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Environmental averaging

Roman Shvydkoy

Abstract. Many classical examples of models of self-organized dynamics, including the Cucker-
Smale, Motsch-Tadmor, multi-species, and several others, include an alignment force that is based
upon density-weighted averaging protocol. Those protocols can be viewed as special cases of ‘envi-
ronmental averaging’. In this paper we formalize this concept and introduce a unified framework for
systematic analysis of alignment models.

A series of studies are presented including the mean-field limit in deterministic and stochas-
tic settings, hydrodynamic limits in the monokinetic and Maxwellian regimes, hypocoercivity and
global relaxation for dissipative kinetic models, several general alignment results based on chain con-
nectivity and spectral gap analysis. These studies cover many of the known results and reveal new
ones, which include asymptotic alignment criteria based on connectivity conditions, new estimates
on the spectral gap of the alignment force that do not rely on the upper bound of the macroscopic
density, uniform gain of positivity for solutions of the Fokker-Planck-Alignment model based on
smooth environmental averaging. As a consequence, we establish unconditional relaxation result for
global solutions to the Fokker-Planck-Alignment model, which presents a substantial improvement
over previously known perturbative results.
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1. Introduction

Many mathematical models of swarming behavior reflect the tendency of every agent to
align its velocity to an averaged direction of motion of the crowd around. Although the rules
that describe the average may not be given explicitly, most adhere to a few basic principles.
First, agents react more to the closest neighbors, and second, the density of the swarm plays
constructive role in defining a particular communication protocol. Such rules, in a broad
sense, give rise to what is called environmental averaging.

Early computer simulations that incorporated an alignment mechanism along with other
interaction forces produced first realistic visualizations of flocks and schools, see [3,76]. A
wide variety of applications ranging from swarming behavior of animals to technological
implementations, see these sources [1,6,8,32,50,69,71,81,92,96] and references therein,
has ignited mathematical inquiries into theoretical foundation of alignment dynamics.

A prototypical example of a static averaging model arises in opinion dynamics, where
each agent labeled by index 𝑖 ∈ [1, 𝑁] has a set of other agents N𝑖 to which it is connected.
The opinion vector p𝑖 aligns to the opinions of connected agents via

¤p𝑖 = 𝜆
∑︁
𝑗∈N𝑖

𝑎𝑖 𝑗 (𝑡) (p 𝑗 − p𝑖) + F𝑖 ,
∑︁
𝑗

𝑎𝑖 𝑗 (𝑡) = 1. (1.1)

Here, F𝑖 incorporate all other forces such as adherence to convictions or random noise. If the
graph of players is connected then the system naturally reaches the total consensus p𝑖 → p̄.
Forces may lead to non-trivial limiting states, such as Nash equilibria, see [26,58,69,73].

In swarming dynamics the pioneering work of Vicsek el al [95] introduced a discrete
model of self-propelled particles with local interactions

v𝑖 (𝑘 + 1) = 𝑣0
∑
𝑗: |𝑥 𝑗−𝑥𝑖 |<𝑟0 v 𝑗���∑ 𝑗: |𝑥 𝑗−𝑥𝑖 |<𝑟0 v 𝑗

��� + 𝜎𝜉𝑛,
x𝑖 (𝑘 + 1) = x𝑖 (𝑘) + v𝑖 (𝑘 + 1).

(1.2)

where 𝜉𝑛 are random variables and 𝜎 > 0 is the noise intensity. The Vicsek averaging is
spatially local and includes normalization to reflect the tendency of agents to adhere to a
fixed characteristic speed. The model produces a number of emergent phenomena devel-
oping into global patterns such as mills or periodically rotating chains. Solutions undergo
phase transitions from ordered to disordered states depending on the noise level, see [96]
for discussion.

A growing number of studies on flocking behavior is based on the Cucker-Smale system
introduced in [24, 25],

¤𝑥𝑖 = 𝑣𝑖 ,

¤𝑣𝑖 =
𝑁∑︁
𝑗=1
𝑚 𝑗𝜙(𝑥𝑖 − 𝑥 𝑗 ) (𝑣 𝑗 − 𝑣𝑖),

(𝑥𝑖 , 𝑣𝑖) ∈ R𝑛 × R𝑛, 𝑖 = 1, . . . , 𝑁. (1.3)
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Here, 𝜙 is a smooth radially symmetric and decreasing kernel, originally 𝜙(𝑟) = 𝜆

(1+𝑟2 )𝛽/2 ,
where 𝜆, 𝛽 > 0. The model provides a well-defined mathematical framework which admits
justifiable kinetic and macroscopic descriptions, see [9, 16, 34, 40, 42, 81, 91]. It appeared,
in part, in response to the need for a model whose long time behavior is not associated
with perpetual connectivity assumptions on the flock as in prior studies. In fact, a simple
criterion for alignment can be stated solely based on rate of decay of the kernel.

Theorem 1.1 ([24,25]). If 𝛽 ⩽ 1, all solutions to (1.3) align exponentially fast to the mean
velocity 𝑣̄ = 1∑𝑁

𝑗=1 𝑚 𝑗

∑𝑁
𝑗=1 𝑚 𝑗𝑣 𝑗 , while flock remains bounded

max
𝑖=1,...,𝑁

|𝑣𝑖 − 𝑣̄ | ⩽ 𝐶𝑒−𝛿𝑡 , max
𝑖, 𝑗=1,...,𝑁

|𝑥𝑖 − 𝑥 𝑗 | ⩽ 𝐷̄,

where 𝐶, 𝛿, 𝐷̄ depend only on the initial condition and parameters of the kernel. If 𝛽 > 1
there are solutions that do not align.

Since its inception the Cucker-Smale system has seen numerous applications. A remark-
able implementation to satellite navigation was proposed in [74], where value of 𝛽 = 0.4
was found to be most optimal for the purposes of the mission. Adaptations to control prob-
lems are addressed in [10, 12, 19]. Interacting agents immersed in an incompressible fluid
lead to hybrid systems with Cucker-Smale component modeling the alignment force, [39].
Multi-scale and multi-species flocks have been studied in [44,87]. An important modifica-
tion of the system with thermodynamic features was proposed in [41], see also [1]. Flocking
analysis can be extended to nonlinear alignment protocols as well [38,49,64,93]. A compre-
hensive review of various other features of the Cucker-Smale dynamics based on hierarchy,
angle of vision, and emergence of leaders can be found in [17]. In the context of alignment
dynamics which includes potential attraction/repulsion or Rayleigh frictions forces, the
emergent behavior has not yet been fully understood, although it is clear from these studies
[22,58,79,80,87], that the effect of such forces on collective outcomes could be dramatic.
In particular, the quadratic confinement potential drives the system to an aggregated har-
monic oscillator, [80]. Some general 𝑁-dependent results in this direction can be achieved
for the 3Zone model of Reynolds [76] with the use of the corrector method introduced in
[29], see [81]. Lastly, we mention that the alignment criterion itself stated in Theorem 1.1
does not require the kernel to have any explicit form and has seen numerous extensions to
include general fat-tail kernels and kernels with degenerate communication in short range,
see [29, 40] and Section 4.1 below.

It is insightful to rewrite the Cucker-Smale system as follows

¤𝑥𝑖 = 𝑣𝑖 , 𝑥𝑖 ∈ Ω,

¤𝑣𝑖 = s𝑖 ( [𝑣]𝑖 − 𝑣𝑖), 𝑣𝑖 ∈ R𝑛 𝑖 = 1, . . . , 𝑁. (1.4)
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whereΩ is an environment (for most of our discussion either T𝑛 orR𝑛), [𝑣]𝑖 is an averaging
protocol of the 𝑖th agent, 𝑣 = (𝑣1, . . . , 𝑣𝑁 ), and s𝑖 is a specific communication strength. Here,

s𝑖 =
𝑁∑︁
𝑗=1
𝑚 𝑗𝜙(𝑥𝑖 − 𝑥 𝑗 ), [𝑣]𝑖 =

∑𝑁
𝑗=1 𝑚 𝑗𝜙(𝑥𝑖 − 𝑥 𝑗 )𝑣 𝑗∑𝑁
𝑗=1 𝑚 𝑗𝜙(𝑥𝑖 − 𝑥 𝑗 )

. (1.5)

This form highlights two separate structural components of an alignment model – the aver-
aging and communication strength. Varying these components allows to adapt the system
to a particular modeling scenario. For example, it is argued in [68, 69] that if a flock con-
sists of clusters with unbalanced sizes it is more realistic to incorporate a static strength
parameter s𝑖 = 𝜆 > 0, leading to what is called the Motsch-Tadmor model

¤𝑣𝑖 = 𝜆( [𝑣]𝑖 − 𝑣𝑖). (1.6)

Analysis of this model presents many challenges related to the lack of symmetry and
momentum conservation. However, the analogue of Theorem 1.1 still holds, [69]. A mod-
ification that restores the symmetry was proposed in [81],

s𝑖 = 1, [𝑣]𝑖 =
∫
R𝑛
𝜙(𝑥𝑖 − 𝜉)

∑𝑁
𝑗=1 𝑚 𝑗𝜙(𝜉 − 𝑥 𝑗 )𝑣 𝑗∑𝑁
𝑗=1 𝑚 𝑗𝜙(𝜉 − 𝑥 𝑗 )

d𝜉. (1.7)

This particular averaging appears instrumental in several other studies of flocking such
as hydrodynamic limits [81], relaxation and hypocoercivity in kinetic dynamics [82], see
also Sections 8 and 9. Its continuous variant emerged in the analysis of non-homogeneous
turbulence in [60].

Another interesting example of a non-Galilean invariant environmental averaging is
given by a class of segregation models. Let {𝑔𝑙}𝐿𝑙=1 be a smooth partition of unity

∑𝐿
𝑙=1 𝑔𝑙 = 1

subordinated to an open cover ∪𝐿
𝑙=1Ω𝑙 = Ω, where Ω is a compact environment. Let

s𝑖 = 1, [𝑣]𝑖 =
𝐿∑︁
𝑙=1

𝑔𝑙 (𝑥𝑖)
∑𝑁
𝑗=1 𝑚 𝑗𝑣 𝑗𝑔𝑙 (𝑥 𝑗 )∑𝑁
𝑗=1 𝑚 𝑗𝑔𝑙 (𝑥 𝑗 )

. (1.8)

Here, the agents communicate predominantly in their own communities and exchange of
information is facilitated through the borders. Consensus can be reached provided the bor-
der is sufficiently populated at all times, see Section 4 for rigorous formulation. Many more
examples are discussed in Section 2.

In the large crowd limit as 𝑁 → ∞ the components s𝑖 , [·]𝑖 take macroscopic forms,
which makes them suitable for statistical description of the alignment systems. For exam-
ple, denoting 𝑓𝜙 = 𝑓 ∗ 𝜙 for a distribution 𝑓 , we can see that the Cucker-Smale model
corresponds to

s𝜌 = 𝜌𝜙 , [𝑢]𝜌 =
(𝑢𝜌)𝜙
𝜌𝜙

.
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This averaging rule is also known as the Favre filtration, [33], which was introduced in the
context of numerical simulations of turbulent flow. In the same manner, the averaging of
(1.7) is given by the over-mollification of the Favre filtration

[𝑢]𝜌 =
( (𝑢𝜌)𝜙
𝜌𝜙

)
𝜙

, (1.9)

and the averaging of (1.8) becomes

[𝑢]𝜌 (𝑥) =
𝐿∑︁
𝑙=1

𝑔𝑙 (𝑥)
∫
Ω
𝑢𝑔𝑙𝜌 d𝑦∫

Ω
𝑔𝑙𝜌 d𝑦

. (1.10)

All the operations above make mathematical sense for any probability measure 𝜌 ∈ P(Ω)
and any bounded field 𝑢 ∈ 𝐿∞ (𝜌). In particular, we can go back to the discrete analogues
by applying averaging on empirical pairs

𝜌𝑁 =

𝑁∑︁
𝑖=1

𝑚𝑖𝛿𝑥𝑖 , 𝑢𝑁 =

𝑁∑︁
𝑖=1

𝑣𝑖1𝑥𝑖 ,

[𝑣]𝑖 :=
[
𝑢𝑁

]
𝜌𝑁

(𝑥𝑖), s𝑖 := s𝜌𝑁 (𝑥𝑖). (1.11)

It is therefore more inclusive to define averaging rules via macroscopic formulas.
Physical features of the system (1.4) are intimately connected to analytical properties of

the pair (s𝜌, [·]𝜌). In most situations those properties are more naturally expressed in terms
of the strength measure given by d𝜅𝜌 = s𝜌 d𝜌. Thus, the preservation of 𝜅-momentum∫

Ω

[𝑢]𝜌 d𝜅𝜌 =
∫
Ω

𝑢 d𝜅𝜌,

implies conservation of the physical hydrodynamic momentum, d
d𝑡

∫
Ω
𝑢 d𝜌 = 0. The sym-

metry ∫
Ω

𝑣 · [𝑢]𝜌 d𝜅𝜌 =
∫
Ω

[𝑣]𝜌 · 𝑢 d𝜅𝜌

implies a natural energy dissipation law

d
d𝑡

∫
Ω

|𝑢 |2 d𝜌(𝑥) = −1
2

∫
Ω×Ω

𝜙𝜌 (𝑥, 𝑦) |𝑢(𝑥) − 𝑢(𝑦) |2 d𝜌(𝑥) d𝜌(𝑦), (1.12)

where 𝜙𝜌 is a communication kernel representing a given averaging, see Section 3.2. The
long time behavior analysis becomes connected to coercivity and positive-definiteness of
the averaging, see Section 4.

In order to get more insight into such connections, it is useful to disassociate the aver-
aging/strength pair (𝜅𝜌, [·]𝜌) from any particular differential law they are involved in, and
take a ‘birds eye’ look on its kinematic properties. For this purpose, we will delegate the
concept of an environmental averaging model to a family of pairs

M = {(𝜅𝜌, [·]𝜌) : 𝜌 ∈ P(Ω)},
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parametrized by probability measures 𝜌 ∈ P(Ω), and satisfying a list of continuity assump-
tions stated below in Section 2. Through the study of such models it appears possible to
build a unifying framework for many flocking and regularity results that have appeared
scattered before, and to find substantially new ones that, otherwise, are obscured by speci-
ficity of a particular model. This will be the main objective of the present work. So, let us
give a brief overview of the studies undertaken here.

(I) First, we develop basic functional analysis of the averaging models. Here we focus
primarily on those properties that have direct physical interpretation in terms of dynamics
of a particular system they are involved in. Those include representability (existence of
a communication kernel), conservation, symmetry, and most importantly a quantitative
version of positive definiteness – ball positivity, see Section 3. We also describe regularity
conditions on the pairs s𝜌, [𝑢]𝜌 necessary for developing a meaningful well-posedness
theory for kinetic models done in Sections 5 and 7.

(II) Next we address the classical flocking result of Cucker and Smale for general envi-
ronmental averaging models. We choose the kinetic description in the context of measure-
valued solutions:

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = ∇𝑣 · (s𝜌 (𝑣 − [𝑢]𝜌) 𝑓 ). (1.13)

Here 𝜌 and 𝑢𝜌 are the macroscopic density and momentum, respectively. It is the most
inclusive framework since it encapsulates the microscopic system (1.4) if applied to empir-
ical measures 𝑓 =

∑𝑁
𝑖=1 𝑚𝑖𝛿𝑥𝑖 ⊗ 𝛿𝑣𝑖 , and the pressureless hydrodynamic system if applied

to mono-kinetic solutions 𝑓 = 𝜌(𝑥, 𝑡)𝛿0 (𝑣 − 𝑢(𝑥, 𝑡)), see (4.13). For global communication
kernels the analogue of the original Cucker-Smale alignment criterion is stated in Theo-
rem 4.2, see also Carrillo et al [16] for the first result of this kind in kinetic formulation.

In the case of local communication, which is our primary focus, all alignment criteria
can be sorted into two types – ones that rely on a chain-connectivity of the flock, and ones
that make use of the spectral gap condition. The former approach is dynamic. It is based
on the idea that connected misaligned components of the flock lose energy through the
law (1.12) until full alignment is achieved. For the classical Cucker-Smale and topological
singular models this was addressed in [67, 86]. Here we present a new result stated in
Theorem 4.5 which gives a sufficient condition of ball-thickness, see (3.38): as long as the
flock is connected at a local communication scale 𝑟 of the kernel, and 𝜌̄𝑟 (supp 𝜌) ≳ 1

𝑡1/4

in the open space or 𝜌̄𝑟 (Ω) ≳ 1
𝑡1/2

on the torus, the flock aligns. No control on the upper
bound of the density is necessary.

The spectral gap approach is kinematic in nature. It relies on finding efficient bounds
on the spectral gap of the averaging operator set in a proper function space. In fact, spectral
gaps are relevant to flocking behavior in several contexts including relaxation problem for
the Fokker-Planck-Alignment model. So, it will be our primary focus in Section 4.4. A
criterion proved in [92] states that a symmetric model aligns provided

∫ ∞
0 𝜆(𝑡) d𝑡 = ∞,

where
𝜆 = inf

𝑢∈𝐿2
0 (𝜌)

(𝑢,L𝜌𝑢)𝜌
(𝑢, 𝑢)𝜌

, L𝜌𝑢 = s𝜌 (𝑢 − [𝑢]𝜌), (1.14)
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and (𝑢, 𝑣)𝜌 =
∫
Ω
𝑢 · 𝑣 d𝜌. In Proposition 4.9 we present an extension of this result to the

non-symmetric case. For the Cucker-Smale model the bound 𝜆 ≳ 𝜌2
−
𝜌+

was proved in the
same work [92], see also Remark 4.11. This result is consistent with the chain-connectivity
criterion stated above provided 𝜌+ remains bounded. For systems with a singular kernel a
similar result was established in [86]. With a view towards the relaxation problem, where
reliance on 𝜌+ is prohibitive, it is imperative to find bounds on the spectral gap independent
of 𝜌+.

To this end we propose a somewhat different methodology – one that focuses directly
on the averaging [·]𝜌 in the framework of 𝜅𝜌-weighted spaces:

(𝑢, [𝑢]𝜌)𝜅𝜌 ⩽ (1 − 𝜀)∥𝑢∥2
𝐿2 (𝜅𝜌 ) . (1.15)

We introduce the low energy method tailored to finding estimates on 𝜀 solely in terms of 𝜌− .
The method applies to a special, but quite broad class of so called ball-positive models, see
Proposition 4.16. These include the segregation (1.8), the overmollified Motsch-Tadmor
variant (1.7), and most notably the classical Cucker-Smale model (1.5) provided the defin-
ing kernel is Bochner-positive: 𝜙 = 𝜓 ∗ 𝜓 for some 𝜓 ⩾ 0. In particular, if applied to the
Cucker-Smale model the method gives the following bound:

𝜀 ≳ 𝜌̄3
𝑟 (Ω). (1.16)

(III) The next study is dedicated to justifying the kinetic description through a mean-
filed limit in both deterministic and stochastic contexts. As the number of agents grows
𝑁→∞, the microscopic system settles in the weak sense to a solution to the kinetic Vlasov-
Alignment equation (1.13)

𝜇𝑁 =

𝑁∑︁
𝑖=1

𝑚𝑖𝛿𝑥𝑖 ⊗ 𝛿𝑣𝑖 → 𝑓 .

So far the limit has been rigorously justified for the Cucker-Smale and (1.7)-models, [40,
42,81]. In Section 5 we establish a much broader result which covers models with certain
uniform regularity properties, see Definition 3.17, and is insensitive to the symmetry of a
model. It applies in particular, to the Motsch-Tadmor and other similar models.

When system (1.4) is supplemented with density-weighted stochastic forces

d𝑥𝑖 = 𝑣𝑖 d𝑡,

d𝑣𝑖 = s𝑖 ( [𝑣]𝑖 − 𝑣𝑖) d𝑡 +
√︁

2𝜎s𝑖 d𝐵𝑖 , 𝑖 = 1, . . . , 𝑁. (1.17)

where 𝐵𝑖’s are independent Brownian motions in R𝑛, the limit ‘in law’ settles to a solution
of the Fokker-Planck-Alignment equation

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = 𝜎s𝜌Δ𝑣 𝑓 + ∇𝑣 · (s𝜌 (𝑣 − [𝑢]𝜌) 𝑓 ). (1.18)

For the additive noise and general convolution-type models the result was proved in [9],
while the present case is treated in Section 6. The non-homogeneous diffusion requires a
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separate consideration, and is introduced for two reasons. First, it makes physical sense to
put stochasticity where communication actually happens and is proportional to its strength.
Random deviations get stronger with more active communication, so s𝑖 acts as a thermal-
ization parameter. Second, it ensures that the kinetic model (1.18) has a natural Maxwellian
equilibrium. This will be instrumental in the study of relaxation.

(IV) Reading off the evolution of macroscopic quantities from (1.13) we obtain the
hydrodynamic Euler-alignment system (EAS)

𝜕𝑡 𝜌 + ∇ · (𝑢𝜌) = 0,
𝜕𝑡 (𝜌𝑢) + ∇ · (𝜌𝑢 ⊗ 𝑢) + ∇ · R = ( [𝑢]𝜌 − 𝑢) d𝜅𝜌, (1.19)

where R is the Reynolds stress given by

R =

∫
R𝑛

(𝑣 − 𝑢) ⊗ (𝑣 − 𝑢) 𝑓 d𝑣.

Here, we encounter the classical closure problem. One can achieve a specific form of R
by introducing various scaling regimes. This has been addressed in two situations. The
monokinetic regime 𝑓 → 𝜌(𝑥, 𝑡)𝛿0 (𝑣 − 𝑢(𝑥, 𝑡)) results in the pressureless EAS, R = 0, and
the analysis of this limit for the classical Cucker-Smale model goes back to [34, 51, 65]
see also [81]. The convergence was established quantitatively in Wasserstein-1 metric. In
Section 9.1 we produce a general result and upgrade the convergence to Wasserstein-2
under mild continuity assumptions on M. It applies, in particular, to all the models listed
here, including non-symmetric ones such as MMT.

By incorporating a strong penalization force of Fokker-Planck type one can achieve
another regime where 𝑓 settles to a Maxwellian. This results in the Euler-alignment sys-
tem with isothermal pressure tensor R = 𝜌 Id. The Cucker-Smale model was analyzed in
[52–54], and (1.7) was analyzed in [82], see also [21] for a new development in the mildly
singular case. Section 9.2 presents a general result.

We note that kinetic closure is not the only way to model flocking on the macroscopic
level. A general class of systems with entropic pressure introduced in [93], which includes
kinetic ones as a particular example, is amenable to flocking analysis as well.

(V) The most comprehensive study in this present work is related to well-posedness
and relaxation of the Fokker-Planck-Alignment model (1.18) on the periodic environment
Ω = T𝑛. The motivation for this study is rooted in the original question of emergence –
formation of collective outcome from purely local interactions. On the periodic domain,
if the communication kernel 𝜙 has a short reach, supp 𝜙 ⊂ [0, 𝑟0], then there exists a
family of unaligned solutions where agents rotate along parallel geodesics with various
velocities (or even perpendicular geodesics with mutually rational velocities). These are
called locked states. Such solutions form a measure-zero set in the ensemble of initial data
(𝑥1, . . . , 𝑥𝑁 , 𝑣1, . . . , 𝑣𝑁 ). No deterministic approach to establishing alignment based on
generic data that avoids locked states has been explored yet, except for 1D case [29]. It is
natural, however, to look into this problem in stochastic settings of (1.17), where locked
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states are being disrupted instantly. One can expect a collective outcome in two limiting
steps: first 𝑡 → ∞, then 𝜎 → 0. For large crowd distributions governed by (1.18) this can
be viewed as a relaxation problem: on the first step we obtain convergence to Maxwellian

𝑓 → 𝜇𝜎,𝑢̄ =
1

|Ω| (2𝜋𝜎)𝑛/2
𝑒−

|𝑣−𝑢̄|2
2𝜎 , (1.20)

which in turn aggregates on the monokinetic state 𝛿0 (𝑣 − 𝑢̄) ⊗ d𝑥 as 𝜎 → 0. The latter
represents a perfectly aligned configuration.

This program has seen some success in the past. The relaxation itself for the linear
problem is a classical and well-understood subject, see [97] and references therein. With the
nonlinear alignment force the works [20,31] establish relaxation for perturbative solutions
near equilibrium in the case of the Cucker-Smale and purely local models, respectively.
The first global result was proved in [82] in the context of the (1.7)-model, where linear
technique was adapted to the nonlinear problem enabled by special cancelations in the
alignment forcing.

In Section 8 we extend this technique further and prove a much more general result that
pertains to a wide variety of models. Proposition 8.1 lists a set of functional requirement on
a given solution to imply exponential relaxation. This applies in particular to perturbative
solutions, but the main application manifests itself in global relaxation for ball-positive
models. It comes in conjunction with the detailed well-posedness theory for the Fokker-
Planck-Alignment equations developed in Section 7. We prove that most models M with
good regularity properties facilitate the classical kinetic diffusion effect – spread of posi-
tivity of solutions expressed by the instant gain of Gaussian tails

𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝑏𝑒−𝑎 |𝑣 |2 . (1.21)

The spread of positivity is a well-known result observed in many kinetic equations, see
[2,13,35,45,48,70] and references therein. The novel additional aspect of our result stated
in Proposition 7.3 is that the constants 𝑎, 𝑏 depend only on the entropy and 𝐿∞-bound on the
drift s𝜌 [𝑢]𝜌. For many models, including the Cucker-Smale, the latter two can be controlled
by initial condition only. Consequently, for those models we obtain uniform control over
the lower bound on the density, and hence, the spectral gap through (1.16). In such cases
relaxation result is unconditional. Let us summarize the result specifically for the original
Cucker-Smale model.

Theorem 1.2. Any classical solution 𝑓 to (1.18) based on the Cucker-Smale model with
Bochner-positive kernel 𝜙 relaxes exponentially fast to the global Maxwellian (1.20).

Theorem 8.8 contains the full list of models to which a similar result applies. We note
again that previously this result was established only in perturbative regime by Duan et
al [31]. Concerning other models, in particular non-symmetric models such as Motsch-
Tadmor, we obtain relaxation near equilibirum in Fisher information sense. The complete
statement is given in Theorem 8.7.
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Finally, let us comment on what is not included in our study and what would be highly
desirable to address in the near future. First, we include no forces, focusing mainly on the
core alignment mechanism. Potential forces, such as confinement, attraction/repulsion etc,
have a great impact on collective outcomes and play major role in applications, [14, 17,
22, 79, 80]. Second, we treat only linear couplings in the alignment force. Several recent
studies [38, 49, 64, 93] highlight the importance of non-linear couplings as well. In our
general framework nonlinearity Γ can be incorporated by considering the system

¤𝑣𝑖 = s𝑖 [Γ(𝑣 − 𝑣𝑖)]𝑖 .

Developing regularity and relaxation theory, say, for the kinetic counterpart would be cru-
cial to understanding more intricate nonlinear phenomena of self-organization. Third, our
framework does not presume communication to be singular, either mildly or strongly. Such
models were introduced in [30, 75, 83–86] to analyze the effects of enhanced local com-
munication and its role in emergent dynamics, see the survey [71]. Finally, we leave the
analysis of hydrodynamic models in our general framework to future research as it shifts
the focus far from the thread of this work, see [15, 43, 57, 69, 81, 91] and the literature
therein. However, we will share a new prospective on modeling macroscopic alignment in
Section 9.3.

2. Basic concept and examples

LetΩ denote an 𝑛-dimensional environment. We mostly focus on the cases whenΩ is either
the open space R𝑛, periodic domain T𝑛, a finite set of points, or Cartesian products of the
above. Denote by P(Ω) the set of probability measures on Ω. An environmental averaging
model is a family of pairs

M = {(𝜅𝜌, [·]𝜌) : 𝜌 ∈ P(Ω)}

satisfying the following functional requirements:
(ev1) For every 𝜌 ∈ P(Ω), 𝜅𝜌 is a finite positive measure onΩ. We call it communication

strength.
(ev2) [·]𝜌 is a linear bounded operator on the weighted space 𝐿2 (Ω, d𝜅𝜌) := 𝐿2 (𝜅𝜌).
(ev3) [·]𝜌 is a linear bounded operator on 𝐿∞(𝜅𝜌), with the properties (𝜅𝜌-a.e.)

[𝑢]𝜌 ⩾ 0 for all 𝑢 ⩾ 0, and [1Ω]𝜌 = 1Ω. (2.1)

Here and throughout 1𝐴 denotes the characteristic function of a set 𝐴. If 𝑢 = (𝑢1, . . . , 𝑢𝑚)
is a vector field (where𝑚 may be unrelated to the dimension 𝑛) we assume that the operator
[𝑢]𝜌 is acting on each coordinate:

[𝑢]𝜌 = ( [𝑢1]𝜌 , . . . , [𝑢𝑚]𝜌). (2.2)
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Although the averaging models are generally assumed to be defined over all densities
𝜌 ∈ P(Ω), to fulfill further regularity assumptions on the averaging operation it may be
necessary to restrict the probabilities 𝜌 to a narrower admissible class D ⊂ P. The most
encountered examples include “thick" flocks, see Section 3.7.

Most natural models are material - a property of adherence to the support of the flock.
Namely, we say that the model M is material if
(ev4) there exists bounded family of non-negative functions s𝜌 ∈ 𝐿∞+ (Ω) with

sup
𝜌∈P(Ω)

∥s𝜌∥𝐿∞ (Ω) ⩽ 𝑆

such that 𝜅𝜌 = 𝜌s𝜌. We also call s𝜌 a (specific) strength function.
(ev5) [𝑢]𝜌 = 0, provided 𝑢 = 0 𝜌-almost everywhere.

On the microscopic level one considers discretely distributed density and velocity fields
associated to a set of 𝑁 agents {𝑥𝑖}𝑁𝑖=1

𝜌𝑁 =

𝑁∑︁
𝑖=1

𝑚𝑖𝛿𝑥𝑖 , 𝑢𝑁 =

𝑁∑︁
𝑖=1

𝑣𝑖1𝑥𝑖 . (2.3)

Assuming that the model is material we can unambiguously compute the values of the
average and strength at the agents’ locations

[𝑣]𝑖 :=
[
𝑢𝑁

]
𝜌𝑁

(𝑥𝑖), s𝑖 := s𝜌𝑁 (𝑥𝑖). (2.4)

The agent-based system (1.4) is stated precisely in terms of these discrete components.

2.1. Examples

Let us list several classical examples, and some new ones, and show how they fit into the
definition of environmental averaging.
Example 2.1. The most obvious example is the global averaging

s𝜌 = 1, [𝑢]𝜌 =
∫
Ω

𝑢𝜌 d𝑥. (Mglob)

and the system (1.4) in this case expresses alignment with all-to-all communication

¤𝑣𝑖 =
𝑁∑︁
𝑗=1
𝑚 𝑗 (𝑣 𝑗 − 𝑣𝑖).

The extreme opposite is the pure identity model

s𝜌 = 1, [𝑢]𝜌 = 𝑢 1supp 𝜌 . (MI)

The agent-based version obviously leads to a stalled system. However, the utility of this
model in the kinetic formulation will present itself in the study of hydrodynamic limits,
see Section 9.



12 R. Shvydkoy

Example 2.2. The classical Cucker-Smale system has been discussed in detail in the intro-
duction. Let us recall that in this case the pair is given by

s𝜌 = 𝜌𝜙 , [𝑢]𝜌 =
(𝑢𝜌)𝜙
𝜌𝜙

. (MCS)

Here and throughout we denote for short 𝑓𝜙 = 𝑓 ∗ 𝜙, and 𝜙 is assumed to be infinitely
smooth. In this case the averaging [𝑢]𝜌 = 𝑢F is also known as the Favre filtration used in
large eddy simulations of compressible turbulence, [33]. Its remarkable property comes
from the fact that if 𝜌 satisfies the continuity equation

𝜕𝑡 𝜌 + ∇ · (𝑢𝜌) = 0,

then the filtered density 𝜌𝜙 satisfies the continuity equation relative to the Favre-filtered
velocity field

𝜕𝑡 𝜌𝜙 + ∇ · (𝑢F𝜌𝜙) = 0.

An important implication of this equation will be discussed in Section 9.3.
Properties (ev1) and (ev3) are obvious here. To verify (ev2) we notice that 𝜅𝜌 = 𝜌𝜌𝜙 .

So using that for any 𝜌 ∈ P(Ω)

| (𝑢𝜌)𝜙 |2 ⩽ ( |𝑢 |2𝜌)𝜙𝜌𝜙 , (2.5)

we obtain∫
Ω

| [𝑢]𝜌 |2 d𝜅𝜌 =
∫
Ω

| (𝑢𝜌)𝜙 |2
d𝜌
𝜌𝜙
⩽

∫
Ω

( |𝑢 |2𝜌)𝜙 d𝜌 =

∫
Ω

|𝑢 |2𝜌𝜙 d𝜌 = ∥𝑢∥2
𝐿2 (𝜅𝜌 ) .

We can see that the MCS-model is contractive. The contractivity generally holds even in
𝐿 𝑝-spaces for any conservative model, see Lemma 3.9.
Example 2.3. If we set s𝜌 = 1, the example above turns into another well-known model, so
called Motsch-Tadmor model [68, 69]:

s𝜌 = 1, [𝑢]𝜌 =
(𝑢𝜌)𝜙
𝜌𝜙

. (MMT)

The model was introduced to mediate some issues arising in application of the Cucker-
Smale averaging to multi-scale flocks, where a large and distant sub-flock overpowers the
dynamics of a smaller sub-flock, see also [81, 87] for more discussion.

The only non-trivial property (ev2) holds for the admissible class of thick densities
D = {𝜌 ∈ P : inf 𝜌𝜙 > 0} under no assumption on the kernel 𝜙. However if the kernel 𝜙
is local and compactly supported, i.e.

𝑐1 |𝑥 |<𝑟0 ⩽ 𝜙(𝑥) ⩽ 𝐶1 |𝑥 |<𝑅0 , 𝑅0 > 𝑟0, (2.6)

(the latter holds automatically on compact Ω), then the 𝐿2-boundedness holds for any 𝜌 ∈
P(Ω) uniformly over P(Ω). Indeed, using (2.5),∫

Ω

| [𝑢]𝜌 |2 d𝜌 ⩽
∫
Ω

( |𝑢 |2𝜌)𝜙
d𝜌
𝜌𝜙

=

∫
Ω

|𝑢 |2
(
𝜌

𝜌𝜙

)
𝜙

d𝜌.
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According to [52, Lemma 5.2], and see also the Appendix, under the condition (2.6) we
have (

𝜌

𝜌𝜙

)
𝜙

⩽ 𝐶, (2.7)

where𝐶 depends only on the constants the appear in (2.6) and dimension. This implies the
desired.

Example 2.4. We can interpolate between MCS and MMT and consider a general power
law for the specific strength function:

s𝜌 = 𝜌
𝛽

𝜙
, [𝑢]𝜌 =

(𝑢𝜌)𝜙
𝜌𝜙

, 𝛽 ⩾ 0. (M𝛽)

All these models satisfy the requirements (ev1) and (ev3) obviously, and (ev2) follows
as above provided we have the following generalization of (2.7), which is proved in the
Appendix: under (2.6) ©­« 𝜌

𝜌
1−𝛽
𝜙

ª®¬𝜙 ⩽ 𝐶𝜌𝛽𝜙 , ∀ 0 ⩽ 𝛽 ⩽ 1, (2.8)

where 𝐶 depends only on the constants the appear in (2.6), 𝛽, and the dimension.

Example 2.5. More suitable for modeling local communication, a symmetric version of the
Motsch-Tadmor model can be defined by applying extra convolution to the Favre filtration:

s𝜌 = 1, [𝑢]𝜌 =
( (𝑢𝜌)𝜙
𝜌𝜙

)
𝜙

. (M𝜙)

This gives rise to the discrete averaging given by (1.7). Here we assume as always that
𝜙 ∈ 𝐶∞ and it is a mollifier: 𝜙 ∈ 𝐿1

+ (Ω) with
∫
𝜙 d𝑥 = 1.

The model was introduced in [81,82] and played various roles. It was proved to define
a globally hypocoercive kinetic dynamics, and was also used to extend Figalli and Kang’s
hydrodynamic limit in the monokinetic regime [34] to flocks with compact support, see
also Section 9.

More versions of M𝜙 can be obtained by looking into different strengths by analogy
with the M𝛽-model, or by replacing 𝜌 with a more general baratropic pressure:

𝜅𝜌 = 𝑝(𝜌), [𝑢]𝜌 =
( (𝑢𝑝)𝜙
𝑝𝜙

)
𝜙

, (M𝜙,p)

where 𝑝 ⩾ 0 is a function of 𝜌. Here, the support of the strength function may not coincide
with 𝜌, or s𝜌 may be unbounded, which makes it a non-material model. Also the class of
admissible densitiesD may be restricted depending on the pressure law 𝑝(𝜌). For example,
in the ideal gas case 𝑝 = 𝜌𝛾 we naturally assume D = 𝐿𝛾 (Ω).

One interesting case is obtained when 𝑝 = 1, resulting in

𝜅𝜌 = 1 , [𝑢]𝜌 = 𝑢𝜙∗𝜙 . (M𝜙𝜙)
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In this case the average and the strength do not depend on the density at all, and consequently
define a non-material model.

Example 2.6 (Topological models). A new way of modeling interactions which implement
topological, rather than Euclidean measure of distance, has long been advocated by many
empirical studies [7, 11, 72, 78]. The first symmetric topological model was introduced in
[86], see also [59, 66, 77], although it incorporated singular communication. Its smooth
variant fits within our framework of environmental averaging.

To define such a model let us consider a basic symmetric domain O0 = O(−e1, e1) con-
necting two points −e1 and e1, and for any pair (𝑥, 𝑦), let O(𝑥, 𝑦) be the domain connecting
𝑥 and 𝑦 obtained by rotation and dilation of O0. Let 𝜒O(𝑥,𝑦) be some mollification of the
characteristic function 1O(𝑥,𝑦) . We introduce the topological “distance" given by

d𝜌 (𝑥, 𝑦) =
∫
Ω

𝜒O(𝑥,𝑦) (𝜁) d𝜌(𝜁) (2.9)

Now let 𝜙(𝑑, 𝑧) : R+ ×Ω → R+ be a smooth non-negative kernel, radial in 𝑧. We define

𝜙𝜌 (𝑥, 𝑦) = 𝜙(d𝜌 (𝑥, 𝑦), 𝑥 − 𝑦). (2.10)

The kernel incorporates both metric and topological distances. Note that due to the sym-
metry of the domain O(𝑥, 𝑦), the kernel is also symmetric.

Let us define

s𝜌 (𝑥) =
∫
Ω

𝜙𝜌 (𝑥, 𝑦) d𝜌(𝑦), [𝑢]𝜌 =
∫
Ω
𝜙𝜌 (𝑥, 𝑦)𝑢(𝑦) d𝜌(𝑦)∫
Ω
𝜙𝜌 (𝑥, 𝑦) d𝜌(𝑦)

. (Mtopo
CS )

This is the full topological variant of MCS. As these models bear relevance to biological
applications it makes most sense to assume inverse dependence on the topological distance.
For example,

𝜙(𝑑, 𝑧) = 𝜓(𝑧)
(𝜀 + 𝑑2)𝛼/2

, 𝛼 ⩾ 0, (2.11)

where 𝜓 is a smooth kernel and 𝜀 > 0 is a parameter (𝜀 = 0 would correspond to the fully
singular case).

By analogy we can also define a topological version of MMT:

s𝜌 (𝑥) = 1, [𝑢]𝜌 = same, (Mtopo
MT )

or the 𝛽-model

s𝜌 (𝑥) =
(∫

Ω

𝜙𝜌 (𝑥, 𝑦)𝜌(𝑦) d𝑦
)𝛽
, [𝑢]𝜌 = same. (Mtopo

𝛽
)

There is no reasonable topological counterpart of the mollified model M𝜙 , since there
is no way to guarantee that 𝜙𝜌 integrates to 1 at all times.
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Example 2.7 (Models with strict Segregation). A family of examples with segregated align-
ment protocol can be built by setting s𝜌 = 1, fixing a 𝜎-algebra F of Borel subsets of Ω
and considering the conditional expectation E𝜌 ( 𝑓 |F ) relative to d𝜌. Define

[𝑢]𝜌,F = E𝜌 (𝑢 |F ). (Mcond)

For a given filtration {Ω, ∅} ⊂ F1 ⊂ F2 ⊂ · · · → B we can define a martingale chain of
averages

[𝑢]𝜌,𝑛 = E𝜌 (𝑢 |F𝑛)

which naturally connects the global averaging model with the purely local one, as [𝑢]𝜌,𝑛 →
𝑢 in any 𝐿 𝑝 (𝜌), 1 ⩽ 𝑝 < ∞.

Such an averaging operation models strict segregation between disjoint subalgebras of
F , so-called “neighborhoods". Let us consider one specific example. Suppose F is the
algebra spanned by a partitioning of Ω into subsets 𝐴1, . . . , 𝐴𝐿 . Then

[𝑢]𝜌,F =

𝐿∑︁
𝑙=1

1𝐴𝑙

𝜌(𝐴𝑙)

∫
𝐴𝑙

𝑢𝜌 d𝑥. (MF)

If 𝑢0 = 𝑢𝑙0 within each cube 𝐴𝑙 , and initial density 𝜌0 is stays away from the borders 𝜕𝐴𝑙 ,
then for a short period of time the solution satisfies a pure transport equation

𝜌𝑡 + 𝑢𝑙0 · ∇𝑥𝜌 = 0

on each 𝐴𝑙 . So, the flock will travel with constant velocity within each neighborhood and
will remain segregated until one piece reaches the boundary of its neighborhood and starts
communicating with others.

Example 2.8 (Smooth Segregation). Since in practice there is always a gradual transition
between neighborhoods, it makes sense to consider a smooth version of the model above,
which is also more amenable to analysis. Let us assume that Ω is compact, and consider
any smooth partition of unity 𝑔𝑙 ∈ 𝐶∞ (Ω), 𝑔𝑙 ⩾ 0, and

∑𝐿
𝑙=1 𝑔𝑙 = 1. Most naturally, such

a partition can be obtained by subordinating it to an open cover {O𝑙}𝐿𝑙=1 of Ω, so that
supp 𝑔𝑙 ⊂ O𝑙 . We define the model by setting all s𝜌 = 1, and

[𝑢]𝜌 (𝑥) =
𝐿∑︁
𝑙=1

𝑔𝑙 (𝑥)
𝜌(𝑔𝑙)

∫
Ω

𝑢𝑔𝑙𝜌 d𝑦, 𝜌(𝑔𝑙) =
∫
Ω

𝑔𝑙𝜌 d𝑥. (Mseg)

In this model the boundaries are not sharp as in the previous version, and there is some
exchange of information that occurs across the adjacent neighborhoods.

There are ways to combine several averaging models into one that describe evolution of
a multi-flock. Here “multi" may mean several things – either multiple subflocks with their
own communication rules combine into a mega-flock with some global communication
between subflocks, or it could mean the use of several communication rules within and
between subgroups which we call ‘species’. Both of these variants were studied in [44,87].
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Example 2.9 (Multi-species). When a big flock contains groups of agents with distinct char-
acteristics, communication between different groups may be facilitated by different rules,
or communication kernels 𝜙𝛼𝛽 . A model that accommodates such various communication
rules was introduced in [44] :

¤𝑥𝛼𝑖 = 𝑣𝛼𝑖 , 𝑖 = 1, . . . , 𝑁𝛼, 𝛼 = 1, . . . , 𝐴,

¤𝑣𝛼𝑖 =

𝐴∑︁
𝛽=1

𝑁 𝛽∑︁
𝑗=1
𝑚
𝛽

𝑗
𝜙𝛼𝛽 (𝑥𝛽

𝑗
− 𝑥𝛼𝑖 ) (𝑣

𝛽

𝑗
− 𝑣𝛼𝑖 ). (2.12)

Here, each communication protocol is of Cucker-Smale type.
Such multi-species models can be generalized and fit into the framework of environ-

mental averaging we discuss here. To do that, suppose we have an array of 𝐴2 material
models M𝛼𝛽 , 𝛼, 𝛽 = 1, . . . , 𝐴 defined over the same environment Ω. We can combine
them into a new multi-model on the product space Ω × 𝐴. To account for possible vari-
ations of masses of sub-flocks, we fix a set of masses {𝑀𝛼}𝛼 with the total mass being
𝑀 =

∑
𝛼𝑀

𝛼, and encode them into the set of admissible densities D𝐴 overΩ× 𝐴. Namely,
we say that 𝜌 ∈ D𝐴 is admissible if

𝜌 =
1
𝑀

𝐴∑︁
𝛼=1

𝑀𝛼𝜌𝛼 ⊗ 𝛿𝛼,

where 𝜌𝛼 ∈ P. We define a cumulative strength function by

s𝜌 (𝑥, 𝛼) =
𝐴∑︁
𝛽=1

𝑀𝛽s𝛼𝛽
𝜌𝛽

(𝑥).

The corresponding averaging of a function 𝑢 = {𝑢𝛼}𝛼 is given by

[𝑢]𝜌 (𝑥, 𝛼) =
1

s𝜌 (𝑥, 𝛼)

𝐴∑︁
𝛽=1

𝑀𝛽s𝛼𝛽
𝜌𝛽

(𝑥)
[
𝑢𝛽

] 𝛼𝛽
𝜌𝛽

(𝑥). (2.13)

In terms of this average one can see directly, that the model (2.12) takes the canonical form

¤𝑣 = s𝜌 ( [𝑣]𝜌 − 𝑣).

Example 2.10 (Multi-flocks). Let us recall the multi-flock model introduced in [87]

¤𝑥𝛼𝑖 = 𝑣𝛼𝑖 ,

¤𝑣𝛼𝑖 =

𝑁𝛼∑︁
𝑗=1
𝑚𝛼𝑗 𝜙

𝛼 (𝑥𝛼𝑖 − 𝑥𝛼𝑗 ) (𝑣𝛼𝑗 − 𝑣𝛼𝑖 ) + 𝜀
𝐴∑︁
𝛽=1
𝛽≠𝛼

𝑀𝛽𝜓(𝑋𝛼, 𝑋𝛽) (𝑉𝛽 − 𝑣𝛼𝑖 ). (2.14)

The model represents 𝐴 groups of agents evolving according to their own communication,
Cucker-Smale type in this particular case, while communication between groups is facil-
itated through another protocol which involves a kernel 𝜓 and alignment to macroscopic
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parameters of each subflock, namely their center of masses

𝑋𝛼 =
1
𝑀𝛼

𝑁𝛼∑︁
𝑖=1

𝑚𝛼𝑖 𝑥
𝛼
𝑖 , 𝑀𝛼 =

𝑁𝛼∑︁
𝑖=1

𝑚𝛼𝑖 ,

and momenta

𝑉 𝛼 =
1
𝑀𝛼

𝑁𝛼∑︁
𝑖=1

𝑚𝛼𝑖 𝑣
𝛼
𝑖 .

This idea can be made more formal via an asymptotic analysis detailed in [87].
In general, let {M𝛼}𝐴

𝛼=1 be a family of material models defined over the same envi-
ronment Ω. We define the admissible set of densities D𝐴 as in the previous example. For
any 𝜌 = {𝜌𝛼}𝛼 ∈ D𝐴 we define the strength function by

s𝜌 (𝑥, 𝛼) = 𝑀𝛼s𝛼𝜌𝛼 (𝑥),

and for 𝑢 = {𝑢𝛼}𝛼 the average is given by

[𝑢]𝜌 (𝑥, 𝛼) = [𝑢𝛼]𝛼𝜌𝛼 (𝑥).

So far this model incorporates only internal flock communications. To combine these
into an interactive multi-flock we assume that the communication between sub-flocks is
facilitated through another averaging model (sext

𝜌 , [𝑢]ext
𝜌 ). The multiflock model (2.14) can

be written as a system over Ω × 𝐴 :

¤𝑣 = s𝜌 ( [𝑣]𝜌 − 𝑣) + 𝜀sext
𝜌𝐴

( [𝑉]ext
𝜌𝐴

− 𝑣),

where 𝜌𝐴 =
∑𝐴
𝛼=1 𝑀

𝛼𝛿𝑋𝛼 , and 𝑉 =
∑𝐴
𝛼=1 1𝑉𝛼 .

Example 2.11 (Models on finite sets). The last but not least example on our list is the family
of models on finite environmentsΩ = {𝑥1, . . . , 𝑥𝑁 }. These will be an essential tool to prove
results about continuous models, see Appendix 11. Finite models illustrate a situation when
all the agents are planted in their places and simply play the role of labels. They do not give
rise to any inertial systems of type (1.4). However, they do give rise to families of first order
linear systems for 𝑣𝑖 = 𝑣(𝑥𝑖) ∈ R𝑚,

¤𝑣𝑖 = s𝑖 ( [𝑣]𝑖 − 𝑣𝑖),

for each distribution of masses 𝜌 = (𝑚1, . . . , 𝑚𝑁 ). Since the averages act coordinate-wise,
(2.2), the systems for each coordinate decouple and we can assume that 𝑣𝑖 are scalars. In
this case the properties of the model can be reduced to the properties of the corresponding
reproducing matrix associated with the average:

𝐴 = (𝑎𝑖 𝑗 )𝑁𝑖, 𝑗=1, 𝑎𝑖 𝑗 =
[
1𝑥 𝑗

]
(𝑥𝑖).

Property (ev3) implies that 𝐴 has non-negative entries, and 𝐴1=1, i.e. 𝐴 is right-stochastic.
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3. Classes of models and their properties

In this section we will systematize functional properties of environmental averaging models
without association with any dynamical law. We introduce several important classes based
on their operator-theoretical classification, which will be used extensively in subsequent
studies.

3.1. Mapping properties. Jensen inequality

Let us discuss functional basics of environmental averages, and direct consequences of
mapping properties stated in (ev2) and (ev3).

First of all, order preserving maps (2.1) obey the maximum principle

min 𝑓 ⩽ [ 𝑓 ]𝜌 ⩽ max 𝑓 , (3.1)

and consequently are contractive on 𝐿∞ (𝜅𝜌):

∥ [ 𝑓 ]𝜌 ∥∞ ⩽ ∥ 𝑓 ∥∞. (3.2)

Next, let us look into 𝐿∞-adjoint operator [·]∗. Technically, it maps (𝐿∞)∗ → (𝐿∞)∗
and if restricted to 𝐿1 it still lands into (𝐿∞)∗ from this general prospective. However, the
extra structure of the averaging allows us to conclude more.

Lemma 3.1. The operator [·]∗𝜌 has the following properties:
(1) [·]∗𝜌 : 𝐿1 (𝜅𝜌) → 𝐿1 (𝜅𝜌), and hence, [·]𝜌 is weak∗-continuous on 𝐿∞ (𝜅𝜌);
(2) [·]∗𝜌 is order preserving;
(3) [·]∗𝜌 : 𝐿1

+ (𝜅𝜌) → 𝐿1
+ (𝜅𝜌) is an isometry.

Proof. Let us fix 𝑓 ∈ 𝐿1 (𝜅𝜌) and for every measurable set 𝐴 define

𝜈 𝑓 (𝐴) =
∫
Ω

𝑓 [1𝐴]𝜌 d𝜅𝜌 .

This defines finite 𝜎-additive measure. Indeed, if 𝐴 = ∪∞
𝑖=1𝐴𝑖 , a disjoint union, then

1∪𝑁
𝑖=1𝐴𝑖

→ 1∪∞
𝑖=1𝐴𝑖

in 𝐿2 (𝜅𝜌). By (ev2), we then also have
[
1∪𝑁

𝑖=1𝐴𝑖

]
𝜌
→

[
1∪∞

𝑖=1𝐴𝑖

]
𝜌

in 𝐿2 (𝜅𝜌). Then up to a
subsequence, the same convergence holds 𝜅𝜌-a.e. By the Lebesgue dominated convergence
theorem we obtain 𝜈 𝑓 (1∪𝑁

𝑖=1𝐴𝑖
) → 𝜈 𝑓 (1∪∞

𝑖=1𝐴𝑖
).

Furthermore, if 𝜅𝜌 (𝐴) = 0, then by (ev2) [1𝐴]𝜌 = 0 a.e., and hence 𝜈 𝑓 (𝐴) = 0. This
implies that 𝜈 𝑓 is absolutely continuous with respect to 𝜅𝜌. Hence, there exists a function
𝑔 ∈ 𝐿1 (𝜅𝜌) such that

∫
Ω
𝑓 [1𝐴]𝜌 d𝜅𝜌 =

∫
Ω
𝑔1𝐴 d𝜅𝜌. By approximation and continuity (3.2)

we obtain the same relation
∫
Ω
𝑓 [ℎ]𝜌 d𝜅𝜌 =

∫
Ω
𝑔ℎ d𝜅𝜌, for any ℎ ∈ 𝐿∞ (𝜅𝜌). This means

that [ 𝑓 ]∗𝜌 = 𝑔 ∈ 𝐿1 (𝜅𝜌). We have proved (1).



Environmental averaging 19

Preservation of order (2) follows directly from (ev3) since if 𝑓 ∈ 𝐿1
+ (𝜅𝜌), then∫

[ 𝑓 ]∗𝜌 𝑔 d𝜅𝜌 =
∫

𝑓 [𝑔]𝜌 d𝜅𝜌 ⩾ 0,

for all 𝑔 ∈ 𝐿∞+ (𝜅𝜌). Hence, [ 𝑓 ]∗𝜌 ⩾ 0. Moreover,
∫
[ 𝑓 ]∗𝜌 d𝜅𝜌 =

∫
𝑓 [1]𝜌 d𝜅𝜌 =

∫
𝑓 d𝜅𝜌,

which proves (3).

As a consequence, we obtain the following point-wise Jensen inequality for averagings.

Lemma 3.2. For any 𝑢 ∈ 𝐿∞ (𝜅𝜌) the following Jensen inequality holds 𝜅𝜌-a.e.,

𝜓( [𝑢]𝜌 (𝑥)) ⩽ [𝜓(𝑢)]𝜌 (𝑥), (3.3)

where 𝜓 is a continuous convex even and monotonically increasing on R+ function.

Proof. By Lemma 3.1, for every 𝐴 ⊂ Ω, there exists 𝑓𝐴 ∈ 𝐿1
+ (𝜅𝜌), ∥ 𝑓𝐴∥1 = 1, such that

1
𝜅𝜌 (𝐴)

∫
𝐴

[𝑢]𝜌 d𝜅𝜌 =
∫
Ω

𝑢 𝑓𝐴 d𝜅𝜌 .

Then by the classical Jensen inequality we have

𝜓

(
1

𝜅𝜌 (𝐴)

∫
𝐴

[𝑢]𝜌 d𝜅𝜌
)
= 𝜓

(����∫
Ω

𝑢 𝑓𝐴 d𝜅𝜌
����) ⩽ 𝜓 (∫

Ω

|𝑢 | 𝑓𝐴 d𝜅𝜌
)

⩽

∫
Ω

𝜓( |𝑢 |) 𝑓𝐴 d𝜅𝜌 =
∫
Ω

𝜓(𝑢) 𝑓𝐴 d𝜅𝜌 =
1

𝜅𝜌 (𝐴)

∫
𝐴

[𝜓(𝑢)]𝜌 d𝜅𝜌 .

Since this holds for any 𝐴, by the Lebesgue differentiation theorem and continuity of 𝜓, as
𝐴→ {𝑥} for a.e. 𝑥 we obtain (3.3), as desired.

One of the useful consequences of Jensen’s inequality is extrapolation to 𝐿 𝑝-spaces for
𝑝 < 2 and a bound on the 𝐿 𝑝-norms.

Lemma 3.3. Suppose [1]∗𝜌 ∈ 𝐿∞ (𝜅𝜌). Then [·]𝜌 : 𝐿 𝑝 (𝜅𝜌) → 𝐿 𝑝 (𝜅𝜌) for all 1 ⩽ 𝑝 ⩽ ∞,
and

∥ [·]𝜌 ∥𝐿𝑝 (𝜅𝜌 )→𝐿𝑝 (𝜅𝜌 ) ⩽ ∥ [1]∗𝜌 ∥
1/𝑝
∞ . (3.4)

Proof. For 𝑝 =∞ the result is simply the axiom (ev3). For 𝑝 <∞, we use Jensen’s inequality∫
Ω

| [𝑢]𝜌 |𝑝 d𝜅𝜌 ⩽
∫
Ω

[|𝑢 |𝑝]𝜌 d𝜅𝜌 =
∫
Ω

|𝑢 |𝑝 [1]∗𝜌 d𝜅𝜌 ⩽ ∥𝑢∥ 𝑝𝑝 ∥ [1]∗𝜌 ∥∞,

and the result follows.

In some of our studies we will encounter the need to quantify boundedness of the
weighted averages s𝜌 [·]𝜌 on 𝐿2 (𝜌). This is weaker than the previous mapping property
thanks to the uniform boundedness of s𝜌. Thus, a weaker condition is required for it to hold.
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Table 1. Reproducing kernels
MODEL MCS MMT M𝛽 M𝜙 Mseg

𝜙𝜌 𝜙(𝑥 − 𝑦) 𝜙 (𝑥−𝑦)
𝜌𝜙 (𝑥 )

𝜙 (𝑥−𝑦)
𝜌

1−𝛽
𝜙

(𝑥 )

∫
Ω

𝜙 (𝑥−𝑧)𝜙 (𝑦−𝑧)
𝜌𝜙 (𝑧) d𝑧

𝐿∑︁
𝑙=1

𝑔𝑙 (𝑥)𝑔𝑙 (𝑦)
𝜌(𝑔𝑙)

Lemma 3.4. Suppose s𝜌
[
s𝑝−1
𝜌

]∗
𝜌
∈ 𝐿∞ (𝜌), 1 ⩽ 𝑝 < ∞. Then s𝜌 [·]𝜌 : 𝐿 𝑝 (𝜌) → 𝐿 𝑝 (𝜌),

and

∥s𝜌 [·]𝜌 ∥𝐿𝑝 (𝜌)→𝐿𝑝 (𝜌) ⩽





s𝜌 [
s𝑝−1
𝜌

]∗
𝜌





1/𝑝

∞
. (3.5)

Proof. Using Jensen’s inequality,

∥s𝜌 [𝑢]𝜌 ∥
𝑝

𝐿𝑝 (𝜌) =

∫
Ω

|s𝜌 [𝑢]𝜌 |𝑝 d𝜌 ⩽
∫
Ω

[|𝑢 |𝑝]𝜌 s𝑝𝜌 d𝜌

=

∫
Ω

[|𝑢 |𝑝]𝜌 s𝑝−1
𝜌 d𝜅𝜌 =

∫
Ω

|𝑢 |𝑝
[
s𝑝−1
𝜌

]∗
𝜌

d𝜅𝜌

=

∫
Ω

s𝜌
[
s𝑝−1
𝜌

]∗
𝜌
|𝑢 |𝑝 d𝜌 ⩽ ∥s𝜌

[
s𝑝−1
𝜌

]∗
𝜌
∥∞∥𝑢∥ 𝑝

𝐿𝑝 (𝜌) .

We refer to Section 3.7 for further discussion.

3.2. Reproducing kernel

For material models we often deal with the weighted averaging s𝜌 [𝑢]𝜌 rather than the bare
averaging [𝑢]𝜌. In most models the weighted average is an integral operator represented
by a kernel.

Definition 3.5. A reproducing kernel of the model M is a non-negative function 𝜙𝜌 ∈
𝐿1
+ (𝜌 ⊗ 𝜌), such that ∫

Ω

𝜙𝜌 (𝑥, 𝑦) d𝜌(𝑦) = s𝜌 (𝑥), 𝜌-a.e.

and so that for all 𝑢 ∈ 𝐿∞ (𝜌)

s𝜌 [𝑢]𝜌 (𝑥) =
∫
Ω

𝜙𝜌 (𝑥, 𝑦)𝑢(𝑦) d𝜌(𝑦), 𝜌-a.e. (3.6)

A list of examples including our core models is provided in Table 1.
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Generally, the kernel can be recovered from a right-stochastic reproducing kernel of
the average itself,

Φ𝜌 ∈ 𝐿1
+ (𝜅𝜌 ⊗ 𝜅𝜌),

∫
Ω

Φ𝜌 (𝑥, 𝑦) d𝜅𝜌 (𝑦) = 1, 𝜅𝜌-a.e.

[𝑢]𝜌 =
∫
Ω

Φ𝜌 (𝑥, 𝑦)𝑢(𝑦) d𝜅𝜌 (𝑦). (3.7)

The correspondence between the two is given by

𝜙𝜌 (𝑥, 𝑦) = s𝜌 (𝑥)Φ𝜌 (𝑥, 𝑦)s𝜌 (𝑦). (3.8)

The representation of the adjoint averaging is given by

s𝜌 (𝑦) [𝑣]∗𝜌 (𝑦) =
∫
Ω

𝜙𝜌 (𝑥, 𝑦)𝑣(𝑥) d𝜌(𝑥), 𝜌-a.e. (3.9)

Reproducing kernels are useful for many reasons. Not only do they provide more spe-
cific structure to the averaging operator, many properties of the averaging that we will
introduce later can be restated in terms of regularity of the kernel, see Section 3.7. The
alignment forces that appear on all levels of description take a more conventional form:

s𝑖 ( [𝑣]𝑖 − 𝑣𝑖) =
𝑁∑︁
𝑗=1
𝑚 𝑗𝜙𝜌𝑁 (𝑥𝑖 , 𝑥 𝑗 ) (𝑣 𝑗 − 𝑣𝑖), (3.10a)

s𝜌 ( [𝑢]𝜌 − 𝑣) =
∫
Ω×R𝑛

𝜙𝜌 (𝑥, 𝑦) (𝑤 − 𝑣) 𝑓 (𝑦, 𝑤) d𝑤 d𝑦 (3.10b)

s𝜌 ( [𝑢]𝜌 − 𝑢) =
∫
Ω

𝜙𝜌 (𝑥, 𝑦) (𝑢(𝑦) − 𝑢(𝑥)) d𝜌(𝑦). (3.10c)

3.3. Conservative models and contractivity

Recall that due to (3.1) every alignment system that is based on an environmental averaging
has a maximum/minimum principle and therefore tends to align. If one can quantify the
rate of change of the amplitude of 𝑢 based on properties of the couple (𝜅𝜌, [·]𝜌) one can
potentially obtain an alignment 𝑢 → 𝑢̄ to some constant velocity vector 𝑢̄. However, not
every model has a predetermined 𝑢̄. Typically 𝑢̄ is uniquely defined by the initial condition
if the system preserves the momentum. This property is insured if the underlying model is
conservative.

Definition 3.6. We say that the model M is conservative if for any 𝜌 ∈ P(Ω), 𝑢 ∈ 𝐿2 (𝜅𝜌)∫
Ω

𝑢 d𝜅𝜌 =
∫
Ω

[𝑢]𝜌 d𝜅𝜌 . (3.11)

At all levels of description (1.4), (1.13), (1.19), conservative models preserve momen-
tum,

d
d𝑡
𝑢̄ = 0, 𝑢̄ =

∫
Ω

𝜌𝑢 d𝑥.
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Since we assume that the total mass of a flock is 1, this also predetermines the limiting
average velocity from the initial condition 𝑢̄ =

∫
Ω
𝜌0𝑢0 d𝑥. Non-conservative models such

as MMT may also align, see Section 4.1 below. However, for those models the limiting
velocity emerges dynamically and is not predetermined by the initial condition.

In operator terms being conservative simply means that the adjoint average [·]∗ also
preserves constants

[1Ω]∗𝜌 = 1Ω, 𝜅𝜌-almost everywhere, ∀𝜌 ∈ P(Ω). (3.12)

This in turn implies that the space of mean-zero fields

𝐿2
0 (𝜅𝜌) =

{
𝑢 ∈ 𝐿2 (𝜅𝜌) :

∫
Ω

𝑢 d𝜅𝜌 = 0
}

is invariant for both [·]𝜌 and [·]∗𝜌.
Together with the positivity proved in Lemma 3.1, (3.12) implies that [·]∗𝜌 : 𝐿∞ (𝜅𝜌) →

𝐿∞ (𝜅𝜌), and so the adjoint model M∗ consisting of pairs (𝜅𝜌, [·]∗𝜌) fulfills all the require-
ments of environmental averaging.

Lemma 3.7. If M is conservative, then M∗ also defines a conservative model. If M1
and M2 are conservative with the identical set of strength functions, then M2 ◦ M1 and
1
2 (M1 +M2) are also conservative.

For a material model that possesses a reproducing kernel being conservative is equiv-
alent to Φ𝜌 being doubly stochastic, or equivalently for 𝜙𝜌 to satisfy:∫

Ω

𝜙𝜌 (𝑥, 𝑦) d𝜌(𝑥) = s𝜌 (𝑦). (3.13)

A useful reformulation of conservative property can be done in terms of contractivity.

Definition 3.8. We say that the modelM is 𝑝-contractive, 1 ⩽ 𝑝 ⩽∞, if for any 𝜌 ∈ P(Ω),
𝑢 ∈ 𝐿 𝑝 (𝜅𝜌)

∥ [𝑢]𝜌 ∥𝐿𝑝 (𝜅𝜌 ) ⩽ ∥𝑢∥𝐿𝑝 (𝜅𝜌 ) . (3.14)

Note that straight from the definition part (ev3) all models are ∞-contractive. It is easy
to show that contractivity is equivalent to being conservative.

Lemma 3.9. The following are equivalent:
(i) M is conservative;
(ii) ∥ [1Ω]∗𝜌 ∥𝐿∞ (𝜅𝜌 ) ⩽ 1 for all 𝜌 ∈ P(Ω);
(iii) M is 𝑝-contractive for all 1 ⩽ 𝑝 ⩽ ∞;
(iv) M is 1-contractive.

Proof. (i) ⇒ (ii) is trivial. Conversely, assume (ii). Then we have∫
Ω

1Ω d𝜅𝜌 ⩾
∫
Ω

[1Ω]∗𝜌 d𝜅𝜌 =
∫
Ω

1Ω [1Ω]𝜌 d𝜅𝜌 =
∫
Ω

1Ω d𝜅𝜌,
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which proves that [1Ω]∗𝜌 = 1Ω 𝜅𝜌-almost everywhere.
The implication (ii) ⇒ (iii) is a direct consequence of Lemma 3.3.
Since (iii) ⇒ (iv) is trivial, let us now assume (iv). By duality [·]∗𝜌 is ∞-contractive,

and hence (ii) holds.

Contractivity also implies that the alignment force is dissipative. For example, for the
pressureless Euler-Alignment system, see (4.13) below, we obtain

d
d𝑡

1
2

∫
Ω

𝜌 |𝑢 |2 d𝑥 =
∫
Ω

[𝑢 · [𝑢]𝜌 − |𝑢 |2] d𝜅𝜌 ⩽ 0. (3.15)

3.4. Symmetric models

Most of the models on our list are in fact symmetric: for all 𝜌 ∈ P(Ω) and 𝑢′, 𝑢′′ ∈ 𝐿2 (𝜅𝜌)

(𝑢′, [𝑢′′]𝜌)𝜅𝜌 = ( [𝑢′]𝜌 , 𝑢′′)𝜅𝜌 , (3.16)

where we generally adopt the following notation for the inner-product relative to a measure
𝜅:

( 𝑓 , 𝑔)𝜅 =
∫
Ω

𝑓 𝑔 d𝜅. (3.17)

In other words, [·]∗𝜌 = [·]𝜌. In terms of reproducing kernel, if one is available, symme-
try is equivalent to Φ𝜌 being symmetric. Setting 𝑢′′ = 1Ω we can see that every symmetric
model is conservative. However, not every conservative model is automatically symmet-
ric. Plenty of examples are provided by defining the averages with non-symmetric doubly
stochastic reproducing kernels.

For symmetric models the energy law (3.15) takes a more explicit form

d
d𝑡

∫
Ω

𝜌 |𝑢 |2 d𝑥 = −
∫
Ω

𝜙𝜌 (𝑥, 𝑦) |𝑢(𝑥) − 𝑢(𝑦) |2 d𝜌(𝑥) d𝜌(𝑦). (3.18)

We can see that the dissipation burns energy for as long as communicating agents of the
flock are not yet aligned. This creates a mechanism for flocking behavior to be discussed
in more detail in Section 4.

If M is a conservative but not symmetric model, then canonical ways to symmetrize it
would be to consider the model 1

2 (M +M∗) or M∗ ◦M. According to Lemma 3.7 those
define proper environmental averages.

3.5. Galilean invariance

We say that the model M is Galilean invariant if for all 𝑥 ∈ Ω and 𝑣 ∈ R𝑛

𝜅𝜌( ·+𝑣) (𝑥) = 𝜅𝜌 (𝑥 + 𝑣), (3.19)
[𝑢(· + 𝑣)]𝜌( ·+𝑣) (𝑥) = [𝑢]𝜌 (𝑥 + 𝑣). (3.20)
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In terms of reproducing kernel, if one is available, the Galilean invariance is equivalent to

s𝜌( ·+𝑣) (𝑥) = s𝜌 (𝑥 + 𝑣),
𝜙𝜌( ·+𝑣) (𝑥, 𝑦) = 𝜙𝜌 (𝑥 + 𝑣, 𝑦 + 𝑣). (3.21)

For a particular differential system M is involved in, this property implies the conven-
tional Galilean invariance with respect to transformation

𝑥 → 𝑥 + 𝑡𝑉, 𝑣 → 𝑣 +𝑉, 𝑢 → 𝑢 +𝑉. (3.22)

All the models considered above except for segregation and conditional expectation
ones are Galilean invariant. The segregation protocols are planted into a given geography
of the map and therefore are not translation invariant.

3.6. Ball-positivity

If an operator 𝑇 on a (real in our case) Hilbert space 𝐻R is positive semi-definite, i.e.

(𝑇𝑢, 𝑢) ⩾ 0, (3.23)

geometrically this means that 𝑇𝑢 and 𝑢 lie on the same side of the hyperplane 𝑢⊥. If 𝑇𝑢
lies in an even more restricted location, namely, in the ball 1

2𝐵∥𝑢∥ (𝑢), i.e.



𝑇𝑢 − 1
2
𝑢





 ⩽ 1
2
∥𝑢∥, (3.24)

then we call 𝑇 ball-positive. A more useful definition of ball-positivity can be stated equiv-
alently as follows

(𝑇𝑢, 𝑢) ⩾ ∥𝑇𝑢∥2, ∀𝑢 ∈ 𝐻R. (3.25)

In other words, it is positivity (3.23) that comes with a more coercive flavor. Although, as
far as we can trace, there is no standard term associated with this property in the literature,
such operators appeared for instance in [62] (with 𝜂 = 1) and [90].

In the context of environmental averaging models, where 𝐻R = 𝐿2 (𝜅𝜌), and 𝑇 = [·]𝜌,
the ball-positivity is stated as follows

(𝑢, [𝑢]𝜌)𝜅𝜌 ⩾ ∥ [𝑢]𝜌 ∥2
𝐿2 (𝜅𝜌 ) , ∀𝑢 ∈ 𝐿2 (𝜅𝜌). (3.26)

This property has profound implications to flocking behavior of the system as we will see
later in Section 4.4.

We identify many ball-positive models on our list with the use of a simple lemma.

Lemma 3.10. If M is symmetric, then M is ball-positive if and only if it is positive semi-
definite.
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Proof. The forward implication is trivial. Conversely, ifM is non-negative and symmetric,
then (𝑢, 𝑣)𝑇 = (𝑇𝑢, 𝑣) defines a (possibly degenerate) inner product on the real Hilbert space
𝐻R = 𝐿2 (𝜅𝜌). Hence, the Cauchy-Schwartz inequality applies

| (𝑇𝑢, 𝑣) | ⩽
√︁
(𝑇𝑢, 𝑢)

√︁
(𝑇𝑣, 𝑣). (3.27)

Taking supremum over all unit 𝑣 and using the contractivity of 𝑇 , we obtain the result.

Corollary 3.11. If M is conservative, then M∗ ◦M is ball-positive.

Clearly, the conditional expectation model Mcond is ball-positive because it consists of
orthogonal projections. For Mseg we have

(𝑢, [𝑢]𝜌)𝜌 =
𝐿∑︁
𝑙=1

𝜌(𝑢𝑔𝑙)2

𝜌(𝑔𝑙)
⩾ 0. (3.28)

The classical Cucker-Smale model MCS is ball-positive, provided the kernel 𝜙 is Bochner-
positive, i.e. 𝜙 = 𝜓 ∗ 𝜓, for some smooth 𝜓 ⩾ 0. We have

(𝑢, [𝑢]𝜌)𝜅𝜌 =
∫
Ω

(𝑢𝜌) · (𝑢𝜌)𝜙 d𝑥 =
∫
Ω

(𝑢𝜌)2
𝜓 d𝑥 ⩾ 0. (3.29)

The symmetric M𝜙 model is also ball-positive

(𝑢, [𝑢]𝜌)𝜌 =
∫
Ω

| (𝑢𝜌)𝜙 |2

𝜌𝜙
d𝑥 ⩾ 0. (3.30)

The same argument shows that all M𝜙,p-models are ball-positive.
Among symmetric but not necessarily ball-positive models are the topological models

Mtopo
CS . Here, the kernel is not Bochner-positive to even imply sign definiteness of the aver-

aging. Incidentally, ball-positivity does not imply symmetry either. This will be shown in
Appendix 11. So, these two properties are completely independent.

Nonetheless, ball-positivity, does imply a host of other properties including of course
positivity and 2-contractivity. The 2-contractivity alone does not seem to be sufficient to
imply conservation, in spite of Lemma 3.9, it is still possible to show that all ball-positive
models are conservative. The proof of this result is not so straightforward. We include it in
Appendix 11.

Proposition 3.12. Every ball-positive model is conservative.

Let us summarize the list of properties, relations between them, and examples.

ball-positive ⇐=


symmetric =⇒ conservative ⇐⇒ contractive

⇑
positive semi-definite ⇐= ball-positive
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MODEL conservative symmetric ball-positive Galilean invariant
MI ✓ ✓ ✓ ✓

Mglob ✓ ✓ ✓ ✓

MCS ✓ ✓ ✓ if 𝜙 = 𝜓 ∗ 𝜓 ✓

Mtopo
CS ✓ ✓ × ✓

MMT × × × ✓

M𝜙 ✓ ✓ ✓ ✓

Mseg ✓ ✓ ✓ ×

The most important applications of ball-positivity will be seen in the context of flocking
and spectral gap calculations to be discussed in Section 4.4.

3.7. Thickness, regularity, and well-posedness of microscopic systems

In order to develop a meaningful analysis of alignment models it will be necessary to make
a list of continuity and regularity assumptions. We state those in terms of representing
kernels and strength functions, which appears to be the most economical way.

3.7.1. Locality of communication. First and foremost we assume that representing ker-
nels support communication at a short range, i.e.

𝜙𝜌 (𝑥, 𝑦) ⩾ 𝑐01 |𝑥−𝑦 |<𝑟0 , for some 𝑟0 > 0, and all 𝜌 ∈ P(Ω). (3.31)

Typically, for Favre-based models, such locality follows from the corresponding locality of
the defining convolution kernel 𝜙:

𝜙(𝑟) ⩾ 𝑐01𝑟<𝑟0 . (3.32)

Many models in our list satisfy this condition automatically. For the classical Cucker-
Smale, it simply means that 𝜙 > 0 near the origin. The Motsch-Tadmor model fulfills the
same via

𝜙𝜌 (𝑥, 𝑦) =
𝜙(𝑥 − 𝑦)
𝜌𝜙 (𝑥)

⩾
1

∥𝜙∥∞
𝜙(𝑥 − 𝑦), (3.33)

since 𝜌𝜙 (𝑥) ⩽ ∥𝜙∥∞. Similarly, for the M𝜙-model, we have

𝜙𝜌 (𝑥, 𝑦) ⩾
1

∥𝜙∥∞
𝜙 ∗ 𝜙(𝑥 − 𝑦) ⩾ 𝑐01 |𝑥−𝑦 |<𝑟0 .

The locality also holds for the segregation model Mseg on a compact environment
Ω. Indeed, since

∑𝐿
𝑙=1 𝑔𝑙 (𝑥) = 1, for every 𝑥 there exists 𝑙 such that 𝑔𝑙 (𝑥) ⩾ 1/𝐿. Using

continuity and compactness, there exists a 𝑟0 > 0 such that for any |𝑥 − 𝑦 | < 𝑟0 we have
𝑔𝑙 (𝑦) > 1/2𝐿. Then, since 𝜌(𝑔𝑙) ⩽ 1,

𝜙𝜌 (𝑥, 𝑦) =
𝐿∑︁
𝑙=1

𝑔𝑙 (𝑥)𝑔𝑙 (𝑦)
𝜌(𝑔𝑙)

⩾
1

2𝐿2 = 𝑐0, ∀𝑥, 𝑦 : |𝑥 − 𝑦 | < 𝑟0.
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Thus, (3.31) is satisfied.
A better way to express (3.31) and similar conditions that follow is through the use of

a smooth cut-off function. Let us fix 𝜒 ∈ 𝐶∞
0 (𝐵1 (0)) such that 𝜒(𝑥) = 1 for 𝑥 ∈ 𝐵1/2 (0)

and 0 ⩽ 𝜒 ⩽ 1 throughout. We denote the rescaling of 𝜒 by 𝜒𝑟 (𝑥) = 𝜒(𝑥/𝑟). Thus, (3.31)
implies

𝜙𝜌 (𝑥, 𝑦) ⩾ 𝑐0𝜒𝑟0 (𝑥 − 𝑦). (3.34)

3.7.2. Thickness. Flock with a certain weight present throughout its support or even the
entire environment are called thick. One can use masses of balls, 𝜌(𝐵𝑟 (𝑥)) as a measure
of thickness. This concept was adopted, for example, in [67]. While useful in many situ-
ations (see Sections 4.2, 4.4) for some models, however, thickness takes more individual
form which is easier to satisfy. For example, in the MCS case it is more natural to mea-
sure thickness as 𝜌𝜙 , while for Mseg the thickness can be measured in terms of masses of
neighborhoods, 𝜌(𝑔𝑙). We adopt the following general definition.

Definition 3.13. A thickness of a density 𝜌 ∈ P(Ω) is a function Θ𝜌 : Ω → R+ satisfying
the following conditions
(i) Θ(𝜌, ·) is lower semi-continuous;
(ii) 𝜌({𝑥 : Θ(𝜌, 𝑥) = 0}) = 0, for all 𝜌 ∈ 𝐿1 (Ω) ∩ P(Ω);
(iii) There exists 𝑐 > 0 such that Θ(𝜌, 𝑥) ⩾ 𝑐min 𝜌, for all 𝜌 ∈ Ω;
(iv) Continuity-in-𝜌: there exists a 𝑐 > 0 such that for all 𝜌′, 𝜌′′ ∈ P(Ω),

∥Θ(𝜌′, ·) − Θ(𝜌′′, ·)∥∞ ⩽ 𝑐∥𝜌′ − 𝜌′′∥P . (3.35)

(v) Compatibility with the continuity equation: if 𝜌 satisfies

𝜕𝑡 𝜌 + ∇𝑥 · (𝑢𝜌) = 0,

then for every point 𝑥 ∈ Ω, the function 𝑡 → Θ(𝜌(𝑡), 𝑥) satisfies

𝜕𝑡Θ(𝜌, 𝑥) ⩾ −𝑐∥𝑢∥𝐿2 (𝜌) , (3.36)

in distributional sense.
Thickness of the flock over a subset 𝑆 ⊂ Ω is defined by

Θ(𝜌, 𝑆) = inf
𝑥∈𝑆

Θ(𝜌, 𝑥). (3.37)

If 𝑆 = Ω we call Θ(𝜌,Ω) the uniform thickness of the flock.

Example 3.14. If no specific structural information is known about 𝜙𝜌 (𝑥, 𝑦) except for
locality (3.31) then a universal choice for the thickness would be the mass of a smoothed
ball at a scale 0 < 𝑟 < 𝑟0 (called ball-thickness):

Θ(𝜌, 𝑥) = 𝜌̄𝑟 (𝑥) = 𝜌 ∗ 𝜒𝑟 (𝑥). (3.38)
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Most properties are easy to verify: for (i) we even have Θ ∈ 𝐶∞, for (ii) we observe that

{𝑥 : Θ(𝜌, 𝑥) = 0} ∩ supp 𝜌 = ∅,

(iii) and (iv) are trivial, and as to (v) we have

𝜕𝑡 𝜌̄𝑟 (𝑥) = −∇𝑥 · (𝑢𝜌)𝜒𝑟 = −(𝑢𝜌)∇𝜒𝑟 ⩾ −𝑐∥𝑢∥𝐿2 (𝜌) . (3.39)

Example 3.15. Thickness associated with a local convolution type kernel 𝜙, (3.32), is given
by

Θ(𝜌, 𝑥) = 𝜌𝜙 (𝑥). (3.40)

Here all the properties are trivial. Note that locality (3.32) is necessary for (ii). This choice
will be suitable for all Favre-based models.

Example 3.16. Another example is associated with the segregation model Mseg:

Θ(𝜌, 𝑥) = min
𝑙:𝑥∈supp 𝑔𝑙

𝜌(𝑔𝑙). (3.41)

Here we also assume for technical reasons that |𝜕 (supp 𝑔𝑙) | = 0.
To show the lower semi-continuity, let 𝑥 ∈Ω be such thatΘ(𝜌, 𝑥) > 𝑎. Suppose 𝑙1, . . . , 𝑙𝑘

is the list of indexes such that 𝑥 ∉ supp 𝑔𝑙𝑖 . Then there exists 𝛿 > 0 such that 𝐵𝛿 (𝑥) ∩
supp 𝑔𝑙𝑖 = ∅. Then for all 𝑦 ∈ 𝐵𝛿 (𝑥) the list of 𝑙’s for which 𝑦 ∈ supp 𝑔𝑙 is a subset of the
list of 𝑙’s corresponding to 𝑥. So, Θ(𝜌, 𝑦) ⩾ Θ(𝜌, 𝑥), and hence the set {𝑥 : Θ(𝜌, 𝑥) > 𝑎}
is open.

To show (ii) suppose we have 𝑥 : Θ(𝜌, 𝑥) = 0, hence there exists 𝑙 such that 𝑥 ∈ supp 𝑔𝑙
and 𝜌(𝑔𝑙) = 0. If 𝑔𝑙 (𝑥) > 0, then 𝜌(𝐵𝜀 (𝑥)) = 0 for a small 𝜀, hence 𝑥 ∉ supp 𝜌. Otherwise,
𝑥 ∈ 𝜕 (supp 𝑔𝑙). So,

{𝑥 : Θ(𝜌, 𝑥) = 0} ⊂ (Ω\ supp 𝜌) ∪ 𝜕 (supp 𝑔1) ∪ · · · ∪ 𝜕 (supp 𝑔𝐿),

and the 𝜌-measure of the set on the right hand side is 0.
(iii) and (iv) are trivial, as to (v) we have similar to (3.39)

𝜕𝑡 𝜌(𝑔𝑙) =
∫
Ω

𝑢 · ∇𝑔𝑙 d𝜌 ⩾ −𝑐∥𝑢∥𝐿2 (𝜌)

for any 𝑙 = 1, . . . , 𝐿. So, for any fixed 𝑥 ∈ Ω there is a finite collection of 𝑙’s such that
𝑥 ∈ supp 𝑔𝑙 . Denote it 𝐿 (𝑥). Since the minimum is taken over a fixed compact set 𝐿 (𝑥) at
any moment of time, Rademacher’s lemma applies to deduce (3.36) is distributional sense.

3.7.3. Regularity of M and continuous dependence on 𝝆. Let us discuss now regularity
and continuity-in-𝜌 of our models. We will encounter two type of models – ones whose
regularity depends on thickness (and therefore can be violated if the density in question is
not thick), and ones that are uniformly regular independently of thickness.
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Table 2. Associated thickness of selected models.

MODEL MCS Mtopo
CS M𝛽 M𝜙 Mseg

Θ(𝜌, 𝑥) 𝜌𝜙 (𝑥) 𝜌𝜓 (𝑥) 𝜌𝜙 (𝑥) 𝜌𝜙 (𝑥) min𝑙:𝑥∈supp 𝑔𝑙 𝜌(𝑔𝑙)

Before we make these definitions precise, let us make an observation – in all our models
the strength is bounded from below by the native and ball-mass thicknesses: there exists an
non-decreasing continuous function s : R+ → R+ such that

s𝜌 (𝑥) ⩾ s(Θ(𝜌, 𝑥)), s𝜌 (𝑥) ⩾ s( 𝜌̄𝑟0 (𝑥)) for all 𝑥 ∈ Ω. (3.42)

Let us recall the classical Kantorovich-Rubinstein distance between any two finite mea-
sures 𝜇′, 𝜇′′ over Ω:

𝑊1 (𝜇′, 𝜇′′) = sup
Lip(ℎ)⩽1

����∫
Ω

ℎ(𝑥) [ d𝜇′ (𝑥) − d𝜇′′ (𝑥)]
���� . (3.43)

Definition 3.17. We say that a model M with is regular if for every 𝑅 > 0 and 𝜌, 𝜌′, 𝜌′′ ∈
P(𝐵𝑅) we have for every 𝑘 = 0, 1, . . .,

∥𝜕𝑘s𝜌∥𝐿∞ (𝐵𝑅 ) + ∥𝜕𝑘𝑥 𝜙𝜌∥𝐿∞ (𝐵𝑅×𝐵𝑅 ) + ∥𝜕𝑘𝑦 𝜙𝜌∥𝐿∞ (𝐵𝑅×𝐵𝑅 ) ⩽ 𝐶𝑘,𝑅 (Θ(𝜌, 𝐵𝑅)), (3.44)

∥s𝜌′ − s𝜌′′ ∥𝐿∞ (𝐵𝑅 ) + ∥𝜙𝜌′ − 𝜙𝜌′′ ∥𝐿∞ (𝐵𝑅×𝐵𝑅 ) ⩽ 𝐶𝑅 (Θ(𝜌′, 𝐵𝑅),Θ(𝜌′′, 𝐵𝑅))𝑊1 (𝜌′, 𝜌′′).
(3.45)

Definition 3.18. We say that a model M with is uniformly regular if for every 𝑅 > 0 and
𝜌, 𝜌′, 𝜌′′ ∈ P(𝐵𝑅) we have for every 𝑘 = 0, 1, . . .,

∥𝜕𝑘s𝜌∥𝐿∞ (𝐵𝑅 ) + ∥𝜕𝑘𝑥 𝜙𝜌∥𝐿∞ (𝐵𝑅×𝐵𝑅 ) + ∥𝜕𝑘𝑦 𝜙𝜌∥𝐿∞ (𝐵𝑅×𝐵𝑅 ) ⩽ 𝐶𝑘,𝑅, (3.46)

∥s𝜌′ − s𝜌′′ ∥𝐿∞ (𝐵𝑅 ) + ∥𝜙𝜌′ − 𝜙𝜌′′ ∥𝐿∞ (𝐵𝑅×𝐵𝑅 ) ⩽ 𝐶𝑅𝑊1 (𝜌′, 𝜌′′). (3.47)

If no information is known about the thickness of one of the densities involved in (3.45),
some of the models still retain a level of continuity if at least the other density is thick: for
every 𝑅 > 0 and 𝜌′, 𝜌′′ ∈ P(𝐵𝑅) one has∫

Ω

|s𝜌′ (𝑥) − s𝜌′′ (𝑥) |2 d𝜌′′ (𝑥) ⩽ 𝐶𝑅 (Θ(𝜌′, 𝐵𝑅))𝑊2
1 (𝜌

′, 𝜌′′), (3.48)∫
Ω

∫
Ω

|𝜙𝜌′ (𝑥, 𝑦) − 𝜙𝜌′′ (𝑥, 𝑦) |2 d𝜌′′ (𝑥) d𝜌′′ (𝑦) ⩽ 𝐶𝑅 (Θ(𝜌′, 𝐵𝑅))𝑊2
1 (𝜌

′, 𝜌′′). (3.49)

This will be useful in the study of the hydrodynamic limits.
Let us go through the main examples on our list, identify their associated thicknesses

and determine which level of regularity they satisfy and under which conditions. Our find-
ings are summarized in the tables below.
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Table 3. Regularity type of selected models.

MODEL regular uniform (3.48)-(3.49)

MCS ✓ ✓ ✓

Mtopo
CS ✓ ✓ ✓

M𝛽 ✓ 𝜙 > 0 𝑐1 |𝑥 |<𝑟0 ⩽ 𝜙(𝑥) ⩽ 𝐶1 |𝑥 |<𝑅0

M𝜙 ✓ on compact Ω 𝜙 > 0 on compact Ω
✓ on compact Ω

𝜙 = 1
⟨𝑥⟩𝑛+𝛾 on R𝑛

Mseg ✓ supp 𝑔𝑙 = Ω ✓

Example 3.19 (MCS, Mtopo
CS ). The Cucker-Smale model is trivially uniformly regular with

Θ(𝜌, 𝑥) = 𝜌𝜙 . While Mtopo
CS is uniformly regular with Θ(𝜌, 𝑥) = 𝜌𝜓 .

Example 3.20 (M𝛽 , 0 ⩽ 𝛽 < 1). The model has the same associated thicknessΘ(𝜌, 𝑥) = 𝜌𝜙 .
Under no conditions on 𝜙, the models is trivially regular. If 𝜙 > 0, then

Θ(𝜌, 𝑥) ⩾ inf
𝑟<2𝑅

𝜙(𝑟) = 𝛿 > 0 (3.50)

on 𝐵𝑅 for any 𝜌 ∈ P(𝐵𝑅). So, in this case the model is uniformly regular, and all the
estimates are straightforward.

Let us assume that 𝜙 is local and satisfies (2.6). We will prove that in this case the model
is continuous in 𝜌, (3.48)-(3.49). Indeed, as to (3.48), by an elementary inequality, we have

| (𝜌′𝜙)𝛽 − (𝜌′′𝜙)𝛽 | ⩽ 𝐶 |𝜌′𝜙 |𝛽−1 |𝜌′𝜙 − 𝜌′′𝜙 | ⩽ 𝐶 (Θ(𝜌′, 𝑥))∥∇𝜙∥∞𝑊1 (𝜌′, 𝜌′′), (3.51)



Environmental averaging 31

and (3.48) follows. As to the kernel continuity (3.49), we have∫
Ω

∫
Ω

|𝜙𝜌′ (𝑥, 𝑦) − 𝜙𝜌′′ (𝑥, 𝑦) |2 d𝜌′′ (𝑥) d𝜌′′ (𝑦)

⩽∥𝜙∥∞
∫
Ω

∫
Ω

����� 1
(𝜌′
𝜙
(𝑥))1−𝛽 − 1

(𝜌′′
𝜙
(𝑥))1−𝛽

�����2 𝜙(𝑥 − 𝑦) d𝜌′′ (𝑥) d𝜌′′ (𝑦)

=∥𝜙∥∞
∫
Ω

����� 1
(𝜌′
𝜙
(𝑥))1−𝛽 − 1

(𝜌′′
𝜙
(𝑥))1−𝛽

�����2 𝜌′′𝜙 (𝑥) d𝜌′′ (𝑥)

=∥𝜙∥∞
∫
Ω

| (𝜌′′
𝜙
(𝑥))1−𝛽 − (𝜌′

𝜙
(𝑥))1−𝛽 |2

(𝜌′
𝜙
(𝑥))2−2𝛽 (𝜌′′𝜙 (𝑥))2𝛽 d𝜌′′ (𝑥)

𝜌′′
𝜙
(𝑥)

⩽𝐶 (Θ(𝜌′, 𝐵𝑅))𝑊2
1 (𝜌

′, 𝜌′′)
∫
𝐵𝑅

d𝜌′′ (𝑥)
𝜌′′
𝜙
(𝑥) .

Note that∫
𝐵𝑅

d𝜌′′ (𝑥)
𝜌′′
𝜙
(𝑥) =

1
∥𝜙∥1

∫
𝐵𝑅+𝑅0

∫
𝐵𝑅

𝜙(𝑥 − 𝑦) d𝜌′′ (𝑥)
𝜌′′
𝜙
(𝑥) d𝑦 =

1
∥𝜙∥1

∫
𝐵𝑅+𝑅0

(
𝜌′′

𝜌′′
𝜙

)
𝜙

(𝑦) d𝑦.

According to (2.7), the expression inside is uniformly bounded, and hence the whole inte-
gral is bounded by a constant depending only on 𝑅, 𝑅0. This proves (3.49).

Finally, we note that if 𝜙 is local, then the ball-thickness (3.38) with 𝑟 ⩽ 𝑟0 can also
be used in all the estimates. This observation will be useful in the relaxation study, see
Section 8. However it should be noted that 𝜌𝜙 (𝑥) ⩾ 𝑐𝜌̄𝑟 (𝑥), and so it is easier for densities
to be natively thick than ball-thick.

Example 3.21 (Mseg). The computation is quite similar for the segregation model Mseg,
where the thickness functional Θ is given by (3.41). The model is clearly uniformly thick if
supp 𝑔𝑙 = Ω, 𝑙 = 1, . . . , 𝐿, since then Θ(𝜌,Ω) = 1 for any 𝜌. Generally, the global thickness
is given by Θ(𝜌,Ω) = min𝑙 𝜌(𝑔𝑙). So, it is clear that regularity holds for this model as well.
All these conclusions hold for the ball-mass thickness (3.38) where 𝑟 is a small radius so
that for every 𝑙 there exists an 𝑥0 ∈ Ω𝑙 such that 𝑔𝑙 |𝐵𝑟 (𝑥0 ) ⩾ 𝑐0 for some fixed 𝑐0 > 0.

Let us establish (3.49) relative to the native thickness (the ball-thickness (3.38) will not
work here)∫

Ω

∫
Ω

|𝜙𝜌′ (𝑥, 𝑦) − 𝜙𝜌′′ (𝑥, 𝑦) |2 d𝜌′′ (𝑥) d𝜌′′ (𝑦)

⩽

∫
Ω

∫
Ω

𝐿∑︁
𝑙=1

𝑔𝑙 (𝑥)𝑔𝑙 (𝑦)
���� 1
𝜌′ (𝑔𝑙)

− 1
𝜌′′ (𝑔𝑙)

����2 𝜙(𝑥 − 𝑦) d𝜌′′ (𝑥) d𝜌′′ (𝑦)

⩽
𝐿∑︁
𝑙=1

(𝜌′′ (𝑔𝑙))2
���� 1
𝜌′ (𝑔𝑙)

− 1
𝜌′′ (𝑔𝑙)

����2 =

𝐿∑︁
𝑙=1

���� 𝜌′ (𝑔𝑙) − 𝜌′′ (𝑔𝑙)𝜌′ (𝑔𝑙)

����2 ⩽ 𝐶 (Θ(𝜌′,Ω))𝑊2
1 (𝜌

′, 𝜌′′).
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Example 3.22 (M𝜙). Because of the non-local dependence on 𝜌𝜙 in the kernel, there
doesn’t seem to be another thickness quantity that would fulfill the local continuity and
regularity assumptions. However, if we set Θ(𝜌, 𝑥) = 𝜌𝜙 (𝑥), the model becomes regular
on any compact environment Ω and for any kernel 𝜙. Also on compact Ω, the model is
uniformly regular when 𝜙 > 0. Finally, the strong continuity-in-𝜌, (3.48)-(3.49), holds as
well: ∫

Ω

∫
Ω

|𝜙𝜌′ (𝑥, 𝑦) − 𝜙𝜌′′ (𝑥, 𝑦) |2 d𝜌′′ (𝑥) d𝜌′′ (𝑦)

≲

∫
Ω

∫
Ω

∫
Ω

𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
����� 1
𝜌′
𝜙
(𝑧) −

1
𝜌′′
𝜙
(𝑧)

�����2 d𝑧 d𝜌′′ (𝑥) d𝜌′′ (𝑦)

=

∫
Ω

����� 1
𝜌′
𝜙
(𝑧) −

1
𝜌′′
𝜙
(𝑧)

�����2 (𝜌′′ (𝑧))2 d𝑧 ⩽
|Ω|

Θ2 (𝜌′,Ω)
𝑊2

1 (𝜌
′, 𝜌′′).

On the open space, if 𝜙 is compactly supported then the model would fail to fulfill
any regularity assumptions. However, for the integrable kernel 𝜙 satisfying the following
conditions

𝜙 ∈ 𝑊 𝑘,1 (Ω), ∀𝑘 ∈ N,
1
2
|𝑦 | ⩽ |𝑥 | ⩽ 2|𝑦 | ⇒ 𝜙(𝑥) ∼ 𝜙(𝑦), (3.52)

one can establish uniform regularity. The choice

𝜙 =
1

⟨𝑥⟩𝑛+𝛾 , 𝛾 > 0, ⟨𝑥⟩ = (1 + |𝑥 |2) 1
2 ,

is an example of such a kernel.
To see that let 𝜌 ∈ P(𝐵𝑅). We have

𝜕𝑘𝑥 𝜙𝜌 (𝑥, 𝑦) =
∫
Ω

𝜕𝑘𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
𝜌𝜙 (𝑧)

d𝑧

=

∫
𝐵2𝑅

𝜕𝑘𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
𝜌𝜙 (𝑧)

d𝑧 +
∫
Ω\𝐵2𝑅

𝜕𝑘𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
𝜌𝜙 (𝑧)

d𝑧.

Inside the ball 𝐵2𝑅 we have 𝜌𝜙 (𝑧) ⩾ 𝛿 by (3.50). So,∫
𝐵2𝑅

𝜕𝑘𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
𝜌𝜙 (𝑧)

d𝑧 ⩽ 𝐶 (𝑅)∥𝜙∥𝑊𝑘,1 .

For 𝑧 ∈ Ω\𝐵2𝑅 we have by (3.52)

𝜌𝜙 (𝑧) =
∫
𝐵𝑅

𝜙(𝑧 − 𝑤) d𝜌(𝑤) ≳ 𝜙(𝑧)
∫
𝐵𝑅

d𝜌(𝑤) = 𝜙(𝑧).
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On the other hand, by the same (3.52), since 𝑦 ∈ 𝐵𝑅,

𝜙(𝑦 − 𝑧) ≲ 𝜙(𝑧).

Thus, ∫
Ω\𝐵2𝑅

𝜕𝑘𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
𝜌𝜙 (𝑧)

d𝑧 ≲
∫
Ω\𝐵2𝑅

|𝜕𝑘𝜙(𝑥 − 𝑧) | d𝑧 ⩽ ∥𝜙∥𝑊𝑘,1 .

Since the kernel is symmetric the same holds for 𝜕𝑘𝑦 𝜙𝜌. We have proved (3.46). To show
(3.47) let us write

|𝜙𝜌′ (𝑥, 𝑦) − 𝜙𝜌′′ (𝑥, 𝑦) | ⩽
∫
Ω

𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
|𝜌′′
𝜙
(𝑧) − 𝜌′

𝜙
(𝑧) |

𝜌′
𝜙
(𝑧)𝜌′′

𝜙
(𝑧) d𝑧

=

∫
𝐵2𝑅

𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
|𝜌′′
𝜙
(𝑧) − 𝜌′

𝜙
(𝑧) |

𝜌′
𝜙
(𝑧)𝜌′′

𝜙
(𝑧) d𝑧

+
∫
Ω\𝐵2𝑅

𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
|𝜌′′
𝜙
(𝑧) − 𝜌′

𝜙
(𝑧) |

𝜌′
𝜙
(𝑧)𝜌′′

𝜙
(𝑧) d𝑧

Using again that inside the ball 𝐵2𝑅, 𝜌′
𝜙
(𝑧), 𝜌′′

𝜙
(𝑧) ⩾ 𝛿, we obtain

≲ 𝑊1 (𝜌′, 𝜌′′) +𝑊1 (𝜌′, 𝜌′′)
∫
Ω\𝐵2𝑅

𝜙(𝑥 − 𝑧)𝜙(𝑦 − 𝑧)
𝜌′
𝜙
(𝑧)𝜌′′

𝜙
(𝑧) sup

𝑤∈𝐵𝑅
|∇𝑤𝜙(𝑧 − 𝑤) | d𝑧.

Arguing as before we conclude that 𝜙 (𝑥−𝑧)𝜙 (𝑦−𝑧)
𝜌′
𝜙
(𝑧)𝜌′′

𝜙
(𝑧) is uniformly bounded on Ω\𝐵2𝑅. At the

same time, sup𝑤∈𝐵𝑅 |∇𝑤𝜙(𝑧 − 𝑤) | ∈ 𝐿1 ( d𝑧). This finishes the estimate.
The native thickness in all of the above can be replaced with the ball-thickness (3.38)

as well.

3.7.4. Well-posedness of agent-based systems. Let us establish basic well-posedness of
the agent based system as a consequence of the uniform regularity:{

¤𝑥𝑖 = 𝑣𝑖
¤𝑣𝑖 = s𝑖 ( [𝑣]𝑖 − 𝑣𝑖)

𝑖 = 1 . . . 𝑁. (3.53)

Here,Ω can be any environment. Recall that s𝑖 and [𝑣]𝑖 are defined in (1.11). The maximum
principle implies that max𝑖 |𝑣𝑖 | ⩽ max𝑖 |𝑣𝑖 (0) | := 𝐴, and therefore, max |𝑥𝑖 | ≲ 𝑡 a priori. So,
in order to establish global existence by the standard fix point argument it suffices to check
that the right hand side of (3.53) is locally Lipschitz on Ω𝑁 × R𝑛𝑁 .

So, let us assume that M is uniformly regular. Let us fix masses 𝑚1, . . . , 𝑚𝑁 and two
configurations

(𝑥′1, . . . , 𝑥
′
𝑁 ; 𝑣′1, . . . , 𝑣

′
𝑁 ) ∈ 𝐵𝑁𝑅 × 𝐵𝑁𝐴 , (𝑥′′1 , . . . , 𝑥

′′
𝑁 ; 𝑣′′1 , . . . , 𝑣

′′
𝑁 ) ∈ 𝐵𝑁𝑅 × 𝐵𝑁𝐴 .
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We only need to show Lipschitzness of the momentum equation. We have

|s′𝑖 [𝑣′]𝑖 − s′𝑖𝑣
′
𝑖 − s′′𝑖 [𝑣′′]𝑖 + s′′𝑖 𝑣

′′
𝑖 | ⩽ |s′𝑖 [𝑣′]𝑖 − s′′𝑖 [𝑣′′]𝑖 | + |s′𝑖𝑣′𝑖 − s′′𝑖 𝑣

′′
𝑖 | = 𝐼 + 𝐼 𝐼 .

As to II,
𝐼 𝐼 ⩽ |s′𝑖 − s′′𝑖 | |𝑣′𝑖 | + |s′′𝑖 | |𝑣′𝑖 − 𝑣′′𝑖 | ⩽ 𝐴|s′𝑖 − s′′𝑖 | + 𝑆 |𝑣′𝑖 − 𝑣′′𝑖 |.

Using (3.46)-(3.47),

|s′𝑖 − s′′𝑖 | ⩽ |s𝜌′ (𝑥′𝑖) − s𝜌′ (𝑥′′𝑖 ) | + |s𝜌′ (𝑥′′𝑖 ) − s𝜌′′ (𝑥′′𝑖 ) | ⩽ 𝐶1 |𝑥′𝑖 − 𝑥′′𝑖 | + 𝐶𝑊1 (𝜌′, 𝜌′′)

⩽ 𝐶1 |𝑥′𝑖 − 𝑥′′𝑖 | + 𝐶
∑︁
𝑗

𝑚 𝑗 |𝑥′𝑗 − 𝑥′′𝑗 | ≲ max |𝑥′𝑗 − 𝑥′′𝑗 |.

We now estimate the weighted averages term using the same regularity assumptions,

𝐼 ⩽
∑︁
𝑗

𝑚 𝑗 |𝜙𝜌′ (𝑥′𝑖 , 𝑥′𝑗 )𝑣′𝑗 − 𝜙𝜌′′ (𝑥′′𝑖 , 𝑥′′𝑗 )𝑣′′𝑗 |

⩽
∑︁
𝑗

𝑚 𝑗𝜙𝜌′ (𝑥′𝑖 , 𝑥′𝑗 ) |𝑣′𝑗 − 𝑣′′𝑗 | +
∑︁
𝑗

𝑚 𝑗 |𝜙𝜌′ (𝑥′𝑖 , 𝑥′𝑗 ) − 𝜙𝜌′′ (𝑥′′𝑖 , 𝑥′′𝑗 ) | |𝑣′′𝑗 |

⩽ 𝐶0 max |𝑣′𝑗 − 𝑣′′𝑗 | + 𝐴
∑︁
𝑗

𝑚 𝑗 |𝜙𝜌′ (𝑥′𝑖 , 𝑥′𝑗 ) − 𝜙𝜌′′ (𝑥′𝑖 , 𝑥′𝑗 ) |

+ 𝐴
∑︁
𝑗

𝑚 𝑗 |𝜙𝜌′′ (𝑥′𝑖 , 𝑥′𝑗 ) − 𝜙𝜌′′ (𝑥′′𝑖 , 𝑥′′𝑗 ) |

⩽ 𝐶0 max |𝑣′𝑗 − 𝑣′′𝑗 | + 𝐴𝑊1 (𝜌′, 𝜌′′) + 2𝐴𝐶1
∑︁
𝑗

𝑚 𝑗 |𝑥′𝑗 − 𝑥′′𝑗 |

≲ max |𝑣′𝑗 − 𝑣′′𝑗 | + max |𝑥′𝑗 − 𝑥′′𝑗 |.

We have proved the following result.

Proposition 3.23. If M is uniformly regular, then the system (3.53) is globally well-posed.

Note that this well-posedness result is robust – the Lipschitzness is independent of the
number of agents or their masses. That is why it can be extended to kinetic formulation
as well, see Section 5. However, the well-posedness in a less robust form also extends to
some non-regular models such as MMT if 𝜙 is finitely supported and satisfies (3.31). This
is based on the fact that for any atomic 𝜌 we have 𝜌𝜙 (𝑥𝑖) ⩾ 𝑚𝑖𝜙(0). So, there is a residual
mass-dependent thickness of the flock left on its support. Indeed, we have in this case

| [𝑣′]𝑖 − [𝑣′′]𝑖 | ⩽
∥𝜙∥∞
𝜙(0)𝑚𝑖

∑︁
𝑗

𝑚 𝑗 |𝑣′𝑗 − 𝑣′′𝑗 | + 𝐴
∑︁
𝑗

𝑚 𝑗 |𝜙𝜌′ (𝑥′𝑖 , 𝑥′𝑗 ) − 𝜙𝜌′′ (𝑥′′𝑖 , 𝑥′′𝑗 ) |,

and

𝜙𝜌′ (𝑥′𝑖 , 𝑥′𝑗 ) − 𝜙𝜌′′ (𝑥′′𝑖 , 𝑥′′𝑗 ) =
𝜙(𝑥′

𝑖
− 𝑥′

𝑗
)∑

𝑘 𝑚𝑘𝜙(𝑥′𝑖 − 𝑥′𝑘)
−

𝜙(𝑥′′
𝑖
− 𝑥′′

𝑗
)∑

𝑘 𝑚𝑘𝜙(𝑥′′𝑖 − 𝑥′′
𝑘
) ≲

1
𝑚2
𝑖

max |𝑥′𝑘 − 𝑥
′′
𝑘 |.
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Similar computation works for M𝛽 . Models Mseg and M𝜙 do not seem to have good
well-posedness properties when it comes to agent-based systems with purely local com-
munication kernels.

Proposition 3.24. The models MMT, M𝛽 are globally well-posed provided the defining
kernel 𝜙 is locally supported (3.32).

3.7.5. Uniform mapping properties. When studying well-posedness of kinetic models it
will be essential to have a uniform boundedness of the weighted averages at the base level
independent of 𝜌. These can be readily stated in terms of Lebesgue integrability conditions
on the kernel. We will isolate two such conditions.

First, the uniform boundedness on 𝐿2 (𝜌):

s𝜌 [·]𝜌 : 𝐿2 (𝜌) → 𝐿2 (𝜌) (3.54)

can be stated using the result of Lemma 3.4. It is guaranteed to hold under a simpler con-
dition:

sup
𝜌∈P

∥s𝜌 [1]∗𝜌 ∥∞ < ∞. (3.55)

Recalling the action of the adjoint in terms of reproducing kernel (3.9), (3.55) can be stated
as 𝜙𝜌 ∈ 𝐿∞𝑦 𝐿1

𝑥 (𝜌) uniformly in 𝜌:

sup
𝜌∈P(Ω)

sup
𝑦∈Ω

∫
Ω

𝜙𝜌 (𝑥, 𝑦) d𝜌(𝑥) < ∞. (3.56)

This condition was first documented in the context of MMT-model in [52]. It holds trivially
for all conservative models, see (3.13). ForM𝛽 , including the Motsch-Tadmor modelMMT,
this follows from (2.8). So, all the core models on our list satisfy (3.56).

Second, a stronger uniform boundedness

s𝜌 [·]𝜌 : 𝐿2 (𝜌) → 𝐿∞ (𝜌) (3.57)

is guaranteed by the membership 𝜙𝜌 ∈ 𝐿∞𝑥 𝐿2
𝑦 (𝜌) uniformly in 𝜌 (by the Hölder inequality):

sup
𝜌∈P(Ω)

sup
𝑥∈Ω

∫
Ω

|𝜙𝜌 (𝑥, 𝑦) |2 d𝜌(𝑦) < ∞. (3.58)

Examples on our list include all M𝛽 and Mtopo
𝛽

models for 𝛽 ⩾ 1
2 , and in particular,

the classical Cucker-Smale model MCS. Indeed, we have for M𝛽 ,∫
Ω

������𝜙(𝑥 − 𝑦)𝜌
1−𝛽
𝜙

(𝑥)

������
2

d𝜌(𝑦) ⩽ ∥𝜙∥∞
𝜌𝜙 (𝑥)
𝜌

2−2𝛽
𝜙

(𝑥)
= ∥𝜙∥∞𝜌2𝛽−1

𝜙
(𝑥) ⩽ ∥𝜙∥2

∞.

Unfortunately, MMT, M𝜙 , and Mseg are not regular enough to satisfy (3.58) for arbitrary
kernels. However, if inf 𝜙 > 0, that is of course the case for M𝜙 and all M𝛽 , and similarly
if supp 𝑔𝑙 = Ω for Mseg.

The results are summarized in Table 4.
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Table 4. Conditions under which models are uniformly bounded

MODEL MCS Mtopo
CS M𝛽 M𝜙 Mseg

𝐿2 → 𝐿2 ✓ ✓ (2.6) ✓ ✓

𝐿2 → 𝐿∞ ✓ ✓ 𝛽 ⩾ 1
2 or inf 𝜙 > 0 inf 𝜙 > 0 supp 𝑔𝑙 = Ω

4. Flocking

4.1. The Cucker-Smale Theorem

We start with an extension of the classical Cucker-Smale Theorem that originally appeared
in [24] for the MCS-model. The result declares how strong the long-range communication
must be in order to ensure alignment from any initial condition. The discrete, kinetic, and
hydrodynamic analogues of this result are proved in exact same way, due to essentially the
same structure of the characteristic equations taking one of the forms (3.10), see [81] for a
detailed account. We adhere to the context of kinetic Vlasov-Alignment model

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = ∇𝑣 · (s𝜌 (𝑣 − [𝑢]𝜌) 𝑓 ), diam(supp 𝑓0) < ∞, (4.1)

where
𝜌(𝑥) =

∫
R𝑛
𝑓 (𝑥, 𝑣) d𝑣, 𝑢𝜌(𝑥) =

∫
R𝑛
𝑣 𝑓 (𝑥, 𝑣) d𝑣.

It incorporates the agent based dynamics as a special case of a weak solution, and does not
require any particular closure assumption, for more on this see [92, 93]. The pressureless
Euler-alignment system allows the same treatment if written in Lagrangian coordinates,
see Theorem 4.3 below. The main idea conveyed here is that the result does not require any
special properties of the model and can be extended to any general material environmental
averaging that has a reproducing kernel 𝜙𝜌.

We consider Ω to be an arbitrary environment, although the unbounded ones, such as
R𝑛, is where the result is most meaningful. If 𝑓 is a measure-valued solution to (4.1) starting
from a compactly supported initial condition 𝑓0, then at any point of time 𝑓 is given by the
push-forward of 𝑓0 along the characteristics (see Section 5)

d
d𝑡
𝑋 (𝑡, 𝑥, 𝑣) = 𝑉 (𝑡, 𝑥, 𝑣), 𝑋 (0, 𝑥, 𝑣) = 𝑥, (4.2)

d
d𝑡
𝑉 (𝑡, 𝑥, 𝑣) = s𝜌 (𝑋) ( [𝑢]𝜌 (𝑋) −𝑉), 𝑉 (0, 𝑥, 𝑣) = 𝑣. (4.3)
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We abbreviate𝜔 = (𝑥, 𝑣) for short. The representation formula (3.10b) gives the𝑉-equation
a more specific form (using the characteristic change of coordinates)

d
d𝑡
𝑉 (𝑡, 𝜔) =

∫
Ω×R𝑛

𝜙𝜌 (𝑋 (𝑡, 𝜔), 𝑋 (𝑡, 𝜔′)) (𝑉 (𝑡, 𝜔′) −𝑉 (𝑡, 𝜔)) d 𝑓0 (𝜔′), (4.4)

from which the maximum principle for𝑉-characteristics is evident. This fundamental prin-
ciple holds even for models without a representation kernel which we prove next.

Lemma 4.1 (Maximum Principle). SupposeM is a material model, and supp 𝑓0 ⊂ Ω×R𝑛
is compact. Then for any 𝜔 ∈ supp 𝑓0 and any 𝑡 > 0, we have

𝑉 (𝑡, 𝜔) ∈ conv supp
(∫

Ω

𝑓0 (𝑥, 𝑣) d𝑥
)
.

Proof. The convex hull in question can be represented as the intersection of hyperspaces:

conv supp
(∫

Ω

𝑓0 (𝑥, 𝑣) d𝑥
)
=

⋂
ℓ∈𝐹⊂R𝑛

{𝑣 : ℓ(𝑣) ⩽ 𝑐ℓ }.

Let us fix an ℓ ∈ 𝐹. Since the action of ℓ is just a linear combination of coordinates we have

d
d𝑡
ℓ(𝑉 (𝑡, 𝜔)) = s𝜌 (𝑋) ( [ℓ(𝑢)]𝜌 (𝑋) − ℓ(𝑉)) = s𝜌 (𝑋) [ℓ(𝑢) − ℓ(𝑉)]𝜌 (𝑋).

By Rademacher’s Lemma we can evaluate the above at a point𝑤 ∈ supp 𝑓0 where maximum
of ℓ(𝑉 (𝑡, 𝜔)) is achieved. Looking into the field under the average we have

ℓ(𝑢) (𝑦, 𝑡) − ℓ(𝑉) =
∫
R𝑛
ℓ(𝑤 −𝑉) 𝑓 (𝑡, 𝑦, 𝑤) d𝑤∫
R𝑛
𝑓 (𝑡, 𝑦, 𝑤) d𝑤

Now let 𝜓𝛿 be a standard compactly supported mollifier. We have using the transport prop-
erty∫
R𝑛
ℓ(𝑤 −𝑉) 𝑓 (𝑡, 𝑦, 𝑤) d𝑤 = lim

𝛿→0

∫
R𝑛
ℓ(𝑤 −𝑉)𝜓𝛿 (𝑦 − 𝑧) 𝑓 (𝑡, 𝑧, 𝑤) d𝑤 d𝑧

= lim
𝛿→0

∫
R𝑛
ℓ(𝑉 (𝑡, 𝜔′) −𝑉 (𝑡, 𝜔))𝜓𝛿 (𝑦 − 𝑋 (𝜔′, 𝑡)) 𝑓0 (𝑡, 𝜔′) d𝜔′

⩽ 0.

Thus, ℓ(𝑢) − ℓ(𝑉) ⩽ 0 point-wise. By the order preserving property of the averages (ev3),
we have

d
d𝑡
ℓ(𝑉 (𝑡, 𝜔)) ⩽ 0.

In other words, maxsupp 𝑓0 ℓ(𝑉 (𝑡, 𝜔)) ⩽ 𝑐ℓ for all times. This finishes the proof.

As a consequence, the macroscopic velocity 𝑢 of 𝑓 remains bounded by the initial
condition:

|𝑢(𝑥, 𝑡) | = lim
𝛿→0

�����
∫
Ω×R𝑛 𝑉 (𝑡, 𝑧, 𝑤)𝜓𝛿 (𝑥 − 𝑧) 𝑓0 (𝑧, 𝑤) d𝑧 d𝑤∫

Ω×R𝑛 𝜓𝛿 (𝑥 − 𝑧) 𝑓0 (𝑧, 𝑤) d𝑧 d𝑤

����� ⩽ ∥𝑉 ∥𝐿∞ (supp 𝑓0 ) ⩽ max | supp 𝑓0 |.
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Theorem 4.2 (Kinetic Cucker-Smale). Suppose there exists 𝜙 ∈𝐶∞, a positive, non-increasing,
radially symmetric kernel with fat tail,

∫ ∞
0 𝜙(𝑟) d𝑟 = ∞, such that

𝜙𝜌 (𝑥, 𝑦) ⩾ 𝜙(𝑥 − 𝑦), ∀𝜌 ∈ P . (4.5)

Then any measure-valued solution to (4.1) starting from a compactly supported initial
condition 𝑓0 aligns and flocks exponentially fast

𝐷 (𝑡) = max
𝜔′ ,𝜔′′∈supp 𝑓0

|𝑋 (𝑡, 𝜔′) − 𝑋 (𝑡, 𝜔′′) | < 𝐶, ∀𝑡 > 0 (4.6)

𝐴(𝑡) = max
𝜔′ ,𝜔′′∈supp 𝑓0

|𝑉 (𝑡, 𝜔′) −𝑉 (𝑡, 𝜔′′) | ⩽ 𝐶𝑒−𝛿𝑡 , (4.7)

where𝐶, 𝛿 > 0 depend on the initial condition and the parameters of the model. Moreover,
there exists 𝑢∞ ∈ R𝑛 such that

max
𝜔∈supp 𝑓0

|𝑉 (𝑡, 𝜔) − 𝑢∞ | ⩽ 𝐶𝑒−𝛿𝑡 . (4.8)

If the model M is conservative then 𝑢∞ = 𝑢̄ =
∫
Ω
𝑢𝜌 d𝑥, the total conserved momentum.

Proof. Following characteristics let us fix at any point of time a label 𝜔± ∈ supp 𝑓0 where
𝑉 𝑖 achieves its maximum and minimum, respectively, 𝑉 𝑖±. So, by the Rademacher lemma,
we have distributionally,

d
d𝑡
𝑉 𝑖± =

∫
Ω×R𝑛

𝜙𝜌 (𝑋 (𝑡, 𝜔±), 𝑋 (𝑡, 𝜔′)) (𝑉 𝑖 (𝑡, 𝜔′) −𝑉 𝑖±) d 𝑓0 (𝜔′). (4.9)

In view of (4.5),

d
d𝑡
𝑉 𝑖+ ⩽

∫
Ω×R𝑛

𝜙(𝑋 (𝑡, 𝜔+) − 𝑋 (𝑡, 𝜔′)) (𝑉 𝑖 (𝑡, 𝜔′) −𝑉 𝑖+) d 𝑓0 (𝜔′)

⩽ 𝜙(𝐷)
∫
Ω×R𝑛

(𝑉 𝑖 (𝑡, 𝜔′) −𝑉 𝑖+) d 𝑓0 (𝜔′).

And similarly,
d
d𝑡
𝑉 𝑖− ⩾ 𝜙(𝐷)

∫
Ω×R𝑛

(𝑉 𝑖 (𝑡, 𝜔′) −𝑉 𝑖−) d 𝑓0 (𝜔′).

Subtracting the two, we obtain for the amplitude 𝐴𝑖 = 𝑉 𝑖+ −𝑉 𝑖− ,

d
d𝑡
𝐴𝑖 ⩽ −𝜙(𝐷)𝐴𝑖 .

Taking the Euclidean amplitude 𝐴 =
√︁
(𝐴1)2 + · · · + (𝐴𝑛)2, we obtain the system

d
d𝑡
𝐷 ⩽ 𝐴,

d
d𝑡
𝐴 ⩽ −𝜙(𝐷)𝐴.



Environmental averaging 39

Following [40] we form the Lyapunov function

𝐿 = 𝐴 +
∫ 𝐷

0
𝜙(𝑟) d𝑟,

which remains bounded. Hence, in view of the fat-tail condition, 𝐷 remains bounded, and
going back to the 𝐴-equation we obtain exponential decay on the amplitudes.

To conclude (4.8) let us notice that as a consequence of (4.7), we have

max
𝜔∈supp 𝑓0

| ¤𝑉 | ⩽ 𝐶𝑒−𝛿𝑡 .

So, every characteristic 𝑉 (𝜔, 𝑡) will converge exponentially fast to a limit 𝑢∞ (𝜔). In view
of (4.7), 𝑢∞ must be a constant vector.

The alignment of characteristics stated in Theorem 4.2 implies corresponding behav-
ior of the distribution 𝑓 itself by transport. First, we can see that its 𝑣-marginal 𝑓 𝑣 =∫
Ω
𝑓 (𝑡, 𝑥, 𝑣) d𝑥 converges weakly to Dirac,

𝑓 𝑣 → 𝛿0 (𝑣 − 𝑢∞).

Moreover, since 𝑓 is a push-forward of 𝑓0 along (4.2) - (4.3), the 𝑣-support of 𝑓 will belong
to an exponentially shrinking ball around 𝑢∞. This implies uniform convergence of the
macroscopic velocity

𝑢(𝑥, 𝑡) − 𝑢∞ =

∫
|𝑣−𝑢∞ |⩽𝐶𝑒−𝛿𝑡 (𝑣 − 𝑢∞) 𝑓 (𝑥, 𝑣, 𝑡) d𝑣∫

|𝑣−𝑢∞ |⩽𝐶𝑒−𝛿𝑡 𝑓 (𝑥, 𝑣, 𝑡) d𝑣
,

so,
sup

𝑥∈supp 𝜌
|𝑢(𝑥, 𝑡) − 𝑢∞ | ⩽ 𝐶𝑒−𝛿𝑡 . (4.10)

And it also implies exponential alignment in the energy sense, to be discussed in greater
detail in Section 4.3:

𝑢̄ =

∫
Ω

𝑢𝜌 d𝑥, (4.11)

𝛿E :=
1
2

∫
Ω×R𝑛

|𝑣 − 𝑢̄ |2 𝑓 d𝑣 d𝑥 ⩽ 𝐶𝑒−𝛿𝑡 . (4.12)

Unfortunately the result doesn’t seem to provide much insight into behavior of the
macroscopic density 𝜌. See, however, [84] for a convergence result to a traveling wave in
1D case.

The exact same result can be stated for the hydrodynamic alignment model without
pressure, so called pressureless Euler-Alignment system (see Section 9.1 for derivation)

𝜌𝑡 + ∇ · (𝑢𝜌) = 0,
𝑢𝑡 + 𝑢 · ∇𝑢 = s𝜌 ( [𝑢]𝜌 − 𝑢). (4.13)
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If passed to Lagrangian coordinates

¤𝑥(𝛼, 𝑡) = 𝑣(𝛼, 𝑡) := 𝑢(𝑥(𝛼, 𝑡), 𝑡), 𝛼 ∈ Ω,

¤𝑣(𝛼, 𝑡) =
∫
Ω

𝜙𝜌 (𝑥(𝑡, 𝛼), 𝑥(𝑡, 𝛼′)) (𝑣(𝑡, 𝛼′) − 𝑣(𝑡, 𝛼)) d𝜌0 (𝛼′).

the system is structurally similar to (4.2) - (4.3). So, the proof goes through exactly as
before.

Theorem 4.3 (Hydrodynamic Cucker-Smale). Under the assumptions of Theorem 4.2, any
classical solution to the pressureless Euler-alignment system (4.13) with compactly sup-
ported initial 𝜌0 aligns and flocks exponentially fast

sup
𝑡⩾0

(diam(supp 𝜌)) < ∞, sup
𝑥∈supp 𝜌

|𝑢(𝑡, 𝑥) − 𝑢∞ | ⩽ 𝐶0𝑒
−𝛿𝑡 . (4.14)

For the MCS-model where 𝜙𝜌 (𝑥, 𝑦) = 𝜙(𝑥 − 𝑦) the statements above are classical. The
kinetic and hydrodynamics versions appeared in [16] and [91], respectively.

In the Motsch-Tadmor case, we can apply the same fat-tail condition on the defining
kernel 𝜙 due to (3.33). However, the limiting velocity 𝑢∞ is not determined by the initial
condition and emerges dynamically.

The theorem does not apply to either the over-mollified model M𝜙 or the segregation
model Mseg as those are inherently local, which brings us to the next main question – what
conditions guarantee emergent behavior when communication is strictly local?

4.2. Chain connectivity. The 1
𝒕1/4 and 1

𝒕1/2 results

It is obvious that locality (3.31) itself is insufficient for unconditional alignment of the
system. In the open spaceR𝑛 one can simply direct two agents away from each other starting
at a distance larger than communication range. On T𝑛 one can launch two agents with
misaligned velocities along two parallel geodesics at a distance larger than communication
range. So, it is clear that some kind of connectivity is necessary to obtain alignment. In this
section we explore how to achieve this for symmetric models and for quantitatively thick
flocks.

Definition 4.4. We say that the flock (𝑢, 𝜌) is chain connected at scale 𝑟 if for any two
points 𝑥′, 𝑥′′ ∈ supp 𝜌 there exists a chain

𝑥′ = 𝑥1, 𝑥2, . . . , 𝑥𝐾 = 𝑥′′

such that 𝑥𝑖 ∈ supp 𝜌 and |𝑥𝑖 − 𝑥 𝑗 | < 𝑟.

Our main result shows alignment under connectivity assumption at a sub-local scale
𝑟0 and proper thickness rate. Here we use the term thickness to refer to the ball-thickness
defined in (3.38).
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Theorem 4.5. LetΩ= R𝑛, andM is a symmetric model with kernel satisfying (3.31). If the
flock remains chain connected at the scale 𝑟 = 𝑟0/8 for all time and has thickness satisfying
𝜌̄𝑟 (supp 𝜌) ⩾ 𝑐

𝑡1/4
, then the flock aligns

sup
𝜔,𝜔′∈supp 𝑓0

|𝑉 (𝑡, 𝜔) −𝑉 (𝑡, 𝜔′) | ≲ 1
√

ln 𝑡
. (4.15)

On the torus Ω = T𝑛 the result holds under weaker condition 𝜌̄𝑟 (supp 𝜌) ⩾ 𝑐

𝑡1/2
.

In the case of the torus we can consider a non-vacuous flock 𝜌− = minT𝑛 𝜌 > 0. Such
a flock remains trivially connected at any scale and is uniformly thick 𝜌̄𝑟 (supp 𝜌) ≳ 𝜌− .
So, one important consequence of the above theorem is a statement in terms of quantitative
no-vacuum condition.

Corollary 4.6. Let Ω = T𝑛, M is symmetric and material, and the kernel satisfies (3.31).
If 𝜌− ⩾ 𝑐

𝑡1/2
, then the flock aligns (4.15).

Before we get to the proof we first explore how one can reduce the number of links in
a chain.

Lemma 4.7. If the flock is chain connected at scale 𝑟 , then between any pair of points there
is a 3𝑟-chain with the number of links limited to 𝐾 ⩽ 2

𝜌̄𝑟 (supp 𝜌) .
If the diameter of the flock is bounded, then 𝐾 can be chosen independent of thickness

but dependent on the diameter, 𝐾 ⩽ 𝐶 (diam(supp 𝜌)).

Proof. Suppose we have a chain 𝑥′ = 𝑥1, 𝑥2, . . . , 𝑥𝐾 = 𝑥′′ ∈ supp 𝜌 with the properties listed
in the definition. We now choose a subchain in the following manner. Let 𝑥𝑖1 = 𝑥1. Then let
us pick 𝑖2 − 1 to be the largest index > 𝑖1 for which |𝑥𝑖1 − 𝑥𝑖2−1 | < 2𝑟 . So, all subsequent
elements will stay at a distance at least 2𝑟 from 𝑥𝑖1 . In particular |𝑥𝑖1 − 𝑥𝑖2 | ⩾ 2𝑟 , and yet
since |𝑥𝑖2−1 − 𝑥𝑖2 | < 𝑟 , we have |𝑥𝑖1 − 𝑥𝑖2 | < 3𝑟. Pick 𝑖3 similarly to 𝑖2, etc. Eventually 𝑥𝐾
will be selected last unconditionally.

According to construction we have a new chain 𝑦 𝑗 = 𝑥𝑖 𝑗 , 𝑗 = 1, . . . , 𝐽, such that |𝑦 𝑗 −
𝑦 𝑗+1 | < 3𝑟 and |𝑦 𝑗 − 𝑦𝑘 | ⩾ 2𝑟 for any 𝑗 ≠ 𝑘 < 𝐽. Hence, the chain is connected at scale 3𝑟.
At the same time, by disjointness

𝜌̄𝑟 (supp 𝜌) (𝐽 − 1) ⩽
𝐽−1∑︁
𝑗=1

𝜌(𝐵𝑟 (𝑦 𝑗 )) = 𝜌
(
∪𝐽−1
𝑗=1 𝐵𝑟 (𝑦 𝑗 )

)
⩽ 1.

Hence, 𝐽 ⩽ 1 + 1
𝜌̄𝑟 (supp 𝜌) ⩽

2
𝜌̄𝑟 (supp 𝜌) .

Alternatively, if the flock is bounded, and the balls around 𝑦 𝑗 ’s are disjoint, 𝐽 is limited
by volume to 𝑐𝑛 diam(supp 𝜌)𝑛/𝑟𝑛. This proves the lemma.

The primary technical use of this lemma will be in construction of chains with thick
links. Specifically, if the flock is 𝑟-connected then we find it also 3𝑟-connected by chains
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of size 𝐾 ⩽ 2
𝜌̄𝑟 (supp 𝜌) , and since any ball 𝐵4𝑟 (𝑥𝑖) contains the balls 𝐵𝑟 (𝑥𝑖−1) ∪ 𝐵𝑟 (𝑥𝑖+1),

then
𝜌(𝐵4𝑟 (𝑥𝑖) ∩ 𝐵4𝑟 (𝑥𝑖+1)) ⩾ 𝜌̄𝑟 (supp 𝜌). (4.16)

Proof of Theorem 4.5. Let us assume for now that Ω = R𝑛.
By symmetry of the model we have the following energy law

d
d𝑡
E = −1

2

∫
Ω×R𝑛

𝜙𝜌 (𝑥, 𝑥′) |𝑣 − 𝑣′ |2 𝑓 (𝑡, 𝜔′) 𝑓 (𝑡, 𝜔) d𝜔′ d𝜔. (4.17)

Hence, in view of (3.31),∫ ∞

0

∫
{ |𝑥−𝑥′ |<𝑟0 }×R𝑛

|𝑣 − 𝑣′ |2 𝑓 (𝑡, 𝜔′) 𝑓 (𝑡, 𝜔) d𝜔′ d𝜔 d𝑡 < ∞. (4.18)

Consider the averages of macroscopic momenta over balls of radius 4𝑟:

𝑣̄(𝑥) = 1
𝜌(𝐵4𝑟 (𝑥))

∫
R𝑛×𝐵4𝑟 (𝑥 )

𝑤 𝑓 (𝑡, 𝑦, 𝑤) d𝑤 d𝑦.

The quadratic deviations from the averages are all subordinated to the dissipation rate:∫
R𝑛×𝐵4𝑟 (𝑥∗ )

|𝑣 − 𝑣̄(𝑥∗) |2 𝑓 (𝑡, 𝑥, 𝑣) d𝑣 d𝑥

=

∫
R𝑛×𝐵4𝑟 (𝑥∗ )

���� 1
𝜌(𝐵4𝑟 (𝑥∗))

∫
R𝑛×𝐵4𝑟 (𝑥∗ )

(𝑣 − 𝑤) 𝑓 (𝑡, 𝑦, 𝑤) d𝑤 d𝑦
����2 𝑓 (𝑡, 𝑥, 𝑣) d𝑣 d𝑥

⩽
1

𝜌(𝐵4𝑟 (𝑥∗))

∫
R𝑛×𝐵4𝑟 (𝑥∗ )×R𝑛×𝐵4𝑟 (𝑥∗ )

|𝑣 − 𝑤 |2 𝑓 (𝑡, 𝑦, 𝑤) 𝑓 (𝑡, 𝑥, 𝑣) d𝑤 d𝑦 d𝑣 d𝑥

using that |𝑥 − 𝑦 | < 8𝑟 = 𝑟0,

⩽
1

𝜌(𝐵4𝑟 (𝑥∗))

∫
{ |𝑥−𝑥′ |<𝑟0 }×R𝑛

|𝑣 − 𝑣′ |2 𝑓 (𝑡, 𝜔′) 𝑓 (𝑡, 𝜔) d𝜔′ d𝜔.

Thus, in view of (4.24), and the fact that 𝜌̄𝑟 (supp 𝜌) ⩽ 𝜌(𝐵4𝑟 (𝑥∗)),∫ ∞

0
sup
𝑥∗∈Ω

𝜌̄𝑟 (supp 𝜌)
∫
R𝑛×𝐵4𝑟 (𝑥∗ )

|𝑣 − 𝑣̄(𝑥∗) |2 𝑓 (𝑡, 𝑥, 𝑣) d𝑣 d𝑥 d𝑡 < ∞. (4.19)

Let us now estimate the flattening near extremes. Let us fix one coordinate of 𝑣 supp 𝑓 ,
say 𝑣𝑖 and denote by 𝑣𝑖+ = 𝑉 𝑖 (𝑡, 𝜔+) = max𝜔∈supp 𝑓0 𝑉

𝑖 (𝑡, 𝜔), and 𝑥+ = 𝑋 (𝑡, 𝜔+). We drop
superindex 𝑖 for shortness of notation. Then

d
d𝑡
𝑣+ =

∫
Ω×R𝑛

𝜙𝜌 (𝑥+, 𝑦) (𝑤 − 𝑣+) 𝑓 (𝑡, 𝑦, 𝑤) d𝑦 d𝑤 ⩽ 𝑐0

∫
𝐵4𝑟 (𝑥+ )

(𝑤 − 𝑣+) 𝑓 (𝑡, 𝑦, 𝑤) d𝑦 d𝑤

= 𝑐0𝜌(𝐵4𝑟 (𝑥+)) (𝑣̄(𝑥+) − 𝑣+) ⩽ 𝑐0 𝜌̄𝑟 (supp 𝜌) (𝑣̄(𝑥+) − 𝑣+).
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Similarly,
d
d𝑡
𝑣− ⩾ 𝑐0 𝜌̄𝑟 (supp 𝜌) (𝑣̄(𝑥−) − 𝑣−).

Consequently, ∫ ∞

0
𝜌̄𝑟 (supp 𝜌) [(𝑣̄(𝑥−) − 𝑣−) + (𝑣+ − 𝑣̄(𝑥+))] d𝑡 < ∞. (4.20)

Combining (4.19) and (4.20), and fixing an 𝑇 ′ > 0 large enough we can ensure that for
any 𝑇 > 0 there is a time 𝑡 ∈ [𝑇,𝑇 + 𝑇 ′] such that

(𝑣̄(𝑥−) − 𝑣−) + (𝑣+ − 𝑣̄(𝑥+)) + sup
𝑥∗∈Ω

∫
R𝑛×𝐵4𝑟 (𝑥∗ )

|𝑣 − 𝑣̄(𝑥∗) |2 𝑓 (𝑡, 𝑥, 𝑣) d𝑥 d𝑣

<
1

𝜌̄𝑟 (supp 𝜌)𝑡 ln 𝑡 . (4.21)

In particular, the extreme values are close to the averages around them. Let us now show
that all the averages are close to each other, and this will finish the proof.

We have for any 𝑥∗ ∈ Ω,∫
R𝑛×𝐵4𝑟 (𝑥∗ )

|𝑣 − 𝑣̄(𝑥∗) |2 𝑓 (𝑡, 𝑥, 𝑣) d𝑥 d𝑣 ⩽
1

𝜌̄𝑟 (supp 𝜌)𝑡 ln 𝑡 .

Denote 𝛿 = 2
Θ𝑟 (𝜌)

√
𝑡 ln 𝑡

. Then by the Chebyshev inequality,

𝑓 ({|𝑣 − 𝑣̄(𝑥∗) | > 𝛿} × 𝐵4𝑟 (𝑥∗)) ⩽
1
𝛿2

∫
R𝑛×𝐵4𝑟 (𝑥∗ )

|𝑣 − 𝑣̄(𝑥∗) |2 𝑓 (𝑡, 𝑥, 𝑣) d𝑥 d𝑣

⩽
1
4
𝜌̄𝑟 (supp 𝜌). (4.22)

Let us now consider a 3𝑟-chain 𝑥1, . . . , 𝑥𝐾 with 𝐾 < 𝐶/𝜌̄𝑟 (supp 𝜌), which connects
two points 𝑥− and 𝑥+. According to (4.16), 𝜌(𝐵4𝑟 (𝑥𝑖) ∩ 𝐵4𝑟 (𝑥𝑖+1)) ⩾ 𝜌̄𝑟 (supp 𝜌). Thus,
𝑓 (R𝑛 × (𝐵4𝑟 (𝑥𝑖) ∩ 𝐵4𝑟 (𝑥𝑖+1))) ⩾ 𝜌̄𝑟 (supp 𝜌). Yet according to (4.22),

𝑓 (({|𝑣 − 𝑣̄(𝑥𝑖) | > 𝛿} × 𝐵4𝑟 (𝑥𝑖)) ∪ ({|𝑣 − 𝑣̄(𝑥𝑖+1) | > 𝛿} × 𝐵4𝑟 (𝑥𝑖+1))) ⩽
1
2
𝜌̄𝑟 (supp 𝜌).

Consequently,

𝐵𝛿 (𝑣̄(𝑥𝑖)) × 𝐵4𝑟 (𝑥𝑖) ∩ 𝐵𝛿 (𝑣̄(𝑥𝑖+1)) × 𝐵4𝑟 (𝑥𝑖+1) ≠ ∅.

Hence,
|𝑣̄(𝑥𝑖) − 𝑣̄(𝑥𝑖+1) | ⩽ 2𝛿.

Summing up over all 𝑖, we obtain

|𝑣̄(𝑥+) − 𝑣̄(𝑥−) | ⩽ 2𝛿𝐾 ≲
1

𝜌̄2
𝑟 (supp 𝜌)

√
𝑡 ln 𝑡

∼ 1
√

ln 𝑡
. (4.23)
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Combining with (4.21) we have

𝑣+ − 𝑣− ⩽
1

√
ln 𝑡

.

Since this holds at time 𝑡 < 𝑇 +𝑇 ′, it must hold at time𝑇 +𝑇 ′ by the maximum principle.
But since 𝑡 > 𝑇 , 1√

ln 𝑡
⩽ 1√

ln𝑇
≲ 1√

ln(𝑇+𝑇 ′ )
. Since 𝑇 is arbitrary, this finishes the proof in

the open space.
On the torus the diameter of the flock is uniformly bounded, and consequently, by

Lemma 4.7, 𝐾 remains uniformly bounded. In this case the estimate (4.23) gets improved
to the following

|𝑣̄(𝑥+) − 𝑣̄(𝑥−) | ⩽ 2𝛿𝐾 ≲
1

𝜌̄𝑟 (supp 𝜌)
√
𝑡 ln 𝑡

∼ 1
√

ln 𝑡
,

provided 𝜌̄𝑟 (supp 𝜌) ≳ 1
𝑡1/2

. The rest of the proof is the same.

Remark 4.8. The exact same result holds for solutions of the pressureless Euler-Alignment
System (4.13), thanks to the fact that it has a similar form of the energy dissipation∫ ∞

0

∫
Ω×Ω

𝜙𝜌 (𝑥, 𝑦) |𝑢(𝑥, 𝑡) − 𝑢(𝑦, 𝑡) |2 d𝜌(𝑦) d𝜌(𝑦) d𝑡 < ∞. (4.24)

4.3. Alignment in the energy sense. Spectral gaps

The alignment of characteristics stated in Theorem 4.5 implies alignment in the energy
sense. Recalling that 𝑢̄ =

∫
Ω
𝑢𝜌 d𝑥, we have

𝛿E =
1
2

∫
Ω×R𝑛

|𝑣 − 𝑢̄ |2 𝑓 d𝑣 d𝑥 ⩽
∫
Ω×R𝑛×Ω×R𝑛

|𝑉 −𝑉 ′ |2 𝑓0 𝑓 ′0 d𝜔 d𝜔′ ≲
1

√
ln 𝑡

.

In this section we explore alignment in this weaker sense

𝛿E → 0, (4.25)

by appealing to the most basic energy law of the Vlasov-alignment equation (4.1).
We will not make any special assumptions on the underlying model M except that M

is material just to make sense of the strength function in equation (4.1). In particular, the
momentum 𝑢̄ may not be conserved.

In order to write the equation for 𝛿E, let us note the identity

E :=
1
2

∫
Ω×R𝑛

|𝑣 |2 𝑓 d𝑣 d𝑥 = 𝛿E + 1
2
|𝑢̄ |2.

The momentum satisfies
d
d𝑡

1
2
|𝑢̄ |2 = (𝑢̄, [𝑢]𝜌 − 𝑢)𝜅𝜌 , (4.26)
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and the equation for total energy is given by
d
d𝑡
E = −

∫
Ω×R𝑛

s𝜌 |𝑣 |2 𝑓 d𝑣 d𝑥 + (𝑢, [𝑢]𝜌)𝜅𝜌 .

Subtracting the two we obtain
d
d𝑡
𝛿E = −

∫
Ω×R𝑛

s𝜌 |𝑣 |2 𝑓 d𝑣 d𝑥 + (𝑢, [𝑢]𝜌)𝜅𝜌 − (𝑢̄, [𝑢]𝜌 − 𝑢)𝜅𝜌 .

Let us further notice the identity∫
Ω×R𝑛

s𝜌 |𝑣 |2 𝑓 d𝑣 d𝑥 =
∫
Ω×R𝑛

s𝜌 |𝑣 − 𝑢̄ |2 𝑓 d𝑣 d𝑥 + 2(𝑢, 𝑢̄)𝜅𝜌 − (𝑢̄, 𝑢̄)𝜅𝜌 .

Collecting the macroscopic terms together we obtain
d
d𝑡
𝛿E = −

∫
Ω×R𝑛

s𝜌 |𝑣 − 𝑢̄ |2 𝑓 d𝑣 d𝑥 + (𝛿𝑢, [𝛿𝑢]𝜌)𝜅𝜌 , 𝛿𝑢 = 𝑢 − 𝑢̄.

Next, let us decompose the energy on the right hand side into the internal and macro-
scopic part, ∫

Ω×R𝑛
s𝜌 |𝑣 − 𝑢̄ |2 𝑓 d𝑣 d𝑥 =

∫
Ω×R𝑛

s𝜌 |𝑣 − 𝑢 |2 𝑓 d𝑣 d𝑥 + (𝛿𝑢, 𝛿𝑢)𝜅𝜌 .

We obtain the energy law
d
d𝑡
𝛿E = −

∫
Ω×R𝑛

s𝜌 |𝑣 − 𝑢 |2 𝑓 d𝑣 d𝑥 + (𝛿𝑢, [𝛿𝑢]𝜌)𝜅𝜌 − (𝛿𝑢, 𝛿𝑢)𝜅𝜌 . (4.27)

Naturally, we will seek to relate the right hand side back to the energy. This comes
from two assumptions. First, we require that the averaging operator has a numerical range
separated from 1, i.e. at any time there exists 𝜀 = 𝜀(𝑡) ∈ (0, 1) such that

sup
{
(𝑢, [𝑢]𝜌)𝜅𝜌 : 𝑢 ∈ 𝐿2 (𝜅𝜌), 𝑢̄ = 0, ∥𝑢∥𝐿2 (𝜅𝜌 ) = 1

}
⩽ 1 − 𝜀. (4.28)

This in turn implies

(𝛿𝑢, 𝛿𝑢)𝜅𝜌 − (𝛿𝑢, [𝛿𝑢]𝜌)𝜅𝜌 ⩾ 𝜀(𝛿𝑢, 𝛿𝑢)𝜅𝜌 . (4.29)

Second, we require the strength function to have a positive lower bound

inf
𝑥∈supp 𝜌

s𝜌 (𝑥, 𝑡) = 𝑠(𝑡). (4.30)

Plugging these back into (4.27) we obtain
d
d𝑡
𝛿E ⩽ −

∫
Ω×R𝑛

s𝜌 |𝑣 − 𝑢 |2 𝑓 d𝑣 d𝑥 − 𝜀(𝛿𝑢, 𝛿𝑢)𝜅𝜌

⩽ −𝜀
(∫

Ω×R𝑛
s𝜌 |𝑣 − 𝑢 |2 𝑓 d𝑣 d𝑥 + (𝛿𝑢, 𝛿𝑢)𝜅𝜌

)
= −𝜀

∫
Ω×R𝑛

s𝜌 |𝑣 − 𝑢̄ |2 𝑓 d𝑣 d𝑥 ⩽ −𝜀𝑠 𝛿E . (4.31)

This implies a general sufficient condition for alignment.
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Proposition 4.9. Let M be a material model on an arbitrary environment Ω. The kinetic
model (4.1) aligns in the energy sense provide the following condition holds∫ ∞

0
𝜀(𝑡)𝑠(𝑡) d𝑡 = ∞. (4.32)

A few remarks are in order.

Remark 4.10. Let us note that for symmetric models with s𝜌 ≡ 1, the space of vanishing
momentum 𝐿2

0 (𝜌) is invariant under [·]𝜌, and the numerical range determines the range
of the spectrum. So, condition (4.28) is equivalent to a spectral gap between the trivial
eigenvalue 1 and the rest of the spectrum to the left

spec{[·]𝜌 ; 𝐿2
0 (𝜌)} ⊂ (−∞, 1 − 𝜀], (4.33)

where
𝐿2

0 (𝜌) =
{
𝑢 ∈ 𝐿2 (𝜌) :

∫
Ω

𝑢 d𝜌 = 0
}
.

For this reason, although in general (4.28) is not a spectral property, we still refer to it as a
spectral gap.

In general, however, conservative models leave the null-space

𝐿2
0 (𝜅𝜌) =

{
𝑢 ∈ 𝐿2 (𝜅𝜌) :

∫
Ω

𝑢 d𝜅𝜌 = 0
}

invariant. In this case it is possible to relate 𝜀 to the actual spectral gap of [·]𝜌 on 𝐿2
0 (𝜅𝜌)

if s𝜌 is bounded from below. Details are provided in Appendix 12.

Remark 4.11. Proposition 4.9 can be viewed as a generalization of Tadmor’s [92] to the
non-symmetric case. The argument there is slightly different in the interpretation of the
spectral gap condition (4.29). As opposed to (4.29) where all the inner products are related
to the common 𝜅𝜌-weight, one can make a more direct relation to the physical macroscopic
energy, i.e. the 𝜌-weighted product:

(𝛿𝑢, 𝛿𝑢)𝜅𝜌 − (𝛿𝑢, [𝛿𝑢]𝜌)𝜅𝜌 ⩾ 𝜆(𝛿𝑢, 𝛿𝑢)𝜌 .

The corresponding alignment statement in terms of 𝜆 reads∫ ∞

0
min{𝑠(𝑡), 𝜆(𝑡)} d𝑡 = ∞. (4.34)

Such 𝜆 can be expressed in variational form as the second (approximate) eigenvalue of
the alignment operator

L𝜌𝑢 = s𝜌 (𝑢 − [𝑢]𝜌). (4.35)

We have
𝜆 = inf

𝑢∈𝐿2
0 (𝜌)

(𝑢,L𝜌𝑢)𝜌
(𝑢, 𝑢)𝜌

. (4.36)
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The advantage of this approach consists in the fact that for symmetric models represented
by a kernel the formulation (4.36) takes a more explicit form:

𝜆 = inf
𝑢∈𝐿2

0 (𝜌) , ∥𝑢∥2=1

∫
Ω×Ω

|𝑢(𝑥) − 𝑢(𝑦) |2𝜙𝜌 (𝑥, 𝑦) d𝜌(𝑦) d𝜌(𝑥). (4.37)

Theorem 2 of [92] gives a kinematic estimate in terms of lower and upper bounds on the
density, in case when Ω = T𝑛. Namely,

𝜆 ≳
𝜌2
−
𝜌+
. (4.38)

The result is proved under condition (4.39) below, however it can be recast for physically
local kernels (3.31) as well. Let us reproduce the argument as it will be used later in Exam-
ple 4.14.

Proof of (4.38). We obtain

(𝑢,L𝜌𝑢)𝜌 ⩾ 𝑐0𝜌
2
−

∫
|𝑥−𝑦 |<𝑟0

|𝑢(𝑥) − 𝑢(𝑦) |2 d𝑥 d𝑦.

As shown in [61, Lemma 2.1] this can be further estimated from below by

⩾ 𝑐0𝑐1𝜌
2
−

𝑐0

(2𝜋)𝑛
∫
T𝑛

|𝑢(𝑥) − Ave(𝑢) |2 d𝑥,

where 𝑐1 = 𝑐1 (𝑟0), and Ave(𝑢) = 1
(2𝜋 )𝑛

∫
Ω
𝑢(𝑥) d𝑥. Recalling that 𝑢 has momentum zero,

we finish with

≳
𝜌2
−
𝜌+

∫
T𝑛

|𝑢(𝑥) − Ave(𝑢) |2 d𝜌(𝑥) ⩾ 𝜌2
−
𝜌+

(𝑢, 𝑢)𝜌 .

Estimate (4.38) shows that under global control on 𝜌+ one obtains alignment under the
root-assumption 𝜌− ≳ 1/

√
𝑡, the same result as proved in Corollary 4.6 under no assumption

on 𝜌+. The difference between the two approaches is fundamental – dynamic vs kinematic.
It appears that the dynamic approach is not sensitive to the density growth and gives a
better result for symmetric models on the torus. However, as we will see later in Section 4.4
the kinematic approach, although in somewhat different form than presented here, gives
estimates independent of 𝜌+ as well, and in some cases can even beat the root-result, see
Proposition 4.16. Any bound on the spectral gap that does not rely on 𝜌+ will prove to be
a crucial in the study of relaxation for kinetic Fokker-Planck models in Section 8.

Let us present two applications of Proposition 4.9 that are distinctly different from the
root-result. In both cases we assume Ω = T𝑛.
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Example 4.12 (MCS-model). Let us assume that 𝜙 is a mollification kernel, 𝜙 ⩾ 0,
∫
Ω
𝜙d𝑥 =

1, local or not. Then its non-zero Fourier modes will necessarily be smaller than unit:

𝑐0 = sup
𝑘∈Z𝑛\{0}

|𝜙(𝑘) | < 1. (4.39)

Let us compute the spectral gap as defined by (4.28). Using that
∫
𝑢𝜌 d𝑥 = 0 by the

Plancherel identity,

(𝑢, [𝑢]𝜌)𝜅𝜌 =
∫
Ω

𝑢𝜌(𝑢𝜌)𝜙 d𝑥 =
∑︁

𝑘∈Z𝑛\{0}
|𝑢𝜌(𝑘) |2 Re(𝜙(𝑘)) ⩽ 𝑐0

∫
Ω

|𝑢𝜌 |2 d𝑥.

We now relate it back to the 𝐿2 (𝜅𝜌)-norm:

(𝑢, [𝑢]𝜌)𝜅𝜌 ⩽ 𝑐0

∫
Ω

|𝑢 |2𝜌𝜌𝜙
𝜌

𝜌𝜙
d𝑥 ⩽ 𝑐0





 𝜌𝜌𝜙





∞
∥𝑢∥2

𝐿2 (𝜅𝜌 ) .

Suppose now that



 𝜌

𝜌𝜙





∞
< 1
𝑐0

. We define

𝜀 = 1 − 𝑐0





 𝜌𝜌𝜙





∞
. (4.40)

Naturally, 𝜀 < 1 − 𝑐0 since at the point of maximum of 𝜌 we have 𝜌 ⩾ 𝜌𝜙 , and so the
𝐿∞-norm is at least 1. Also, note that if 𝜌 is convex in a ball 𝐵𝑟 (𝑥), where 𝑟 is the range of
the communication kernel, then 𝜌(𝑥) ⩽ 𝜌𝜙 (𝑥), and (4.40) holds if restricted to that ball.
So, the spectral gap (4.40) essentially quantifies flatness of the density 𝜌 in those regions
where it is not convex.

Also, note that for 𝜀 = 1 − 𝑐0, the only flock that satisfies (4.40) is the uniformly dis-
tributed one. So, the smaller the 𝜀 the more room there is for variations in distribution.
However, (4.40) still ensures sufficient spread of the support across the domain (for other-
wise the geodesic counterexample applies).

Now, a lower bound on s𝜌 can be interpreted as a measure of thickness, see Section 3.7,

𝑠(𝑡) = Θ(𝜌, supp 𝜌). (4.41)

Collecting the computations above and applying Proposition 4.9 we obtain the following
alignment result.

Corollary 4.13. For the Cucker-Smale model MCS a sufficient condition for alignment in
the energy sense is the flatness (4.40) and thickness (4.41) to satisfy

∫ ∞
0 𝜀(𝑡)𝑠(𝑡) d𝑡 = ∞.

Example 4.14 (MMT-model). For the Motsch-Tadmor non-symmetric model MMT com-
putation of the gap is more technical and require heavier assumptions on the density.

Let us assume that the defining kernel 𝜙 is local, (3.31), and
∫
𝜙 d𝑥 = 1. We have

(𝑢, 𝑢)𝜌 − (𝑢, [𝑢]𝜌)𝜌 =
∫
Ω×Ω

𝑢(𝑥) · (𝑢(𝑥) − 𝑢(𝑦))𝜌(𝑥)𝜌(𝑦) 𝜙(𝑥 − 𝑦)
𝜌𝜙 (𝑥)

d𝑦 d𝑥,
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symmetrizing in 𝑥 and 𝑦

=
1
2

∫
Ω×Ω

|𝑢(𝑥) − 𝑢(𝑦) |2𝜌(𝑥)𝜌(𝑦) 𝜙(𝑥 − 𝑦)
𝜌𝜙 (𝑥)

d𝑦 d𝑥 (4.42)

+ 1
2

∫
Ω×Ω

𝑢(𝑦) · (𝑢(𝑥) − 𝑢(𝑦))𝜌(𝑥)𝜌(𝑦)
(

1
𝜌𝜙 (𝑥)

− 1
𝜌𝜙 (𝑦)

)
𝜙(𝑥 − 𝑦) d𝑦 d𝑥.

Now, using that 𝜌𝜙 (𝑥) ⩽ ∥𝜙∥∞ we bound the first term from below by a multiple of
(𝑢, L𝜌𝑢)𝜌, which by (4.38) is bounded from below by 𝑐 𝜌

2
−
𝜌+
∥𝑢∥2

2. As to the second term,
note that the component with the dot-product 𝑢(𝑦) · 𝑢(𝑥) vanishes by symmetry, and hence
we are left with

−1
2

∫
Ω×Ω

|𝑢(𝑦) |2𝜌(𝑦)𝜌(𝑥)
(

1
𝜌𝜙 (𝑥)

− 1
𝜌𝜙 (𝑦)

)
𝜙(𝑥 − 𝑦) d𝑦 d𝑥

= −1
2

∫
Ω×Ω

|𝑢(𝑦) |2𝜌(𝑦)
(
𝜌

𝜌𝜙

)
𝜙

(𝑦) d𝑦 + 1
2
∥𝑢∥2

2

=
1
2

∫
Ω×Ω

|𝑢(𝑦) |2𝜌(𝑦)
(
1 − 𝜌

𝜌𝜙

)
𝜙

(𝑦) d𝑦.

We now impose the following condition on the smallness of variation

𝜌+ − 𝜌− ⩽ 𝑐
𝜌3
−
𝜌+
. (4.43)

Then (
1 − 𝜌

𝜌𝜙

)
𝜙

(𝑦) ⩽ 𝜌+ − 𝜌−
𝜌−

⩽ 𝑐
𝜌2
−
𝜌+
.

Consequently, this term becomes less than half of the main dissipation term (4.42),

(𝑢, 𝑢)𝜌 − (𝑢, [𝑢]𝜌)𝜌 ⩾
𝑐

2
𝜌2
−
𝜌+

(𝑢, 𝑢)𝜌 .

So, similar to the symmetric case under the flatness assumption (4.43), the size of the
spectral gap is still estimated at 𝜆 = 𝜀 ≳

𝜌2
−
𝜌+

.

Corollary 4.15. There exists a 𝑐 > 0 which depends only on the parameters of the model
such that any solution to the kinetic equation (4.1) on T𝑛 governed by the Motsch-Tadmor
averaging aligns in the energy sense, provided

𝜌+ − 𝜌− ⩽ 𝑐
𝜌3
−
𝜌+
,

∫ ∞

0

𝜌2
−
𝜌+

d𝑠 = ∞.

4.4. Spectral gap of a ball-positive model. Low energy method

As we have seen the spectral gap condition (4.28) plays a central role in alignment dynamics
and will be important in the study of relaxation, see Section 8. It will be essential to find
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bounds on 𝜀 that are independent of 𝜌+, since the growth of the density cannot be controlled
away from equilibrium. In this section we present the so-called low energy method which
allows one to obtain such bounds for ball-positive models on T𝑛.

To describe the method let us first discuss energetics of ball-positive models. Since
∥ [·]𝜌 ∥𝐿2 (𝜅𝜌 ) ⩽ 1, we obtain a streak of three inequalities,

(𝑢, 𝑢)𝜅𝜌 ⩾ (𝑢, [𝑢]𝜌)𝜅𝜌 ⩾ ( [𝑢]𝜌 , [𝑢]𝜌)𝜅𝜌 . (4.44)

This defines the hierarchy of three 𝜅-energies (not to be confused with the physical 𝜌-
energies)

E0 = (𝑢, 𝑢)𝜅𝜌 , E1 = (𝑢, [𝑢]𝜌)𝜅𝜌 , E2 = ( [𝑢]𝜌 , [𝑢]𝜌)𝜅𝜌 . (4.45)

As seen from (3.15) the difference between the first two energies A0 = E0 − E1 con-
trols the rate of alignment in collective systems. The next difference A1 = E1 − E2 is also
non-negative by the very definition of ball-postivity, and in fact by the Cauchy-Schwartz
inequality one has the relation

A0 ⩾ A1.

So, it is clear that the strength of ball-positivity measured by A1 bears direct relevance to
alignment.

To adopt it for spectral gap calculations, we note that the spectral gap condition (4.28)
can be expressed directly in terms of top tier energies

A0 ⩾ 𝜀E0, ∀𝑢 ∈ 𝐿2 (𝜅𝜌), 𝑢̄ =

∫
Ω

𝑢𝜌 d𝑥 = 0. (4.46)

The lower energy method seeks to achieve (4.46) through comparison between the two
terms down in the hierarchy (low energies)

A1 ⩾ 𝜀E1, ∀𝑢 ∈ 𝐿2 (𝜅𝜌), 𝑢̄ = 0. (4.47)

Indeed, let us observe that (4.47) is equivalent to

(1 − 𝜀) (𝑢, [𝑢]𝜌)𝜅𝜌 ⩾ ( [𝑢]𝜌 , [𝑢]𝜌)𝜅𝜌 , ∀𝑢 ∈ 𝐿2 (𝜅𝜌), 𝑢̄ = 0, (4.48)

and hence

∥ [𝑢]𝜌 ∥𝐿2 (𝜅𝜌 ) ⩽ (1 − 𝜀)∥𝑢∥𝐿2 (𝜅𝜌 ) , ∀𝑢 ∈ 𝐿2 (𝜅𝜌), 𝑢̄ = 0,

which implies (4.28)∼(4.46).
One can see from (4.48) that the method is necessarily restricted to the class of ball-

positive models. It turns out that estimating the low energy gap (4.47) sometimes gives
substantial improvements over the direct approach (4.46) in the sense of giving a bound
independent of 𝜌+. Let us present several examples from our list.

Throughout we assume that the kernel in question is local (3.31) - (3.32), and the envi-
ronment is periodic Ω = T𝑛. The summary of estimates to be obtained below is given in
the following proposition.
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Proposition 4.16. For each of the ball-positive models MCS, M𝜙 , Mseg we have the fol-
lowing bounds from below on the spectral gap up to a constant multiple:

MODEL MCS M𝜙 Mseg

spectral gap 𝜌̄3
𝑟0/2 (Ω) 𝜌̄𝑟0/2 (Ω) 𝜌̄2𝐿

𝑟seg (Ω), see (4.62)

In particular, if the kernel is all-to-all, inf 𝜙𝜌 > 0, then the spectral gap is automatically
uniform.

Proof of Proposition 4.16 for the M𝜙-model. For the M𝜙-model the following formula
was proved in [82]:

A1 =
1
2

∫
Ω×Ω

𝜌𝜙𝜙 (𝑥, 𝑦) |𝑢F (𝑥) − 𝑢F (𝑦) |2 d𝑥 d𝑦,

𝜌𝜙𝜙 (𝑥, 𝑦) =
∫
Ω

𝜙(𝑥 − 𝜉)𝜙(𝑦 − 𝜉)𝜌(𝜉) d𝜉, (4.49)

where 𝑢F is the Favre-filtration given by MMT. The proof goes as follows

A1 =

∫
Ω

(𝜌𝜙 |𝑢F |2 − 𝜌 | (𝑢F)𝜙 |2) d𝑥

=

∫
Ω

(𝜌𝜙𝑢F · 𝑢F − 𝜌(𝑢F)𝜙 · (𝑢F)𝜙) d𝑥

=

∫
Ω

(𝜌𝜙𝑢F − (𝜌(𝑢F)𝜙)𝜙) · 𝑢F d𝑥

=

∫
Ω×Ω

𝜙(𝑥 − 𝜉)𝜌(𝜉) (𝑢F (𝑥) − (𝑢F)𝜙 (𝜉)) · 𝑢F (𝑥) d𝜉 d𝑥

=

∫
Ω×Ω×Ω

𝜙(𝑥 − 𝜉)𝜙(𝑦 − 𝜉)𝜌(𝜉) (𝑢F (𝑥) − 𝑢F (𝑦)) · 𝑢F (𝑥) d𝜉 d𝑥 d𝑦

=

∫
Ω×Ω

𝜌𝜙𝜙 (𝑥, 𝑦) (𝑢F (𝑥) − 𝑢F (𝑦)) · 𝑢F (𝑥) d𝑥 d𝑦

=
1
2

∫
Ω×Ω

𝜌𝜙𝜙 (𝑥, 𝑦) |𝑢F (𝑥) − 𝑢F (𝑦) |2 d𝑥 d𝑦,

where in the last step we performed symmetrization in 𝑥, 𝑦.
We now estimate 𝜌𝜙𝜙 from below: let |𝑥 − 𝑦 | < 𝑟0/2, then

𝜌𝜙𝜙 (𝑥, 𝑦) =
∫
Ω

𝜙(𝑥 − 𝑦 + 𝜉)𝜙(𝜉)𝜌(𝑦 − 𝜉) d𝜉 ⩾
∫
| 𝜉 |<𝑟0/2

𝜙(𝑥 − 𝑦 + 𝜉)𝜙(𝜉)𝜌(𝑦 − 𝜉) d𝜉

⩾ 𝑐2
0

∫
| 𝜉 |<𝑟0/2

𝜌(𝑦 − 𝜉) d𝜉 ⩾ 𝑐2
0 𝜌̄𝑟0/2 (Ω).

Thus,
𝜌𝜙𝜙 (𝑥, 𝑦) ≳ 𝜌̄𝑟0/2 (Ω)1 |𝑥−𝑦 |<𝑟0/2. (4.50)
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With this at hand we have

A1 ≳ 𝜌̄𝑟0/2 (Ω)
∫
|𝑥−𝑦 |<𝑟0/2

|𝑢F (𝑥) − 𝑢F (𝑦) |2 d𝑥 d𝑦

by [61, Lemma 2.1],

≳ 𝜌̄𝑟0/2 (Ω)
∫
Ω

|𝑢F − Ave(𝑢F) |2 d𝑥 ≳ 𝜌̄𝑟0/2 (Ω)
∫
Ω

𝜌𝜙 |𝑢F − Ave(𝑢F) |2 d𝑥.

Using the vanishing momentum , Ave((𝑢𝜌)𝜙) = 0, we continue

= 𝜌̄𝑟0/2 (Ω)
©­­­«
∫
Ω

𝜌𝜙 |𝑢F |2 d𝑥 − 2 Ave(𝑢F) · Ave((𝑢𝜌)𝜙)︸                         ︷︷                         ︸
=0

+(2𝜋)𝑛 | Ave(𝑢F) |2
ª®®®¬ .

Noting that
∫
Ω
𝜌𝜙 |𝑢F |2 d𝑥 = E1, we conclude

⩾ 𝜌̄𝑟0/2 (Ω)E1.

So, we have a bound
𝜀 ⩾ 𝑐𝜌̄𝑟0/2 (Ω), (4.51)

where 𝑐 > 0 depends only on the parameters of the model.

We obtain the following improvement over the general root-result of Corollary 4.6.

Corollary 4.17. Under the M𝜙-averaging protocol a solution to the Vlasov-Alignment
equation (4.1) aligns if 𝜌− ≳ 1

𝑡
.

Let us note that under this weak assumption on the density the only known alignment
result was established in [86] for singular topological models. And in 1D it was proved
to hold automatically for any non-vacuous solutions to the Euler-Alignment system (9.2)
based on the metric or topological Cucker-Smale averaging protocol. For the system based
on the M𝜙-model such a bound is unknown a priori.

Proof of Proposition 4.16 for the MCS-model. By the assumptions of ball-positivity and
locality, 𝜙 = 𝜓 ∗ 𝜓, where 𝜓 is a non-negative smooth kernel satisfying

𝜓(𝑥) ⩾ 𝑐01 |𝑥 |⩽𝑟0 . (4.52)

Let us apply the low energy method. We aim to prove the following bound:

𝜀 ≳ 𝜌̄3
𝑟0/2 (Ω). (4.53)
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To prove (4.53) we will quantify the alignment term A1 in a way similar to the previous
example. To achieve this we notice that for the Bochner-positive 𝜙 the MCS-averaging is
nothing but a nested application of two distinct Favre filtrations. Indeed, let us denote

𝑣 =
(𝑢𝜌)𝜓
𝜌𝜓

, 𝜚 = 𝜌𝜓 . (4.54)

Then denoting 𝑣F =
(𝑣𝜚)𝜓
𝜚𝜓

, we obtain

[𝑢]𝜌 =
(𝑢𝜌)𝜙
𝜌𝜙

=
((𝑢𝜌)𝜓)𝜓

𝜚𝜓
=

(
(𝑢𝜌)𝜓
𝜌𝜓

𝜌𝜓

)
𝜓

𝜚𝜓
= 𝑣F. (4.55)

Observe that

A1 =

∫
Ω

(𝑢𝜌)2
𝜓 d𝑥 −

∫
Ω

| [𝑢]𝜌 |2𝜌𝜌𝜙 d𝑥 =
∫
Ω

|𝑣 |2𝜚𝜌𝜓 d𝑥 −
∫
Ω

|𝑣F |2𝜌𝜚𝜓 d𝑥.

Let us examine the second term now: |𝑣F |2𝜌𝜚𝜓 . We use the fact that the Favre-filtration
with respect to 𝜓, 𝜚 is a symmetric operation relative to the measure 𝜚𝜚𝜓 . So, we can write∫

Ω

|𝑣F |2𝜌𝜚𝜓 d𝑥 =
∫
Ω

𝑣F ·
(
𝑣F
𝜌

𝜚

)
𝜚𝜚𝜓 d𝑥 =

∫
Ω

𝑣 ·
(
𝑣F
𝜌

𝜚

)
F
𝜚𝜚𝜓 d𝑥 =

∫
Ω

𝑣 · (𝑣F𝜌)𝜓 𝜚 d𝑥.

Now let us factor out the common 𝑣𝜚 term:

A1 =

∫
Ω

𝜚𝑣 · (𝜌𝜓𝑣 − (𝑣F𝜌)𝜓) d𝑥 =
∫
Ω2
𝜚(𝑥)𝜌(𝑦)𝑣(𝑥) · (𝑣(𝑥) − 𝑣F (𝑦))𝜓(𝑥 − 𝑦) d𝑦 d𝑥

expanding further in 𝑣𝐹 (𝑦), we obtain

=

∫
Ω2

𝜚(𝑥)𝜌(𝑦)
𝜚𝜓 (𝑦)

𝑣(𝑥) · (𝑣(𝑥)𝜚𝜓 (𝑦) − (𝑣𝜚)𝜓 (𝑦))𝜓(𝑥 − 𝑦) d𝑦 d𝑥

=

∫
Ω3

𝜚(𝑥)𝜌(𝑦)𝜚(𝑧)
𝜚𝜓 (𝑦)

𝑣(𝑥) · (𝑣(𝑥) − 𝑣(𝑧))𝜓(𝑧 − 𝑦)𝜓(𝑥 − 𝑦) d𝑧 d𝑦 d𝑥

symmetrizing in 𝑥, 𝑧,

=
1
2

∫
Ω3

𝜚(𝑥)𝜌(𝑦)𝜚(𝑧)
𝜚𝜓 (𝑦)

|𝑣(𝑥) − 𝑣(𝑧) |2𝜓(𝑧 − 𝑦)𝜓(𝑥 − 𝑦) d𝑧 d𝑦 d𝑥.

Notice that the integral in 𝑦 represents the application of the variable doubling convolution
to 𝜌/𝜌𝜙 as in (4.49) using kernel 𝜓. So we obtain the following exact formula for A1:

A1 =
1
2

∫
Ω2
𝜚(𝑥)𝜚(𝑧)

(
𝜌

𝜌𝜙

)
𝜓𝜓

(𝑥, 𝑧) |𝑣(𝑥) − 𝑣(𝑧) |2 d𝑧 d𝑥. (4.56)



54 R. Shvydkoy

Since 𝜌𝜙 ⩽ 𝑐1 pointwise, we have, using (4.50),(
𝜌

𝜌𝜙

)
𝜓𝜓

⩾ 𝑐1𝜌𝜓𝜓 ≳ 𝜌̄𝑟0/2 (Ω)1 |𝑥−𝑧 |<𝑟0/2.

So,

A1 ≳ 𝜌̄𝑟0/2 (Ω)
∫
|𝑥−𝑧 |<𝑟0/2

𝜚(𝑥)𝜚(𝑧) |𝑣(𝑥) − 𝑣(𝑧) |2 d𝑧 d𝑥

≳ 𝜌̄3
𝑟0/2 (Ω)

∫
|𝑥−𝑧 |<𝑟0/2

|𝑣(𝑥) − 𝑣(𝑧) |2 d𝑧 d𝑥

proceeding as for the M𝜙-model,

⩾ 𝜌̄3
𝑟0/2 (Ω)

∫
Ω

|𝑣(𝑥) − Ave(𝑣) |2 d𝑥 ≳ 𝜌̄3
𝑟0/2 (Ω)

∫
Ω

𝜚 |𝑣(𝑥) − Ave(𝑣) |2 d𝑥

⩾ 𝜌̄3
𝑟0/2 (Ω)

∫
Ω

𝜚 |𝑣(𝑥) |2 d𝑥 = 𝜌̄3
𝑟0/2 (Ω)

∫
Ω

(𝑢𝜌)2
𝜓

𝜌𝜓
d𝑥

≳ 𝜌̄3
𝑟0/2 (Ω)

∫
Ω

(𝑢𝜌)2
𝜓 d𝑥 = 𝜌̄3

𝑟0/2 (Ω)E1.

We arrive at (4.53).

Proof of Proposition 4.16 for the Mseg-model. Since this model is symmetric and non-
negative definite it is automatically ball-positive by Lemma 3.10. So, it is natural to apply
the low-energy approach. We start with the analogue (4.49) which in this case reads

A1 =
1
2

∑︁
𝑙,𝑙′

𝜌(𝑔𝑙𝑔𝑙′ )
���� 𝜌(𝑢𝑔𝑙)𝜌(𝑔𝑙)

− 𝜌(𝑢𝑔𝑙′ )
𝜌(𝑔𝑙′ )

����2 . (4.57)

Indeed,

A1 =
∑︁
𝑙

(𝜌(𝑢𝑔𝑙))2

𝜌(𝑔𝑙)
−

∫
Ω

(∑︁
𝑙

𝑔𝑙
𝜌(𝑢𝑔𝑙)
𝜌(𝑔𝑙)

)2

𝜌 d𝑥

=
∑︁
𝑙

(𝜌(𝑢𝑔𝑙))2

𝜌(𝑔𝑙)
−

∑︁
𝑙,𝑙′

𝜌(𝑔𝑙𝑔𝑙′ )
𝜌(𝑢𝑔𝑙)
𝜌(𝑔𝑙)

𝜌(𝑢𝑔𝑙′ )
𝜌(𝑔𝑙′ )

=
∑︁
𝑙

𝜌(𝑢𝑔𝑙)
(
𝜌(𝑢𝑔𝑙)
𝜌(𝑔𝑙)

−
∑︁
𝑙′

𝜌(𝑔𝑙𝑔𝑙′ )
𝜌(𝑔𝑙)

𝜌(𝑢𝑔𝑙′ )
𝜌(𝑔𝑙′ )

)
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noting that the coefficients 𝜌(𝑔𝑙𝑔𝑙′ )
𝜌(𝑔𝑙 ) add up to 1 over 𝑙′,

=
∑︁
𝑙

𝜌(𝑢𝑔𝑙)
∑︁
𝑙′

𝜌(𝑔𝑙𝑔𝑙′ )
𝜌(𝑔𝑙)

(
𝜌(𝑢𝑔𝑙)
𝜌(𝑔𝑙)

− 𝜌(𝑢𝑔𝑙′ )
𝜌(𝑔𝑙′ )

)
=

∑︁
𝑙,𝑙′

𝜌(𝑔𝑙𝑔𝑙′ )
𝜌(𝑢𝑔𝑙)
𝜌(𝑔𝑙)

(
𝜌(𝑢𝑔𝑙)
𝜌(𝑔𝑙)

− 𝜌(𝑢𝑔𝑙′ )
𝜌(𝑔𝑙′ )

)
symmetrizing over 𝑙, 𝑙′,

=
1
2

∑︁
𝑙,𝑙′

𝜌(𝑔𝑙𝑔𝑙′ )
���� 𝜌(𝑢𝑔𝑙)𝜌(𝑔𝑙)

− 𝜌(𝑢𝑔𝑙′ )
𝜌(𝑔𝑙′ )

����2 .
The formula indicates that the energy keeps dissipating as long as discrepancies remain

between local averages in adjacent and connected neighborhoods, 𝜌(𝑔𝑙𝑔𝑙′ ) > 0. To extract
a working criterion out of it, we rewrite A1 is a different way:

A1 =
∑︁
𝑙

(𝜌(𝑢𝑔𝑙))2

𝜌(𝑔𝑙)
−

∑︁
𝑙,𝑙′
𝐺𝑙𝑙′

𝜌(𝑢𝑔𝑙)√︁
𝜌(𝑔𝑙)

𝜌(𝑢𝑔𝑙′ )√︁
𝜌(𝑔𝑙′ )

,

where
𝐺𝑙𝑙′ =

𝜌(𝑔𝑙𝑔𝑙′ )√︁
𝜌(𝑔𝑙)𝜌(𝑔𝑙′ )

.

Considering those as entries of the symmetric matrix 𝐺 = {𝐺𝑙𝑙′ }𝐿𝑙,𝑙′=1 and denoting the
vector

𝑋 =

(
𝜌(𝑢𝑔1)√︁
𝜌(𝑔1)

, . . . ,
𝜌(𝑢𝑔𝐿)√︁
𝜌(𝑔𝐿)

)
,

the above expression can be written as

A1 = |𝑋 |2 − ⟨𝐺𝑋, 𝑋⟩.

The vanishing momentum condition means that the vector 𝑋 belongs to the hyperplane
orthogonal to the vector of roots 𝑌 = (

√︁
𝜌(𝑔1), . . . ,

√︁
𝜌(𝑔𝐿)), denoted 𝑌⊥. Such plane

remains invariant under the action of 𝐺, while 𝐺𝑌 = 𝑌 . So, the low-energy bound (4.47)
becomes equivalent to the spectral gap condition on 𝐺:

spec{𝐺;𝑌⊥} ⩽ 1 − 𝜀. (4.58)

It is not easy, however, to compute the spectrum of𝐺 exactly. A more practical approach
to (4.58) would be to find a condition on the entries of 𝐺 that implies a bound like (4.58).
To this end, let us assume that non-zero entries are uniformly bounded from below, i.e. the
neighborhoods have ‘populated intersections’:

𝜌(𝑔𝑙𝑔𝑙′ ) ⩾ 𝛿
√︁
𝜌(𝑔𝑙)𝜌(𝑔𝑙′ ), ∀𝑙, 𝑙′ : supp 𝑔𝑙 ∩ supp 𝑔𝑙′ ≠ ∅, (4.59)
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for some 𝛿 > 0.
Under this condition let us consider the eigenvalue problem

(1 − 𝜀)𝑋 = 𝐺𝑋, 𝑋 · 𝑌 = 0.

Renormalizing 𝑋 = (𝑋1, . . . , 𝑋𝐿) via 𝑥𝑙 = 𝑋𝑙√
𝜌(𝑔𝑙 )

we obtain the system

(1 − 𝜀)𝑥𝑙 =
∑︁

𝑙′: supp 𝑔𝑙′∩supp 𝑔𝑙≠∅

𝜌(𝑔𝑙′𝑔𝑙)
𝜌(𝑔𝑙)

𝑥𝑙′ . (4.60)

Note that the sum on the right represents a convex combination of coordinates.
Denote 𝑥+ = 𝑥𝑙+ the positive maximal and 𝑥− = 𝑥𝑙− the negative minimal values. Since

𝑋 ∈ 𝑌⊥, those must be strictly signed. Since 𝑔’s form a partition of unity, there is a sequence
of indexes 𝑙+ = 𝑙0, 𝑙1, . . . , 𝑙𝑝 = 𝑙− with 𝑝 ⩽ 𝐿 such that supp 𝑔𝑙𝑖 ∩ supp 𝑔𝑙𝑖+1 ≠ ∅. Let us
start with (4.60) at 𝑙 = 𝑙0. Then 𝑙1 is one of the neighbors. We can assume without loss of
generality that 𝑥𝑙1 < 𝑥+ for otherwise, we relabel and start with the first index 𝑙1 having this
property.

We leave the 𝑙1-term unchanged, and estimate rest of 𝑥’s by 𝑥+ to obtain

(1 − 𝜀)𝑥+ ⩽
(
1 −

𝜌(𝑔𝑙0𝑔𝑙1 )
𝜌(𝑔𝑙0 )

)
𝑥+ +

𝜌(𝑔𝑙0𝑔𝑙1 )
𝜌(𝑔𝑙0 )

𝑥𝑙1 .

Solving for 𝑥𝑙1 we obtain

𝑥𝑙1 ⩾
©­­«1 − 𝜀

𝜌(𝑔𝑙0𝑔𝑙1 )
𝜌(𝑔𝑙0 )

ª®®¬ 𝑥+.
Since 𝑥𝑙1 < 𝑥+ it implies in particular that 𝜀 > 0. It also follows from (4.59) that 𝜌(𝑔𝑙0𝑔𝑙1 )

𝜌(𝑔𝑙0 )
⩾ 𝛿2

and hence,
𝑥𝑙1 ⩾

(
1 − 𝜀

𝛿2

)
𝑥+.

By the same computation centered this time at 𝑥𝑙1 and with 𝜀 reset to 𝜀

𝛿2 we obtain

𝑥𝑙2 ⩾
(
1 − 𝜀

𝛿4

)
𝑥+.

Continuing the process to the last term we obtain

𝑥− ⩾
(
1 − 𝜀

𝛿2𝑝

)
𝑢+ ⩾

(
1 − 𝜀

𝛿2𝐿

)
𝑥+.

Recalling that 𝑥− < 0, it implies 𝜀 ⩾ 𝛿2𝐿 . Thus, the spectral gap is estimated to be at least

𝜀 = 𝛿2𝐿 . (4.61)

To estimate 𝛿 in terms of thickness, let us observe that by continuity in any overlapping
neighborhoods there exists a ball of fixed radius 𝑟seg > 0

𝐵𝑟seg (𝑥) ⊂ supp(𝑔𝑙) ∩ supp(𝑔𝑙′ ) (4.62)



Environmental averaging 57

such that 𝑔𝑙 , 𝑔𝑙′ ⩾ 𝑐1 on 𝐵𝑟seg (𝑥) for some fixed 𝑐1 > 0. Thus, we have using that 𝜌(𝑔𝑙) ⩽ 1,

𝜌(𝑔𝑙𝑔𝑙′ )√︁
𝜌(𝑔𝑙)𝜌(𝑔𝑙′ )

⩾ 𝑐2
1 𝜌̄𝑟seg (Ω).

So, 𝛿 ≳ 𝜌̄𝑟seg (Ω).

4.4.1. Application of the low energy method to non-ball-positive models. For non-ball-
positive models such as Motsch-Tadmor, or more generally, for M𝛽 the low energy method
can still produce estimates on spectral gap for almost uniformly distributed densities,



𝜌 − 1

|Ω|






1
⩽ 𝛿. (4.63)

Here, we make the same Bochner positivity assumption on the defining kernel 𝜙 = 𝜓 ∗ 𝜓
and the locality (4.52).

Let us start as in Example 4.14 by symmetrizing and using cancellation

(𝑢, 𝑢)𝜅𝜌 − (𝑢, [𝑢]𝜌)𝜅𝜌 =
∫
Ω×Ω

𝑢(𝑥) · (𝑢(𝑥) − 𝑢(𝑦))𝜌(𝑥)𝜌(𝑦) 𝜙(𝑥 − 𝑦)
𝜌

1−𝛽
𝜙

(𝑥)
d𝑦 d𝑥

=
1
2

∫
Ω×Ω

|𝑢(𝑥) − 𝑢(𝑦) |2𝜌(𝑥)𝜌(𝑦) 𝜙(𝑥 − 𝑦)
𝜌

1−𝛽
𝜙

(𝑥)
d𝑦 d𝑥

− 1
2

∫
Ω×Ω

|𝑢(𝑦) |2𝜌(𝑥)𝜌(𝑦) ©­« 1
𝜌

1−𝛽
𝜙

(𝑥)
− 1
𝜌

1−𝛽
𝜙

(𝑦)
ª®¬ 𝜙(𝑥 − 𝑦) d𝑦 d𝑥

= 𝐼 + 𝐼 𝐼 .

First, note that

𝐼 ⩾ 𝑐1

∫
Ω×Ω

𝑢(𝑥) · (𝑢(𝑥) − 𝑢(𝑦))𝜌(𝑥)𝜌(𝑦)𝜙(𝑥 − 𝑦) d𝑦 d𝑥 = 𝑐1 [(𝑢, 𝑢)𝜌𝜙𝜌 − (𝑢, [𝑢]𝜌)𝜌𝜙𝜌],

which is exactly the spectral gap form that appears for the MCS model. So, using Proposi-
tion 4.16 and (4.63) we obtain

𝐼 ⩾ 𝑐2 𝜌̄
3
𝑟0/2 (Ω) (𝑢, 𝑢)𝜌𝜙𝜌 ⩾ 𝑐2 (𝑐3 − 𝛿)3 (𝑐4 − 𝛿)1−𝛽 (𝑢, 𝑢)

𝜌
𝛽

𝜙
𝜌
⩾ 𝑐5 (𝑢, 𝑢)𝜅𝜌 ,

provided 𝛿 < 1
2 min{𝑐3, 𝑐4}. Next,

𝐼 𝐼 =
1
2

∫
Ω×Ω

|𝑢(𝑦) |2𝜌(𝑦)𝜌𝛽
𝜙
(𝑦)

1 − 1
𝜌
𝛽

𝜙

©­« 𝜌

𝜌
1−𝛽
𝜙

ª®¬𝜙
 d𝑦.
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Using again (4.63),

1
𝜌
𝛽

𝜙

©­« 𝜌

𝜌
1−𝛽
𝜙

ª®¬𝜙 ⩽
𝜌𝜙

𝑐4 − 𝛿
⩽
𝑐4 + 𝛿
𝑐4 − 𝛿

⩽ 1 + 2𝛿
𝑐4 − 𝛿

1
𝜌
𝛽

𝜙

©­« 𝜌

𝜌
1−𝛽
𝜙

ª®¬𝜙 ⩾
𝜌𝜙

𝑐4 + 𝛿
⩾
𝑐4 − 𝛿
𝑐4 + 𝛿

⩾ 1 − 2𝛿
𝑐4 + 𝛿

So, if 𝛿 is small enough we have������1 − 1
𝜌
𝛽

𝜙

©­« 𝜌

𝜌
1−𝛽
𝜙

ª®¬𝜙
������ ⩽ 𝑐6𝛿.

We arrive at
|𝐼 𝐼 | ⩽ 𝑐6𝛿(𝑢, 𝑢)𝜅𝜌 .

Combining the two together we obtain

(𝑢, 𝑢)𝜅𝜌 − (𝑢, [𝑢]𝜌)𝜅𝜌 ⩾ (𝑐5 − 𝑐6𝛿) (𝑢, 𝑢)𝜅𝜌 ⩾ 𝑐7 (𝑢, 𝑢)𝜅𝜌 ,

provided 𝛿 < 𝑐8, where 𝑐8 is an absolute constant depending only on the parameters of the
model. We have thus proved a version of Proposition 4.16 for M𝛽 models.

Proposition 4.18. There exist constants 𝛿, 𝑐0 > 0 depending only on the parameters of the
model M𝛽 , 0 ⩽ 𝛽 ⩽ 1, such that for any density satisfying (4.63) the size of the spectral
gap is estimated as 𝜀0 > 𝑐0.

5. Deterministic mean-field limit

In this section we consider either the periodic or open environments Ω = T𝑛, R𝑛.
The goal of this section will be to derive the Vlasov-Alignment equation (4.1), as the

weak limit of empirical measures

𝜇𝑁𝑡 =

𝑁∑︁
𝑖=1

𝑚𝑖𝛿𝑥𝑖 (𝑡 ) ⊗ 𝛿𝑣𝑖 (𝑡 ) , (5.1)

where (𝑥𝑖 , 𝑣𝑖)𝑁𝑖=1 solve the agent based system (3.53). We will focus on the measure-valued
solutions with bounded support. Although this is not a necessary assumption, it simplifies
some of the technical issues considerably.

Definition 5.1. We say that {𝜇𝑡 }0⩽𝑡<𝑇 ∈ 𝐶𝑤∗ ( [0, 𝑇); P(𝐵𝑅 × 𝐵𝑅)) is a measure-valued
solution to (4.1) with initial condition 𝜇0 if for any test-function 𝑔 ∈ 𝐶∞ ( [0, 𝑇) ×Ω × R𝑛)
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one has, for all 0 < 𝑡 < 𝑇 ,∫
Ω×R𝑛

𝑔(𝑡, 𝑥, 𝑣) d𝜇𝑡 (𝑥, 𝑣) =
∫
Ω×R𝑛

𝑔(0, 𝑥, 𝑣) d𝜇0 (𝑥, 𝑣)

+
∫ 𝑡

0

∫
Ω×R𝑛

(𝜕𝑠𝑔 + 𝑣 · ∇𝑥𝑔 + s𝜌𝑠 ( [𝑢𝑠]𝜌𝑠 − 𝑣) · ∇𝑣𝑔) d𝜇𝑠 (𝑥, 𝑣) d𝑠.

(5.2)

The definition makes sense provided s𝜌𝑠 and s𝜌𝑠 [𝑢𝑠]𝜌𝑠 are bounded and continuous
functions in (𝑠, 𝑥). This typically can be derived from the regularity of the model as stip-
ulated in Section 3.7. But since we cannot rely on any a priori thickness of solutions we
must assume that the model M is uniformly regular.

With this assumption, the continuity of s𝜌𝑠 (𝑥) in 𝑥 follows from (3.46). Continuity in
𝑠 follows from (3.47):

∥s𝜌𝑠′ − s𝜌𝑠′′ ∥∞ ≲ 𝑊1 (𝜌𝑠′ , 𝜌𝑠′′ ) ⩽ 𝑊1 (𝜇𝑠′ , 𝜇𝑠′′ ).

Since for compactly supported measures𝑊1 determines the weak∗-convergence, the claim
follows. As to the weighted averages, we have

s𝜌𝑠 [𝑢𝑠]𝜌𝑠 =
∫
𝐵𝑅×𝐵𝑅

𝜙𝜌𝑠 (𝑥, 𝑦)𝑣 d𝜇𝑠 (𝑦, 𝑣).

So, again the continuity in 𝑥 follows from (3.46). In terms of time, we use (3.47)∫
𝐵𝑅×𝐵𝑅

𝜙𝜌𝑠′ (𝑥, 𝑦)𝑣 d𝜇𝑠′ (𝑦, 𝑣) −
∫
𝐵𝑅×𝐵𝑅

𝜙𝜌𝑠′′ (𝑥, 𝑦)𝑣 d𝜇𝑠′′ (𝑦, 𝑣)

=

∫
𝐵𝑅×𝐵𝑅

𝜙𝜌𝑠′ (𝑥, 𝑦)𝑣[ d𝜇𝑠′ (𝑦, 𝑣) − d𝜇𝑠′′ (𝑦, 𝑣)]

+
∫
𝐵𝑅×𝐵𝑅

[𝜙𝜌𝑠′ (𝑥, 𝑦) − 𝜙𝜌𝑠′′ (𝑥, 𝑦)]𝑣 d𝜇𝑠′′ (𝑦, 𝑣)

⩽ 𝐶1𝑊1 (𝜇𝑠′ , 𝜇𝑠′′ ) + 𝐶𝑅𝑊1 (𝜌𝑠′ , 𝜌𝑠′′ ) ≲ 𝑊1 (𝜇𝑠′ , 𝜇𝑠′′ ).

The crucial and elementary observation is that the empirical measure (5.1) satisfies (5.2)
if and only if {(𝑥𝑖 , 𝑣𝑖)}𝑖 solve the agent-based system (3.53). As a consequence, solutions
to (3.53) fall naturally into the framework of the Vlasov-Alignment equation. Our goal will
be to prove the following theorem by showing contractivity of the map 𝜇0 → 𝜇𝑡 on any
finite time interval.

Theorem 5.2. Suppose M is uniformly regular. Let 𝜇0 ∈ P(Ω × R𝑛) be any measure
with compact support. Then for any 𝑇 > 0 there exists a unique measure-valued solution
{𝜇𝑡 }0⩽𝑡<𝑇 ∈ 𝐶𝑤∗ ( [0, 𝑇); P(𝐵𝑅 (𝑇 ) ) to (4.1) which can be reconstructed from solutions to
(3.53) as follows. Let all (𝑥0

𝑖
, 𝑣0
𝑖
) ∈ O, where O is some fixed neighborhood of supp 𝜇0 and

such that 𝜇𝑁0 → 𝜇0 weakly. Then 𝜇𝑁𝑡 → 𝜇𝑡 weakly uniformly on [0, 𝑇).
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As a corollary we obtain validity of the mean-field limit in all the cases listed in the
last row of Table 3.

The theorem will be proved via a Lagrangian approach using the transport structure of
(??). To this end, we introduce the characteristic flow

d
d𝑡
𝑋 (𝑡, 𝑠, 𝑥, 𝑣) = 𝑉 (𝑡, 𝑠, 𝑥, 𝑣), 𝑋 (𝑠, 𝑠, 𝑥, 𝑣) = 𝑥, (5.3)

d
d𝑡
𝑉 (𝑡, 𝑠, 𝑥, 𝑣) = s𝜌 (𝑋) ( [𝑢]𝜌 (𝑋) −𝑉), 𝑉 (𝑠, 𝑠, 𝑥, 𝑣) = 𝑣. (5.4)

We also denote 𝑋 (𝑡,0, 𝑥, 𝑣) = 𝑋 (𝑡, 𝑥, 𝑣),𝑉 (𝑡,0, 𝑥, 𝑣) =𝑉 (𝑡, 𝑥, 𝑣), and (𝑥, 𝑣) =𝜔. Note that the
right hand side of (5.4) is Lipschitz in (𝑋,𝑉), so the flow is well-defined on [0, 𝑇]. Define
the test-function 𝑔(𝑠, 𝜔) = ℎ(𝑋 (𝑡, 𝑠, 𝜔), 𝑉 (𝑡, 𝑠, 𝜔)) for some ℎ ∈ 𝐶∞

0 (R2𝑛), for which we
have

𝜕𝑠𝑔 + 𝑣 · ∇𝑥𝑔 + s𝜌 ( [𝑢]𝜌 − 𝑣) · ∇𝑣𝑔 = 0.

So, plugging it into (5.2) we obtain∫
Ω×R𝑛

ℎ(𝜔) d𝜇𝑡 (𝜔) =
∫
Ω×R𝑛

ℎ(𝑋 (𝑡, 𝜔), 𝑉 (𝑡, 𝜔)) d𝜇0 (𝜔). (5.5)

This means that that 𝜇𝑡 is a push-forward of the initial measure 𝜇0 along the flow-map
(𝑋,𝑉), 𝜇𝑡 = (𝑋,𝑉)#𝜇0.

The proof of the mean-field limit consists of two steps: establishing control over the
deformation (∇𝑋, ∇𝑉) on a given time interval, and proving Lipschitzness of the push-
forward map in the𝑊1-metric.

So, let us assume that on a time interval [0, 𝑇] we have a solution 𝜇𝑡 ∈ P(𝐵𝑅). By the
maximum principle of Lemma 4.1

∥𝑉 (𝑡)∥𝐿∞ (O) ⩽ max
(𝑥,𝑣) ∈O

|𝑣 | ⩽ diamO. (5.6)

Let us fix a compact domain O with supp 𝜇0 ⊂ O. Then

d
d𝑡

∥∇𝑋 ∥𝐿∞ (O) ⩽ ∥∇𝑉 ∥𝐿∞ (O) .

Next,

d
d𝑡
∇𝑉 ⩽ ∇𝑋⊤∇(s𝜌 [𝑢]𝜌) (𝑋) + ∇𝑋⊤∇s𝜌 (𝑋)𝑉 + s𝜌 (𝑋)∇𝑉,

so, in view of (ev4), (5.6), and (3.46), we obtain the inequality up to a constant depending
only on 𝑅, 𝑚,O, 𝑆,

d
d𝑡

∥∇𝑉 ∥𝐿∞ (O) ⩽ ∥∇𝑋 ∥𝐿∞ (O) + ∥∇𝑉 ∥𝐿∞ (O) .

We thus conclude that

sup
[0,𝑇 ]

∥∇𝑋 ∥𝐿∞ (O) + ∥∇𝑉 ∥𝐿∞ (O) ⩽ 𝐶 (𝑅, 𝑚,O, 𝑇). (5.7)
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Let us now proceed to continuity estimates. Let us fix two measures 𝜇′𝑡 , 𝜇′′𝑡 ∈ P(𝐵𝑅)
for all 𝑡 ∈ [0, 𝑇]. We also fix a common initial domain O, supp 𝜇′0 ∪ supp 𝜇′′0 ⊂ O. Clearly,

d
d𝑡

∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (O) ⩽ ∥𝑉 ′ −𝑉 ′′∥𝐿∞ (O) . (5.8)

For velocities we have

d
d𝑡

(𝑉 ′ −𝑉 ′′) = s𝜌′ (𝑋 ′) [𝑢′]𝜌′ (𝑋 ′) − s𝜌′′ (𝑋 ′′) [𝑢′′]𝜌′′ (𝑋 ′′) + s𝜌′′ (𝑋 ′′)𝑉 ′′ − s𝜌′ (𝑋 ′)𝑉 ′.

So, from (3.46)-(3.47), we have

|s𝜌′ (𝑋 ′) [𝑢′]𝜌′ (𝑋 ′) − s𝜌′′ (𝑋 ′′) [𝑢′′]𝜌′′ (𝑋 ′′) |
≲ 𝑊1 (𝜌′, 𝜌′′) +𝑊1 (𝑢′𝜌′, 𝑢′′𝜌′′) + ∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (Ω) ,

and
|s𝜌′ (𝑋 ′) − s𝜌′′ (𝑋 ′′) | ≲ 𝑊1 (𝜌′, 𝜌′′) + ∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (Ω) .

Thus,

d
d𝑡

∥𝑉 ′ −𝑉 ′′∥𝐿∞ (O) ≲𝑊1 (𝜌′, 𝜌′′) +𝑊1 (𝑢′𝜌′, 𝑢′′𝜌′′) + ∥𝑉 ′ −𝑉 ′′∥𝐿∞ (O) + ∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (Ω) .

But for any ∥𝑔∥Lip ⩽ 1 we have∫
Ω

𝑔(𝑥) ( d𝜌′𝑡 − d𝜌′′𝑡 ) =
∫
Ω×R𝑛

𝑔(𝑥) ( d𝜇′𝑡 − d𝜇′′𝑡 ) =
∫
Ω×R𝑛

𝑔(𝑋 ′) d𝜇′0 −
∫
Ω×R𝑛

𝑔(𝑋 ′′) d𝜇′′0

=

∫
Ω×R𝑛

𝑔(𝑋 ′) ( d𝜇′0 − d𝜇′′0 ) +
∫
Ω×R𝑛

(𝑔(𝑋 ′) − 𝑔(𝑋 ′′)) d𝜇′0

⩽ ∥∇𝑋 ′∥𝐿∞ (Ω)𝑊1 (𝜇′0, 𝜇
′′
0 ) + ∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (Ω)

In view of (5.7) we conclude that

𝑊1 (𝜌′𝑡 , 𝜌′′𝑡 ) ≲ 𝑊1 (𝜇′0, 𝜇
′′
0 ) + ∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (Ω) . (5.9)

Similarly, for any ∥𝑔∥Lip ⩽ 1 we have∫
Ω

𝑔(𝑥) (d(𝑢′𝜌′𝑡 ) − d(𝑢′′𝜌′′𝑡 )) =
∫
Ω×R𝑛

𝑔(𝑥)𝑣( d𝜇′𝑡 − d𝜇′′𝑡 )

=

∫
Ω×R𝑛

𝑔(𝑋 ′)𝑉 ′ d𝜇′0 −
∫
Ω×R𝑛

𝑔(𝑋 ′′)𝑉 ′′ d𝜇′′0

=

∫
Ω×R𝑛

𝑔(𝑋 ′)𝑉 ′ ( d𝜇′0 − d𝜇′′0 ) +
∫
Ω×R𝑛

(𝑔(𝑋 ′)𝑉 ′ − 𝑔(𝑋 ′′)𝑉 ′′) d𝜇′0

⩽ (diamO∥∇𝑋 ′∥𝐿∞ (O) + ∥𝑔∥𝐿∞ (𝐵𝑅 ) ∥∇𝑉 ′∥𝐿∞ (O) )𝑊1 (𝜇′0, 𝜇
′′
0 )

+ 𝑚 diamO∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (O) + ∥𝑔∥𝐿∞ (𝐵𝑅 ) ∥𝑉 ′ −𝑉 ′′∥𝐿∞ (O) .
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In view of (5.7) we conclude that

𝑊1 (𝑢′𝜌′, 𝑢′′𝜌′′) ≲ 𝑊1 (𝜇′0, 𝜇
′′
0 ) + ∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (O) + ∥𝑉 ′ −𝑉 ′′∥𝐿∞ (O) . (5.10)

Thus, we obtain

d
d𝑡

∥𝑉 ′ −𝑉 ′′∥𝐿∞ (O) ≲ 𝑊1 (𝜇′0, 𝜇
′′
0 ) + ∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (O) + ∥𝑉 ′ −𝑉 ′′∥𝐿∞ (O) .

Combining with (5.8) we conclude that

∥𝑋 ′ − 𝑋 ′′∥𝐿∞ (O) + ∥𝑉 ′ −𝑉 ′′∥𝐿∞ (O) ⩽ 𝐶 (𝑅,𝑇)𝑊1 (𝜇′0, 𝜇
′′
0 ). (5.11)

Let us now fix a function ℎ with Lip(ℎ) ⩽ 1, and use the transport identity (5.5):∫
Ω×R𝑛

ℎ(𝜔) d𝜇′𝑡 −
∫
Ω×R𝑛

ℎ(𝜔) d𝜇′′𝑡 =

∫
Ω×R𝑛

ℎ(𝑋 ′, 𝑉 ′) d𝜇′0 −
∫
Ω×R𝑛

ℎ(𝑋 ′′, 𝑉 ′′) d𝜇′′0

=

∫
Ω×R𝑛

ℎ(𝑋 ′, 𝑉 ′) ( d𝜇′0 − d𝜇′′0 ) +
∫
Ω×R𝑛

[ℎ(𝑋 ′, 𝑉 ′) − ℎ(𝑋 ′′, 𝑉 ′′)] d𝜇′′0

⩽ LipO (ℎ(𝑋 ′, 𝑉 ′))𝑊1 (𝜇′0, 𝜇
′′
0 ) + ∥𝑋𝜇 − 𝑋𝜈 ∥𝐿∞ (O) + ∥𝑉𝜇 −𝑉𝜈 ∥𝐿∞ (O) .

Using that
LipO (ℎ(𝑋 ′, 𝑉 ′)) ⩽ ∥∇𝑉 ′∥𝐿∞ (O) + ∥∇𝑋 ′∥𝐿∞ (O) ,

and applying (5.7), (5.11) we conclude the following bounds

𝑊1 (𝜇′𝑡 , 𝜇′′𝑡 ) ⩽ 𝐶 (𝑅,O, 𝑇)𝑊1 (𝜇′0, 𝜇
′′
0 ). (5.12)

This immediately implies uniqueness and stability of measure-valued solutions.
So, we start now with an arbitrary measure 𝜇0, and approximate it weakly with a

sequence of empirical measures

𝜇𝑁0 =

𝑁∑︁
𝑖=1

𝑚𝑖𝛿𝑥𝑖 ⊗ 𝛿𝑣𝑖 , (5.13)

with all (𝑥𝑖 , 𝑣𝑖) ∈ O, where O is some fixed neighborhood of supp 𝜇0. Then let us run
the agent-based alignment model alignment (3.53). For any time 𝑇 , we have supp 𝜇𝑁𝑡 ⊂
𝐵 | O |+𝑇𝐴0 × 𝐵𝐴0 , 𝑡 < 𝑇 . Thus, according to (5.12), 𝜇𝑁𝑡 is weakly Cauchy, and hence 𝜇𝑁𝑡 → 𝜇𝑡

for some 𝜇𝑡 . To finish the proof Theorem 5.2 we now prove a short lemma showing that
the limit solves the Vlasov-alignment equation weakly.

Lemma 5.3. Suppose a sequence of solutions 𝜇𝑁 ∈ 𝐶𝑤∗ ( [0,𝑇);P(𝐵𝑅)) converges weakly
pointwise, i.e. 𝜇𝑁𝑡 → 𝜇𝑡 for all 0 ⩽ 𝑡 < 𝑇 . Then 𝜇 ∈ 𝐶𝑤∗ ( [0, 𝑇);P(𝐵𝑅)) is a weak solution
to (??).
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Proof. The weak∗-continuity of the limit will follow immediately from (5.2) once it is
established. Clearly, all the linear terms in (5.2) converge to their natural limits. As to the
force let us note for any 𝑠 < 𝑇 , we have (by computations done above)

𝑊1 (𝜌𝑁𝑠 , 𝜌𝑀𝑠 ) +𝑊1 (𝑢𝑁𝑠 𝜌𝑁𝑠 , 𝑢𝑀𝑠 𝜌𝑀𝑠 ) ⩽ 𝐶𝑊1 (𝜇𝑁𝑠 , 𝜇𝑀𝑠 ) ⩽ 𝐶𝑊1 (𝜇𝑁0 , 𝜇
𝑀
0 ),

since both are solutions to the Vlasov-alignment equation. Sending 𝑀 → ∞ we obtain

𝑊1 (𝜌𝑁𝑠 , 𝜌𝑠) +𝑊1 (𝑢𝑁𝑠 𝜌𝑁𝑠 , 𝑢𝑠𝜌𝑠) ⩽ 𝐶𝑊1 (𝜇𝑁0 , 𝜇0),

which by continuity (3.47) implies that

∥s𝜌𝑁𝑠 (
[
𝑢𝑁𝑠

]
𝜌𝑁𝑠

− 𝑣) − s𝜌𝑠 ( [𝑢𝑠]𝜌𝑠 − 𝑣)∥𝐿∞ (𝐵𝑅 ) → 0

uniformly in 𝑠. Together with the weak convergence assumed for 𝜇𝑁𝑠 we obtain∫ 𝑡

0

∫
Ω×R𝑛

(s𝜌𝑁𝑠 (
[
𝑢𝑁𝑠

]
𝜌𝑁𝑠

− 𝑣)) d𝜇𝑁𝑠 (𝑥, 𝑣) d𝑠 →
∫ 𝑡

0

∫
Ω×R𝑛

(s𝜌𝑠 ( [𝑢𝑠]𝜌𝑠 − 𝑣)) d𝜇𝑠 (𝑥, 𝑣) d𝑠.

This finishes the proof.

Finally, let us discuss the implementation of Theorem 5.2 to global well-posedness
of smooth solutions. Since all solutions are transported according to (5.5) regularity of a
solution will depend on the regularity of initial data and the parameters of the model. First,
let us notice that the Jacobian of the characteristic map, by the Liouville formula, is given
by

det∇𝜔 (𝑋,𝑉) (𝑡, 𝜔) = exp
{
−𝑛

∫ 𝑡

0
s𝜌 (𝑋 (𝑠, 𝜔)) d𝑠

}
.

Then if 𝜇0 = 𝑓0 d𝑤, with 𝑓0 ∈ 𝐶𝑘 , 𝑘 ∈ N and compactly supported, then for any 𝑡 > 0,

𝑓 (𝑡, 𝑋 (𝑡, 𝜔), 𝑉 (𝑡, 𝜔)) = 𝑓0 (𝜔) exp
{
𝑛

∫ 𝑡

0
s𝜌 (𝑋 (𝑠, 𝜔)) d𝑠

}
. (5.14)

Inverting the flow and noting that (𝑋,𝑉) and s𝜌 are 𝐶𝑘 implies 𝑓 ∈ 𝐶𝑘 at all times with
support in 𝑣 being confined to its original bounds and support in 𝑥 growing at most linearly.

Theorem 5.4. Suppose M is uniformly regular. Let 𝑓0 ∈ 𝐶𝑘0 (Ω × R𝑛) be any compactly
supported distribution. Then for any𝑇 > 0 there exists a unique solution 𝑓 ∈ 𝐿∞ ( [0,𝑇);𝐶𝑘0 )
to (4.1) which is supported on supp 𝑓0 + 𝐵𝑡 𝐴0 × {0}, where 𝐴0 is the maximal initial velocity.

6. Stochastic mean-field limit

As discussed in Section 4.1 one of the main obstacles for alignment on the torus T𝑛 is
existence of so-called locked states: solutions with agents locked on periodic orbits that
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stay at a positive distance greater than the communication length scale 𝑟0. A natural way
to avoid such unstable states is to introduce stochastic noise

d𝑥𝑖 = 𝑣𝑖 d𝑡

d𝑣𝑖 = s𝑖 ( [𝑣]𝑖 − 𝑣𝑖) d𝑡 +
√︁

2𝜎s𝑖 d𝐵𝑖 , (6.1)

where 𝐵𝑖’s are independent Brownian motions inR𝑛. Note that the noise here is assumed to
be “material", i.e. it places stochasticity only within the influence of the flock. As 𝑁 → ∞
and assuming that the agents are indistinguishable, i.e. 𝑚1 = · · · = 𝑚𝑁 = 1

𝑁
, the system

comes in natural correspondence with what we call the Fokker-Planck-Alignment equation

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = 𝜎s𝜌Δ𝑣 𝑓 + ∇𝑣 (s𝜌 (𝑣 − [𝑢]𝜌) 𝑓 ). (6.2)

A major advantage of using material noise is that the kinetic model (6.2) possesses a
family of thermodynamic equilibria

𝜇𝜎,𝑢̄ =
1

|Ω| (2𝜋𝜎)𝑛/2
𝑒−

|𝑣−𝑢̄|2
2𝜎 . (6.3)

If the underlying model M is conservative every solution is centered around the constant
averaged momentum 𝑢̄, which predetermines the corresponding equilibrium and opens a
possibility for potential relaxation towards that distribution. The collective behavior inter-
pretation of this result would say that, as expected, the noise disrupts the locked states and
redistributes initial velocities symmetrically around the mean value 𝑢̄. Alignment is then
restored in the sense of the vanishing noise limit:

lim
𝜎→0

lim
𝑡→∞

𝑓 𝜎 (𝑡) = 1
|Ω| 𝛿𝑣=𝑢̄ ⊗ d𝑥. (6.4)

The problem of relaxation and hypocoercivity will be discussed in Section 8. In this
section we provide a rigorous derivation of equation (6.2) as a mean-field limit of solutions
to the stochastic system (6.1). To make this statement precise, let us consider 𝑓 a solution
to (6.2) on a time interval [0, 𝑇] with initial distribution 𝑓0. Consider now 𝑁 independent
identically distributed random variables (𝑥0

𝑖
, 𝑣0
𝑖
), 𝑖 ⩽ 𝑁 , with 𝑓0 = law(𝑥0

𝑖
, 𝑣0
𝑖
), and let (𝑥𝑖 , 𝑣𝑖)

solve (6.1). Form the empirical measure-valued random variables

𝜇𝑁𝑡 =
1
𝑁

𝑁∑︁
𝑖=1

𝛿𝑥𝑖 (𝑡 ) ⊗ 𝛿𝑣𝑖 (𝑡 ) .

The mean-field limit consist of showing that for all 𝑡 ⩽ 𝑇 , we have 𝜇𝑁𝑡 → 𝑓𝑡 in law, i.e. for
any Lipschitz function ℎ on Ω × R𝑛,

E

����� 1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝑥𝑖 (𝑡), 𝑣𝑖 (𝑡)) −
∫
Ω×R𝑛

ℎ(𝑥, 𝑣) 𝑓 (𝑡, 𝑥, 𝑣) d𝑥 d𝑣

�����2 → 0. (6.5)

Note that 𝑓 d𝑥 d𝑣 in this context is considered as a constant random measure.
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In general, the convergence (6.5) is equivalent to propagation of chaos, see Sznitman
[89]: if 𝑓 𝑁 denotes the joint probability distribution of the process (𝑥1, 𝑣1, . . . , 𝑥𝑁 , 𝑣𝑁 )
solving (6.1), then for any 𝑘 ⩾ 1, the 𝑘-th marginal 𝑓 (𝑘 ) converges weakly to the product
of 𝑘 copies of 𝑓 , 𝑓 ⊗𝑘 , as 𝑁 → ∞:

⟨ 𝑓 (𝑘 ) , 𝜑1 ⊗ . . . ⊗ 𝜑𝑘⟩ = ⟨ 𝑓 𝑁 , 𝜑1 ⊗ . . . ⊗ 𝜑𝑘 ⊗ 1 ⊗ · · · ⊗ 1⟩→
𝑘∏
𝑗=1

⟨ 𝑓 , 𝜑 𝑗⟩, 𝜑 𝑗 ∈𝐶𝑏 (R2𝑛).

(6.6)
The strategy of proving (6.5) is based on the classical coupling method. Note that if

(𝑥𝑖 , 𝑣𝑖)’s were independent and identically distributed by 𝑓 , then (6.5) would have been
nothing but the Law of Large Numbers. So, to achieve the limit we couple (6.1) with another
system of separate 𝑁 copies of the characteristic processes for (6.2):

d𝑥𝑖 = 𝑣̄𝑖 d𝑡

d𝑣̄𝑖 = s𝜌 (𝑥𝑖) ( [𝑢]𝜌 (𝑥𝑖) − 𝑣̄𝑖) d𝑡 +
√︃

2𝜎s𝜌 (𝑥𝑖) d𝐵𝑖 , (6.7)

with initial condition (𝑥0
𝑖
, 𝑣0
𝑖
). Here, 𝜌 and 𝑢 are the macroscopic values of 𝑓 . Note that

because the equations are decoupled, the pairs (𝑥𝑖 , 𝑣̄𝑖) remain independent and identically
distributed. By the Itô formula, 𝑓 is their common law.

To establish (6.5) one can add and subtract the intermediate average of ℎwith 𝑥𝑖 (𝑡), 𝑣̄𝑖 (𝑡)
pairs:

E

����� 1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝑥𝑖 (𝑡), 𝑣𝑖 (𝑡)) −
∫
R2𝑛

ℎ(𝑥, 𝑣) 𝑓 (𝑡, 𝑥, 𝑣) d𝑥 d𝑣

�����2
⩽ E

����� 1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝑥𝑖 (𝑡), 𝑣𝑖 (𝑡)) −
1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝑥𝑖 (𝑡), 𝑣̄𝑖 (𝑡))
�����2

+ E
����� 1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝑥𝑖 (𝑡), 𝑣̄𝑖 (𝑡)) −
∫
R2𝑛

ℎ(𝑥, 𝑣) 𝑓 (𝑡, 𝑥, 𝑣) d𝑥 d𝑣

�����2 . (6.8)

The second term goes to zero by the Law of Large Numbers, while the first can be estimated
using symmetry by

E

����� 1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝑥𝑖 (𝑡), 𝑣𝑖 (𝑡)) −
1
𝑁

𝑁∑︁
𝑖=1

ℎ(𝑥𝑖 (𝑡), 𝑣̄𝑖 (𝑡))
�����2 ⩽ ∥∇ℎ∥∞E[|𝑥1 − 𝑥1 |2 + |𝑣1 − 𝑣̄1 |2] .

So the proof of (6.5) reduces to obtaining control over separation of characteristics:

𝐸 (𝑡) = E[|𝑥𝑖 − 𝑥𝑖 |2 + |𝑣𝑖 − 𝑣̄𝑖 |2] → 0, as 𝑁 → ∞. (6.9)

This approach was carried out by Bolley, et al., [9] in the case of convolution-type
alignment systems and with additive noise (no strength s𝜌 thermalization). We now provide
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a proper extension that includes general environmental averaging models and material noise
as stated.

Let us also note, following [9], that a bound on (6.9) entails a bound on the rate of
decorrelation 𝑓 (𝑘 ) → 𝑓 ⊗𝑘 . Indeed,

𝑊2
2 ( 𝑓

(𝑘 ) , 𝑓 ⊗𝑘) ⩽ E
[
𝑘∑︁
𝑖=1

|𝑥𝑖 − 𝑥𝑖 |2 + |𝑣𝑖 − 𝑣̄𝑖 |2
]
= 𝑘𝐸 (𝑡) → 0.

where𝑊2 is the Wesserstein-2 distance.

6.1. Law of large numbers

We will work on the torus Ω = T𝑛 and assume that M is uniformly regular in the sense of
Definition 3.18 with a minor modification. For all our averaging models the𝑊1-metric used
to define continuity in 𝜌 can in fact be replaced with a weaker𝑊1 semi-metric determined
by finitely many fixed Lipschitz functions: for ℎ1, . . . , ℎ𝐾 ∈ Lip(Ω) with ∥ℎ𝑘 ∥Lip ⩽ 1,

𝑊
ℎ1 ,...,ℎ𝐾
1 (𝜌′, 𝜌′′) = max

𝑘=1,...,𝐾

����∫
Ω

ℎ𝑘 (𝑥) [ d𝜌′ (𝑥) − d𝜌′′ (𝑥)]
���� . (6.10)

Such is the case for all Favre-based models where ℎ = 𝜙, or for Mseg where ℎ𝑙 = 𝑔𝑙 . Thus,
the uniform continuity can be understood as follows

∥s𝜌′ − s𝜌′′ ∥∞ + ∥𝜙𝜌′ − 𝜙𝜌′′ ∥∞ ⩽ 𝐶𝑊ℎ1 ,...,ℎ𝐾
1 (𝜌′, 𝜌′′). (6.11)

Let us now discuss consequences of the assumed regularity of the model on the Law
of Large Numbers. The basic idea is that the model is compatible with the LLN in the
averaged sense. Let us recall the classical law first, see [89]: for a sequence of i.i.d. random
variables 𝑋 𝑗 : Σ → R𝑑 with bounded second momentum E|𝑋 𝑗 |2 ⩽ 𝐸0 and mean E𝑋 𝑗 = 𝑚
we have

E

������ 1
𝑁

𝑁∑︁
𝑗=1

𝑋 𝑗 − 𝑚

������
2

⩽
𝐸0

𝑁
. (6.12)

Consequently, if ℎ ∈ 𝐶𝑏 (R𝑑) and 𝜇 is the law of 𝑋 𝑗 ’s, then in terms of 𝜇 the above reads

∫
R𝑁𝑑

������ 1
𝑁

𝑁∑︁
𝑗=1

ℎ(𝜔 𝑗 ) −
∫
R𝑑
ℎ(𝜔)𝜇(𝜔)

������
2

d𝜇(𝜔1) . . . d𝜇(𝜔𝑁 ) ⩽
∥ℎ∥2

∞
𝑁

. (6.13)
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We will encounter (6.13) in two interpretations. Namely, for any ℎ ∈ 𝐶𝑏 (Ω) and 𝑓 ∈
P(Ω × R𝑛), we have∫

Ω𝑁

������ 1
𝑁

𝑁∑︁
𝑗=1

ℎ(𝑦 𝑗 ) −
∫
Ω

ℎ(𝑧) d𝜌(𝑧)

������
2

d𝜌(𝑦1) . . . d𝜌(𝑦𝑁 ) ⩽
𝐶∥ℎ∥2

∞
𝑁

, (6.14)

∫
Ω𝑁×R𝑛𝑁

������ 1
𝑁

𝑁∑︁
𝑗=1
𝑣 𝑗ℎ(𝑦 𝑗 ) −

∫
Ω

ℎ(𝑧)𝑢(𝑧) d𝜌(𝑧)

������
2

d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 )

⩽
𝐶E( 𝑓 )∥ℎ∥2

∞
𝑁

, (6.15)

where E( 𝑓 ) =
∫
Ω×R𝑛 |𝑣 |

2 d 𝑓 .
The next two lemmas show that the analogue of these two laws of large numbers also

holds with respect to the components of the model M.

Lemma 6.1. We have

𝛼𝑁 = sup
𝜌∈P(Ω)

∫
Ω𝑁

��s𝜌𝑁 (𝑦𝑖) − s𝜌 (𝑦𝑖)
��2 d𝜌(𝑦1) . . . d𝜌(𝑦𝑁 ) ≲

1
𝑁
, (6.16)

where 𝜌𝑁 = 1
𝑁

∑𝑁
𝑗=1 𝛿𝑦 𝑗 . Note that 𝛼𝑁 is independent of 𝑖 by symmetry.

Proof. To see that we have by (6.11) and (6.14),∫
Ω𝑁

��s𝜌𝑁 (𝑦𝑖) − s𝜌 (𝑦𝑖)
��2 d𝜌(𝑦1) . . . d𝜌(𝑦𝑁 )

≲
𝐾∑︁
𝑘=1

∫
Ω𝑁

����∫
Ω

ℎ𝑘 (𝑧) [ d𝜌𝑁 − d𝜌]
����2 d𝜌(𝑦1) . . . d𝜌(𝑦𝑁 )

=

𝐾∑︁
𝑘=1

∫
Ω𝑁

������ 1
𝑁

𝑁∑︁
𝑗=1

ℎ𝑘 (𝑦 𝑗 ) −
∫
Ω

ℎ𝑘 (𝑧) d𝜌(𝑧)

������
2

d𝜌(𝑦1) . . . d𝜌(𝑦𝑁 )

⩽
𝐶

𝑁
(∥ℎ1∥∞ + · · · + ∥ℎ𝐾 ∥∞).

Lemma 6.2. We have

𝛽𝑁 = sup
𝑓 :E( 𝑓 )⩽E0

∫
Ω𝑁×R𝑛𝑁

���s𝜌𝑁 (𝑦𝑖) [
𝑢𝑁

]
𝜌𝑁

(𝑦𝑖) − s𝜌 (𝑦𝑖) [𝑢]𝜌 (𝑦𝑖)
���2

d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 ) ≲
1
𝑁
, (6.17)

where 𝜌𝑁 is as before, 𝑢𝑁 =
∑𝑁
𝑗=1 𝑣 𝑗1{𝑦 𝑗 } , and 𝜌,𝑢 are the macroscopic density and velocity

of 𝑓 .
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Proof. Let us assume 𝑖 = 1 for definiteness. We have

s𝜌𝑁 (𝑦1)
[
𝑢𝑁

]
𝜌𝑁

(𝑦1) − s𝜌 (𝑦1) [𝑢]𝜌 (𝑦1) =
∫
Ω

(𝜙𝜌𝑁 (𝑦1, 𝑧) − 𝜙𝜌 (𝑦1, 𝑧))𝑢𝑁 (𝑧) d𝜌𝑁 (𝑧)

+
∫
Ω

𝜙𝜌 (𝑦1, 𝑧) [𝑢𝑁 (𝑧) d𝜌𝑁 (𝑧) − 𝑢(𝑧) d𝜌(𝑧)] = 𝐼 + 𝐼 𝐼 . (6.18)

Let us examine 𝐼 first. We have by (6.10),

|𝐼 | ⩽ 𝑊ℎ1 ,...,ℎ𝐾
1 (𝜌𝑁 , 𝜌) 1

𝑁

𝑁∑︁
𝑗=1

|𝑣 𝑗 |.

Thus,∫
Ω𝑁×R𝑛𝑁

|𝐼 |2 d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 )

⩽
1
𝑁

𝑁∑︁
𝑗=1

∫
Ω𝑁×R𝑛𝑁

|𝑣 𝑗 |2 (𝑊ℎ1 ,...,ℎ𝐾
1 (𝜌𝑁 , 𝜌))2 d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 )

and by symmetry in 𝑗 ,

=

∫
Ω𝑁×R𝑛𝑁

|𝑣1 |2 (𝑊ℎ1 ,...,ℎ𝐾
1 (𝜌𝑁 , 𝜌))2 d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 )

≲
𝐾∑︁
𝑘=1

∫
Ω𝑁×R𝑛𝑁

|𝑣1 |2
������ 1
𝑁

𝑁∑︁
𝑗=1

ℎ𝑘 (𝑦 𝑗 ) −
∫
Ω

ℎ𝑘 (𝑧) d𝜌(𝑧)

������
2

d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 ).

Let us focus on one 𝑘th term. We single out the 𝑗 = 1 term from the rest:

1
𝑁2

∫
Ω𝑁×R𝑛𝑁

|𝑣1 |2 |ℎ𝑘 (𝑦1) |2 d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 )

+
∫
Ω𝑁×R𝑛𝑁

|𝑣1 |2
������ 1
𝑁

𝑁∑︁
𝑗=2

ℎ𝑘 (𝑦 𝑗 ) −
∫
Ω

ℎ𝑘 (𝑧) d𝜌(𝑧)

������
2

d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 )

⩽
1
𝑁2 ∥ℎ𝑘 ∥

2
∞E0 + E0

∫
Ω𝑁−1×R𝑛(𝑁−1)

������ 1
𝑁

𝑁∑︁
𝑗=2

ℎ𝑘 (𝑦 𝑗 ) −
∫
Ω

ℎ𝑘 (𝑧) d𝜌(𝑧)

������
2

d𝜌(𝑦2) . . . d𝜌(𝑦𝑁 )

The latter integral is ≲ 1
𝑁

with a minor adjustment to 𝑁 → 𝑁 − 1 in the average. Thus, by
(6.14), ∫

Ω𝑁×R𝑛𝑁
|𝐼 |2 d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 ) ≲

1
𝑁
.



Environmental averaging 69

It remains to analyze 𝐼 𝐼. We will treat 𝑦1 as a parameter, and let us denote ℎ𝑦1 (𝑧) =
𝜙𝜌 (𝑦1, 𝑧). By the regularity assumption, ℎ𝑦1 ∈ 𝐶𝑏 (Ω) and is even Lipschitz. We have

𝐼 𝐼 =
1
𝑁

𝑁∑︁
𝑗=1
𝑣 𝑗ℎ𝑦1 (𝑦 𝑗 ) −

∫
Ω

ℎ𝑦1 (𝑧)𝑢(𝑧) d𝜌(𝑧).

Again, we single out the 𝑗 = 1 term, and by (6.15),∫
Ω𝑁×R𝑛𝑁

|𝐼 𝐼 |2 d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 )

⩽
1
𝑁2

∫
Ω𝑁×R𝑛𝑁

|𝑣1 |2 |ℎ𝑦1 (𝑦1) |2 d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 )

+
∫
Ω𝑁×R𝑛𝑁

������
∫
Ω

1
𝑁

𝑁∑︁
𝑗=2
𝑣 𝑗ℎ𝑦1 (𝑦 𝑗 ) −

∫
Ω

ℎ𝑦1 (𝑧)𝑢(𝑧) d𝜌(𝑧)

������
2

d 𝑓 (𝑦1, 𝑣1) . . . d 𝑓 (𝑦𝑁 , 𝑣𝑁 )

⩽
1
𝑁2 ∥𝜙𝜌∥

2
∞E0 +

1
𝑁
∥𝜙𝜌∥2

∞E0

with a minor adjustment to the index 𝑁 → 𝑁 − 1 in the latter.

6.2. Main result

As discussed earlier we now focus on obtaining an estimate on separations of characteristics
to achieve (6.9). The result holds on a finite time interval [0,𝑇] where 𝑓 is a smooth solution
to (6.2) by which we mean existence of sufficiently many derivatives in weighted Sobolev
spaces to sufficient to understand (6.2) classically, see Section 7.

Theorem 6.3. Suppose M is uniformly regular satisfying (6.11). Let 𝑓 be a classical
solution to the Fokker-Planck-Alignment equation (6.2) on a time interval [0, 𝑇] satisfying

Θ(𝜌,Ω) ⩾ 𝛿, ∀0 ⩽ 𝑡 ⩽ 𝑇, (6.19)

and ∫
Ω×R𝑛

𝑒𝑎 |𝑣 |
2
𝑓 (𝑥, 𝑣, 𝑡) d𝑥 d𝑣 ⩽ 𝑐8, ∀0 ⩽ 𝑡 ⩽ 𝑇. (6.20)

Then for any solution to the particle system (6.1) and (6.7) on the time interval [0, 𝑇] with
i.i.d. initial datum (𝑥0

𝑖
, 𝑣0
𝑖
) distributed according to the law 𝑓0 one has the following estimate

E[|𝑥𝑖 − 𝑥𝑖 |2 + |𝑣𝑖 − 𝑣̄𝑖 |2] ⩽ 𝐶1
1

𝑁𝑒
−𝐶2𝑡

, (6.21)

for some 𝐶1, 𝐶2 > 0 depending on 𝑇 and all the constants involved in the assumptions
above. Consequently, the mean-field limit (6.5) holds.

Proof. We set 𝜎 = 1 for simplicity. First, we notice that the solution has a uniformly
bounded energy on [0, 𝑇] and thus (6.17) applies uniformly on [0, 𝑇].
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Let us denote

E = E𝑥 + E𝑣
E𝑥 = E[|𝑥𝑖 − 𝑥𝑖 |2], E𝑣 = E[|𝑣𝑖 − 𝑣̄𝑖 |2] . (6.22)

Taking the derivative of the 𝑥-component we obviously obtain

d
d𝑡
E𝑥 = 2E[(𝑥𝑖 − 𝑥𝑖) · (𝑣𝑖 − 𝑣̄𝑖)] ⩽ E.

For the velocity component we use the Itô formula,

d
d𝑡
E𝑣 = E[(𝑣𝑖 − 𝑣̄𝑖) · (s𝑖 ( [𝑣]𝑖 − 𝑣𝑖) − s𝜌 (𝑥𝑖) ( [𝑢]𝜌 (𝑥𝑖) − 𝑣̄𝑖))] + E

����√︁2s𝑖 −
√︃

2s𝜌 (𝑥𝑖)
����2 .

Let us start with the noise term using (6.19) and (3.42),

E

����√︁2s𝑖 −
√︃

2s𝜌 (𝑥𝑖)
����2 = 2E

����� s𝑖 − s𝜌 (𝑥𝑖)
√

s𝑖 +
√︁

s𝜌 (𝑥𝑖)

�����2 ⩽ 𝐶 E ��s𝑖 − s𝜌 (𝑥𝑖)
��2 .

Recalling that s𝑖 = s𝜌𝑁 (𝑥𝑖), where 𝜌𝑁 = 1
𝑁

∑𝑁
𝑗=1 𝛿𝑥 𝑗 and denoting 𝜌̄𝑁 = 1

𝑁

∑𝑁
𝑗=1 𝛿 𝑥̄ 𝑗 , we

add and subtract intermediate terms

E
��s𝑖 − s𝜌 (𝑥𝑖)

��2 ≲ E ��s𝜌𝑁 (𝑥𝑖) − s𝜌̄𝑁 (𝑥𝑖)
��2 + E ��s𝜌̄𝑁 (𝑥𝑖) − s𝜌 (𝑥𝑖)

��2 (6.23)

By regularity of the strength function (3.46) and symmetry,

E
��s𝜌𝑁 (𝑥𝑖) − s𝜌̄𝑁 (𝑥𝑖)

��2 ≲ E𝑥 + E 
1
𝑁

𝑁∑︁
𝑗=1

|𝑥 𝑗 − 𝑥 𝑗 |2
 = 𝐶E𝑥 .

The second term is bounded by 𝛼𝑁 as defined in (6.16), since 𝜌 is the law of 𝑥𝑖 and the
latter are independent,

E
��s𝜌̄𝑁 (𝑥𝑖) − s𝜌 (𝑥𝑖)

��2 =

∫
Ω𝑁

|s 1
𝑁

∑𝑁
𝑗=1 𝛿𝑦𝑗

(𝑦𝑖) − s𝜌 (𝑦𝑖) |2 d𝜌(𝑦1) . . . d𝜌(𝑦𝑁 ) ⩽ 𝛼𝑁 .

In conclusion, we obtain

E

����√︁2s𝑖 −
√︃

2s𝜌 (𝑥𝑖)
����2 ⩽ 𝐶E + 𝛼𝑁 .

Let us now turn to the alignment term. By adding and subtracting several intermediate
terms we expand it as follows

E[(𝑣𝑖 − 𝑣̄𝑖) · (s𝑖 ( [𝑣]𝑖 − 𝑣𝑖) − s𝜌 (𝑥𝑖) ( [𝑢]𝜌 (𝑥𝑖) − 𝑣̄𝑖))] = −E[s𝑖 |𝑣𝑖 − 𝑣̄𝑖 |2]
+ E[(𝑣𝑖 − 𝑣̄𝑖) · (s𝑖 [𝑣]𝑖 − s𝜌 (𝑥𝑖) [𝑢]𝜌 (𝑥𝑖))] + E[(𝑣𝑖 − 𝑣̄𝑖) · 𝑣̄𝑖 (s𝜌 (𝑥𝑖) − s𝑖)] . (6.24)
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The first term is non-positive, so we simply drop it. Let us estimate the last term. We
fix an 𝑅 > 0 to be determined later and split the integrand as follows

E[(𝑣𝑖 − 𝑣̄𝑖) · 𝑣̄𝑖 (s𝜌 (𝑥𝑖) − s𝑖)] = E[(𝑣𝑖 − 𝑣̄𝑖) · 𝑣̄𝑖1 | 𝑣̄𝑖 |<𝑅 (s𝜌 (𝑥𝑖) − s𝑖)]
+ E[(𝑣𝑖 − 𝑣̄𝑖) · 𝑣̄𝑖1 | 𝑣̄𝑖 |⩾𝑅 (s𝜌 (𝑥𝑖) − s𝑖)]

⩽ 𝑅2E|𝑣𝑖 − 𝑣̄𝑖 |2 + E
��s𝑖 − s𝜌 (𝑥𝑖)

��2 + 𝐶E|𝑣𝑖 − 𝑣̄𝑖 |2
+ 𝐶E[|𝑣̄𝑖 |21 | 𝑣̄𝑖 |⩾𝑅], (6.25)

where in the last term we simply used the global boundedness of the strength functions.
For the second term we use the same estimate as before (6.23), hence continuing

⩽ (𝑅2 + 𝐶)E + 𝛼𝑁 + 𝐶E[|𝑣̄𝑖 |21 | 𝑣̄𝑖 |⩾𝑅] .

Now,
E[|𝑣̄𝑖 |21 | 𝑣̄𝑖 |⩾𝑅] ⩽ E1/2 [|𝑣̄𝑖 |4]E1/2 [1 | 𝑣̄𝑖 |⩾𝑅] .

Here the first term is bounded by the fourth moment of 𝑓 which is clearly bounded from
the assumption (6.20). And using again (6.20) we estimate the last term by

E[1 | 𝑣̄𝑖 |⩾𝑅] =
∫
Ω

∫
|𝑣 |⩾𝑅

𝑓𝑡 (𝑥, 𝑣) d𝑣 d𝑥 ⩽
𝑐4

𝑒𝑎𝑅
2 .

The latter remains bounded on the interval [0, 𝑇] by a constant by assumption. We thus
obtained

E[(𝑣𝑖 − 𝑣̄𝑖) · 𝑣̄𝑖 (s𝜌 (𝑥𝑖) − s𝑖)] ⩽ (𝑅2 + 𝐶)E(𝑡) + 𝛼𝑁 + 𝑐4𝑒
−𝑎𝑅2/2. (6.26)

Lastly, let us estimate the second term on the right hand side of (6.25). We have, denot-
ing 𝑢𝑁 =

∑𝑁
𝑗=1 𝑣 𝑗1{𝑥 𝑗 } and 𝑢̄𝑁 =

∑𝑁
𝑗=1 𝑣̄ 𝑗1{ 𝑥̄ 𝑗 } ,

E[(𝑣𝑖 − 𝑣̄𝑖) · (s𝑖 [𝑣]𝑖 − s𝜌 (𝑥𝑖) [𝑢]𝜌 (𝑥𝑖))] ⩽ E𝑣

+E
���s𝜌𝑁 (𝑥𝑖) [

𝑢𝑁
]
𝜌𝑁

(𝑥𝑖) − s𝜌̄𝑁 (𝑥𝑖)
[
𝑢̄𝑁

]
𝜌̄𝑁

(𝑥𝑖)
���2

+E
���s𝜌̄𝑁 (𝑥𝑖) [

𝑢̄𝑁
]
𝜌̄𝑁

(𝑥𝑖) − s𝜌̄𝑁 (𝑥𝑖)
[
𝑢̄𝑁

]
𝜌̄𝑁

(𝑥𝑖)
���2

+E
���s𝜌̄𝑁 (𝑥𝑖) [

𝑢̄𝑁
]
𝜌̄𝑁

(𝑥𝑖) − s𝜌 (𝑥𝑖) [𝑢]𝜌 (𝑥𝑖)
���2 . (6.27)

The last term here is bounded by 𝛽𝑁 , see (6.17). The elements in the first term are evaluated
at the same point 𝑥𝑖 . So, by a similar computation as in (6.18) we have

E
���s𝜌𝑁 (𝑥𝑖) [

𝑢𝑁
]
𝜌𝑁

(𝑥𝑖) − s𝜌̄𝑁 (𝑥𝑖)
[
𝑢̄𝑁

]
𝜌̄𝑁

(𝑥𝑖)
���2

≲E

©­«
1
𝑁

𝑁∑︁
𝑗=1

|𝑣̄ 𝑗 |2ª®¬𝑊2
1 (𝜌

𝑁 , 𝜌̄𝑁 )
 + E

[
𝑊2

1

(
𝑢𝑁 𝜌𝑁 , 𝑢̄𝑁 𝜌̄𝑁

)]
⩽

1
𝑁2

𝑁∑︁
𝑖, 𝑗=1
E[|𝑣̄ 𝑗 |2 |𝑥𝑖 − 𝑥𝑖 |2] +

1
𝑁

𝑁∑︁
𝑖=1
E[|𝑣̄𝑖 |2 |𝑥𝑖 − 𝑥𝑖 |2] + E𝑣. (6.28)
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Each term here will be estimated by the same splitting method as before:

E[|𝑣̄ 𝑗 |2 |𝑥𝑖 − 𝑥𝑖 |2] = E[|𝑣̄ 𝑗 |21 | 𝑣̄ 𝑗 |<𝑅 |𝑥𝑖 − 𝑥𝑖 |2] + E[|𝑣̄ 𝑗 |21 | 𝑣̄ 𝑗 |⩾𝑅 |𝑥𝑖 − 𝑥𝑖 |2]

⩽ 𝑅2E𝑥 + E1/2 [|𝑣̄ 𝑗 |4]E1/2 [1 | 𝑣̄ 𝑗 |⩾𝑅] ⩽ 𝑅2E + 𝐶𝑒−𝑎𝑅2/2, (6.29)

and similarly for the middle term. Thus,

(6.28) ⩽ 𝑅2E + 𝐶𝑒−𝑎𝑅2/2.

It remains to estimate the middle term in (6.27). Here we use the regularity of the kernel
(3.46) and obtain

E
���s𝜌̄𝑁 (𝑥𝑖) [

𝑢̄𝑁
]
𝜌̄𝑁

(𝑥𝑖) − s𝜌̄𝑁 (𝑥𝑖)
[
𝑢̄𝑁

]
𝜌̄𝑁

(𝑥𝑖)
���2 ≲ 1

𝑁

𝑁∑︁
𝑗=1
E

[
|𝑥𝑖 − 𝑥𝑖 |2 |𝑣̄ 𝑗 |2

]
.

This term becomes exactly as the previous one. So, the same estimate applies.
Putting the above estimates together and denoting 𝑟 = 𝑎𝑅2/2 and 𝛾𝑁 = 𝛼𝑁 + 𝛽𝑁 , we

arrive at
d
d𝑡
E ⩽ 𝐶1 (𝑟 + 1)E + 𝐶2𝛾𝑁 + 𝐶3𝑒

−𝑟 . (6.30)

Inequality (6.30) is exactly the one that appeared in [9]. Let us recap the conclusion for
completeness. First, by choosing 𝑟 = 1 we see that E remains uniformly bounded on [0,𝑇],
E ⩽ E0. Thus, − ln(E/𝑒E0) ⩾ 1. Denoting 𝑣 = E/𝑒E0 and picking 𝑟 = − ln 𝑣 we obtain

𝑣′ ⩽ −𝑐1𝑣 ln 𝑣 + 𝑐2𝛾𝑁 ⩽ −𝑐𝑣 ln 𝑣 + 𝑐𝛾𝑁 ,

where 𝑐 = max{𝑐1, 𝑐1}. Rescaling time 𝑢(𝑡) = 𝑣(𝑡/𝑐) we further obtain

𝑢′ ⩽ −𝑢 ln 𝑢 + 𝛾𝑁 .

Letting 𝑤 = 𝑢𝛾−𝑒
−𝑡

𝑁
we conclude

𝑤′ ⩽ −𝑤 ln𝑤 + 1 ⩽ 𝑒−1 + 1.

Thus, 𝑤 ⩽ 𝑇 (𝑒−1 + 1) = 𝐶𝑇 and hence unwrapping the notation, E ⩽ 𝐶1𝛾
𝑒−𝐶2𝑡

𝑁
as claimed.

7. Fokker-Planck-Alignment equation

In this section we develop a well-posedness theory of classical solutions to Fokker-Plank-
Alignment equations (6.2) that is suitable for applications to flocking. This means that in
addition to the standard regularity questions we will pay close attention to thickness as
related to the spectral gap computations discussed in Section 4. We will restrict ourselves
to the periodic domain Ω = T𝑛 as that is the setting where most of our results will be used
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in the sequel. We also set 𝜎 = 1 as it plays no role in the analysis. So, we consider the FPA
equation

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = s𝜌Δ𝑣 𝑓 + ∇𝑣 · (s𝜌 (𝑣 − [𝑢]𝜌) 𝑓 ). (7.1)

Classical solutions to (7.1) are defined to be solutions that belong to a high regularity
weighted Sobolev class. For reasons that will be clarified later it is essential to distribute
velocity weights in the manner defined as follows

𝐻𝑘𝑙 (Ω × R𝑛) =
 𝑓 :

∑︁
𝑘′⩽𝑘

∑︁
|k′ |=𝑘′

∫
Ω×R𝑛

⟨𝑣⟩𝑙+2(𝑘−𝑘′ ) |𝜕k′
𝑥,𝑣 𝑓 |2 d𝑣 d𝑥 < ∞

 , (7.2)

where ⟨𝑣⟩ = (1 + |𝑣 |2) 1
2 . Some remarks are in order to elaborate on this choice. First, we note

that the alignment term in (6.2) prevents the persistence of a sub-Gaussian bound 𝑓 ⩽ 𝐶𝜇 if
it holds initially. So, setting the problem traditionally in sub-Gaussian Hölder classes, c.f. [2,
47], is not natural for the FPA equations. One exception is the class of perturbative solutions
developed for particular models in [20, 31]. Inclusion of the weights in (7.2) is necessary
to achieve uniqueness primarily due to, again, the presence of alignment components, see
however [97] for the classical much weaker result. The use of progressively increasing
weights for lower order terms is required to control terms coming from the inhomogeneity
in front of the Fokker-Planck operator, which prevents closing a priori estimates for any
single-weight choice. Single weight spaces, however, would have been sufficient for models
with s𝜌 = 1.

7.1. Local well-posedness

Let us first discuss local well-posedness for thick data on compact domain.

Theorem 7.1. Suppose the modelM is regular in the sense of Definition 3.17, andΩ = T𝑛.
Let 𝑓0 ∈ 𝐻𝑘

𝑙
(Ω × R𝑛), 𝑘, 𝑙 ⩾ 𝑛 + 3, be an initial condition such that

Θ(𝜌0,Ω) > 0.

Then there exists a unique local solution to (7.1) on a time interval [0, 𝑇), where 𝑇 > 0
depends only on the initial energy E0 and thickness Θ(𝜌0,Ω), in the regularity class

𝑓 ∈ 𝐶𝑤( [0, 𝑇);𝐻𝑘𝑙 ), ∇𝑣 𝑓 ∈ 𝐿2 ( [0, 𝑇];𝐻𝑘𝑙 ). (7.3)

Moreover, if 𝑓 ∈ 𝐿∞loc ( [0, 𝑇);𝐻
𝑘
𝑙
) is a given solution such that

inf
[0,𝑇 )

Θ(𝜌,Ω) > 0, (7.4)

then 𝑓 can be extended to an interval [0, 𝑇 + 𝜀) in the same class.

We can view the right hand side of (7.1) as a sum of a weighted Fokker-Planck operator
and a smooth drift

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = s𝜌LFP 𝑓 + w𝜌 · ∇𝑣 𝑓 , (7.5)
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where
LFP 𝑓 = ∇𝑣 · (∇𝑣 𝑓 + 𝑣 𝑓 ), w𝜌 = −s𝜌 [𝑢]𝜌 . (7.6)

Let us first disassociate the weights s𝜌 and w𝜌 from the solution and consider the linear
problem

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = s(𝑥, 𝑡)LFP 𝑓 + w(𝑥, 𝑡) · ∇𝑣 𝑓 , (7.7)
where s,w is a given smooth set of data on Ω × [0, 𝑇] with uniform bounds

s ⩾ 𝑐0 > 0, ∥s∥𝐶𝑘 + ∥w∥𝐶𝑘 < 𝐶0 on Ω × [0, 𝑇] . (7.8)

Lemma 7.2. Under the assumptions (7.8) for any initial condition 𝑓0 ∈ 𝐻𝑘
𝑙

there exists a
unique solution to (7.7) on [0, 𝑇] with 𝑓 ∈ 𝐶𝑤( [0, 𝑇];𝐻𝑘𝑙 ), ∇𝑣 𝑓 ∈ 𝐿

2
loc ( [0, 𝑇];𝐻

𝑘
𝑙
), and

moreover,
∥ 𝑓 ∥𝐻𝑘

𝑙
⩽ ∥ 𝑓0∥𝐻𝑘

𝑙
𝑒𝐶𝑡 ,

where 𝐶 depends only on 𝑐0 and 𝐶0.

Proof. To construct a solution to (7.7) from initial data 𝑓0 ∈ 𝐻𝑘
𝑙

one first considers a fully
viscous regularization

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = sLFP 𝑓 + w · ∇𝑣 𝑓 + 𝜀Δ𝑥,𝑣 𝑓 . (7.9)

A local solution to (7.9) on a time interval [0, 𝑇𝜀] is obtained via the standard fixed point
argument, see [56]. In order to extend it to all of [0,∞) we provide a priori estimates
for (7.7) which automatically apply to (7.9) independently of 𝜀. As a result we obtain a
bound on ∥ 𝑓 ∥𝐻𝑘

𝑙
which depends only on its initial value, on 𝑐0 and 𝐶𝑘-norms of s and

w. So, we have a family of solutions 𝑓 𝜀 uniformly in 𝐶 ( [0, 𝑇]; 𝐻𝑘
𝑙
), and clearly also in

𝑓 𝜀𝑡 ∈ 𝐿∞ ( [0, 𝑇]; 𝐿2). By the Aubin-Lions compactness lemma we can pass to the limit
𝜀→ 0 in any 𝐻𝑘′

𝑙′ for 𝑘 ′ < 𝑘 , 𝑙′ < 𝑙 and weakly in 𝐻𝑘
𝑙

extracting a subsequence converging
to a solution to (7.7). Weak continuity in 𝐻𝑘

𝑙
also follows classically.

Thus, the problem reduced to obtaining proper a priori bounds for solutions to (7.7).
Let us estimate the top 𝑣-derivative 𝜕k

𝑣 𝑓 first (here and further on we use a less formal
notation for the partials, only keeping track of the order)

𝜕𝑡𝜕
k
𝑣 𝑓 + 𝑣 · ∇𝑥𝜕k

𝑣 𝑓 + 𝜕k−1
𝑣 𝜕𝑥 𝑓 = sLFP𝜕

k
𝑣 𝑓 + s𝜕k

𝑣 𝑓 + w · ∇𝑣𝜕k
𝑣 𝑓 .

Testing with ⟨𝑣⟩𝑙 𝜕k
𝑣 𝑓 we obtain

d
d𝑡

∫
Ω×R𝑛

⟨𝑣⟩𝑙 |𝜕k
𝑣 𝑓 |2 d𝑣 d𝑥 + 1

2

∫
Ω×R𝑛

⟨𝑣⟩𝑙 𝑣 · ∇𝑥 |𝜕k
𝑣 𝑓 |2 d𝑣 d𝑥

+
∫
Ω×R𝑛

⟨𝑣⟩𝑙 𝜕k−1
𝑣 𝜕𝑥 𝑓 𝜕

k
𝑣 𝑓 d𝑣 d𝑥

= −
∫
Ω×R𝑛

s ⟨𝑣⟩𝑙 |𝜕k+1
𝑣 𝑓 |2 d𝑣 d𝑥 + 1

2

∫
Ω×R𝑛

sΔ𝑣 (⟨𝑣⟩𝑙) |𝜕k
𝑣 𝑓 |2 d𝑣 d𝑥

+
∫
Ω×R𝑛

s𝜕𝑣 (⟨𝑣⟩𝑙 𝑣) |𝜕k
𝑣 𝑓 |2 d𝑣 d𝑥 +

∫
Ω×R𝑛

s ⟨𝑣⟩𝑙 |𝜕k
𝑣 𝑓 |2 d𝑣 d𝑥

−
∫
Ω×R𝑛

w · ∇𝑣 (⟨𝑣⟩𝑙) |𝜕k
𝑣 𝑓 |2 d𝑣 d𝑥



Environmental averaging 75

While the first integral on the left hand side vanishes, the second is bounded by ∥ 𝑓 ∥2
𝐻𝑘
𝑙

. All

the terms on the right hand side, using that 𝜕𝑣 ⟨𝑣⟩𝑝 ≲ ⟨𝑣⟩𝑝−1, are also bounded by ∥ 𝑓 ∥2
𝐻𝑘
𝑙

except for the dissipation which has a uniform bound from below by (7.8). Thus,

d
d𝑡

∫
Ω×R𝑛

⟨𝑣⟩𝑙 |𝜕k
𝑣 𝑓 |2 d𝑣 d𝑥 ⩽ 𝐶∥ 𝑓 ∥2

𝐻𝑘
𝑙

− 𝑐0

∫
Ω×R𝑛

⟨𝑣⟩𝑙 |𝜕k+1
𝑣 𝑓 |2 d𝑣 d𝑥,

where 𝐶 is a constant depending on all the 𝐿∞-norms of s,w.
Let us now estimate the rest of the other top derivatives 𝜕k−k′

𝑣 𝜕k′
𝑥 𝑓 , k′ > 0. Sparing the

tedious details, most of terms are all bounded by 𝐶∥ 𝑓 ∥2
𝐻𝑘
𝑙

, where 𝐶 is an upper bound for

the 𝐶𝑘-norms of s,w. The rest is given by

d
d𝑡

∫
Ω×R𝑛

⟨𝑣⟩𝑙 |𝜕k−k′
𝑣 𝜕k′

𝑥 𝑓 |2 d𝑣 d𝑥 ≲ 𝐶∥ 𝑓 ∥2
𝐻𝑘
𝑙

− 𝑐0

∫
Ω×R𝑛

⟨𝑣⟩𝑙 |𝜕k−k′+1
𝑣 𝜕k′

𝑥 𝑓 |2 d𝑣 d𝑥

+
∫
Ω×R𝑛

⟨𝑣⟩𝑙 𝜕𝑥sΔ𝑣𝜕k−k′
𝑣 𝜕k′−1

𝑥 𝑓 𝜕k−k′
𝑣 𝜕k′

𝑥 𝑓 d𝑣 d𝑥

+
∫
Ω×R𝑛

𝜕𝑥s ⟨𝑣⟩𝑙 𝑣 · ∇𝑣𝜕k−k′
𝑣 𝜕k′−1

𝑥 𝑓 𝜕k−k′
𝑣 𝜕k′

𝑥 𝑓 d𝑣 d𝑥.

For the penultimate term we have∫
Ω×R𝑛

⟨𝑣⟩𝑙 𝜕𝑥sΔ𝑣𝜕k−k′
𝑣 𝜕k′−1

𝑥 𝑓 𝜕k−k′
𝑣 𝜕k′

𝑥 𝑓 d𝑣 d𝑥

⩽ −
∫
Ω×R𝑛

⟨𝑣⟩𝑙 𝜕𝑥s∇𝑣𝜕k−k′
𝑣 𝜕k′−1

𝑥 𝑓 · ∇𝑣𝜕k−k′
𝑣 𝜕k′

𝑥 𝑓 d𝑣 d𝑥 + 𝐶∥ 𝑓 ∥2
𝐻𝑘
𝑙

= − 1
2

∫
Ω×R𝑛

⟨𝑣⟩𝑙 𝜕𝑥s 𝜕𝑥 |∇𝑣𝜕k−k′
𝑣 𝜕k′−1

𝑥 𝑓 |2 d𝑣 d𝑥 + 𝐶∥ 𝑓 ∥2
𝐻𝑘
𝑙

=

∫
Ω×R𝑛

⟨𝑣⟩𝑙 𝜕2
𝑥s |𝜕k−k′+1

𝑣 𝜕k′−1
𝑥 𝑓 |2 d𝑣 d𝑥 + 𝐶∥ 𝑓 ∥2

𝐻𝑘
𝑙

⩽ 𝐶∥ 𝑓 ∥2
𝐻𝑘
𝑙

.

In the remaining term we take advantage of the dissipation and the higher weight
assigned to the lower order derivatives. Integrating by parts in 𝑣 we have∫

Ω×R𝑛
𝜕𝑥s ⟨𝑣⟩𝑙 𝑣 · ∇𝑣𝜕k−k′

𝑣 𝜕k′−1
𝑥 𝑓 𝜕k−k′

𝑣 𝜕k′
𝑥 𝑓 d𝑣 d𝑥

= −
∫
Ω×R𝑛

𝜕𝑥s∇𝑣 · (⟨𝑣⟩𝑙 𝑣)𝜕k−k′
𝑣 𝜕k′−1

𝑥 𝑓 𝜕k−k′
𝑣 𝜕k′

𝑥 𝑓 d𝑣 d𝑥

−
∫
Ω×R𝑛

𝜕𝑥s ⟨𝑣⟩𝑙 𝜕k−k′
𝑣 𝜕k′−1

𝑥 𝑓 𝑣 · ∇𝑣𝜕k−k′
𝑣 𝜕k′

𝑥 𝑓 d𝑣 d𝑥

⩽ 𝐶∥ 𝑓 ∥2
𝐻𝑘
𝑙

+ 𝑐0

2

∫
Ω×R𝑛

⟨𝑣⟩𝑙 |𝜕k−k′+1
𝑣 𝜕k′

𝑥 𝑓 |2 d𝑣 d𝑥 + 𝐶
∫
Ω×R𝑛

⟨𝑣⟩𝑙+2 |𝜕k−k′
𝑣 𝜕k′−1

𝑥 𝑓 |2 d𝑣 d𝑥

⩽ 𝐶∥ 𝑓 ∥2
𝐻𝑘
𝑙

+ 𝑐0

2

∫
Ω×R𝑛

⟨𝑣⟩𝑙 |𝜕k−k′+1
𝑣 𝜕k′

𝑥 𝑓 |2 d𝑣 d𝑥.



76 R. Shvydkoy

As a result we obtain
d
d𝑡

∫
Ω×R𝑛

⟨𝑣⟩𝑙 |𝜕k−k′
𝑣 𝜕k′

𝑥 𝑓 |2 d𝑣 d𝑥 ⩽ 𝐶∥ 𝑓 ∥2
𝐻𝑘
𝑙

− 𝑐0

2

∫
Ω×R𝑛

⟨𝑣⟩𝑙 |𝜕k−k′+1
𝑣 𝜕k′

𝑥 𝑓 |2 d𝑣 d𝑥.

The same argument works to estimate any positive order derivatives, each time taking
advantage of the higher weight put on one order below. It remains to estimate the zeroth-
order term,
d
d𝑡

∫
Ω×R𝑛

⟨𝑣⟩𝑙+2𝑘 | 𝑓 |2 d𝑣 d𝑥 =
1
2

∫
Ω×R𝑛

sΔ𝑣 ⟨𝑣⟩𝑙+2𝑘 𝑓 2 d𝑣 d𝑥 −
∫
Ω×R𝑛

s ⟨𝑣⟩𝑙+2𝑘 |∇𝑣 𝑓 |2 d𝑣 d𝑥

−
∫
Ω×R𝑛

s∇𝑣 ⟨𝑣⟩𝑙+2𝑘 · 𝑣 𝑓 2 d𝑣 d𝑥 −
∫
Ω×R𝑛

s∇𝑣 · (⟨𝑣⟩𝑙+2𝑘 𝑣) 𝑓 2 d𝑣 d𝑥

−
∫
Ω×R𝑛

(w · ∇𝑣 ⟨𝑣⟩𝑙+2𝑘) 𝑓 2 d𝑣 d𝑥

⩽ 𝐶

∫
Ω×R𝑛

⟨𝑣⟩𝑙+2𝑘 | 𝑓 |2 d𝑣 d𝑥 − 𝑐0

∫
Ω×R𝑛

⟨𝑣⟩𝑙+2𝑘 |∇𝑣 𝑓 |2 d𝑣 d𝑥.

(7.10)

So, the estimate on the 0-th order term closes on itself.
We obtained

d
d𝑡

∥ 𝑓 ∥2
𝐻𝑘
𝑙

⩽ 𝐶∥ 𝑓 ∥2
𝐻𝑘
𝑙

− 𝑐0

2
∥∇𝑣 𝑓 ∥2

𝐻𝑘
𝑙

,

and the estimate stated in the lemma follows. It also proves uniqueness since the equation
is linear.

Proof of Theorem 7.1. To construct solutions to the fully non-linear problem (7.5) we use
iteration scheme based on solving a sequence of linear problems

𝜕𝑡 𝑓
𝑚+1 + 𝑣 · ∇𝑥 𝑓 𝑚+1 = s𝜌𝑚LFP 𝑓

𝑚+1 + w𝜌𝑚 · ∇𝑣 𝑓 𝑚+1,

𝑓 𝑚+1(0) = 𝑓0, (7.11)

for𝑚 = 0, 1, . . .. In order to pass to the limit as𝑚→∞ we need to ensure that 𝑓 𝑚+1 remain
uniformly bounded in 𝐻𝑘

𝑙
on a fixed time interval [0, 𝑇]. According to Lemma 7.2 a bound

on 𝑓 𝑚+1 depends on smoothness of s𝜌𝑚 and w𝜌𝑚 and a lower bound on s𝜌𝑚 . Thanks to
the regularity of M and (3.42), those can be controlled by the thickness Θ(𝜌𝑚,Ω) and the
energies

E𝑚 =
1
2

∫
Ω×R𝑛

|𝑣 |2 𝑓 𝑚 d𝑣 d𝑥.

Let us show that there exists a common time interval [0, 𝑇] on which all the energies
are uniformly bounded and the all the densities 𝜌𝑚 are uniformly thick.

Starting with the energy, testing (7.11) with 1
2 |𝑣 |

2 we can see that the Fokker-Planck
component yields a bound ∥s𝜌𝑚 ∥∞E𝑚+1 ⩽ 𝑆E𝑚+1. Let us denote 2𝛿 = Θ(𝜌0,Ω). Assuming
for a moment that the 𝑚-th flock remains thick Θ(𝜌𝑚,Ω) ⩾ 𝛿 then using the bound

∥w𝜌𝑚 ∥∞ ⩽ 𝐶0 (𝛿)
√
E𝑚,
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we obtain

d
d𝑡
E𝑚+1 ⩽ 𝐶 −

∫
Ω×R𝑛

w𝑛 · 𝑣 𝑓 𝑚+1 d𝑣 d𝑥

= 𝐶 +
∫
Ω

s𝑚 [𝑢𝑚]𝜌𝑚 · 𝑢𝑚+1𝜌𝑚+1 d𝑥

⩽ 𝐶 + 𝐶0 (𝛿)
√
E𝑚

∫
Ω

|𝑢𝑚+1 |𝜌𝑚+1 d𝑥 ⩽ 𝐶 + 𝐶0 (𝛿)
√︁
E𝑚E𝑚+1

⩽ 𝐶 + 𝐶0 (𝛿) max{E𝑚, E𝑚+1}.

Hence, denoting Ē𝑚 = max{E0, E1, . . . , E𝑚}, we obtain from the above

d
d𝑡
Ē𝑚+1 ⩽ 𝐶 + 𝐶0 (𝛿)Ē𝑚+1. (7.12)

At the same time, by (3.36)

𝜕𝑡Θ(𝜌𝑚,Ω) ⩾ −𝑐∥𝑢𝑚∥𝐿2 (𝜌𝑚 ) ⩾ −𝑐
√︁
Ē𝑚+1. (7.13)

Let us argue by induction. The initial interval of existence for 𝑚 = 0 is 𝑇0 =∞. On that
interval Θ(𝜌0,Ω) = 2𝛿 > 𝛿. Then from (7.12) we have

Ē1 ⩽ E0𝑒
𝐶0 (𝛿 )𝑡 + 𝐶1 (𝛿)𝑒𝐶0 (𝛿 )𝑡 .

So, for 𝑡 ⩽ ln 2
𝐶0 (𝛿 ) we have

Ē1 (𝑡) ⩽ 2E0 + 2𝐶1 (𝛿).

Using (7.13) we conclude on the same time interval (recall that 𝜌𝑚 (0) = 𝜌0 initially)

Θ(𝜌1,Ω) ⩾ Θ(𝜌0,Ω) − 𝑡𝐶1 (𝛿)
√︁

2E0 + 2𝐶1 (𝛿) ⩾ 2𝛿 − 𝑡𝐶1 (𝛿)
√︁

2E0 + 2𝐶1 (𝛿).

Consequently, for 𝑡 < 𝛿

𝐶1 (𝛿 )
√

2E0+2𝐶1 (𝛿 )
we have Θ(𝜌1,Ω) ⩾ 𝛿.

Setting 𝑇 = min{ ln 2
𝐶0 (𝛿 ) ,

𝛿

𝐶1 (𝛿 )
√

2E0+2𝐶1 (𝛿 )
} we obtain exact same estimates for the next

elements in the sequence:

Ē2 (𝑡) ⩽ 2E0 + 2𝐶1 (𝛿), 𝑡 < 𝑇

and
Θ(𝜌2,Ω) ⩾ 2𝛿 − 𝑡𝐶1 (𝛿)

√︁
2E0 + 2𝐶1 (𝛿) ⩾ 𝛿, 𝑡 < 𝑇.

Continuing in the same manner it follows that E𝑚 ⩽ 2E0 + 2𝐶1 (𝛿) and Θ(𝜌𝑚,Ω) ⩾ 𝛿 on
the same time interval [0, 𝑇] for all 𝑚 ∈ N.

Lemma 7.2 implies that each solution in the sequence 𝑓 𝑚 will exist and be uniformly
bounded in class𝐶𝑤( [0, 𝑇];𝐻𝑘𝑙 ). By compactness we conclude that there exists a converg-
ing subsequence in any lower regularity class, and that the limit solves the equation (7.5)
classically by continuity properties of the model (3.45).
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From the above we see that the local time of existence 𝑇 depends only on the initial
energy E0 and thickness 𝛿. With this observation let us assume that we are given a solution
on an interval [0, 𝑇 ′) in the Sobolev class 𝐻𝑘

𝑙
and such that (7.4) holds for all 𝑡 < 𝑇 ′. Then

the estimate analogous to (7.12) shows that the energy E(𝑡) remains bounded on [0, 𝑇 ′)
by a constant depending only on 𝛿 and E0. Starting from 𝑇 ′ − 𝜀 where 𝜀 > 0 is small we
construct a solution on a time interval [𝑇 ′ − 𝜀,𝑇 ′ − 𝜀 + 𝑇) where 𝑇 depends only on 𝛿 and
𝐸0 and not on 𝜀. This extends the solution beyond 𝑇 ′ by uniqueness, which we address
next.

Let us have two thick solutions 𝑓 and 𝑓 in class (7.3) starting from the same initial
condition 𝑓0. Denote 𝑔 = 𝑓 − 𝑓 . We will estimate evolution of this difference in the weighted
class 𝐿2

𝑙
= 𝐻0

𝑙
and show that estimates close if 𝑙 is large enough. Note that according to

definition of 𝐻𝑘
𝑙

for 𝑘 large as assumed, we have ∇𝑣 𝑓 ,∇𝑣 𝑓 ,LFP 𝑓 ,LFP 𝑓 ∈ 𝐿2
𝑙

uniformly.
Let us take the difference

𝜕𝑡𝑔 + 𝑣 · ∇𝑥𝑔 = s𝜌LFP𝑔 + (s𝜌 − s𝜌̃)LFP 𝑓 + w𝜌 · ∇𝑣𝑔 + (w𝜌 − w𝜌̃) · ∇𝑣 𝑓 .

Testing with ⟨𝑣⟩𝑙 𝑔 and integrating the 𝑥-transport term drops out. The rest of the terms are
estimated using continuity assumption (3.45) and the usual energy estimates

d
d𝑡

∥𝑔∥2
𝐿2
𝑙

≲ ∥𝑔∥2
𝐿2
𝑙

+ ∥𝜌 − 𝜌̃∥1∥LFP 𝑓 ∥𝐿2
𝑙
∥𝑔∥𝐿2

𝑙
+ (∥𝜌𝑢 − 𝜌̃𝑢̃∥1 + ∥𝜌 − 𝜌̃∥1E)∥∇𝑣 𝑓 ∥𝐿2

𝑙
∥𝑔∥𝐿2

𝑙
.

Here, we replaced the 𝑊1-metrics with 𝐿1 since this is not essential. The 𝑓 components
and the energy are uniformly bounded as noted above. So, we have

d
d𝑡

∥𝑔∥2
𝐿2
𝑙

≲ ∥𝑔∥2
𝐿2
𝑙

+ ∥𝜌 − 𝜌̃∥1∥𝑔∥𝐿2
𝑙
+ ∥𝜌𝑢 − 𝜌̃𝑢̃∥1∥𝑔∥𝐿2

𝑙

Now,

∥𝜌 − 𝜌̃∥1 ⩽

∫
Ω×R𝑛

|𝑔 | d𝑣 d𝑥 =
∫
Ω×R𝑛

⟨𝑣⟩𝑙/2 |𝑔 | ⟨𝑣⟩−𝑙/2 d𝑣 d𝑥 ≲ ∥𝑔∥𝐿2
𝑙
, (7.14)

provided 𝑙 > 𝑛. Similarly,

∥𝜌𝑢 − 𝜌̃𝑢̃∥1 ⩽

∫
Ω×R𝑛

|𝑣 | |𝑔 | d𝑣 d𝑥 =
∫
Ω×R𝑛

⟨𝑣⟩𝑙/2 |𝑔 | ⟨𝑣⟩−𝑙/2+1 d𝑣 d𝑥 ≲ ∥𝑔∥𝐿2
𝑙
, (7.15)

provided 𝑙 > 𝑛 + 2.
So, we arrive at

d
d𝑡

∥𝑔∥2
𝐿2
𝑙

≲ ∥𝑔∥2
𝐿2
𝑙

,

and uniqueness follows.
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7.2. Spread of positivity

In order to extend local solutions globally it is clear that we have to generate a lower bound
on the macroscopic density. Since regularity of the local solution can deteriorate propaga-
tion of the thickness is impossible to prove with the local existence estimates. Instead we
resort to what is called spread of positivity.

Solutions to many kinetic equations tend to develop instantaneous spread of support
across the domain, in the sense of gaining a Gaussian bound

𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝑏𝑒−𝑎 |𝑣 |2 , (7.16)

see [2, 2, 27, 28, 35, 45, 46, 48, 55, 70]. The constants 𝑎, 𝑏, however, depend on either the
regularity of the solution on a given time interval or bounds on macroscopic quantities such
as the mass-density, energy-density and entropy-density. Such bounds may deteriorate in
time which puts constants 𝑎, 𝑏 in dependence on time as well. With a view towards flocking
and regularity the primary purpose of a bound like (7.16) would be to translate into a global
lower bound on the density 𝜌 ⩾ 𝜌− dependent only on the basic quantities such as drift and
entropy. At this point we are essentially using the advantage of a compact environment. As
a consequence, for those models where the drift and entropy can be controlled in time we
can develop global existence and relaxation results.

So, our primary goal in this section will be to establish the Gaussian bound (7.16) with
parameters that depend only on the entropy/energy and the drift.

Proposition 7.3. For a given classical solution 𝑓 ∈ 𝐶𝑤( [0,𝑇);𝐻𝑘𝑙 (T
𝑛)) of (7.1) on a time

interval [0, 𝑇) there exists 𝑎, 𝑏 > 0 which depend only on the parameters of the model M,
time 𝑇 , and

𝑊 = sup
𝑡∈[0,𝑇 )

∥s𝜌 [𝑢]𝜌 ∥∞,

𝐻 = sup
𝑡∈[0,𝑇 )

∫
T𝑛×R𝑛

|𝑣 |2 𝑓 d𝑣 d𝑥 +
∫
T𝑛×R𝑛

𝑓 | log 𝑓 | d𝑣 d𝑥,

such that
𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝑏𝑒−𝑎 |𝑣 |2 , ∀(𝑡, 𝑥, 𝑣) ∈ T𝑛 × R𝑛 × [𝑇/2, 𝑇). (7.17)

Central to our proof will be the weak Harnack inequality proved in [37]. To state it we
need to introduce some notation.

We will be looking at solutions on kinetic cylinders defined by, for 𝑧0 = (𝑡0, 𝑥0, 𝑣0) ∈
R × R𝑛 × R𝑛,

𝑄𝑟 (𝑧0) = {𝑧 : −𝑟2 < 𝑡 − 𝑡0 ⩽ 0, |𝑥 − 𝑥0 − (𝑡 − 𝑡0)𝑣0 | < 𝑟3, |𝑣 − 𝑣0 | < 𝑟}.

One can define the Lie-group action on triplets 𝑧 by

𝑧0 ◦ 𝑧 = (𝑡0 + 𝑡, 𝑥0 + 𝑥 + 𝑡𝑣0, 𝑣0 + 𝑣).
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Then
𝑧−1 = (−𝑡,−𝑥 + 𝑡𝑣,−𝑣).

And we define the kinetic multiplication by a scalar as

𝑟𝑧 = (𝑟2𝑡, 𝑟3𝑥, 𝑟𝑣).

The cylinders 𝑄𝑟 (𝑧0) can then be considered as the shift and rescaling of the 0-centered
cylinder 𝑄𝑟 = 𝑄𝑟 (0)

𝑄𝑟 (𝑧0) = 𝑧0 ◦𝑄𝑟 .

And by scaling, 𝑟𝑄1 = 𝑄𝑟 .
We consider super-solutions to the following general Fokker-Planck equation

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 ⩾ ∇𝑣 · (A∇𝑣 𝑓 ) + B · ∇𝑣 𝑓 . (7.18)

The equation has natural scaling invariance. If

𝑓𝑟 ,𝑧0 (𝑧) = 𝑓 (𝑧0 ◦ 𝑟𝑧),

then 𝑓𝑟 ,𝑧0 satisfies

𝜕𝑡 𝑓𝑟 ,𝑧0 + 𝑣 · ∇𝑥 𝑓𝑟 ,𝑧0 ⩾ ∇𝑣 · (A𝑟 ,𝑧0∇𝑣 𝑓𝑟 ,𝑧0 ) + B𝑟 ,𝑧0 · ∇𝑣 𝑓𝑟 ,𝑧0 , (7.19)

where
A𝑟 ,𝑧0 (𝑧) = A(𝑧0 ◦ 𝑟𝑧), B𝑟 ,𝑧0 (𝑧) = 𝑟B(𝑧0 ◦ 𝑟𝑧). (7.20)

Thus, the following rule applies:

Claim 7.4. If 𝑓 solves (7.18) on 𝑄𝑟 ′ (𝑧′), then 𝑓𝑟 ,𝑧0 solves the rescaled equation (7.19) on
𝑄𝑟 ′/𝑟 ((𝑧−1

0 ◦ 𝑧′)/𝑟). Furthermore, if 𝐴, 𝐵 satisfy

𝜆I ⩽ A ⩽ ΛI, |B| ⩽ Λ, 𝑧 ∈ 𝑄𝑟 ′ (𝑧′), (7.21)

for some 𝜆,Λ > 0, then the new coefficients A𝑟 ,𝑧0 ,B𝑟 ,𝑧0 satisfy the same bounds on

𝑄𝑟 ′/𝑟 ((𝑧−1
0 ◦ 𝑧′)/𝑟),

provided 𝑟 < 1.

For 𝜔 > 0 small let us introduce the following two non-overlapping cylinders

𝑄+
𝜔 = 𝑄𝜔 (1, 0, 0), 𝑄−

𝜔 = 𝑄𝜔 (𝜔2, 0, 0).

That is, 𝑄+
𝜔 is attached to the top of the basic cylinder 𝑄1 (1, 0, 0), and 𝑄−

𝜔 is lying on the
bottom.
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Theorem 7.5 (Weak Harnack inequality, [37]). There are constants 𝑅0,𝜔0, 𝑝,𝐶0 > 0 which
depend only on 𝜆, 𝐿, 𝑛 satisfying the following property. If 𝑓 is a super-solution to (7.18),
in the cylinder 𝑄𝑅0 = [0, 1] × {|𝑥 | < 𝑅0} × {|𝑣 | < 𝑅0} with 𝐴, 𝐵 satisfying (7.21), then
whenever (∫

𝑄−
𝜔0

𝑓 𝑝 d𝑧

)1/𝑝

⩽ 𝐶0 inf
𝑄+
𝜔0

𝑓 .

We now turn to proving Proposition 7.3. The proof goes in several steps. First, we
rewrite the FPA (7.5) as follows

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = s𝜌Δ𝑣 𝑓 + (s𝜌𝑣 + w𝜌) · ∇𝑣 𝑓 + 𝑛s𝜌 𝑓 . (7.22)

Since the last term is non-negative, 𝑓 is a super-solution to the truncated equation

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 ⩾ s𝜌Δ𝑣 𝑓 + (s𝜌𝑣 + w𝜌) · ∇𝑣 𝑓 , (7.23)

which has the structure of (7.18). We will be mindful of the fact, however, that B = s𝜌𝑣 +w𝜌
is unbounded in 𝑣, and this will be taken into account in due course.

In the subsequent course of the proof the various constants denoted

𝑐0, 𝑐1, . . . , 𝜔0, 𝜔1, . . . , 𝑇0, 𝑇1, . . . , 𝑟0, 𝑟1, . . . , 𝑅0, 𝑅1, . . .

depend only on the parameters of the model, 𝑇 , and𝑊, 𝐻. We call such constants admis-
sible.
Step 1: choosing domain of ellipticity. Let us recall from (3.42) that the strength func-
tion is supported from below by a measure of ball-thickness at scale 𝑟0 across the domain
Ω = T𝑛. Since T𝑛 has finite volume by a covering argument, there exists a constant 𝑐1
depending on 𝑛, and there exists 𝑥′ ∈ T𝑛 such that

𝜌̄𝑟0/4 (0, 𝑥′) ⩾ 𝑐1, (7.24)

Consequently,
𝜌̄𝑟0 (0, 𝑥) ⩾ 𝑐2, ∀𝑥 ∈ 𝐵𝑟0/2 (𝑥′).

Next, notice that 𝜌̄𝑟1 satisfies the following equation

𝜕𝑡 𝜌̄𝑟0 = −∇𝑥 · (𝑢𝜌)𝜒𝑟0 = −(𝑢𝜌)∇𝜒𝑟0 ⩾ −𝑐3∥𝑢∥𝐿2 (𝜌) ⩾ −𝑐3𝐻.

So, for any 𝑡 > 0, and any 𝑥 ∈ 𝐵𝑟0/2 (𝑥′), we have

𝜌̄𝑟0 (𝑡, 𝑥) ⩾ 𝑐2 − 𝑡𝑐3𝐻.

This implies that on the time interval 𝑡 ∈ [0, 𝑇1], where 𝑇1 =

(
𝑐2

2𝑐3𝐻

)
∧ 𝑇 , we have

𝜌̄𝑟0 (𝑡, 𝑥) ⩾ 𝑐2/2, ∀𝑥 ∈ 𝐵𝑟0/2 (𝑥′),
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and in view of (3.42),

s𝜌 (𝑡, 𝑥) ⩾ s(𝑐2/2) = 𝜆, ∀(𝑡, 𝑥) ∈ [0, 𝑇1] × 𝐵𝑟0/2 (𝑥′).

Let us come back to (7.24) and extract a thick subdomain for 𝑓 not too far in 𝑣-direction.
We have

𝑐1 ⩽

∫
𝐵𝑟0/4 (𝑥

′ )

∫
R𝑛
𝑓 (0, 𝑥, 𝑣) d𝑣 d𝑥

=

∫
𝐵𝑟0/4 (𝑥

′ )

∫
|𝑣 |<𝑅

𝑓 (0, 𝑥, 𝑣) d𝑣 d𝑥 +
∫
𝐵𝑟0/4 (𝑥

′ )

∫
|𝑣 |⩾𝑅

𝑓 (0, 𝑥, 𝑣) d𝑣 d𝑥

⩽

∫
𝐵𝑟0/4 (𝑥

′ )

∫
|𝑣 |<𝑅

𝑓 (0, 𝑥, 𝑣) d𝑣 d𝑥 + 𝐻

𝑅2 .

So, for 𝑅 = 𝑅1 = 1 ∨
√︃

2𝐻
𝑐1

we have∫
𝐵𝑟0/4 (𝑥

′ )

∫
|𝑣 |<𝑅1

𝑓 (0, 𝑥, 𝑣) d𝑣 d𝑥 ⩾
𝑐1

2
= 𝑐3. (7.25)

Let us define our domain of ellipticity Ω = [0, 𝑇1] × 𝐵𝑟0/2 (𝑥′) × 𝐵2𝑅1 (0), where we
have

𝜆 ⩽ s𝜌 ⩽ Λ, |s𝜌𝑣 | + |w𝜌 | ⩽ Λ, (7.26)

where Λ = max{𝑆, 2𝑆𝑅1 +𝑊}, and 𝑆 is the common bound on the strength function by
(ev4). The constants 𝜆,Λ determine 𝑅0, 𝜔0, 𝑝, 𝐶0 > 0 from Theorem 7.5, which depend
only on 𝜆,Λ, 𝑛, so they are admissible.
Step 2: finding the initial plateau.

We want to find a center of inflation (0, 𝑥0, 𝑣0) in such a way that the point (𝑥0, 𝑣0)
lies within the interior subdomain 𝐵𝑟0/4 (𝑥′) × 𝐵𝑅1 (0) and a small 𝜔-cylinder around it has
a substantial presence of 𝑓 . That cylinder will be blown into 𝑄−

𝜔0
resulting in 𝑓 having

a substantial 𝐿 𝑝-mass in it. At the same time the domain of ellipticity Ω will be blown
to engulf the needed wide cylinder 𝑄𝑅0 to fulfill the assumptions of Theorem 7.5. The
theorem then applies to obtain an admissible lower bound on 𝑓 at a later time.

Thanks to (7.25) by the standard covering argument, for any small 𝜔 one can find a
point (𝑥0, 𝑣0) ∈ 𝐵𝑟0/4 (𝑥′) × 𝐵𝑅1 (0) such that∫

𝐵
𝜔3 (𝑥0 )×𝐵𝜔 (𝑣0 )

𝑓 (0, 𝑥, 𝑣) d𝑣 d𝑥 ⩾ 𝑐3𝑐4 |𝐵𝜔3 (𝑥0) × 𝐵𝜔 (𝑣0) | = 𝑐5𝜔
4𝑛, (7.27)

We will choose 𝜔 later. Let us prove now that the initial weight of 𝑓 in a cylinder as in
(7.27) stretches in time on the natural scale 𝜔2.

Lemma 7.6. Suppose initially∫
𝐵
𝜔3 (𝑥0 )×𝐵𝜔 (𝑣0 )

𝑓 (0, 𝑥, 𝑣) d𝑣 d𝑥 ⩾ 𝑐5𝜔
4𝑛.
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Then ∫
𝑄2𝜔 (4𝜔2 ,𝑥0 ,𝑣0 )

𝑓 (𝑧) d𝑧 ⩾ 𝑐6𝜔
8𝑛+2. (7.28)

Proof. Let us fix a smooth cut-off function ℎ(𝑟) = 1𝑟<1 and ℎ(𝑟) = 0 for 𝑟 ⩾ 2, bounded
by 1. Let

ℎ𝜔 (𝑥, 𝑣) = ℎ(𝑥/𝜔3)ℎ(𝑣/𝜔).

Define the kinetic convolution

𝑔(𝑡) =
∫
Ω×R𝑛

𝑓 (𝑡, 𝑥0 + 𝑥 + 𝑡𝑣0, 𝑣 + 𝑣0)ℎ𝜔 (𝑥, 𝑣) d𝑣 d𝑥

Then initially, 𝑔(0) ⩾ 𝑐5𝜔
4𝑛. Let us compute the derivative

d
d𝑡
𝑔 =

∫
Ω×R𝑛

(𝜕𝑡 𝑓 + 𝑣0 · ∇𝑥 𝑓 )ℎ𝜔 d𝑣 d𝑥 =
∫
Ω×R𝑛

(𝜕𝑡 𝑓 + (𝑣0 + 𝑣) · ∇𝑥 𝑓 )ℎ𝜔 d𝑣 d𝑥

−
∫
Ω×R𝑛

𝑣 · ∇𝑥 𝑓 ℎ𝜔 d𝑣 d𝑥.

Note that ����∫
Ω×R𝑛

𝑣 · ∇𝑥 𝑓 ℎ𝜔 d𝑣 d𝑥
���� = ����∫

Ω×R𝑛
𝑓 𝑣 · ∇𝑥ℎ𝜔 d𝑣 d𝑥

���� ⩽ 𝑐∥∇ℎ∥∞𝜔−2.

So,

d
d𝑡
𝑔 ⩾

∫
Ω×R𝑛

[s𝜌Δ𝑣 𝑓 + (s𝜌 (𝑣 + 𝑣0) + 𝑤𝜌) · ∇𝑣 𝑓 ]ℎ𝜔 d𝑣 d𝑥 − 𝑐𝜔−2

=

∫
Ω×R𝑛

𝑓 [s𝜌Δ𝑣ℎ𝜔 − 𝑛s𝜌ℎ𝜔 − (s𝜌 (𝑣 + 𝑣0) + 𝑤𝜌) · ∇𝑣ℎ𝜔] d𝑣 d𝑥 − 𝑐𝜔−2

⩾ −Λ𝜔−2 − 𝑛Λ − (Λ2𝑅1 +𝑊)𝜔−1 − 𝑐𝜔−2 ⩾ −𝑐7𝜔
−2. (7.29)

Hence,
𝑔(𝑡) ⩾ 𝑐5𝜔

4𝑛 − 𝑐7𝜔
−2𝑡.

Integrating again we obtain ∫ 𝑡

0
𝑔(𝑠) d𝑠 ⩾ 𝑐5𝜔

4𝑛𝑡 − 𝑐7𝜔
−2 𝑡

2

2

Setting 𝑡 = 𝑐5𝜔
4𝑛+2𝑐7 ≪ 𝜔2 we obtain∫ 𝜔2

0
𝑔(𝑠) d𝑠 ⩾ 𝑐6𝜔

8𝑛+2.

Noting that ℎ𝜔 is supported on 𝐵8𝜔3 × 𝐵2𝜔 and bounded by 1, we obtain the desired result.
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We now make a transformation

𝑧 → 𝑧0 ◦ 𝑟𝑧, 𝑧0 = (0, 𝑥0, 𝑣0), 𝑟 =
𝜔1

𝜔0
, 𝜔1 = 2𝜔. (7.30)

This insures that, whatever 𝜔 is, the box 𝑄−
𝜔0

gets transformed into our 𝑄2𝜔 (4𝜔2, 𝑥0, 𝑣0).
We now choose 𝜔 such that the ambient domain 𝑄𝑅0 transforms inside our the lower half
of the domain of ellipticity. Given that 𝑥0 is within 𝐵𝑟0/4 (𝑥′) and 𝑣0 ∈ 𝐵𝑅1 (0) it suffices to
choose

𝜔1 = 𝜔0 min

{√︂
𝑇1

4
,

√︂
𝑟0

16𝑅1
,
𝑅1

2𝑅0

}
.

Under so defined rescaling the we have

𝑄−
𝜔0

→ 𝑄𝜔1 (𝜔2
1, 𝑥0, 𝑣0), 𝑄+

𝜔0
→ 𝑄𝜔1 ((𝜔1/𝜔0)2, 𝑥0 + 𝑣0 (𝜔1/𝜔0)2, 𝑣0),

and moreover 2𝑄𝑅0 = [0,2] × 𝐵2𝑅0 × 𝐵2𝑅0 gets transformed inside the domain of ellipticity

2𝑄𝑅0 ↩→ [0, 𝑇/2] × 𝐵𝑟1/2 (𝑥′) × 𝐵2𝑅1 (0) ⊂ Ω.

At the same time, the ellipticity bounds (7.26) remain the same (and in fact improve on the
drift). Observe also that all the parameters involved so far are admissible.

In order to apply the weak Harnack inequality, we need to essentially interpolate the 𝐿1-
information on 𝑓 expressed by (7.28) between 𝐿 𝑝 and 𝐿 log𝐿 in order to extract information
on the 𝐿 𝑝 level.

Since 𝜔1 = 2𝜔 has been picked already and it is dependent only on the parameters of
the model, and 𝑇,𝑊, 𝐻, let us write (7.28) as follows∫

𝑄𝜔1 (𝜔
2
1 ,𝑥0 ,𝑣0 )

𝑓 (𝑧) d𝑧 ⩾ 𝑐8. (7.31)

We have ∫
𝑄𝜔1 (𝜔

2
1 ,𝑥0 ,𝑣0 )

𝑓 | log 𝑓 | d𝑧 ⩽ 𝜔2
1𝐻.

Thus, ∫ ∞

0
|{ 𝑓 ⩾ 𝛼} ∩𝑄𝜔1 (𝜔2

1, 𝑥0, 𝑣0) | ( | log𝛼 | + sgn(𝛼 − 1)) d𝛼 ⩽ 𝜔2
1𝐻.

Consequently, for 𝛼0 > 1,∫ ∞

𝛼0

|{ 𝑓 ⩾ 𝛼} ∩𝑄𝜔1 (𝜔2
1, 𝑥0, 𝑣0) | d𝛼 ⩽

1
log𝛼0

𝜔2
1𝐻.

Choosing 𝛼0 = exp{ 4𝜔2
1𝐻

𝑐8
} we have∫ ∞

𝛼0

|{ 𝑓 ⩾ 𝛼} ∩𝑄𝜔1 (𝜔2
1, 𝑥0, 𝑣0) | d𝛼 ⩽

𝑐8

4
.
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At the same time for 𝛼1 =
𝑐8

4𝜔2+4𝑛
1

we have∫ 𝛼1

0
|{ 𝑓 ⩾ 𝛼} ∩𝑄𝜔1 (𝜔2

1, 𝑥0, 𝑣0) | d𝛼 ⩽ 𝛼1 |𝑄𝜔1 (𝜔2
1, 𝑥0, 𝑣0) | = 𝛼1𝜔

2+4𝑛
1 =

𝑐8

4
.

Consequently, ∫ 𝛼0

𝛼1

|{ 𝑓 ⩾ 𝛼} ∩𝑄𝜔1 (𝜔2
1, 𝑥0, 𝑣0) | d𝛼 ⩾

𝑐8

4
.

This implies that

|{ 𝑓 ⩾ 𝛼1} ∩𝑄𝜔1 (𝜔2
1, 𝑥0, 𝑣0) | ⩾

𝑐8

4(𝛼0 − 𝛼1)
:= 𝑐9.

Note again that all the constants depend only on the parameters of the model, and
𝑇,𝑊, 𝐻.

Using transformation (7.30) which has Jacobian (𝜔1/𝜔0)4𝑛+2 we obtain

|{ 𝑓𝑟 ,𝑧0 ⩾ 𝛼1} ∩𝑄−
𝜔0
| ⩾ (𝜔1/𝜔0)4𝑛+2𝑐9 := 𝑐10.

Hence, by the Chebychev inequality,(∫
𝑄−
𝜔0

𝑓
𝑝
𝑟,𝑧0 d𝑧

)1/𝑝

⩾
(
𝛼
𝑝

1 |{ 𝑓𝑟 ,𝑧0 ⩾ 𝛼1} ∩𝑄−
𝜔0
|
)1/𝑝

⩾ 𝛼1𝑐
1/𝑝
10 := 𝑐11.

Theorem 7.5 applies to show that

inf
𝑄+
𝜔0

𝑓𝑟 ,𝑧0 ⩾ 𝑐12,

or in terms of the original function 𝑓 ,

inf
𝑄𝜔1 ( (𝜔1/𝜔0 )2 ,𝑥0+𝑣0 (𝜔1/𝜔0 )2 ,𝑣0 )

𝑓 ⩾ 𝑐12.

Step 3: Harnack chains. It will be more efficient, in terms of notation, to remain in the new
system of coordinates defined by (7.30). Since the transformation involves only admissible
parameters, any bound on 𝑓 obtained in the new system will translate into an admissible
bound in the old system.

So, in the new coordinates, 𝑓 satisfies

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 ⩾ s(𝑡, 𝑥)Δ𝑣 𝑓 + (b(𝑡, 𝑥)𝑣 + w(𝑡, 𝑥)) · ∇𝑣 𝑓 . (7.32)

We make another time-shift to make notation even simpler 𝑧→ (1, 0, 0) ◦ 𝑧. Thus, we have

𝜆 ⩽ s ⩽ Λ, |b𝑣 | + |w| ⩽ Λ, (7.33)

on the new wide domain of ellipticity

Ω = [−1, 1] × 𝐵2𝑅0 × 𝐵2𝑅0 .



86 R. Shvydkoy

Notice that the new quantities𝑊, 𝐻 turn into another pair of admissible constants.
On the previous step we established a bound, which in the new coordinate frame reads

inf
𝑄𝜔0

𝑓 ⩾ 𝑐0, (7.34)

where 𝑐0 is admissible. The goal now is to show that by the time 𝑡 = 1 the solution spreads
across the entire torus Ω.

It will also be more accommodating to use Theorem 7.5 where𝑄−
𝜔0

is replaced by𝑄𝜔0 .
This is clearly achievable by a slight rescaling and a shift which is allowed by our enlarged
ellipticity domainΩ. Also, notice that be rescaling the theorem also applies to the cylinders
𝑄±
𝜔0/2 with 𝐶0 being replaced with an absolute multiple of 𝐶0, also admissible.

Now let us proceed with the construction of Harnack chains. The original idea goes
back to [4,5] and has seen more recent adaptations for Fokker-Planck equation in [2]. Our
construction will be similar in spirit to the latter, although quite different in two technical
aspects. First, we produce a chain that reaches the targeted velocity field in fewer steps,
thus achieving the exact Gaussian tail on the first run. And second, the estimates along the
chain will take into account the loss of information that comes with the use of a weaker
version of the Harnack inequality.

Lemma 7.7. Let (7.34) hold. There exist admissible constants 𝑎, 𝑏 > 0 such that

𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝑏𝑒−𝑎 |𝑣 |2 , (7.35)

for all (𝜔0/4)2 ⩽ 𝑡 ⩽ (𝜔0/2)2, |𝑥 | ⩽ (𝜔0/2)3 and all 𝑣 ∈ R𝑛.

Proof. Let us fix an 𝑁 ∈ N to be determined later, and let 𝑟 = 2 |𝑣 |
𝜔0𝑁

. Denote 𝑣̂ = 𝑣
|𝑣 | . Let us

define the sequence of points

𝑧0 = 0, 𝑧𝑙+1 = 𝑧𝑙 ◦ 𝑟 (1, 0,
𝜔0

2
𝑣̂), 𝑙 = 0, . . . , 𝑁 − 1.

In other words,
𝑧𝑙 = (𝑙𝑟2, 𝑙𝑟3𝜔0

2
𝑣̂, 𝑙𝑟

𝜔0

2
𝑣̂) := (𝑡𝑙 , 𝑥𝑙 , 𝑣𝑙).

Notice that the end-point

𝑧𝑁 = ( 4|𝑣 |2

𝑁𝜔2
0
,

4|𝑣 |3

𝑁2𝜔2
0
𝑣̂, 𝑣)

reaches the target velocity vector 𝑣 by cost of a small shift in time-space variable.
Also notice the following embeddings of cylinders

𝑧1 ◦ 𝑟𝑄𝜔0/2 ⊂ 𝑟𝑄𝜔0 (1, 0, 0), (7.36)

which follows by direct verification. Applying 𝑧𝑙◦ from the left we obtain

𝑧𝑙+1 ◦ 𝑟𝑄𝜔0/2 ⊂ 𝑧𝑙 ◦ 𝑟𝑄𝜔0 (1, 0, 0). (7.37)
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We will be looking at the rescalings

𝑓𝑙 (𝑧) = 𝑓 (𝑧𝑙 ◦ 𝑟𝑧).

All these functions can be thought as defined on the same domainΩwith the same ellipticity
constants. Indeed, if 𝑧 = (𝑠, 𝑦, 𝑤) ∈ Ω, then

𝑧𝑙 ◦ 𝑟𝑧 = (𝑡𝑙 + 𝑟2𝑠, 𝑥𝑙 + 𝑟3𝑦 + 𝑟2𝑠𝑣𝑙 , 𝑟𝑤 + 𝑣𝑙).

We have

|𝑡𝑙 + 𝑟2𝑠 | ⩽ 4|𝑣 |2

𝜔2
0𝑁

+ 4|𝑣 |2

𝜔2
0𝑁

2
⩽

8|𝑣 |2

𝜔2
0𝑁

< 1

provided 𝑁 ⩾ 8 |𝑣 |2
𝜔2

0
. Next,

|𝑥𝑙 + 𝑟3𝑦 + 𝑟2𝑠𝑣𝑙 | ⩽
4|𝑣 |3

𝜔2
0𝑁

2
+ 2𝑅0

8|𝑣 |3

𝜔3
0𝑁

3
+ 4|𝑣 |3

𝜔2
0𝑁

2
⩽ (2𝑅0 + 1) 16|𝑣 |3

𝜔3
0𝑁

2
⩽ 2𝑅0,

provided 𝑁2 ⩾ 2𝑅0+1
2𝑅0

16 |𝑣 |3
𝜔3

0
. This puts the (𝑡, 𝑥) pair into the box [−1, 1] × 𝐵2𝑅0 , and so,

the ellipticity for s(𝑧𝑙 ◦ 𝑟𝑧) enjoys the same bounds (7.33). As to the drift term which gets
rescaled to

B𝑙 = b(𝑡𝑙 + 𝑟2𝑠, 𝑥𝑙 + 𝑟3𝑦 + 𝑟2𝑠𝑣𝑙)𝑟 (𝑟𝑤 + 𝑣𝑙) + 𝑟w(𝑡𝑙 + 𝑟2𝑠, 𝑥𝑙 + 𝑟3𝑦 + 𝑟2𝑠𝑣𝑙)

notice that
|𝑟𝑤 + 𝑣𝑙 | ⩽ 2𝑅0𝑟 + |𝑣 |

so,
|B𝑙 | ⩽ Λ𝑟 (2𝑅0𝑟 + |𝑣 |) + 𝑟Λ < Λ,

provided 𝑁 ⩾ 𝑐1 |𝑣 |2, where 𝑐1 is admissible.
The conclusion is that all functions 𝑓𝑙 if considered defined on Ω satisfy the equation

with the same ellipticity constants provided

𝑁 ⩾ 𝑐2 ⟨𝑣⟩2 ,

where 𝑐2 is admissible.
Let us now start iteration of the weak Harnack inequality. We have for 𝑓0 (𝑧) = 𝑓 (𝑟𝑧)

from the assumption (7.34), and since 𝑟𝑄𝜔0 ⊂ 𝑄𝜔0 ,(∫
𝑄𝜔0

𝑓
𝑝

0 (𝑧) d𝑧

)1/𝑝

⩾ 𝑐0𝜔
4𝑛+2
𝑝

0 .

According to Theorem 7.5,

inf
𝑄𝜔0 (1,0,0)

𝑓0 ⩾ 𝐶
−1
0 𝑐0 (𝜔0/2)

4𝑛+2
𝑝 ,
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(we artificially divided 𝜔0 by 2 in order to fit with the general pattern later). According to
(7.36) we have in particular

inf
𝑄𝜔0/2

𝑓1 ⩾ 𝐶
−1
0 𝑐0 (𝜔0/2)

4𝑛+2
𝑝 .

Then by restricting to the cylinder 𝑄𝜔0/2,(∫
𝑄𝜔0

𝑓
𝑝

1 (𝑧) d𝑧

)1/𝑝

⩾ 𝐶−1
0 𝑐0 (𝜔0/2)2 4𝑛+2

𝑝 .

According to Theorem 7.5,

inf
𝑄𝜔0 (1,0,0)

𝑓1 ⩾ 𝐶
−2
0 𝑐0 (𝜔0/2)2 4𝑛+2

𝑝 .

We proceed in the same manner using (7.37) and applying repeatedly Theorem 7.5.
On the last step we achieve the following bound

inf
𝑄𝜔0/2

𝑓𝑁 ⩾ 𝑐0 [(𝜔0/2)
4𝑛+2
𝑝 𝐶−1

0 ]𝑁 = 𝑐0𝑐
𝑁
3 .

In particular at the origin we obtain

𝑓𝑁 (0, 0, 0) = 𝑓 (𝑧𝑁 ) = 𝑓 (𝑡𝑁 , 𝑥𝑁 , 𝑣) ⩾ 𝑐0𝑐
𝑁
3 .

Let us now fix a pair (𝑡, 𝑥) such that (𝜔0/4)2 ⩽ 𝑡 ⩽ (𝜔0/2)2, |𝑥 | ⩽ (𝜔0/2)3 and consider
the function

𝑔(𝑧) = 𝑓 ((𝑡 − 𝑡𝑁 , 𝑥 − 𝑥𝑁 , 0) ◦ 𝑧).

This function satisfies the equation on the slightly shrunk domain of ellipticity [−0.9,0.9] ×
𝐵1.9𝑅0 × 𝐵1.9𝑅0 . At the same time

inf
(𝑡𝑁−𝑡 ,𝑥𝑁−𝑥,0)◦𝑄𝜔0

𝑔 ⩾ 𝑐0

The same holds on the subcylinder𝑄𝜔0/2 ⊂ (𝑡𝑁 − 𝑡, 𝑥𝑁 − 𝑥,0) ◦𝑄𝜔0 (the inclusion follows
from the assumptions on (𝑡, 𝑥)). Applying the above proof to the new function 𝑔, we obtain

𝑔(𝑡𝑁 , 𝑥𝑁 , 𝑣) = 𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝑐0𝑐
𝑁
4 .

Picking the minimal 𝑁 under which the above holds we find 𝑁 = 𝑐5 ⟨𝑣⟩2. Hence,

𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝑐0𝑒
𝑁 ln 𝑐4 = 𝑐0𝑒

−𝑐5 | ln 𝑐4 | ⟨𝑣⟩2
,

and the proof is over.
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Step 4: spread of positivity in 𝑥. Let us fix any point of time (𝜔0/4)2 ⩽ 𝑡 ⩽ (𝜔0/2)2 and
reset it to 0. So, at the moment, we have

𝑓 (0, 𝑥, 𝑣) ⩾ 𝑏𝑒−𝑎 |𝑣 |2 , (7.38)

for all |𝑥 | ⩽ (𝜔0/2)3 := 𝑟3 and all 𝑣 ∈ R𝑛. Note that 𝑟3 is admissible.
The next goal is to establish spread of positivity across the entire periodic domain.

Recall that after the rescaling (7.30) our distribution 𝑓 is defined on 𝐿0T
𝑛 × R𝑛, where 𝐿0

is an admissible new period. Also, recall that since the scaling parameter 𝑟 < 1, we still
have global bounds on the coefficients

|s| ⩽ 𝑆, |b| ⩽ 𝑆, |w| ⩽ 𝑊. (7.39)

First, let us adopt a barrier construction from [2] to our situation.

Lemma 7.8. Suppose
𝑓 (0, 𝑥, 𝑣) ⩾ 𝛿1{ |𝑥 |<𝑟, |𝑣 |<𝑅} .

Then for any 𝜏 > 0 we have

𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝛿
4
1{ |𝑥−𝑡𝑣 |<𝑟/2, |𝑣 |<𝑅/2} .

for

𝑡 ⩽ 𝑡1 := min

{
1, 𝜏,

1
8

1
𝑛𝑆( 1

𝑟2 + 1
𝑅2 ) + (𝑆𝑅 +𝑊) ( 𝜏

𝑟
+ 1
𝑅
)

}
. (7.40)

Proof. Let us fix 𝐴 > 0 to be determined later and consider the barrier function

𝜒 = −𝐴𝑡 + 𝛿
(
1 − |𝑥 − 𝑡𝑣 |2

𝑟2 − |𝑣 |2
𝑅2

)
Note that 𝑓 (0, 𝑥, 𝑣) ⩾ 𝜒(0, 𝑥, 𝑣), and also for all 𝑡 > 0, 𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝜒(𝑡, 𝑥, 𝑣) = 0, on the
boundary 1 =

|𝑥−𝑡𝑣 |2
𝑟2 + |𝑣 |2

𝑅2 . So, we have 𝑓 ⩾ 𝜒 on the parabolic boundary in question. We

now need to show that 𝜒 is a sub-solution inside the ellipsoid 1 ⩾ |𝑥−𝑡𝑣 |2
𝑟2 + |𝑣 |2

𝑅2 . By the
classical comparison principle it implies 𝑓 ⩾ 𝜒 on the same region.

So, differentiating we obtain

𝜒𝑡 + 𝑣 · ∇𝑥 𝜒 = −𝐴,

|sΔ𝑣𝜒 | = s𝛿
����2𝑡2𝑛𝑟2 + 2𝑛

𝑅2

���� ⩽ 2𝑛𝛿𝑆
(

1
𝑟2 + 1

𝑅2

)
,

| (b𝑣 + w) · ∇𝑣𝜒 | ⩽ 𝛿(𝑆𝑅 +𝑊)
(
2𝑡
|𝑥 − 𝑡𝑣 |
𝑟2 + 2|𝑣 |

𝑅2

)
⩽ 𝛿(𝑆𝑅 +𝑊)

(
2𝜏
𝑟

+ 2
𝑅

)
(7.41)

Let
𝐴 = 2𝑛𝛿𝑆

(
1
𝑟2 + 1

𝑅2

)
+ 𝛿(𝑆𝑅 +𝑊)

(
2𝜏
𝑟

+ 2
𝑅

)
.
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In view of the bounds above this implies that 𝜒 is a sub-solution.
It remains to observe that as long as 𝑡 ⩽ 𝛿

4𝐴 and |𝑥 − 𝑡𝑣 | < 𝑟/2, |𝑣 | < 𝑅/2, we have
𝜒 ⩾ 𝛿

4 .

We will be applying Lemma 7.8 for 𝑟 = 𝑟3. Let us pick 𝜏 and 𝑅 now. Our aim is to make
sure that the time limitation giving by the bound (7.40) is long enough that every corner
of the torus 𝐿0T

𝑛 is reachable in that time with velocities from the ball |𝑣 | ⩽ 𝑅/4. In other
words, we ask for 𝑡1𝑅 ⩾ 4𝐿0, or

𝜏𝑅 ⩾ 4𝐿0, 𝑅 ⩾ 4𝐿0 (7.42)

𝑅 ⩾ 32𝐿0

[
𝑛𝑆

(
1
𝑟2

3
+ 1
𝑅2

)
+ (𝑆𝑅 +𝑊)

(
𝜏

𝑟3
+ 1
𝑅

)]
. (7.43)

So, first we fix 𝜏 =
𝑟3
2𝑆

. This ensures that the leading order term in (7.43) has coefficient
1
2 . Next, we fix the minimal 𝑅 = 𝑅1 satisfying both (7.42) and (7.43). Note that 𝑅1 is
admissible.

Setting 𝛿 = 𝑏𝑒−𝑎𝑅2
1 , which is also admissible, in view of (7.38) we have

𝑓 (0, 𝑥, 𝑣) ⩾ 𝛿1{ |𝑥 |<𝑟1 , |𝑣 |<𝑅1 } .

Then
𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝛿

4
1{ |𝑥−𝑡𝑣 |<𝑟3/2, |𝑣 |<𝑅1/2} , 𝑡 ⩽ 𝑡1.

Fix any 𝑥0 ∈ 𝐿0T
𝑛. Then at time 𝑡1 there exists |𝑣0 | < 𝑅1/4 such that 𝑡1𝑣0 = 𝑥0. Notice

that if
|𝑥 − 𝑥0 | < 𝑟3/4, |𝑣 − 𝑣0 | < 𝑟3/4,

then |𝑥 − 𝑡1𝑣 | = |𝑥 − 𝑥0 + 𝑡1 (𝑣0 − 𝑣) | < 𝑟3/2, and certainly, |𝑣 | < 𝑅1/2. So,

𝑓 (𝑡1, 𝑥, 𝑣) ⩾
𝛿

4
1{ |𝑥−𝑥0 |<𝑟3/4, |𝑣−𝑣0 |<𝑟3/4} .

Let us recall that we have started from any point of time (𝜔0/4)2 ⩽ 𝑡 ⩽ (𝜔0/2)2, and
obtained a time 𝑡1 independent of 𝑡. So, we found that for any 𝑥0 ∈ 𝐿0T

𝑛 there exists a 𝑣0,
|𝑣0 | < 𝑅1/4, which depends only on 𝑥0 such that

𝑓 (𝑡, 𝑥, 𝑣) ⩾ 𝛿
4
1{ (𝜔0/4)2<𝑡−𝑡1< (𝜔0/2)2 , |𝑥−𝑥0 |<𝑟3/4, |𝑣−𝑣0 |<𝑟3/4} . (7.44)

In particular,

𝜌(𝑡, 𝑥0) =
∫
R𝑛
𝑓 (𝑡, 𝑥0, 𝑣) d𝑣 ⩾

∫
|𝑣−𝑣0 |<𝑟3/4

𝑓 (𝑡, 𝑥0, 𝑣) d𝑣 ⩾ 𝜆1,

where 𝜆1 is admissible, and (𝜔0/4)2 ⩽ 𝑡 − 𝑡1 ⩽ (𝜔0/2)2. So, for all such times, the density
has a uniform lower bound 𝜆1. At the same time there exists an admissible Λ1 such that

s(𝑡, 𝑥) + |b(𝑡, 𝑥)𝑣 + w(𝑡, 𝑥) | ⩽ Λ1,
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for all (𝑡, 𝑥, 𝑣) ∈ [(𝜔0/4)2 + 𝑡1, (𝜔0/2)2 + 𝑡1] × 𝐿0T
𝑛 × 𝐵4𝑅1 = Ω1.

This implies that we have another initial plateau (7.44), but now around an arbitrary
point 𝑥0 ∈ 𝐿0T

𝑛, and inside a large domain of ellipticityΩ1. Applying Lemma 7.7 to shifted
and if necessary rescaled solution 𝑓 , we find a time 𝑡2 < (𝜔0/2)2 + 𝑡1 and admissible
𝜔1, 𝑎1, 𝑏1 > 0 such that

𝑓 (𝑡2, 𝑥, 𝑣) ⩾ 𝑏1𝑒
−𝑎1 |𝑣 |21 |𝑥−𝑥0 |<𝜔1 .

The obtained admissible constants are independent of 𝑥0 by virtue of the argument on Step
3. Thus,

𝑓 (𝑡2, 𝑥, 𝑣) ⩾ 𝑏1𝑒
−𝑎1 |𝑣 |2 . (7.45)

Now, let us go back to Step 1 and recall that we started with time 0 and found an
admissible time 0 < 𝑡2 < 1

2 such that (7.45) holds. Starting at any other initial time 1 − 𝑡2 >
𝑡 > 0, we find that (7.45) holds at 𝑡 + 𝑡2. This finishes the proof.

7.3. Entropy and global well-posedness

The main implication of Proposition 7.3 can be expressed in terms of lower bound on the
density.

Corollary 7.9. For a given classical solution 𝑓 ∈ 𝐶𝑤( [0, 𝑇);𝐻𝑘𝑙 (T
𝑛)) of (7.1) on a time

interval [0, 𝑇) there exists 𝜌− which depends only on the parameters of the model M, time
𝑇 , and𝑊 , 𝐻 such that

𝜌(𝑡, 𝑥) ⩾ 𝜌− , ∀(𝑡, 𝑥) ∈ [𝑇/2, 𝑇) × T𝑛.

So, controlling 𝑊 and 𝐻 over any finite time interval prevents formation of vacuum,
which by Theorem 7.1 implies global extension. For a special class of our models control
over𝑊 and 𝐻 can indeed be given a priori in terms of energy. We start with 𝐻.

First we recall that 𝐻 is controlled by the true entropy

H =
1
2

∫
Ω×R𝑛

|𝑣 |2 𝑓 d𝑣 d𝑥 +
∫
Ω×R𝑛

𝑓 log 𝑓 d𝑣 d𝑥.

Indeed, by the classical inequality, [36, 63], there is an absolute constant 𝐶 > 0 such that∫
Ω×R𝑛

| 𝑓 log 𝑓 | d𝑣 d𝑥 ⩽
∫
Ω×R𝑛

𝑓 log 𝑓 d𝑣 d𝑥 + 1
4

∫
Ω×R𝑛

|𝑣 |2 𝑓 d𝑣 d𝑥 +𝐶 ⩽ H +𝐶. (7.46)

So,
𝐻 ⩽ 2H + 𝐶. (7.47)

We also have control over the energy

E ⩽ 2H + 𝐶. (7.48)
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Lemma 7.10. Suppose M satisfies (3.54). Then 𝐻 is finite on any finite time interval.
Moreover, if the model M is conservative, then 𝐻 is globally bounded by initial data

𝐻 ⩽ 2H0 + 𝐶. (7.49)

Proof. We have directly from the equation

d
d𝑡
H = −

∫
Ω×R𝑛

s𝜌
[
|∇𝑣 𝑓 |2
𝑓

+ 2(𝑣 − [𝑢]𝜌) · ∇𝑣 𝑓 + 𝑣 · (𝑣 − [𝑢]𝜌) 𝑓
]

d𝑣 d𝑥. (7.50)

Using the identities∫
Ω×R𝑛

s𝜌 [𝑢]𝜌 · ∇𝑣 𝑓 d𝑥 d𝑣 = 0,
∫
Ω×R𝑛

s𝜌𝑣 · [𝑢]𝜌 𝑓 d𝑥 d𝑣 = (𝑢, [𝑢]𝜌)𝜅𝜌 ,

and replace [𝑢]𝜌 with 𝑢 in the second term and compute the third as follows∫
Ω×R𝑛

s𝜌𝑣 · (𝑣 − [𝑢]𝜌) 𝑓 d𝑣 d𝑥 =
∫
Ω×R𝑛

s𝜌𝑣 · (𝑣 − 𝑢) 𝑓 d𝑣 d𝑥 +
∫
Ω×R𝑛

s𝜌𝑣 · (𝑢 − [𝑢]𝜌) 𝑓 d𝑣 d𝑥

=

∫
Ω×R𝑛

s𝜌 |𝑣 − 𝑢 |2 𝑓 d𝑣 d𝑥 + ∥𝑢∥2
𝐿2 (𝜅𝜌 ) − (𝑢, [𝑢]𝜌)𝜅𝜌 .

We obtain

d
d𝑡
H = −

∫
Ω×R𝑛

s𝜌
|∇𝑣 𝑓 + (𝑣 − 𝑢) 𝑓 |2

𝑓
d𝑣 d𝑥 − ∥𝑢∥2

𝐿2 (𝜅𝜌 ) + (𝑢, [𝑢]𝜌)𝜅𝜌 . (7.51)

We can see that H ⩽ H0 for conservative models and (7.49) follows.
Under (3.54) we use (7.48) to conclude that ¤H ⩽𝐶1H +𝐶2. The conclusion follows.

Immediately from Lemma 7.10 we obtain control over 𝑊 as well under 𝐿2 → 𝐿∞

boundedness on the averages.

Lemma 7.11. Suppose M satisfies (3.57). Then 𝐻,𝑊 are finite on any finite time interval.
Moreover, if the model M is conservative, then 𝐻,𝑊 are uniformly bounded by a constant
depending only on the initial condition.

Theorem 7.12. Suppose the model M is regular and satisfies (3.57). Then any local solu-
tion 𝑓 to the Fokker-Planck-Alignment equation (7.1) in class𝐻𝑘

𝑙
(Ω × R𝑛) extends globally

in time. Consequently, (7.1) is globally well-posed for thick data

𝑓0 ∈ 𝐻𝑘𝑙 (Ω × R𝑛), 𝑘, 𝑙 ⩾ 𝑛 + 3, Θ(𝜌0,Ω) > 0.

If in addition M is conservative, then there exists a 𝜌− > 0 depending only on the initial
entropy H0 and the parameters of the model, such that

𝜌(𝑡, 𝑥) ⩾ 𝜌− , ∀(𝑡, 𝑥) ∈ [1,∞) × T𝑛. (7.52)
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A simple rescaling argument shows that in fact for any time 𝑡0 > 0 there exists 𝜌− > 0
depending on the initial entropy H0, 𝑡0, and the parameters of the model such that

𝜌(𝑡, 𝑥) ⩾ 𝜌− , ∀(𝑡, 𝑥) ∈ [𝑡0,∞) × T𝑛. (7.53)

So, vacuum disappears instantaneously.
As shown on the third row of Table 3 all our models are regular on compact environment,

and hence the corresponding FPA are globally well-posed for thick data. In addition, the
model MCS, M𝜙 , and Mseg due to being conservative, also enjoy the uniform bound from
below on the density (7.52).

8. Global relaxation and hypocoercivity

The discussion in this section will be taking place on the compact domain Ω = T𝑛. The
Fokker-Planck-Alignment equation

𝜕𝑡 𝑓 + 𝑣 · ∇𝑥 𝑓 = 𝜎s𝜌Δ𝑣 𝑓 + ∇𝑣 · (s𝜌 (𝑣 − [𝑢]𝜌) 𝑓 ), (8.1)

has an obvious equilibrium

𝜇𝜎,𝑢̄ =
1

|Ω| (2𝜋𝜎)𝑛/2
𝑒−

|𝑣−𝑢̄|2
2𝜎 , (8.2)

for any constant vector 𝑢̄. In this section we demonstrate relaxation towards such equilib-
rium for large data.

There are several issues that arise when comparing this result to the classical linear
Fokker-Planck relaxation, see [97]. First, the nonlinear alignment force pumps energy into
the system as will be seen from (8.8), which prevents direct sliding of the solution towards
global Maxwellian. Second, the degeneracy of thermalization 𝜎s𝜌 needs to be avoided in
order to retain uniform hypoellipticity of the equation. And third, since we are not assuming
that M is conservative, it is not immediately clear that the time dependent momentum 𝑢̄

settles to a limiting vector 𝑢∞.
We settle these issues in steps. Our first general result lists all the necessary functional

requirements on the solution to ensure relaxation towards a moving Maxwellian. We then
examine how these requirements are met in the context of regularity properties stated in
Section 3.7 for specific classes of models and how the stabilization of momentum can be
deduced.

Proposition 8.1. Suppose M is a material model. Let 𝑓 ∈ 𝐻𝑘
𝑙
(Ω × R𝑛) be a classical

solution to (6.2) with density 𝜌 satisfying the following conditions uniformly in time
(i) there exist constants 𝑐0, 𝑐1, 𝑐2 > 0 such that 𝑐0 ⩽ s𝜌 ⩽ 𝑐1 and ∥∇s𝜌∥∞ ⩽ 𝑐2 for all

𝜌 ∈ D;
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(ii) there exists a constant 𝜀0 > 0 such that

sup
{
(𝑢, [𝑢]𝜌)𝜅𝜌 : 𝑢 ∈ 𝐿2 (𝜅𝜌), 𝑢̄ = 0, ∥𝑢∥𝐿2 (𝜅𝜌 ) = 1

}
⩽ 1 − 𝜀0. (8.3)

(iii) ∥s𝜌 [·]𝜌 ∥𝐿2 (𝜌)→𝐿2 (𝜌) + ∥∇𝑥 (s𝜌 [·]𝜌)∥𝐿2 (𝜌)→𝐿2 (𝜌) ⩽ 𝑐3.
Then 𝑓 relaxes to the corresponding Maxwellian exponentially fast,

∥ 𝑓 (𝑡) − 𝜇𝜎,𝑢̄(𝑡 ) ∥𝐿1 (Ω×R𝑛 ) ⩽ 𝑐4

√︃
𝜎−1I( 𝑓0) 𝑒−𝑐5𝜎𝑡 , (8.4)

where 𝑐4, 𝑐5 > 0 depend only on the parameters of the modelM and 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝜀0. Here,
I( 𝑓0) is the Fisher information defined in (8.13), and

𝑢̄ =

∫
Ω×R𝑛

𝑣 𝑓 (𝑡, 𝑥, 𝑣) d𝑣 d𝑥.

Proof of Proposition 8.1. We seek to estimate the relative entropy defined by

H = 𝜎

∫
Ω×R𝑛

𝑓 log
𝑓

𝜇𝜎,𝑢̄
d𝑣 d𝑥. (8.5)

By the Csiszár-Kullback inequality, we have

𝑐𝜎∥ 𝑓 − 𝜇𝜎,𝑢̄∥2
1 ⩽ H ,

for some absolute 𝑐. So, an exponential decay of the entropy would imply the desired result.
Let us also recall that Sobolev densities 𝑓 ∈ 𝐻𝑘

𝑙
(Ω × R𝑛) have finite Fisher information

(see below) which in turns control H , see [94, Lemma 1]. We can therefore analyze H
classically.

Since the model at hand is not assumed to be Galilean invariant or conservative the
mean velocity 𝑢̄ is time dependent and generally may not be assumed 0 without changing
the equation. It will, however, be beneficial to pass to the reference frame centered at 𝑢̄. So,
we consider the change of variables

𝑓 (𝑥, 𝑣, 𝑡) = 𝑓 (𝑥, 𝑣 + 𝑢̄, 𝑡), 𝑢̃ = 𝑢 − 𝑢̄, 𝜌̃ = 𝜌.

In the new variables the equation becomes a system (dropping tildas)

𝜕𝑡 𝑓 + (𝑣 + 𝑢̄) · ∇𝑥 𝑓 = 𝑢̄𝑡 · ∇𝑣 𝑓 + 𝜎s𝜌Δ𝑣 𝑓 + ∇𝑣 · (s𝜌 (𝑣 − [𝑢]𝜌) 𝑓 )

𝑢̄𝑡 =

∫
Ω

( [𝑢]𝜌 − 𝑢) d𝜅𝜌∫
Ω

𝑢𝜌 d𝑥 = 0. (8.6)

We also denote 𝜇𝜎 = 𝜇𝜎,0. Again, let us note that the extra transport term 𝑢̄𝑡 · ∇𝑣 𝑓 appears
because we do not assume that our model is conservative. We keep in mind that 𝑢̄𝑡 is a
constant vector at any point of time.
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The starting point in the proof is two forms of the entropy law. One is (7.51), which
after 𝜎-rescaling reads

d
d𝑡
H = −

∫
Ω×R𝑛

s𝜌
|𝜎∇𝑣 𝑓 + (𝑣 − 𝑢) 𝑓 |2

𝑓
d𝑣 d𝑥 − ∥𝑢∥2

𝐿2 (𝜅𝜌 ) + (𝑢, [𝑢]𝜌)𝜅𝜌 . (8.7)

Using the spectral gap assumption (ii) we conclude

d
d𝑡
H ⩽ −𝜀0∥𝑢∥2

𝐿2 (𝜅𝜌 ) .

And another form of entropy law follows directly from (7.50) (note that the extra transport
term 𝑢̄𝑡 · ∇𝑣 𝑓 does not effect either of them)

d
d𝑡
H = −

∫
Ω×R𝑛

s𝜌
|𝜎∇𝑣 𝑓 + 𝑣 𝑓 |2

𝑓
d𝑣 d𝑥 + (𝑢, [𝑢]𝜌)𝜅𝜌 . (8.8)

Although this form is not dissipative, it gives access to the partial Fisher information

I𝑣𝑣 =
∫
Ω×R𝑛

|𝜎∇𝑣 𝑓 + 𝑣 𝑓 |2
𝑓

d𝑣 d𝑥.

In view of (i) and (iii), we have

d
d𝑡
H ⩽ −𝑐0I𝑣𝑣 + (𝑢, [𝑢]𝜌)𝜅𝜌 ⩽ −𝑐0I𝑣𝑣 + 𝑐∥𝑢∥2

𝐿2 (𝜅𝜌 ) . (8.9)

Combining with the previous form (8.9) we obtain

d
d𝑡
H ≲ −I𝑣𝑣 − ∥𝑢∥2

𝐿2 (𝜅𝜌 ) . (8.10)

The next stage of the proof consists of showing that the classical hypocoercivity of the
linear Fokker-Planck equation extends to the fully non-linear alignment model. In contrast
to theM𝜙-model analyzed in [82] the general system (8.6) requires special attention due to
presence of several additional ingredients such as inhomogeneity of diffusion and 𝑢̄-shift
in the transport term. These result in the slower exponential rate 𝜎, as opposed to 𝜎1/2 for
the M𝜙-model.

Let us write the equation for the new distribution

ℎ =
𝑓

𝜇𝜎
,

ℎ𝑡 + (𝑣 + 𝑢̄) · ∇𝑥ℎ = 𝑢̄𝑡 · ∇𝑣ℎ −
𝑣

𝜎
· 𝑢̄𝑡ℎ + s𝜌 (𝜎Δ𝑣ℎ − 𝑣 · ∇𝑣ℎ)

+ s𝜌 (𝜎−1 ( [𝑢]𝜌 · 𝑣)ℎ − [𝑢]𝜌 · ∇𝑣ℎ). (8.11)



96 R. Shvydkoy

The Fokker-Planck part of the equation (8.11) has the traditional structure of an evolution
semigroup. Denoting

𝐵 = (𝑣 + 𝑢̄) · ∇𝑥 , 𝐴 = ∇𝑣, 𝐴∗ = ( 𝑣
𝜎

− ∇𝑣)·,

where 𝐴∗ is understood relative to the inner product of the weighted space 𝐿2 (𝜇𝜎), we can
write

ℎ𝑡 = −𝜎s𝜌𝐴∗𝐴ℎ − 𝐵ℎ + s𝜌𝐴∗ ([𝑢]𝜌 ℎ) − 𝐴∗ (ℎ𝑢̄𝑡 ). (8.12)

We consider Fisher information functionals

I𝑣𝑣 (ℎ) = 𝜎2
∫
Ω×R𝑛

|∇𝑣ℎ |2
ℎ

d𝜇𝜎 ,

I𝑥𝑣 (ℎ) = 𝜎3/2
∫
Ω×R𝑛

∇𝑥ℎ · ∇𝑣ℎ
ℎ

d𝜇𝜎 ,

I𝑥𝑥 (ℎ) = 𝜎
∫
Ω×R𝑛

|∇𝑥ℎ|2
ℎ

d𝜇𝜎 ,

where d𝜇𝜎 = 𝜇𝜎 d𝑣 d𝑥. The full Fisher information defined by

I = I𝑣𝑣 + I𝑥𝑥 (8.13)

dominates the relative entropy by the classical log-Sobolev inequality

I𝑣𝑣 + I𝑥𝑥 ⩾ 𝜆H .

We now differentiate each of these functionals and obtain estimates on the obtained
equations. The coercivity will be restored by putting them together in a proper linear com-
bination along with the entropy law (8.10).

We will use the following notation: (𝑔)𝜇 =
∫
Ω×R𝑛 𝑔 d𝜇𝜎 .

Lemma 8.2. We have
d
d𝑡
I𝑣𝑣 (ℎ) ⩽ −2𝜎3D𝑣𝑣 − 2𝑐0I𝑣𝑣 − 2𝜎1/2I𝑥𝑣 + 2∥𝑢∥2

𝐿2 (𝜅𝜌 ) ,

where
D𝑣𝑣 = (s𝜌ℎ|∇2

𝑣 ℎ̄ |2)𝜇, ℎ̄ = log ℎ.

Proof. Let us write I𝑣𝑣 = (∇𝑣ℎ · ∇𝑣 ℎ̄)𝜇. Computing the derivative we obtain

1
𝜎2

d
d𝑡
I𝑣𝑣 = 2(∇𝑣ℎ𝑡 · ∇𝑣 ℎ̄)𝜇 − (|∇𝑣 ℎ̄|2ℎ𝑡 )𝜇 = 𝐽𝐴 + 𝐽𝐵 + 𝐽𝑢 + 𝐽𝑢̄,

where

𝐽𝐴 = −2𝜎(s𝜌∇𝑣𝐴∗𝐴ℎ · ∇𝑣 ℎ̄)𝜇 + 𝜎(s𝜌 |∇𝑣 ℎ̄|2𝐴∗𝐴ℎ)𝜇
𝐽𝐵 = −2(∇𝑣𝐵ℎ · ∇𝑣 ℎ̄)𝜇 + (|∇𝑣 ℎ̄|2𝐵ℎ)𝜇
𝐽𝑢 = 2(s𝜌∇𝑣𝐴∗ ( [𝑢]𝜌 ℎ) · ∇𝑣 ℎ̄)𝜇 − (s𝜌 |∇𝑣 ℎ̄|2𝐴∗ ( [𝑢]𝜌 ℎ))𝜇
𝐽𝑢̄ = −2(∇𝑣𝐴∗ (ℎ𝑢̄𝑡 ) · ∇𝑣 ℎ̄)𝜇 + (∇𝑣 |∇𝑣 ℎ̄|2 · 𝑢̄𝑡ℎ)𝜇 .
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Let us start with the most straightforward transport term 𝐵. We have

𝐽𝐵 = −2(∇𝑥ℎ · ∇𝑣 ℎ̄)𝜇 − 2(((𝑣 + 𝑢̄) · ∇𝑥ℎ𝑣𝑖 ) ℎ̄𝑣𝑖 )𝜇 + (|∇𝑣 ℎ̄|2 (𝑣 + 𝑢̄) · ∇𝑥ℎ)𝜇 =: 𝐽1
𝐵 + 𝐽2

𝐵 + 𝐽3
𝐵.

Observe that
𝐽1
𝐵 = −2𝜎−3/2I𝑥𝑣.

Next, as to the second term:

𝐽2
𝐵 = −2((𝑣 + 𝑢̄) · ∇𝑥ℎ𝑣𝑖 ℎ𝑣𝑖 ℎ−1)𝜇 = −((𝑣 + 𝑢̄) · ∇𝑥 |ℎ𝑣𝑖 |2ℎ−1)𝜇

= −(|ℎ𝑣𝑖 |2 (𝑣 + 𝑢̄) · ∇𝑥ℎℎ−2)𝜇 = −(| ℎ̄𝑣𝑖 |2 (𝑣 + 𝑢̄) · ∇𝑥ℎ)𝜇 = −𝐽3
𝐵

and so the two cancel. We obtain

𝐽𝐵 = −2𝜎−3/2I𝑥𝑣.

Let us turn to the dissipation term 𝐽𝐴. Using the identity

𝜕𝑣𝑖 (𝐴∗𝐴ℎ) = 𝐴∗𝐴ℎ𝑣𝑖 + 𝜎−1ℎ𝑣𝑖 ,

we have

𝐽𝐴 = −2𝜎(s𝜌𝐴∗𝐴ℎ𝑣𝑖 ℎ̄𝑣𝑖 )𝜇 − 2(s𝜌∇𝑣ℎ · ∇𝑣 ℎ̄)𝜇 + 𝜎(s𝜌 |∇𝑣 ℎ̄|2𝐴∗𝐴ℎ)𝜇 .

Note that the term in the middle is bounded above by −2𝑐0𝜎
−2I𝑣𝑣 in view of (i). In the

other two we switch 𝐴∗ to the opposite side,

𝐽𝐴 ⩽ −2𝜎(s𝜌𝐴ℎ𝑣𝑖 · 𝐴ℎ̄𝑣𝑖 )𝜇 − 2𝑐0𝜎
−2I𝑣𝑣 + 𝜎(s𝜌𝐴|∇𝑣 ℎ̄|2 · 𝐴ℎ)𝜇

= −2𝜎(s𝜌ℎ𝐴ℎ̄𝑣𝑖 · 𝐴ℎ̄𝑣𝑖 )𝜇 − 2𝜎(s𝜌 ℎ̄𝑣𝑖 𝐴ℎ · 𝐴ℎ̄𝑣𝑖 )𝜇 − 2𝑐0𝜎
−2I𝑣𝑣 + 2𝜎(s𝜌 ℎ̄𝑣𝑖 𝐴ℎ̄𝑣𝑖 · 𝐴ℎ)𝜇 .

The second and last terms cancel, while the first is exactly −2𝜎D𝑣𝑣:

𝐽𝐴 ⩽ −2𝜎D𝑣𝑣 − 2𝑐0𝜎
−2I𝑣𝑣.

For the alignment term we obtain the following the exact identity

𝐽𝑢 = 2𝜎−2 ( [𝑢]𝜌 · 𝑢)𝜅𝜌 . (8.14)

We note, however, that there is no advantage of keeping the low energy here as the full
energy will emerge later in the proof. So, we replace it with the full energy

𝐽𝑢 ⩽ 2(1 − 𝜀0)𝜎−2∥𝑢∥2
𝐿2 (𝜅𝜌 ) ⩽ 2𝜎−2∥𝑢∥2

𝐿2 (𝜅𝜌 ) . (8.15)

To prove (8.14) we manipulate with the formula for 𝐽𝑢 as follows

𝐽𝑢 = 2(s𝜌∇𝑣𝐴∗ ( [𝑢]𝜌 ℎ) · ∇𝑣 ℎ̄)𝜇 − (s𝜌 |∇𝑣 ℎ̄|2𝐴∗ ( [𝑢]𝜌 ℎ))𝜇
= 2(s𝜌∇𝑣 (𝜎−1𝑣 · [𝑢]𝜌 ℎ − [𝑢]𝜌 · ∇𝑣ℎ) · ∇𝑣 ℎ̄)𝜇 − (s𝜌∇𝑣 |∇𝑣 ℎ̄|2 · [𝑢]𝜌 ℎ)𝜇
= 2𝜎−1 (s𝜌 [𝑢]𝜌 ℎ · ∇𝑣 ℎ̄)𝜇 + 2𝜎−1 (s𝜌 (𝑣 · [𝑢]𝜌)∇𝑣ℎ · ∇𝑣 ℎ̄)𝜇
− 2(s𝜌∇2

𝑣ℎ [𝑢]𝜌 · ∇𝑣 ℎ̄)𝜇 − 2(s𝜌∇2
𝑣 ℎ̄(∇𝑣 ℎ̄) · [𝑢]𝜌 ℎ)𝜇

=: 𝐽1
𝑢 + 𝐽2

𝑢 + 𝐽3
𝑢 + 𝐽4

𝑢,
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where ∇2
𝑣ℎ is the Hessian matrix of ℎ.

Observe that the first term is exactly the lower energy

𝐽1
𝑢 = 2𝜎−1 (s𝜌 [𝑢]𝜌 · ∇𝑣ℎ)𝜇 = 2𝜎−2 (s𝜌 [𝑢]𝜌 · 𝑣ℎ)𝜇 = 2𝜎−2 ([𝑢]𝜌 · 𝑢)𝜅𝜌 .

Now comes the crucial observation that the remaining terms that cannot be controlled
cancel altogether

𝐽2
𝑢 + 𝐽3

𝑢 + 𝐽4
𝑢 = 0.

Indeed, using

ℎ𝑣𝑖𝑣 𝑗 = ℎℎ̄𝑣𝑖𝑣 𝑗 +
1
ℎ
ℎ𝑣𝑖 ℎ𝑣 𝑗 (8.16)

let us compute 𝐽3
𝑢,

𝐽3
𝑢 = −2(s𝜌ℎ𝑣𝑖𝑣 𝑗

[
𝑢 𝑗

]
𝜌
ℎ̄𝑣𝑖 )𝜇 = −2(s𝜌ℎℎ̄𝑣𝑖𝑣 𝑗

[
𝑢 𝑗

]
𝜌
ℎ̄𝑣𝑖 )𝜇 − 2(s𝜌

1
ℎ
ℎ𝑣𝑖 ℎ𝑣 𝑗

[
𝑢 𝑗

]
𝜌
ℎ̄𝑣𝑖 )𝜇

= 𝐽4
𝑢 − 2(s𝜌∇𝑣ℎ · [𝑢]𝜌 |∇𝑣 ℎ̄|2)𝜇 .

Also note that
𝐽2
𝑢 = 2𝜎−1 (s𝜌 (𝑣 · [𝑢]𝜌 ℎ) |∇𝑣 ℎ̄|2)𝜇 .

Then we have

𝐽2
𝑢 + 𝐽3

𝑢 = 𝐽
4
𝑢 + 2𝜎−1 (s𝜌 (𝑣 · [𝑢]𝜌 ℎ) |∇𝑣 ℎ̄|2)𝜇 − 2(s𝜌∇𝑣ℎ · [𝑢]𝜌 |∇𝑣 ℎ̄|2)𝜇

= 𝐽4
𝑢 + 2(s𝜌𝐴∗ ( [𝑢]𝜌 ℎ) |∇𝑣 ℎ̄|2)𝜇 .

Switching 𝐴∗ in the last term we obtain

2(s𝜌𝐴∗ ( [𝑢]𝜌 ℎ) |∇𝑣 ℎ̄|2)𝜇 = 2(s𝜌ℎ [𝑢]𝜌 · ∇𝑣 |∇𝑣 ℎ̄|2)𝜇 = −2𝐽4
𝑢 .

The obtained terms sum up to zero.
Finally, we show that the momentum term vanishes 𝐽𝑢̄ = 0. Let us expand

𝐽𝑢̄ = 2(∇2
𝑣ℎ∇𝑣 ℎ̄ · 𝑢̄𝑡 )𝜇 − 2

(
𝑣

𝜎
· 𝑢̄𝑡

|∇𝑣ℎ|2
ℎ

)
𝜇

+ (∇𝑣 |∇𝑣 ℎ̄|2 · 𝑢̄𝑡ℎ)𝜇 =: 𝐽1
𝑢̄ + 𝐽2

𝑢̄ + 𝐽3
𝑢̄ .

Let us look into the first term,

𝐽1
𝑢̄ =

(
∇𝑣 |∇𝑣ℎ|2

ℎ
· 𝑢̄𝑡

)
𝜇

=

(
𝐴

(
|∇𝑣ℎ|2
ℎ

)
· 𝑢̄𝑡

)
𝜇

+
(
|∇𝑣ℎ|2
ℎ2 ∇𝑣ℎ · 𝑢̄𝑡

)
𝜇

=

(
|∇𝑣ℎ|2
ℎ

𝑣 · 𝑢̄𝑡
𝜎

)
𝜇

+
(
|∇𝑣 ℎ̄|2∇𝑣ℎ · 𝑢̄𝑡

)
𝜇
.

So,

𝐽1
𝑢̄ + 𝐽2

𝑢̄ = −
(
|∇𝑣ℎ|2
ℎ

𝑣 · 𝑢̄𝑡
𝜎

)
𝜇

+
(
|∇𝑣 ℎ̄|2∇𝑣ℎ · 𝑢̄𝑡

)
𝜇
= −(|∇𝑣 ℎ̄|2𝐴∗ (ℎ𝑢̄𝑡 ))𝜇

= −(∇𝑣 |∇𝑣 ℎ̄|2ℎ𝑢̄𝑡 )𝜇 = −𝐽3
𝑢̄ .
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Thus, 𝐽1
𝑢̄ + 𝐽2

𝑢̄ + 𝐽3
𝑢̄
= 0.

Lemma 8.3. We have
d
d𝑡
I𝑥𝑣 (ℎ) ⩽ −1

4
𝜎1/2I𝑥𝑥 + 𝑐(𝜎−1/2 + 1)I𝑣𝑣 +

1
2
𝜎3D𝑣𝑣 +

1
2
𝜎2D𝑥𝑣 + 𝑐(𝜎−1/2 + 1)∥𝑢∥2

2,

where
D𝑥𝑣 = (s𝜌ℎ|∇𝑣∇𝑥 ℎ̄|2)𝜇 .

Proof. Let us write

1
𝜎3/2

d
d𝑡
I𝑥𝑣 (ℎ) = (∇𝑥ℎ𝑡 · ∇𝑣 ℎ̄)𝜇 + (∇𝑥 ℎ̄ · ∇𝑣ℎ𝑡 )𝜇 − (ℎ𝑡∇𝑣 ℎ̄ · ∇𝑥 ℎ̄)𝜇 := 𝐽𝐴 + 𝐽𝐵 + 𝐽𝑢 + 𝐽𝑢̄,

where as before 𝐽𝐴, 𝐽𝐵, 𝐽𝑢, 𝐽𝑢̄ collect contributions from 𝐴, 𝐵, and alignment components,
respectively.

For the 𝐵-term we have

𝐽𝐵 = −(∇𝑥 ((𝑣 + 𝑢̄) · ∇𝑥ℎ) · ∇𝑣 ℎ̄)𝜇 − (∇𝑥 ℎ̄ · ∇𝑣 ((𝑣 + 𝑢̄) · ∇𝑥ℎ))𝜇
+ (((𝑣 + 𝑢̄) · ∇𝑥ℎ)∇𝑣 ℎ̄ · ∇𝑥 ℎ̄)𝜇 := 𝐽1

𝐵 + 𝐽2
𝐵 + 𝐽3

𝐵.

For the middle term we expand

𝐽2
𝐵 = −(∇𝑥 ℎ̄ · ∇𝑥ℎ)𝜇 − ( ℎ̄𝑥𝑖 (𝑣 𝑗 + 𝑢̄ 𝑗 )ℎ𝑥 𝑗𝑣𝑖 )𝜇 .

The first term is exactly −𝜎−1I𝑥𝑥 and in the second integrating by parts in 𝑥 𝑗 , we obtain

= −𝜎−1I𝑥𝑥 + ( ℎ̄𝑥𝑖 𝑥 𝑗 (𝑣 𝑗 + 𝑢̄ 𝑗 )ℎ𝑣𝑖 )𝜇

using that ℎ̄𝑥𝑖 𝑥 𝑗 = ℎ−1ℎ𝑥𝑖 𝑥 𝑗 − ℎ̄𝑥𝑖 ℎ̄𝑥 𝑗 ,

= −𝜎−1I𝑥𝑥 + (ℎ𝑥𝑖 𝑥 𝑗 (𝑣 𝑗 + 𝑢̄ 𝑗 ) ℎ̄𝑣𝑖 )𝜇 − ( ℎ̄𝑥𝑖 ℎ̄𝑥 𝑗 (𝑣 𝑗 + 𝑢̄ 𝑗 )ℎ𝑣𝑖 )𝜇 = −𝜎−1I𝑥𝑥 − 𝐽1
𝐵 − 𝐽3

𝐵.

Hence,
𝐽𝐵 = −𝜎−1I𝑥𝑥 . (8.17)

Let us look into the 𝐽𝐴-term:

1
𝜎
𝐽𝐴 = −(∇𝑥 (s𝜌𝐴∗𝐴ℎ) · ∇𝑣 ℎ̄)𝜇 − (s𝜌∇𝑥 ℎ̄ · ∇𝑣𝐴∗𝐴ℎ)𝜇 + (s𝜌𝐴∗𝐴ℎ∇𝑣 ℎ̄ · ∇𝑥 ℎ̄)𝜇

= 𝐽1
𝐴 + 𝐽

2
𝐴 + 𝐽

3
𝐴.

For 𝐽1
𝐴

we obtain

𝐽1
𝐴 = −(s𝜌𝐴∗𝐴ℎ𝑥𝑖 ℎ̄𝑣𝑖 )𝜇 − ((s𝜌)𝑥𝑖 𝐴∗𝐴ℎℎ̄𝑣𝑖 )𝜇 = −(s𝜌∇𝑣ℎ𝑥𝑖 · ∇𝑣 ℎ̄𝑣𝑖 )𝜇 − ((s𝜌)𝑥𝑖∇𝑣ℎ∇𝑣 ℎ̄𝑣𝑖 )𝜇

= −(s𝜌ℎ∇𝑣 ℎ̄𝑥𝑖 · ∇𝑣 ℎ̄𝑣𝑖 )𝜇 − (s𝜌 ℎ̄𝑥𝑖∇𝑣ℎ · ∇𝑣 ℎ̄𝑣𝑖 )𝜇 −
(
(s𝜌)𝑥𝑖
s1/2
𝜌

∇𝑣ℎ
ℎ1/2 · s1/2

𝜌 ℎ1/2∇𝑣 ℎ̄𝑣𝑖

)
𝜇

.
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In view of assumption (i),

𝐽1
𝐴 ⩽ −(s𝜌ℎ∇𝑣 ℎ̄𝑥𝑖 · ∇𝑣 ℎ̄𝑣𝑖 )𝜇 − (s𝜌 ℎ̄𝑥𝑖∇𝑣ℎ · ∇𝑣 ℎ̄𝑣𝑖 )𝜇 + 𝑐𝜎−1

√︁
I𝑣𝑣D𝑣𝑣.

For 𝐽2
𝐴

we obtain

𝐽2
𝐴 = −𝜎−1 (s𝜌∇𝑥 ℎ̄ · ∇𝑣ℎ)𝜇 − (s𝜌 ℎ̄𝑥𝑖 𝐴∗𝐴ℎ𝑣𝑖 )𝜇 = −𝜎−1 (s𝜌∇𝑥 ℎ̄ · ∇𝑣ℎ)𝜇

− (s𝜌ℎ∇𝑣 ℎ̄𝑥𝑖 · ∇𝑣 ℎ̄𝑣𝑖 )𝜇 − (s𝜌 ℎ̄𝑣𝑖∇𝑣 ℎ̄𝑥𝑖 · ∇𝑣ℎ)𝜇 .

The two add up to

𝐽1
𝐴 + 𝐽

2
𝐴 = −𝜎−1

(
s𝜌

∇𝑥ℎ
ℎ1/2 · ∇𝑣ℎ

ℎ1/2

)
𝜇

− 2(s𝜌ℎ∇𝑣 ℎ̄𝑥𝑖 · ∇𝑣 ℎ̄𝑣𝑖 )𝜇 − (s𝜌𝐴ℎ · 𝐴(∇𝑣 ℎ̄ · ∇𝑥 ℎ̄))𝜇

+ 𝑐𝜎−1
√︁
I𝑣𝑣D𝑣𝑣

⩽ −𝑐0𝜎
−5/2

√︁
I𝑥𝑥I𝑣𝑣 +

√︁
D𝑥𝑣D𝑣𝑣 + 𝑐𝜎−1

√︁
I𝑣𝑣D𝑣𝑣 − 𝐽3

𝐴.

Thus,
𝐽𝐴 ⩽ 𝑐0𝜎

−3/2
√︁
I𝑥𝑥I𝑣𝑣 + 𝜎

√︁
D𝑥𝑣D𝑣𝑣 + 𝑐

√︁
I𝑣𝑣D𝑣𝑣.

Let us examine the alignment term now,

𝐽𝑢 = (∇𝑥 (s𝜌𝐴∗ ( [𝑢]𝜌 ℎ)) · ∇𝑣 ℎ̄)𝜇 + (∇𝑥 ℎ̄ · ∇𝑣 (s𝜌𝐴∗ ( [𝑢] ℎ)))𝜇 − (s𝜌𝐴∗ ( [𝑢]𝜌 ℎ)∇𝑣 ℎ̄ · ∇𝑥 ℎ̄)𝜇
= ((s𝜌)𝑥𝑖 𝐴∗ ( [𝑢]𝜌 ℎ) ℎ̄𝑣𝑖 )𝜇 + (s𝐴∗ (( [𝑢]𝜌)𝑥𝑖 ℎ) ℎ̄𝑣𝑖 )𝜇 + (s𝜌𝐴∗ ([𝑢]𝜌 ℎ𝑥𝑖 ) ℎ̄𝑣𝑖 )𝜇
+ (s𝜌 ℎ̄𝑥𝑖 𝐴∗ ( [𝑢]𝜌 ℎ𝑣𝑖 ))𝜇 + 𝜎−1 (s𝜌ℎ∇𝑥 ℎ̄ · [𝑢]𝜌)𝜇 − (s𝜌ℎ [𝑢]𝜌 · ∇𝑣 (∇𝑣 ℎ̄ · ∇𝑥 ℎ̄))𝜇
= (ℎ(s𝜌 [𝑢]𝜌)𝑥𝑖 · ∇𝑣 ℎ̄𝑣𝑖 )𝜇 + (s𝜌ℎ [𝑢]𝜌 ℎ̄𝑥𝑖 · ∇𝑣 ℎ̄𝑣𝑖 )𝜇
+ (s𝜌ℎ∇𝑣 ℎ̄𝑥𝑖 · [𝑢]𝜌 ℎ̄𝑣𝑖 )𝜇 + 𝜎−1 (s𝜌ℎ∇𝑥 ℎ̄ · [𝑢]𝜌)𝜇 − (s𝜌ℎ [𝑢]𝜌 · ∇𝑣 (∇𝑣 ℎ̄ · ∇𝑥 ℎ̄))𝜇

We can see that the 2rd, 3th, and 5th terms cancel, and we arrive at

𝐽𝑢 = (ℎ(s𝜌 [𝑢]𝜌)𝑥𝑖 · ∇𝑣 ℎ̄𝑣𝑖 )𝜇 + 𝜎−1 (s𝜌ℎ∇𝑥 ℎ̄ · [𝑢]𝜌)𝜇 = 𝐽1
𝑢 + 𝐽2

𝑢 .

We estimate 𝐽1
𝑢 using the assumption (iii), and the fact that 𝐿2 (𝜅𝜌)- and 𝐿2 (𝜌)-norms are

equivalent under (i),
𝐽1
𝑢 ⩽ 𝑐∥𝑢∥𝐿2 (𝜅𝜌 )

√︁
D𝑣𝑣

And again, by (iii),

𝐽2
𝑢 ⩽ 𝜎

−3/2∥𝑢∥𝐿2 (𝜅𝜌 )
√︁
I𝑥𝑥 ⩽

1
2
𝜎−1I𝑥𝑥 + 𝜎−2∥𝑢∥2

𝐿2 (𝜅𝜌 ) .

Noticing that 1
2𝜎

−1I𝑥𝑥 is absorbed into (8.17) and summing up all the terms we arrive at

d
d𝑡
I𝑥𝑣 (ℎ) ⩽ −1

2
𝜎1/2I𝑥𝑥 + 𝑐0

√︁
I𝑥𝑥I𝑣𝑣 + 𝑐𝜎3/2

√︁
I𝑣𝑣D𝑣𝑣 + 𝜎5/2√︁D𝑥𝑣D𝑣𝑣

+ 𝑐𝜎3/2∥𝑢∥𝐿2 (𝜅𝜌 )
√︁
D𝑣𝑣 + 𝜎−1/2∥𝑢∥2

𝐿2 (𝜅𝜌 )

⩽ −1
4
𝜎1/2I𝑥𝑥 + 𝑐(𝜎−1/2 + 1)I𝑣𝑣 +

1
2
𝜎3D𝑣𝑣 +

1
2
𝜎2D𝑥𝑣 + 𝑐(𝜎−1/2 + 1)∥𝑢∥2

𝐿2 (𝜅𝜌 ) .
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Finally, let us look at the momentum term

𝐽𝑢̄ = −(𝐴∗ (𝑢̄𝑡𝜕𝑥𝑖 ℎ)𝜕𝑣𝑖 ℎ̄)𝜇 − (𝜕𝑥𝑖 ℎ̄𝜕𝑣𝑖 𝐴∗ (𝑢̄𝑡ℎ))𝜇 + (𝐴∗ (𝑢̄𝑡ℎ)𝜕𝑣𝑖 ℎ̄𝜕𝑥𝑖 ℎ̄)𝜇
:= 𝐽1

𝑢̄ + 𝐽2
𝑢̄ + 𝐽3

𝑢̄ .

Let us note the identity

𝜕𝑣𝑖 𝐴
∗ = 𝐴∗𝜕𝑣𝑖 +

1
𝜎

Id,

and expand on 𝐽2
𝑢̄

𝐽2
𝑢̄ = −(𝜕𝑥𝑖 ℎ̄𝐴∗ (𝑢̄𝑡𝜕𝑣𝑖 ℎ))𝜇 − 𝜎−1 (𝜕𝑥𝑖 ℎ𝑢̄𝑡 )𝜇 .

The last term vanishes since 𝑢̄𝑡 is a constant vector. Thus,

𝐽2
𝑢̄ = −(∇𝑣𝜕𝑥𝑖 ℎ̄ · 𝑢̄𝑡𝜕𝑣𝑖 ℎ)𝜇

In the other two terms we switch 𝐴∗ as well

𝐽1
𝑢̄ = −(𝜕𝑥𝑖 ℎ𝑢̄𝑡 · ∇𝑣𝜕𝑣𝑖 ℎ̄)𝜇
𝐽3
𝑢̄ = (ℎ𝑢̄𝑡 · ∇𝑣 (𝜕𝑣𝑖 ℎ̄𝜕𝑥𝑖 ℎ̄))𝜇

The sum of the three is clearly zero by the product rule. So,

𝐽𝑢̄ = 0.

Lemma 8.4. We have

d
d𝑡
I𝑥𝑥 (ℎ) ⩽ 𝑐I𝑣𝑣 − 𝜎2D𝑥𝑣 + 𝑐∥𝑢∥2

𝐿2 (𝜅𝜌 ) .

Proof. We have

1
𝜎

d
d𝑡
I𝑥𝑥 (ℎ) = 2(∇𝑥ℎ𝑡 · ∇𝑥 ℎ̄)𝜇 − (|∇𝑥 ℎ̄|2ℎ𝑡 )𝜇 := 𝐽𝐴 + 𝐽𝐵 + 𝐽𝑢 + 𝐽𝑢̄.

The 𝐵-term cancels entirely,

𝐽𝐵 = −2(∇𝑥 ((𝑣 + 𝑢̄) · ∇𝑥ℎ) · ∇𝑥 ℎ̄)𝜇 + (|∇𝑥 ℎ̄|2 (𝑣 + 𝑢̄) · ∇𝑥ℎ)𝜇
= −2(((𝑣 + 𝑢̄) · ∇𝑥ℎ𝑥𝑖 )ℎ𝑥𝑖 ℎ−1)𝜇 + (|∇𝑥 ℎ̄|2 (𝑣 + 𝑢̄) · ∇𝑥ℎ)𝜇
= −(((𝑣 + 𝑢̄) · ∇𝑥 |∇𝑥ℎ|2ℎ−1)𝜇 + (|∇𝑥 ℎ̄|2 (𝑣 + 𝑢̄) · ∇𝑥ℎ)𝜇
= −((𝑣 + 𝑢̄) · ∇𝑥ℎ|∇𝑥ℎ|2ℎ−2)𝜇 + (|∇𝑥 ℎ̄|2 (𝑣 + 𝑢̄) · ∇𝑥ℎ)𝜇 = 0.

So is 𝐽𝑢̄,

𝐽𝑢̄ = −2(∇𝑥𝐴∗ (𝑢̄𝑡ℎ) · ∇𝑥 ℎ̄)𝜇 + (|∇𝑥 ℎ̄|2𝐴∗ (𝑢̄𝑡ℎ))𝜇
= −2(𝜕𝑥𝑖 ℎ𝑢̄𝑡 · ∇𝑣𝜕𝑥𝑖 ℎ̄)𝜇 + (∇𝑣 |∇𝑥 ℎ̄|2 · 𝑢̄𝑡ℎ)𝜇 = 0.
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The 𝐴-term is given by

𝐽𝐴 = −2(∇𝑥 (s𝜌𝐴∗𝐴ℎ) · ∇𝑥 ℎ̄)𝜇 + (s𝜌 |∇𝑥 ℎ̄|2𝐴∗𝐴ℎ)𝜇
= −2((s𝜌)𝑥𝑖 𝐴ℎ · 𝐴ℎ̄𝑥𝑖 )𝜇 − 2(s𝜌𝐴ℎ𝑥𝑖 · 𝐴ℎ̄𝑥𝑖 )𝜇 + (s𝜌𝐴|∇𝑥 ℎ̄|2 · 𝐴ℎ)𝜇
⩽ 𝑐𝜎−1

√︁
D𝑥𝑣I𝑣𝑣 − 2(s𝜌∇𝑣 (ℎℎ̄𝑥𝑖 ) · ∇𝑣 ℎ̄𝑥𝑖 )𝜇 + (s𝜌∇𝑣 |∇𝑥 ℎ̄|2 · ∇𝑣ℎ)𝜇

= 𝑐𝜎−1
√︁
D𝑥𝑣I𝑣𝑣 − 2(s𝜌ℎ∇𝑣 ℎ̄𝑥𝑖 · ∇𝑣 ℎ̄𝑥𝑖 )𝜇 − 2(s𝜌 ℎ̄𝑥𝑖∇𝑣ℎ · ∇𝑣 ℎ̄𝑥𝑖 )𝜇

+ (s𝜌∇𝑣 |∇𝑥 ℎ̄|2 · ∇𝑣ℎ)𝜇
= 𝑐𝜎−1

√︁
D𝑥𝑣I𝑣𝑣 − 2D𝑥𝑣 − (s𝜌∇𝑣 |∇𝑥 ℎ̄|2 · ∇𝑣ℎ)𝜇 + (s𝜌∇𝑣 |∇𝑥 ℎ̄|2 · ∇𝑣ℎ)𝜇

= 𝑐𝜎−1
√︁
D𝑥𝑣I𝑣𝑣 − 2D𝑥𝑣.

Thus,
𝐽𝐴 ⩽ 𝑐

√︁
D𝑥𝑣I𝑣𝑣 − 2𝜎D𝑥𝑣.

Finally, the alignment term is given by

𝐽𝑢 = 2(∇𝑥 (s𝜌𝐴∗ ( [𝑢]𝜌 ℎ)) · ∇𝑥 ℎ̄)𝜇 − (s𝜌 |∇𝑥 ℎ̄|2𝐴∗ ( [𝑢]𝜌 ℎ))𝜇 .

In the second term we switch the operator 𝐴∗:

−(s𝜌 |∇𝑥 ℎ̄|2𝐴∗ ( [𝑢]𝜌 ℎ))𝜇 = −(s𝜌∇𝑣 |∇𝑥 ℎ̄|2 [𝑢]𝜌 ℎ)𝜇 . (8.18)

For the first term we obtain

2(∇𝑥 (s𝜌𝐴∗ ( [𝑢]𝜌 ℎ)) · ∇𝑥 ℎ̄)𝜇 = 2(ℎ(s𝜌 [𝑢]𝜌)𝑥𝑖 · ∇𝑣 ℎ̄𝑥𝑖 )𝜇 + 2(s𝜌ℎℎ̄𝑥𝑖 [𝑢]𝜌 · ∇𝑣 ℎ̄𝑥𝑖 )𝜇 .

We can see that the last term cancels with (8.18). We thus obtain, using assumption (iii),

𝐽𝑢 = 2(ℎ(s𝜌 [𝑢]𝜌)𝑥𝑖 · ∇𝑣 ℎ̄𝑥𝑖 )𝜇 ⩽ 𝑐∥𝑢∥𝐿2 (𝜅𝜌 )
√︁
D𝑥𝑣.

Putting together the obtained bounds we have

d
d𝑡
I𝑥𝑥 (ℎ) ⩽ 𝑐𝜎

√︁
D𝑥𝑣I𝑣𝑣 − 2𝜎2D𝑥𝑣 + 𝑐𝜎∥𝑢∥𝐿2 (𝜅𝜌 )

√︁
D𝑥𝑣 ⩽ 𝑐I𝑣𝑣 − 𝜎2D𝑥𝑣 + 𝑐∥𝑢∥2

𝐿2 (𝜅𝜌 ) .

To conclude the proof, let us combine together all the Fisher functionals in the following
format

Ĩ = I𝑣𝑣 + 𝛿𝜎1/2I𝑥𝑣 +
𝑐0

𝑐
I𝑥𝑥 ,

where 𝛿 > 0 is small but dependent only on the parameters of the assumptions (i), (ii), (iii).
Since 𝜎 < 1, for 𝛿 small enough we have Ĩ ∼ I. Then,

d
d𝑡
Ĩ ⩽ −𝑐0I𝑣𝑣 − 𝑐1𝜎I𝑥𝑥 + 𝐶∥𝑢∥2

2.
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Invoking the entropy inequality (8.10), we obtain with a properly chosen constant 𝐶 > 0,

d
d𝑡

(Ĩ + 𝐶H) ⩽ −𝑐0I𝑣𝑣 − 𝑐1𝜎I𝑥𝑥 ⩽ −𝑐2𝜎(I𝑣𝑣 + I𝑥𝑥) ∼ −𝜎(Ĩ + 𝐶H).

Hence,
Ĩ + 𝐶H ⩽ 𝑐3I( 𝑓0)𝑒−𝑐2𝜎𝑡 , (8.19)

and the result follows.

8.1. Applications

Let us now explore how Proposition 8.1 implies relaxation for various situations.
First, we have convergence near equilibrium for all models whose spectral gap is under

control for densities near uniform.

Proposition 8.5. Suppose that M is regular and has a uniformly positive spectral gap for
any densities close to uniform

inf{𝜀0 (𝜌) : ∥𝜌 − 1/|Ω|∥1 ⩽ 𝛿0} > 0. (8.20)

Then there exists a constant 𝑐 > 0 depending only on the parameters of the model such that
for any initial condition 𝑓0 ∈ 𝐻𝑘

𝑙
(Ω) satisfying

I( 𝑓0) ⩽ 𝑐𝜎𝛿0, (8.21)

there exists a global classical solution converging to the Maxwellian exponentially fast.

Proof. By Definition 3.13 (iii),(iv) we can further reduce the size of 𝛿0 if necessary to
have not only the uniform spectral gap condition but also the uniform thickness condition
satisfied,Θ(𝜌,Ω) > 𝑐4. By the regularity assumption (3.44), the assumption on the spectral
gap, and (3.42), such densities fulfill all the conditions (i), (ii), (iii) of Proposition 8.1, with
constants 𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝜀0 depending only on 𝛿0. And according to Theorem 7.1 such data
give rise to local classical solutions 𝑓 ∈ 𝐻𝑘

𝑙
.

If (8.25) holds, then by the Csiszár-Kullback inequality ∥𝜌0 − 1
|Ω | ∥𝐿1 ⩽ 𝑐5𝑐𝛿0 for some

absolute 𝑐5 > 0. If 𝑐 < 1
2𝑐5

then by continuity we have ∥𝜌(𝑡) − 1
|Ω | ∥𝐿1 < 𝛿0 at least on some

short time interval [0, 𝑇). Let 𝑇 be the maximal time of existence of the local solution
which satisfies the above. Note that the solution cannot blowup before it reaches the equality
∥𝜌(𝑡) − 1

|Ω | ∥𝐿1 = 𝛿0, due to the continuation criterion (7.4). Hence, if 𝑇 is finite it is only
because we have ∥𝜌(𝑇) − 1

|Ω | ∥𝐿1 = 𝛿0 for the first time.
The Proposition 8.1 then applies on [0,𝑇]. As a consequence, ∥𝜌(𝑇) − 1

|Ω | ∥𝐿1 ⩽ 𝑐6𝑐𝛿0
for all 𝑡 ⩽ 𝑇 and some 𝑐6 depending on the parameters of the model only. Assuming further
that 𝑐 < 1

2𝑐6
we conclude that 𝑇 cannot be finite. Thus, the solution exists globally and

satisfies ∥𝜌(𝑡) − 1
|Ω | ∥𝐿1 < 𝛿0 for all time. Proposition 8.1 applies again to conclude the

result.
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Before we state application of this result to particular models, let us address the issue of
the time-dependent momentum for non-conservative case. It turns out that for all our core
non-conservative models M𝛽 , including the Motsch-Tadmor model, the average momen-
tum stabilizes.

Lemma 8.6. Suppose M satisfies the assumptions of Proposition 8.5 and

[1]∗1
|Ω|

= 1. (8.22)

For any solution 𝑓 that relaxes at an exponential rate in the sense of relative entropy there
exists 𝑢∞ ∈ R𝑛 such that 𝑢̄(𝑡) → 𝑢∞ exponentially fast, and consequently,

∥ 𝑓 (𝑡) − 𝜇𝜎,𝑢∞ ∥𝐿1 (Ω×R𝑛 ) ⩽ 𝑐9𝑒
−𝑐10𝑡 . (8.23)

In particular, the conclusion applies to all conservative and all M𝛽 models.

Proof. By the Csiszár-Kullback inequality we have ∥𝜌 − 1
|Ω | ∥1 ≲ 𝑒

−𝑐𝑡 . Thus, as we argued
in the proof of Proposition 8.5, the density eventually enters into a class satisfying all the
functional requirements of Proposition 8.1 uniformly in time.

We have

𝑢̄𝑡 =

∫
Ω

∫
Ω

𝜙𝜌 (𝑥, 𝑦)𝑢(𝑦)𝜌(𝑦) d𝑦𝜌(𝑥) d𝑥 −
∫
Ω

s𝜌 (𝑦)𝑢(𝑦)𝜌(𝑦) d𝑦

=

∫
Ω

∫
Ω

(𝜙𝜌 (𝑥, 𝑦) − 𝜙 1
|Ω|
(𝑥, 𝑦))𝑢(𝑦)𝜌(𝑦) d𝑦𝜌(𝑥) d𝑥

+
∫
Ω

∫
Ω

𝜙 1
|Ω|
(𝑥, 𝑦)𝑢(𝑦)𝜌(𝑦) d𝑦

[
𝜌(𝑥) − 1

|Ω|

]
d𝑥

+
∫
Ω

[
1
|Ω|

∫
Ω

𝜙 1
|Ω|
(𝑥, 𝑦) d𝑥 − s 1

|Ω|
(𝑦)

]
𝑢(𝑦)𝜌(𝑦) d𝑦

+
∫
Ω

[
s 1
|Ω|
(𝑦) − s𝜌 (𝑦)

]
𝑢(𝑦)𝜌(𝑦) d𝑦.

By continuity assumptions all the terms on the right hand side are bounded by a constant
multiple of ∥𝜌 − 1

|Ω | ∥1
√
E. Since the energy remains uniformly bounded all these terms

are exponentially decaying. This proves the exponential convergence 𝑢̄(𝑡) → 𝑢∞ for some
𝑢∞ ∈ R𝑛.

Next, we have∫
Ω×R𝑛

𝑓 log
𝑓

𝜇𝜎,𝑢∞
d𝑣 d𝑥 =

∫
Ω×R𝑛

𝑓 log
𝑓

𝜇𝜎,𝑢̄
d𝑣 d𝑥 +

∫
Ω×R𝑛

𝑓 log
𝜇𝜎,𝑢̄

𝜇𝜎,𝑢∞
d𝑣 d𝑥.

The last term is a constant multiple of∫
Ω×R𝑛

𝑓 ( |𝑢∞ − 𝑣 |2 − |𝑢̄ − 𝑣 |2) d𝑣 d𝑥 = |𝑢∞ |2 − |𝑢̄ |2 + 2
∫
Ω

(𝑢̄ − 𝑢∞) · 𝑢𝜌 d𝑥 ≲ 𝑒−𝑐𝑡 .

This finishes the proof.
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According to our computations of spectral gaps stated in Proposition 4.16 and Propo-
sition 4.18, we can apply the above results to conclude local relaxation for all core models.
Let us gather all this in one statement.

Theorem 8.7 (Relaxation near equilibrium). Suppose thatM is a regular model satisfying

inf{𝜀0 (𝜌) : ∥𝜌 − 1/|Ω|∥1 ⩽ 𝛿0} > 0, (8.24)

and
[1]∗1

|Ω|
= 1.

Then there exists a constant 𝑐 > 0 depending only on the parameters of the model such that
for any initial condition 𝑓0 ∈ 𝐻𝑘

𝑙
(Ω) satisfying

I( 𝑓0) ⩽ 𝑐𝜎𝛿0, (8.25)

there exists a global classical solution 𝑓 and there exists 𝑢∞ ∈ R𝑛 such that

∥ 𝑓 (𝑡) − 𝜇𝜎,𝑢∞ ∥𝐿1 (Ω×R𝑛 ) ⩽ 𝑐9𝑒
−𝑐10𝑡 . (8.26)

In particular, the conclusion applies to all core models MCS, MMT, M𝛽 , M𝜙 , Mseg.

We now gather a set of conditions which guarantees global relaxation.

Theorem 8.8 (Global relaxation). Suppose M is a regular conservative model satisfying
(3.57) and such that

inf{𝜀0 (𝜌) : 𝜌̄𝑟 (Ω) > 𝛿0} > 0, (8.27)

for some 𝑟, 𝛿0 > 0. Then any classical global solution to the Fokker-Planck-Alignment
equation (8.1) relaxes to equilibrium as stated in Proposition 8.1 with 𝑢̄ = 𝑢̄0.

In particular, global relaxation holds for the following models
• the Cucker-Smale model MCS with a Bochner-positive kernel 𝜙 = 𝜓 ∗ 𝜓;
• the M𝜙-model with inf 𝜙 > 0;
• the segregation model Mseg with supp 𝑔𝑙 = Ω for all 𝑙 = 1, . . . , 𝐿.

Proof. According to Theorem 7.12 under the given conditions on M any classical solution
gains a uniform bound on the density from below 𝜌(𝑥, 𝑡) ⩾ 𝜌− , for (𝑥, 𝑡) ∈ Ω × [1,∞). This
automatically puts the solution into a class satisfying the assumptions of Proposition 8.1
uniformly.

Let us remark that the only requirement that prevents global relaxation forM𝜙 andMseg
models with general local kernels is the uniform 𝐿2 → 𝐿∞ boundedness (3.57), which is
needed to control𝑊 . However, this control can be regained if the solution is known to have
uniformly bounded macroscopic velocities

sup
𝑡⩾0

∥𝑢(𝑡)∥∞ < ∞. (8.28)

This is precisely the result obtained for M𝜙 in [82].
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9. Hydrodynamic limits

Supplementing the Vlasov equation (4.1) with a strong penalization force

𝜕𝑡 𝑓
𝜀 + 𝑣 · ∇𝑥 𝑓 𝜀 = ∇𝑣 · (s𝜌 (𝑣 − [𝑢𝜀]𝜌𝜀 ) 𝑓 𝜀) +

1
𝜀
𝐹 ( 𝑓 𝜀), (9.1)

one can achieve regimes in which the distribution 𝑓 asymptotically takes a special form
explicitly expressible in terms of the macroscopic quantities 𝑢, 𝜌. The limiting system satis-
fied by 𝑢, 𝜌 is called the Euler-alignment system (1.19), in which the pressure law depends
on the particular force 𝐹 used in the limit. In this study we will cover two types of limits –
monokinetic and Maxwellian.

The monokinetic limit is achieved by enforcing strong local alignment 𝐹 = ∇𝑣 · [(𝑣 −
𝑢𝜀) 𝑓 𝜀]. The force penalizes deviation from the Dirac concentrated on 𝑢𝜀 , which drives
the solution towards monokinetic distribution 𝑓 = 𝜌(𝑥, 𝑡)𝛿𝑢(𝑥,𝑡 ) (𝑣), where 𝜌, 𝑢 solve the
pressureless EAS

𝜕𝑡 𝜌 + ∇ · (𝑢𝜌) = 0,
𝜕𝑡𝑢 + 𝑢 · ∇𝑢 = s𝜌 ( [𝑢]𝜌 − 𝑢). (9.2)

Solutions to (9.2) will always be understood in smooth regularity classes such as

(𝑢, 𝜌) ∈ 𝐶𝑤( [0, 𝑇);𝐻𝑚 × (𝐻𝑘 ∩ 𝐿1
+)) ∩ Lip( [0, 𝑇);𝐻𝑚−1 × (𝐻𝑘−1 ∩ 𝐿1

+)), (9.3)

for 𝑚 ⩾ 𝑘 + 1 > 𝑛
2 + 2. Local and global well-posedness theory for such solutions can be

established for a variety of models and data, see [81] for a detailed analysis. Because of
the maximum principle on 𝑢 which applies to solutions of (9.2) any initially compact flock
supp 𝜌0 ⊂ 𝐵𝑅0 will remain compactly supported on any finite time interval

supp 𝜌(𝑡) ⊂ 𝐵𝑅 (𝑡 ) , 𝑅(𝑡) ⩽ 𝑅0 + 𝐴0𝑡. (9.4)

The history of this limit goes back to [51,65] where the alignment term in (4.1) is con-
sidered centered around zero velocity. In the settings of the classical Cucker-Smale model
the hydrodynamic limit was studied in [34]. In both studies the force 𝐹 = ∇𝑣 · [(𝑣 − 𝑢𝜀) 𝑓 𝜀]
includes the rough macroscopic field 𝑢𝜀 causing issues with uniqueness of characteristics
of (9.1) and subsequently the transport of 𝑓 𝜀 . These issues have been dealt with in [34]
by imposing no vacuum condition 𝜌 > 0 and restricting analysis to the periodic domain.
A more recent remake of Figalli-Kang’s argument done in [81] avoids all these issues by
replacing 𝑢𝜀 with a mollified version if it, 𝑢𝜀

𝛿
, based on the M𝜙-protocol. Such change

allows to extend the limit to vacuous and compactly supported flocks on either T𝑛 or R𝑛.
In the context of the general environmental averaging models this result can be broadly

extended to include all uniformly regular models. Moreover, in contrast to the previous
studies the convergence 𝑓 𝜀 → 𝑓 can be upgrade quantitatively to Wasserstein-2 metric,
see Theorem 9.2.
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In the Maxwellian regime the force 𝐹 is given by the Fokker-Planck-Alignment operator

𝐹 = Δ𝑣 𝑓
𝜀 + ∇𝑣 · [(𝑣 − 𝑢𝜀) 𝑓 𝜀] .

The local thermodynamic equilibrium becomes the Maxwellian

𝑓 =
𝜌(𝑥, 𝑡)
(2𝜋)𝑛/2

𝑒−
|𝑣−𝑢(𝑥,𝑡 ) |2

2 ,

and so the corresponding macroscopic model is given by the EAS with isothermal pressure

𝜕𝑡 𝜌 + ∇ · (𝑢𝜌) = 0,
𝜕𝑡 (𝜌𝑢) + ∇ · (𝜌𝑢 ⊗ 𝑢) + ∇𝜌 = 𝜌s𝜌 ([𝑢]𝜌 − 𝑢). (9.5)

In the Cucker-Smale settings, this limit was justified in [54] via the relative entropy method.
Again, because of the roughness of 𝑢𝜀 the result had to be cast in the settings of a special
class of weak solutions established in [52], see also [53] for the justification of a local
alignment limit. The work [82] implemented similar method to prove hydrodynamic limit
in the context of the M𝜙-model.

Now, we can cast the Maxwellian limit in the framework of general environmental aver-
aging models with the additional implementation of the mollified local alignment field 𝑢𝜀

𝛿

– the same methodology we will be using in the monokinetic case. This allows to work in
the class of classical solutions as stated in Theorem 7.1 and Theorem 7.12. The limiting
solution must be non-vacuous and the domain is restricted to the torus Ω = T𝑛. Theo-
rem 9.6 shows convergence 𝑓 𝜀 → 𝑓 in the relative entropy sense, which implies stronger
convergence in 𝐿1 by the Csiszár-Kullback inequality.

9.1. Monokinetic limit

In this section we discuss the monokinetic limit. The analysis will be carried out on any
environment Ω, compact or not under the assumption of uniform regularity of M.

Let us consider solutions to the following Vlasov model with forced local alignment

𝜕𝑡 𝑓
𝜀 + 𝑣 · ∇𝑥 𝑓 𝜀 = ∇𝑣 · (s𝜌𝜀 (𝑣 − [𝑢𝜀]𝜌𝜀 ) 𝑓 𝜀) +

1
𝜀
∇𝑣 · ((𝑣 − 𝑢𝜀𝛿) 𝑓 𝜀), (9.6)

where subscript 𝛿 designates a special mollification. To define it let us fix a smooth mollifier
𝜓𝛿 (𝑥) = 1

𝛿𝑛
𝜓(𝑥/𝛿), where 𝜓 > 0 on Ω and in the case of Ω = R𝑛 we assume that 𝜓 satisfies

the algebraic decay condition (3.52). Then let 𝑢𝛿 be the average of 𝑢 based on the M𝜓𝛿 -
protocol,

𝑢𝛿 =

( (𝑢𝜌)𝜓𝛿
𝜌𝜓𝛿

)
𝜓𝛿

. (9.7)

Formally, (9.6) corresponds to the Vlasov equation (4.1) based on the model given by

s𝜀𝜌 = s𝜌 +
1
𝜀
, [𝑢] 𝜀, 𝛿𝜌 =

𝜀s𝜌
𝜀s𝜌 + 1

[𝑢]𝜌 +
1

𝜀s𝜌 + 1
𝑢𝛿 .
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Clearly, sinceM𝜓𝛿 andM are uniformly regular, then so is the model above. Consequently,
the global existence of classical compactly supported solutions to (9.6) is warranted in
this case by Theorem 5.4. Moreover, characteristics of (9.6) satisfy the usual maximum
principle for velocities Lemma 4.1. Hence, |𝑋 𝜀 (𝑡) | ⩽ 𝑅0 + 𝑡𝐴0, where 𝑅0 is the initial
radius of the support in 𝑥 and 𝐴0 is the maximal initial velocity. Thus, on any time interval
[0, 𝑇], the family 𝑓 𝜀 will be supported on a bounded region uniformly in 𝜀 if initial 𝑓0 is
compactly supported.

Before we focus on the main convergence result let is go back to the defined mollification
𝑢𝛿 and note another remarkable approximation property – if 𝑢 is a smooth field, then 𝑢𝛿
approximates 𝑢 with a quantitative bound independent of any regularity of 𝜌. This allows to
implement it to situations where the only information known on 𝜌 is its mass. The following
is a generalization of such approximation property presented in [81, Lemma 5.1].

Lemma 9.1. For any 𝑢 ∈ Lip and for any 1 ⩽ 𝑝 < ∞ one has

∥𝑢𝛿 − 𝑢∥𝐿𝑝 (𝜌) ⩽ 𝐶𝛿∥𝑢∥Lip, (9.8)

where 𝐶 > 0 is a constant depending only on the kernel 𝜓 and 𝑝. The estimate also holds
for all 1 ⩽ 𝑝 ⩽ ∞ with 𝐶 independent of 𝑝 if 𝜓 is compactly supported.

Proof. Let us fix a test-function 𝑓 ∈ 𝐿𝑞 (𝜌), where 𝑞−1 + 𝑝−1 = 1. Then, let us split∫
Ω

𝑓 (𝑢𝛿 − 𝑢)𝜌 d𝑥 =
∫
Ω

𝑓 (𝑢𝛿 − 𝑢𝜓𝛿 )𝜌 d𝑥 +
∫
Ω

𝑓 (𝑢𝜓𝛿 − 𝑢)𝜌 d𝑥 := 𝐼1 + 𝐼2.

For 𝐼2 we simply use the standard approximation property of mollification

𝐼2 ⩽ 𝛿∥𝑢∥Lip∥ 𝑓 ∥𝐿1 (𝜌) ⩽ 𝛿∥𝑢∥Lip∥ 𝑓 ∥𝐿𝑞 (𝜌) .

For 𝐼1 we have, using Minkowskii and Hölder inequality,

𝐼1 =

∫
Ω

( 𝑓 𝜌)𝜓𝛿
(𝑢𝜌)𝜓𝛿
𝜌𝜓𝛿

d𝑥 +
∫
Ω

( 𝑓 𝜌)𝜓𝛿
𝑢𝜌𝜓𝛿

𝜌𝜓𝛿
d𝑥

=

∫
Ω

( 𝑓 𝜌)𝜓𝛿 ((𝑢𝜌)𝜓𝛿 − 𝑢𝜌𝜓𝛿 )
𝜌𝜓𝛿

d𝑥 =
∫
Ω

( 𝑓 𝜌)𝜓𝛿
𝜌

1/𝑝
𝜓𝛿

(𝑢𝜌)𝜓𝛿 − 𝑢𝜌𝜓𝛿
𝜌

1/𝑞
𝜓𝛿

d𝑥

⩽
©­«
∫
Ω

| ( 𝑓 𝜌)𝜓𝛿 |𝑞

𝜌
𝑞/𝑝
𝜓𝛿

d𝑥ª®¬
1/𝑞 ©­«

∫
Ω

| (𝑢𝜌)𝜓𝛿 − 𝑢𝜌𝜓𝛿 |𝑝

𝜌
𝑝/𝑞
𝜓𝛿

d𝑥ª®¬
1/𝑝

⩽

(∫
Ω

| ( | 𝑓 |𝑞𝜌)𝜓𝛿 d𝑥
)1/𝑞 (∫

Ω×Ω
|𝑢(𝑦) − 𝑢(𝑥) |𝑝𝜌(𝑦)𝜓𝛿 (𝑥 − 𝑦) d𝑦 d𝑥

)1/𝑝

⩽ ∥ 𝑓 ∥𝐿𝑞 (𝜌) ∥𝑢∥Lip

(∫
Ω×Ω

|𝑥 − 𝑦 |𝑝𝜌(𝑦)𝜓𝛿 (𝑥 − 𝑦) d𝑦 d𝑥
)1/𝑝

= 𝛿∥ 𝑓 ∥𝐿𝑞 (𝜌) ∥𝑢∥Lip𝐶
1/𝑝
𝑝,𝜓
,

where 𝐶𝑝,𝜓 =
∫
Ω
|𝑥 |𝑝𝜓(𝑥) d𝑥. This implies (9.8) for all 𝑝 < ∞. If however 𝜓 is compactly

supported, then 𝐶𝑝,𝜓 ⩽ (diam supp 𝜓) 𝑝 , and so the estimate holds also in the limit as
𝑝 → ∞.
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The main convergence result of this section will be quantified in terms of𝑊2-metric:

𝑊2
2 ( 𝑓1, 𝑓2) = inf

𝛾∈Π ( 𝑓1 , 𝑓2 )

∫
Ω2×R2𝑛

|𝜔1 − 𝜔2 |2 d𝛾(𝜔1, 𝜔2),

where Π( 𝑓1, 𝑓2) is the set of probability measures with marginals 𝑓1 and 𝑓2, respectively.

Theorem 9.2. Suppose M is a uniformly regular model. Let (𝜌, 𝑢) be a classical solution
to (9.2) on the time interval [0,𝑇) with compact support (9.4), and let 𝑓 = 𝜌(𝑥, 𝑡)𝛿𝑢(𝑥,𝑡 ) (𝑣).
Suppose 𝑓 𝜀0 ∈ 𝐶𝑘0 (Ω × R𝑛) is a family of initial conditions satisfying
(i) supp 𝑓 𝜀0 ⊂ {|𝑤 | < 𝑅0};
(ii) 𝑊2 ( 𝑓 𝜀0 , 𝑓0) ⩽ 𝜀.
Then there exists a constant 𝐶 such that for all 𝑡 < 𝑇 one has

𝑊2 ( 𝑓 𝜀𝑡 , 𝑓𝑡 ) ⩽ 𝐶
√︂
𝜀 + 𝛿

𝜀
. (9.9)

Remark 9.3. Let us note that the scaling regime 𝛿 = 𝜀2 appears to be the most optimal:
if 𝛿 ≪ 𝜀2, the model becomes over-resolved without improvement on convergence rate of
solutions, if 𝛿 ≫ 𝜀2, the model is under-resolved and the convergence rate slows down. We
obtain in this case the optimal rate of

√
𝜀:

𝑊2 ( 𝑓 𝜀 , 𝑓 ) ⩽ 𝐶
√
𝜀. (9.10)

Remark 9.4. Not that𝑊2 ( 𝑓 𝜀 , 𝑓 ) → 0 also implies convergence of densities, simply because
𝜌’s are marginals of 𝑓 ’s: 𝑊2 (𝜌𝜀 , 𝜌) ⩽ 𝑊2 ( 𝑓 𝜀 , 𝑓 ). Similarly, since all distributions are
confined to a bounded set, we also have𝑊1 (𝑢𝜀𝜌𝜀 , 𝑢𝜌) ⩽ 𝐶𝑊1 ( 𝑓 𝜀 , 𝑓 ) ⩽ 𝐶𝑊2 ( 𝑓 𝜀 , 𝑓 ). So,
this also implies the convergence of momenta.

Remark 9.5. The theorem applies to a range of core models listed in Table 3. However, we
also note that the uniform regularity is only needed to facilitate global existence of solutions.
The actual assumptions that are needed to run the argument for a given family of solutions
are (3.54), (3.48) - (3.49), where 𝜌′ = 𝜌 is the limiting density, and ∥𝜕𝑦𝜙𝜌∥∞ < 𝐶. Thus,
if the limiting density is known to be thick and the model is simply regular and satisfies
(3.54), (3.48) - (3.49), then the theorem applies just as well to putative solutions and extends
to a much wider class of models listed in the last row of Table 3.

Proof. Let us first note that since all densities are compactly supported the model satisfies
all the estimates (3.46)-(3.47) for 𝜌 and 𝜌𝜀 uniformly on [0, 𝑇].

Denoting

E𝜀 =
1
2

∫
Ω×R𝑛

|𝑣 |2 𝑓 𝜀 (𝑥, 𝑣) d𝑥 d𝑣,
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we have the following energy balance relation for solutions of (9.6):

d
d𝑡
E𝜀 = −

∫
Ω×R𝑛

s𝜌𝜀 |𝑣 |2 𝑓 𝜀 d𝑣 d𝑥 + (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅𝜌𝜀

+ 1
𝜀

∫
Ω

| (𝜌𝜀𝑢𝜀)𝜓𝛿 |2

𝜌𝜀
𝜓𝛿

d𝑥 − 2
𝜀
E𝜀 . (9.11)

Noting that ∫
Ω×R𝑛

s𝜌𝜀 |𝑣 |2 𝑓 𝜀 d𝑣 d𝑥 ⩾ (𝑢𝜀 , 𝑢𝜀)𝜅𝜌𝜀

we obtain

d
d𝑡
E𝜀 ⩽ (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 − 𝑢𝜀)𝜅𝜌𝜀 +

1
𝜀

∫
Ω

| (𝜌𝜀𝑢𝜀)𝜓𝛿 |2

𝜌𝜀
𝜓𝛿

d𝑥 − 2
𝜀
E𝜀 . (9.12)

Obviously the last two terms store a lot of dissipative information. The crucial observation
is that they control internal energies of 𝑓 𝜀 both the native one relative to the local field 𝑢𝜀

and relative to the filtered field 𝑢𝜀
𝛿
. To see that let us note the following two identities

e( 𝑓 𝜀 |𝑢𝜀) :=
1
2

∫
Ω×R𝑛

|𝑣 − 𝑢𝜀 |2 𝑓 𝜀 d𝑣 d𝑥 = E𝜀 −
1
2

∫
R𝑛
𝜌𝜀 |𝑢𝜀 |2 d𝑥,

e( 𝑓 𝜀 |𝑢𝜀𝛿) :=
1
2

∫
Ω×R𝑛

|𝑣 − 𝑢𝜀𝛿 |2 𝑓 𝜀 d𝑣 d𝑥 = E𝜀 −
∫
Ω

| (𝜌𝜀𝑢𝜀)𝜓𝛿 |2

𝜌𝜀
𝜓𝛿

d𝑥 + 1
2

∫
Ω

𝜌𝜀 |𝑢𝜀𝛿 |2 d𝑥.

Summing up we obtain

e( 𝑓 𝜀 |𝑢𝜀) + e( 𝑓 𝜀 |𝑢𝜀𝛿) = 2E𝜀 −
∫
Ω

| (𝜌𝜀𝑢𝜀)𝜓𝛿 |2

𝜌𝜀
𝜓𝛿

d𝑥 + 1
2

∫
R𝑛
𝜌𝜀 |𝑢𝜀𝛿 |2 d𝑥 − 1

2

∫
R𝑛
𝜌𝜀 |𝑢𝜀 |2 d𝑥,

and since the M𝜙-model is contractive, the last two terms add up to a non-positive value.
Thus,

2E𝜀 −
∫
Ω

| (𝜌𝜀𝑢𝜀)𝜓𝛿 |2

𝜌𝜀
𝜓𝛿

d𝑥 ⩾ e( 𝑓 𝜀 |𝑢𝜀) + e( 𝑓 𝜀 |𝑢𝜀𝛿).

Consequently, plugging this pack into (9.12) we obtain

d
d𝑡
E𝜀 ⩽ (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 − 𝑢𝜀)𝜅𝜌𝜀 −

1
𝜀
[e( 𝑓 𝜀 |𝑢𝜀) + e( 𝑓 𝜀 |𝑢𝜀𝛿)] . (9.13)

The energy inequality (9.13) already shows that the solution concentrates to a monoki-
netic form near its own macroscopic field. However, the quantity that controls how far that
concentration is from 𝑢, is the modulated kinetic energy:

e( 𝑓 𝜀 |𝑢) = 1
2

∫
Ω×R𝑛

|𝑣 − 𝑢 |2 𝑓 𝜀 d𝑣 d𝑥.
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This quantity plays a key role in the argument. It should be noted that it controls the corre-
sponding macroscopic relative entropy∫

Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 =
∫
Ω

( |𝑢𝜀 |2𝜌𝜀 − 2𝑢𝜀 · 𝑢𝜌𝜀 + |𝑢 |2𝜌𝜀) d𝑥

⩽

∫
Ω×R𝑛

( |𝑣 |2 𝑓 𝜀 − 2𝑢 · 𝑣 𝑓 𝜀 + |𝑢 |2 𝑓 𝜀) d𝑥 d𝑣 = e( 𝑓 𝜀 |𝑢). (9.14)

According to (ii) we can fix an initial 𝛾0 ∈ Π( 𝑓 𝜀0 , 𝑓0) such that∫
Ω2×R2𝑛

|𝜔1 − 𝜔2 |2 d𝛾0 (𝜔1, 𝜔2) ⩽ 2𝜀2.

Let us now propagate 𝛾0 along the direct product of characteristic maps of (9.6) and (4.1),
i.e. let 𝛾𝑡 by the measure-valued solution to the transport equation

𝜕𝑡𝛾 + 𝑣1 · ∇𝑥1𝛾 + 𝑣2 · ∇𝑥2𝛾 + ∇𝑣1 [𝛾(s𝜌𝜀 (𝑣1 − [𝑢𝜀]𝜌𝜀 ) +
1
𝜀
(𝑣1 − 𝑢𝜀𝛿))]

+ ∇𝑣2 [𝛾s𝜌 (𝑣2 − [𝑢]𝜌)] = 0.

Integrating upon pairs (𝑥1, 𝑣1) and (𝑥2, 𝑣2) we can see that the marginals of 𝛾 satisfy the
same transport equations as 𝑓 and 𝑓 𝜀 , respectively. Consequently, by uniqueness, 𝛾𝑡 ∈
Π( 𝑓 𝜀𝑡 , 𝑓𝑡 ) for all time. This means that the cost of 𝛾𝑡 dominates the 𝑊2-distance at any
time,

𝑊 :=
∫
Ω2×R2𝑛

|𝜔1 − 𝜔2 |2 d𝛾𝑡 (𝜔1, 𝜔2) ⩾ 𝑊2
2 ( 𝑓

𝜀 , 𝑓 ).

Let us split𝑊 into potential and kinetic components

𝑊 =

∫
Ω2×R2𝑛

|𝑣1 − 𝑣2 |2 d𝛾 +
∫
Ω2×R2𝑛

|𝑥1 − 𝑥2 |2 d𝛾 := 𝑊𝑣 +𝑊𝑥 .

Evolution of the potential component is easily estimated using the transport of 𝛾

d
d𝑡
𝑊𝑥 =

d
d𝑡

∫
Ω2×R2𝑛

|𝑋 𝜀 (𝜔1, 𝑡) − 𝑋 (𝜔2, 𝑡) |2 d𝛾0

= 2
∫
Ω2×R2𝑛

(𝑋 𝜀 (𝜔1, 𝑡) − 𝑋 (𝜔2, 𝑡)) · (𝑉 𝜀 (𝜔1, 𝑡) −𝑉 (𝜔2, 𝑡)) d𝛾0 ⩽ 𝑊𝑥 +𝑊𝑣.

Instead of writing the evolution equation for𝑊𝑣 we subordinate it to the internal energy,
and trace its evolution. Let us make the following estimate

𝑊𝑣 ⩽

∫
Ω2×R2𝑛

|𝑣1 − 𝑢(𝑥1) |2 d𝛾 +
∫
Ω2×R2𝑛

|𝑢(𝑥1) − 𝑢(𝑥2) |2 d𝛾 +
∫
Ω2×R2𝑛

|𝑢(𝑥2) − 𝑣2 |2 d𝛾

⩽

∫
Ω×R𝑛

|𝑣 − 𝑢(𝑥) |2 𝑓 𝜀 (𝑥, 𝑣) d𝑣 d𝑥 + 𝐶
∫
Ω2×R2𝑛

|𝑥1 − 𝑥2 |2 d𝛾 + 0

where the last term canceled thanks to the monokinetic nature of 𝑓 ,

= e( 𝑓 𝜀 |𝑢) + 𝐶𝑊𝑥 .
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We have obtained so far

d
d𝑡
𝑊𝑥 ⩽ e( 𝑓 𝜀 |𝑢) + 𝑐1𝑊𝑥 ,

𝑊𝑣 ⩽ e( 𝑓 𝜀 |𝑢) + 𝑐2𝑊𝑥 . (9.15)

To complete this system we now investigate evolution of the internal energy itself.
Before we write the equation for the modulated energy e( 𝑓 𝜀 |𝑢), let us recall that we are

dealing with smooth solutions to both so all the computations are legitimate. From (9.6)
we can read off the macroscopic system for the 𝜀-density and momentum

𝜌𝜀𝑡 + ∇ · (𝜌𝜀𝑢𝜀) = 0,

(𝜌𝜀𝑢𝜀)𝑡 + ∇𝑥 · (𝜌𝜀𝑢𝜀 ⊗ 𝑢𝜀 + R𝜀) = 𝜅𝜌𝜀 ( [𝑢𝜀]𝜌𝜀 − 𝑢𝜀) +
1
𝜀
𝜌𝜀 (𝑢𝜀𝛿 − 𝑢𝜀),

where the Reynolds stress is given by

R𝜀 =
∫
R𝑛

(𝑣 − 𝑢𝜀) ⊗ (𝑣 − 𝑢𝜀) 𝑓 𝜀 (𝑥, 𝑣, 𝑡) d𝑣.

Let us expand e( 𝑓 𝜀 |𝑢) into three parts

e( 𝑓 𝜀 |𝑢) = E𝜀 −
∫
R𝑛
𝜌𝜀𝑢𝜀 · 𝑢 d𝑥 + 1

2

∫
R𝑛
𝜌𝜀 |𝑢 |2 d𝑥.

From the energy inequality (9.13) we will only retain the alignment component (to be used
later) and the native internal energy

d
d𝑡
E𝜀 ⩽ (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 − 𝑢𝜀)𝜅𝜌𝜀 −

1
𝜀

e( 𝑓 𝜀 |𝑢𝜀). (9.16)

Let us work out the equation for the macroscopic part:

d
d𝑡

∫
Ω

𝜌𝜀𝑢𝜀 · 𝑢 d𝑥 =
∫
Ω

𝜕𝑡 (𝜌𝜀𝑢𝜀) · 𝑢 d𝑥 +
∫
Ω

𝜌𝜀𝑢𝜀 · 𝜕𝑡𝑢 d𝑥 (9.17)

=

∫
R𝑛

(𝜌𝜀𝑢𝜀 ⊗ 𝑢𝜀 + R𝜀) : ∇𝑢 d𝑥 −
∫
Ω

𝜌𝜀𝑢𝜀 ⊗ 𝑢 : ∇𝑢 d𝑥

+ ([𝑢𝜀]𝜌𝜀 − 𝑢𝜀 , 𝑢)𝜅𝜌𝜀 +
∫
Ω

𝜌𝜀𝑢𝜀 · ( [𝑢]𝜌 − 𝑢)s𝜌 d𝑥

+ 1
𝜀

∫
Ω

𝜌𝜀 (𝑢𝜀𝛿 − 𝑢𝜀) · 𝑢 d𝑥

d
d𝑡

1
2

∫
Ω

𝜌𝜀 |𝑢 |2 d𝑥 =
∫
Ω

𝜌𝜀𝑢 · 𝜕𝑡𝑢 d𝑥 + 1
2

∫
Ω

𝜕𝑡 𝜌
𝜀 |𝑢 |2 d𝑥 (9.18)

= −
∫
Ω

𝜌𝜀𝑢 ⊗ 𝑢 : ∇𝑢 d𝑥 +
∫
Ω

𝜌𝜀𝑢 ⊗ 𝑢𝜀 : ∇𝑢 d𝑥

+
∫
Ω

𝜌𝜀𝑢 · ( [𝑢]𝜌 − 𝑢)s𝜌 d𝑥.
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Putting the two equations together and collecting all the inertia terms and using (9.14) we
obtain

−
∫
Ω

𝜌𝜀 (𝑢𝜀 − 𝑢) ⊗ (𝑢𝜀 − 𝑢) : ∇𝑢 d𝑥 ⩽ ∥∇𝑢∥∞
∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 ≲ e( 𝑓 𝜀 |𝑢).

The Reynolds stress is estimated similarly∫
Ω

R𝜀 : ∇𝑢 d𝑥 ⩽ ∥∇𝑢∥∞
∫
Ω×R𝑛

|𝑣 − 𝑢𝜀 (𝑥, 𝑡) |2 𝑓 𝜀 (𝑥, 𝑣, 𝑡) d𝑥 d𝑣 ≲ e( 𝑓 𝜀 |𝑢𝜀).

As to the local alignment term, we use the symmetry and approximation property of
the M𝜙-averaging used to define 𝑢𝜀

𝛿
, which is crucially independent of regularity of 𝜌𝜀 .

Namely, by Lemma 9.1 with 𝑝 = 2, we have∫
Ω

𝜌𝜀 (𝑢𝜀𝛿 − 𝑢𝜀) · 𝑢 d𝑥 =
∫
Ω

𝜌𝜀𝑢𝜀𝛿 · 𝑢 d𝑥 −
∫
Ω

𝜌𝜀𝑢𝜀 · 𝑢 d𝑥

=

∫
Ω

𝜌𝜀𝑢𝜀 · 𝑢𝛿 d𝑥 −
∫
Ω

𝜌𝜀𝑢𝜀 · 𝑢 d𝑥

=

∫
Ω

𝜌𝜀𝑢𝜀 · (𝑢𝛿 − 𝑢) d𝑥 ⩽ 𝐶∥𝑢𝜀 ∥𝐿2 (𝜌𝜀 )𝛿∥∇𝑢∥∞.

Thus, the local alignment term can be estimated by

𝐴loc =
1
𝜀

∫
R𝑛
𝜌𝜀 (𝑢𝜀𝛿 − 𝑢𝜀) · 𝑢 d𝑥 ≲ ∥𝑢𝜀 ∥𝐿2 (𝜌𝜀 )

𝛿

𝜀
. (9.19)

Note that the energy ∥𝑢𝜀 ∥𝐿2 (𝜌𝜀 ) remains uniformly bounded in 𝜀, so,

𝐴loc ≲
𝛿

𝜀
. (9.20)

Let us collect the obtained estimates (9.16), (9.17), (9.18), and simplify the native align-
ment components

d
d𝑡

e( 𝑓 𝜀 |𝑢) ≲ e( 𝑓 𝜀 |𝑢) + 𝛿
𝜀
+ (𝑢𝜀 − 𝑢, [𝑢𝜀]𝜌𝜀 − 𝑢𝜀)𝜅𝜌𝜀 +

∫
Ω

𝜌𝜀 (𝑢 − 𝑢𝜀) · ( [𝑢]𝜌 − 𝑢)s𝜌 d𝑥.

(9.21)
It remains to estimate the alignment terms. Let us rearrange them as follows

𝛿𝐴 = (𝑢𝜀 − 𝑢, [𝑢𝜀]𝜌𝜀 − 𝑢𝜀)𝜅𝜌𝜀 +
∫
Ω

𝜌𝜀 (𝑢 − 𝑢𝜀) · ( [𝑢]𝜌 − 𝑢)s𝜌 d𝑥

=

∫
Ω

𝜌𝜀 (𝑢 − 𝑢𝜀) · (s𝜌𝜀 [𝑢𝜀]𝜌𝜀 − s𝜌 [𝑢]𝜌 + s𝜌𝑢 − s𝜌𝜀𝑢𝜀) d𝑥

= (𝑢𝜀 − 𝑢, [𝑢𝜀 − 𝑢]𝜌𝜀 )𝜅𝜌𝜀 +
∫
Ω

𝜌𝜀 (𝑢 − 𝑢𝜀) · (s𝜌𝜀 [𝑢]𝜌𝜀 − s𝜌 [𝑢]𝜌) d𝑥

−
∫
Ω

𝜌𝜀 |𝑢 − 𝑢𝜀 |2s𝜌𝜀 d𝑥 +
∫
Ω

𝜌𝜀 (𝑢 − 𝑢𝜀) · 𝑢(s𝜌𝜀 − s𝜌) d𝑥 := 𝐼 + 𝐼 𝐼 + 𝐼 𝐼 𝐼 + 𝐼𝑉 .
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Note that I and III would add up to a non-positive constant had we assumed that our model
was contractive. Instead, we simply drop III and use the uniform boundedness (3.54) which
is implied by (3.46) to estimate I by the macroscopic relative entropy

𝐼 ≲

∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥.

Since 𝑢 ∈ 𝑊1,∞, using (3.47) the second term is bounded by∫
Ω

𝜌𝜀 (𝑢 − 𝑢𝜀) · (s𝜌𝜀 [𝑢]𝜌𝜀 − s𝜌 [𝑢]𝜌) d𝑥 ≲
∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥

+
∫
Ω

����∫
Ω

(𝜙𝜌𝜀 (𝑥, 𝑦)𝜌𝜀 (𝑦) − 𝜙𝜌 (𝑥, 𝑦)𝜌(𝑦))𝑢(𝑦) d𝑦
����2 𝜌𝜀 (𝑥) d𝑥

⩽

∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 +
∫
Ω

����∫
Ω

(𝜙𝜌𝜀 (𝑥, 𝑦) − 𝜙𝜌 (𝑥, 𝑦))𝜌𝜀 (𝑦)𝑢(𝑦) d𝑦
����2 𝜌𝜀 (𝑥) d𝑥

+
∫
Ω

����∫
Ω

𝜙𝜌 (𝑥, 𝑦) (𝜌𝜀 (𝑦) − 𝜌(𝑦))𝑢(𝑦) d𝑦
����2 𝜌𝜀 (𝑥) d𝑥

⩽

∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 + ∥𝑢∥2
∞

∫
Ω

∫
Ω

|𝜙𝜌𝜀 (𝑥, 𝑦) − 𝜙𝜌 (𝑥, 𝑦) |2𝜌𝜀 (𝑦)𝜌𝜀 (𝑥) d𝑦 d𝑥

+ ∥𝜕𝑦 (𝜙𝜌𝑢)∥2
∞𝑊

2
1 (𝜌

𝜀 , 𝜌),
which by (3.46)-(3.47) (or in fact by a weaker assumption (3.48) - (3.49)) is bounded further
by

≲

∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 +𝑊2
1 (𝜌

𝜀 , 𝜌).

Finally, by (3.47) the last term is bounded by the same quantity∫
Ω

𝜌𝜀 (𝑢 − 𝑢𝜀) · 𝑢(s𝜌𝜀 − s𝜌) d𝑥 ≲
∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 +
∫
Ω

𝜌𝜀 |s𝜌𝜀 − s𝜌 |2 d𝑥

⩽

∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 +𝑊2
1 (𝜌

𝜀 , 𝜌).

In summary, the alignment term is bounded by

𝛿𝐴 ≲

∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 +𝑊2
1 (𝜌

𝜀 , 𝜌) ⩽ e( 𝑓 𝜀 |𝑢) +𝑊2
2 (𝜌

𝜀 , 𝜌). (9.22)

Collecting all the estimates together we obtain
d
d𝑡

e( 𝑓 𝜀 |𝑢) ≲ e( 𝑓 𝜀 |𝑢) + 𝛿
𝜀
+𝑊2

2 (𝜌
𝜀 , 𝜌).

Note that since the (𝑥1, 𝑥2)-marginal of 𝛾 belongs to Π(𝜌𝜀 , 𝜌) we further find𝑊2
2 (𝜌

𝜀 , 𝜌) ⩽
𝑊𝑥 . So, we have obtained the system

d
d𝑡
𝑊𝑥 ⩽ e( 𝑓 𝜀 |𝑢) + 𝑐1𝑊𝑥 ,

d
d𝑡

e( 𝑓 𝜀 |𝑢) ⩽ 𝑐2

(
e( 𝑓 𝜀 |𝑢) +𝑊𝑥 +

𝛿

𝜀

)
.
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Note that the initial value of e( 𝑓 𝜀 |𝑢) +𝑊𝑥 is bounded by a constant multiple of 𝜀 in
view of the choice of 𝛾0 for𝑊𝑥 (even 𝜀2 in this case), and

e( 𝑓 𝜀0 |𝑢0) =
∫
Ω×R𝑛

|𝑣 − 𝑢0 |2 d 𝑓 𝜀0 =

∫
Ω×R𝑛

|𝑣 − 𝑢0 |2 [ d 𝑓 𝜀0 − d 𝑓0]

⩽ 𝐶𝑊1 ( 𝑓 𝜀0 , 𝑓0) ⩽ 𝐶𝑊2 ( 𝑓 𝜀0 , 𝑓0) ⩽ 𝜀.

Grönwall’s Lemma implies e( 𝑓 𝜀 |𝑢) +𝑊𝑥 ≲ 𝜀 + 𝛿
𝜀
, and thanks to (9.15),

𝑊𝑣 ⩽ 𝜀 +
𝛿

𝜀
.

We have established (9.9).

9.2. Maxwellian limit

In this section we provide a derivation of the Euler-alignment system with isothermal pres-
sure for material models on the torus Ω = T𝑛,

𝜌𝑡 + ∇ · (𝑢𝜌) = 0
(𝜌𝑢)𝑡 + ∇ · (𝜌𝑢 ⊗ 𝑢) + ∇𝜌 = 𝜌s𝜌 ( [𝑢]𝜌 − 𝑢). (9.23)

Well-posedness of this system has been established for non-vacuous solutions for various
models, see [18, 23].

As outlined in the beginning of this section our strategy will be to consider the equation
with strong Fokker-Planck penalization force

𝜕𝑡 𝑓
𝜀 + 𝑣 · ∇𝑥 𝑓 𝜀 =

1
𝜀
[Δ𝑣 𝑓 𝜀 + ∇𝑣 · ((𝑣 − 𝑢𝜀𝛿) 𝑓 𝜀)] + ∇𝑣 · (s𝜌𝜀 (𝑣 − [𝑢𝜀]𝜌𝜀 ) 𝑓 𝜀), (9.24)

where 𝑢𝜀 is the macroscopic velocity field associated with 𝑓 𝜀 , and 𝑢𝜀
𝛿

is the same molli-
fication as defined in the previous monokinetic study.

Let us briefly discuss regularity of (9.24). In what follows we will study solutions of
(9.24) that exist on a common tine interval [0,𝑇] independent of 𝜀. Unfortunately the local
existence result alone stated in Theorem 7.1 will not provide such solutions, because the
energy bounds (or entropy for that matter) will deteriorate with 𝜀. So, the only way to
ensure common existence is to guarantee global well-posedness of (9.24). According to
Theorem 7.12 the equation is globally well-posed for thick data if both models – the native
M and the mollification 𝑢𝛿 based on M𝜓 – are regular and satisfy (3.57). Assuming that
supp𝜓 = Ω the model M𝜓 will fulfill these conditions, and as to the defining model M, we
will make it as an assumption. The focus will now be turned to establishing convergence
of the hydrodynamic limit for a given family of solutions.
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Let us write out the corresponding macroscopic system

𝜌𝜀𝑡 + ∇ · (𝑢𝜀𝜌𝜀) = 0

(𝜌𝜀𝑢𝜀)𝑡 + ∇ · (𝜌𝜀𝑢𝜀 ⊗ 𝑢𝜀) + ∇𝜌𝜀 + ∇𝑥 · R𝜀 = 𝜌𝜀s𝜌𝜀 ( [𝑢𝜀]𝜌𝜀 − 𝑢𝜀) +
1
𝜀
𝜌𝜀 (𝑢𝜀𝛿 − 𝑢𝜀)

R𝜀 =
∫
R𝑛

((𝑣 − 𝑢𝜀) ⊗ (𝑣 − 𝑢𝜀) − I) 𝑓 𝜀 d𝑣.

(9.25)

Here, I is the identity matrix.
We measure the distance between pairs (𝑢𝜀 , 𝜌𝜀) and (𝑢, 𝜌) by using the relative entropy

between the corresponding local Maxwellians:

𝜇 =
𝜌(𝑥, 𝑡)
(2𝜋)𝑛/2

𝑒−
|𝑣−𝑢(𝑥,𝑡 ) |2

2 , 𝜇𝜀 =
𝜌𝜀 (𝑥, 𝑡)
(2𝜋)𝑛/2

𝑒−
|𝑣−𝑢𝜀 (𝑥,𝑡 ) |2

2 . (9.26)

In fact such entropy is encoded into the total relative entropy between 𝑓 𝜀 and 𝜇:

H( 𝑓 𝜀 |𝜇) =
∫
Ω×R𝑛

𝑓 𝜀 log
𝑓 𝜀

𝜇
d𝑣 d𝑥.

Indeed, the following identity holds,

H( 𝑓 𝜀 |𝜇) = H( 𝑓 𝜀 |𝜇𝜀) + H (𝜇𝜀 |𝜇), (9.27)

H(𝜇𝜀 |𝜇) = 1
2

∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 +
∫
Ω

𝜌𝜀 log(𝜌𝜀/𝜌) d𝑥. (9.28)

So, ifH( 𝑓 𝜀 |𝜇) → 0, then alsoH(𝜇𝜀 |𝜇) → 0. Recall that by the classical Csiszár-Kullback
inequality, see for example [81], the relative entropy controls 𝐿1-distance between the prob-
ability densities,

H( 𝑓 |𝑔) ⩾ 𝑐∥ 𝑓 − 𝑔∥2
𝐿1 .

So, vanishing of the relative entropy H(𝜇𝜀 |𝜇) → 0 implies strong limits

𝜌𝜀 → 𝜌,

𝜌𝜀𝑢𝜀 → 𝜌𝑢,

𝜌𝜀 |𝑢𝜀 |2 → 𝜌 |𝑢 |2. (9.29)

in 𝐿1 (Ω).

Theorem 9.6. Suppose M is a regular model on T𝑛 satisfying (3.48) - (3.49) and (3.57).
Let (𝑢, 𝜌) be a given smooth non-vacuous solution to (9.23) on a time interval [0, 𝑇].
Suppose that initial distributions 𝑓 𝜀0 ∈ 𝐻𝑘

𝑙
converge to 𝜇0 in the sense of entropies as

𝜀 → 0:
H( 𝑓 𝜀0 |𝜇0) → 0.

Then for all 𝜀 small enough there exists a unique global solution 𝑓 𝜀 ∈ 𝐻𝑘
𝑙
, and as long as

𝛿 = 𝑜(𝜀), we have
sup

𝑡∈[0,𝑇 ]
H( 𝑓 𝜀 |𝜇) → 0. (9.30)
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Remark 9.7. Going back to the discussion of Section 3.7 we can see that the theorem applies
to many core models on our list. Specifically, we have it forMCS andMtopo

CS unconditionally,
for M𝛽 we have it for all local kernels if 𝛽 ⩾ 1

2 and for all-to-all kernels 𝜙 > 0 for any 𝛽,
the M𝜙 requires 𝜙 > 0 as well, and Mseg requires supp 𝑔𝑙 = Ω.

Remark 9.8. We also note that in the course of the proof, just like in the monokinetic
case, the regularity and (3.57) conditions are only needed to facilitate global existence of
solutions, while the bounds (3.54), (3.48) - (3.49) are used in the actual estimates. So, for
putative classical solutions to (9.24) the result extends to a wider range of models listed on
the last row of Table 3.

Proof. First let us notice that by the Csiszár-Kullback inequality,

H( 𝑓 𝜀0 |𝜇0) ⩾ ∥𝜌𝜀0 − 𝜌0∥2
1.

Since, 𝜌0 > 0 on Ω, it implies that Θ(𝜌0,Ω) > 0 by Definition 3.13 (iii), and by (iv) we
have

|Θ(𝜌𝜀0 ,Ω) − Θ(𝜌0,Ω) | ⩽ 𝑐∥𝜌𝜀0 − 𝜌0∥1 → 0,

so starting from some 𝜀0 we have Θ(𝜌𝜀0 ,Ω) > 𝛿 > 0, for 𝜀 < 𝜀0. Such initial conditions
give rise to global solutions by Theorem 7.12.

Let us break down the relative entropy into kinetic and macroscopic parts:

H( 𝑓 𝜀 |𝜇) = H𝜀 + G𝜀

H𝜀 =

∫
Ω×R𝑛

(
𝑓 𝜀 log 𝑓 𝜀 + 1

2
|𝑣 |2 𝑓 𝜀

)
d𝑣 d𝑥 + 𝑛

2
log(2𝜋)

G𝜀 =
∫
Ω

(
1
2
𝜌𝜀 |𝑢 |2 − 𝜌𝜀𝑢𝜀 · 𝑢 − 𝜌𝜀 log 𝜌

)
d𝑥. (9.31)

Let us state the energy bounds for each component. In the sequel we denote for short
𝜅𝜀 = 𝜅𝜌𝜀 .

Lemma 9.9. There are constants 𝑐1, 𝑐2, 𝑐3 that depend only on the model such that we
have the following entropy law:

H𝜀 , E𝜀 ∈ 𝐿∞ ( [0, 𝑇]) uniformly in 𝜀, (9.32)
d
d𝑡
H𝜀 ⩽ −1

𝜀
I𝜀 + 𝑐2 𝜀 e( 𝑓 𝜀 |𝑢𝜀) − ∥𝑢𝜀 ∥2

𝐿2 (𝜅 𝜀 ) + (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅 𝜀 , (9.33)

where

I𝜀 =
∫
Ω×R𝑛

|∇𝑣 𝑓 𝜀 + (1 + 𝜀s𝜌𝜀/2) (𝑣 − 𝑢𝜀) 𝑓 𝜀 |2

𝑓 𝜀
d𝑣 d𝑥.



118 R. Shvydkoy

Proof. Differentiating,

d
d𝑡
H𝜀 = − 1

𝜀

∫
Ω×R𝑛

[
|∇𝑣 𝑓 𝜀 |2
𝑓 𝜀

+ 2∇𝑣 𝑓 𝜀 · (𝑣 − 𝑢𝜀𝛿) + |𝑣 − 𝑢𝜀𝛿 |2 𝑓 𝜀
]

d𝑣 d𝑥

− 1
𝜀
[(𝑢𝜀𝛿 , 𝑢𝜀)𝜌𝜀 − (𝑢𝜀𝛿 , 𝑢𝜀𝛿)𝜌𝜀 ]

−
∫
Ω×R𝑛

s𝜌𝜀 [∇𝑣 𝑓 𝜀 · (𝑣 − [𝑢𝜀]𝜌𝜀 ) + 𝑣 · (𝑣 − [𝑢𝜀]𝜌𝜀 ) 𝑓 𝜀] d𝑣 d𝑥. (9.34)

To prove (9.32) we simply dismiss the first information term, and recall that the 𝛿-mollification
constitutes the M𝜙-averaging which is ball-positive. So, the second term, according to
(3.26) is also non-negative and we dismiss it too. We estimate the third term as follows

−
∫
Ω×R𝑛

s𝜌𝜀 [∇𝑣 𝑓 𝜀 · (𝑣 − [𝑢𝜀]𝜌𝜀 ) + 𝑣 · (𝑣 − [𝑢𝜀]𝜌𝜀 ) 𝑓 𝜀] d𝑣 d𝑥

= 𝑛

∫
Ω×R𝑛

s𝜌𝜀 𝑓 𝜀 d𝑣 d𝑥 −
∫
Ω×R𝑛

s𝜌𝜀 |𝑣 |2 𝑓 𝜀 d𝑣 d𝑥 + (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅 𝜀

⩽ 𝐶 −
∫
Ω

s𝜌𝜀 𝜌𝜀 |𝑢𝜀 |2 d𝑥 + (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅 𝜀

= 𝑐1 − ∥𝑢𝜀 ∥2
𝐿2 (𝜅 𝜀 ) + (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅 𝜀 .

Now, according to (3.54) the averaging operators are uniformly bounded on 𝐿2 (𝜅𝜌𝜀 ). So,
we obtain

d
d𝑡
H𝜀 ⩽ 𝑐1 + 𝑐2E𝜀 , E𝜀 =

1
2

∫
Ω×R𝑛

|𝑣 |2 𝑓 𝜀 d𝑣 d𝑥,

and according to (7.48),
d
d𝑡
H𝜀 ⩽ 𝑐3 + 𝑐4H𝜀 .

This proves (9.32).
To show (9.33) we replace all the macroscopic velocities in (9.34) with the native one

𝑢𝜀 . Indeed, in the information term we have

− 1
𝜀

∫
Ω×R𝑛

[
|∇𝑣 𝑓 𝜀 |2
𝑓 𝜀

+ 2∇𝑣 𝑓 𝜀 · (𝑣 − 𝑢𝜀𝛿) + |𝑣 − 𝑢𝜀𝛿 |2 𝑓 𝜀
]

d𝑣 d𝑥

= − 1
𝜀

∫
Ω×R𝑛

[
|∇𝑣 𝑓 𝜀 |2
𝑓 𝜀

+ 2∇𝑣 𝑓 𝜀 · (𝑣 − 𝑢𝜀) + |𝑣 − 𝑢𝜀 |2 𝑓 𝜀 + |𝑢𝜀 − 𝑢𝜀𝛿 |2 𝑓 𝜀
]

d𝑣 d𝑥

⩽ − 1
𝜀

∫
Ω×R𝑛

[
|∇𝑣 𝑓 𝜀 |2
𝑓 𝜀

+ 2∇𝑣 𝑓 𝜀 · (𝑣 − 𝑢𝜀) + |𝑣 − 𝑢𝜀 |2 𝑓 𝜀
]

d𝑣 d𝑥

= − 1
𝜀

∫
Ω×R𝑛

|∇𝑣 𝑓 𝜀 + (𝑣 − 𝑢𝜀) 𝑓 𝜀 |2
𝑓 𝜀

d𝑣 d𝑥.
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For the alignment term we obtain similarly,

−
∫
Ω×R𝑛

s𝜌𝜀 [∇𝑣 𝑓 𝜀 · (𝑣 − [𝑢𝜀]𝜌𝜀 ) + 𝑣 · (𝑣 − [𝑢𝜀]𝜌𝜀 ) 𝑓 𝜀] d𝑣 d𝑥

= −
∫
Ω×R𝑛

s𝜌𝜀∇𝑣 𝑓 𝜀 · (𝑣 − 𝑢𝜀) d𝑣 d𝑥

−
∫
Ω×R𝑛

s𝜌𝜀 [𝑣 · (𝑣 − 𝑢𝜀) 𝑓 𝜀 + 𝑣 · (𝑢𝜀 − [𝑢𝜀]𝜌𝜀 ) 𝑓 𝜀] d𝑣 d𝑥

= −
∫
Ω×R𝑛

s𝜌𝜀 (∇𝑣 𝑓 𝜀 · (𝑣 − 𝑢𝜀) + |𝑣 − 𝑢𝜀 |2 𝑓 𝜀) d𝑣 d𝑥 − ∥𝑢𝜀 ∥2
𝐿2 (𝜅 𝜀 ) + (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅 𝜀 .

Combing the two expressions and completing the squares

d
d𝑡
H𝜀 ⩽ −1

𝜀

∫
Ω×R𝑛

|∇𝑣 𝑓 𝜀 + (1 + 𝜀s𝜌𝜀/2) (𝑣 − 𝑢𝜀) 𝑓 𝜀 |2

𝑓 𝜀
d𝑣 d𝑥

+ 𝜀
4

∫
Ω×R𝑛

s𝜌𝜀 |𝑣 − 𝑢𝜀 |2 𝑓 𝜀 d𝑣 d𝑥 − ∥𝑢𝜀 ∥2
𝐿2 (𝜅 𝜀 ) + (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅 𝜀

⩽ −1
𝜀
I𝜀 + 𝑐𝜀e( 𝑓 𝜀 |𝑢𝜀) − ∥𝑢𝜀 ∥2

𝐿2 (𝜅 𝜀 ) + (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅 𝜀

We have obtained (9.33).

Lemma 9.10. We have the following inequality
d
d𝑡
G𝜀 ⩽ 𝐶H( 𝑓 𝜀 |𝜇) + 𝐶

√︁
I𝜀 + 𝐶𝜀 +

𝛿

𝜀
+ ∥𝑢𝜀 ∥2

𝐿2 (𝜅 𝜀 ) − (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅 𝜀 , (9.35)

where 𝐶 is independent of 𝜀.

Proof. Let us compute the derivative of each component of G𝜀
d
d𝑡

1
2

∫
Ω

𝜌𝜀 |𝑢 |2 d𝑥 =
∫
Ω

[𝜌𝜀 (𝑢𝜀 − 𝑢) · ∇𝑢 · 𝑢 − 𝜌𝜀𝑢 · ∇ log 𝜌 + 𝜌𝜀s𝜌 ( [𝑢]𝜌 − 𝑢) · 𝑢] d𝑥

d
d𝑡

∫
Ω𝑛
𝜌𝜀𝑢𝜀 · 𝑢 d𝑥 =

∫
Ω

[𝜌𝜀 (𝑢𝜀 − 𝑢) · ∇𝑢 · 𝑢𝜀 + 𝜌𝜀∇ · 𝑢 − 𝜌𝜀𝑢𝜀 · ∇ log 𝜌 − ∇𝑢 : R𝜀

+ 𝜌𝜀s𝜌𝜀 ( [𝑢𝜀]𝜌𝜀 − 𝑢𝜀) · 𝑢

+ 𝜌𝜀s𝜌 ( [𝑢]𝜌 − 𝑢) · 𝑢𝜀 +
1
𝜀
𝜌𝜀 (𝑢𝜀𝛿 − 𝑢𝜀) · 𝑢] d𝑥

d
d𝑡

∫
Ω𝑛
𝜌𝜀 log 𝜌 d𝑥 =

∫
Ω

[𝜌𝜀𝑢𝜀 · ∇ log 𝜌 − 𝜌𝜀𝑢 · ∇ log 𝜌 − 𝜌𝜀∇ · 𝑢] d𝑥.

Thus,
d
d𝑡
G𝜀 =

∫
Ω

[∇𝑢 : R𝜀 − 𝜌𝜀 (𝑢𝜀 − 𝑢) · ∇𝑢 · (𝑢𝜀 − 𝑢)] d𝑥 + 𝐴 + 𝐴loc,

where 𝐴loc is the same local alignment terms as appeared in the previous section, and

𝐴 =

∫
Ω

[𝜌𝜀s𝜌 ( [𝑢]𝜌 − 𝑢) · 𝑢 − 𝜌𝜀s𝜌𝜀 ( [𝑢𝜀]𝜌𝜀 − 𝑢𝜀) · 𝑢 − 𝜌𝜀s𝜌 ([𝑢]𝜌 − 𝑢) · 𝑢𝜀] d𝑥

= 𝛿𝐴 + ∥𝑢𝜀 ∥2
𝐿2 (𝜅 𝜀 ) − (𝑢𝜀 , [𝑢𝜀]𝜌𝜀 )𝜅 𝜀 ,
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where 𝛿𝐴 is again the same alignment term that appeared in the previous section. We
estimate 𝐴loc and 𝛿𝐴 as before using (9.20) and the intermediate estimate in (9.22). We
recall that only (3.48) - (3.49) and regularity of the kernel 𝜙𝜌 are necessary to prove (9.22).
Since 𝜌 ⩾ 𝜌− > 0 we have both by the assumptions. Thus,

𝛿𝐴 + 𝐴loc ≲

∫
Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 +𝑊2
1 (𝜌

𝜀 , 𝜌) + 𝛿
𝜀
. (9.36)

Keeping in mind that both the macroscopic relative entropy
∫
Ω
𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 and

𝑊2
1 (𝜌

𝜀 , 𝜌) ⩽ ∥𝜌𝜀 − 𝜌∥2
1

are controlled by H( 𝑓 𝜀 |𝜇), see (9.27), (9.28) we obtain

𝛿𝐴 + 𝐴loc ≲ H( 𝑓 𝜀 |𝜇) + 𝛿
𝜀
. (9.37)

Next, given that 𝑢 is smooth we have����∫
Ω

𝜌𝜀 (𝑢𝜀 − 𝑢) · ∇𝑢 · (𝑢𝜀 − 𝑢)] d𝑥
���� ≲ ∫

Ω

𝜌𝜀 |𝑢𝜀 − 𝑢 |2 d𝑥 ⩽ H( 𝑓 𝜀 |𝜇). (9.38)

As to the Reynolds stress, we will use a well-known estimate from [65] that establishes
a bound in terms of information and energy. Let us rerun this argument to account for the
𝜀-correction. We simply note that

R𝜀 =
∫
R𝑛

[2∇𝑣
√︁
𝑓 𝜀 + (𝑣 − 𝑢𝜀)

√︁
𝑓 𝜀] ⊗ [(𝑣 − 𝑢𝜀)

√︁
𝑓 𝜀] d𝑣.

then we reinsert the 𝜀-correction to obtain

R𝜀 =
∫
R𝑛

[2∇𝑣
√︁
𝑓 𝜀 + (1 + 𝜀s𝜌𝜀/2) (𝑣 − 𝑢𝜀)

√︁
𝑓 𝜀] ⊗ [(𝑣 − 𝑢𝜀)

√︁
𝑓 𝜀] d𝑣

− 𝜀s𝜌𝜀/2
∫
R𝑛

(𝑣 − 𝑢𝜀) ⊗ (𝑣 − 𝑢𝜀) 𝑓 𝜀 d𝑣.

So, ∫
Ω

|R𝜀 | d𝑥 ≲
√︁

e( 𝑓 𝜀 |𝑢𝜀)I𝜀 + 𝜀e( 𝑓 𝜀 |𝑢𝜀) ≲
√︁
I𝜀 + 𝜀.

Collecting the obtained estimates together we obtain (9.35).

Combining the equations onH𝜀 andG𝜀 , (9.33), (9.35), we see that the residual alignment-
energy terms cancel and we obtain

d
d𝑡
H( 𝑓 𝜀 |𝜇) ≲ H( 𝑓 𝜀 |𝜇) − 1

𝜀
I𝜀 + 𝜀 +

𝛿

𝜀
+

√︁
I𝜀 ⩽ H( 𝑓 𝜀 |𝜇) − 1

2𝜀
I𝜀 + 2𝜀 + 𝛿

𝜀

≲ H( 𝑓 𝜀 |𝜇) + 𝜀 + 𝛿
𝜀
.
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By the Grönwall’s Lemma we obtain

H( 𝑓 𝜀 |𝜇) ⩽ H( 𝑓 𝜀0 |𝜇0)𝑒𝐶𝑇 + 𝐶 (𝜀 + 𝛿
𝜀
)𝑒𝐶𝑇 , ∀𝑡 ⩽ 𝑇,

where 𝐶 depends only on the parameters of the model and the regularity of (𝑢, 𝜌). This
finishes the proof.

Remark 9.11. The same observation can be made here as in the monokinetic case. If we
quantify the initial entropy

H( 𝑓 𝜀0 |𝜇0) ⩽ 𝜀,

then the proof produces the bound

H( 𝑓 𝜀 |𝜇) ⩽ 𝜀 + 𝛿
𝜀
.

So, again, the optimal convergence is achieved when 𝛿 ∼ 𝜀2. However, unlike in the monoki-
netic case, here we do not loose on the magnitude of the entropy at positive times.

9.3. Remarks on the pressureless Euler Alignment System

We will leave discussion of the well-posedness of macroscopic systems that arise from
general models M to a future research, see [15, 43, 57, 69, 81, 91] for the literature on this
problem specifically for smooth communication models. The most clear-cut result obtained
in [15] pertains to the regularity of the 1D pressureless EAS based on the Cucker-Smale
protocol

𝜕𝑡𝑢 + 𝑢𝑢𝑥 = 𝜌𝜙𝑢 − (𝑢𝜌)𝜙 .

Here, one finds an additional conserved quantity

𝑒 = 𝑢𝑥 + 𝜌𝜙

which controls 𝑢𝑥 and hence regularity of the system. In fact, 𝑒 satisfies

𝜕𝑡𝑒 + 𝜕𝑥 (𝑢𝑒) = 0

or in Lagrangian coordinates associated with 𝑢,

d
d𝑡
𝑒 = 𝑒𝜌𝜙 − 𝑒2 = 𝑒(𝜌𝜙 − 𝑒),

which is a non-homogeneous logistic ODE. The critical threshold for regularity becomes
𝑒0 ⩾ 0.

In multi-D, the law of 𝑒 is given by

𝑒 = div 𝑢 + 𝜌𝜙 ,
𝜕𝑡𝑒 + ∇ · (𝑢𝑒) = (∇ · 𝑢)2 − Tr[(∇𝑢)2] . (9.39)
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Although the right hand side in this case involves ∇𝑢, in some cases this still allows to
obtain partial regularity results in multi-D, for example for small data or for unidirectional
flocks, see [43, 57, 91]. The latter are solutions of the form

𝑢 = (𝑢(𝑥1, . . . , 𝑥𝑛), 0, . . . , 0).

For these the right hand side of (9.39) vanishes.
While the existence of 𝑒 is attributed to the particular commutator structure of the

alignment forcing of the Cucker-Smale model, in general, it can be seen as a consequence
of another property of the model – transport of the specific strength function s𝜌 itself.
Indeed, let us notice that in the MCS-case we have

𝜕𝑡s𝜌 + ∇ · (s𝜌 [𝑢]𝜌) = 0, (9.40)

simply because 𝜌𝜙 is transported by the Favre-filtration 𝑢F = (𝑢𝜌)𝜙/𝜌𝜙 . This turns out to
be the general reason for the conservation of 𝑒.

Lemma 9.12. If for any solution of the pressureless EAS (9.2) the strength function satisfies
(9.40), then 𝑒 = div 𝑢 + s𝜌 satisfies (9.39). In particular, 𝑒 is conserved for all solutions in
1D and unidirectional solutions in multi-D.

Proof. By direct verification.

The above observation motivates to consider a system where the strength is not fixed
but rather evolves according to the ‘natural law’ (9.40), whereby the strength itself becomes
another unknown. This leads to the following system

𝜕𝑡 𝜌 + ∇ · (𝑢𝜌) = 0,
𝜕𝑡s + ∇ · (s [𝑢]𝜌) = 0,
𝜕𝑡𝑢 + 𝑢 · ∇𝑢 = s( [𝑢]𝜌 − 𝑢). (9.41)

All such systems will satisfy the 𝑒-law by design, where 𝑒 = div 𝑢 + s.
For example, if we start from the initial Favre-based model, [𝑢]𝜌 = 𝑢F and set s0 = 1,

like for instance in the MMT-model, the future value of strength will be determined by the
transport along the averaged velocity [𝑢]𝜌, rather than being forcefully set at s = 1 for all
times. Given that both s and 𝜌𝜙 solve the same continuity equation in this case, we also
have transport of the ratio

𝜕𝑡
s
𝜌𝜙

+ 𝑢F · ∇𝑥
s
𝜌𝜙

= 0.

This implies
𝑐1𝜌𝜙 ⩽ s ⩽ 𝑐2𝜌𝜙 , ∀(𝑡, 𝑥) ∈ [0,∞) ×Ω,

if initially so. In particular s remains uniformly bounded regardless of the regularity of 𝑢𝐹
(!).

A thorough study of this model has been recently completed for Favre-based modes in
[88] during the review of this present work.
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10. Appendix: proof of (2.8)

We start as in [52, Lemma 5.2]. Let us fix 𝑥 ∈ Ω and consider a cover of the ball 𝐵𝑅 (𝑥) by
balls of radius 𝑟/2:

𝐵𝑅 (𝑥) ⊂
𝐼⋃
𝑖=1

𝐵𝑟/2 (𝑥𝑖),

where 𝑁 depends only on 𝑛 and 𝑅/𝑟 . Then assuming (2.6) we obtain

©­« 𝜌

𝜌
1−𝛽
𝜙

ª®¬𝜙 (𝑥) =
∫
𝐵𝑅 (𝑥 )

𝜌(𝑦)𝜙(𝑥 − 𝑦)(∫
Ω
𝜌(𝑧)𝜙(𝑦 − 𝑧) d𝑧

)1−𝛽 d𝑦

⩽
𝐼∑︁
𝑖=1

∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑦)𝜙(𝑥 − 𝑦)(∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑧)𝜙(𝑦 − 𝑧) d𝑧
)1−𝛽 d𝑦.

Since 𝑦, 𝑧 ∈ 𝐵𝑟/2 (𝑥𝑖), we have |𝑦 − 𝑧 | ⩽ 𝑟 , and by the lower bound on the kernel we obtain

©­« 𝜌

𝜌
1−𝛽
𝜙

ª®¬𝜙 (𝑥) ≲
𝐼∑︁
𝑖=1

∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑦)𝜙(𝑥 − 𝑦)(∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑧) d𝑧
)1−𝛽 d𝑦.

If 𝛽 = 0, we remove the kernel by ∥𝜙∥∞, and the rest adds up to 𝐼.
In the case when 𝛽 > 0 we have

©­« 𝜌

𝜌
1−𝛽
𝜙

ª®¬𝜙 (𝑥) ≲
𝐼∑︁
𝑖=1

∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑦)𝜙(𝑥 − 𝑦)∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑧) d𝑧

(∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑧) d𝑧

)𝛽
d𝑦.

Treating

1𝐵𝑟/2 (𝑥𝑖 ) (𝑦)
𝜌(𝑦)∫

𝐵𝑟/2 (𝑥𝑖 )
𝜌(𝑧) d𝑧

d𝑦

as a probability measure for each integral, by the Hölder inequality, we obtain

©­« 𝜌

𝜌
1−𝛽
𝜙

ª®¬𝜙 (𝑥) ≲
𝐼∑︁
𝑖=1

©­«
∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑦)𝜙
1
𝛽 (𝑥 − 𝑦)∫

𝐵𝑟/2 (𝑥𝑖 )
𝜌(𝑧) d𝑧

∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑧) d𝑧 d𝑦ª®¬
𝛽

=

𝐼∑︁
𝑖=1

(∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑦)𝜙
1
𝛽 (𝑥 − 𝑦) d𝑦

)𝛽
⩽ ∥𝜙∥1−𝛽

∞

𝐼∑︁
𝑖=1

(∫
𝐵𝑟/2 (𝑥𝑖 )

𝜌(𝑦)𝜙(𝑥 − 𝑦) d𝑦

)𝛽
⩽ 𝐼 ∥𝜙∥1−𝛽

∞ 𝜌
𝛽

𝜙
(𝑥).
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11. Appendix: averagings on finite sets and proof of Proposition 3.12

In this section we will prove Proposition 3.12.
To achieve it we first study properties of models on finite sets – to which as we will see

the result is reduced. We will use the notation of Example 2.11 below.
For models on finite sets being conservative is equivalent to

𝐴⊤𝜅 = 𝜅, 𝜅 = (𝜅1, . . . , 𝜅𝑁 ).

Denoting 𝐾 = diag{𝜅1, . . . , 𝜅𝑁 } one can see that being symmetric is equivalent to the
matrix 𝐾𝐴 being symmetric,

(𝐾𝐴)⊤ = 𝐾𝐴.

Similarly, the ball-positivity is equivalent to the matrix 𝐴 being ball-coercive relative to
the inner product (·, ·)𝐾 = (𝐾 ·, ·):

(𝐴𝑢, 𝑢)𝐾 ⩾ (𝐴𝑢, 𝐴𝑢)𝐾 .

Lemma 11.1. If M is ball-positive on a 2-point set, then M is symmetric.

Proof. The result reduces to showing that 𝜅1𝑎12 = 𝜅2𝑎21 for any ball-coercive model. Coer-
civity is equivalent to

𝜅1𝑎11𝑢
2
1 + (𝜅1𝑎12 + 𝜅2𝑎21)𝑢1𝑢2 + 𝜅2𝑎22𝑢

2
2 ⩾ 𝜅1 (𝑎11𝑢1 + 𝑎12𝑢2)2 + 𝜅2 (𝑎21𝑢1 + 𝑎22𝑢2)2.

Collecting coefficients in front of each monomial we obtain

𝛼𝑢2
1 + 𝛽𝑢1𝑢2 + 𝛾𝑢2

2 ⩾ 0,

where

𝛼 = 𝜅1𝑎11 − 𝜅1𝑎
2
11 − 𝜅2𝑎

2
21,

𝛽 = 𝜅1𝑎12 + 𝜅2𝑎21 − 2𝜅1𝑎11𝑎12 − 2𝜅2𝑎21𝑎22,

𝛾 = 𝜅2𝑎22 − 𝜅1𝑎
2
12 − 𝜅2𝑎

2
22.

This means that the determinant of the quadratic form is non-negative

4𝛼𝛾 ⩾ 𝛽2.

Using stochasticity of 𝐴 and after a long but elementary computation, the above condition
reduces to

(𝜅1𝑎12 − 𝜅2𝑎21)2 ⩽ 0,

which proves the result.
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Proof of Proposition 3.12. Since the averages act coordinatewise it is sufficient to prove
the result for scalar fields 𝑢.

Let us fix 𝜌. Let us pick any partitioning of Ω into two sets 𝐴, 𝐵 and assume that
𝜈(𝐴), 𝜈(𝐵) > 0. Let us denote

𝑎11 =
1

𝜅𝜌 (𝐴)

∫
𝐴

[1𝐴]𝜌 d𝜅𝜌, 𝑎12 =
1

𝜅𝜌 (𝐴)

∫
𝐴

[1𝐵]𝜌 d𝜅𝜌;

𝑎21 =
1

𝜅𝜌 (𝐵)

∫
𝐵

[1𝐴]𝜌 d𝜅𝜌, 𝑎22 =
1

𝜅𝜌 (𝐵)

∫
𝐵

[1𝐵]𝜌 d𝜅𝜌 .

Note that the matrix 𝐴 = (𝑎𝑖 𝑗 )2
𝑖, 𝑗=1 is right stochastic. Denoting 𝜅1 = 𝜅𝜌 (𝐴), 𝜅2 = 𝜅𝜌 (𝐵)

and verifying coercivity on functions of the form 𝑢 = 𝑢11𝐴 + 𝑢21𝐵 we obtain

𝜅1𝑎11𝑢
2
1 + (𝜅1𝑎12 + 𝜅2𝑎21)𝑢1𝑢2 + 𝜅2𝑎22𝑢

2
2 ⩾

∫
Ω

|𝑢1 [1𝐴]𝜌 + 𝑢2 [1𝐵]𝜌 |2 d𝜅𝜌 .

Breaking down the integral and using the Hölder inequality, we obtain∫
Ω

|𝑢1 [1𝐴]𝜌 + 𝑢2 [1𝐵]𝜌 |2 d𝜅𝜌 =
∫
𝐴

|𝑢1 [1𝐴]𝜌 + 𝑢2 [1𝐵]𝜌 |2 d𝜅𝜌

+
∫
𝐵

|𝑢1 [1𝐴]𝜌 + 𝑢2 [1𝐵]𝜌 |2 d𝜈

⩾
1

𝜅𝜌 (𝐴)

����∫
𝐴

(𝑢1 [1𝐴]𝜌 + 𝑢2 [1𝐵]𝜌) d𝜅𝜌
����2

+ 1
𝜅𝜌 (𝐵)

����∫
𝐵

(𝑢1 [1𝐴]𝜌 + 𝑢2 [1𝐵]𝜌) d𝜅𝜌
����2

= 𝜅1 (𝑎11𝑢1 + 𝑎12𝑢2)2 + 𝜅2 (𝑎21𝑢1 + 𝑎22𝑢2)2,

which implies that the 2-point model with 𝐴 and 𝜅 defined above is ball-positive. The
previous lemma implies that∫

𝐴

[1𝐵]𝜌 d𝜅𝜌 =
∫
𝐵

[1𝐴]𝜌 d𝜅𝜌 . (11.1)

We further conclude∫
Ω

[1𝐴]𝜌 d𝜅𝜌 =
∫
𝐴

[1𝐴]𝜌 d𝜅𝜌 +
∫
𝐵

[1𝐴]𝜌 d𝜅𝜌

=

∫
𝐴

[1𝐴]𝜌 d𝜅𝜌 +
∫
𝐴

[1𝐵]𝜌 d𝜅𝜌 =
∫
𝐴

[1Ω]𝜌 d𝜅𝜌 = 𝜅𝜌 (𝐴).

In other words, the conservative property holds for all characteristic functions. Since it is
also linear and the average, by our assumption, is a bounded operator on 𝐿2 (𝜅𝜌) we obtain
the result by the standard approximation.
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It would seem like (11.1) is suggestive of symmetry as it holds for any pair of partition-
ing sets. However, to prove general symmetry one would have to make the same conclusion
for any pair of disjoint sets not necessarily partitioning Ω, or for any triple of partitioning
sets. The above argument fails to do it, and in fact the implication “ ball-positive ⇒ sym-
metric " is generally not true. A finite dimensional example can be found via a 3-point
construction.
Example 11.2. Let us assume for simplicity that 𝜅 = 1 = (1, 1, 1). Then we are looking for
a matrix that is non-symmetric yet doubly stochastic, 𝐴1 = 𝐴⊤1 = 1, and ball-positive.

Thanks to stochasticity, 𝐴 leaves the space 𝑋 = 1⊥ invariant, and so it is enough to
properly define 𝐴 on the 2-dimensional space 𝑋 only. Let us fix a non-orthogonal basis in
𝑋: 𝑒1 = (1,−1, 0), 𝑒2 = (1, 0,−1), and complement it to 𝑒3 = 1. We define

𝐴𝑒1 = 𝜆1𝑒1, 𝐴𝑒2 = 𝜆2𝑒2,

where 1 > 𝜆𝑖 > 0 and 𝜆1 ≠ 𝜆2. This choice guarantees that the matrix 𝐴 is not symmetric.
Now, we need to make sure that 𝐴 is ball-positive. Again, by stochasticity, ball-positivity
reduces to that of the restriction 𝐴|𝑋. The latter is equivalent to the condition

(𝑒1 + 𝑡𝑒2) · (𝜆1𝑒1 + 𝑡𝜆2𝑒2) ⩾ |𝜆1𝑒1 + 𝑡𝜆2𝑒2 |2,

for all 𝑡 ∈ R. Expanding we obtain

(𝜆2 − 𝜆2
2)𝑡

2 + [ 1
2
(𝜆1 + 𝜆2) − 𝜆1𝜆2]𝑡 + 𝜆1 − 𝜆2

1 ⩾ 0.

This is equivalent to

(𝜆1 + 𝜆2 − 2𝜆1𝜆2)2 ⩽ 16(𝜆2 − 𝜆2
2) (𝜆1 − 𝜆2

1). (11.2)

In addition we need to ensure that all the entries of the matrix 𝐴 in the original system of
coordinates are non-negative. We can write down these entries explicitly:

𝐴 =
1
3

©­­«
1 + 𝜆1 + 𝜆2 1 + 𝜆2 − 2𝜆1 1 + 𝜆1 − 2𝜆2

1 − 𝜆1 1 + 2𝜆1 1 − 𝜆1
1 − 𝜆2 1 − 𝜆2 1 + 2𝜆2

ª®®¬ .
So the only conditions to guarantee are

1 + 𝜆2 − 2𝜆1 ⩾ 0, 1 + 𝜆1 − 2𝜆2 ⩾ 0. (11.3)

There are plenty of choices to fulfill both (11.2) and (11.3). For example, 𝜆1 = 1
2 , 𝜆2 = 1

3 .
This concludes the construction.

12. Appendix: on spectral gaps

With regard to the discussion of Remark 4.10, we prove a lemma that establishes equiva-
lence of numerical ranges on the space of zero-momenta and the mean-zero functions.



Environmental averaging 127

Lemma 12.1. Suppose M is conservative and satisfies the following

𝑐0 ⩽ s𝜌 (𝑥) ⩽ 𝑐1, ∀𝑥 ∈ supp 𝜌, (12.1)
sup

{
(𝑢, [𝑢]𝜌)𝜅𝜌 : 𝑢 ∈ 𝐿2

0 (𝜅𝜌), ∥𝑢∥2 = 1
}
⩽ 1 − 𝜀. (12.2)

Then

sup
{
(𝑢, [𝑢]𝜌)𝜅𝜌 : 𝑢 ∈ 𝐿2 (𝜅𝜌), 𝑢̄ = 0, ∥𝑢∥2 = 1

}
⩽ 1 − 𝜀 𝑐0

𝑐0 + 𝑐1
. (12.3)

Conversely, if

sup
{
(𝑢, [𝑢]𝜌)𝜅𝜌 : 𝑢 ∈ 𝐿2 (𝜅𝜌), 𝑢̄ = 0, ∥𝑢∥2 = 1

}
⩽ 1 − 𝛿, (12.4)

then
sup

{
(𝑢, [𝑢]𝜌)𝜅𝜌 : 𝑢 ∈ 𝐿2

0 (𝜅𝜌), ∥𝑢∥2 = 1
}
⩽ 1 − 𝛿 𝑐0

𝑐0 + 𝑐1
. (12.5)

Proof. First let us observe that the bounds on s𝜌, (12.1), imply bounds on 𝜅𝜌-masses

𝑐0 ⩽ 𝜅𝜌 (Ω) ⩽ 𝑐1. (12.6)

Let us denote P : 𝐿2 (𝜅𝜌) → R𝑛 the orthogonal projection onto the space of constant
fields. We have for all 𝑢 with 𝑢̄ = 0,����∫

Ω

(𝑢 − P𝑢)𝜌 d𝑥
���� = |P𝑢 | = 1√︁

𝜅𝜌 (Ω)
∥P𝑢∥2.

On the other hand, by (i),����∫
Ω

(𝑢 − P𝑢)𝜌 d𝑥
���� = ����∫

Ω

(𝑢 − P𝑢) 1
s𝜌

d𝜅𝜌
���� ⩽ √︁

𝜅𝜌 (Ω)
𝑐0

∥𝑢 − P𝑢∥2.

Using compatibility of masses (12.6),

∥𝑢 − P𝑢∥2 ⩾
𝑐0

𝑐1
∥P𝑢∥2.

Hence,
∥𝑢∥2

2 = ∥𝑢 − P𝑢∥2
2 + ∥P𝑢∥2

2 ⩾ (1 + 𝑐0

𝑐1
)∥P𝑢∥2

2,

or
∥P𝑢∥2

2 ⩽
𝑐1

𝑐0 + 𝑐1
∥𝑢∥2

2. (12.7)

Now, let us compute the numerical range, noting that [P𝑢]𝜌 = P𝑢,

(𝑢, [𝑢]𝜌)𝜅𝜌 = (𝑢 − P𝑢, [𝑢 − P𝑢]𝜌)𝜅𝜌 + (𝑢 − P𝑢, P𝑢)𝜅𝜌 + (P𝑢, [𝑢 − P𝑢]𝜌)𝜅𝜌 + ∥P𝑢∥2
2.
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The second term vanishes due to orthogonality. For the third term we observe that due to
the conservative property of the average integrating against a constant field produces the
same result as integrating without the average. So,

(P𝑢, [𝑢 − P𝑢]𝜌)𝜅𝜌 = (P𝑢, 𝑢 − P𝑢)𝜅𝜌 = 0.

Using the spectral gap condition for the first term and (12.7) for the last one, we obtain

(𝑢, [𝑢])𝜅𝜌 ⩽ (1 − 𝜀0)∥𝑢 − P𝑢∥2
2 + ∥P𝑢∥2

2 = (1 − 𝜀0)∥𝑢∥2
2 + 𝜀0∥P𝑢∥2

2

⩽

(
1 − 𝜀0 + 𝜀0

𝑐1

𝑐0 + 𝑐1

)
∥𝑢∥2

2 =

(
1 − 𝜀0

𝑐0

𝑐0 + 𝑐1

)
∥𝑢∥2

2.

To obtain the converse statement, apply the same argument replacing the roles of 𝜌 and
𝜅𝜌, and note that 1/𝑐1 ⩽ 1/s𝜌 ⩽ 1/𝑐0.

13. Appendix: categorial considerations

Environmental averagings form an ’ecosystem’ of models. On a more formal level they can
be thought of as a category of objects and we can discuss relationships between them.

For a couple of models M′, M′′ defined over Ω′ and Ω′′, respectively, a morphism
M′ → M′′ is defined by a volume preserving homeomorphism 𝜏 : Ω′ → Ω′′ such that if
𝜌′′ ◦ 𝜏 = 𝜌′ and 𝑢′′ ◦ 𝜏 = 𝑢′, then

[𝑢′′]′′𝜌′′ ◦ 𝜏 = [𝑢′]′𝜌′ ,

and there exist two constants 𝑐, 𝐶 > 0 such that

𝑐 d𝜅′𝜌′ ⩽ d𝜅′′𝜌′′ ◦ 𝜏 ⩽ 𝐶 d𝜅′𝜌′ .

For material models, the latter can be restated in terms of specific strengths

𝑐s′𝜌′ ⩽ s′′𝜌′′ ◦ 𝜏 ⩽ 𝐶s′𝜌′ .

We have tacitly employed this concept in Appendix 11 when discussing models on finite
sets.

On a given environmentΩ all models can be partially ordered is several ways. The most
straightforward definition of M′ ⪯ M′′ is[

[𝑢]′𝜌
] ′′
𝜌
=

[
[𝑢]′′𝜌

] ′
𝜌
= [𝑢]′𝜌 , ∀𝑢 ∈ 𝐿∞ (Ω).

For example, among rough segregation models we have MF′ ⪯ MF′′ provided F ′ ⊂ F ′′.
The identity model MI is the finest of all material ones (although if we defined it to be
[𝑢] = 𝑢 irrelevant of the supp 𝜌, then it would have become the finest of all). At the same
time Mglob is the coarsest among all conservative ones with s𝜌 = 1.
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A more refined definition of order can be given on classes of equivalence where we
say M′ ∼ M′′ if there exist intermediate averagings M1, . . . ,M𝑛 such that for any 𝜌 ∈ P
there exist 𝜌1, . . . , 𝜌𝑛 ∈ P such that[

. . .
[
[𝑢]′′𝜌

]1
𝜌1
. . .

]𝑛
𝜌𝑛

= [𝑢]′𝜌 , ∀𝑢 ∈ 𝐿∞ (Ω),

and there exist intermediate averagings M𝑛+1, . . . ,M𝑛+𝑚 such that for any 𝜌 ∈ P there
exist 𝜌𝑛+1, . . . , 𝜌𝑛+𝑚 ∈ P such that[

. . .
[
[𝑢]′𝜌

]𝑛+1
𝜌𝑛+1

. . .

]𝑛+𝑚
𝜌𝑛+𝑚

= [𝑢]′′𝜌 , ∀𝑢 ∈ 𝐿∞ (Ω).

Then for a pair of models representing their equivalence classes we say M′ ⪯ M′′ if
only one half of the definition above holds, namely, there exist intermediate averagings
M1, . . . ,M𝑛 such that for any 𝜌 ∈ P there exist 𝜌1, . . . , 𝜌𝑛 ∈ P such that[

. . .
[
[𝑢]′′𝜌

]1
𝜌1
. . .

]𝑛
𝜌𝑛

= [𝑢]′𝜌 , ∀𝑢 ∈ 𝐿∞ (Ω).

Under this partial ordering, more subtle examples emerge. For instance, for Cucker-
Smale models with Bochner-positive kernels, it can be seen from the identity (4.55) that if
𝜙 = 𝜓 ∗ 𝜓, and assuming that

∫
𝜓 = 1, then the MCS-model based on 𝜓 is finer than that

based on 𝜙, M𝜙

CS ⪯ M𝜓

CS. The same applies for MMT-models as those are based on the
same averaging.

One can build new averaging models from old ones by superimposing averages as long
as they are defined over the same strength measures. So, if

M𝑖 = {(𝜅𝜌, [·]𝑖𝜌) : 𝜌 ∈ P(Ω)}, 𝑖 = 1, 2

are two averaging models, then

M2 ◦M1 =

{
(𝜅𝜌,

[
[·]1
𝜌

]2
𝜌
) : 𝜌 ∈ P(Ω)

}
(13.1)

defines another averaging model.
Certain compositions preserve special properties. For example, if M𝑖 are ball-positive

and symmetric the conjugation (𝜅𝜌,
[ [
[·]1
𝜌

]2
𝜌

]1

𝜌
) is also ball-positive and symmetric.
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