ)(1 − f) >
1 − f − ϵ > 1 − δ/3.
(b) The first inequality uses (3) and linearity of expectation. For the second one note that by the
Honest Majority Assumption it suffices to verify that (1 − δ)/(1 − f) + ϵ < 1 − 2δ/3; multiplying
by (1 − f) and simplifying, it suffices to check 1 − δ + ϵ < 1 − 2δ/3 − f , which follows directly
from our assumption that 3ϵ + 3f < δ .
(c) Using (1 − δ

3)f |S | < Y (S) from part (a) and Z (S ′) < (1 − 2δ3)f |S
′ | = (1 − 2δ3)f (|S | + 2) from

part (b), it suffices to verify that (1− 2δ3)(λ + 2) ≤ (1− δ
3)λ. This follows using λ ≥ 2/f > 6/δ . �

Remark 6. From the above relations, one can see the importance of the parameter f and the
way that the moderate hardness of PoW is relevant to the analysis. In particular f should be large
enough so that E[X (S)] becomes sufficiently bigger than 0 to be useful. If f is too small, (i.e.,
producing PoW’s is too hard) the honest participants will produce too few PoW’s for the system
to make progress (with foresight, chain growth will be hurt, which in turn will hurt the liveness of
the transaction ledger). On the other hand, f cannot be too large, because then the lower bound on
Y will be too small (as it depends multiplicatively on (1− f) as well as f). This means that uniquely
successful rounds will not produce sufficiently many PoW’s to overcome the PoW’s produced by
the adversary. In practice, this underscores the importance of calibrating the difficulty of the PoW
to maintain a suitable value of f within the range (0, 1). Such calibration takes place in the Bitcoin
system every 2016 blocks and attempts to keep f somewhere between 2 and 3% (assuming a full
communication round takes place every up to 20 seconds).

A corollary of this lemma and the Chain Growth Lemma (Lemma 4.2) is the following theorem
concerning the chain growth property.

Theorem 4.7 (Chain Growth). In a typical execution the chain growth property holds with pa-
rameters τ = (1 − ϵ)f and s ≥ λ.

Proof. Suppose that at a round r and honest party P has a chain C of length �. By the Chain
Growth Lemma (Lemma 4.2), after s rounds, P has adopted a chain C′ of length at least � + X (S),
where S = {i : r ≤ i < r + s}. By assumption, |S | ≥ λ and Lemma 4.6(a) applies. Thus, in a typical
execution, X (S) > (1 − ϵ)f |S | = τ · s . �

Lemma 4.8. In a typical execution, any k ≥ 2λf consecutive blocks of a chain have been computed

in more than k
2f consecutive rounds.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:24 J. Garay et al.

Fig. 3. Illustration of proofs of Lemma 4.9 and Theorem 4.10.

Proof. Assume there is a set of consecutive rounds S ′ in which the k blocks were computed and
|S ′ | < k

2f . Then, there is a set S of consecutive rounds with |S | =
 k
2f �+1 such thatX (S)+Z (S) ≥ k

(adding rounds to S ′ favors the upper bound that follows). However,

X (S) + Z (S) < (2 + ϵ − 2δ3)f |S | ≤ (2 − 2f)f |S | ≤ (1 − f)(k + 4f) < k,

where the first inequality uses Lemma 4.6(a) and (b) (note that
 k
2f � ≥ λ), the second 3f + 3ϵ ≤ δ ,

and the third |S | =
 k
2f � + 1 ≤

k
2f + 2 and k ≥ 4 (recall λ ≥ 2/f). �

4.2 Common Prefix Property

Lemma 4.9 (Common Prefix Lemma). Suppose that at round r of a typical execution an honest

party has or adopts a chain C1 and an honest party adopts a chain C2. Then, for k ≥ 2λf , C
k
1 � C2.

Proof. Assume—towards a contradiction—a typical execution in which the assumptions of the

lemma hold at a round r , but C
k
1 � C2 for some k ≥ 2λf . Consider the last block on the common

prefix of C1 and C2 that was computed by an honest party and let r
∗ be the round at which it was

computed; if no such block exists let r ∗ = 0. Define the set of rounds S = {i : r ∗ < i < r − 1} and
also the set S ′ = {i : r ∗ ≤ i < r }. We claim that,

Z (S ′) ≥ Y (S).

We show this by pairing each uniquely successful round in S with a distinct adversarial block
computed in S ′. Note that if the block computed at round r ∗ was at position �, then each of these
honest blocks will be extending a chain of length at least �. For a uniquely successful round u ∈ S ,
let ju be the position of the corresponding block. Consider the set

J = {ju : u is a uniquely successful round in S}.

Wenow argue that for every j ∈ J there is a distinct adversarial block in the jth position either in C1
or in C2 computed in S

′. If j lies on the common prefix of C1 and C2, then the corresponding block is
adversarial by the definition of r ∗. Furthermore, the rushing adversary, might have computed this
block no earlier than round r ∗. Consider a uniquely successful roundu ∈ S . Since both chains have
length at least ju , there is one block in C1 and another one in C2 in position ju and by Lemma 4.1
they cannot both be honest. An illustration of this argument is shown in Figure 3(a). This completes
the proof of the claim.
To finish the proof, note that there are at least k + 1 blocks on C1 computed after round r

∗. The
first k of them have been computed in S (while head(C1)might have been computed in round r −1).
By Lemma 4.8 the properties of a typical execution apply to the set of rounds S , namely |S | ≥ λ.
But then Z (S ′) ≥ Y (S) contradicts Lemma 4.6(c), which establishes the set of conditions that hold
for a typical execution. �

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:25

Theorem 4.10 (Common Prefix). In a typical execution the common prefix property holds with
parameter k ≥ 2λf .

Proof. Refer to Definition 3.1, and consider chains C1 and C2 adopted by honest parties P1 and
P2 in rounds r1 and r2, in violation of the common prefix property, that is, C

k
1 � C2. If P1 still has or

adopts a chain containing C

k
1 at round r2, then Lemma 4.9 applies at round r2 directly. Otherwise,

at some round r , P1 has a chain C containing C

k
1 and adopts a chain C

′ that does not. Note that
Lemma 4.9 applies at this round r , where the same honest party has chain C1 and adopts chain C2.
An illustration of this argument is shown in Figure 3(b). �

Remark 7. Recall that the honest majority assumption is the important precondition for the
above theorem. The dependency on the honest majority assumption is asymptotically tight for
high network synchronicity, that is, the setting where f is close to 0, since in case the adversary
has more hashing power than the honest parties it is straightforward to violate common prefix by
having the attacker mining privately a chain which with non-negligible probability will be longer
than the honest parties’ chain. In fact, this attack was described and analyzed by Nakamoto [59].

4.3 ChainQuality Property

Theorem 4.11 (Chain Quality). In a typical execution the chain quality property holds with
parameters � ≥ 2λf and

μ = 1 −
1 + f

(1 − f)(1 − ϵ)
·

t

n − t
−
(1 + f)ϵ

1 − ϵ
> 1 −

1

1 − 2δ/3
·

t

n − t
−

δ/3

1 − δ/3

δ→0
−→

n − 2t

n − t
.

Proof. Let us denote by Bi the ith block of the chain C of an honest party P at some round r
so that C = B1 . . . Blen(C) and consider some � consecutive blocks Bu , . . . ,Bv . Define L as the least
number of consecutive blocks Bu′, . . . ,Bv ′ that include the � given ones (i.e., u ′ ≤ u and v ≤ v ′)
and have the properties (1) that the block Bu′−1 was computed by an honest party or Bu′ = B1 in
case such block does not exist, and (2) that there exists a round at which an honest party adopted
the chain ending at block Bv ′ . Observe that L and v ′ are well defined since Blen(C) is at the head of
a chain that an honest party adopted. Define also r1 as the round that Bu′−1 was created (r1 = 0 if
Bu′ = B1) and r2 as the first round that an honest party adopts the chain ending with Bv ′ . Define
S = {r : r1 < r < r2} and S

′ = {r : r1 ≤ r ≤ r2}. Note that the sequence of L blocks Bu′, . . . ,Bv ′

have been computed either by an honest party in S (due to the definition of r1) or, given part (c) of
a typical execution, by the adversary in S ′.
Now, define μ as in the statement and let x denote the number of blocks from honest parties
that are included in the � blocks and, towards a contradiction, assume that

x < μ� ≤ μL.

Then,

Z (S ′) ≥ L − x > (1 − μ)L ≥ (1 − μ)X (S) > (1 − μ)(1 − ϵ)f |S |. (4)

The first inequality comes from the fact that the adversary computed L − x of the L blocks. The
second one comes from the postulated relation between x and L. The last one is Lemma 4.6(a). To
argue the third one, we assume X (S) > L and contradict property (2). Note that at round r1 an
honest party has produced block Bu′−1 and so at round r1 + 1 has a chain of length at least u

′ − 1
(note that this holds also in the case Bu′ = B1). By Lemma 4.2, every honest party at round r2 will
adopt a chain of length at least u ′ − 1 + X (S) > u ′ − 1 + L = v ′.
On the other hand, |S | ≥ λ by Lemma 4.8 and so the properties of a typical execution apply for
the set of rounds S . Combining the upper bound for Z (S ′) from Lemma 4.6(b) and recalling the

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:26 J. Garay et al.

value of μ,

Z (S ′) < f (|S | + 2)
(t

n − t
·
1

1 − f
+ ϵ

)
= (1 − μ)(1 − ϵ)f ·

|S | + 2

1 + f
. (5)

Inequalities (4) and (5) contradict each other in a typical execution, since |S | ≥ λ ≥ 2/f .
To verify the lower bound in terms of δ , note that

1 + f

(1 − f)(1 − ϵ)
·

t

n − t
+
(1 + f)ϵ

1 − ϵ
<

1

(1 − f)2(1 − ϵ)
·

t

n − t
+

ϵ

(1 − f)(1 − ϵ)

<
1

1 − 2f − ϵ
·

t

n − t
+

ϵ

1 − f − ϵ
<

1

1 − 2δ/3
·

t

n − t
+

δ/3

1 − δ/3

and recall that the Honest Majority Assumption requires 3ϵ + 3f < δ . �

Corollary 4.12. In a typical execution the following hold.

—Any
2λf � consecutive blocks in the chain of an honest party contain at least one honest block.
— For any consecutive λ rounds, the chain of an honest party contains an honest block computed
in one of these rounds.

Proof. Using t ≤ (1 − δ)(n − t), we have μ > 1 − 1−δ
1−2δ/3 −

δ/3
1−δ/3 > 0. Since μ > 0, the first item

follows from Chain Quality.
For the second item, suppose the chain C of an honest party contains an honest block B at height

� that was computed in round r . Suppose further, towards a contradiction, that there is no honest
block after B with timestamp at most r +λ. Let r ∗ be the least round after r +λ that an honest party
adopts C. Then, for S = {i : r < i < r ∗}, |S | ≥ λ and so X (S) > Z (S). However, since all the blocks
after B are adversarial, the length of the chain at round r ∗ is at most � + Z (S). By Chain Growth
Lemma (Lemma 4.2), the honest parties have chains with height at least � +X (S) > � + Z (S). This
contradicts the assumption that an honest party adopted C at round r ∗. �

We are able to argue that Theorem 4.11 is (asymptotically) tight under the simplification that ties
between blockchains of equal length always favor the adversary. In particular, we assume that the
functionmaxvalid at line 5 of Algorithm 4, in case of chains of equal length, will always return the
suggestion of the adversary if there is one. This simplification is made without loss of generality in
our model since the adversary is rushing and hence in case two chains are transmitted in a single
round the adversary can always arrange it so that its own solution arrives first.20 Furthermore, if
the number of honest parties is large, when an honest party discovers a solution in a round, all
other honest parties will prefer the one transmitted by the adversary and thus the effect of a single
honest party opting for its own block will be negligible.

Theorem 4.13. Assume � ≥ 2λf and n − t ≥ 2/ϵ . There exists an adversary such that, with

probability at least 1 − e−Ω(ϵ
2�), there will be � consecutive blocks in the chain of every honest party

of which at most

1 − (1 − ϵ) ·
t

n − t
+ 2ϵ,

are honest.

Proof. The attack is a type of “selfish mining” attack (it is a variation of the one in [32] and
appears to be folklore in bitcoin circles) that accomplishes the stated bound. The attack is as follows.
Initially, the adversary works on the same chain as every honest party. However, whenever it finds

20In fact, this rushing capability was argued to be realistic in [32] through the dispersion of sybil nodes in the Bitcoin

peer-to-peer network that echo the adversary’s messages.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:27

a solution it keeps it private and keeps on extending a private chain. Whenever an honest party
finds a solution, the (rushing) adversary releases one block from the private chain; if the private
chain is depleted the adversary returns to the public chain.
To analyze this strategy, consider a set S of at least �/(1 − ϵ)pq(n − t) consecutive rounds. The
adversary, by announcing each one of his Z (S) blocks simultaneously with a block announced by
an honest party, manages to include most of his Z (S) blocks in the chain of any honest party and
drop an equal number of honest blocks. We now upper bound the number of adversarial blocks
that may be orphaned and the number of adversarial blocks that would not be released in S .
Suppose the adversary drops his private chain CA1 · · ·Ak in favor for a chain CB1 · · ·Bk+1. In
such a case, all honest blocks B1, . . . ,Bk+1 have been computed by the same honest party, because
all other honest parties adopt the adversarial chain. Indeed, according to the strategy, the adversary
released each block Ai (i ∈ [k]) in the round Bi was computed. Since ties favor the adversary, the
only party to compute Bi+1 is the one that computed Bi . It follows that if k sequential adversarial
blocks A1, . . . ,Ak are orphaned, then there exist k + 1 sequential honest blocks B1, . . . ,Bk+1 that
were computed by the same honest party. For each query j by an honest party P extending a block
B, define a Boolean random variable D j to equal 1 if and only if query j was successful and B was
computed by P . Let D be equal to the sum of all D j for each query corresponding to a round in S .
We have argued that the orphaned adversarial blocks are at most D. We claim that

Pr[D > 2ϵ�] ≤ e−Ω(ϵ
2�).

To see this, we observe first that the same distribution is obtained if we first determine the oracle
outputs and then we assign identities randomly. Any block has probability 1/(n − t) to receive
the same identity as its predecessor. It follows that for any number of k blocks, the number of
blocks that contribute to D follows a Binomial distribution with parameters k and 1/(n − t). By
the Chernoff bound, at most 1+ϵ1−ϵ · � < 2� (ϵ < 1/3) honest blocks were computed in S . Assuming
n − t ≥ 2/ϵ , an expected number of at most ϵ� of these blocks contribute to D. The claim follows
by the Chernoff bound.
Nest, suppose the adversary does not release k of the blocks he acquired in S . This can only hap-
pen if none of the rounds inwhich he computed thesek blockswas successful for the honest parties.
The probability that there was no successful round among the last ϵ2 |S | rounds of S is at most

(1 − p)ϵ
2q(n−t) |S | < e−Ω(ϵ

2�).

Define S ′ to consist of the (1−ϵ2)|S | initial rounds of S . In a typical execution � ≤ X (S) ≤ (1+ϵ)�
and Z (S ′) ≥ (1 − ϵ2)�t/(n − t). Consider the segment of the chain of any honest party containing

the blocks computed in S . With probability at least 1 − e−ϵ
2� , the adversary released Z (S ′) blocks

and at most 2ϵ� of them were orphaned. This segment has length exactly X (S) and so the ratio of
adversarial blocks is at least

Z (S ′) − 2ϵ�

X (S)
≥
1 − ϵ2

1 + ϵ
·

t

n − t
−
2ϵ

1 + ϵ
≥ (1 − ϵ) ·

t

n − t
− 2ϵ �.

4.4 Adaptive Adversaries

In this section, we show that the ability to corrupt parties adaptively does not provide any advan-
tage to the adversary. We perform this via reduction to a static adversary and environment. We
will in fact reduce the adaptive security of the backbone protocol Πbb to the static security of a
variant of the protocol, Π′

bb
, which behaves identically with the sole difference that parties instead

of adopting the first chain of a certain length they become aware of, they adopt the most recent
one. It is straightforward to see that all the results of this section apply to Π′

bb
as well (in fact all

our proofs are independent of any chain “tie-breaking” performed by honest parties).

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:28 J. Garay et al.

Proposition 4.14. For any q, t ,n ∈ N with t < n, consider any adaptive adversary and environ-
ment pairA,Z as well as an event E ∈ {Bcp,Bcq,Bcg} over the view exect,n

Πbb,A,Z
, corresponding to the

failure of one of the three properties defined in Section 3.2, respectively. Then, there is a static adversary
and environment pair A′,Z′ such that it holds that E has the same probability over exect,n

Π′
bb
,A′,Z′ .

Proof. We describe A′,Z′ that simulate A,Z. A′ keeps a counter c , initially set to 0, and
initializes a mapping F : {P1, . . . , Pn} → {P1, . . . , Pn} to the identity mapping. A

′ keeps Z′ up
to date about F . A′ and Z′ use the correspondence F to route the party activations initiated by
A and Z. At the onset, A′ corrupts all parties with identities {P1, . . . , Pt }. From this point on it
simulates all parties, running the honest protocol until a corruption by A occurs. Moreover A′

keeps track of the state of all honest parties and orders the messages in all incoming tapes so that
any chains of the same length are sequenced with the one possessed by the honest party last (in
this wayA′ ensures that honest parties’ state in the Π′

bb
execution matches that of Πbb execution).

When A corrupts a party Pi , A
′ increments c , and updates F with the correspondence i ↔ c .

Let C be the chain of party Pi and C
′ the chain of party Pc at the time of corruption.A

′ delivers C
as the internal state of Pi toA (despite the fact that Pi remains uncorrupted in the static execution).
A′ also copies all messages directed to Pc to the incoming tape of Pi . Furthermore, in case |C| =
|C′|, A′ delivers to party Pi the chain C′ as the last message in the upcoming round (so that
party Pi adopts it). Next, we argue that the divergence by the above actions is not detectable
by A.
In case |C| < |C′|, this could only be caused by the fact that Pc updated his state in the current
round and hence a message containing C′ is on its way. As a result, during the next activation
of party Pc by A, party Pi will be activated instead by A

′ and they would become up to date
having received C′, and thus Pi will behave identically to the way party Pc would have. In case
|C′| < |C|, this similarly means that the message containing C originating from Pi is on its way;
as a result, the next time A activates party Pc , it is an A’s expectation that the update of party
Pi would be in its incoming tape, and thus party Pc ’s expected behavior matches party Pi ’s. Fi-
nally, in case |C′| = |C|, the substitution of the state of party Pi with that of party Pc guaran-
tees that party Pi will behave identically to party Pc , and hence will be undetectable in the view
of Z,A (recall that in both protocols Πbb,Π

′
bb
all parties run exactly the same code and ignore

their identity).
Based on the above it is easy to see that the probability of the events Bcp,Bcg remain the same
in both executions as they refer to purely structural aspects of the honest parties’ state. The event
Bcq relates to the contents of an honest party’s state; to see that this is also unaffected observe
that an adaptive corruption at any point of the execution does not change the honest/adversarial
designation of any block produced prior to that point. �

5 Simple PoW-based Byzantine Agreement Protocols

We now turn to applications of the Bitcoin backbone protocol, showing how it can be used as a
basis to solve other problems. We start in this section by analyzing Nakamoto’s suggestion for
solving BA, observing that it falls short of satisfying Definition 2.2; we then present our simple
instantiationwhich solves BA. This protocol, however, only tolerates an adversarial hashing power
less than 1/3, which takes us to the next section, where we present Bitcoin’s essential task, namely,
distributively maintaining a public transaction ledger, as well as a more elaborate BA protocol
tolerating an adversarial power strictly less than 1/2. For simplicity, the algorithms are specified
for the case of binary inputs, but the analysis applies to the case of inputs coming from an arbitrary
set V , |V | > 2. An overview of our applications and the way their properties depend on those of
the backbone protocol was already presented in Figure 1.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:29

Content validation pred-
icate V (·)

V (〈x1, . . . ,xn〉) is true if and only if it holds that v1 = . . . = vn ∈

{0, 1}, ρ1, . . . , ρn ∈ {0, 1}κ where 〈vi , ρi 〉 = xi , or n = 0.
Chain reading function
R(·) (parameterized by
k)

If V (xC) = True and len(C) > k , the value of R(C) is the (unique)
value v that is present in each block of C, while it is undefined if
V (xC) = False or len(C) ≤ k .

Input contribution func-
tion I (·)

If C = ∅ and (Insert,v) is in the input tape then I (st ,C, round,
Input) is equal to 〈v, ρ〉 where ρ ∈ {0, 1}κ is a random value; other-
wise (i.e., the case C � ∅), it is equal to 〈v, ρ〉 where v is the unique
v ∈ {0, 1} value that is present in C and ρ ∈ {0, 1}κ is a random
value. The state st always remains ϵ .

Fig. 4. Expressing Nakamoto’s BA protocol Πnak
BA

over the Bitcoin backbone protocol via the specification of

V (·),R(·), I (·).

5.1 Nakamoto’s Suggestion for Byzantine Agreement

As our first illustration of how the Bitcoin backbone can be usedwe present Nakamoto’s suggestion
for solving BA, as presented in a forum post [60].21 We describe his solution (call it Πnak

BA
) via

the backbone protocol by specifying the functions V (·), I (·),R(·) in a suitable way (see Figure 4).
The content validation predicate V (·) will be defined to require that all valid chains contain the
same input value together with a nonce. The chain reading function R(·) simply returns this value
(ignoring the nonce) in case the chain has length at least k (which is the security parameter);
otherwise it is undefined. The input contribution function I (·) examines the contents of the current
chain C and the contents of the input tape Input. In case C = ε the input contribution for the next
block is taken verbatim from the input tape; otherwise, the input contribution is determined as the
(unique) value that is already present in C (and in this case the local input is ignored). Note that
we will only consider environments Z that provide an input symbol to all parties. Note that the
nonce is added to ensure “work independence”: the parties need to introduce a fresh random κ-bit
nonce at each block (cf. the beginning of Section 4).
It follows that initially the protocol builds various chains all containing the same value. The
intuition is that Agreement will follow from the fact that the honest players will eventually agree
on a single chain, as long as the majority of the hashing power lies with the honest parties. While
this is true, as we will demonstrate, the second necessary property does not hold: this protocol
cannot provide Validity (with high probability).
As we now show, Agreement follows easily from the common prefix property. Indeed, as long as
there is a common prefix (irrespective of its length), it is ensured that when R(·) becomes defined,
all honest parties will produce the same output.

Lemma 5.1 (Agreement). Under the Honest Majority Assumption, it holds that ΠnakBA
from Figure 4

parameterized with k =
2f λ� running for a total number of rounds L ≥ 2k/f , satisfies Agreement
(cf. Definition 2.2) with probability at least 1 − ϵtyp.

Proof. First note that after L rounds every honest party has a chain with more than k blocks.
This follows from chain growth property (see Theorem 4.7), since τL ≥ 2(1 − ϵ)k > k (where
ϵ < 1/2 follows from the Honest Majority Assumption).
Observe that chains contain unique values (ignoring the nonces), therefore a disagreement be-
tween honest parties implies that two parties have disjoint chains (essentially, this is equivalent to

21Note that Nakamoto’s description is quite informal. We make the most plausible interpretation of it in our formal

framework.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:30 J. Garay et al.

Content validation pred-
icate V (·)

V (〈x1, . . . ,xn〉) is true if and only if v1, . . . ,vn ∈ {0, 1}, ρ1, . . . , ρn ∈

{0, 1}κ where vi , ρi are the values from the pair xi = 〈vi , ρi 〉, or
n = 0.

Chain reading function
R(·) (parameterized by
k)

If V (〈x1, . . . ,xn〉) = True and n ≥ 2k , the value R(C) is the ma-
jority bit of v1, . . . ,vk where xi = 〈vi , ρi 〉; otherwise (i.e., the case
V (〈x1, . . . ,xn〉) = False or n < 2k) the output value is undefined.

Input contribution func-
tion I (·)

I (st ,C, round, Input) is equal to 〈v, ρ〉 if the input tape contains
(Insert,v); ρ is a random κ-bit string. The state st remains always ϵ .

Fig. 5. Protocol Π
1/3
BA

over the Bitcoin backbone via the specification of V (·),R(·), I (·).

a fork that happens at the onset). It follows from the common prefix property (Theorem 4.10) that
two chains of lengthmore thank that are completely disjoint do not exist in a typical execution. �

On the other hand, it is easy to see that Validity cannot be guaranteed with overwhelming prob-
ability unless the hashing power of the adversary is negligible compared to the honest players, that
is, t/n is negligible. This is because in case the adversary finds a solution first, then every honest
player will extend the adversary’s solution and switch to the adversarial input hence abandoning
the original input. While one can still show that Validity can be ensured with non-zero probability
(and thus the protocol fails gracefully assuming honest majority), Πnak

BA
falls short from providing

a solution to BA. Interestingly, by appropriately modifying the way the backbone protocol is used,
we show in the next section how a solution can be derived.

5.2 A Byzantine Agreement Protocol for (1/3)-bounded Adversaries

Wenow show that the Bitcoin backbone can be directly used to satisfy BA’s propertieswith an error
that decreases exponentially in the length of the chain, assuming however that the adversary’s
hashing power is less than 1/3. There are two important differences with respect to the approach
in the previous section: (i) parties never abandon their original input but instead they do insist
in inserting it into the blockchain, and (ii) after round L they output the majority of their local
length-k prefix (note that here we consider binary BA). The protocol (i.e., the specification of the
functions V (·), I (·),R(·)) is presented in Figure 9.

Lemma 5.2 (Agreement). Under the Honest Majority Assumption, it holds that Π
1/3

BA
from Figure 9

parameterized with k =
2f λ� running for a total number of rounds L ≥ 4k/f , satisfies Agreement
with probability at least 1 − ϵtyp.

Proof. In order for agreement to be satisfied, it suffices to argue that the chains of all honest
parties begin with the same k blocks. Note that in a typical execution, by Lemma 4.6 and the
Chain-Growth Lemma, upon termination (i.e., after L rounds) the chain of every honest party has
more than (1 − ϵ)f L ≥ 4(1 − ϵ)k > 2k blocks (for the inequality note that ϵ ≤ δ/3 < 1/2).

Therefore, disagreement in the first k blocks among two chains C1 and C2 implies C

k
1 � C2, in

violation of the common prefix property. The statement follows by Theorem 4.10, assuming a
typical execution. �

Wenow turn to the Validity property. In order to prove it we need to show that, upon termination
of the protocol, the chain of any honest party will contain among the first k inputs more inputs
from honest players than provided by the adversary. As we will see, this is a consequence of the
chain quality property.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:31

Lemma 5.3 (Validity). Under the Honest Majority Assumption strengthened so that t ≤ 1−δ2 ·(n−t),

it holds that Π
1/3

BA
from Figure 9 parameterized with k =
2f λ� running for a total number of rounds

L ≥ 4k/f , satisfies Validity (cf. Definition 2.2) with probability at least 1 − ϵtyp.

Proof. For the property to be satisfied we only need to ensure that among the first k blocks
of any chain C that belongs to an honest party upon termination, the majority of the inputs was
computed by the honest parties. Assuming a typical execution, Theorem 4.11 applies to the first
k ≥ 2f λ blocks and the fraction of adversarial blocks is less than

1 − μ ≤
1 + f

(1 − f)(1 − ϵ)
·
1 − δ

2
+
(1 + f)ϵ

1 − ϵ
<

1 + f

(1 − f)(1 − ϵ)
·
1 − δ

2
+

ϵ

(1 − ϵ)(1 − f)

<
1

2
·
(1 − δ + f

1 − ϵ − f
+

2ϵ

1 − ϵ − f

)
≤
1

2
·
1 − δ + 2δ/3

1 − δ/3
=
1

2
,

where we used the strengthened assumption, along with 3ϵ + 3f ≤ δ and 1 + f < 1/(1 − f). �

Note that Π
1/3

BA
solves BA only in case the adversary’s hashing power is bounded by 1/3. In

case adversarial blocks win all head-to-head races within a round (as it is the case with a rushing
adversary), the analysis is tight by Theorem 4.13. In the next section, we show a more elaborate
construction based on a transaction ledger which can tolerate an adversary with hashing power
bounded by 1/2.
We can thus state the following.

Theorem 5.4. Under the Honest Majority Assumption strengthened so that t ≤ 1−δ2 ·(n−t), it holds

that protocol Π
1/3

BA
parameterized with k =
2f λ� running for a total number of rounds L ≥ 4k/f ,

satisfies Agreement and Validity (cf. Definition 2.2) with probability at least 1 − ϵtyp.

Remark 8. In particular, setting λ = Θ(log2 κ), we can achieve negligible probability of error in
O(log2 κ) rounds.

Remark 9. Asmentioned in Section 2, “Strong Validity” refers to the requirement that the output
value be one of the honest parties’ inputs, and the distinction is relevant in the case of non-binary
inputs, that is, coming from an arbitrary set V , |V | > 2. It is easy to modify the above algorithm
to also satisfy this property by making the chain reading function the element with highest plu-
rality in the chain (ties broken favoring the lexicographically smallest element in V), as opposed
to majority, and by imposing a more stringent bound on the adversary, namely, by bounding the
hashing power of the adversary by (1 − δ)/|V |. This ensures that the expected number of blocks
in the blockchain that are controlled by the adversary is less than 1

|V |
, and maintains validity even

in the worst case that the honest parties’ inputs are equally split among all possible values but
one (i.e., there are |V | − 1 inputs equally proportioned among the honest parties). Agreement is
ensured in the same way as before via the common prefix property.

Remark 10. It is interesting to note that to successfully solve consensus with protocol Π
1/3

BA
, we

do not need to know the precise number of parties before hand. A crude estimate N
c
≤ n ≤ N for

some constant c , suffices to obtain the same results. In particular, we may state the following.

Theorem 5.5. Under the Honest Majority Assumption strengthened so that t ≤ 1−δ2 · (n − t) and

assuming N
c
≤ n ≤ N for some constant c , it holds that protocol Π

1/3

BA
parameterized with k =
2f λ�

running for a total number of rounds L ≥ 4ck/f , satisfies Agreement and Validity (cf. Definition 2.2)
with probability at least 1 − ϵtyp.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:32 J. Garay et al.

Proof. The parameter of interest is f , which depends on the values of n and T . We may run
the protocol with the parameters chosen for the extreme case n = N . Note that this implies that
the probability of a successful round f ′ will be less than f . It is not hard to verify, however, that
f ′ ≥ f /c . Allowing the protocol to run c times longer, the same analysis holds. �

6 Public Transaction Ledgers

We now come to the application which the Bitcoin backbone was designed to solve: maintaining
a public transaction ledger. We first formally introduce this object—a “book” where transactions
are recorded—and its properties, and then we show how it can be used to implement the Bitcoin
ledger and BA in the honest majority setting by properly instantiating the notion of a transaction.

6.1 Robust Public Transaction Ledgers

A public transaction ledger is defined with respect to a set of valid ledgers L and a set of valid
transactions T , each one possessing an efficient membership test. A ledger x ∈ L is a vector of
sequences of transactions tx ∈ T . Each transaction txmay be associatedwith one ormore accounts,
denoted a1,a2, . . . and so on.
The backbone protocol parties, called miners in the context of this section, process sequences
of transactions of the form x = tx1 . . . txe that are supposed to be incorporated into their local
chain C. The input inserted at each block of the chain C is the sequence x of transactions. Thus,
a ledger is a vector of transaction sequences 〈x1, . . . ,xm〉, and a chain C of lengthm contains the
ledger xC = 〈x1, . . . ,xm〉 if the input of the jth block in C is x j . The position of transaction txj in
the ledger xC is the pair (i, j) where xi = tx1 . . . txe .
The description and properties of the ledger protocol will be expressed relative to an oracle

Txgen which will control a set of accounts by creating them and issuing transactions on their
behalf. In an execution of the backbone protocol, the environment Z as well as the miners will
have access to Txgen. Specifically, Txgen is a stateful oracle that responds to two types of queries
(which we purposely only describe at a high level):

—GenAccount(1κ): It generates an account a.
— IssueTrans(1κ , t̃x): It returns a transaction tx provided that t̃x is some suitably formed string,
or ⊥.

We also consider a symmetric relation on T , denoted byC(·, ·), which indicates when two trans-
actions tx1, tx2 are conflicting. Valid ledgers x ∈ L can never contain two conflicting transactions.
We call oracle Txgen unambiguous if it holds that for all PPT A, the probability that ATxgen pro-
duces a transaction tx′ such thatC(tx′, tx) = 1, for a tx issued by Txgen, is negligible in κ. We only
consider unambiguous Txgen oracles. Moreover, to simplify the exposition of this section, we will
assume that any sequence of non-conflicting transactions constitutes a valid ledger (our results,
however, hold for even more constrained ledger languages—cf. Section 6.2).
Finally, a transaction tx is called neutral if C(tx, tx′) = 0 for any other transaction tx′. The
presence of neutral transactions in the ledger can be helpful for a variety of purposes, as wewill see
next and in the BA protocol that we will build on top of the ledger in Section 6.3. For convenience
we will assume that a single random nonce ρ ∈ {0, 1}κ is also a valid transaction of the form
〈nonce, ρ〉. Nonces will be neutral transactions and may be included in the ledger for the sole
purpose of ensuring independence between the PoW instances solved by the honest parties.
Next, we determine the three functions V (·), I (·),R(·) that will turn the backbone protocol into
ΠPL, a protocol realizing a public transaction ledger. See Figure 6.
We now introduce two essential properties for a protocol maintaning a public transaction ledger:
(i) Persistence and (ii) Liveness. In a nutshell, Persistence states that once an honest player reports

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:33

Content validation pred-
icate V (·)

V (〈x1, . . . ,xm〉) is true if and only if the vector 〈x1, . . . ,xm〉 is a valid
ledger, that is, 〈x1, . . . ,xm〉 ∈ L.

Chain reading function
R(·)

If V (〈x1, . . . ,xm〉) = True, the value R(C) is equal to 〈x1, . . . ,xm〉;
undefined otherwise.

Input contribution func-
tion I (·)

I (st ,C, round, Input) operates as follows: if the input tape contains
(Insert,v), it parses v as a sequence of transactions and retains
the largest subsequence x ′ � v that is valid with respect to xC

(and whose transactions are not already included in xC). Finally,
x = tx0x

′ where tx0 is a neutral random nonce transaction. The
state st remains always ϵ .

Fig. 6. The public transaction ledger protocol ΠPL, built on the Bitcoin backbone.

a transaction “deep enough” in the ledger, then all other honest players will report it indefinitely
whenever they are asked, and at exactly the same position in the ledger (essentially, this means that
all honest players agree on all the transactions that took place and in what order). In a more con-
crete Bitcoin-like setting, Persistence is essential to ensure that credits are final and that they hap-
pened at a certain “time” in the system’s timeline (which is implicitly defined by the ledger itself).
Note that Persistence is useful but not enough to ensure that the ledger makes progress, that
is, that transactions are eventually inserted in a chain. This is captured by the Liveness property,
which states that as long as a transaction comes from an honest account holder and is provided
by the environment to all honest players, then it will be inserted into the honest players’ ledgers,
assuming the environment keeps providing it as an input for a sufficient number of rounds.22

We define the two properties below.23

Definition 6.1. A protocol Π implements a robust public transaction ledger in the q-bounded syn-
chronous setting if it organizes the ledger as a sequence of blocks of transactions and it satisfies
the following two properties:

— Persistence: Parameterized by k ∈ N (the “depth” parameter), if in a certain round an honest
player reports a ledger that contains a transaction tx in a block more than k blocks away
from the end of the ledger (such transaction will be called “stable”), then tx will be reported
by any honest player in the same position in the ledger, from this round on.
— Liveness: Parameterized by u,k ∈ N (the “wait time” and “depth” parameters, resp.), pro-
vided that a transaction either (i) issued by Txgen, or (ii) is neutral, is given as input to all
honest players continuously foru consecutive rounds, then all honest parties will report this
transaction more than k blocks from the end of the ledger, that is, all report it as stable.

Remark 11. Since in our model we abstract the transaction transmission to happen within the
environment programZ, we require that all honest parties should be given as input (fromZ) each
transaction so that the liveness property will guarantee its inclusion to the ledger. An alternate

22Observe that here we take the view that new transactions are available to all honest players and the way they are

propagated is handled by the environment that feeds the backbone protocol.While thismakes sense in the honest/malicious

cryptographic model, it has been challenged in a model where all players are rational [4]. Analysis of the backbone protocol

in a setting where transaction propagation is governed by rational players is beyond the scope of our paper. Still, it is

straightforward to use our results to argue about liveness even when some players do not receive all transactions by

applying the same reasoning as in Remark 2.
23We note that we provide a slightly different formulation for persistence and liveness compared to our original formulation

in [40]. Even though the conjunction of the two properties remains equivalent to the original formulation we believe the

current formulation is simpler to present.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:34 J. Garay et al.

formulation of the liveness property that would require transaction exchange between parties is
possible, in which case a single honest party would suffice to receive it as input.

Remark 12. It is useful to juxtapose our definition of a robust transaction ledger, as implemented
by a blockchain protocol, to the SMR problem [71], as realized by atomic broadcast [22]. In the SMR
scenario, a set of processors share the responsibility of implementing distributedly a state machine.
In this context, an instance of a state machine consists of state variables as well as commands that
modify the contents of the variables following a deterministic program. Processors agree on the
sequence of commands that may be submitted by a designated client (or alternatively, any of the
processors) and have to be applied in a timely manner. While many types of faults have been
considered, the most relevant one to our setting is that of Byzantine faults.
The notion of a robust transaction ledger introduced in this section can be used to implement
SMR by adopting the following convention: commands can be emitted as signed transactions only
by Txgen and it is up to the environment to deliver them to honest nodes. In more detail, valid
transactions are of the form (c,w) with c being a command and where w is a digital signature
whose secret key is managed by Txgen. The corresponding signature verification key is part of the
genesis block (by setting the value s in line 3 of Algorithm 3 equal to the verification key) and hence
signed symbols can be verified and only those that are valid will be accepted into the ledger by
V (·). Given a ledger xC containing a sequence of commands c1, . . . , cn from the stable transactions,
the machine will be at the state that results by the application of c1, . . . , cn to the initial state. We
observe that state updates will be applied in a timely manner as long as the environment delivers
them for u consecutive rounds to the honest miners. Note that the additional restriction to receive
updates signed by Txgen comes in handy, since otherwise the timeliness of a state update can
be broken even if the environment delivers it for u consecutive rounds (by, for example, simply
having the adversary “front-run” the update and deliver an alternative update).
On the flipside, SMRs are not sufficient to capture the class of systems that can be expressed
via a robust transaction ledger. The reason is that in an SMR, the outputs of the state machine are
completely determined by the given sequence of commands, while in a robust transaction ledger
the rules as expressed by V (·) can vary over time (using the number of blocks as a time-keeper).
As a result, a command to insert a certain transaction in the ledger can have a different outcome
depending on when it is submitted for processing. An SMR can achieve this by having a client act
as time-keeper (at the expense of a single point of failure) or have the processors run an additional
distributed protocol simulating a clock. In contrast, in a robust transaction ledger, as implemented
by the backbone protocol, the chain growth property (cf. Theorem 4.7) ensures that the length of
the blockchain acts as a clock.24

We prove the two properties separately, starting with Persistence. We note first that it is essen-
tial to require that the stability of the transaction is reported from the “next round on” from the
time that an honest party reports it as stable. Indeed, it is not guaranteed that parties simultane-
ously report a transaction as stable: the adversary may advance the chain of a certain player at
a specific round and thus make the transaction appear as stable when the environment checks it;
nevertheless at that round other honest parties may still have chains that have not advanced suffi-
ciently enough and thus report the transaction as not stable. This is akin to the lack of simultaneous
termination in early-stopping consensus protocols (cf. [27]).
The proof is essentially based on the common prefix property of the backbone protocol (recall
Definition 3.1 and Theorem 4.10).

24Note that Theorem 4.7 only proves a lower bound on chain growth, however it is easy to prove an upper bound with our

techniques—we leave the proof as an exercise to the reader.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:35

Lemma 6.2 (Persistence). Under the Honest Majority Assumption, it holds that ΠPL from Figure 6
parameterized with k =
2λf � satisfies Persistence (cf. Definition 6.1) with probability at least 1−ϵtyp.

Proof. Consider a typical execution and let C1 be the chain of honest player P1 at round r1.

Suppose a transaction tx is included in C

k
1 at round r1 (i.e., it is stable). Consider the chain C2 of

an honest party P2 at a round r2 ≥ r1. By the common prefix property, C

k
1 � C2. The statement

follows. �

We next prove Liveness, which is based on the chain quality property (recall Definition 3.2 and
Theorem 4.11) and the fact that the chain of honest parties grows at least as fast as the number of
blocks they produce (proven in Chain Growth Lemma 4.2).

Lemma 6.3 (Liveness). Under the Honest Majority Assumption, it holds that ΠPL from Figure 6
parameterized with u =
4λ/(1−ϵ)� rounds and k =
2λf � satisfies Liveness (cf. Definition 6.1) with
probability at least 1 − ϵtyp.

Proof. We prove that assuming all honest players receive as input the transaction tx for at
least u rounds, then in a typical execution there exists an honest party with chain C such that tx
is included in C
k . Indeed, in a typical execution, after u rounds the honest parties have at least
4λf = 2k successful rounds. Invoking Chain Growth Lemma (Lemma 4.2), we infer that the chain’s
length of any honest party has increased by at least 2k blocks.
Finally, the chain quality property (Theorem 4.11) implies that at least one of the blocks in the
length-k suffix of C
k was computed by an honest party. Such a block would include tx since it is
infeasible for adversarial Z,A to produce a conflicting transaction tx′ (which would be the only
event making an honest player drop tx from the sequence of transactions x that it attempts to
insert in the blockchain). Thus, the lemma follows. �

6.2 Bitcoin-like Transactions and Ledger

Next, we show how to instantiate the public transaction ledger for Bitcoin, by defining the sets of
transactions and valid ledgers.
Transactions and accounts are defined with respect to a digital signature scheme that is com-
prised of three algorithms 〈KeyGen, Sign,Verify〉. An account will be a pair a = (vk,G(vk)) where
G(·) is a hash function and G(vk) is the “address” corresponding to the account.
A transaction tx is of the form “{a1,a2, . . . ,a�i } → (σ , {(a′1,b

′
1), . . . , (a

′
�o
,b ′

�o
)}),” where

a1, . . . ,a�i are the addresses of the accounts to be debited, a
′
1, . . . ,a

′
�o
are the addresses of the

accounts25 to be credited with funds b ′1, . . . ,b
′
�o
, respectively, and σ is a vector 〈(vk1,σ1), . . . , (vk�i ,

σ�i)〉 of verification keys and digital signatures issued under them, on the same message
{(a′1,b

′
1), . . . , (a

′
�o
,b ′

�o
)}. (We note that Bitcoin transactions can be more expressive but the above

description is sufficient for the purpose of our analysis).
Next, we specify the Txgen oracle, which in the context of our analysis abstracts transaction
generation on behalf of the honest users.

—GenAccount(1κ): It generates an account a by running KeyGen and computing the hashG(·)
on the verification key. The account is the pair (vk,G(vk)), where G(vk) is the account’s
address. The corresponding secret key, sk , is kept in the state of Txgen.

25In bitcoin terminology every account has an address that is used to uniquely identify it. Payments directed to an account

require only this “bitcoin address.” The actual verification key corresponding to the account will be revealed only when

the account makes a payment.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:36 J. Garay et al.

— IssueTrans(1κ , t̃x): It returns a transaction tx provided that t̃x is a transaction that is only
missing the signatures by accounts that are maintained by Txgen. (Recall the format of trans-
actions above.) Each account is only allowed a single transaction and its balance is always
moved forward in its entirety.

Note that the above restriction on IssueTrans is without loss of generality, as in Bitcoin, enti-
ties typically maintain a number of accounts and are allowed (although not forced) to move their
balances forward to a new account as they make new transactions. The conflict relation C(·, ·)
over T satisfies that C(tx1, tx2) = 1 if and only if tx1 � tx2 and tx1, tx2 have an input account in
common.26 Thus, it is straightforward to prove the unambiguity of the Txgen oracle based on the
unforgeability of the underlying digital signature (we leave the proof as an exercise for the reader).

Lemma 6.4. Assume that 〈KeyGen, Sign,Verify〉 is an existentially unforgeable signature scheme.
Then oracle Txgen is unambiguous.

In order to define the set of valid Bitcoin ledgers we first need to determine in what sense a
transaction may be valid with respect to a ledger. Then we will define the set of valid ledgers
recursively as the maximal set of vectors of sequences of transactions that satisfy this condition.
So here it goes.
A transaction tx is valid with respect to a Bitcoin ledger x = 〈x1, . . . ,xm〉 provided that all

digital signatures verify and
∑�i

j=1 bj ≥
∑�o

j=1 b
′
j , where bj is the balance that was credited to ac-

count aj in the latest transaction involving aj in x. In case e =
∑�i

j=1 bj −
∑�o

j=1 b
′
j > 0, then e is

a transaction fee that may be claimed separately in a special transaction of the form “∅ → . . .,”
called a generation transaction. In more detail, a generation transaction has no inputs and its pur-
pose is to enable miners to be rewarded for maintaining the legder. The transaction is of the form

“∅ → {(a1,b1), . . . , (a�o ,b�o)},” and
∑�o

j=1 bj is determined based on the other transactions that are

“bundled” in the block as well as a flat reward fee, as explain below.
A sequence of transactions x = 〈∅ → {(a1,b1), . . . , (a�o ,b�o)}, tx1, . . . , txl 〉 is said to be valid
with respect to a ledger x = 〈x1, . . . ,xm〉, if each transaction txj is valid with respect to the ledger
x extended by the transactions tx1, . . . , txj−1. I.e., for all j = 1, . . . , l the transaction txj should be
valid with respect to ledger

〈x1, . . . ,xm , tx1 . . . txj−1〉,

and furthermore, the total fee collected in the transaction ∅ → {(a1,b1), . . . , (a�o ,b�o)} does not ex-
ceed r (x)+

∑m
j=1 ej , which includes all the individual fees corresponding to transactions tx1, . . . , txl ,

plus a value r (x) that is the flat reward given for extending the ledger x = 〈x1, . . . ,xm〉.
27

The set of valid ledgers L with respect to a reward function r (·) contains ε (the empty ledger),
and any ledger x which extends a ledger in L by a valid sequence of transactions. Note that
the first transaction sequence of any ledger x ∈ L contains a single transaction of the form

∅ → {(a1,b1), . . . , (a�o ,b�o)} that satisfies
∑�o

j=1 bj = r (ε), where r (ε) is the initial flat reward.

This first transaction rewards the ledger’s initiator(s).28 It is easy to see that L has an efficient
membership test.
Given the existence of generation transactions in this application we can do away with random
nonces as standalone transactions and the description of the input contribution function I in

26The conflict relation is more permissive in the actual Bitcoin ledger. We adopt the more simplified version given above

as it does not change the gist of the analysis.
27Initially, the flat reward for extending the Bitcoin chain was 50 BTC. The function r (·) in Bitcoin halves the reward every

210,000 generation transactions.
28In the case of Bitcoin, it was supposedly Nakamoto himself who collected this first reward of 50 BTC.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:37

Figure 6, is modified to include their generation each time an input sequence of transactions
is determined to be inserted in the ledger. Specifically, I (·) will form a generation transaction
∅ → {(a,b)}, where b = r (x) +

∑m
j=1 ej and ej is the fee corresponding to x ’s jth transaction.

Account a is a freshly created account that is obtained interacting with Txgen. I (·) will append
account a to its private state st .
We will refer to the modified ΠPL protocol by the moniker ΠBTC. ΠBTC inherits from ΠPL
the properties of Persistence and Liveness which will ensure the following with overwhelming
probability in k .

— Apart from its latest k blocks, the transaction ledger is fixed and immutable for all honest
miners.
— If a majority of miners29 receive an honest transaction and attempt to insert it following
the protocol for a sufficient number of rounds (equal to parameter u, the “wait time”), it will
become a permanent entry in the ledger (no matter the adversarial strategy of the remaining
miners).

Remark 13. We remark that in the adaptive corruption setting, the Txgen oracle would safeguard
the keys of honest parties from the adversary.

6.3 Byzantine Agreement for Honest Majority

We now use the public transaction ledger formulation to achieve PoW-based BA for an honest
majority by properly instantiating the notion of a transaction, thus improving on the simple BA
protocol tolerating a (1/3)-bounded adversary presented in Section 5.
Here we consider a set of valid ledgers L that contain sequences of transactions of the form

〈nonce,v, ctr 〉, and satisfy the predicate:

(H1(ctr ,G(nonce,v)) < T) ∧ (ctr ≤ q), (6)

where H1(·),G(·) are two hash functions as in the definition of the backbone protocol, and v ∈

{0, 1} is a party’s input. (Recall that T is the difficulty level and q determines how many calls to
H1(·) a party is allowed to make per round.) To distinguish the oracles, in this section we will use
H0(·) to refer to the oracle used in the backbone protocol.
For the ledger we consider in this section, there will be no accounts and all transactions will be
neutral — that is, the conflict predicate C(·, ·) will be false for all pairs of transactions.
We first provide a high level description of the BA protocol assuming parties have q queries
per round to each oracle H0(·),H1(·). We then show how to use a single oracle H (·) to achieve the
combined functionality of both of them while only using q queries per round.

At a high level, the protocol, Π
1/2

BA
, works as follows:

—Operation: In each round, parties run two protocols in parallel. The first protocol is protocol
ΠPL (Figure 6), which maintains the transaction ledger and requires q queries to the oracle
H0(·). The second process is a “transaction production” protocol Πtx (Figure 7), which con-
tinuously generates transactions satisfying predicate (6). The protocol makes q queries to
the H1(·) oracle.
— Termination: After (a predetermined) round L, a party collects all the unique PoW transac-
tions that are present in the first
 3k

δ
� + k blocks and returns the majority bit from the bits

occurring in these transactions (note that uniqueness takes also thenonce of each transaction
into account).

29Recall that we assume a flat model w.r.t. hashing power; a majority of miners corresponds to a set of parties controlling

the majority of the hashing power.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:38 J. Garay et al.

ALGORITHM 5: The PoW-based transaction production protocol Πtx, parameterized by q, T and
hash functions H1(·),G(·).

1: v ← Input
2: ctr ← 1
3: tx← ε
4: h ← G(nonce,v) � nonce is a random κ-bit string
5: while (ctr ≤ q) do
6: snew ← H1(ctr ,h)
7: if (snew < T) then � PoW succeeded
8: tx← (〈nonce,v, ctr 〉, snew)
9: break

10: end if

11: ctr ← ctr + 1
12: end while

13: Diffuse(tx)

Fig. 7. The transaction production protocol Πtx.

As described, protocol Π
1/2

BA
does not conform to the q-bounded setting since parties require

q queries to oracle H0(·) and q queries to oracle H1(·) to perform the computation of a single
round (the setting imposes a bound of q queries to a single oracle for all parties). Note that a
naïve simulation of H0(·),H1(·) by a single oracle H (·) in the (2q)-bounded setting (e.g., by setting
Hb (x) = H (b,x)) would violate the restriction imposed on each oracle individually, since nothing
would prevent the adversary, for example, from queryingH0(·) 2q times. Next, we showhowwe can
combine the two protocols into a single protocol that utilizes at most q queries to a single random
oracle in a way that the adversary will remain q-bounded for each oracle. This transformation,

explained below, completes the description of Π
1/2

BA
.

2-for-1 PoWs. We now tackle the problem of how to turn a protocol operation that uses two
separate PoW subprocedures involving two distinct and independent oracles H0(·),H1(·) into a
protocol that utilizes a single oracle H (·) for a total number of q queries per round. Our transfor-
mation is general and works for any pair of protocols that utilizeH0(·),H1(·), provided that certain

conditions are met (which are satisfied by protocol Π
1/2

BA
above). In more detail, we consider two

protocols Π0,Π1 that utilize a PoW step as shown in Algorithm 6 in Figure 8.
In order to achieve composition of the two protocols Π0,Π1 in the q-bounded setting with access
to a single oracleH (·), we will substitute steps 2-11 in both protocols with a call to a new function,
double-pow, defined below. First, observe that in Πb , b ∈ {0, 1}, the PoW steps 2–12 operate with
inputwb and produce output in Bb if the PoW succeeds. The probability of obtaining a solution is
T · 2−κ .
The modification consists in changing the structure of the PoWs from pairs of the form (w, ctr)
to triples of the form (w, ctr , label), where label is a κ-bit string that is neutral from the point of
view of the proof. This will further require the modification of the verification step for PoWs in
both protocols Π0,Π1 in the following manner.

— Any verification step in Π0 of a PoW 〈w0, ctr 〉 which is of the form H (ctr ,G(w0)) < T , will
now operate with a PoW of the form 〈w0, ctr , label〉 and will verify the relation

H (ctr , 〈G(w0), label〉) < T .

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:39

ALGORITHM 6: PoW-based protocol frag-
ment of Πb , b ∈ {0, 1} parameterized by q,
T and hash functions Hb (·),G(·), b ∈ {0, 1}.
The value wb is determined from the proto-
col’s context.

1: . . . � Valuewb is determined
2: Bb ← ε
3: ctr ← 1
4: hb ← G(wb)

5: while (ctr ≤ q) do
6: snew ← H (ctr ,hb)
7: if (snew < T) then
8: Bb ← 〈wb , ctr 〉
9: break

10: end if

11: ctr ← ctr + 1
12: end while

13: . . . � The PoW Bb is used here

ALGORITHM 7: The double PoW function,
parameterized by q, T and hash functions
H (·),G(·) that substitutes steps 2–12 of two
PoW-based protocols.

1: . . . � Valuesw0,w1 are determined
2: B0,B1 ← ε
3: ctr ← 1
4: h ← 〈G(w0),G(w1)〉
5: while (ctr ≤ q) do
6: snew ← H (ctr ,h)
7: if (snew < T) ∧ (B0 = ε) then
8: B0 ← 〈w0, ctr ,G(w1)〉
9: end if

10: if ([snew]
R < T) ∧ (B1 = ε) then

11: B1 ← 〈w1, ctr ,G(w0)〉
12: end if

13: ctr ← ctr + 1
14: end while

15: . . . � The PoWs B0,B1 are used here

Fig. 8. The 2-for-1 PoW transformation.

—Any verification step in Π1 of a PoW 〈w1, ctr 〉 which is of the form H (ctr ,G(w1)) < T , will
now operate with a PoW of the form 〈w1, ctr , label〉 and will verify the relation

[H (ctr , 〈label ,G(w1)〉)]
R < T ,

where [a]R denotes the reverse of the bitstring a.

This parallel composition strategy in the form of the pseudocode segment is shown in
Algorithm 7. Either or both the solutions it returns, B0,B1, may be empty if no solution is found.

Protocol Π
1/2

BA
will employ 2-for-1 PoW, which will substitute the individual PoW operation of

the two underlying protocols Π0,Π1 as defined in lines 2–11 of Algorithm 6. The correctness of
the above composition strategy follows from the following simple observation.

Lemma 6.5. Consider a uniform random variable U over the integers in [0, 2κ) and an integer T
such that T = 2t for some positive integer t > κ/2. Then, the events (U < T) and ([U]R < T) are
independent and they both occur with probability T · 2−κ .

Proof. It is easy to see that each event happens with probability T · 2−κ . The conjunction of
the two events involves the choice of an integer U which satisfies U < T and [U]R < T . Observe
that because T = 2t , it follows that the conditioning on U < T leaves the t least significant bits
of U uniformly random while fixing the remaining κ − t bits. Consider the space conditioned on
the event U < T . By the discussion above, t most significant bits of [U]R are uniformly random,
while the event [U]R < T fixes κ − t of these. It follows that the event [U]R < T has probability
2t−(κ−t)/2t = T · 2−κ , in the conditional space, and so the two events are independent. �

Theorem 6.6. Under the Honest Majority Assumption, it holds that protocol Π
1/2

BA
parameterized

with k =
2λf � running for a total number of rounds L ≥ 5k
(1−ϵ)δ f , satisfies Agreement and Validity

(cf. Definition 2.2) with probability at least 1 − ϵtyp.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:40 J. Garay et al.

Remark 14. As we remarked after Theorem 5.4, setting λ = Θ(log2 κ) we achieve optimally
resilient consensus with negligible probability of error in O(log2 κ) rounds.

Proof. First observe that due to Lemma 6.5 the success probability for all parties to solve a PoW
of either kind in each round is independent. In the following, we assume the properties of typical
execution for both kinds of blocks.
To verify Agreement, note that by Chain Growth (Theorem 4.7) the chain of every honest party

is of length at least (1 − ϵ)f L ≥
 3k
δ
� + 2k at the end of the L rounds. Thus, the parties prune at

least k blocks and Agreement follows directly from the common prefix property.
We next focus on Validity. Consider the prefix C of length
 3k

δ
� + k of an honest party’s chain

upon termination. By the chain quality property (see Corollary 4.12), the last k blocks of C do
contain an honest block B computed at some round r . Define the sets of consecutive rounds
S = {i : i < r } and S ′ = {i : i < r+λ}. By Lemma 4.8, |S | ≥ 3k

2δ f ≥ 3λ
δ
and so |S ′ | = |S |+λ ≤ (1+ δ

3)|S |.

Clearly, there are at leastX (S) honest inputs in C. By Corollary 4.12, the adversarial blocks in C are
at most Z (S ′). The following sequence of inequalities shows that the majority of inputs are honest.

Z (S ′)

X (S)
<

(1 − 2δ/3)f |S ′ |

(1 − ϵ)f |S |
<

(1 − 2δ/3)(1 + δ/3)

1 − ϵ
<
1 − δ/3

1 − ϵ
< 1.

The first inequality uses Lemma 4.6, the second uses the upper bound on S ′ above, and the last
follows form ϵ < δ/3. �

Remark 15. Regarding Strong Validity in the multivalued BA setting, that is, where the input
domain isV and has a constant cardinality strictly larger than two we can adapt the above protocol
to return the plurality from the values stored in the transactions that are found in the ledger. In
order to ensure strong Validity by this modification we restrict the hashing power of the adversary
to (1−δ)/(|V |−1) since thiswill ensure that the adversary’s number of transactions cannot overturn
the plurality value as defined by the honest parties’ inputs (even if those are evenly distributed
amongst them). The bound is in-line with the known bounds for the computational setting with
trusted setup, n > |V |t , cf. [35].

7 The Bitcoin Backbone in the Bounded-Delay Model

In this section, we show how we can extend our analysis to the bounded delay model with static
adversaries. The bounded delay model is identical to the model of Section 2 with the following
modifications: (1) the parameter q is fixed to be 1, (2) the diffuse functionality allows for Δ-delays,
that is, when it inspects the contents of all Receive strings, it will necessarily include messages if
they are Δ rounds old. Note that Δ is a parameter of the execution that is unknown to the honest
protocol participants (in contrast to q). Observe that now rounds are just units of time rather than
message passing rounds where all messages are supposed to be delivered to honest parties from
the previous round.
We now describe how to extend our analysis in the bounded delay setting. The most crucial
observation is in the notion of uniquely successful round: specifically, while in the synchronous
setting we were counting uniquely successful rounds, now we need to count Δ-isolated uniquely
successful rounds, where isolated means that there is a window of Δ rounds before and after where
no other successful round took place for the honest parties. (This notion is analogous to the def-
inition of convergence opportunity in [66].) In the rest of this section, we first present formally
the parts of the analysis that differ significantly and then discuss informally how the rest of the
analysis can be adjusted so that analogous statements can be obtained.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:41

Content validation pred-
icate V (·)

V (〈x1, . . . ,xn〉) is true if and only if the string x1 . . . xn can be parsed
as a sequence of n′ unique triples of the form 〈vi , ρi , ctri 〉 for some
n′ ≥ 0, and it holds thatv1, . . . ,vn′ ∈ {0, 1}, ρ1, . . . , ρn′ ∈ {0, 1}κ and
each ((vi , ρi), ctri) is a valid PoW.

Chain reading function
R(·) (parameterized by
k)

If V (〈x1, . . . ,xn〉) = True and n ≥ k ′ =
 3k
δ
� + 2k , the value R(C)

is the majority bit of v1, . . . ,vn′ where xi = 〈vi , ρi , ctri 〉, is the i-
th triple in string x1 . . . xk ′−k with i ∈ {1, . . . ,n′} for some n′ ≥ 0.
otherwise the output value is undefined.

Input contribution func-
tion I (·)

I (st ,C, round, Input), given an input tape containing (Insert,v), the
output of I (·) is equal to a sequence of n′ values 〈v, ρi , ctri 〉; where
each ρi is a random κ-bit string and ctri is a suitable string so that
((v, ρi), ctri) is a valid PoW. Note that I (·)will perform q queries30per
round to H (·) and n′ will be equal to the number of PoWs discovered
during these q queries. The state st remains always ϵ .

Fig. 9. Protocol Π
1/2
BA

over the Bitcoin backbone via the specification of V (·),R(·), I (·).

Inmore details, we can replace theYi random variable by a random variableY
′
i defined as follows.

It takes values in {0, 1} and Y ′
i = 1 if and only if round i was uniquely successful (i.e., Yi = 1) and

X j = 0 for each j � i such that |j − i | < Δ. When Y ′
i = 1, we call i a Δ-isolated uniquely successful

round (we may drop Δ if it is clear from the context). We have

E[Y ′
i] ≥ f (1 − f)2Δ−1.

To verify this inequality observe that the bound E[Yi] ≥ f (1− f) in (2) still holds (with q = 1 in the
definition of f) and that the event that anyone of the 2Δ − 2 surrounding rounds is unsuccessful
is independent of the other rounds and equal to (1 − f).
We remark that the definition of isolated successful round is adopted with the goal that the (easy
but crucial) observation of Lemma 4.1 still holds. This is the main difference with the q-bounded
model; in what follows we will argue that the same lemmas and theorems still hold, with small
modifications of proofs and parameters.
To obtain a Chain Growth Lemma, cf. Lemma 4.2, although we could use the isolated uniquely
successful rounds, it is more natural and gives slightly better results if we use a new Boolean
variable X ′

i . For a round i , we define X
′
i = 1, if Xi = 1 and X j = 0 for each j such that i − Δ < j < i .

When X ′
i = 1, we call i an isolated successful round. We have

E[X ′
i] = f (1 − f)Δ−1.

Lemma 7.1 (Chain Growth Lemma in the Bounded-Delay Model). Suppose that at round u
an honest party has a chain of length �. Then, by roundv ≥ u +Δ−1, every honest party has adopted
a chain of length at least

� +
∑

u≤r ≤v−Δ

X ′
r .

Proof. By induction on v . For the basis (v = u + Δ − 1), observe that if at round u an honest
party has a chain C of length �, then that party broadcasts C at a round earlier than u. It follows
that every honest party will receive C by round u − 1 + Δ = v .

30These queries will be combined with the q queries of the proof of work function Algorithm 3 using the 2-for-1 PoW

transformation.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:42 J. Garay et al.

For the inductive step, assume the inductive hypothesis for v − 1 and consider two cases. First,
consider X ′

v−Δ = 0, in which case we have

� +
∑

u≤r ≤v−Δ

X ′
r = � +

∑
u≤r<v−Δ

X ′
r = �

′.

By the inductive hypothesis every honest party has received a chain of length at least �′ by round
v − 1.
For the second case, X ′

v−Δ = 1. By the inductive hypothesis, by round v − Δ, every honest party
has adopted a chain of length at least

�′ = � +
∑

u≤r ≤v−2Δ

X ′
r = � +

∑
u≤r<v−Δ

X ′
r ,

where the second equality holds because X ′
v−Δ = 1 implies X

′
r = 0 for all v − 2Δ < r < v − Δ. It

follows that every honest party queried the oracle with a chain of length at least �′ at round v −Δ.
Hence, all honest parties successful at round v − Δ broadcast a chain of length at least �′ + Xv−Δ.
This chain will be received by every honest party by roundv . SinceX ′

v−Δ = 1, using the expression
for �′ displayed above, we have

�′ + Xv−Δ = �
′ + X ′

v−Δ = � +
∑

u≤r ≤v−Δ

X ′
r

and this completes the case and the proof. �

Definition 7.2 (Typical Execution in the Bounded-delay Model). An execution is (ϵ, λ,Δ)-typical,
with ϵ ∈ (0, 1), λ ≥ 2/f , and integer Δ, if, for any set S of at least λ consecutive rounds, the
following hold.

(a) (1 − ϵ)E[X ′(S)] < X ′(S), X (S) < (1 + ϵ)E[X (S)] and (1 − ϵ)E[Y ′(S)] < Y ′(S).
(b) Z (S) < E[Z (S)] + ϵE[X ′(S)].
(c) No insertions, no copies, no guesses, and no predictions occurred.

Theorem 7.3. An execution is typical with probability at least

1 − 4L2e−Ω(ϵ
2λf 2(1−f)4Δ−2) − 3Q22−κ − [(n − t)L]22−ν .

Proof. Note that Y ′
i and Y

′
j are not independent anymore when |i − j | < 2Δ and the standard

Chernoff bound does not apply. (Similarly for X ′
i and X

′
j .) However, Y

′(S), as a function of the

honest queries in S , is 2-Lipschitz (see Definition A.2). This is because each query in a round i
affects Y ′

j only if |i − j | < Δ and there can be at most two Y ′
j ’s equal to 1 in an interval of length

2Δ − 1. By Theorem A.3 we obtain

Pr[Y ′(S) ≤ (1 − ϵ)E[Y ′(S)] ≤ Pr[Y ′(S) < E[Y ′(S)] − ϵ f (1 − f)2Δ−1 |S |] ≤ e−
1
2 ϵ
2f 2(1−f)4Δ−2λ .

The argument for X ′(S) is similar to the above and the rest to Theorem 4.5. �

The honest majority assumption (the part relating ϵ, f , and δ) needs to be strengthened to ac-
commodate the decreased values of E[Y ′

i] and E[X
′
i]. In particular, in the inequality 3ϵ + 3f < δ ,

instead of f , the product Δf should appear (with an appropriate constant). This is because, in view
of the expectations calculated above, we now deal with (1 − f)Δ ≥ 1 − Δf instead of (1 − f).
We now discuss Chain Growth, Common Prefix, and Chain Quality.

Chain Growth. Note that Lemma 4.8 holds as is, since its proof relies only on the bounds for
X (S) and Z (S). Combining with the Chain Growth Lemma (Lemma 7.1) for this model, we obtain
that the Chain Growth Property holds with parameter τ = (1 − ϵ)f (1 − f)Δ−1.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:43

Common Prefix. To prove a Common Prefix Lemma we may follow the proof of the correspond-
ing Lemma 4.9. The difference is that with respect to the honest parties we need to consider the
set of rounds S = {i : r ∗ + Δ < i < r − Δ − 1}. As already mentioned, the definition of a
Δ-isolated uniquely successful round is such that, if we substitute such rounds for uniquely suc-
cessful, Lemma 4.1 holds in the bounded-delay model. Thus, we can pair each Δ-isolated uniquely
successful round in S with an adversarial block computed in S ′. To finish the proof we need to
argue that

Z (S ′) ≥ Y ′(S),

and that the additional rounds in S ′ are not enough to compensate the adversary’s inferior com-
putational power. Note that an increased lower bound for k will be required in the statement of
the lemma, to absorb the decreased growth rate. This bound will be needed to obtain an analogous
statement to that of Lemma 4.8. Then, the Common Prefix property for a typical execution can
follow with exactly the same proof as that of Theorem 4.10.

Chain Quality. The Chain Quality property will require an increased lower bound for �, to ac-
count for the decreased growth rate. The proof of Theorem 4.11 should be adjusted so that it refers
to isolated successful rounds instead of the (simply) successful ones. This in turn asks for the con-
sideration of S ′ = {r : r1 ≤ r < r2 − Δ} instead of S . As in common prefix, the intuition here is
that the few added rounds the adversary has in his disposal are not enough to compensate for his
inferior computational power.

Remark 16. Given the above arguments on the three basic properties, chain growth, chain qual-
ity and common prefix, it follows in that all our applications from Sections 5 and 6 can be ported
to the bounded-delay setting. With respect to the consensus protocols in particular, if parameter k
is sufficiently large to absorb an additive term 2Δ (see chain quality and common prefix properties
above) and parameter L is sufficiently large to incorporate a multiplicative factor (1 − f)1−Δ (see
chain growth property above), then the same arguments carry over. Note that this does not con-
tradict the impossibility result of [30] as the security of the resulting consensus protocols cannot
be inferred for any choice of Δ but only hold if Δ,L,k, f satisfy the above relations. In fact, if Δ is
chosen adversarially given the other parameters common prefix is violated, cf. [66].

8 Summary and Directions for Future Work

In this article, we presented a formal treatment of the Bitcoin backbone, the protocol used at the
core of Bitcoin’s transaction ledger. We identified and proved basic properties of the backbone
protocol — “common prefix,” “chain quality,” “chain growth” — and showed how they can be used
as foundations for designing BA and robust public transaction ledger protocols. Our results show
that a (near) honest majority among the (equally equipped) participants suffices, assuming the
network synchronizes much faster than the PoW rate (i.e., f is relatively small using our notation),
the proper inputs (e.g., transactions) are available to the honest majority,31 while the bound on the
adversary for honest parties to reach agreement degenerates as f gets larger.
While these are encouraging results, we have demonstrated deviations that are of concern for
the proper operation of Bitcoin. Importantly, we show that as the network ceases to synchronize
fast enough compared to the PoW rate (i.e., the worst-case time that takes honest players to “hear”
each other becomes substantial compared to the time it takes to solve a PoW), the honest majority
property ceases to hold and the bound offered by our analysis that is required to obtain a robust

31Our formalization is a way to express what perhaps was Nakamoto’s intuition when he wrote about Bitcoin that “it takes

advantage of the nature of information being easy to spread but hard to stifle” [61].

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

25:44 J. Garay et al.

transaction ledger approaches 0 as f approaches 1. Note that the effects of bad synchronization
is in the maintenance of the Common Prefix property, which is the critical property for showing
agreement. A tight characterization of this behavior was provided in follow-up work, [26, 45].
A second important concern is regarding the chain quality property, where our results show
that if an adversary controls a hashing power ratio corresponding to some value t/n then the ratio
of the blocks it can contribute to the blockchain is bounded but can be strictly bigger than t/n,
approaching t/(n − t) in the worst case.
The above caveats in the two basic properties of the backbone protocol have repercussions
on the Persistence and Liveness properties of the Bitcoin ledger. Firstly, they illustrate that fast
information propagation amongst honest players (in relation to PoW) is essential for transaction
persistence. Secondly, they show that transaction liveness becomes more fragile as the relative
adversarial power t/(n−t), gets close to 1. Note that we achieve Liveness for any relative power less
than 1 but we do not assume any upper bound on the number of transactions that may be inserted
in a block;32 it is obvious that the fewer blocks the honest miners get into the blockchain the harder
may be for a transaction to get through. Furthermore, the fact that chain quality demonstrably
fails to preserve a linear correspondence between a party’s hashing power and the ratio of its
contributions to the ledger point to the fact that Bitcoin’s rewarding mechanism is not incentive
compatible (cf. [32]). In fact we show that the relative hashing power t

n−t
is the essential upper

bound on chain quality for the Bitcoin backbone —a result we show also to be tight in our rushing
adversary model. In this way, our results flesh out the incentive compatibility problems of the
Bitcoin backbone, but, on a more positive note, they also point to the fact that an honest hashing-
power majority is sufficient to maintain the public ledger (under favorable network conditions),
and hence suggest that the Bitcoin protocol can work as long as the majority of the miners want
it to work (without taking into account the rationality of their decision—see below for follow-up
work in this direction).
The above observations apply to the setting where the number of participants is fixed. In the
dynamic setting (where the number of parties running the protocol may change from round to
round), given the flat model that we consider, the difficulty of the blockchain, determined by the
target T , may be calibrated according to the number of players n that are active in the system.
If T is set by an omniscient trusted party then the analysis carries in a straightforward way but
otherwise, if T is somehow calculated by the parties themselves, the adversary can try to exploit
its calculation. Note that in this case the maxvalid function would need to take the difficulty’s
variability into account and thus choose the “most difficult” chain (as opposed to the longest).
Comparing chains based on difficulty is simply done by computing the length of a chain by count-
ing blocks proportionally to how difficult they are (for example, a block whose difficulty is two
times larger than a given difficulty value would contribute twice as much in “length”). The analysis
of the Bitcoin backbone protocol with chains of variable of difficulty is the subject of our follow-up
work [41].
Our security analysis is property-based, and holds for stand-alone executions. A follow-upwork,
which offers a simulation-based, composable treatment of the Bitcoin backbone protocol was pre-
sented by Badertscher et al. in [7]. Further, we mentioned above incentive compatibility and ma-
jority of miners wanting the protocol to work. Some follow-up work has focused on the security
analysis of the Bitcoin backbone protocol in a rational setting as opposed to our cryptographically
standard honest/malicious setting. In particular, in [6] Badertscher et al. formally show that as-
suming a natural class of incentives for the miners’ behavior—that is, rewarding them for adding

32Increasing the block size in the Bitcoin protocol parameterization in order to accomodate more transactions has been an

important and long running debate in the Bitcoin community.

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

The Bitcoin Backbone Protocol: Analysis and Applications 25:45

blocks to the blockchain but having them pay for mining—one can reserve the honest-majority
assumption as a fallback: in the setting where the utility of the miners aligns with the rational
modeling they provide, the Bitcoin backbone protocol will work as expected.
Other interesting open questions include the substitution of the random oracle assumption with
a suitable computational assumption, as well as the development of backbone modifications that
improve its characteristics in terms of common prefix and chain quality; see [43, 44] for some work
in this direction. In terms of the ledger application, transaction processing times (i.e., reducing the
wait time parameter u in the Liveness property) is also an interesting question with implications
to practice (since real-world payment systems benefit greatly from fast transaction confirmation
and verification—see, for example, [23] for scalability issues and suggestions). In all these cases,
our work offers a formal foundation that allows analyzing the security properties of “tweaks” on
the backbone protocol (such as the randomization rule of [32] or the “GHOST” rule in [72] used
in Ethereum33) towards meeting the above goals.
We remark that follow-up work has examined additional backbone protocol properties, proto-
cols and model extensions. For instance, we have already mentioned the chain growth property,
introduced in [51] which enables one to abstract the blockchain feature of being able to grow
unhindered by the adversary. While this is a quite simple property to prove for the Bitcoin back-
bone, it becomes more subtle in alternative blockchain protocols such as those using the GHOST
rule [72]; see [52] for an analysis of such protocols. In [66], Pass et al. put forth a property called
self-consistency, which refers to the inability of the adversary to make honest parties disagree with
themselves as the protocol advances. Chain growth and self-consistency are useful if one wants
to do a black-box reduction of Persistence and Liveness of the ledger to the underlying proper-
ties of the blockchain, an approach also fulfilled in the current version of this article, where the
common prefix property in Section 3.2 captures self-consistency and chain growth is explicitly
treated. Further, [66] also studied the robustness of transaction ledger in the bounded delay model,
where messages may not be delivered at the end of a round, but there is still a certain bound
within which all messages are eventually delivered, see [30]. We show how the analysis for the
synchronous model extends to that setting, cf. Section 7.
Another set of interesting directions includes the development of other applications that may
be built on top of the Bitcoin backbone protocol. A notable example is secure MPC [46, 73] with
properties such as fairness and guaranteed output delivery (current works in this direction, for
example, [2, 12, 13, 54–56] assume an idealized version of the Bitcoin system).
Further contrast between the solvability of “classical” BA and PoW-based BA in terms of setup
assumptions has been established in works such as [1, 42], where it is shown how the latter can be
achieved “from scratch”—that is, with no trusted setup, as opposed to the classical setting, where
a PKI is required. We refer to [37] for a more detailed treatment of this subject.
The core protocol construct for BA introduced in Section 6.3 (namely composing two PoW
sub-protocols, one maintaining a blockchain and the other creating PoWs to enter inputs in the
blockchain that are provably in proportion to the honest parties’ computational power) has found
further applications in designing blockchain protocols. Specifically, in [67] it was shown that it
can be used to achieve a type of fairness in terms of rewards while in [8] it was shown that it can
be used to increase transaction throughput. In [53] and later in [36] a “proof-of-stake” equivalent
concept was developed that was shown it can be used to achieve similar objectives.

33https://www.ethereum.org/

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

https://www.ethereum.org/

25:46 J. Garay et al.

Appendix

A Useful Inequalities

We will require the following inequalities.

Fact 1 (Bernoulli’s Ineqality). For real r ≥ 1 and real x ≥ −1, (1 + x)r ≥ 1 + rx .

Fact 2. For any real α > 0, 1 − α < e−α < 1 − α + α 2

2 .

We provide here the form of the Chernoff bound we use in the proofs.

Theorem A.1 (Chernoff bounds). Suppose {Xi : i ∈ [n]} are mutually independent Boolean
random variables, with Pr[Xi = 1] = p, for all i ∈ [n]. Let X =

∑n
i=1Xi and μ = pn. Then, for any

δ ∈ (0, 1],

Pr[X ≤ (1 − δ)μ] ≤ e−δ
2μ/2 and Pr[X ≥ (1 + δ)μ] ≤ e−δ

2μ/3.

In Section 7we needmore general concentration bounds.We provide here the relevant definition
and bounds. (See [29, Corollary 5.2])

Definition A.2. A function f (x1, . . . ,xn) is k-Lipschitz if | f (x) − f (x ′)| ≤ k , whenever x and x ′

differ in at most one coordinate.

Theorem A.3. Suppose f as a function of n independent random variables X1, . . . ,Xn is k-
Lipschitz. Then

Pr[f > E[f] + t] ≤ exp
(
−
2t2

nk2

)
and Pr[f < Ef − t] ≤ exp

(
−
2t2

nk2

)
.

ACKNOWLEDGEMENTS

The authors are grateful to Giorgos Panagiotakos, Sergio Rajsbaum, Apostolos Tzinas, Hong-Sheng
Zhou and Dionysis Zindros for helpful comments and discussions.

References

[1] Marcin Andrychowicz and Stefan Dziembowski. 2015. PoW-based distributed cryptography with no trusted setup.

In Proceedings of the Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference, Part II, Rosario

Gennaro and Matthew Robshaw (Eds.). Lecture Notes in Computer Science, Vol. 9216. Springer, 379–399. DOI:https://
doi.org/10.1007/978-3-662-48000-7_19

[2] Marcin Andrychowicz, Stefan Dziembowski, Daniel Malinowski, and Łukasz Mazurek. 2014. Secure Multiparty Com-

putations on Bitcoin. IEEE Security and Privacy. (2014).

[3] James Aspnes, Collin Jackson, and Arvind Krishnamurthy. 2005. Exposing Computationally-challenged Byzantine Im-

postors. Technical Report YALEU/DCS/TR-1332. Yale University Department of Computer Science.

[4] Moshe Babaioff, Shahar Dobzinski, Sigal Oren, and Aviv Zohar. 2012. On bitcoin and red balloons. In Proceedings of

the 13th ACM Conference on Electronic Commerce, Boi Faltings, Kevin Leyton-Brown, and Panos Ipeirotis (Eds.). ACM,

56–73.

[5] Adam Back. 1997. Hashcash. Retrieved from http://www.cypherspace.org/hashcash

[6] Christian Badertscher, Juan A. Garay, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. 2018. But why does it work?

A rational protocol design treatment of bitcoin. In Proceedings of the Advances in Cryptology - EUROCRYPT 2018 -

37th Annual International Conference on the Theory and Applications of Cryptographic Techniques, Part II, Jesper Buus

Nielsen and Vincent Rijmen (Eds.). Lecture Notes in Computer Science, Vol. 10821. Springer, 34–65. DOI:https://doi.
org/10.1007/978-3-319-78375-8_2

[7] Christian Badertscher, Ueli Maurer, Daniel Tschudi, and Vassilis Zikas. 2017. Bitcoin as a transaction ledger: A com-

posable treatment. IACR Cryptology ePrint Archive 2017 (2017), 149. Retrieved from http://eprint.iacr.org/2017/149

[8] Vivek Kumar Bagaria, Sreeram Kannan, David Tse, Giulia C. Fanti, and Pramod Viswanath. 2018. Deconstructing

the blockchain to approach physical limits. IACR Cryptology ePrint Archive 2018 (2018), 992. Retrieved from https://

eprint.iacr.org/2018/992

[9] Boaz Barak, Ran Canetti, Yehuda Lindell, Rafael Pass, and Tal Rabin. 2011. Secure computation without authentication.

Journal of Cryptology 24, 4 (2011), 720–760. DOI:https://doi.org/10.1007/s00145-010-9075-9

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

https://doi.org/10.1007/978-3-662-48000-7_19
http://www.cypherspace.org/hashcash
https://doi.org/10.1007/978-3-319-78375-8_2
http://eprint.iacr.org/2017/149
https://eprint.iacr.org/2018/992
https://doi.org/10.1007/s00145-010-9075-9

The Bitcoin Backbone Protocol: Analysis and Applications 25:47

[10] Mihir Bellare and Phillip Rogaway. 1993. Random oracles are practical: A paradigm for designing efficient protocols.

In CCS’93, Proceedings of the 1st ACM Conference on Computer and Communications Security, 1993. 62–73. DOI:https://
doi.org/10.1145/168588.168596

[11] Michael Ben-Or. 1983. Another advantage of free choice: Completely asynchronous agreement protocols (extended

abstract). In Proceedings of the 2nd Annual ACM Symposium on Principles of Distributed Computing, Robert L. Probert,

Nancy A. Lynch, and Nicola Santoro (Eds.). ACM, 27–30.

[12] Iddo Bentov and Ranjit Kumaresan. 2014. How to use bitcoin to design fair protocols. In Proceedings of the Advances

in Cryptology - CRYPTO 2014 - 34th Annual Cryptology Conference, Part II. 421–439. DOI:https://doi.org/10.1007/978-
3-662-44381-1_24

[13] Iddo Bentov and Ranjit Kumaresan. 2014. How to Use Bitcoin to Incentivize Correct Computations. ACM CCS 2014.

(2014).

[14] Piotr Berman and Juan A. Garay. 1993. Randomized distributed agreement revisited. In Proceedings of the Digest

of Papers: FTCS-23, The 23rd Annual International Symposium on Fault-Tolerant Computing. IEEE Computer Society,

412–419. DOI:https://doi.org/10.1109/FTCS.1993.627344
[15] Paolo Boldi, Shella Shammah, Sebastiano Vigna, Bruno Codenotti, Peter Gemmell, and Janos Simon. 1996. Symmetry

breaking in anonymous networks: Characterizations. In Proceedings of the 4th Israel Symposium on Theory of Comput-

ing and Systems, Proceedings. IEEE Computer Society, 16–26.

[16] Malte Borderding. 1996. Levels of authentication in distributed agreement. InDistributed Algorithms, 10th International

Workshop,WDAG’96, Bologna, Italy, October 9–11, 1996, Proceedings, Özalp Babaoglu and KeithMarzullo (Eds.). Lecture

Notes in Computer Science, Vol. 1151. Springer, 40–55. DOI:https://doi.org/10.1007/3-540-61769-8_4
[17] Ran Canetti. 2000. Security and composition of multiparty cryptographic protocols. Journal of Cryptology 13, 1 (2000),

143–202.

[18] Ran Canetti. 2000. Universally Composable Security: ANew Paradigm for Cryptographic Protocols. Cryptology ePrint

Archive, Report 2000/067. (2000). Retrieved from http://eprint.iacr.org/2000/067

[19] Ran Canetti. 2001. Universally composable security: A new paradigm for cryptographic protocols. In Proceedings of

the 42nd Annual Symposium on Foundations of Computer Science. IEEE Computer Society, 136–145. DOI:https://doi.
org/10.1109/SFCS.2001.959888

[20] Ran Canetti. 2020. Universally composable security. Journal of the ACM 67, 5 (2020), 28:1–28:94. DOI:https://doi.org/
10.1145/3402457

[21] David Chaum. 1982. Blind signatures for untraceable payments. 199–203.

[22] Flaviu Cristian, Houtan Aghili, H. Raymond Strong, and Danny Dolev. 1995. Atomic broadcast: From simple message

diffusion to byzantine agreement. Information and Computation 118, 1 (1995), 158–179. DOI:https://doi.org/10.1006/
inco.1995.1060

[23] Kyle Croman, Christian Decker, Ittay Eyal, Adem Efe Gencer, Ari Juels, Ahmed E. Kosba, Andrew Miller, Prateek

Saxena, Elaine Shi, Emin Gün Sirer, Dawn Song, and Roger Wattenhofer. 2016. On scaling decentralized blockchains

- (A position paper). In Proceedings of the Financial Cryptography and Data Security - FC 2016 International Workshops,

BITCOIN, VOTING, andWAHC, Christ Church, Barbados, February 26, 2016, Revised Selected Papers, Jeremy Clark, Sarah

Meiklejohn, Peter Y. A. Ryan, Dan S. Wallach, Michael Brenner, and Kurt Rohloff (Eds.). Lecture Notes in Computer

Science, Vol. 9604. Springer, 106–125. DOI:https://doi.org/10.1007/978-3-662-53357-4_8
[24] Cunicula. 2013. Why doesn’t Bitcoin use a tiebreaking rule when comparing chains of equal length? Retrieved from

https://bitcointalk.org/index.php?topic=355644.0

[25] Christian Decker and Roger Wattenhofer. 2013. Information propagation in the Bitcoin network. In Proceedings of the

Peer-to-Peer Computing (P2P), 2013 IEEE 13th International Conference. IEEE, 1–10.

[26] Amir Dembo, Sreeram Kannan, Ertem Nusret Tas, David Tse, Pramod Viswanath, Xuechao Wang, and Ofer Zeitouni.

2020. Everything is a race and nakamoto always wins. In Proceedings of the CCS’20: 2020 ACM SIGSAC Conference on

Computer and Communications Security, Jay Ligatti, Xinming Ou, Jonathan Katz, and Giovanni Vigna (Eds.). ACM,

859–878. DOI:https://doi.org/10.1145/3372297.3417290
[27] Danny Dolev, Rüdiger Reischuk, and H. Raymond Strong. 1990. Early stopping in byzantine agreement. Journal of the

ACM 37, 4 (1990), 720–741. DOI:https://doi.org/10.1145/96559.96565
[28] John R. Douceur. 2002. The sybil attack. In Peer-to-Peer Systems, First International Workshop, Revised Papers, Peter

Druschel, M. Frans Kaashoek, and Antony I. T. Rowstron (Eds.). Lecture Notes in Computer Science Vol. 2429. Springer,

251–260. DOI:https://doi.org/10.1007/3-540-45748-8_24
[29] Devdatt P. Dubhashi and Alessandro Panconesi. 2012. Concentration of Measure for the Analysis of Randomized Algo-

rithms. Cambridge University Press, New York, NY, USA.

[30] Cynthia Dwork, Nancy A. Lynch, and Larry J. Stockmeyer. 1988. Consensus in the presence of partial synchrony.

Journal of the ACM 35, 2 (1988), 288–323. DOI:https://doi.org/10.1145/42282.42283

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

https://doi.org/10.1145/168588.168596
https://doi.org/10.1007/978-3-662-44381-1_24
https://doi.org/10.1109/FTCS.1993.627344
https://doi.org/10.1007/3-540-61769-8_4
http://eprint.iacr.org/2000/067
https://doi.org/10.1109/SFCS.2001.959888
https://doi.org/10.1145/3402457
https://doi.org/10.1006/inco.1995.1060
https://doi.org/10.1007/978-3-662-53357-4_8
https://bitcointalk.org/index.php?topic=355644.0
https://doi.org/10.1145/3372297.3417290
https://doi.org/10.1145/96559.96565
https://doi.org/10.1007/3-540-45748-8_24
https://doi.org/10.1145/42282.42283

25:48 J. Garay et al.

[31] Cynthia Dwork and Moni Naor. 1992. Pricing via processing or combatting junk mail. In CRYPTO, Ernest F. Brickell

(Ed.). Lecture Notes in Computer Science, Vol. 740. Springer, 139–147.

[32] Ittay Eyal and Emin Gun Sirer. 2014. Majority is not enough: Bitcoin mining is vulnerable. In Proceedings of the

Financial Cryptography.

[33] Pesech Feldman and SilvioMicali. 1997. An optimal probabilistic protocol for synchronous byzantine agreement. SIAM

Journal of the Computing 26, 4 (1997), 873–933.

[34] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. 1985. Impossibility of distributed consensus with one faulty

process. Journal of the ACM 32, 2 (1985), 374–382.

[35] Matthias Fitzi and Juan A. Garay. 2003. Efficient player-optimal protocols for strong and differential consensus. In

Proceedings of the 22nd Annual Symposium on Principles of Distributed Computing, Elizabeth Borowsky and Sergio

Rajsbaum (Eds.). ACM, 211–220.

[36] Matthias Fitzi, Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2018. Parallel chains: Improving throughput and

latency of blockchain protocols via parallel composition. IACR Cryptology ePrint Archive 2018 (2018), 1119. Retrieved

from https://eprint.iacr.org/2018/1119

[37] Juan Garay and Aggelos Kiayias. 2018. SoK: A Consensus Taxonomy in the Blockchain Era. Cryptology ePrint Archive,

Report 2018/754. (2018). Retrieved from https://eprint.iacr.org/2018/754

[38] Juan A. Garay, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. 2011. Adaptively secure broadcast, revisited.

In Proceedings of the 30th Annual ACM Symposium on Principles of Distributed Computing, Cyril Gavoille and Pierre

Fraigniaud (Eds.). ACM, 179–186. DOI:https://doi.org/10.1145/1993806.1993832
[39] JuanA. Garay andAggelos Kiayias. 2020. SoK: A consensus taxonomy in the blockchain era. In Proceedings of the Topics

in Cryptology - CT-RSA 2020 - The Cryptographers’ Track at the RSAConference 2020, Proceedings, Stanislaw Jarecki (Ed.).

Lecture Notes in Computer Science, Vol. 12006. Springer, 284–318. DOI:https://doi.org/10.1007/978-3-030-40186-3_13
[40] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2015. The Bitcoin Backbone Protocol: Analysis and applications.

In Proceeding of the Advances in Cryptology - EUROCRYPT 2015 - 34th Annual International Conference on the Theory

and Applications of Cryptographic Techniques, Proceedings, Part II. 281–310. DOI:https://doi.org/10.1007/978-3-662-
46803-6_10

[41] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. 2017. The Bitcoin Backbone protocol with chains of variable

difficulty. In Proceeding of the Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptology Conference,

Proceedings, Part I, Jonathan Katz and Hovav Shacham (Eds.). Lecture Notes in Computer Science, Vol. 10401. Springer,

291–323. DOI:https://doi.org/10.1007/978-3-319-63688-7_10
[42] Juan A. Garay, Aggelos Kiayias, Nikos Leonardos, and Giorgos Panagiotakos. 2018. Bootstrapping the blockchain,

with applications to consensus and fast PKI setup. In Proceedings of the Public-Key Cryptography - PKC 2018 - 21st

IACR International Conference on Practice and Theory of Public-Key Cryptography, Proceedings, Part II, Michel Abdalla

and Ricardo Dahab (Eds.). Lecture Notes in Computer Science, Vol. 10770. Springer, 465–495. DOI:https://doi.org/10.
1007/978-3-319-76581-5_16

[43] Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos. 2017. Consensus from Signatures of Work. Cryptology

ePrint Archive, Report 2017/775. (2017). Retrieved from https://eprint.iacr.org/2017/775

[44] Juan A. Garay, Aggelos Kiayias, and Giorgos Panagiotakos. 2019. Iterated Search Problems and Blockchain Security

under Falsifiable Assumptions. Cryptology ePrint Archive, Report 2019/315. (2019). Retrieved from https://eprint.iacr.

org/2019/315

[45] Peter Gazi, Aggelos Kiayias, and Alexander Russell. 2020. Tight consistency bounds for bitcoin. In Proceedings of the

CCS’20: 2020 ACM SIGSAC Conference on Computer and Communications Security, Jay Ligatti, Xinming Ou, Jonathan

Katz, and Giovanni Vigna (Eds.). ACM, 819–838. DOI:https://doi.org/10.1145/3372297.3423365
[46] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental game or a completeness theorem

for protocols with honest majority. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing. ACM,

218–229.

[47] Martin Hirt and Vassilis Zikas. 2010. Adaptively secure broadcast. In Proceedings of the Advances in Cryptology -

EUROCRYPT 2010, 29th Annual International Conference on the Theory and Applications of Cryptographic Techniques.

Proceedings, Henri Gilbert (Ed.). Lecture Notes in Computer Science, Vol. 6110. Springer, 466–485. DOI:https://doi.org/
10.1007/978-3-642-13190-5_24

[48] Ari Juels and John G. Brainard. 1999. Client puzzles: A cryptographic countermeasure against connection depletion

attacks. In Proceedings of the Network and Distributed System Security Symposium. The Internet Society.

[49] Jonathan Katz and Chiu-Yuen Koo. 2009. On expected constant-round protocols for Byzantine agreement. Journal of

Computer and System Sciences 75, 2 (2009), 91 – 112. DOI:https://doi.org/10.1016/j.jcss.2008.08.001
[50] Jonathan Katz, Ueli Maurer, Björn Tackmann, and Vassilis Zikas. 2013. Universally composable synchronous compu-

tation. In Proceedings of the 10th Theory of Cryptography Conference on Theory of Cryptography. 477–498. DOI:https://
doi.org/10.1007/978-3-642-36594-2_27

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

https://eprint.iacr.org/2018/1119
https://eprint.iacr.org/2018/754
https://doi.org/10.1145/1993806.1993832
https://doi.org/10.1007/978-3-030-40186-3_13
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-319-63688-7_10
https://doi.org/10.1007/978-3-319-76581-5_16
https://eprint.iacr.org/2017/775
https://eprint.iacr.org/2019/315
https://doi.org/10.1145/3372297.3423365
https://doi.org/10.1007/978-3-642-13190-5_24
https://doi.org/10.1016/j.jcss.2008.08.001
https://doi.org/10.1007/978-3-642-36594-2_27

The Bitcoin Backbone Protocol: Analysis and Applications 25:49

[51] Aggelos Kiayias and Giorgos Panagiotakos. 2015. Speed-security tradeoffs in blockchain protocols. IACR Cryptology

ePrint Archive 2015 (2015), 1019. Retrieved from http://eprint.iacr.org/2015/1019

[52] Aggelos Kiayias and Giorgos Panagiotakos. 2016. On trees, chains and fast transactions in the blockchain. IACR Cryp-

tology ePrint Archive 2016 (2016), 545. Retrieved from http://eprint.iacr.org/2016/545

[53] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. 2017. Ouroboros: A provably secure

proof-of-stake blockchain protocol. In Proceedings of the Advances in Cryptology - CRYPTO 2017 - 37th Annual In-

ternational Cryptology Conference, Proceedings, Part I (Lecture Notes in Computer Science), Jonathan Katz and Hovav

Shacham (Eds.). Vol. 10401. Springer, 357–388. DOI:https://doi.org/10.1007/978-3-319-63688-7_12
[54] Aggelos Kiayias, Hong-Sheng Zhou, and Vassilis Zikas. 2016. Fair and robust multi-party computation using a global

transaction ledger. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference on the The-

ory and Applications of Cryptographic Techniques, Proceedings, Part II, Marc Fischlin and Jean-Sébastien Coron (Eds.).

Lecture Notes in Computer Science, Vol. 9666. Springer, 705–734. DOI:https://doi.org/10.1007/978-3-662-49896-5_25
[55] Ranjit Kumaresan and Iddo Bentov. 2016. Amortizing secure computation with penalties. In Proceedings of the 2016

ACM SIGSAC Conference on Computer and Communications Security. 418–429. DOI:https://doi.org/10.1145/2976749.
2978424

[56] Ranjit Kumaresan, VinodVaikuntanathan, and Prashant Nalini Vasudevan. 2016. Improvements to secure computation

with penalties. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security. 406–417.

DOI:https://doi.org/10.1145/2976749.2978421
[57] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The byzantine generals problem. ACM Transactions

on Programming Languages and Systems 4, 3 (1982), 382–401.

[58] AndrewMiller and Joseph J. LaViola. 2014. Anonymous Byzantine Consensus fromModerately-Hard Puzzles: AModel

for Bitcoin. University of Central Florida. Tech Report, CS-TR-14-01. (April 2014).

[59] Satoshi Nakamoto. 2008. Bitcoin: A Peer-to-peer Electronic Cash System. Retrieved from http://bitcoin.org/bitcoin.pdf

[60] Satoshi Nakamoto. 2008. “The Proof-of-work Chain is a Solution to the Byzantine Generals’ Problem”. The Cryp-

tographyMailing List, Retrieved from https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html.

(November 2008).

[61] Satoshi Nakamoto. 2009. Bitcoin Open Source Implementation of P2P Currency. Retrieved from http://p2pfoundation.

ning.com/forum/topics/bitcoin-open-source

[62] Gil Neiger. 1994. Distributed consensus revisited. Information Processing Letters 49, 4 (1994), 195–201.

[63] Michael Okun. 2005. Agreement among unacquainted byzantine generals. In Proceedings of the 19th international

conference on Distributed Computing, Pierre Fraigniaud (Ed.). Lecture Notes in Computer Science, Vol. 3724. Springer,

499–500.

[64] Michael Okun. 2005. Distributed Computing Among Unacquainted Processors in the Presence of Byzantine Dis-

tributed Computing Among Unacquainted Processors in the Presence of Byzantine Failures. Ph.D. Thesis Hebrew

University of Jerusalem. (2005).

[65] Michael Okun and Amnon Barak. 2008. Efficient algorithms for anonymous byzantine agreement. Theory of Comput-

ing Systems 42, 2 (January 2008), 222–238. DOI:https://doi.org/10.1007/s00224-007-9006-9
[66] Rafael Pass, Lior Seeman, and Abhi Shelat. 2016. Analysis of the blockchain protocol in asynchronous networks. IACR

Cryptology ePrint Archive 2016 (2016), 454. Retrieved from http://eprint.iacr.org/2016/454

[67] Rafael Pass and Elaine Shi. 2017. FruitChains: A fair blockchain. In Proceedings of the ACM Symposium on Principles

of Distributed Computing, Elad Michael Schiller and Alexander A. Schwarzmann (Eds.). ACM, 315–324. DOI:https://
doi.org/10.1145/3087801.3087809

[68] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. 1980. Reaching agreement in the presence of faults. Journal

of the ACM 27, 2 (1980), 228–234.

[69] Michael O. Rabin. 1983. Randomized byzantine generals. In Proceedings of the 24th Annual Symposium on Foundations

of Computer Science. IEEE Computer Society, 403–409.

[70] R. L. Rivest, A. Shamir, and D. A. Wagner. 1996. Time-lock Puzzles and Timed-release Crypto. Technical Report. Cam-

bridge, MA, USA.

[71] Fred B. Schneider. 1990. Implementing fault-tolerant services using the state machine approach: A tutorial. ACM

Computing Surveys 22, 4 (December 1990), 299–319. DOI:https://doi.org/10.1145/98163.98167
[72] Yonatan Sompolinsky and Aviv Zohar. 2013. Accelerating bitcoin’s transaction processing. Fast money grows on trees,

not chains. IACR Cryptology ePrint Archive 2013 (2013), 881. Retrieved from http://eprint.iacr.org/2013/881

[73] Andrew Chi-Chih Yao. 1982. Protocols for secure computations (extended abstract). In Proceedings of the 23rd Annual

Symposium on Foundations of Computer Science. IEEE, 160–164.

Received 26 June 2019; revised 13 April 2021; accepted 6 December 2023

J. ACM, Vol. 71, No. 4, Article 25. Publication date: August 2024.

http://eprint.iacr.org/2015/1019
http://eprint.iacr.org/2016/545
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-662-49896-5_25
https://doi.org/10.1145/2976749.2978424
https://doi.org/10.1145/2976749.2978421
http://bitcoin.org/bitcoin.pdf
https://www.mail-archive.com/cryptography@metzdowd.com/msg09997.html
http://p2pfoundation.ning.com/forum/topics/bitcoin-open-source
https://doi.org/10.1007/s00224-007-9006-9
http://eprint.iacr.org/2016/454
https://doi.org/10.1145/3087801.3087809
https://doi.org/10.1145/98163.98167
http://eprint.iacr.org/2013/881

