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Abstract—Sensor channel selection is an important optimiza-
tion problem in resource-constrained wearable systems with the
goal of identifying an optimal set of input sensors for efficient ma-
chine learning. We introduce a framework for this optimization
problem, mathematically formulate the minimum-cost channel
selection (MCCS), and propose two novel algorithms to solve the
problem. Branch and bound channel selection finds a globally
optimal channel subset and the greedy channel selection finds the
best intermediate subset based on our proposed penalty function.
These proposed channel selection algorithms are conditioned with
both performance and the cost of the channel subset. We evaluate
both algorithms on two publicly available time series datasets for
activity recognition and mental task classification. Branch and
bound channel selection achieve a cost saving between 92.6% and
95.7%, and the greedy approach reduces the cost between 51.8%
and 91.4,% for performance thresholds of 50% and 70%.

Index Terms—channel selection, sensor systems, time series,
machine learning

I. INTRODUCTION

Wearable sensor systems operate in a resource-restricted
setting with limited computational power and memory. Ma-
chine learning algorithms and wearables are being increasingly
utilized in digital health applications. However, oftentimes,
different sensing modalities are suitable for achieving a par-
ticular goal. For example, consider stress detection for which
bio-markers such as heart rate variability, skin conductance
response, and core body temperature are suitable. Another
example is human activity recognition, in which sensor nodes
can be placed at different body sites. In such cases, it becomes
important to determine the optimal set of sensor channels
to meet the requirements of the machine learning task while
adhering to the design and operating limitations of the system.

Sensor channel selection is defined as the identification
and removal of channels that provide a negative or negligible
contribution to a goal task T . The problem is selecting
k channels out of n given channels while optimizing the
performance and total cost. Given this problem setting, there
exists C(n, k) = n!

k!×(n−k)! channel subsets. For small search
spaces, an exhaustive search can be used to identify and
remove redundant sensor channels. However, the search space
grows exponentially with the size of channels set (n), and
exhaustive search is not feasible for large search spaces.
A channel selection algorithm combines a search technique
to find new channel subsets and an evaluation method to
assess the performance of the selected subset. A commonly
used evaluation process involves training a machine learning
algorithm for the considered task on the selected subset. The
performance of the trained model is used as the proxy score
of the selected channel subset. This approach of evaluation

is similar to wrapper-based feature selection, which has been
extensively studied in machine learning literature. Most prior
work on channel selection follows the wrapper-based evalua-
tion paradigm with some heuristic to either limit the search
space of channel subsets [1], [2] or modify the learning process
to encourage the model to learn features from least number of
input channels during the training process [3], [4]. In general,
these methods only consider the performance criteria in their
evaluation step, and the cost of the channel subset is not
used in the decision-making process. This leaves a gap in the
literature regarding the optimal channel subset, which not only
meets the performance criteria but also considers the minimum
total cost. In this work, we present two novel backward search
algorithms to address this knowledge gap by finding a channel
subset with minimum cost while ensuring a lower bound on
the performance is met.

II. MINIMUM COST CHANNEL SELECTION

Minimum cost channel selection (MCCS) is defined as
identifying and selecting a subset of n channels with minimum
total cost W while ensuring that the selected channels achieve
a lower bound (λ) on the performance according to the given
performance function f(.). Furthermore, depending on the
learning task T , the performance function f can either be
maximized (accuracy) or minimized (mean squared error).

A. Problem Definition

Given n sensor channels Cn = {c1, c2, . . . cn} and cost
Wn = {w1, w2, . . . , wn} for selecting each sensor channel.
The MCCS problem is to minimize the total cost

Minimize
n∑

i=1

wiai (1)

Subject to:

f(c1a1, c2a2, . . . , cnan) ≥ λ

ai ∈ {0, 1}
(2)

Here, f is a performance function, ai is a binary value
indicating selection of channel ci, λ is the lower bound on
the performance, and wi is the normalized cost of selecting
channel ci. Normalized cost is obtained for all channels given
Wn such that

∑n
i=1 wi = 1.

B. Branch and Bound Channel Selection

Let (c1, . . . , cs̄) be the s̄ = n− s channels to be discarded
to obtain the channel subset Cs of size s. Each channel ci
can take on value in {1, 2, . . . , n}. Here, the order of ci’s is



not important, and we only consider sequences of ci’s such
that c1 < c2 < · · · < cs̄. The performance function (f) is
a function of the selected channel subset (Cs) obtained by
discarding c1, . . . , cs̄ channels from the n channel set. Now,
the channel subset selection problem is to find the subset
c∗1, . . . , c

∗
s̄ to discard such that

f(C∗
s̄ ) = max f(C∗

s )

and W (C∗
s̄ ) = min W (C∗

s )
(3)

W is a cost function defined as the sum of the normalized
cost of all channels in the selected subset Cs. Let us assume
the performance function f satisfies monotonicity defined by

fn(c1, c2, . . . , cn) ≥ fn−1(c1, c2, . . . , cn−1) ≥ · · · ≥ f1(c1)
(4)

The monotonicity principle means that a subset of channels
should not be better than any larger set containing the subset.
We acknowledge that not all types of neural networks satisfy
the monotonicity principle, but recent works have shown ways
to create deep neural networks with monotonic properties [5].
The cost function already satisfies the principle of mono-
tonicity, i.e., Wn(c1, c2, . . . , cn) ≥ Wn−1(c1, c2, . . . , cn−1) ≥
· · · ≥ W1(c1). Then, given the lower bound (λ) on the value
of the performance, we can write

λ ≤ f(C∗
s ) (5)

And, if f(Ck)(k > s) is less than λ, then from equation 4,

f(Cs) ≤ λ

∀ {Ck+1, . . . , Cs}
(6)

Equation 6 means that whenever the performance function
evaluated for any subset is less than λ, all subsets that are
successors of that subset also have performance value less than
λ, and therefore cannot be the optimal solution. This forms the
basis for the branch and bound channel selection algorithm.
The branch and bound method successively generates portions
of the solution tree and computes the performance value.
Whenever a sub-optimal partial subset satisfies condition 6,
the sub-tree under that subset is implicitly rejected, and
enumeration begins on the subsets that have not yet been
evaluated [6]. Algorithm 1 describes the proposed branch and
bound channel selection.

C. Greedy Channel Selection

The branch and bound algorithm assume monotonicity in
performance which may not be always true. Furthermore,
in the worst case branch and bound search must evaluate
all possible channel subsets and consequently will have an
exponential runtime [7]. In light of these limitations, we also
propose a greedy algorithm 2 for sub-optimal channel subset
selection.

Let C be a root channel subset node and C − c be its
children subset node. The subset C−c is created by discarding

Algorithm 1 Branch and bound channel subset selection
Input: List of channels Cn = {c1, c2, . . . , cn}, Cost of each channel
Wn = {w1, w2, . . . , wn}, and Number of channels n
Parameter: Objective function f and Performance threshold λ
Output: Globally optimal channel subset C∗, cost of the
selected channel subset W ∗, and list of optimal subsets
Co

1: Set C∗ = Cn and W ∗ =
∑

wi

2: Create stack S and hash table H
3: Set current subset node Kcurrent = Cn

4: Co = []
5: POPPED = 1
6: if f(Kcurrent) < λ then
7: return C∗, W ∗, Co

8: end if
9: Push Kcurrent into S

10: Map Kcurrent into H
11: while S is not empty do
12: Kprevious = Kcurrent

13: Create children subset nodes of Kcurrent and store them in
the ascending order of the cost in L

14: for subset n in L do
15: Kcurrent = n
16: Check the performance of Kcurrent and update S, H
17: Update C∗, W ∗ and C0 if needed
18: end for
19: if Kcurrent == Kprevious then
20: Pop S and assign to Kcurrent

21: POPPED = 1
22: else
23: POPPED = 0
24: end if
25: end while
26: return C∗, W ∗, Co

the channel c from the parent subset C. We define a Penalty
function

penalty = α× f(C − c) + (1− α)×W (C − c) (7)

where f(C − c) is the value of the performance function
on the channel subset C − c and W (C − c) is the sum of
the normalized cost of channels in the subset C − c. α is a
balancing term used to control the influence of performance
and cost on the penalty value. Given the penalty function,
the greedy algorithm selects a channel subset that meets the
performance threshold i.e., f(C−c) ≥ λ and has the minimum
value of penalty at each intermediate stage. Also, since the
goal is to minimize the value of the penalty function, for
classification problems we modify the penalty function as

penalty = α× (1− f(C − c)) + (1− α)×W (C − c) (8)

The algorithm greedily selects a subset with the least penalty
value and hence is able to achieve a runtime of O(n2).

D. Cost Model

Cost model defines the cost of a channel based on the
some input parameters such as: 1) computation and memory
requirement which are directly related to sampling frequency,
2) power requirement, 3) sensing requirement, 3) usability and



Algorithm 2 Greedy channel subset selection
Input: List of channels Cn = {c1, c2, . . . , cn}, Normalized cost of
each channel Wn = {w1, w2, . . . , wn}
Parameter: Objective function f , Performance threshold λ, and α
Output: Locally optimal channel subset C and cost
W

1: Set C = Cn and W =
∑

wi

2: Set current subset node Ck = C
3: if f(Ck) < λ then
4: return C, W
5: end if
6: Set best penalty Sb = inf
7: while true do
8: L = children subset nodes of Ck

9: if L is Empty then
10: return C, W
11: end if
12: for subset S in L do
13: Check performance of S
14: Update C and W if needed
15: end for
16: end while
17: return C, W

interpretability cost, 4) manufacturing cost, and 5) other cost.
In our analysis, we generate the cost for each channel using a
simple heuristic based on the sampling frequency of the sensor
channel. Sensor channel with higher sampling frequency are
assigned a larger cost and vice-versa. In practice, the cost
of the sensor channel can be determined as needed and used
with our proposed algorithms to determine the optimal channel
subset.

III. ANALYSIS AND RESULTS

A. Datasets

EEG Mental Task [8] dataset contains electroencephalogram
(EEG) signals recorded for binary mental arithmetic task de-
tection using Neurocom EEG 23-channel system at a sampling
frequency of 500 Hz. A high-pass filter with a 30 Hz cut-off
frequency and a power line notch filter (50 Hz) were used
to eliminate noise and artifacts from all EEG channels. All
recordings are artifact-free segments of 60 seconds in duration.
We further subdivided the segments into input windows of
size 10 seconds with 5 seconds overlap between consecutive
windows.

PAMAP2 [9] is a human activity recognition dataset
recorded from 9 participants wearing 3 sensor units (chest,
wrist, and ankle) and performing 18 activities. Each sensor
unit contained 3−axis accelerometer, gyroscope, and mag-
netometer all sampled at 100 Hz. Altogether there are 27
sensor channels with 9 channels from each body location.
The signal from each sensor is subdivided into windows of
size 30 seconds with 15 seconds overlap between consecutive
windows. The activity recognition task is defined as a 7 class
classification problem.

B. Model Architecture

We have used 1D Convolutional Neural Network (CNN)
architecture to evaluate each channel subset during the search

process, as shown in Fig 1. CNNs are known to work well for
time-series classification problems [10] and can be trained with
raw sensor values without feature computation and selection.
The modular architecture of CNN can also accommodate
dynamic changes in input channels. Each input channel in
the considered subset is assigned a separate feature extraction
block, and outputs from all feature extractors are aggregated
in the classification block to learn the mapping from input to
output.
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Fig. 1: Modular architecture of the CNN model with a number
of feature extractors equal to the number of input channels.

The feature extraction block consists of two one-
dimensional convolutional layers, and the classification block
has two fully-connected layers. ReLU activation is used in
all intermediate layers, and Softmax activation in the output
layer consists of the same number of neurons as the number
of output classes. In all cases, the model is trained for 100
epochs using cross-entropy loss and Adam optimizer with a
learning rate set to 0.001.

C. Channel Subset Selection

In our analysis, each axis of a sensing modality is con-
sidered an independent sensor and we recommend consulting
original publications for more details about sensor channels
in both datasets [8], [9]. We initially set α = 0.5 for greedy
channel search and measured the performance in terms of
accuracy of the trained model. Table I shows the optimal
channel subset for the EEG mental task dataset determined
using branch and bound, and greedy channel selections. Since
the sampling frequency of all channels in the EEG dataset
is equal, the normalized cost of each channel is also equal
and set to wi = 0.043. The accuracy of the model trained on
all available channels is considered baseline performance and
was 73.48%. Given the baseline performance, the performance
threshold λ was set to 0.7 or 70% accuracy. For the EEG
dataset, branch and bound channel selection was able to
achieve a cost saving of 95.7%, and the greedy search was
able to reduce the cost by 91.4%.

TABLE I: Optimal channel subset for EEG dataset determined
using branch and bound (B&B) and greedy methods.

Method Selected Accuracy Cost Penalty Cost
Subset (%) Savings

B&B FP1 70.31 0.043 0.169 95.7%
Greedy (C3, F3) 72.33 0.086 0.191 91.4%



All channels in the PAMAP2 dataset also have equal sampling
frequency, and consequently, the cost of each channel is equal
and set to wi = 0.037. The baseline performance accuracy
was determined to be 59.02%, and the performance threshold
λ was set to 0.5 or 50% accuracy. Branch and bound search
selected the subset with 2 channels with performance 51.22%,
cost 0.074, and penalty 0.282 to be globally optimal. A
subset with 13 channels was determined to be best with
greedy search. The cost of the greedy subset is 0.4814 with a
performance of 89.75% and a penalty of 0.2919. A cost saving
of 92.6% was achieved with branch and bound search and a
cost saving of 51.9% with greedy search.

D. Effects of Alpha

We set α = 0.5 in the preceding analysis, placing equal
importance on the cost and performance for greedy channel
selection. However, in practice, minimizing cost might be
more important than maximizing performance and vice-versa.
Fig 2 shows the performance and cost of the selected channel
subset at different values of α. Larger values of α put greater
emphasis on the performance and smaller values of α favor
channel subsets with lower costs. For both datasets, at larger
values of α, the accuracy of the selected subset is higher, but
the cost is also high. This is expected because a greater number
of input channels will provide more information to the model
to learn the mappings between input and outputs, consequently
increasing the performance.
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Fig. 2: Accuracy and cost of the selected channel subset using
greedy search for both datasets at different values of alpha. The
values on the line denote the number of selected channels.

E. Comparison Analysis

Channel selection approaches either use exhaustive search
[1], [2] to evaluate all possible combinations of channels
or some optimization method [4], [11] to limit the search
space and select best-performing channel subsets. A direct
comparison of our approach with existing studies is not
feasible because existing studies often lack a provision for
performance threshold and do not consider the cost of channels
in their method. However, to facilitate comparative analysis,
we have compared the results reported in [11] for the PAMAP2
dataset against results obtained using our algorithms. Authors
in [11] devised a deep neural network to promote learning
from the lowest number of channels and showed superior
performance compared to other channel selection approaches
[3], [4]. The algorithm in [11] selected 15-channels for f1-
score of 0.88. Our greedy algorithm selects 13-channels for

the accuracy of 89.75% and the branch and bound approach
selected 2-channels to meet the performance threshold of 50%
with minimum cost. Given that the cost assigned to each
channel is equal in our evaluation, the comparison is valid
and is not affected by the cost parameter.

IV. CONCLUSION

In this work, we have proposed and validated two sensor
channel selection algorithms to determine an optimal subset
of channels that meets the performance criteria with minimum
cost. Proposed algorithms can be used in real-life applications
to optimize the cost of a sensor system while also ensuring a
performance guarantee. Branch and bound channel selection
also allows for dynamic selection of channels during run-
time since it returns a list of channel subsets satisfying the
performance threshold. When some channels from the globally
optimal subset become unavailable during run-time, channels
from the next best subsets can be used to keep the system
operational. Also, our evaluation scheme is model agnostic,
and any other type of learning algorithm can be used instead
of CNN.
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