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We present the first general-relativistic resistive magnetohydrodynamics simulations of self-consistent,
rotating neutron stars with mixed poloidal and toroidal magnetic fields. Specifically, we investigate the role
of resistivity in the dynamical evolution of neutron stars over a period of up to 100 ms and its effects on
their quasiequilibrium configurations. Our results demonstrate that resistivity can significantly influence
the development of magnetohydrodynamic instabilities, resulting in markedly different magnetic field
geometries. Additionally, resistivity suppresses the growth of these instabilities, leading to a reduction in
the amplitude of emitted gravitational waves. Despite the variations in magnetic field geometries, the ratio
of poloidal to toroidal field energies remains consistently 9∶1 throughout the simulations, for the models
we investigated.
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I. INTRODUCTION

Neutron stars are among the most fascinating astro-
physical objects in the Universe. These stars embody some
of the most extreme physical conditions, all contained
within just a few kilometers in diameter. Along with their
immense compactness and intense gravity, neutron stars
also possess exceptionally strong, long-lived, large-scale
magnetic fields. The magnetic field strength of typical
neutron stars, also known as pulsars (see e.g. [1]), could
reach at least ∼108−13 Gauss (G), orders of magnitude
higher than in any other known object. The strength of the
neutron star magnetic field could be even more extreme and
exotic, with values that reach 1015 G and beyond, up to
1000 times stronger than typical neutron stars. These
ultrastrongly magnetized neutron stars, known as magnet-
ars, are believed to be the sources of soft gamma-ray
repeaters and anomalous x-ray pulsars [2,3]. Furthermore,
the merger of two neutron stars can generate magnetic

fields on the order of ∼1016–1017 G, which is even more
extreme than the magnetic fields found in magnetars [4,5].
The magnetic field structure of a neutron star is not yet

fully understood, and gaining this understanding is crucial
for interpreting expected multimessenger observations [6].
The most intuitive model of a magnetized neutron star
which has been widely adopted assumes the star to be a
huge two-pole magnet, meaning that they carry a large-
scale dipolar magnetic field. However, recent observational
and theoretical evidence show that the geometry of the
neutron star magnetic field at the surface could be far from
the conventional dipolar geometry, favoring instead a much
more complicated configurations: multipolar magnetic field
or an offset dipole [7–10]. There is still no coherent theory
of pulsar magnetosphere that would explain all the obser-
vational data from first principles [11–13].
The structure of the magnetosphere is influenced by the

external magnetic field, which in turn is related to the
internal field configuration of the neutron star. Nevertheless,
our current understanding of the internal magnetic field
structure is limited due to the lack of direct observational*Contact author: patrick.cheong@berkeley.edu
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evidence inside neutron stars. Several efforts have been
made by groups worldwide on understanding the magnetic
field structure by means of quasiequilibria calculations
[14–24]. These studies are limited either in considering
simple magnetic field configurations (typically pure poloi-
dal or pure toroidal configurations) or by solving a sim-
plified set of the Einstein-Maxwell system. In addition, a
quasiequilibrium configuration does not imply stability.
Therefore, a step forward involves the following: (i) com-
puting quasiequilibria with more “realistic” magnetic field
topologies and (ii) performing stability analysis in order to
understand which of them can be physically permitted to
represent a magnetized neutron star. To address point (i), the
numerical studies in [25–27] used the Compact Object
CALculator (COCAL) code to compute fully general rela-
tivistic solutions for strongly magnetized, rapidly rotating
compact stars. They achieved this by solving the full set of
Einstein’s equations, coupled withMaxwell’s and magneto-
hydrodynamic equations, under the assumptions of perfect
conductivity, stationarity, and axisymmetry. Strongly mag-
netized solutions associated with mixed poloidal and
toroidal components of magnetic fields were successfully
obtained in generic spacetimes.
Magnetohydrodynamic (MHD) simulations are crucial

for studying the stability of magnetic fields in magnetized
neutron stars. Significant progress has beenmade by various
groups in investigating the stability of these stars through
general-relativistic dynamical simulations [28–33]. In [28]
an initial toroidal magnetic field [15] is evolved in full
general relativity but with axisymmetry, while in [29–31]
purely poloidal magnetic fields [14] have been evolved
under the Cowling approximation, i.e. the Einstein field
equations were not evolved but only the MHD equations on
a fixed initial background. In [34] full general-relativistic
MHD simulations of self-consistent rotating neutron stars
with ultrastrong mixed poloidal and toroidal magnetic
fields [26] have been carried out for the first time.
Despite the fact that these models have been evolved for
∼10–20 Alfvén timescales (as estimated from the initial
conditions), these simulations were not long enough to
further investigate the quasiequilibrium state of themagnetic
fields.
Although the ideal MHD approximation has been

extensively used to model neutron stars, going beyond
this approach is required for more accurate and realistic
modeling of the plasma. Important physical processes, such
as dissipation and magnetic reconnection [35], cannot be

captured if one assumes vanishing electrical resistivity.
Magnetic reconnection can change the magnetic field’s
topology, and convert magnetic energy into other forms of
energy such as heat and kinetic energy. These processes,
although usually occurring at very small length scales,
could significantly affect the large scale dynamics of the
plasma, and hence the dynamical evolution of magnetized
neutron stars. Although in practice, ideal MHD simulations
exhibit nonzero numerically induced resistivity [36,37],
this effective resistivity is not well controlled and cannot be
adjusted as a physical parameter. To properly investigate
the effects of resistivity, resistive MHD codes are required.
Several research groups have developed numerical codes to
investigate the effects of resistive magnetohydrodynamics
in a range of scenarios [38–49].
In this work, we investigate the role of resistivity in the

dynamical evolution of quasiequilibrium configurations of
neutron stars. To achieve this,we performgeneral-relativistic
resistive MHD simulations of self-consistent, magnetized
neutron star equilibria with ultrastrong, mixed magnetic
fields. The simulations are run for up to 100 ms (approx-
imately 100–200 initial Alfvén timescales), which is about
20 times longer than those conducted in [34], allowing us to
explore the potential final quasiequilibrium state of the
magnetized neutron star.
The paper is organized as follows. In Sec. II we outline

the numerical methods we used in this work, along with
the initial data and a suite of diagnostics used to verify
the reliability of our numerical calculations. We present
our results in Sec. III, and summarize our findings and
conclusions in Sec. IV. Unless explicitly stated, we work
in geometrized Heaviside-Lorentz units, for which the
speed of light c, gravitational constant G, solar mass M⊙,
and the vacuum permittivity ϵ0 are all equal to one
(c ¼ G ¼ M⊙ ¼ ϵ0 ¼ 1). Greek indices, running from 0
to 3, are used for spacetime objects, while Roman indices,
running from 1 to 3, are used for spatial ones.

II. METHODS

A. Initial profiles

As initial datawe usemodel “A2” from [34], which proved
to be the most stable (in ideal general relativistic MHD
(GRMHD)) investigated in that work. Table I provides a
summary of its key physical properties. This stationary and
axisymmetric magnetar, with a polytropic Γ ¼ 2 equation of
state, was constructed using the magnetized rotating neutron

TABLE I. Key physical properties of the evolved model. We list the central rest-mass density, the gravitational mass, the period, the
polar-to-equatorial ratio, the kinetic-to-gravitational energy, the magnetic-to-gravitational-energy ratios (including the toroidal and
poloidal magnetic energies), the dynamical timescale (1=

ffiffiffi

ρ
p

), and the Alfvén timescale.

ρc M P=M Rp=Re T =jWj M=jWj Mtor=jWj Mpol=jWj td=M tA=M

1015.03 1.37 169.3 0.7 10−1.31 10−1.79 10−3.10 10−1.82 18 70
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star libraries of the COCAL code [25,26] as a solution of the
system of Einstein’s field equations, Maxwell’s equations,
and the ideal MHD equations.
In summary, the Einstein equations under certain

assumptions can be written as a set of elliptic (Poisson-
type) equations for fα; βi;ψ ; hijg, where ψ , α, βi, and hij
are the conformal factor, lapse, shift vector, and the nonflat
part of the conformal geometry (γ̃ij ¼ fij þ hij). For the
gauge conditions we use maximal slicing K ¼ 0, and the
Dirac gauge D̊bγ̃

ab ¼ 0, where D̊a is the covariant spatial
derivative with respect to the flat metric fij. The 3þ 1

decomposition of Maxwell’s equations leads to four elliptic
equations for the spatial components of the electromagnetic
1-form Aα, subject to the Coulomb gauge D̊iAi ¼ 0. The
ideal MHD condition implies that surfaces of constant At

and Aϕ coincide, and therefore these variables are functions
of a single master potential, which is taken to be Aϕ itself.
The first integrals of the MHD-Euler equations and the
ideal MHD conditions become relations to determine the
specific enthalpy h, the components of 4-velocity ut and uϕ,
and the components of the current jα. The latter involves
the following arbitrary functions of the potential Aϕ, which
are chosen to be

ΛðAϕÞ ¼ −Λ0ΞðAϕÞ − Λ1Aϕ − E; ð1Þ

AtðAϕÞ ¼ −ΩcAϕ þ Ce; ð2Þ

½ ffiffiffiffiffiffi

−g
p

Λϕ�ðAϕÞ ¼ Λϕ0ΞðAϕÞ: ð3Þ

In Eqs. (1)–(3), Λ0, Λ1, and Λϕ0 are input parameters that
control the poloidal and toroidal magnetic field strength,
while constants E and Ωc are determined during the
iteration procedure. The former represents the injection
energy [50], while the latter is the constant angular velocity
of the magnetar. Constant Ce controls the net charge of the
star, which in our case is zero. ΞðAϕÞ is an integral of the
“sigmoid” function [26] which is used where Aϕ varies on
the fluid support, and its derivative is written

Ξ
0ðAϕÞ ¼

1

2

�

tanh

�

1

b

Aϕ − Amax
ϕ;S

Amax
ϕ − Amax

ϕ;S
− c

�

þ 1

�

; ð4Þ

where Amax
ϕ is the maximum value of Aϕ, and Amax

ϕ;S is the
maximum value of Aϕ at the stellar surface. Parameters
b; c∈ ½0; 1� control the width and the position of the
sigmoid. Therefore, Ξ0ðAϕÞ vary from zero to one in the
interval Aϕ ∈ ½Amax

ϕ;S ; A
max
ϕ �. This guarantees that the current

and the toroidal magnetic field are confined in the star, and
the components of electromagnetic fields extend continu-
ously into the exterior vacuum region. Together with Λ0,
Λ1, and Λϕ0 the parameters b and c for the evolved model,
are reported in Table II.

B. Evolutions

General-relativistic resistive MHD equations are solved
with the Gmunu code [51–53]. In particular, the full Maxwell
and hydrodynamic equations are solved, where the cou-
pling between electromagnetic fields and fluid are deter-
mined by the electric current. In this work, we choose
Ohm’s law by following [54]

Ji ¼ ρev
i þW

η
½Ei þ ϵijkvjBk − ðEjvjÞvi�; ð5Þ

where Ji is the 3-current, ρe is the charge density, vi is the
velocity, η is the resistivity,W is the Lorentz factor, ϵijk is the
spatial Levi-Civita pseudotensor, Ei and Bi are the electric
andmagnetic fields, respectively. Divergence-free condition
is preserved by using staggered-meshed constrained trans-
port [55]. For the details of the implementations of the
resistive MHD in Gmunu, we refer readers to [53].
We explore four different resistivities, namely,

η∈ f10−6; 10−4; 10−3; 10−2g. The Ohmic diffusion time-
scale can be estimated as (e.g. [49])

tdis ≈
L2

η
; ð6Þ

where L is the typical length scale of the system, which here
we take as 10 km. For the chosen values of resistivity, the
orders of magnitude of the corresponding Ohmic diffusion
timescales, tdis, are f105; 103; 102; 101g ms. Indeed, the
typical value of resistivity is unknown (see e.g. [56]). We
choose the values that cover both dynamical and secular
timescales. The resistivity is set to be uniform everywhere in
the computational domain. In comparison, the initial Alfvén
timescale1

tA ≈
Re

ffiffiffi

ρ
p

B
¼ 0.5 ms; ð7Þ

where B is the value of the magnetic field at the neutron star
center, and Re the equatorial radius, is comparable to the
dynamical timescale td ≈ 0.1 ms.
For the evolutions, we use a Γ-law equation of state

Pgas ¼ ðΓ − 1Þρϵ, where ρ is the rest mass density and ϵ is

TABLE II. Parameters of functions in the integrability con-
ditions equations (1)–(3) and Eq. (4) for the evolved magnetar.

Λ0 Λ1 Λϕ0 b c

−0.6 0.3 1.1 0.2 0.5

1A more accurate estimate of the Alfvén timescale during the
initial stages of ideal MHD evolution can be found in the
Supplemental Material of [34], and it roughly aligns with this
timescale.
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the specific internal energy. We set Γ ¼ 2 to match the
initial model.
All the simulations here has been performed in Cartesian

coordinates ðx; y; zÞwithout imposing any symmetries. The
computational domain covers ½−120; 120� along x, y, and z,
with the resolution Nx × Ny × Nz ¼ 128 × 128 × 128 and
allowing four adaptive mesh refinement level. The finest
grid size at the center of the star is Δx ¼ Δy ¼
Δz ≈ 346 m. The refinement is fixed after the initialization,
since we do not expect the stars to expand significantly. Our
simulations adopt Harten et al. approximated Riemann
solver [57], third-order reconstruction piecewise parabolic
method [58]. Implicit-explicit Runge-Kutta scheme
IMEXCB3a [59] is used to deal with the stiff terms in
the evolution equations for small resistivity.
At the beginning of the simulations, we impose a low and

variable density magnetosphere with the magnetic-to-gas
pressure ratio βmag ≡ Pmag=Pgas ¼ 102 everywhere outside
the star by following [60]. This approach has been used
in [60–63] to reliably evolve the magnetic field in

magnetic-pressure dominant environments. During the
evolution, points will be treated as the “atmosphere” when
their rest-mass density ρ drops below the threshold value,
ρthr. In this case, we set the rest-mass density to be 0.99ρthr
and the velocity to be zero (i.e. vi ¼ 0). The threshold value
ρthr is set to be 10 orders of magnitude smaller than the
initial maximum density, i.e. ρthr ¼ 10−10 × ρmaxðt ¼ 0Þ.
The initial configuration of the plasma sigma σmag ≡

2Pmag=ρ and the magnetic-to-gas pressure ratio βmag at
the beginning of the simulations are shown in Fig. 1.
All models are evolved in a dynamical spacetime under

the conformally flat approximation. Although the initial
data from COCAL is fully general relativistic, the confor-
mally flat approximation used in Gmunu is sufficient for the
purpose of this study. For the magnetar model that we
consider here, whose compactness is ∼0.14, the off-
diagonal components of the 3-metric γij are very small
compared to the diagonal components, making the initial
data nearly conformally flat. Studies have shown that there
is, at most, a few percent difference between fully general

FIG. 1. The logarithmic plasma sigma σmag (left column) and the magnetic-to-gas pressure ratio βmag (right column) profiles on the xz
plane (top panels) and the xy plane (bottom panels) at the beginning of the simulations. Black contours correspond to the rest mass
densities of 1015;14;13;12 g · cm−3.
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relativistic and conformally flat rotating equilibrium mod-
els [64–67], and such quasispherical equilibria are very
likely to remain stable even with high angular momentum
[68]. Therefore, in this work, the off-diagonal components
in the 3-metric γij in the initial data are simply ignored.
To verify this approach, we perform a zero-resistivity
simulation and compare it with the one reported in [34]
which employs the well-known fully general relativistic
ILLINOISGRMHD (see e.g. [69]). This comparison is
presented in the Appendix.

C. Diagnostics

The rest, proper, and gravitational Arnowitt-Deser-
Misner (ADM) masses are computed as [28]

Mrest ¼
Z

ρWψ6dx3; ð8Þ

Mproper ¼
Z

ρWð1þ εÞψ6dx3; ð9Þ

MADM ¼
Z

�

ρH þ KijKij

16π

�

ψ5dx3; ð10Þ

where ε is the fluid specific internal energy, ψ the
conformal factor, Kij is the extrinsic curvature, and

ρH ¼ Tαβn
αnβ ¼ ρhW2 − Pþ 1

2
ðE2 þ B2Þ: ð11Þ

Here, the total stress-energy tensor Tαβ is the sum of the
stress-energy tensor for a perfect fluid and the stress-energy
tensor for the electromagnetic field, nα is the normal to the
hypersurface, W is the Lorentz factor, P ¼ Pgas is the
pressure of the fluid, h ¼ 1þ εþ P=ρ is the specific
enthalpy, E2 ¼ EiEi, B2 ¼ BiBi, and Ei, Bi are the purely
spatial electric, magnetic fields with respect to the normal
observer. Therefore, the support of the volume integral (10)
is noncompact.
The conserved energy density τ, which is the ADM

energy [Eq. (11)] but without the rest mass contribution
(i.e. τ ¼ ρH − ρW), is being evolved in Gmunu [53]. This
conserved energy density can be expanded as

τ ¼ ϵint þ ϵkin þ ϵprs þ ϵEM; ð12Þ

where ϵint, ϵkin, ϵprs, and ϵEM are the internal, kinetic,
pressure contribution, and electromagnetic energy den-
sities. They can be obtained by

ϵint ¼ ρW2ε; ð13Þ

ϵkin ¼ ρWðW − 1Þ; ð14Þ

ϵprs ¼ PðW2 − 1Þ; ð15Þ

ϵEM ¼ 1

2
ðB2 þ E2Þ: ð16Þ

We can then obtain different energies by

Eint ¼
Z

ϵint
ffiffiffi

γ
p

dx3; ð17Þ

Ekin ¼
Z

ϵkin
ffiffiffi

γ
p

dx3; ð18Þ

Eprs ¼
Z

ϵprs
ffiffiffi

γ
p

dx3; ð19Þ

EEM ¼
Z

ϵEM
ffiffiffi

γ
p

dx3; ð20Þ

where γ is the determinant of the 3-metric γij. The total
energy can be obtained either by summing up all the
energies (i.e. Etot ¼ Eint þ Ekin þ Eprs þ EEM) or by inte-
grating all the total conserved energy density

Etot ¼
Z

τ
ffiffiffi

γ
p

dx3: ð21Þ

The rotational kinetic energy is given by

Trot ¼
1

2

Z

ΩðxSy − ySxÞ
ffiffiffi

γ
p

dx3; ð22Þ

where Ω is angular velocity, while Si ¼ ρW2hvi are the
conserved matter momenta. The angular velocity Ω is
given by

Ω ¼ xv̂y − yv̂x

x2 þ y2
; ð23Þ

where v̂i ¼ αvi − βi. The gravitational binding energyW is
defined as

W ¼ MADM −Mproper − Trot: ð24Þ

Gravitational waves are extracted via the quadrupole
formula [70]:

h
p
þ ¼ 1

dobs
ð̈Ixx − ̈IyyÞ; ð25Þ

h
p
× ¼ 1

dobs
ð2̈IxyÞ; ð26Þ

heþ ¼ 1

dobs
ð̈Izz − ̈IyyÞ; ð27Þ

he× ¼ 1

dobs
ð−2̈IyzÞ; ð28Þ

where hp and he are the gravitational waves strains
observed on the polar axis and the equatorial plane,
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respectively. Here dobs is the distance from the source,
which is assumed to be 10 Mpc, while ̈Iij is the second time
derivative of quadrupole moment Iij. In practice, we obtain
̈Iij by taking time derivatives of the first time derivative of
quadrupole moment İij via postprocessing [70]. The first
time derivative of quadrupole moment is calculated directly
from the simulation by

İij ¼
Z

ρWðv̂ixj þ v̂jxiÞ ffiffiffi

γ
p

dx3: ð29Þ

Note that, in the axisymmetric cases, only heþ is nonzero,
while h

p
þ, h

p
×, he× all vanish. Since the magnetar is

axisymmetric, the gravitational wave strain heþ is expected
to be much larger than others.
To better focus on the interior of the neutron star, some

diagnostics are computed only within the bulk of the star. In
particular, for the region where the rest-mass density is
higher than the neutron star surface density is regarded as
the bulk of the star. Here, the neutron star surface density is
defined as

ρsurf ≔ 3 × 10−2ρmaxðt ¼ 0Þ: ð30Þ

We empirically find that this value is low enough to capture
the high density regions and to visualize reliably the surface
of neutron star (see below). Different choices of the star’s
surface definition do not affect the diagnostics substan-
tially, thus we use this value consistently throughout the
paper, unless otherwise specified.
We calculate the total, toroidal, and poloidal magnetic

energies within the interior of the neutron star according to
(see e.g. [22])

E⋆
B ¼ 1

2

Z

ρ≥ρsurf

BiBi

ffiffiffi

γ
p

dx3; ð31Þ

E⋆
Btor

¼ 1

2

Z

ρ≥ρsurf

BϕBϕ

ffiffiffi

γ
p

dx3; ð32Þ

E⋆
Bpol

¼ E⋆
B − E⋆

Btor
: ð33Þ

To better understand the development and saturation
of the instability of the star, we compute the volume-
integrated azimuthal mode decomposition of a quantity f,
which can be either the conserved rest-mass density
D ≔ Wρ or the toroidal magnetic field Bϕ. The volume-
integrated azimuthal mode decomposition is defined as
(see e.g. [71])

C⋆
mðfÞ ¼

Z

ρ≥ρsurf

feimϕ
ffiffiffi

γ
p

dx3; ð34Þ

where ϕ≡ tan−1 ðy=xÞ is the azimuthal angle and m is the
azimuthal number.

III. RESULTS

A. Summary of the evolutions

The Ohmic dissipations of magnetic fields is one of the
major effects due to resistivity. We first investigate the
magnetic energy dissipations. In Fig. 2 we show the time
evolution of the internal energy, kinetic energy, the energy
from the pressure contribution, and electromagnetic energy
for different valued of the resistivity η. Solid lines show the
corresponding quantities when the integration is performed
in the whole computational domain, while dashed lines
when the integration is performed within the neutron star
surface, as defined by Eq. (30). In all cases, almost all the
energy is converted into internal energy by the end of the
simulations. Apart from the evolution with the highest
resistivity, we can identify three epochs that are charac-
terized by different decay rates. In the first epoch, when
t≲ 25; 35; 18 ms for η ¼ 10−6; 10−4; 10−3, respectively,

FIG. 2. Time evolution of the internal energy Eint=Etot (top
panel), kinetic energy Ekin=Etot (second from the top panel),
pressure contribution Eprs=Etot (third from the top panel), and
electromagnetic energy EEM=Etot (bottom panel) for the strongly
magnetized, rapidly rotating neutron star model in Table I with
different resistivities η.Etot is the total energy of the system.Dashed
lines are calculated considering only the interior of the star.
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the kinetic, pressure, and electromagnetic energies decay
mildly. In the second epoch, when t≲ 60; 50; 30 ms corre-
spondingly, a rapid decay of these energies is observed,
which is followed by the third epoch where the decay rate
decreases again, all the way to the end of our simulations.
On the other hand, the evolution with the highest resistivity
η ¼ 10−2 is dominated by an initial rapid decrease of the
kinetic, pressure, and electromagnetic energies, followed
(at t ∼ 20 ms) by a milder decay. At the same time, the
internal energy shows a corresponding increase that results
into heating up the star.
Figure 3 shows the time evolution of the interior

magnetic energy E⋆
B and the maximum rest mass density

ρmax of our strongly magnetized rapidly rotating neutron
star with different resistivity η. The evolution of the interior
magnetic energy follows the same qualitative behavior as
the total magnetic energy EEM in Fig. 2, although in the
case of the highest resistivity the decay rate here is more
uniform. As the star loses magnetic pressure, it begins to
contract, leading to an increase in the maximum rest-mass
density. The maximum rest-mass density in all cases
decreases after ∼20 ms. The larger the resistivity, the faster
the decay of the magnetic energy, and the faster the increase
of the maximum rest mass density. The decay rates of the
magnetic energy and maximum rest-mass density are about
the same at the late times (i.e. t≳ 80 ms) despite different
resistivity.
Spin down behavior is observed in all cases. In Fig. 4

(top panel) the rotational kinetic energy over the gravita-
tional binding energy is plotted. For all cases but for the
highest resistivity one, the loss of rotational energy is

almost constant and independent of the resistivity. For the
case with η ¼ 10−2, initially the decay is faster but after a
certain time (∼30 ms) the decay becomes smaller. At the
end of our simulations (∼100 ms) the highest resistivity
case retains significant more kinetic energy than the other
three cases (almost two orders of magnitude). Given the
fact that the decay of electromagnetic energy is similar in
all models (second panel), the ratio EEM=Trot (bottom
panel) is significantly different for η ¼ 10−2 and results
in an equipartition at t ∼ 100 ms. On the contrary, in the
cases with smaller resistivity, this ratio reaches values
beyond 100 for t≳ 60 ms. Notice that most of the
electromagnetic energy at the end of the simulations is
outside the star.
The spin down behavior can also be seen in Fig. 5 where

the angular velocity profile of the neutron star along the
coordinate x axis is plotted at various instances Ωðx; tÞ
varying the resistivity η. The star is initially uniformly
rotating with Ω ∼ 5 rad · ms−1. At the beginning, for
t≲ 5 ms, the angular velocity at the center of the star
drops very quickly and fluctuates around zero (reminiscent
of the behavior found in analytical models [72]), resulting
in a differentially rotating neutron star. This behavior

FIG. 3. Time evolution of the internal magnetic energy E⋆
B

(upper panel) and the maximum rest-mass density ρmax (lower
panel) of the strongly magnetized, rapidly rotating neutron star
model in Table I with different resistivity η.

FIG. 4. Time evolution of the rotational kinetic-to-gravitational-
energy ratioTrot=jWj (top panel), electromagnetic-to-gravitational-
energy ratio EEM=jWj (middle panel), and their ratio EEM=T rot
(bottom panel) for different resistivities η. Dashed lines are
calculated considering only the interior of the star.
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agrees with the one reported in [34] and is independent of
resistivity. Both in the highly resistive case with η ¼ 10−2,
as well as in the almost ideal MHD case with η ¼ 10−6, the
evolution of angular velocity profile is similar for
t≲ 10 ms, while in later times the highly resistive case
retains more of its rotational kinetic energy. It is probable,
that further evolution will drain this kinetic energy even for
the high resistivity case and a final profile similar to the
other cases (η ¼ 10−3; 10−4; 10−6) will be reached. By the
end of the simulations, all cases result in a slowly rotating
star with a nearly spherical shape.

Figure 6 shows the toroidal magnetic field along the
coordinate x axis, at various time instances. Initially, the
toroidal magnetic field, with an order of magnitude
∼1017 G, is concentrated just below the surface of the
neutron star (top panel), but soon after the evolution starts,
it becomes unstable and oscillating in direction irrespective
of the resistivity. For the highest resistivity η ¼ 10−2, the
toroidal magnetic field disappears by the end of our
simulations, while for the lowest resistivity (nearly ideal
MHD) it reverses direction, becomes maximum near the
center and decays linearly (a red dashed linear function is
shown in the bottom panel of Fig. 6). It is important to
note that Newtonian analysis of pure toroidal magnetic

FIG. 5. Angular velocity profile Ω along the coordinate x axis
at various instances of the strongly magnetized and rapidly
rotating neutron star model in Table I for different resistivities
η. Different time instances are shown from the top to the bottom
panels.

FIG. 6. Toroidal magnetic field profile Bϕ along the coordinate
x axis at various instances with different resistivities η.
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fields [73] predicts that, for a star containing a toroidal
field to remain stable against short timescale instabilities,
the toroidal field must decay with cylindrical radius

ϖ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p

at a rate at least as fast as ϖ2. Rotation
can be a stabilizing factor.

B. Magnetic field evolutions and instability

According to the Kruskal-Shafranov (KS) criterion
(e.g. [74]), cylindrical MHD configurations dominated
by a toroidal magnetic field are highly unstable to the

m ¼ 1 “kink” instability. The KS criterion for instability is
given by

�

�

�

�

Btor

Bpol

�

�

�

�

r

R
> 1; ð35Þ

where Btor and Bpol represent the toroidal and poloidal
magnetic field strengths, r and R are the minor and major
radii of the toroidal-dominated neutron star region (just below
its surface), respectively. Inside this toroidal-dominated

FIG. 7. Three-dimensional renderings of model A2 with resistivity η ¼ 10−6 (highly conducting) at nine different instances of time.
The time labels in the plots are in the unit of c ¼ G ¼ M⊙ ¼ 1. White lines show the poloidal field lines while yellow lines show mixed
(i.e. poloidal and toroidal) ones. (a) t ¼ 0ms. (b) t ¼ 0.5ms. (c) t ¼ 1.0ms. (d) t ¼ 3.5ms. (e) t ¼ 4ms. (f) t ¼ 4.5ms. (g) t ¼ 10ms.
(h) t ¼ 30 ms. (i) t ¼ 90 ms.
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region (which has a minor radius r ≈ 3 and a major radius
R ≈ 10.5), the KS criterion is typically greater than 1, with a
maximum value of approximately 1.7 at the center of the
torus. This suggests that the torus is initially unstable against
the “kink” instability. It is important to note that the criterion
inEq. (35) is derived under assumptions of density, geometry,
and Newtonian physics, which may not be applicable in the
case of neutron stars.
To demonstrate how different instabilities grow at differ-

ent time, in Fig. 7, we show the three-dimensional render-
ings of the star with resistivity η ¼ 10−6 (highly conducting

case) at different times as an example. The m ¼ 0 insta-
bility (also known as “sausage” instability) is developed at
the beginning of the evolution. As shown at the top row in
Fig. 7 (from 0 to 1 ms), the cross section of the toroidal
magnetic field which is confined inside the star (the yellow
“spring” surrounding the rotational axis) is changing in
every direction, like breathing. The m ¼ 1 (“kink”) insta-
bility, is developed afterwards. As shown at the middle row
(from 3.5 to 4.5 ms), instead of surrounding the rotational
axis strictly on the z ¼ 0 plane, the yellow “spring”
oscillates around the z ¼ 0 plane. At the same time, the

FIG. 8. Similar plots as Fig. 7 but with the resistivity η ¼ 10−2 (highly resistive) case. (a) t ¼ 0 ms. (b) t ¼ 0.5 ms. (c) t ¼ 1.0 ms.
(d) t ¼ 3.5 ms. (e) t ¼ 4 ms. (f) t ¼ 4.5 ms. (g) t ¼ 10 ms. (h) t ¼ 30 ms. (i) t ¼ 90 ms.
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FIG. 9. A comparison between evolutions with different resistivity η ¼ 10−6; 10−4; 10−3; 10−2 shown from top to bottom rows, at
t ¼ 5; 20; 30 ms shown from left to right columns.
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poloidal closed white loops at the star surface starts to be
twisted together with the internal fields. Despite the
instabilities, the overall poloidal-like structure still remains
up to 30 ms, and is destroyed completely around 50 ms, as
shown at the bottom row. Given the dynamical timescale by
which these instabilities develop, the decay of the electro-
magnetic, kinetic, and rotational energies are shown in
Figs. 2–4. In contrast, the “sausage” and “kink” instabilities
mentioned earlier do not develop in the highly resistive
case with η ¼ 10−2, as shown in Fig. 8. Both the closed
magnetic field lines inside and outside the star are flatten
onto the xy plane. At the end of the simulation, the overall
poloidal-like structure still remains, and the magnetic fields
concentrate at the pole of the star. Although it is expected
that eventually a stable equilibrium will establish itself by
means of Taylor relaxation, we did not reach that point. A
comparison between the different resistivity evolutions at
specific instances is shown in Fig. 9.

As described in Sec. II B, the region surrounding the star
is initially filled with a low-density gas with a constant
magnetic-to-gas pressure ratio. Consequently, the evolution
of the magnetic field in these low-density regions depends
on the properties of the gas, such as the rest-mass density
and the magnetic-to-gas pressure ratio. The impact of
parameter choices, as well as the development of more
realistic treatments, which are crucial for neutron star
modeling, will be addressed in future work.
Figures 10 and 11 compare the toroidal magnetic field

strength Bϕ and the magnetic field lines on the xy and yz
planes at different instances and different resistivities η. In
the highly conducting case (η ¼ 10−6), the “sausage” and
“kink” instabilities develop very quickly soon after the
simulation is lunched. At early time t ∼ 4 ms, the toroidal
component creates vertexlike structures as reported in the
literature (e.g. [29,31,75]). At late times, the symmetries
of the magnetic fields are mostly destroyed. Since the

FIG. 10. Toroidal magnetic field strength Bϕ (colors) and the magnetic field lines (streamlines) on the xy plane at different time
with different resistivity η. The black solid lines show the surface of the neutron star. Cases with different resistivity
η ¼ 10−6; 10−4; 10−3; 10−2 are shown from top to bottom rows, while the snapshots at t ¼ 1; 4; 10; 40; 80 ms are shown from left
to right columns.
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existence of resistivity dissipates the strength of the
magnetic fields, it affects how the instability is developed.
The existence of resistivity dissipates the strength of the
magnetic fields, and delays the growth of instabilities. In
the highly resistive cases (η ¼ 10−2), at the late time
(t ¼ 80 ms) the field lines are aligned and uniformly
distributed. Note that the oblateness of the star sensitively
depends on the strength of the poloidal magnetic fields
and the rotations. As the star loses the magnetic pressure
and spins down (e.g. see Fig. 5), it becomes less oblate and
asymptotically become quasispherically symmetric.
In addition to themagnetic instabilities, the dynamical bar

mode instability will occur when the rotational kinetic-to-
gravitational-energy ratio Trot=jWj of a rotating neutron star
is larger than a certain threshold. In general, the threshold is
found to be around 0.25 to 0.1 depending on the differential
rotation law [76–78], although nonaxisymmetric instabil-
ities for values as low as 0.01 have also been found [79,80].
These so-called shear instabilities depend on Trot=jWj and

the degree of differential rotation [81]. In the top panel of the
Fig. 4, we plot the rotational kinetic-to-gravitational-energy
ratio Trot=jWj of our star for all resistivities. This ratio starts
below0.1, and drops several orders ormagnitude, thuswe do
not observe any development of the bar mode instability.
This can also be seen in Figs. 7 and 8 where the stars evolve
towards spherical symmetry.
It has been shown that Tayler instability can be triggered

in toroidal dominated magnetized neutron stars [28,82]. In
the axisymmetric study [28], the authors show that the
axisymmetric Tayler instability is triggered when the ratio
EEM=Trot ≳ 0.2. The model considered in this work is
poloidal dominated, and as shown in the bottom panel in
Fig. 4, the ratio EEM=Trot is beyond 0.2 initially, increasing
as the system evolves. All our simulations are unstable
against the Tayler instability, pointing to the fact that a
toroidal dominated magnetic field is not a necessary
condition for its development. Also, despite the fact that
the star is rotating sufficiently fast, the instability is not

FIG. 11. Similar plots as Fig. 10 but on the yz plane. The colors show the toroidal magnetic field strength Bϕ, while the streamlines
show the magnetic field lines. The black solid lines show the surface of the neutron star. As discussed in Fig. 10, as the instability grows,
it destroys the magnetic field symmetries and develops multipolar topologies.
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suppressed. As shown by Frieman and Rotenberg [83],
rigid-body rotation has a significant effect on hydromag-
netic equilibria when the fluid-flow velocity is of the
same order as the Alfvén velocity. In our model the initial
maximum fluid velocity is 0.284c, while the initial Alfvén
velocity is 0.08c, i.e. an order of magnitude smaller.
Therefore, it is not expected that rotation can stabilize
the developed instabilities, consistent with our simulations.
To better understand the development and saturation of

the instability, we compute the volume-integrated azimu-
thal mode decomposition of rest mass densityD ≔ Wρ and
toroidal magnetic field Bϕ. The normalized modes for both
conserved rest-mass density and toroidal magnetic field
with azimuthal number in the range m ¼ 1; 2; 3; 4 with
different resistivity are shown in Fig. 12. Note that the
m ¼ 4 modes are dominated by the Cartesian grid induced
perturbation (see e.g. [84–86]), which remains mostly at the
same level throughout the simulations.

The upper panel of Fig. 12 compares the volume-inte-
grated azimuthal mode decomposition of the conserved rest-
mass densityWρ with different resistivity η. In all cases, the
m ¼ 1 mode grows at a similar rate and does not saturate.
This implies that the one-arm spiral instability [87–89] grows
throughout the entire simulations, and is insensitive to the
choice of resistivity. On the other hand, them ¼ 2; 3 modes
reach to their peak values at around 10 ms except for the
highest resistive case η ¼ 10−2. The existence of resistivity
suppress the peak value of m ¼ 2 mode, and boosting its
growth at later times. Since the m ¼ 2 mode is usually the
dominating mode of gravitational wave emission, this
suppression can also be seen in the gravitational waves
signals, as shown in Fig. 13. Unlike the conserved rest-mass
density modes, the mode decomposition of the toroidal
magnetic field Bϕ behaves similarly for all resistivities. As
shown in the lower panel of Fig. 12, the m ¼ 1, 2, 3 modes
grow at a similar rate, and saturate around 10 ms.

FIG. 12. Volume-integrated azimuthal mode decomposition of the conserved rest-mass density Wρ (upper panels) and toroidal
magnetic field Bϕ (lower panels). Normalized modes with azimuthal number in the range m ¼ 1; 2; 3; 4 are shown. Cases with different
resistivity η ¼ 10−6; 10−4; 10−3; 10−2 are shown from left to right columns.

FIG. 13. Time evolution of the gravitational wave amplitude h observed at polar axis and equatorial plane with different polarizations
of the strongly magnetized rapidly rotating neutron star model in Table I with different resistivities η. Since the magnetar system is very
axisymmetric, the gravitational wave strain heþ is expected to be much larger than others. Therefore, heþ is divided by 10 for better
visualization. As the m ¼ 2 mode of rest mass density expected to be the dominating mode of gravitational waves emissions, the
suppression of them ¼ 2mode shown in Fig. 12 should also be reflected in the gravitational wave amplitude. As expected, the existence
of resistivity suppresses the gravitational wave amplitude, as a direct consequence of the suppression of the m ¼ 2 mode.
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IV. CONCLUSIONS

We reported long-termgeneral-relativistic resistive-MHD
simulations of self-consistent rotating neutron stars with
ultrastrong mixed poloidal and toroidal fields. One of the
major effects due to resistivity is the Ohmic dissipations of
magnetic fields. Since the magnetic field evolution sensi-
tively depends on the development of various instabilities,
which in turn depend on the strength of the magnetic field,
the existence of nonzero resistivity is expected to alter the
entire evolution significantly. To explore the long-term
effects due to resistivity, we performed dynamical simu-
lations of a magnetized neutron star up to 100 ms with four
different resistivities, and study the evolution of magnetic
fields, instabilities, and field geometry.
We found that the resistivity of the star can significantly

alter the development of the magnetohydrodynamical insta-
bilities. In particular, we showed that the dissipation of the
magnetic energy is dominated by the choice of resistivity.
As shown in Fig. 3, the higher the resistivity, the larger
the magnetic energy dissipation. A direct consequence of
reducing the strength of amagnetic field is the increase of the
Alfvén timescale, and hence the delay of the growth of the
instability. Figures 12 and 13 demonstrate the suppression of
the instability, indicating that gravitational wave emission is
positively correlated with resistivity.
We also found that the magnetic field geometry evolu-

tion sensitively depends on the resistivity. The magnetic
field evolution depends critically on the growth of insta-
bility, which is shown to be related to resistivity. For
instance, in the highly conducting cases, instability devel-
ops and break the symmetries in a short timescale, resulting
in a complicated multipolar field structure. In contrast, in
the highly resistive cases, the instability is suppressed and
the field lines are relatively ordered. At the end of the
simulation, a large scale uniform dipolar structure is
formed. Surprisingly, although the evolution of the mag-
netic field geometry is very different in all cases, the
poloidal-to-toroidal field energy ratio remains quantita-
tively 9∶1 throughout the simulations, as shown in Fig. 14.
We note here that the magnitude of the magnetic field in

our initial models is unrealistically large. The reason for
adopting such large magnetic fields is to make the Alfvén
timescale sufficiently small so that our evolutions reach a
meaningful point within the finite amount of computing
resources. On the other hand, given the fact that the stability
of extremely magnetized neutron stars is currently
unknown, by choosing a large magnetic field we risk
evolving objects that are magnetically unstable. In the
future we will perform longer simulations with smaller (and
more realistic) magnetic fields.
We will further investigate the impact on neutron star

evolution due to resistivity. For example, the resistivity is
expected to be very low at the inner part of the neutron star,
while it can be significantly higher at the surface or the region
surrounding the star [90]. In a more realistic consideration,
resistivity should be at least a function of rest mass density.

Moreover, exploration of the parameter spaces of neutron
stars (e.g. rotations, initial field strength, and configurations)
is necessary to complete the picture. Finally, high resolution
simulations are also needed to better capture the growth of
instability. These will be left as our future work.
The data of the simulations were postprocessed and

visualized with YT [91], NumPy [92], PANDAS [93,94],
SciPy [95], Matplotlib [96,97], and VisIt [98].

ACKNOWLEDGMENTS

P. C.-K. C. gratefully acknowledges support from
National Science Foundation (NSF) Grant No. PHY-
2020275 [Network for Neutrinos, Nuclear Astrophysics,
and Symmetries (N3AS)]. A. T. is supported in part by
NSF Grants No. PHY-2308242 and No. OAC-2310548
to the University of Illinois Urbana-Champaign. A. T.
acknowledges support from the National Center for
Supercomputing Applications (NCSA) at the University of
Illinois Urbana-Champaign through the NCSA Fellows
program. M. R. acknowledges support by the Generalitat
Valenciana Grants No. CIDEGENT/2021/046. F. V.
acknowledges support by the Generalitat Valenciana
No. CIGRIS/2022/126. M. R. and F. V. acknowledges sup-
port, by the Spanish Agencia Estatal de Investigación (Grant
No. PID2021-125485NB-C21), and by the European
Horizon Europe staff exchange (SE) program HORIZON-
MSCA2021-SE-01 Grant No. NewFunFiCO-101086251.
J. C. L. C acknowledges support from the Villum Investi-
gator program supported by the VILLUM Foundation
(Grant No. VIL37766) and the DNRF Chair program
(Grant No. DNRF162) by the Danish National Research
Foundation. K. U. is supported by JSPS Grant-in-Aid for
Scientific Research (C) 22K03636 to the University of the
Ryukyus. The simulations in this work have been performed
on the UNH supercomputer Marvin, also known as Plasma,
which is supported by NSFMajor Research Instrumentation
(MRI) program under Grant No. AGS-1919310. This work
also used Expanse cluster at San Diego Supercomputer
Centre through allocation PHY240086 from the Advanced
Cyber infrastructure Coordination Ecosystem: Services &
Support (ACCESS) program [99], which is supported
by National Science Foundation Grants No. 2138259,
No. 2138286, No. 2138307, No. 2137603, and
No. 2138296. Finally, we acknowledge computational
resources and technical support of the Spanish Supercom-
puting Network through the use of MareNostrum at the
Barcelona Supercomputing Center (AECT-2023-1-0006).

DATA AVAILABILITY

No data were created or analyzed in this study.

APPENDIX: COMPARISON TO FULLY

GENERAL RELATIVISTIC SIMULATIONS

As discussed in Sec. II, the initial data we use in this
work is fully general relativistic. Given that the Gmunu code
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adopts the conformally flat approximation, it is necessary to
verify how this approximationmight affect the evolution. To
this end, we compare simulations of nonconformally flat
initial data generated using the ILLINOISGRMHDandGMUNU

codes. The numerical setup for Gmunu is the same as
described in Sec. II, except for the time integration method.
Specifically, we use the explicit time-stepping scheme
SSPRK3 [100] for pure hydrodynamical and ideal magneto-
hydrodynamical cases. On the other hand, the numerical
setup for ILLINOISGRMHD is the same described in [34].

1. Nonmagnetized evolution

In this subsection, we compare the evolutions of a
nonmagnetized rapidly rotating neutron star with Gmunu

and ILLINOISGRMHD codes. The model employed in the
case corresponds to a neutron stars with a central rest-mass
density ρ ¼ 4.90 × 1014 g · cm−3, a gravitational mass
M0 ¼ 1.83M⊙, a radius RNS¼ 19.75 km along the x
coordinate, and a rotational kinetic-to-gravitational-energy
ratio of 7.15 × 10−2. This equilibrium model is generated
with a polytropic equation of state with Γ ¼ 2 and
K ¼ 123.6. Resolution on the innermost level in both
cases are about Δx ≈ 437.54 m. In both cases, ideal-gas
equation of state with Γ ¼ 2 is used, and equatorial
symmetry is adopted.
Figure 15 compares the time evolutions of the neutron

star using the Gmunu and ILLINOISGRMHD codes. The
simulations with Gmunu quantitatively agree with those from
ILLINOISGRMHD, despite the former adopting the con-
formally flat approximation for evolution.

2. Magnetized evolution

In this subsection, we compare the evolutions of the
same strongly magnetized rapidly rotating neutron star

model “A2” with Gmunu and ILLINOISGRMHD codes. This
neutron star is the “A2” model as described in Sec. II and
[34]. Note that, the finest grid size at the center of the star in
the case of Gmunu is Δx ≈ 346 m, while it is about 87 m in
the case of ILLINOISGRMHD [34]. Figure 16 compares the
time evolutions of the maximum rest mass density with
different codes, where the rest mass density is normalized
by its initial value.

FIG. 14. Time evolution of the magnetic energy ratios
E⋆

B;pol=E
⋆
B;tot (solid lines) and E⋆

B;tor=E
⋆
B;tot (dashed lines) of the

star with different resistivities η. Despite the varying resistivity
and resulting differences in instability development across these
models, the energy ratios of the poloidal to toroidal fields
consistently remain around 9∶1 throughout the evolution.

FIG. 15. Comparison of the three-dimensional evolutions of a
nonmagnetized, rapidly rotating neutron star using the Gmunu and
ILLINOISGRMHD codes. Here we compare the maximum rest-
mass density normalized by its initial value, ρmax=ρmaxð0Þ, from
Gmunu (solid line) which adopts the conformally flat approxi-
mation, and the ILLINOISGRMHD (dashed line) which evolves in
full general relativity.

FIG. 16. Comparison of the evolutions of a strongly magnet-
ized, rapidly rotating neutron star using the Gmunu and ILLI-
NOISGRMHD codes. This magnetar corresponds to the “A2”
model as described in [34]. We compare the maximum rest mass
density normalized by its initial value ρmax=ρmaxð0Þ. The solid
lines show the numerical results obtained by Gmunu: the ideal
MHD simulation is shown in navy, while the resistive simulation
with low conductivity η ¼ 10−6 is shown in red. The dashed
pink line represents the ideal magnetohydrodynamical evolu-
tion carried out using ILLINOISGRMHD, as presented in [34].
The results generated by Gmunu broadly agree with the
reference solution produced by the ideal full GRMHD code
ILLINOISGRMHD.
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The solid lines in Fig. 16 show the numerical results
obtained by Gmunu, where the ideal MHD simulation is
shown in navy while the resistive simulation with low
conductivity η ¼ 10−6 is shown in red. Since the low
resistivity η ¼ 10−6 corresponds to Ohmic decay timescale
in the order of 105 ms, both of these results is expected to
nearly identical in such short timescale. However, some
minor difference is unavoidable because the implementa-
tion of the ideal versus resistive MHD are different
(see [52,53]).
The dashed line in Fig. 16 represents the ideal magneto-

hydrodynamical evolution asmodeled by ILLINOISGRMHD,

as detailed in [34]. The oscillation generated by this model
has a larger amplitude compared to that produced by
Gmunu. Several factors may account for this difference:
(i) Gmunu utilizes a conformally flat approximation, whereas
ILLINOISGRMHD employs a fully general relativistic
approach; (ii) Gmunu solves the metric quantities elliptically
after introducing the force-free-like atmosphere around the
star at the start of the simulation, leading to an initial
condition closer to equilibrium, unlike ILLINOISGRMHD.
Despite the variance in oscillation amplitude, the results
produced by Gmunu are generally in agreement with the
reference solution from ILLINOISGRMHD.
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